diff options
-rw-r--r-- | src/algebra/catdef.spad.pamphlet | 3 | ||||
-rw-r--r-- | src/algebra/indexedp.spad.pamphlet | 121 | ||||
-rw-r--r-- | src/share/algebra/browse.daase | 1274 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 1578 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1326 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 8888 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 25661 |
7 files changed, 19417 insertions, 19434 deletions
diff --git a/src/algebra/catdef.spad.pamphlet b/src/algebra/catdef.spad.pamphlet index 76b0f796..104c4f10 100644 --- a/src/algebra/catdef.spad.pamphlet +++ b/src/algebra/catdef.spad.pamphlet @@ -296,7 +296,8 @@ OrderedType(): Category == BasicType with )abbrev domain ORDSTRCT OrderedStructure OrderedStructure(T: Type,f: (T,T) -> Boolean): Public == Private where Public == Join(OrderedType,HomotopicTo T) - Private == T add + Private == add + Rep == T coerce(x: %): T == rep x coerce(y: T): % == per y x < y == f(rep x,rep y) diff --git a/src/algebra/indexedp.spad.pamphlet b/src/algebra/indexedp.spad.pamphlet index 59b76a81..43d67cf4 100644 --- a/src/algebra/indexedp.spad.pamphlet +++ b/src/algebra/indexedp.spad.pamphlet @@ -65,10 +65,7 @@ IndexedDirectProductCategory(A:SetCategory,S:OrderedSet): Category == IndexedDirectProductObject(A,S): Public == Private where A: SetCategory S: OrderedSet - Public == IndexedDirectProductCategory(A,S) with - indexedDirectProductObject: List Pair(S,A) -> % - ++ \spad{indexedDirectProductObject l} constructs an indexed - ++ direct product object with support-value pairs given in \spad{l}. + Public == IndexedDirectProductCategory(A,S) Private == add Term == Pair(S,A) Rep == List Term @@ -108,8 +105,6 @@ IndexedDirectProductObject(A,S): Public == Private where termIndex first rep x terms x == rep x - indexedDirectProductObject l == - per sort((x,y) +-> termIndex x > termIndex y, l) @ \section{domain IDPAM IndexedDirectProductAbelianMonoid} @@ -119,10 +114,7 @@ IndexedDirectProductObject(A,S): Public == Private where ++ generators indexed by the ordered set S. All items have finite support. ++ Only non-zero terms are stored. IndexedDirectProductAbelianMonoid(A:AbelianMonoid,S:OrderedSet): - Join(AbelianMonoid,IndexedDirectProductCategory(A,S)) with - construct: List Pair(A,S) -> % - ++ \spad{l} returns an IndexedDirectProductAbelianMonoid object - ++ with support and value as specified in the list of pairs \spad{l}. + Join(AbelianMonoid,IndexedDirectProductCategory(A,S)) == IndexedDirectProductObject(A,S) add --representations Term == Pair(S,A) @@ -203,10 +195,6 @@ IndexedDirectProductAbelianMonoid(A:AbelianMonoid,S:OrderedSet): pair2Term(t: Pair(A,S)): Term == [second t, first t] - construct l == - per indexedDirectProductObject - [pair2Term t for t in l | not zero? first t] - @ \section{domain IDPOAM IndexedDirectProductOrderedAbelianMonoid} <<domain IDPOAM IndexedDirectProductOrderedAbelianMonoid>>= @@ -279,66 +267,61 @@ IndexedDirectProductOrderedAbelianMonoidSup(A:OrderedAbelianMonoidSup,S:OrderedS ++ generators indexed by the ordered set S. ++ All items have finite support: only non-zero terms are stored. IndexedDirectProductAbelianGroup(A:AbelianGroup,S:OrderedSet): - Join(AbelianGroup,IndexedDirectProductCategory(A,S)) + Join(AbelianGroup,IndexedDirectProductCategory(A,S)) with + construct: List Pair(A,S) -> % + ++ \spad{construct l} returns an object that is a linear + ++ combination with support in \spad{A} and coefficients + ++ in \spad{A}. == IndexedDirectProductAbelianMonoid(A,S) add --representations - Term:= Record(k:S,c:A) - Rep:= List Term - x,y: % - r: A - n: Integer - f: A -> A - s: S - -x == [[u.k,-u.c] for u in x] - n * x == - n = 0 => 0 - n = 1 => x - [[u.k,a] for u in x | (a:=n*u.c) ~= 0$A] + Term == Pair(S,A) + termIndex(t: Term): S == first t + termValue(t: Term): A == second t - qsetrest!: (Rep, Rep) -> Rep - qsetrest!(l: Rep, e: Rep): Rep == RPLACD(l, e)$Lisp + -x == [[termIndex u,-termValue u] for u in terms x] pretend % + n:Integer * x:% == + n = 0 => 0 + n = 1 => x + [[termIndex u,a] for u in terms x + | not zero?(a := n * termValue u)] pretend % - x - y == - null x => -y - null y => x - endcell: Rep := empty() - res: Rep := empty() - while not empty? x and not empty? y repeat - newcell := empty() - if x.first.k = y.first.k then - r:= x.first.c - y.first.c - if not zero? r then - newcell := cons([x.first.k, r], empty()) - x := rest x - y := rest y - else if x.first.k > y.first.k then - newcell := cons(x.first, empty()) - x := rest x - else - newcell := cons([y.first.k,-y.first.c], empty()) - y := rest y - if not empty? newcell then - if not empty? endcell then - qsetrest!(endcell, newcell) - endcell := newcell - else - res := newcell; - endcell := res - end := - empty? x => - y - x - if empty? res then res := end - else qsetrest!(endcell, end) - res + qsetrest!: (List Term, List Term) -> List Term + qsetrest!(l, e) == RPLACD(l, e)$Lisp --- x - y == --- empty? x => - y --- empty? y => x --- y.first.k > x.first.k => cons([y.first.k,-y.first.c],(x - y.rest)) --- x.first.k > y.first.k => cons(x.first,(x.rest - y)) --- r:= x.first.c - y.first.c --- r = 0 => x.rest - y.rest --- cons([x.first.k,r],(x.rest - y.rest)) + x - y == + x' := terms x + y' := terms y + null x' => -y + null y' => x + endcell: List Term := nil + res: List Term := nil + while not empty? x' and not empty? y' repeat + newcell: List Term := nil + if termIndex x'.first = termIndex y'.first then + r := termValue x'.first - termValue y'.first + if not zero? r then + newcell := cons([termIndex x'.first, r], empty()) + x' := rest x' + y' := rest y' + else if termIndex x'.first > termIndex y'.first then + newcell := cons(x'.first, empty()) + x' := rest x' + else + newcell := cons([termIndex y'.first,-termValue y'.first], empty()) + y' := rest y' + if not empty? newcell then + if not empty? endcell then + qsetrest!(endcell, newcell) + endcell := newcell + else + res := newcell; + endcell := res + end := + empty? x' => terms(-(y' pretend %)) + x' + if empty? res then res := end + else qsetrest!(endcell, end) + res pretend % @ \section{License} diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 8e8a7036..661fe5d0 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2294130 . 3486833881) +(2293931 . 3486841615) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4466 . T) (-4465 . T)) +((-4465 . T) (-4464 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}"))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4462 . T) (-4460 . T) (-4459 . T) ((-4467 "*") . T) (-4458 . T) (-4463 . T) (-4457 . T)) +((-4461 . T) (-4459 . T) (-4458 . T) ((-4466 "*") . T) (-4457 . T) (-4462 . T) (-4456 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -1962) +(-32 R -1963) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL ((|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4465))) +((|HasAttribute| |#1| (QUOTE -4464))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4465 . T) (-4466 . T)) +((-4464 . T) (-4465 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,17 +82,17 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-4459 . T) (-4460 . T) (-4462 . T)) +((-4458 . T) (-4459 . T) (-4461 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -1962 UP UPUP -1633) +(-40 -1963 UP UPUP -3125) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4458 |has| (-419 |#2|) (-374)) (-4463 |has| (-419 |#2|) (-374)) (-4457 |has| (-419 |#2|) (-374)) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-2760 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-2760 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2760 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2760 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-2760 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -651) (QUOTE (-576)))) (-2760 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) -(-41 R -1962) +((-4457 |has| (-419 |#2|) (-374)) (-4462 |has| (-419 |#2|) (-374)) (-4456 |has| (-419 |#2|) (-374)) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-2759 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-2759 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2759 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2759 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-2759 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -651) (QUOTE (-576)))) (-2759 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) +(-41 R -1963) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -442) (|devaluate| |#1|))))) @@ -106,23 +106,23 @@ NIL ((|HasCategory| |#1| (QUOTE (-317)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4462 |has| |#1| (-568)) (-4460 . T) (-4459 . T)) +((-4461 |has| |#1| (-568)) (-4459 . T) (-4458 . T)) ((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4465 . T) (-4466 . T)) -((-2760 (-12 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4301) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4301) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#2|))))))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-861))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4301) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#2|))))))) +((-4464 . T) (-4465 . T)) +((-2759 (-12 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4439) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4439) (|devaluate| |#2|))))))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-861))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4439) (|devaluate| |#2|))))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL ((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4459 . T) (-4460 . T) (-4462 . T)) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) ((|HasCategory| $ (QUOTE (-1070))) (|HasCategory| $ (LIST (QUOTE -1059) (QUOTE (-576))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) @@ -130,7 +130,7 @@ NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4462 . T)) +((-4461 . T)) NIL (-51 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -1962) +(-54 |Base| R -1963) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -158,7 +158,7 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4465 . T) (-4466 . T)) +((-4464 . T) (-4465 . T)) NIL (-58 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) @@ -166,65 +166,65 @@ NIL NIL (-59 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4466 . T) (-4465 . T)) -((-2760 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2760 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4465 . T) (-4464 . T)) +((-2759 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4465 . T) (-4466 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-61 -2629) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-61 -2628) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -2629) +(-62 -2628) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-63 -2629) +(-63 -2628) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -2629) +(-64 -2628) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -2629) +(-65 -2628) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -2629) +(-66 -2628) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -2629) +(-67 -2628) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -2629) +(-68 -2628) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -2629) +(-69 -2628) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -2629) +(-70 -2628) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -2629) +(-71 -2628) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -2629) +(-72 -2628) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -2629) +(-73 -2628) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -2629) +(-74 -2628) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -236,55 +236,55 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -2629) +(-77 -2628) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -2629) +(-78 -2628) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -2629) +(-79 -2628) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -2629) +(-80 -2628) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -2629) +(-81 -2628) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -2629) +(-82 -2628) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -2629) +(-83 -2628) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -2629) +(-84 -2628) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -2629) +(-85 -2628) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -2629) +(-86 -2628) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -2629) +(-87 -2628) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -2629) +(-88 -2628) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-89 -2629) +(-89 -2628) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -294,8 +294,8 @@ NIL ((|HasCategory| |#1| (QUOTE (-374)))) (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4465 . T) (-4466 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -318,15 +318,15 @@ NIL NIL (-97) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4465 . T)) +((-4464 . T)) NIL (-98) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4465 . T) ((-4467 "*") . T) (-4466 . T) (-4462 . T) (-4460 . T) (-4459 . T) (-4458 . T) (-4463 . T) (-4457 . T) (-4456 . T) (-4455 . T) (-4454 . T) (-4453 . T) (-4461 . T) (-4464 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4452 . T)) +((-4464 . T) ((-4466 "*") . T) (-4465 . T) (-4461 . T) (-4459 . T) (-4458 . T) (-4457 . T) (-4462 . T) (-4456 . T) (-4455 . T) (-4454 . T) (-4453 . T) (-4452 . T) (-4460 . T) (-4463 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4451 . T)) NIL (-99 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4462 . T)) +((-4461 . T)) NIL (-100 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}."))) @@ -342,15 +342,15 @@ NIL NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4465 . T) (-4466 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4467 "*")))) +((|HasAttribute| |#1| (QUOTE (-4466 "*")))) (-105) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4465 . T)) +((-4464 . T)) NIL (-106 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -358,23 +358,23 @@ NIL NIL (-107 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4466 . T)) +((-4465 . T)) NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| (-576) (QUOTE (-928))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1043))) (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861))) (-2760 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861)))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1173))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (|HasCategory| (-576) (QUOTE (-146))))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| (-576) (QUOTE (-928))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1043))) (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861))) (-2759 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861)))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1173))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (|HasCategory| (-576) (QUOTE (-146))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4466 . T) (-4465 . T)) +((-4465 . T) (-4464 . T)) ((-12 (|HasCategory| (-112) (QUOTE (-1121))) (|HasCategory| (-112) (LIST (QUOTE -319) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-112) (QUOTE (-861))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-112) (QUOTE (-1121))) (|HasCategory| (-112) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-112) (QUOTE (-102)))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4460 . T) (-4459 . T)) +((-4459 . T) (-4458 . T)) NIL (-112) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}."))) @@ -392,22 +392,22 @@ NIL ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}."))) NIL NIL -(-116 -1962 UP) +(-116 -1963 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-118 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| (-117 |#1|) (QUOTE (-928))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-117 |#1|) (QUOTE (-1043))) (|HasCategory| (-117 |#1|) (QUOTE (-832))) (|HasCategory| (-117 |#1|) (QUOTE (-861))) (-2760 (|HasCategory| (-117 |#1|) (QUOTE (-832))) (|HasCategory| (-117 |#1|) (QUOTE (-861)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-1173))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-237))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-117 |#1|) (QUOTE (-238))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-317))) (|HasCategory| (-117 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-928)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-928)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| (-117 |#1|) (QUOTE (-928))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-117 |#1|) (QUOTE (-1043))) (|HasCategory| (-117 |#1|) (QUOTE (-832))) (|HasCategory| (-117 |#1|) (QUOTE (-861))) (-2759 (|HasCategory| (-117 |#1|) (QUOTE (-832))) (|HasCategory| (-117 |#1|) (QUOTE (-861)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-1173))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-237))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-117 |#1|) (QUOTE (-238))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-317))) (|HasCategory| (-117 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-928)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))))) (-119 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4466))) +((|HasAttribute| |#1| (QUOTE -4465))) (-120 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -418,15 +418,15 @@ NIL NIL (-122 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4465 . T) (-4466 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-123 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL NIL (-124) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) -((-4466 . T) (-4465 . T)) +((-4465 . T) (-4464 . T)) NIL (-125 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -434,20 +434,20 @@ NIL NIL (-126 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4465 . T) (-4466 . T)) +((-4464 . T) (-4465 . T)) NIL (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4465 . T) (-4466 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-128 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4465 . T) (-4466 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-129) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-4466 . T) (-4465 . T)) -((-2760 (-12 (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130)))))) (-2760 (-12 (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-130) (LIST (QUOTE -626) (QUOTE (-548)))) (-2760 (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1121)))) (|HasCategory| (-130) (QUOTE (-861))) (-2760 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130)))))) +((-4465 . T) (-4464 . T)) +((-2759 (-12 (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130)))))) (-2759 (-12 (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-130) (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1121)))) (|HasCategory| (-130) (QUOTE (-861))) (-2759 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130)))))) (-130) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL @@ -470,13 +470,13 @@ NIL NIL (-135) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-4467 "*") . T)) +(((-4466 "*") . T)) NIL -(-136 |minix| -2706 S T$) +(-136 |minix| -2705 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-137 |minix| -2706 R) +(-137 |minix| -2705 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL @@ -498,8 +498,8 @@ NIL NIL (-142) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4465 . T) (-4455 . T) (-4466 . T)) -((-2760 (-12 (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) +((-4464 . T) (-4454 . T) (-4465 . T)) +((-2759 (-12 (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-143 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -514,7 +514,7 @@ NIL NIL (-146) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4462 . T)) +((-4461 . T)) NIL (-147 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) @@ -522,9 +522,9 @@ NIL NIL (-148) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4462 . T)) +((-4461 . T)) NIL -(-149 -1962 UP UPUP) +(-149 -1963 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL @@ -535,14 +535,14 @@ NIL (-151 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasAttribute| |#1| (QUOTE -4465))) +((|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasAttribute| |#1| (QUOTE -4464))) (-152 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL (-153 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4460 . T) (-4459 . T) (-4462 . T)) +((-4459 . T) (-4458 . T) (-4461 . T)) NIL (-154) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -564,7 +564,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-159 R -1962) +(-159 R -1963) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -595,10 +595,10 @@ NIL (-166 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-1223))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (QUOTE (-1043))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4461)) (|HasAttribute| |#2| (QUOTE -4464)) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-568)))) +((|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-1223))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (QUOTE (-1043))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4460)) (|HasAttribute| |#2| (QUOTE -4463)) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-568)))) (-167 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4458 -2760 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))) (-4463 |has| |#1| (-374)) (-4457 |has| |#1| (-374)) (-4461 |has| |#1| (-6 -4461)) (-4464 |has| |#1| (-6 -4464)) (-4178 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4457 -2759 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4460 |has| |#1| (-6 -4460)) (-4463 |has| |#1| (-6 -4463)) (-4177 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-168 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -614,8 +614,8 @@ NIL NIL (-171 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4458 -2760 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))) (-4463 |has| |#1| (-374)) (-4457 |has| |#1| (-374)) (-4461 |has| |#1| (-6 -4461)) (-4464 |has| |#1| (-6 -4464)) (-4178 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360))) (-2760 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-2760 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-360)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2760 (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-2760 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-928))))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-928))))) (-2760 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1223)))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (QUOTE (-1043))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2760 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-568)))) (-2760 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-1081))) (-12 (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-1223)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-237)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-238))) (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasAttribute| |#1| (QUOTE -4461)) (|HasAttribute| |#1| (QUOTE -4464)) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197))))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-360))))) +((-4457 -2759 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4460 |has| |#1| (-6 -4460)) (-4463 |has| |#1| (-6 -4463)) (-4177 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-2759 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-360)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-928))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-928))))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1223)))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (QUOTE (-1043))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-568)))) (-2759 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-1081))) (-12 (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-1223)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-237)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-238))) (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasAttribute| |#1| (QUOTE -4460)) (|HasAttribute| |#1| (QUOTE -4463)) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197))))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-360))))) (-172 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL @@ -626,7 +626,7 @@ NIL NIL (-174) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +(((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-175) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) @@ -634,7 +634,7 @@ NIL NIL (-176 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4467 "*") . T) (-4458 . T) (-4463 . T) (-4457 . T) (-4459 . T) (-4460 . T) (-4462 . T)) +(((-4466 "*") . T) (-4457 . T) (-4462 . T) (-4456 . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-177) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) @@ -688,7 +688,7 @@ NIL ((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-190 R -1962) +(-190 R -1963) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -796,23 +796,23 @@ NIL ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-217 -1962 UP UPUP R) +(-217 -1963 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-218 -1962 FP) +(-218 -1963 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-219) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| (-576) (QUOTE (-928))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1043))) (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861))) (-2760 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861)))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1173))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (|HasCategory| (-576) (QUOTE (-146))))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| (-576) (QUOTE (-928))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1043))) (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861))) (-2759 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861)))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1173))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (|HasCategory| (-576) (QUOTE (-146))))) (-220) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-221 R -1962) +(-221 R -1963) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -826,19 +826,19 @@ NIL NIL (-224 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4465 . T) (-4466 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-225 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4462 . T)) +((-4461 . T)) NIL -(-226 R -1962) +(-226 R -1963) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-227) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4166 . T) (-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4165 . T) (-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-228) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) @@ -846,19 +846,19 @@ NIL NIL (-229 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4465 . T) (-4466 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4467 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4466 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-230 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL (-231 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4466 . T)) +((-4465 . T)) NIL (-232 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%."))) -((-4462 . T)) +((-4461 . T)) NIL (-233 S T$) ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) @@ -870,7 +870,7 @@ NIL NIL (-235 R) ((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline"))) -((-4460 . T) (-4459 . T)) +((-4459 . T) (-4458 . T)) NIL (-236 S) ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) @@ -882,36 +882,36 @@ NIL NIL (-238) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline"))) -((-4462 . T)) +((-4461 . T)) NIL (-239 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4465))) +((|HasAttribute| |#1| (QUOTE -4464))) (-240 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4466 . T)) +((-4465 . T)) NIL (-241) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-242 S -2706 R) +(-242 S -2705 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861))) (|HasAttribute| |#3| (QUOTE -4462)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-1121)))) -(-243 -2706 R) +((|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861))) (|HasAttribute| |#3| (QUOTE -4461)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-1121)))) +(-243 -2705 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4459 |has| |#2| (-1070)) (-4460 |has| |#2| (-1070)) (-4462 |has| |#2| (-6 -4462)) (-4465 . T)) +((-4458 |has| |#2| (-1070)) (-4459 |has| |#2| (-1070)) (-4461 |has| |#2| (-6 -4461)) (-4464 . T)) NIL -(-244 -2706 A B) +(-244 -2705 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-245 -2706 R) +(-245 -2705 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4459 |has| |#2| (-1070)) (-4460 |has| |#2| (-1070)) (-4462 |has| |#2| (-6 -4462)) (-4465 . T)) -((-2760 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-2760 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-374))) (-2760 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2760 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-2760 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-379))) (-2760 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-238))) (-2760 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070))))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#2| (QUOTE (-1121))) (-2760 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121))))) (-2760 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-2760 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197))))) (-2760 (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasAttribute| |#2| (QUOTE -4462)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) +((-4458 |has| |#2| (-1070)) (-4459 |has| |#2| (-1070)) (-4461 |has| |#2| (-6 -4461)) (-4464 . T)) +((-2759 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-374))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-2759 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-379))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-238))) (-2759 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070))))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#2| (QUOTE (-1121))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121))))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197))))) (-2759 (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasAttribute| |#2| (QUOTE -4461)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) (-246) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL @@ -922,7 +922,7 @@ NIL NIL (-248) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4458 . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4457 . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-249 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) @@ -930,20 +930,20 @@ NIL NIL (-250 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-4466 . T) (-4465 . T)) -((-2760 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2760 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4465 . T) (-4464 . T)) +((-2759 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-251 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL (-252 R) ((|constructor| (NIL "Category of modules that extend differential rings. \\blankline"))) -((-4460 . T) (-4459 . T)) +((-4459 . T) (-4458 . T)) NIL (-253 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4467 "*") |has| |#2| (-174)) (-4458 |has| |#2| (-568)) (-4463 |has| |#2| (-6 -4463)) (-4460 . T) (-4459 . T) (-4462 . T)) -((|HasCategory| |#2| (QUOTE (-928))) (-2760 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2760 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2760 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2760 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4463)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) +(((-4466 "*") |has| |#2| (-174)) (-4457 |has| |#2| (-568)) (-4462 |has| |#2| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#2| (QUOTE (-928))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) (-254) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}."))) NIL @@ -958,23 +958,23 @@ NIL NIL (-257 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4462 -2760 (-2675 (|has| |#4| (-1070)) (|has| |#4| (-238))) (|has| |#4| (-6 -4462)) (-2675 (|has| |#4| (-1070)) (|has| |#4| (-917 (-1197))))) (-4459 |has| |#4| (-1070)) (-4460 |has| |#4| (-1070)) (-4465 . T)) -((-2760 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))))) (|HasCategory| |#4| (QUOTE (-374))) (-2760 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (QUOTE (-1070)))) (-2760 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-374)))) (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (QUOTE (-805))) (-2760 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (QUOTE (-861)))) (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (QUOTE (-379))) (-2760 (-12 (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2760 (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1070)))) (|HasCategory| |#4| (QUOTE (-238))) (-2760 (|HasCategory| |#4| (QUOTE (-238))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1070))))) (-2760 (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#4| (QUOTE (-1121))) (-2760 (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-238)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-374)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-379)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-738)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-805)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-861)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1070)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1121))))) (-2760 (-12 (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1070))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-2760 (-12 (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-2760 (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -919) (QUOTE (-1197)))))) (-2760 (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1070)))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1070))))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-2760 (|HasCategory| |#4| (QUOTE (-1070))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1121)))) (-2760 (|HasAttribute| |#4| (QUOTE -4462)) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1070)))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1070)))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -919) (QUOTE (-1197))))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|))))) +((-4461 -2759 (-2674 (|has| |#4| (-1070)) (|has| |#4| (-238))) (|has| |#4| (-6 -4461)) (-2674 (|has| |#4| (-1070)) (|has| |#4| (-917 (-1197))))) (-4458 |has| |#4| (-1070)) (-4459 |has| |#4| (-1070)) (-4464 . T)) +((-2759 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))))) (|HasCategory| |#4| (QUOTE (-374))) (-2759 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (QUOTE (-1070)))) (-2759 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-374)))) (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (QUOTE (-805))) (-2759 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (QUOTE (-861)))) (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (QUOTE (-379))) (-2759 (-12 (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2759 (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1070)))) (|HasCategory| |#4| (QUOTE (-238))) (-2759 (|HasCategory| |#4| (QUOTE (-238))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1070))))) (-2759 (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#4| (QUOTE (-1121))) (-2759 (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-238)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-374)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-379)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-738)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-805)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-861)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1070)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1121))))) (-2759 (-12 (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1070))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-2759 (-12 (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-2759 (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -919) (QUOTE (-1197)))))) (-2759 (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1070)))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1070))))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-2759 (|HasCategory| |#4| (QUOTE (-1070))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1121)))) (-2759 (|HasAttribute| |#4| (QUOTE -4461)) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1070)))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1070)))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -919) (QUOTE (-1197))))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|))))) (-258 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4462 -2760 (-2675 (|has| |#3| (-1070)) (|has| |#3| (-238))) (|has| |#3| (-6 -4462)) (-2675 (|has| |#3| (-1070)) (|has| |#3| (-917 (-1197))))) (-4459 |has| |#3| (-1070)) (-4460 |has| |#3| (-1070)) (-4465 . T)) -((-2760 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))))) (|HasCategory| |#3| (QUOTE (-374))) (-2760 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-2760 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (-2760 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861)))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-379))) (-2760 (-12 (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2760 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-238))) (-2760 (|HasCategory| |#3| (QUOTE (-238))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1070))))) (-2760 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#3| (QUOTE (-1121))) (-2760 (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-374)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-379)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-738)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-805)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-861)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121))))) (-2760 (-12 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1070))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-2760 (-12 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-2760 (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -919) (QUOTE (-1197)))))) (-2760 (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1070))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-2760 (|HasCategory| |#3| (QUOTE (-1070))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121)))) (-2760 (|HasAttribute| |#3| (QUOTE -4462)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -919) (QUOTE (-1197))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) +((-4461 -2759 (-2674 (|has| |#3| (-1070)) (|has| |#3| (-238))) (|has| |#3| (-6 -4461)) (-2674 (|has| |#3| (-1070)) (|has| |#3| (-917 (-1197))))) (-4458 |has| |#3| (-1070)) (-4459 |has| |#3| (-1070)) (-4464 . T)) +((-2759 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))))) (|HasCategory| |#3| (QUOTE (-374))) (-2759 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-2759 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (-2759 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861)))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-379))) (-2759 (-12 (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2759 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-238))) (-2759 (|HasCategory| |#3| (QUOTE (-238))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1070))))) (-2759 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#3| (QUOTE (-1121))) (-2759 (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-374)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-379)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-738)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-805)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-861)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121))))) (-2759 (-12 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1070))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-2759 (-12 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-2759 (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -919) (QUOTE (-1197)))))) (-2759 (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1070))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-2759 (|HasCategory| |#3| (QUOTE (-1070))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121)))) (-2759 (|HasAttribute| |#3| (QUOTE -4461)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -919) (QUOTE (-1197))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) (-259 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL ((|HasCategory| |#2| (QUOTE (-238)))) (-260 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4463 |has| |#1| (-6 -4463)) (-4460 . T) (-4459 . T) (-4462 . T)) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) NIL (-261 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4465 . T) (-4466 . T)) +((-4464 . T) (-4465 . T)) NIL (-262) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) @@ -1022,8 +1022,8 @@ NIL NIL (-273 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4463 |has| |#1| (-6 -4463)) (-4460 . T) (-4459 . T) (-4462 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#3| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2760 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4463)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#3| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) (-274 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -1068,11 +1068,11 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-285 R -1962) +(-285 R -1963) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-286 R -1962) +(-286 R -1963) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL @@ -1098,7 +1098,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121)))) (-292 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4466 . T)) +((-4465 . T)) NIL (-293 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) @@ -1119,18 +1119,18 @@ NIL (-297 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4466))) +((|HasAttribute| |#1| (QUOTE -4465))) (-298 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-299 S R |Mod| -1765 -3391 |exactQuo|) +(-299 S R |Mod| -1892 -2185 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-300) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4458 . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4457 . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-301) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) @@ -1146,21 +1146,21 @@ NIL NIL (-304 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4462 -2760 (|has| |#1| (-1070)) (|has| |#1| (-485))) (-4459 |has| |#1| (-1070)) (-4460 |has| |#1| (-1070))) -((|HasCategory| |#1| (QUOTE (-374))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1070)))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2760 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-1070)))) (-2760 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1070)))) (-2760 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1070)))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1070)))) (-2760 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738)))) (|HasCategory| |#1| (QUOTE (-485))) (-2760 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2760 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-312))) (-2760 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-485)))) (-2760 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738)))) (-2760 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-738)))) +((-4461 -2759 (|has| |#1| (-1070)) (|has| |#1| (-485))) (-4458 |has| |#1| (-1070)) (-4459 |has| |#1| (-1070))) +((|HasCategory| |#1| (QUOTE (-374))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1070)))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-1070)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1070)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1070)))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1070)))) (-2759 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738)))) (|HasCategory| |#1| (QUOTE (-485))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-312))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-485)))) (-2759 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738)))) (-2759 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-738)))) (-305 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4465 . T) (-4466 . T)) -((-12 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4301) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#2|)))))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4439) (|devaluate| |#2|)))))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102)))) (-306) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-307 -1962 S) +(-307 -1963 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-308 E -1962) +(-308 E -1963) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL @@ -1198,7 +1198,7 @@ NIL NIL (-317) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-318 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) @@ -1208,7 +1208,7 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-320 -1962) +(-320 -1963) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL @@ -1222,8 +1222,8 @@ NIL NIL (-323 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-928))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-1043))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-861))) (-2760 (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-861)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-1173))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-237))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-238))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -319) (LIST (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -296) (LIST (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-317))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-557))) (-12 (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-928))) (|HasCategory| $ (QUOTE (-146)))) (-2760 (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-928))) (|HasCategory| $ (QUOTE (-146)))))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-928))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-1043))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-861))) (-2759 (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-861)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-1173))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-237))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-238))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -319) (LIST (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -296) (LIST (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-317))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-557))) (-12 (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-928))) (|HasCategory| $ (QUOTE (-146)))) (-2759 (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-928))) (|HasCategory| $ (QUOTE (-146)))))) (-324 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL @@ -1234,9 +1234,9 @@ NIL NIL (-326 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4462 -2760 (-12 (|has| |#1| (-568)) (-2760 (|has| |#1| (-1070)) (|has| |#1| (-485)))) (|has| |#1| (-1070)) (|has| |#1| (-485))) (-4460 |has| |#1| (-174)) (-4459 |has| |#1| (-174)) ((-4467 "*") |has| |#1| (-568)) (-4458 |has| |#1| (-568)) (-4463 |has| |#1| (-568)) (-4457 |has| |#1| (-568))) -((-2760 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (-2760 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-21))) (-2760 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-1070))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-2760 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2760 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (-2760 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1070)))) (-2760 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1070)))) (-2760 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1070)))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568)))) (-2760 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-2760 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-2760 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1133)))) (-2760 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-2760 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1070)))) (-2760 (-12 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| $ (QUOTE (-1070))) (|HasCategory| $ (LIST (QUOTE -1059) (QUOTE (-576))))) -(-327 R -1962) +((-4461 -2759 (-12 (|has| |#1| (-568)) (-2759 (|has| |#1| (-1070)) (|has| |#1| (-485)))) (|has| |#1| (-1070)) (|has| |#1| (-485))) (-4459 |has| |#1| (-174)) (-4458 |has| |#1| (-174)) ((-4466 "*") |has| |#1| (-568)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-568)) (-4456 |has| |#1| (-568))) +((-2759 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (-2759 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-21))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-1070))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-2759 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (-2759 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1070)))) (-2759 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1070)))) (-2759 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1070)))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568)))) (-2759 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-2759 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-2759 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1133)))) (-2759 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-2759 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1070)))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| $ (QUOTE (-1070))) (|HasCategory| $ (LIST (QUOTE -1059) (QUOTE (-576))))) +(-327 R -1963) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL @@ -1246,8 +1246,8 @@ NIL NIL (-329 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4463 |has| |#1| (-374)) (-4457 |has| |#1| (-374)) (-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2760 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3570) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2760 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4160) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) (-330 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1258,7 +1258,7 @@ NIL NIL (-332 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4460 . T) (-4459 . T)) +((-4459 . T) (-4458 . T)) ((|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| (-576) (QUOTE (-804)))) (-333 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) @@ -1274,19 +1274,19 @@ NIL ((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174)))) (-336 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4459 . T) (-4460 . T) (-4462 . T)) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-337 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4466 . T) (-4465 . T)) -((-2760 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2760 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-338 S -1962) +((-4465 . T) (-4464 . T)) +((-2759 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +(-338 S -1963) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL ((|HasCategory| |#2| (QUOTE (-379)))) -(-339 -1962) +(-339 -1963) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-340) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10."))) @@ -1308,15 +1308,15 @@ NIL ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-345 S -1962 UP UPUP R) +(-345 S -1963 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-346 -1962 UP UPUP R) +(-346 -1963 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-347 -1962 UP UPUP R) +(-347 -1963 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL @@ -1330,32 +1330,32 @@ NIL NIL (-350 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4459 . T) (-4460 . T) (-4462 . T)) +((-4458 . T) (-4459 . T) (-4461 . T)) ((|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-390)))) (|HasCategory| $ (QUOTE (-1070))) (|HasCategory| $ (LIST (QUOTE -1059) (QUOTE (-576))))) (-351 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-352 S -1962 UP UPUP) +(-352 S -1963 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL ((|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-374)))) -(-353 -1962 UP UPUP) +(-353 -1963 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4458 |has| (-419 |#2|) (-374)) (-4463 |has| (-419 |#2|) (-374)) (-4457 |has| (-419 |#2|) (-374)) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4457 |has| (-419 |#2|) (-374)) (-4462 |has| (-419 |#2|) (-374)) (-4456 |has| (-419 |#2|) (-374)) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-354 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) -((-2760 (|HasCategory| (-929 |#1|) (QUOTE (-146))) (|HasCategory| (-929 |#1|) (QUOTE (-379)))) (|HasCategory| (-929 |#1|) (QUOTE (-148))) (|HasCategory| (-929 |#1|) (QUOTE (-379))) (|HasCategory| (-929 |#1|) (QUOTE (-146)))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2759 (|HasCategory| (-929 |#1|) (QUOTE (-146))) (|HasCategory| (-929 |#1|) (QUOTE (-379)))) (|HasCategory| (-929 |#1|) (QUOTE (-148))) (|HasCategory| (-929 |#1|) (QUOTE (-379))) (|HasCategory| (-929 |#1|) (QUOTE (-146)))) (-355 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) -((-2760 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2759 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) (-356 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) -((-2760 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2759 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) (-357 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL @@ -1370,33 +1370,33 @@ NIL NIL (-360) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-361 R UP -1962) +(-361 R UP -1963) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-362 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) -((-2760 (|HasCategory| (-929 |#1|) (QUOTE (-146))) (|HasCategory| (-929 |#1|) (QUOTE (-379)))) (|HasCategory| (-929 |#1|) (QUOTE (-148))) (|HasCategory| (-929 |#1|) (QUOTE (-379))) (|HasCategory| (-929 |#1|) (QUOTE (-146)))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2759 (|HasCategory| (-929 |#1|) (QUOTE (-146))) (|HasCategory| (-929 |#1|) (QUOTE (-379)))) (|HasCategory| (-929 |#1|) (QUOTE (-148))) (|HasCategory| (-929 |#1|) (QUOTE (-379))) (|HasCategory| (-929 |#1|) (QUOTE (-146)))) (-363 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) -((-2760 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2759 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) (-364 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) -((-2760 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2759 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) (-365 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) -((-2760 (|HasCategory| (-929 |#1|) (QUOTE (-146))) (|HasCategory| (-929 |#1|) (QUOTE (-379)))) (|HasCategory| (-929 |#1|) (QUOTE (-148))) (|HasCategory| (-929 |#1|) (QUOTE (-379))) (|HasCategory| (-929 |#1|) (QUOTE (-146)))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2759 (|HasCategory| (-929 |#1|) (QUOTE (-146))) (|HasCategory| (-929 |#1|) (QUOTE (-379)))) (|HasCategory| (-929 |#1|) (QUOTE (-148))) (|HasCategory| (-929 |#1|) (QUOTE (-379))) (|HasCategory| (-929 |#1|) (QUOTE (-146)))) (-366 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) -((-2760 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) -(-367 -1962 GF) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2759 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +(-367 -1963 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL @@ -1404,21 +1404,21 @@ NIL ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-369 -1962 FP FPP) +(-369 -1963 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL (-370 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) -((-2760 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2759 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) (-371 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL (-372 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4462 . T)) +((-4461 . T)) NIL (-373 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) @@ -1426,7 +1426,7 @@ NIL NIL (-374) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-375 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) @@ -1442,7 +1442,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-568)))) (-378 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4462 |has| |#1| (-568)) (-4460 . T) (-4459 . T)) +((-4461 |has| |#1| (-568)) (-4459 . T) (-4458 . T)) NIL (-379) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) @@ -1454,7 +1454,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-374)))) (-381 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4459 . T) (-4460 . T) (-4462 . T)) +((-4458 . T) (-4459 . T) (-4461 . T)) NIL (-382 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) @@ -1463,14 +1463,14 @@ NIL (-383 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4466)) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121)))) +((|HasAttribute| |#1| (QUOTE -4465)) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121)))) (-384 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4465 . T)) +((-4464 . T)) NIL (-385 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4460 . T) (-4459 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4459 . T) (-4458 . T)) NIL (-386 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) @@ -1490,7 +1490,7 @@ NIL NIL (-390) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4448 . T) (-4456 . T) (-4166 . T) (-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4447 . T) (-4455 . T) (-4165 . T) (-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-391 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) @@ -1498,11 +1498,11 @@ NIL NIL (-392 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4460 . T) (-4459 . T)) +((-4459 . T) (-4458 . T)) ((|HasCategory| |#1| (QUOTE (-174)))) (-393 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4460 . T) (-4459 . T)) +((-4459 . T) (-4458 . T)) NIL (-394) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) @@ -1514,7 +1514,7 @@ NIL NIL (-396 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4460 . T) (-4459 . T)) +((-4459 . T) (-4458 . T)) ((|HasCategory| |#1| (QUOTE (-174)))) (-397 S) ((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) @@ -1526,7 +1526,7 @@ NIL ((|HasCategory| |#1| (QUOTE (-861)))) (-399) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-400) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) @@ -1538,13 +1538,13 @@ NIL NIL (-402 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4460 . T) (-4459 . T)) +((-4459 . T) (-4458 . T)) NIL (-403) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-404 -1962 UP UPUP R) +(-404 -1963 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL @@ -1568,11 +1568,11 @@ NIL ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}"))) NIL NIL -(-410 -2629 |returnType| -1927 |symbols|) +(-410 -2628 |returnType| -1930 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-411 -1962 UP) +(-411 -1963 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL @@ -1586,15 +1586,15 @@ NIL NIL (-414) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-415 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4448)) (|HasAttribute| |#1| (QUOTE -4456))) +((|HasAttribute| |#1| (QUOTE -4447)) (|HasAttribute| |#1| (QUOTE -4455))) (-416) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-4166 . T) (-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4165 . T) (-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-417 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) @@ -1606,15 +1606,15 @@ NIL NIL (-419 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4452 -12 (|has| |#1| (-6 -4463)) (|has| |#1| (-464)) (|has| |#1| (-6 -4452))) (-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-861))) (-2760 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-861)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (-2760 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840))))) (-2760 (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840))))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-557))) (-12 (|HasAttribute| |#1| (QUOTE -4463)) (|HasAttribute| |#1| (QUOTE -4452)) (|HasCategory| |#1| (QUOTE (-464)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) +((-4451 -12 (|has| |#1| (-6 -4462)) (|has| |#1| (-464)) (|has| |#1| (-6 -4451))) (-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-861)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840))))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840))))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-557))) (-12 (|HasAttribute| |#1| (QUOTE -4462)) (|HasAttribute| |#1| (QUOTE -4451)) (|HasCategory| |#1| (QUOTE (-464)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) (-420 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL (-421 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4459 . T) (-4460 . T) (-4462 . T)) +((-4458 . T) (-4459 . T) (-4461 . T)) NIL (-422 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) @@ -1628,11 +1628,11 @@ NIL ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-425 R -1962 UP A) +(-425 R -1963 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) -((-4462 . T)) +((-4461 . T)) NIL -(-426 R -1962 UP A |ibasis|) +(-426 R -1963 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL ((|HasCategory| |#4| (LIST (QUOTE -1059) (|devaluate| |#2|)))) @@ -1646,12 +1646,12 @@ NIL ((|HasCategory| |#2| (QUOTE (-374)))) (-429 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4462 |has| |#1| (-568)) (-4460 . T) (-4459 . T)) +((-4461 |has| |#1| (-568)) (-4459 . T) (-4458 . T)) NIL (-430 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -319) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -296) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1242))) (-2760 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-1242)))) (|HasCategory| |#1| (QUOTE (-1043))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-464)))) +((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -319) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -296) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1242))) (-2759 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-1242)))) (|HasCategory| |#1| (QUOTE (-1043))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-464)))) (-431 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) NIL @@ -1678,17 +1678,17 @@ NIL ((|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-379)))) (-437 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4465 . T) (-4455 . T) (-4466 . T)) +((-4464 . T) (-4454 . T) (-4465 . T)) NIL -(-438 R -1962) +(-438 R -1963) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL (-439 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4452 -12 (|has| |#1| (-6 -4452)) (|has| |#2| (-6 -4452))) (-4459 . T) (-4460 . T) (-4462 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4452)) (|HasAttribute| |#2| (QUOTE -4452)))) -(-440 R -1962) +((-4451 -12 (|has| |#1| (-6 -4451)) (|has| |#2| (-6 -4451))) (-4458 . T) (-4459 . T) (-4461 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4451)) (|HasAttribute| |#2| (QUOTE -4451)))) +(-440 R -1963) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL @@ -1698,17 +1698,17 @@ NIL ((|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-442 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4462 -2760 (|has| |#1| (-1070)) (|has| |#1| (-485))) (-4460 |has| |#1| (-174)) (-4459 |has| |#1| (-174)) ((-4467 "*") |has| |#1| (-568)) (-4458 |has| |#1| (-568)) (-4463 |has| |#1| (-568)) (-4457 |has| |#1| (-568))) +((-4461 -2759 (|has| |#1| (-1070)) (|has| |#1| (-485))) (-4459 |has| |#1| (-174)) (-4458 |has| |#1| (-174)) ((-4466 "*") |has| |#1| (-568)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-568)) (-4456 |has| |#1| (-568))) NIL -(-443 R -1962) +(-443 R -1963) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-444 R -1962) +(-444 R -1963) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-445 R -1962) +(-445 R -1963) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL @@ -1716,7 +1716,7 @@ NIL ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-447 R -1962 UP) +(-447 R -1963 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL ((|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-48))))) @@ -1748,7 +1748,7 @@ NIL ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-455 R UP -1962) +(-455 R UP -1963) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL @@ -1786,16 +1786,16 @@ NIL NIL (-464) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-465 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4462 |has| (-419 (-971 |#1|)) (-568)) (-4460 . T) (-4459 . T)) +((-4461 |has| (-419 (-971 |#1|)) (-568)) (-4459 . T) (-4458 . T)) ((|HasCategory| (-419 (-971 |#1|)) (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| (-419 (-971 |#1|)) (QUOTE (-568)))) (-466 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4467 "*") |has| |#2| (-174)) (-4458 |has| |#2| (-568)) (-4463 |has| |#2| (-6 -4463)) (-4460 . T) (-4459 . T) (-4462 . T)) -((|HasCategory| |#2| (QUOTE (-928))) (-2760 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2760 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2760 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2760 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4463)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) +(((-4466 "*") |has| |#2| (-174)) (-4457 |has| |#2| (-568)) (-4462 |has| |#2| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#2| (QUOTE (-928))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) (-467 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL @@ -1822,7 +1822,7 @@ NIL NIL (-473 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4460 . T) (-4459 . T)) +((-4459 . T) (-4458 . T)) NIL (-474 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) @@ -1830,7 +1830,7 @@ NIL NIL (-475 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4466 . T) (-4465 . T)) +((-4465 . T) (-4464 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#4| (QUOTE (-102)))) (-476 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) @@ -1860,7 +1860,7 @@ NIL ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-483 |lv| -1962 R) +(-483 |lv| -1963 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL @@ -1870,23 +1870,23 @@ NIL NIL (-485) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4462 . T)) +((-4461 . T)) NIL (-486 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4463 |has| |#1| (-374)) (-4457 |has| |#1| (-374)) (-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2760 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3570) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2760 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4160) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) (-487 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4466 . T)) -((-12 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4301) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#2|)))))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-861))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121)))) +((-4465 . T)) +((-12 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4439) (|devaluate| |#2|)))))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121)))) (-488 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4466 . T) (-4465 . T)) +((-4465 . T) (-4464 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#4| (QUOTE (-102)))) (-489) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-490) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) @@ -1894,29 +1894,29 @@ NIL NIL (-491 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4465 . T) (-4466 . T)) -((-12 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4301) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#2|)))))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4439) (|devaluate| |#2|)))))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102)))) (-492) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL (-493 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4467 "*") |has| |#2| (-174)) (-4458 |has| |#2| (-568)) (-4463 |has| |#2| (-6 -4463)) (-4460 . T) (-4459 . T) (-4462 . T)) -((|HasCategory| |#2| (QUOTE (-928))) (-2760 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2760 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2760 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2760 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4463)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-494 -2706 S) +(((-4466 "*") |has| |#2| (-174)) (-4457 |has| |#2| (-568)) (-4462 |has| |#2| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#2| (QUOTE (-928))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-494 -2705 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4459 |has| |#2| (-1070)) (-4460 |has| |#2| (-1070)) (-4462 |has| |#2| (-6 -4462)) (-4465 . T)) -((-2760 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-2760 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-374))) (-2760 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2760 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-2760 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-379))) (-2760 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-238))) (-2760 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070))))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#2| (QUOTE (-1121))) (-2760 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121))))) (-2760 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-2760 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197))))) (-2760 (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasAttribute| |#2| (QUOTE -4462)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) +((-4458 |has| |#2| (-1070)) (-4459 |has| |#2| (-1070)) (-4461 |has| |#2| (-6 -4461)) (-4464 . T)) +((-2759 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-374))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-2759 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-379))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-238))) (-2759 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070))))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#2| (QUOTE (-1121))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121))))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197))))) (-2759 (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasAttribute| |#2| (QUOTE -4461)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) (-495) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL NIL (-496 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4465 . T) (-4466 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-497 -1962 UP UPUP R) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-497 -1963 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL @@ -1926,12 +1926,12 @@ NIL NIL (-499) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| (-576) (QUOTE (-928))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1043))) (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861))) (-2760 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861)))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1173))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (|HasCategory| (-576) (QUOTE (-146))))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| (-576) (QUOTE (-928))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1043))) (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861))) (-2759 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861)))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1173))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (|HasCategory| (-576) (QUOTE (-146))))) (-500 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4465)) (|HasAttribute| |#1| (QUOTE -4466)) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) +((|HasAttribute| |#1| (QUOTE -4464)) (|HasAttribute| |#1| (QUOTE -4465)) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-501 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL @@ -1952,33 +1952,33 @@ NIL ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-506 -1962 UP |AlExt| |AlPol|) +(-506 -1963 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL (-507) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) ((|HasCategory| $ (QUOTE (-1070))) (|HasCategory| $ (LIST (QUOTE -1059) (QUOTE (-576))))) (-508 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4466 . T) (-4465 . T)) -((-2760 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2760 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4465 . T) (-4464 . T)) +((-2759 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-509 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4465 . T) (-4466 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-510 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-511 R UP -1962) +(-511 R UP -1963) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-512 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4466 . T) (-4465 . T)) +((-4465 . T) (-4464 . T)) ((-12 (|HasCategory| (-112) (QUOTE (-1121))) (|HasCategory| (-112) (LIST (QUOTE -319) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-112) (QUOTE (-861))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-112) (QUOTE (-1121))) (|HasCategory| (-112) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-112) (QUOTE (-102)))) (-513 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) @@ -1992,7 +1992,7 @@ NIL ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-516 -1962 |Expon| |VarSet| |DPoly|) +(-516 -1963 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-1197))))) @@ -2005,11 +2005,11 @@ NIL NIL NIL (-519 A S) -((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) +((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")) (|construct| (($ (|List| (|Pair| |#1| |#2|))) "\\spad{construct l} returns an object that is a linear combination with support in \\spad{A} and coefficients in \\spad{A}."))) NIL NIL (-520 A S) -((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored.")) (|construct| (($ (|List| (|Pair| |#1| |#2|))) "\\spad{l} returns an IndexedDirectProductAbelianMonoid object with support and value as specified in the list of pairs \\spad{l}."))) +((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL NIL (-521 A S) @@ -2025,7 +2025,7 @@ NIL NIL NIL (-524 A S) -((|constructor| (NIL "Indexed direct products of objects over a set \\spad{A} of generators indexed by an ordered set \\spad{S}. All items have finite support.")) (|indexedDirectProductObject| (($ (|List| (|Pair| |#2| |#1|))) "\\spad{indexedDirectProductObject l} constructs an indexed direct product object with support-value pairs given in \\spad{l}."))) +((|constructor| (NIL "Indexed direct products of objects over a set \\spad{A} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL NIL (-525 S A B) @@ -2042,36 +2042,36 @@ NIL ((|HasCategory| |#2| (QUOTE (-804)))) (-528 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4466 . T) (-4465 . T)) -((-2760 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2760 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4465 . T) (-4464 . T)) +((-2759 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-529) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL (-530 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) -((-2760 (|HasCategory| (-593 |#1|) (QUOTE (-146))) (|HasCategory| (-593 |#1|) (QUOTE (-379)))) (|HasCategory| (-593 |#1|) (QUOTE (-148))) (|HasCategory| (-593 |#1|) (QUOTE (-379))) (|HasCategory| (-593 |#1|) (QUOTE (-146)))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2759 (|HasCategory| (-593 |#1|) (QUOTE (-146))) (|HasCategory| (-593 |#1|) (QUOTE (-379)))) (|HasCategory| (-593 |#1|) (QUOTE (-148))) (|HasCategory| (-593 |#1|) (QUOTE (-379))) (|HasCategory| (-593 |#1|) (QUOTE (-146)))) (-531 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4465 . T) (-4466 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-532 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4466 . T) (-4465 . T)) -((-2760 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2760 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4465 . T) (-4464 . T)) +((-2759 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-533 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4466))) +((|HasAttribute| |#3| (QUOTE -4465))) (-534 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4466))) +((|HasAttribute| |#7| (QUOTE -4465))) (-535 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4465 . T) (-4466 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4467 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4466 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-536) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL @@ -2104,7 +2104,7 @@ NIL ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-544 K -1962 |Par|) +(-544 K -1963 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL @@ -2128,7 +2128,7 @@ NIL ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-550 K -1962 |Par|) +(-550 K -1963 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL @@ -2158,7 +2158,7 @@ NIL NIL (-557) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4463 . T) (-4464 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4462 . T) (-4463 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-558) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) @@ -2178,13 +2178,13 @@ NIL NIL (-562 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4465 . T) (-4466 . T)) -((-12 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4301) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#2|)))))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-102)))) -(-563 R -1962) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4439) (|devaluate| |#2|)))))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102)))) +(-563 R -1963) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-564 R0 -1962 UP UPUP R) +(-564 R0 -1963 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL @@ -2194,7 +2194,7 @@ NIL NIL (-566 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-4166 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4165 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-567 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) @@ -2202,9 +2202,9 @@ NIL NIL (-568) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-569 R -1962) +(-569 R -1963) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL @@ -2216,7 +2216,7 @@ NIL ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-572 R -1962 L) +(-572 R -1963 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -668) (|devaluate| |#2|)))) @@ -2224,31 +2224,31 @@ NIL ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-574 -1962 UP UPUP R) +(-574 -1963 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-575 -1962 UP) +(-575 -1963 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL (-576) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4447 . T) (-4453 . T) (-4457 . T) (-4452 . T) (-4463 . T) (-4464 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4446 . T) (-4452 . T) (-4456 . T) (-4451 . T) (-4462 . T) (-4463 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-577) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-578 R -1962 L) +(-578 R -1963 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -668) (|devaluate| |#2|)))) -(-579 R -1962) +(-579 R -1963) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL ((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1160)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-641))))) -(-580 -1962 UP) +(-580 -1963 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL @@ -2256,27 +2256,27 @@ NIL ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-582 -1962) +(-582 -1963) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL (-583 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-4166 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4165 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-584) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-585 R -1962) +(-585 R -1963) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL ((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-294))) (|HasCategory| |#2| (QUOTE (-641))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-294)))) (|HasCategory| |#1| (QUOTE (-568)))) -(-586 -1962 UP) +(-586 -1963 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-587 R -1962) +(-587 R -1963) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL @@ -2298,21 +2298,21 @@ NIL NIL (-592 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-593 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) ((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-379)))) (-594) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-595 R -1962) +(-595 R -1963) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-596 E -1962) +(-596 E -1963) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL @@ -2320,9 +2320,9 @@ NIL ((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}"))) NIL NIL -(-598 -1962) +(-598 -1963) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4460 . T) (-4459 . T)) +((-4459 . T) (-4458 . T)) ((|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-1197))))) (-599 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) @@ -2350,19 +2350,19 @@ NIL NIL (-605 |mn|) ((|constructor| (NIL "This domain implements low-level strings"))) -((-4466 . T) (-4465 . T)) -((-2760 (-12 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-2760 (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (-2760 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121)))) (|HasCategory| (-145) (QUOTE (-861))) (-2760 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) +((-4465 . T) (-4464 . T)) +((-2759 (-12 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-2759 (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121)))) (|HasCategory| (-145) (QUOTE (-861))) (-2759 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-606 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL (-607 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))) (|HasCategory| (-576) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3570) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576)))))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))) (|HasCategory| (-576) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576)))))) (-608 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -(((-4467 "*") |has| |#1| (-568)) (-4458 |has| |#1| (-568)) (-4459 . T) (-4460 . T) (-4462 . T)) +(((-4466 "*") |has| |#1| (-568)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) ((|HasCategory| |#1| (QUOTE (-568)))) (-609) ((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context"))) @@ -2376,7 +2376,7 @@ NIL ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-612 R -1962 FG) +(-612 R -1963 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL @@ -2386,12 +2386,12 @@ NIL NIL (-614 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4466 . T) (-4465 . T)) -((-2760 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2760 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1070))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4465 . T) (-4464 . T)) +((-2759 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1070))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-615 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4466)) (|HasCategory| |#2| (QUOTE (-861))) (|HasAttribute| |#1| (QUOTE -4465)) (|HasCategory| |#3| (QUOTE (-1121)))) +((|HasAttribute| |#1| (QUOTE -4465)) (|HasCategory| |#2| (QUOTE (-861))) (|HasAttribute| |#1| (QUOTE -4464)) (|HasCategory| |#3| (QUOTE (-1121)))) (-616 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL @@ -2406,19 +2406,19 @@ NIL NIL (-619 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4462 -2760 (-2675 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4460 . T) (-4459 . T)) -((-2760 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) +((-4461 -2759 (-2674 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4459 . T) (-4458 . T)) +((-2759 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-620 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4465 . T) (-4466 . T)) -((-12 (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4301) (QUOTE (-1179))) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| (-1179) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (QUOTE (-1179))) (LIST (QUOTE |:|) (QUOTE -4439) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| (-1179) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (QUOTE (-102)))) (-621 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL (-622 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4466 . T)) +((-4465 . T)) NIL (-623 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) @@ -2436,7 +2436,7 @@ NIL ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-627 -1962 UP) +(-627 -1963 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL @@ -2458,19 +2458,19 @@ NIL NIL (-632 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4462 . T)) +((-4461 . T)) NIL (-633 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4459 . T) (-4460 . T) (-4462 . T)) +((-4458 . T) (-4459 . T) (-4461 . T)) ((|HasCategory| |#1| (QUOTE (-860)))) -(-634 R -1962) +(-634 R -1963) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL (-635 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4460 . T) (-4459 . T) ((-4467 "*") . T) (-4458 . T) (-4462 . T)) +((-4459 . T) (-4458 . T) ((-4466 "*") . T) (-4457 . T) (-4461 . T)) ((|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (-636 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) @@ -2486,7 +2486,7 @@ NIL NIL (-639 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4462 . T)) +((-4461 . T)) NIL (-640 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) @@ -2496,30 +2496,30 @@ NIL ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-642 R -1962) +(-642 R -1963) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-643 |lv| -1962) +(-643 |lv| -1963) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL (-644) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4466 . T)) -((-12 (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4301) (QUOTE (-1179))) (LIST (QUOTE |:|) (QUOTE -4440) (QUOTE (-52))))))) (-2760 (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-1121)))) (-2760 (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1121)))) (-2760 (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-1179) (QUOTE (-861))) (-2760 (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (-2760 (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (QUOTE (-1121)))) +((-4465 . T)) +((-12 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (QUOTE (-1179))) (LIST (QUOTE |:|) (QUOTE -4439) (QUOTE (-52))))))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-1179) (QUOTE (-861))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (QUOTE (-1121)))) (-645 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL ((|HasCategory| |#2| (QUOTE (-374)))) (-646 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4460 . T) (-4459 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4459 . T) (-4458 . T)) NIL (-647 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4462 -2760 (-2675 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4460 . T) (-4459 . T)) -((-2760 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) +((-4461 -2759 (-2674 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4459 . T) (-4458 . T)) +((-2759 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-648 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL @@ -2554,8 +2554,8 @@ NIL NIL (-656 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) -((-4466 . T) (-4465 . T)) -((-2760 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2760 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4465 . T) (-4464 . T)) +((-2759 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-657 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL @@ -2566,8 +2566,8 @@ NIL NIL (-659 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4465 . T) (-4466 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-660 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline"))) NIL @@ -2579,22 +2579,22 @@ NIL (-662 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4466))) +((|HasAttribute| |#1| (QUOTE -4465))) (-663 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-664 R -1962 L) +(-664 R -1963 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL (-665 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4459 . T) (-4460 . T) (-4462 . T)) +((-4458 . T) (-4459 . T) (-4461 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) (-666 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4459 . T) (-4460 . T) (-4462 . T)) +((-4458 . T) (-4459 . T) (-4461 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) (-667 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) @@ -2602,15 +2602,15 @@ NIL ((|HasCategory| |#2| (QUOTE (-374)))) (-668 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4459 . T) (-4460 . T) (-4462 . T)) +((-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-669 -1962 UP) +(-669 -1963 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-670 A -3850) +(-670 A -4337) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4459 . T) (-4460 . T) (-4462 . T)) +((-4458 . T) (-4459 . T) (-4461 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) (-671 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) @@ -2626,7 +2626,7 @@ NIL NIL (-674 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4460 . T) (-4459 . T)) +((-4459 . T) (-4458 . T)) ((|HasCategory| |#1| (QUOTE (-803)))) (-675 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists."))) @@ -2634,7 +2634,7 @@ NIL NIL (-676 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4460 . T) (-4459 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4459 . T) (-4458 . T)) ((|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-174)))) (-677 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) @@ -2642,13 +2642,13 @@ NIL NIL (-678 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4466 . T) (-4465 . T)) +((-4465 . T) (-4464 . T)) NIL -(-679 -1962) +(-679 -1963) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-680 -1962 |Row| |Col| M) +(-680 -1963 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL @@ -2658,8 +2658,8 @@ NIL NIL (-682 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4462 . T) (-4465 . T) (-4459 . T) (-4460 . T)) -((|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4467 "*"))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2760 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-568))) (-2760 (|HasAttribute| |#2| (QUOTE (-4467 "*"))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) +((-4461 . T) (-4464 . T) (-4458 . T) (-4459 . T)) +((|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4466 "*"))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-568))) (-2759 (|HasAttribute| |#2| (QUOTE (-4466 "*"))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) (-683) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL @@ -2679,7 +2679,7 @@ NIL (-687 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms"))) NIL -((-2760 (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1121))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-2759 (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-688) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL @@ -2723,10 +2723,10 @@ NIL (-698 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4467 "*"))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-568)))) +((|HasAttribute| |#2| (QUOTE (-4466 "*"))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-568)))) (-699 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4465 . T) (-4466 . T)) +((-4464 . T) (-4465 . T)) NIL (-700 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) @@ -2734,8 +2734,8 @@ NIL ((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568)))) (-701 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4465 . T) (-4466 . T)) -((-2760 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1121))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4467 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4464 . T) (-4465 . T)) +((-2759 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4466 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-702 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL @@ -2744,7 +2744,7 @@ NIL ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%."))) NIL NIL -(-704 S -1962 FLAF FLAS) +(-704 S -1963 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL @@ -2754,11 +2754,11 @@ NIL NIL (-706) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4458 . T) (-4463 |has| (-711) (-374)) (-4457 |has| (-711) (-374)) (-4178 . T) (-4464 |has| (-711) (-6 -4464)) (-4461 |has| (-711) (-6 -4461)) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| (-711) (QUOTE (-148))) (|HasCategory| (-711) (QUOTE (-146))) (|HasCategory| (-711) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-711) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-711) (QUOTE (-379))) (|HasCategory| (-711) (QUOTE (-374))) (-2760 (|HasCategory| (-711) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-237))) (-2760 (-12 (|HasCategory| (-711) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -919) (QUOTE (-1197))))) (-2760 (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-360)))) (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (LIST (QUOTE -296) (QUOTE (-711)) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -319) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-711) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-711) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-711) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (-2760 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-360)))) (|HasCategory| (-711) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-711) (QUOTE (-1043))) (|HasCategory| (-711) (QUOTE (-1223))) (-12 (|HasCategory| (-711) (QUOTE (-1023))) (|HasCategory| (-711) (QUOTE (-1223)))) (-2760 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-374))) (-12 (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (QUOTE (-928))))) (-2760 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (-12 (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-928)))) (-12 (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (QUOTE (-928))))) (|HasCategory| (-711) (QUOTE (-557))) (-12 (|HasCategory| (-711) (QUOTE (-1081))) (|HasCategory| (-711) (QUOTE (-1223)))) (|HasCategory| (-711) (QUOTE (-1081))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928))) (-2760 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-374)))) (-2760 (-12 (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (QUOTE (-237)))) (-2760 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-568)))) (-12 (|HasCategory| (-711) (QUOTE (-237))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-711) (QUOTE (-568))) (|HasAttribute| (-711) (QUOTE -4464)) (|HasAttribute| (-711) (QUOTE -4461)) (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (LIST (QUOTE -919) (QUOTE (-1197)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-146)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-360))))) +((-4457 . T) (-4462 |has| (-711) (-374)) (-4456 |has| (-711) (-374)) (-4177 . T) (-4463 |has| (-711) (-6 -4463)) (-4460 |has| (-711) (-6 -4460)) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| (-711) (QUOTE (-148))) (|HasCategory| (-711) (QUOTE (-146))) (|HasCategory| (-711) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-711) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-711) (QUOTE (-379))) (|HasCategory| (-711) (QUOTE (-374))) (-2759 (|HasCategory| (-711) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-237))) (-2759 (-12 (|HasCategory| (-711) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -919) (QUOTE (-1197))))) (-2759 (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-360)))) (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (LIST (QUOTE -296) (QUOTE (-711)) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -319) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-711) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-711) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-711) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (-2759 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-360)))) (|HasCategory| (-711) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-711) (QUOTE (-1043))) (|HasCategory| (-711) (QUOTE (-1223))) (-12 (|HasCategory| (-711) (QUOTE (-1023))) (|HasCategory| (-711) (QUOTE (-1223)))) (-2759 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-374))) (-12 (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (QUOTE (-928))))) (-2759 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (-12 (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-928)))) (-12 (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (QUOTE (-928))))) (|HasCategory| (-711) (QUOTE (-557))) (-12 (|HasCategory| (-711) (QUOTE (-1081))) (|HasCategory| (-711) (QUOTE (-1223)))) (|HasCategory| (-711) (QUOTE (-1081))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928))) (-2759 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-374)))) (-2759 (-12 (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (QUOTE (-237)))) (-2759 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-568)))) (-12 (|HasCategory| (-711) (QUOTE (-237))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-711) (QUOTE (-568))) (|HasAttribute| (-711) (QUOTE -4463)) (|HasAttribute| (-711) (QUOTE -4460)) (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (LIST (QUOTE -919) (QUOTE (-1197)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-146)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-360))))) (-707 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4466 . T)) +((-4465 . T)) NIL (-708 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) @@ -2768,13 +2768,13 @@ NIL ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-710 OV E -1962 PG) +(-710 OV E -1963 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL (-711) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-4166 . T) (-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4165 . T) (-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-712 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) @@ -2782,7 +2782,7 @@ NIL NIL (-713) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4464 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4463 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-714 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) @@ -2810,7 +2810,7 @@ NIL NIL (-720 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4459 . T) (-4460 . T) (-4462 . T)) +((-4458 . T) (-4459 . T) (-4461 . T)) NIL (-721 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) @@ -2820,25 +2820,25 @@ NIL ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-723 R |Mod| -1765 -3391 |exactQuo|) +(-723 R |Mod| -1892 -2185 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-724 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4461 |has| |#1| (-374)) (-4463 |has| |#1| (-6 -4463)) (-4460 . T) (-4459 . T) (-4462 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2760 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4463)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) (-725 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL (-726 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4460 |has| |#1| (-174)) (-4459 |has| |#1| (-174)) (-4462 . T)) +((-4459 |has| |#1| (-174)) (-4458 |has| |#1| (-174)) (-4461 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) -(-727 R |Mod| -1765 -3391 |exactQuo|) +(-727 R |Mod| -1892 -2185 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4462 . T)) +((-4461 . T)) NIL (-728 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) @@ -2846,11 +2846,11 @@ NIL NIL (-729 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4460 . T) (-4459 . T)) +((-4459 . T) (-4458 . T)) NIL -(-730 -1962) +(-730 -1963) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) -((-4462 . T)) +((-4461 . T)) NIL (-731 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) @@ -2874,7 +2874,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379)))) (-736 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4458 |has| |#1| (-374)) (-4463 |has| |#1| (-374)) (-4457 |has| |#1| (-374)) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4457 |has| |#1| (-374)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-737 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) @@ -2884,7 +2884,7 @@ NIL ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-739 -1962 UP) +(-739 -1963 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL @@ -2902,8 +2902,8 @@ NIL NIL (-743 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4467 "*") |has| |#2| (-174)) (-4458 |has| |#2| (-568)) (-4463 |has| |#2| (-6 -4463)) (-4460 . T) (-4459 . T) (-4462 . T)) -((|HasCategory| |#2| (QUOTE (-928))) (-2760 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2760 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2760 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2760 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4463)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) +(((-4466 "*") |has| |#2| (-174)) (-4457 |has| |#2| (-568)) (-4462 |has| |#2| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#2| (QUOTE (-928))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) (-744 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL @@ -2918,15 +2918,15 @@ NIL NIL (-747 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4460 |has| |#1| (-174)) (-4459 |has| |#1| (-174)) (-4462 . T)) +((-4459 |has| |#1| (-174)) (-4458 |has| |#1| (-174)) (-4461 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-861)))) (-748 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4455 . T) (-4466 . T)) +((-4454 . T) (-4465 . T)) NIL (-749 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4465 . T) (-4455 . T) (-4466 . T)) +((-4464 . T) (-4454 . T) (-4465 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-750) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) @@ -2938,7 +2938,7 @@ NIL NIL (-752 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4460 . T) (-4459 . T) (-4462 . T)) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4459 . T) (-4458 . T) (-4461 . T)) NIL (-753 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) @@ -2954,7 +2954,7 @@ NIL NIL (-756 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4460 . T) (-4459 . T)) +((-4459 . T) (-4458 . T)) NIL (-757) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) @@ -3036,11 +3036,11 @@ NIL ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-777 -1962) +(-777 -1963) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-778 P -1962) +(-778 P -1963) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL @@ -3048,7 +3048,7 @@ NIL NIL NIL NIL -(-780 UP -1962) +(-780 UP -1963) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL @@ -3062,9 +3062,9 @@ NIL NIL (-783) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4467 "*") . T)) +(((-4466 "*") . T)) NIL -(-784 R -1962) +(-784 R -1963) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL @@ -3084,7 +3084,7 @@ NIL ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-789 -1962 |ExtF| |SUEx| |ExtP| |n|) +(-789 -1963 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL @@ -3098,23 +3098,23 @@ NIL NIL (-792 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4463 |has| |#1| (-6 -4463)) (-4460 . T) (-4459 . T) (-4462 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2760 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197))))) (-2760 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (-2663 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))))) (-2760 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (-2663 (|HasCategory| |#1| (QUOTE (-557)))) (-2663 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (-2663 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576))))) (-2663 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (-2663 (|HasCategory| |#1| (LIST (QUOTE -1013) (QUOTE (-576))))))) (|HasAttribute| |#1| (QUOTE -4463)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197))))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (-2663 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (-2663 (|HasCategory| |#1| (QUOTE (-557)))) (-2663 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (-2663 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576))))) (-2663 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (-2663 (|HasCategory| |#1| (LIST (QUOTE -1013) (QUOTE (-576))))))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) (-793 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL (-794 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4461 |has| |#1| (-374)) (-4463 |has| |#1| (-6 -4463)) (-4460 . T) (-4459 . T) (-4462 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2760 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4463)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) (-795 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL ((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-796 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4466 . T) (-4465 . T)) +((-4465 . T) (-4464 . T)) NIL (-797 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) @@ -3166,25 +3166,25 @@ NIL ((|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-379)))) (-809 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4459 . T) (-4460 . T) (-4462 . T)) +((-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-810 -2760 R OS S) +(-810 -2759 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL (-811 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-2760 (|HasCategory| (-1020 |#1|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2760 (|HasCategory| (-1020 |#1|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| (-1020 |#1|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1020 |#1|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) +((-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-2759 (|HasCategory| (-1020 |#1|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2759 (|HasCategory| (-1020 |#1|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| (-1020 |#1|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1020 |#1|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (-812) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-813 R -1962 L) +(-813 R -1963 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-814 R -1962) +(-814 R -1963) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL @@ -3192,7 +3192,7 @@ NIL ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-816 R -1962) +(-816 R -1963) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL @@ -3200,11 +3200,11 @@ NIL ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-818 -1962 UP UPUP R) +(-818 -1963 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-819 -1962 UP L LQ) +(-819 -1963 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL @@ -3212,41 +3212,41 @@ NIL ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-821 -1962 UP L LQ) +(-821 -1963 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-822 -1962 UP) +(-822 -1963 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-823 -1962 L UP A LO) +(-823 -1963 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-824 -1962 UP) +(-824 -1963 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-825 -1962 LO) +(-825 -1963 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-826 -1962 LODO) +(-826 -1963 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-827 -2706 S |f|) +(-827 -2705 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4459 |has| |#2| (-1070)) (-4460 |has| |#2| (-1070)) (-4462 |has| |#2| (-6 -4462)) (-4465 . T)) -((-2760 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-2760 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-374))) (-2760 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2760 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-2760 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-379))) (-2760 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-238))) (-2760 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070))))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#2| (QUOTE (-1121))) (-2760 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121))))) (-2760 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-2760 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197))))) (-2760 (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasAttribute| |#2| (QUOTE -4462)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) +((-4458 |has| |#2| (-1070)) (-4459 |has| |#2| (-1070)) (-4461 |has| |#2| (-6 -4461)) (-4464 . T)) +((-2759 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-374))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-2759 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-379))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-238))) (-2759 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070))))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#2| (QUOTE (-1121))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121))))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197))))) (-2759 (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasAttribute| |#2| (QUOTE -4461)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) (-828 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4463 |has| |#1| (-6 -4463)) (-4460 . T) (-4459 . T) (-4462 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2760 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4463)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) (-829 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-4467 "*") |has| |#2| (-374)) (-4458 |has| |#2| (-374)) (-4463 |has| |#2| (-374)) (-4457 |has| |#2| (-374)) (-4462 . T) (-4460 . T) (-4459 . T)) +(((-4466 "*") |has| |#2| (-374)) (-4457 |has| |#2| (-374)) (-4462 |has| |#2| (-374)) (-4456 |has| |#2| (-374)) (-4461 . T) (-4459 . T) (-4458 . T)) ((|HasCategory| |#2| (QUOTE (-374)))) (-830 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) @@ -3258,7 +3258,7 @@ NIL ((|HasCategory| |#1| (QUOTE (-861)))) (-832) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-833) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) @@ -3286,7 +3286,7 @@ NIL NIL (-839 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4459 . T) (-4460 . T) (-4462 . T)) +((-4458 . T) (-4459 . T) (-4461 . T)) ((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-238)))) (-840) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) @@ -3298,7 +3298,7 @@ NIL NIL (-842 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4465 . T) (-4455 . T) (-4466 . T)) +((-4464 . T) (-4454 . T) (-4465 . T)) NIL (-843) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) @@ -3310,8 +3310,8 @@ NIL NIL (-845 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4462 |has| |#1| (-860))) -((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-21))) (-2760 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-2760 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557)))) +((-4461 |has| |#1| (-860))) +((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-21))) (-2759 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-2759 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557)))) (-846 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL @@ -3322,7 +3322,7 @@ NIL NIL (-848 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4460 |has| |#1| (-174)) (-4459 |has| |#1| (-174)) (-4462 . T)) +((-4459 |has| |#1| (-174)) (-4458 |has| |#1| (-174)) (-4461 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) (-849) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) @@ -3350,13 +3350,13 @@ NIL NIL (-855 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4462 |has| |#1| (-860))) -((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-21))) (-2760 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-2760 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557)))) +((-4461 |has| |#1| (-860))) +((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-21))) (-2759 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-2759 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557)))) (-856) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-857 -2706 S) +(-857 -2705 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL @@ -3370,7 +3370,7 @@ NIL NIL (-860) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4462 . T)) +((-4461 . T)) NIL (-861) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}."))) @@ -3394,19 +3394,19 @@ NIL ((|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174)))) (-866 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4459 . T) (-4460 . T) (-4462 . T)) +((-4458 . T) (-4459 . T) (-4461 . T)) NIL (-867 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL ((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) -(-868 R |sigma| -3643) +(-868 R |sigma| -3642) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4459 . T) (-4460 . T) (-4462 . T)) +((-4458 . T) (-4459 . T) (-4461 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) -(-869 |x| R |sigma| -3643) +(-869 |x| R |sigma| -3642) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-4459 . T) (-4460 . T) (-4462 . T)) +((-4458 . T) (-4459 . T) (-4461 . T)) ((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-374)))) (-870 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) @@ -3450,7 +3450,7 @@ NIL NIL (-880 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4460 |has| |#1| (-174)) (-4459 |has| |#1| (-174)) (-4462 . T)) +((-4459 |has| |#1| (-174)) (-4458 |has| |#1| (-174)) (-4461 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374)))) (-881 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) @@ -3462,24 +3462,24 @@ NIL NIL (-883 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-884 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-885 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| (-884 |#1|) (QUOTE (-928))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-884 |#1|) (QUOTE (-146))) (|HasCategory| (-884 |#1|) (QUOTE (-148))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-884 |#1|) (QUOTE (-1043))) (|HasCategory| (-884 |#1|) (QUOTE (-832))) (|HasCategory| (-884 |#1|) (QUOTE (-861))) (-2760 (|HasCategory| (-884 |#1|) (QUOTE (-832))) (|HasCategory| (-884 |#1|) (QUOTE (-861)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-884 |#1|) (QUOTE (-1173))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-884 |#1|) (QUOTE (-237))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-884 |#1|) (QUOTE (-238))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -884) (|devaluate| |#1|)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -884) (|devaluate| |#1|)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -884) (|devaluate| |#1|)) (LIST (QUOTE -884) (|devaluate| |#1|)))) (|HasCategory| (-884 |#1|) (QUOTE (-317))) (|HasCategory| (-884 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-884 |#1|) (QUOTE (-928)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-884 |#1|) (QUOTE (-928)))) (|HasCategory| (-884 |#1|) (QUOTE (-146))))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| (-884 |#1|) (QUOTE (-928))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-884 |#1|) (QUOTE (-146))) (|HasCategory| (-884 |#1|) (QUOTE (-148))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-884 |#1|) (QUOTE (-1043))) (|HasCategory| (-884 |#1|) (QUOTE (-832))) (|HasCategory| (-884 |#1|) (QUOTE (-861))) (-2759 (|HasCategory| (-884 |#1|) (QUOTE (-832))) (|HasCategory| (-884 |#1|) (QUOTE (-861)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-884 |#1|) (QUOTE (-1173))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-884 |#1|) (QUOTE (-237))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-884 |#1|) (QUOTE (-238))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -884) (|devaluate| |#1|)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -884) (|devaluate| |#1|)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -884) (|devaluate| |#1|)) (LIST (QUOTE -884) (|devaluate| |#1|)))) (|HasCategory| (-884 |#1|) (QUOTE (-317))) (|HasCategory| (-884 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-884 |#1|) (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-884 |#1|) (QUOTE (-928)))) (|HasCategory| (-884 |#1|) (QUOTE (-146))))) (-886 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1043))) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-861))) (-2760 (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1173))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1043))) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-861))) (-2759 (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1173))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) (-887 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))))) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))))) (-888) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL @@ -3580,7 +3580,7 @@ NIL ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-913 UP -1962) +(-913 UP -1963) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL @@ -3594,11 +3594,11 @@ NIL NIL (-916 R S) ((|constructor| (NIL "A partial differential \\spad{R}-module with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-4460 . T) (-4459 . T)) +((-4459 . T) (-4458 . T)) NIL (-917 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-4462 . T)) +((-4461 . T)) NIL (-918 A S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) @@ -3611,14 +3611,14 @@ NIL (-920 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-921 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL (-922 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4462 . T)) +((-4461 . T)) NIL (-923 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) @@ -3626,8 +3626,8 @@ NIL NIL (-924 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4462 . T)) -((-2760 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-861)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-861)))) +((-4461 . T)) +((-2759 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-861)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-861)))) (-925 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL @@ -3642,13 +3642,13 @@ NIL ((|HasCategory| |#1| (QUOTE (-146)))) (-928) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-929 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) ((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-379)))) -(-930 R0 -1962 UP UPUP R) +(-930 R0 -1963 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL @@ -3662,7 +3662,7 @@ NIL NIL (-933 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-934 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) @@ -3676,7 +3676,7 @@ NIL ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-937 -1962) +(-937 -1963) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL @@ -3686,17 +3686,17 @@ NIL NIL (-939) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-940) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4467 "*") . T)) +(((-4466 "*") . T)) NIL -(-941 -1962 P) +(-941 -1963 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-942 |xx| -1962) +(-942 |xx| -1963) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL @@ -3720,7 +3720,7 @@ NIL ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-948 R -1962) +(-948 R -1963) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL @@ -3732,7 +3732,7 @@ NIL ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-951 S R -1962) +(-951 S R -1963) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL @@ -3752,7 +3752,7 @@ NIL ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -901) (|devaluate| |#1|)))) -(-956 R -1962 -2020) +(-956 R -1963 -2020) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL @@ -3778,8 +3778,8 @@ NIL NIL (-962 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4466 . T) (-4465 . T)) -((-2760 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2760 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1070))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4465 . T) (-4464 . T)) +((-2759 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1070))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-963 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL @@ -3799,12 +3799,12 @@ NIL (-967 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-928))) (|HasAttribute| |#2| (QUOTE -4463)) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#4| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#4| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#4| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) +((|HasCategory| |#2| (QUOTE (-928))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#4| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#4| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#4| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-968 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4463 |has| |#1| (-6 -4463)) (-4460 . T) (-4459 . T) (-4462 . T)) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) NIL -(-969 E V R P -1962) +(-969 E V R P -1963) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL @@ -3814,9 +3814,9 @@ NIL NIL (-971 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4463 |has| |#1| (-6 -4463)) (-4460 . T) (-4459 . T) (-4462 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2760 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4463)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-972 E V R P -1962) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-972 E V R P -1963) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL ((|HasCategory| |#3| (QUOTE (-464)))) @@ -3838,13 +3838,13 @@ NIL NIL (-977 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4466 . T) (-4465 . T)) -((-2760 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2760 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4465 . T) (-4464 . T)) +((-2759 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-978) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-979 -1962) +(-979 -1963) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL @@ -3858,12 +3858,12 @@ NIL NIL (-982 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4463 |has| |#1| (-6 -4463)) (-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2760 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4463))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4462))) (-983 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) -((-4462 -12 (|has| |#2| (-485)) (|has| |#1| (-485)))) -((-2760 (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-861))))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738))))) (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-379)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-861))))) +((-4461 -12 (|has| |#2| (-485)) (|has| |#1| (-485)))) +((-2759 (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-861))))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738))))) (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-379)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-861))))) (-984) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL @@ -3886,7 +3886,7 @@ NIL NIL (-989 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4465 . T) (-4466 . T)) +((-4464 . T) (-4465 . T)) NIL (-990 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) @@ -3906,7 +3906,7 @@ NIL NIL (-994 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4459 . T) (-4460 . T) (-4462 . T)) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-995) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) @@ -3918,7 +3918,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-568)))) (-997 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4465 . T)) +((-4464 . T)) NIL (-998 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) @@ -3934,7 +3934,7 @@ NIL NIL (-1001 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4466 . T) (-4465 . T)) +((-4465 . T) (-4464 . T)) NIL (-1002 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) @@ -3952,7 +3952,7 @@ NIL ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-1006 K R UP -1962) +(-1006 K R UP -1963) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL @@ -3982,7 +3982,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1043))) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1173)))) (-1013 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-1014 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) @@ -3994,7 +3994,7 @@ NIL NIL (-1016 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4465 . T) (-4466 . T)) +((-4464 . T) (-4465 . T)) NIL (-1017 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) @@ -4002,7 +4002,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-300)))) (-1018 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4458 |has| |#1| (-300)) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4457 |has| |#1| (-300)) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-1019 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) @@ -4010,12 +4010,12 @@ NIL NIL (-1020 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4458 |has| |#1| (-300)) (-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374))) (-2760 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2760 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-557)))) +((-4457 |has| |#1| (-300)) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374))) (-2759 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-557)))) (-1021 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4465 . T) (-4466 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-1022 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL @@ -4024,14 +4024,14 @@ NIL ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1024 -1962 UP UPUP |radicnd| |n|) +(-1024 -1963 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4458 |has| (-419 |#2|) (-374)) (-4463 |has| (-419 |#2|) (-374)) (-4457 |has| (-419 |#2|) (-374)) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-2760 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-2760 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2760 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2760 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-2760 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -651) (QUOTE (-576)))) (-2760 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) +((-4457 |has| (-419 |#2|) (-374)) (-4462 |has| (-419 |#2|) (-374)) (-4456 |has| (-419 |#2|) (-374)) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-2759 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-2759 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2759 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2759 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-2759 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -651) (QUOTE (-576)))) (-2759 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (-1025 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| (-576) (QUOTE (-928))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1043))) (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861))) (-2760 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861)))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1173))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (|HasCategory| (-576) (QUOTE (-146))))) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| (-576) (QUOTE (-928))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1043))) (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861))) (-2759 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861)))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1173))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (|HasCategory| (-576) (QUOTE (-146))))) (-1026) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL @@ -4051,7 +4051,7 @@ NIL (-1030 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4466)) (|HasCategory| |#2| (QUOTE (-1121)))) +((|HasAttribute| |#1| (QUOTE -4465)) (|HasCategory| |#2| (QUOTE (-1121)))) (-1031 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL @@ -4062,21 +4062,21 @@ NIL NIL (-1033) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4458 . T) (-4463 . T) (-4457 . T) (-4460 . T) (-4459 . T) ((-4467 "*") . T) (-4462 . T)) +((-4457 . T) (-4462 . T) (-4456 . T) (-4459 . T) (-4458 . T) ((-4466 "*") . T) (-4461 . T)) NIL -(-1034 R -1962) +(-1034 R -1963) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1035 R -1962) +(-1035 R -1963) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1036 -1962 UP) +(-1036 -1963 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1037 -1962 UP) +(-1037 -1963 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL @@ -4110,9 +4110,9 @@ NIL NIL (-1045 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4458 . T) (-4463 . T) (-4457 . T) (-4460 . T) (-4459 . T) ((-4467 "*") . T) (-4462 . T)) -((-2760 (|HasCategory| (-419 (-576)) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1059) (QUOTE (-576))))) -(-1046 -1962 L) +((-4457 . T) (-4462 . T) (-4456 . T) (-4459 . T) (-4458 . T) ((-4466 "*") . T) (-4461 . T)) +((-2759 (|HasCategory| (-419 (-576)) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1059) (QUOTE (-576))))) +(-1046 -1963 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL @@ -4122,12 +4122,12 @@ NIL ((|HasCategory| |#1| (QUOTE (-1121)))) (-1048 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4466 . T) (-4465 . T)) +((-4465 . T) (-4464 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#4| (QUOTE (-102)))) (-1049 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4467 "*")))) +((|HasAttribute| |#1| (QUOTE (-4466 "*")))) (-1050 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL @@ -4148,14 +4148,14 @@ NIL ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1055 -1962 |Expon| |VarSet| |FPol| |LFPol|) +(-1055 -1963 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +(((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-1056) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4465 . T) (-4466 . T)) -((-12 (|HasCategory| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4301) (QUOTE (-1197))) (LIST (QUOTE |:|) (QUOTE -4440) (QUOTE (-52))))))) (-2760 (|HasCategory| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-1121)))) (-2760 (|HasCategory| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1121)))) (-2760 (|HasCategory| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (QUOTE (-1121))) (|HasCategory| (-1197) (QUOTE (-861))) (|HasCategory| (-52) (QUOTE (-1121))) (-2760 (|HasCategory| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (-2760 (|HasCategory| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (QUOTE (-1197))) (LIST (QUOTE |:|) (QUOTE -4439) (QUOTE (-52))))))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-1197) (QUOTE (-861))) (|HasCategory| (-52) (QUOTE (-1121))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-102)))) (-1057) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL @@ -4198,7 +4198,7 @@ NIL NIL (-1067 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4466 . T) (-4465 . T)) +((-4465 . T) (-4464 . T)) ((-12 (|HasCategory| (-792 |#1| (-878 |#2|)) (QUOTE (-1121))) (|HasCategory| (-792 |#1| (-878 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -792) (|devaluate| |#1|) (LIST (QUOTE -878) (|devaluate| |#2|)))))) (|HasCategory| (-792 |#1| (-878 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-792 |#1| (-878 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| (-878 |#2|) (QUOTE (-379))) (|HasCategory| (-792 |#1| (-878 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-792 |#1| (-878 |#2|)) (QUOTE (-102)))) (-1068) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) @@ -4210,9 +4210,9 @@ NIL NIL (-1070) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4462 . T)) +((-4461 . T)) NIL -(-1071 |xx| -1962) +(-1071 |xx| -1963) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL @@ -4226,12 +4226,12 @@ NIL ((|HasCategory| |#4| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (QUOTE (-568))) (|HasCategory| |#4| (QUOTE (-174)))) (-1074 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4465 . T) (-4460 . T) (-4459 . T)) +((-4464 . T) (-4459 . T) (-4458 . T)) NIL (-1075 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4465 . T) (-4460 . T) (-4459 . T)) -((|HasCategory| |#3| (QUOTE (-174))) (-2760 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-548)))) (-2760 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-568))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-876))))) +((-4464 . T) (-4459 . T) (-4458 . T)) +((|HasCategory| |#3| (QUOTE (-174))) (-2759 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-568))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-876))))) (-1076 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL @@ -4254,7 +4254,7 @@ NIL NIL (-1081) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-1082 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) @@ -4262,19 +4262,19 @@ NIL NIL (-1083) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4453 . T) (-4457 . T) (-4452 . T) (-4463 . T) (-4464 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4452 . T) (-4456 . T) (-4451 . T) (-4462 . T) (-4463 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-1084) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4465 . T) (-4466 . T)) -((-12 (|HasCategory| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4301) (QUOTE (-1197))) (LIST (QUOTE |:|) (QUOTE -4440) (QUOTE (-52))))))) (-2760 (|HasCategory| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-1121)))) (-2760 (|HasCategory| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1121)))) (-2760 (|HasCategory| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (QUOTE (-1121))) (|HasCategory| (-1197) (QUOTE (-861))) (|HasCategory| (-52) (QUOTE (-1121))) (-2760 (|HasCategory| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (-2760 (|HasCategory| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (QUOTE (-1197))) (LIST (QUOTE |:|) (QUOTE -4439) (QUOTE (-52))))))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-1197) (QUOTE (-861))) (|HasCategory| (-52) (QUOTE (-1121))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-102)))) (-1085 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL ((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1013) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-1197))))) (-1086 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4463 |has| |#1| (-6 -4463)) (-4460 . T) (-4459 . T) (-4462 . T)) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) NIL (-1087) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) @@ -4298,7 +4298,7 @@ NIL NIL (-1092 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4466 . T) (-4465 . T)) +((-4465 . T) (-4464 . T)) NIL (-1093 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) @@ -4316,11 +4316,11 @@ NIL ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1097 |Base| R -1962) +(-1097 |Base| R -1963) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1098 |Base| R -1962) +(-1098 |Base| R -1963) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL @@ -4334,8 +4334,8 @@ NIL NIL (-1101 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4458 |has| |#1| (-374)) (-4463 |has| |#1| (-374)) (-4457 |has| |#1| (-374)) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360))) (-2760 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-2760 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))))) +((-4457 |has| |#1| (-374)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-1102 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL @@ -4362,8 +4362,8 @@ NIL NIL (-1108 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4463 |has| |#1| (-6 -4463)) (-4460 . T) (-4459 . T) (-4462 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2760 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4463)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) (-1109 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL @@ -4406,7 +4406,7 @@ NIL NIL (-1119 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4455 . T)) +((-4454 . T)) NIL (-1120 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) @@ -4422,8 +4422,8 @@ NIL NIL (-1123 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) -((-4465 . T) (-4455 . T) (-4466 . T)) -((-2760 (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4464 . T) (-4454 . T) (-4465 . T)) +((-2759 (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-1124 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers."))) NIL @@ -4450,7 +4450,7 @@ NIL NIL (-1130 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4466 . T) (-4465 . T)) +((-4465 . T) (-4464 . T)) NIL (-1131) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) @@ -4466,8 +4466,8 @@ NIL NIL (-1134 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4459 |has| |#3| (-1070)) (-4460 |has| |#3| (-1070)) (-4462 |has| |#3| (-6 -4462)) (-4465 . T)) -((-2760 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-2760 (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#3| (QUOTE (-374))) (-2760 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-2760 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (-2760 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861)))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-379))) (-2760 (-12 (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2760 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-1121)))) (-2760 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-1121)))) (-2760 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-2760 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-2760 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-2760 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-2760 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-238))) (-2760 (|HasCategory| |#3| (QUOTE (-238))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1070))))) (-2760 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#3| (QUOTE (-1121))) (-2760 (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-374)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-379)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-738)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-805)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-861)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121))))) (-2760 (-12 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1070))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-2760 (-12 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -919) (QUOTE (-1197))))) (-2760 (|HasCategory| |#3| (QUOTE (-1070))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121)))) (|HasAttribute| |#3| (QUOTE -4462)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) +((-4458 |has| |#3| (-1070)) (-4459 |has| |#3| (-1070)) (-4461 |has| |#3| (-6 -4461)) (-4464 . T)) +((-2759 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-2759 (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#3| (QUOTE (-374))) (-2759 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-2759 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (-2759 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861)))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-379))) (-2759 (-12 (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2759 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-1121)))) (-2759 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-1121)))) (-2759 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-2759 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-2759 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-2759 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-2759 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-238))) (-2759 (|HasCategory| |#3| (QUOTE (-238))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1070))))) (-2759 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#3| (QUOTE (-1121))) (-2759 (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-374)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-379)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-738)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-805)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-861)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121))))) (-2759 (-12 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1070))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-2759 (-12 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -919) (QUOTE (-1197))))) (-2759 (|HasCategory| |#3| (QUOTE (-1070))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121)))) (|HasAttribute| |#3| (QUOTE -4461)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) (-1135 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL @@ -4476,7 +4476,7 @@ NIL ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1137 R -1962) +(-1137 R -1963) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL @@ -4494,19 +4494,19 @@ NIL NIL (-1141) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4453 . T) (-4457 . T) (-4452 . T) (-4463 . T) (-4464 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4452 . T) (-4456 . T) (-4451 . T) (-4462 . T) (-4463 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-1142 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4465 . T) (-4466 . T)) +((-4464 . T) (-4465 . T)) NIL (-1143 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-374))) (|HasAttribute| |#3| (QUOTE (-4467 "*"))) (|HasCategory| |#3| (QUOTE (-174)))) +((|HasCategory| |#3| (QUOTE (-374))) (|HasAttribute| |#3| (QUOTE (-4466 "*"))) (|HasCategory| |#3| (QUOTE (-174)))) (-1144 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-4465 . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4464 . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-1145 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) @@ -4514,17 +4514,17 @@ NIL NIL (-1146 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4463 |has| |#1| (-6 -4463)) (-4460 . T) (-4459 . T) (-4462 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2760 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4463)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) (-1147 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4460 . T) (-4459 . T) (-4462 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374)))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374)))) (-1148 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4466 . T) (-4465 . T)) +((-4465 . T) (-4464 . T)) NIL -(-1149 UP -1962) +(-1149 UP -1963) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL @@ -4578,19 +4578,19 @@ NIL NIL (-1162 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4465 . T) (-4466 . T)) -((-12 (|HasCategory| (-1161 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1121)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1121))) (-2760 (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1121)))) (-2760 (|HasCategory| (-1161 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-876)))) (-12 (|HasCategory| (-1161 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1121))))) (|HasCategory| (-1161 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| (-1161 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1121)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1121))) (-2759 (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1121)))) (-2759 (|HasCategory| (-1161 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-876)))) (-12 (|HasCategory| (-1161 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1121))))) (|HasCategory| (-1161 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-102)))) (-1163 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4462 . T) (-4454 |has| |#2| (-6 (-4467 "*"))) (-4465 . T) (-4459 . T) (-4460 . T)) -((|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4467 "*"))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2760 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-374))) (-2760 (|HasAttribute| |#2| (QUOTE (-4467 "*"))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) +((-4461 . T) (-4453 |has| |#2| (-6 (-4466 "*"))) (-4464 . T) (-4458 . T) (-4459 . T)) +((|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4466 "*"))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-374))) (-2759 (|HasAttribute| |#2| (QUOTE (-4466 "*"))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) (-1164 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL (-1165) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4466 . T) (-4465 . T)) +((-4465 . T) (-4464 . T)) NIL (-1166 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) @@ -4598,12 +4598,12 @@ NIL NIL (-1167 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4466 . T) (-4465 . T)) +((-4465 . T) (-4464 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#4| (QUOTE (-102)))) (-1168 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4465 . T) (-4466 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-1169 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL @@ -4614,8 +4614,8 @@ NIL NIL (-1171 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4466 . T)) -((-12 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4301) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#2|)))))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-861))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121)))) +((-4465 . T)) +((-12 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4439) (|devaluate| |#2|)))))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121)))) (-1172) ((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) NIL @@ -4642,16 +4642,16 @@ NIL NIL (-1178 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4466 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4465 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-1179) ((|string| (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string"))) -((-4466 . T) (-4465 . T)) -((-2760 (-12 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-2760 (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (-2760 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121)))) (|HasCategory| (-145) (QUOTE (-861))) (-2760 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) +((-4465 . T) (-4464 . T)) +((-2759 (-12 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-2759 (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121)))) (|HasCategory| (-145) (QUOTE (-861))) (-2759 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-1180 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4465 . T) (-4466 . T)) -((-12 (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4301) (QUOTE (-1179))) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#1|)))))) (-2760 (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2760 (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2760 (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (QUOTE (-1121))) (|HasCategory| (-1179) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (-2760 (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (-2760 (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (QUOTE (-1179))) (LIST (QUOTE |:|) (QUOTE -4439) (|devaluate| |#1|)))))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (QUOTE (-1121))) (|HasCategory| (-1179) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (QUOTE (-102)))) (-1181 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL @@ -4682,9 +4682,9 @@ NIL NIL (-1188 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4467 "*") -2760 (-2675 (|has| |#1| (-374)) (|has| (-1195 |#1| |#2| |#3|) (-832))) (|has| |#1| (-174)) (-2675 (|has| |#1| (-374)) (|has| (-1195 |#1| |#2| |#3|) (-928)))) (-4458 -2760 (-2675 (|has| |#1| (-374)) (|has| (-1195 |#1| |#2| |#3|) (-832))) (|has| |#1| (-568)) (-2675 (|has| |#1| (-374)) (|has| (-1195 |#1| |#2| |#3|) (-928)))) (-4463 |has| |#1| (-374)) (-4457 |has| |#1| (-374)) (-4459 . T) (-4460 . T) (-4462 . T)) -((-2760 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1173))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2760 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2760 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2760 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2760 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2760 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2760 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1133))) (-2760 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-374)))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-2760 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1173))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3570) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2760 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2760 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-2760 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2760 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1189 R -1962) +(((-4466 "*") -2759 (-2674 (|has| |#1| (-374)) (|has| (-1195 |#1| |#2| |#3|) (-832))) (|has| |#1| (-174)) (-2674 (|has| |#1| (-374)) (|has| (-1195 |#1| |#2| |#3|) (-928)))) (-4457 -2759 (-2674 (|has| |#1| (-374)) (|has| (-1195 |#1| |#2| |#3|) (-832))) (|has| |#1| (-568)) (-2674 (|has| |#1| (-374)) (|has| (-1195 |#1| |#2| |#3|) (-928)))) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2759 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1173))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2759 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2759 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2759 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2759 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2759 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1133))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-374)))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-2759 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1173))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4160) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2759 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-2759 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2759 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1189 R -1963) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL @@ -4702,16 +4702,16 @@ NIL NIL (-1193 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4461 |has| |#1| (-374)) (-4463 |has| |#1| (-6 -4463)) (-4460 . T) (-4459 . T) (-4462 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2760 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4463)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) (-1194 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4463 |has| |#1| (-374)) (-4457 |has| |#1| (-374)) (-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2760 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3570) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2760 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4160) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) (-1195 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1133))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -3570) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-2760 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1133))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4160) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) (-1196) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL @@ -4726,8 +4726,8 @@ NIL NIL (-1199 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4463 |has| |#1| (-6 -4463)) (-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2760 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| (-992) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasAttribute| |#1| (QUOTE -4463))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| (-992) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasAttribute| |#1| (QUOTE -4462))) (-1200) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL @@ -4770,8 +4770,8 @@ NIL NIL (-1210 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4465 . T) (-4466 . T)) -((-12 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4301) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#2|)))))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-2760 (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (QUOTE (-102)))) +((-4464 . T) (-4465 . T)) +((-12 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4439) (|devaluate| |#2|)))))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102)))) (-1211 S) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}."))) NIL @@ -4786,7 +4786,7 @@ NIL NIL (-1214 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4466 . T)) +((-4465 . T)) NIL (-1215 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) @@ -4826,8 +4826,8 @@ NIL NIL (-1224 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4466 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4465 . T) (-4464 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-1225 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL @@ -4836,7 +4836,7 @@ NIL ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1227 R -1962) +(-1227 R -1963) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -4844,7 +4844,7 @@ NIL ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1229 R -1962) +(-1229 R -1963) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL ((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -901) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -901) (|devaluate| |#1|))))) @@ -4854,12 +4854,12 @@ NIL ((|HasCategory| |#4| (QUOTE (-379)))) (-1231 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4466 . T) (-4465 . T)) +((-4465 . T) (-4464 . T)) NIL (-1232 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4460 . T) (-4459 . T) (-4462 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374)))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374)))) (-1233 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL @@ -4872,7 +4872,7 @@ NIL ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL ((|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) -(-1236 -1962) +(-1236 -1963) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL @@ -4898,7 +4898,7 @@ NIL NIL (-1242) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-1243) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) @@ -4922,7 +4922,7 @@ NIL NIL (-1248 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4463 |has| |#1| (-374)) (-4457 |has| |#1| (-374)) (-4459 . T) (-4460 . T) (-4462 . T)) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-1249 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) @@ -4930,16 +4930,16 @@ NIL ((|HasCategory| |#2| (QUOTE (-374)))) (-1250 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4463 |has| |#1| (-374)) (-4457 |has| |#1| (-374)) (-4459 . T) (-4460 . T) (-4462 . T)) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-1251 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4463 |has| |#1| (-374)) (-4457 |has| |#1| (-374)) (-4459 . T) (-4460 . T) (-4462 . T)) -((-2760 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1043)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2760 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146))))) (-2760 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-148))))) (-2760 (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-2760 (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1133))) (-2760 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1043)))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861))))) (-2760 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1043)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3570) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2760 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-928))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2760 (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146)))))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2759 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1043)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2759 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146))))) (-2759 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-148))))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1133))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1043)))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861))))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1043)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4160) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-928))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146)))))) (-1252 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4467 "*") -2760 (-2675 (|has| |#1| (-374)) (|has| (-1280 |#1| |#2| |#3|) (-832))) (|has| |#1| (-174)) (-2675 (|has| |#1| (-374)) (|has| (-1280 |#1| |#2| |#3|) (-928)))) (-4458 -2760 (-2675 (|has| |#1| (-374)) (|has| (-1280 |#1| |#2| |#3|) (-832))) (|has| |#1| (-568)) (-2675 (|has| |#1| (-374)) (|has| (-1280 |#1| |#2| |#3|) (-928)))) (-4463 |has| |#1| (-374)) (-4457 |has| |#1| (-374)) (-4459 . T) (-4460 . T) (-4462 . T)) -((-2760 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-1173))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2760 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2760 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2760 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2760 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2760 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2760 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1133))) (-2760 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-374)))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-2760 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-1173))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3570) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2760 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2760 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-2760 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2760 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4466 "*") -2759 (-2674 (|has| |#1| (-374)) (|has| (-1280 |#1| |#2| |#3|) (-832))) (|has| |#1| (-174)) (-2674 (|has| |#1| (-374)) (|has| (-1280 |#1| |#2| |#3|) (-928)))) (-4457 -2759 (-2674 (|has| |#1| (-374)) (|has| (-1280 |#1| |#2| |#3|) (-832))) (|has| |#1| (-568)) (-2674 (|has| |#1| (-374)) (|has| (-1280 |#1| |#2| |#3|) (-928)))) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2759 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-1173))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2759 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2759 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2759 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2759 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2759 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1133))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-374)))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-2759 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-1173))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4160) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2759 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-2759 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2759 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146))))) (-1253 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL @@ -4974,8 +4974,8 @@ NIL NIL (-1261 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4467 "*") |has| |#2| (-174)) (-4458 |has| |#2| (-568)) (-4461 |has| |#2| (-374)) (-4463 |has| |#2| (-6 -4463)) (-4460 . T) (-4459 . T) (-4462 . T)) -((|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2760 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2760 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-2760 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2760 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2760 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1173))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE -4463)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-2760 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) +(((-4466 "*") |has| |#2| (-174)) (-4457 |has| |#2| (-568)) (-4460 |has| |#2| (-374)) (-4462 |has| |#2| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1173))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) (-1262 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL @@ -4986,15 +4986,15 @@ NIL ((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1173)))) (-1264 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4461 |has| |#1| (-374)) (-4463 |has| |#1| (-6 -4463)) (-4460 . T) (-4459 . T) (-4462 . T)) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) NIL (-1265 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1133))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3570) (LIST (|devaluate| |#2|) (QUOTE (-1197)))))) +((|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1133))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3569) (LIST (|devaluate| |#2|) (QUOTE (-1197)))))) (-1266 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4459 . T) (-4460 . T) (-4462 . T)) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-1267 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) @@ -5006,7 +5006,7 @@ NIL NIL (-1269 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4463 |has| |#1| (-374)) (-4457 |has| |#1| (-374)) (-4459 . T) (-4460 . T) (-4462 . T)) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-1270 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) @@ -5014,24 +5014,24 @@ NIL NIL (-1271 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4463 |has| |#1| (-374)) (-4457 |has| |#1| (-374)) (-4459 . T) (-4460 . T) (-4462 . T)) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-1272 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4463 |has| |#1| (-374)) (-4457 |has| |#1| (-374)) (-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2760 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3570) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2760 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4160) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-1273 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4463 |has| |#1| (-374)) (-4457 |has| |#1| (-374)) (-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2760 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3570) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2760 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4160) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) (-1274 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) -(((-4467 "*") |has| (-1273 |#2| |#3| |#4|) (-174)) (-4458 |has| (-1273 |#2| |#3| |#4|) (-568)) (-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-174))) (-2760 (|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-374))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-464))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-568)))) +(((-4466 "*") |has| (-1273 |#2| |#3| |#4|) (-174)) (-4457 |has| (-1273 |#2| |#3| |#4|) (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-174))) (-2759 (|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-374))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-464))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-568)))) (-1275 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4466))) +((|HasAttribute| |#1| (QUOTE -4465))) (-1276 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL @@ -5043,20 +5043,20 @@ NIL (-1278 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-978))) (|HasCategory| |#2| (QUOTE (-1223))) (|HasSignature| |#2| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1491) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1197))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-978))) (|HasCategory| |#2| (QUOTE (-1223))) (|HasSignature| |#2| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4160) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1197))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-1279 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4459 . T) (-4460 . T) (-4462 . T)) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-1280 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4467 "*") |has| |#1| (-174)) (-4458 |has| |#1| (-568)) (-4459 . T) (-4460 . T) (-4462 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2760 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1133))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -3570) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-2760 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) +(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1133))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4160) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) (-1281 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1282 -1962 UP L UTS) +(-1282 -1963 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL ((|HasCategory| |#1| (QUOTE (-568)))) @@ -5074,7 +5074,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) (-1286 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4466 . T) (-4465 . T)) +((-4465 . T) (-4464 . T)) NIL (-1287 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) @@ -5082,8 +5082,8 @@ NIL NIL (-1288 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4466 . T) (-4465 . T)) -((-2760 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2760 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2760 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2760 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1070))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4465 . T) (-4464 . T)) +((-2759 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1070))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-1289) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL @@ -5110,13 +5110,13 @@ NIL NIL (-1295 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4460 . T) (-4459 . T)) +((-4459 . T) (-4458 . T)) NIL (-1296 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1297 K R UP -1962) +(-1297 K R UP -1963) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL @@ -5130,56 +5130,56 @@ NIL NIL (-1300 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4460 |has| |#1| (-174)) (-4459 |has| |#1| (-174)) (-4462 . T)) +((-4459 |has| |#1| (-174)) (-4458 |has| |#1| (-174)) (-4461 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374)))) (-1301 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4466 . T) (-4465 . T)) +((-4465 . T) (-4464 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#4| (QUOTE (-102)))) (-1302 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})"))) -((-4459 . T) (-4460 . T) (-4462 . T)) +((-4458 . T) (-4459 . T) (-4461 . T)) NIL (-1303 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4462 . T) (-4458 |has| |#2| (-6 -4458)) (-4460 . T) (-4459 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4458))) +((-4461 . T) (-4457 |has| |#2| (-6 -4457)) (-4459 . T) (-4458 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4457))) (-1304 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL (-1305 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4458 |has| |#2| (-6 -4458)) (-4460 . T) (-4459 . T) (-4462 . T)) +((-4457 |has| |#2| (-6 -4457)) (-4459 . T) (-4458 . T) (-4461 . T)) NIL -(-1306 S -1962) +(-1306 S -1963) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL ((|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148)))) -(-1307 -1962) +(-1307 -1963) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4457 . T) (-4463 . T) (-4458 . T) ((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-1308 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4458 |has| |#2| (-6 -4458)) (-4460 . T) (-4459 . T) (-4462 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -729) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasAttribute| |#2| (QUOTE -4458))) +((-4457 |has| |#2| (-6 -4457)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -729) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasAttribute| |#2| (QUOTE -4457))) (-1309 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4458 |has| |#2| (-6 -4458)) (-4460 . T) (-4459 . T) (-4462 . T)) +((-4457 |has| |#2| (-6 -4457)) (-4459 . T) (-4458 . T) (-4461 . T)) NIL (-1310 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4458 |has| |#1| (-6 -4458)) (-4460 . T) (-4459 . T) (-4462 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4458))) +((-4457 |has| |#1| (-6 -4457)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4457))) (-1311 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4462 . T) (-4463 |has| |#1| (-6 -4463)) (-4458 |has| |#1| (-6 -4458)) (-4460 . T) (-4459 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasAttribute| |#1| (QUOTE -4463)) (|HasAttribute| |#1| (QUOTE -4458))) +((-4461 . T) (-4462 |has| |#1| (-6 -4462)) (-4457 |has| |#1| (-6 -4457)) (-4459 . T) (-4458 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4461)) (|HasAttribute| |#1| (QUOTE -4462)) (|HasAttribute| |#1| (QUOTE -4457))) (-1312 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4458 |has| |#2| (-6 -4458)) (-4460 . T) (-4459 . T) (-4462 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4458))) +((-4457 |has| |#2| (-6 -4457)) (-4459 . T) (-4458 . T) (-4461 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4457))) (-1313) ((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}"))) NIL @@ -5198,7 +5198,7 @@ NIL NIL (-1317 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4467 "*") . T) (-4459 . T) (-4460 . T) (-4462 . T)) +(((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL NIL NIL @@ -5216,4 +5216,4 @@ NIL NIL NIL NIL -((-3 NIL 2294110 2294115 2294120 2294125) (-2 NIL 2294090 2294095 2294100 2294105) (-1 NIL 2294070 2294075 2294080 2294085) (0 NIL 2294050 2294055 2294060 2294065) (-1317 "ZMOD.spad" 2293859 2293872 2293988 2294045) (-1316 "ZLINDEP.spad" 2292925 2292936 2293849 2293854) (-1315 "ZDSOLVE.spad" 2282870 2282892 2292915 2292920) (-1314 "YSTREAM.spad" 2282365 2282376 2282860 2282865) (-1313 "YDIAGRAM.spad" 2281999 2282008 2282355 2282360) (-1312 "XRPOLY.spad" 2281219 2281239 2281855 2281924) (-1311 "XPR.spad" 2279014 2279027 2280937 2281036) (-1310 "XPOLY.spad" 2278569 2278580 2278870 2278939) (-1309 "XPOLYC.spad" 2277888 2277904 2278495 2278564) (-1308 "XPBWPOLY.spad" 2276325 2276345 2277668 2277737) (-1307 "XF.spad" 2274788 2274803 2276227 2276320) (-1306 "XF.spad" 2273231 2273248 2274672 2274677) (-1305 "XFALG.spad" 2270279 2270295 2273157 2273226) (-1304 "XEXPPKG.spad" 2269530 2269556 2270269 2270274) (-1303 "XDPOLY.spad" 2269144 2269160 2269386 2269455) (-1302 "XALG.spad" 2268804 2268815 2269100 2269139) (-1301 "WUTSET.spad" 2264607 2264624 2268414 2268441) (-1300 "WP.spad" 2263806 2263850 2264465 2264532) (-1299 "WHILEAST.spad" 2263604 2263613 2263796 2263801) (-1298 "WHEREAST.spad" 2263275 2263284 2263594 2263599) (-1297 "WFFINTBS.spad" 2260938 2260960 2263265 2263270) (-1296 "WEIER.spad" 2259160 2259171 2260928 2260933) (-1295 "VSPACE.spad" 2258833 2258844 2259128 2259155) (-1294 "VSPACE.spad" 2258526 2258539 2258823 2258828) (-1293 "VOID.spad" 2258203 2258212 2258516 2258521) (-1292 "VIEW.spad" 2255883 2255892 2258193 2258198) (-1291 "VIEWDEF.spad" 2251084 2251093 2255873 2255878) (-1290 "VIEW3D.spad" 2235045 2235054 2251074 2251079) (-1289 "VIEW2D.spad" 2222936 2222945 2235035 2235040) (-1288 "VECTOR.spad" 2221457 2221468 2221708 2221735) (-1287 "VECTOR2.spad" 2220096 2220109 2221447 2221452) (-1286 "VECTCAT.spad" 2218000 2218011 2220064 2220091) (-1285 "VECTCAT.spad" 2215711 2215724 2217777 2217782) (-1284 "VARIABLE.spad" 2215491 2215506 2215701 2215706) (-1283 "UTYPE.spad" 2215135 2215144 2215481 2215486) (-1282 "UTSODETL.spad" 2214430 2214454 2215091 2215096) (-1281 "UTSODE.spad" 2212646 2212666 2214420 2214425) (-1280 "UTS.spad" 2207593 2207621 2211113 2211210) (-1279 "UTSCAT.spad" 2205072 2205088 2207491 2207588) (-1278 "UTSCAT.spad" 2202195 2202213 2204616 2204621) (-1277 "UTS2.spad" 2201790 2201825 2202185 2202190) (-1276 "URAGG.spad" 2196463 2196474 2201780 2201785) (-1275 "URAGG.spad" 2191100 2191113 2196419 2196424) (-1274 "UPXSSING.spad" 2188745 2188771 2190181 2190314) (-1273 "UPXS.spad" 2186041 2186069 2186877 2187026) (-1272 "UPXSCONS.spad" 2183800 2183820 2184173 2184322) (-1271 "UPXSCCA.spad" 2182371 2182391 2183646 2183795) (-1270 "UPXSCCA.spad" 2181084 2181106 2182361 2182366) (-1269 "UPXSCAT.spad" 2179673 2179689 2180930 2181079) (-1268 "UPXS2.spad" 2179216 2179269 2179663 2179668) (-1267 "UPSQFREE.spad" 2177630 2177644 2179206 2179211) (-1266 "UPSCAT.spad" 2175417 2175441 2177528 2177625) (-1265 "UPSCAT.spad" 2172910 2172936 2175023 2175028) (-1264 "UPOLYC.spad" 2167950 2167961 2172752 2172905) (-1263 "UPOLYC.spad" 2162882 2162895 2167686 2167691) (-1262 "UPOLYC2.spad" 2162353 2162372 2162872 2162877) (-1261 "UP.spad" 2159459 2159474 2159846 2159999) (-1260 "UPMP.spad" 2158359 2158372 2159449 2159454) (-1259 "UPDIVP.spad" 2157924 2157938 2158349 2158354) (-1258 "UPDECOMP.spad" 2156169 2156183 2157914 2157919) (-1257 "UPCDEN.spad" 2155378 2155394 2156159 2156164) (-1256 "UP2.spad" 2154742 2154763 2155368 2155373) (-1255 "UNISEG.spad" 2154095 2154106 2154661 2154666) (-1254 "UNISEG2.spad" 2153592 2153605 2154051 2154056) (-1253 "UNIFACT.spad" 2152695 2152707 2153582 2153587) (-1252 "ULS.spad" 2142479 2142507 2143424 2143853) (-1251 "ULSCONS.spad" 2133613 2133633 2133983 2134132) (-1250 "ULSCCAT.spad" 2131350 2131370 2133459 2133608) (-1249 "ULSCCAT.spad" 2129195 2129217 2131306 2131311) (-1248 "ULSCAT.spad" 2127427 2127443 2129041 2129190) (-1247 "ULS2.spad" 2126941 2126994 2127417 2127422) (-1246 "UINT8.spad" 2126818 2126827 2126931 2126936) (-1245 "UINT64.spad" 2126694 2126703 2126808 2126813) (-1244 "UINT32.spad" 2126570 2126579 2126684 2126689) (-1243 "UINT16.spad" 2126446 2126455 2126560 2126565) (-1242 "UFD.spad" 2125511 2125520 2126372 2126441) (-1241 "UFD.spad" 2124638 2124649 2125501 2125506) (-1240 "UDVO.spad" 2123519 2123528 2124628 2124633) (-1239 "UDPO.spad" 2121012 2121023 2123475 2123480) (-1238 "TYPE.spad" 2120944 2120953 2121002 2121007) (-1237 "TYPEAST.spad" 2120863 2120872 2120934 2120939) (-1236 "TWOFACT.spad" 2119515 2119530 2120853 2120858) (-1235 "TUPLE.spad" 2119001 2119012 2119414 2119419) (-1234 "TUBETOOL.spad" 2115868 2115877 2118991 2118996) (-1233 "TUBE.spad" 2114515 2114532 2115858 2115863) (-1232 "TS.spad" 2113114 2113130 2114080 2114177) (-1231 "TSETCAT.spad" 2100241 2100258 2113082 2113109) (-1230 "TSETCAT.spad" 2087354 2087373 2100197 2100202) (-1229 "TRMANIP.spad" 2081720 2081737 2087060 2087065) (-1228 "TRIMAT.spad" 2080683 2080708 2081710 2081715) (-1227 "TRIGMNIP.spad" 2079210 2079227 2080673 2080678) (-1226 "TRIGCAT.spad" 2078722 2078731 2079200 2079205) (-1225 "TRIGCAT.spad" 2078232 2078243 2078712 2078717) (-1224 "TREE.spad" 2076690 2076701 2077722 2077749) (-1223 "TRANFUN.spad" 2076529 2076538 2076680 2076685) (-1222 "TRANFUN.spad" 2076366 2076377 2076519 2076524) (-1221 "TOPSP.spad" 2076040 2076049 2076356 2076361) (-1220 "TOOLSIGN.spad" 2075703 2075714 2076030 2076035) (-1219 "TEXTFILE.spad" 2074264 2074273 2075693 2075698) (-1218 "TEX.spad" 2071410 2071419 2074254 2074259) (-1217 "TEX1.spad" 2070966 2070977 2071400 2071405) (-1216 "TEMUTL.spad" 2070521 2070530 2070956 2070961) (-1215 "TBCMPPK.spad" 2068614 2068637 2070511 2070516) (-1214 "TBAGG.spad" 2067664 2067687 2068594 2068609) (-1213 "TBAGG.spad" 2066722 2066747 2067654 2067659) (-1212 "TANEXP.spad" 2066130 2066141 2066712 2066717) (-1211 "TALGOP.spad" 2065854 2065865 2066120 2066125) (-1210 "TABLE.spad" 2063823 2063846 2064093 2064120) (-1209 "TABLEAU.spad" 2063304 2063315 2063813 2063818) (-1208 "TABLBUMP.spad" 2060107 2060118 2063294 2063299) (-1207 "SYSTEM.spad" 2059335 2059344 2060097 2060102) (-1206 "SYSSOLP.spad" 2056818 2056829 2059325 2059330) (-1205 "SYSPTR.spad" 2056717 2056726 2056808 2056813) (-1204 "SYSNNI.spad" 2055899 2055910 2056707 2056712) (-1203 "SYSINT.spad" 2055303 2055314 2055889 2055894) (-1202 "SYNTAX.spad" 2051509 2051518 2055293 2055298) (-1201 "SYMTAB.spad" 2049577 2049586 2051499 2051504) (-1200 "SYMS.spad" 2045600 2045609 2049567 2049572) (-1199 "SYMPOLY.spad" 2044607 2044618 2044689 2044816) (-1198 "SYMFUNC.spad" 2044108 2044119 2044597 2044602) (-1197 "SYMBOL.spad" 2041611 2041620 2044098 2044103) (-1196 "SWITCH.spad" 2038382 2038391 2041601 2041606) (-1195 "SUTS.spad" 2035430 2035458 2036849 2036946) (-1194 "SUPXS.spad" 2032713 2032741 2033562 2033711) (-1193 "SUP.spad" 2029433 2029444 2030206 2030359) (-1192 "SUPFRACF.spad" 2028538 2028556 2029423 2029428) (-1191 "SUP2.spad" 2027930 2027943 2028528 2028533) (-1190 "SUMRF.spad" 2026904 2026915 2027920 2027925) (-1189 "SUMFS.spad" 2026541 2026558 2026894 2026899) (-1188 "SULS.spad" 2016312 2016340 2017270 2017699) (-1187 "SUCHTAST.spad" 2016081 2016090 2016302 2016307) (-1186 "SUCH.spad" 2015763 2015778 2016071 2016076) (-1185 "SUBSPACE.spad" 2007878 2007893 2015753 2015758) (-1184 "SUBRESP.spad" 2007048 2007062 2007834 2007839) (-1183 "STTF.spad" 2003147 2003163 2007038 2007043) (-1182 "STTFNC.spad" 1999615 1999631 2003137 2003142) (-1181 "STTAYLOR.spad" 1992250 1992261 1999496 1999501) (-1180 "STRTBL.spad" 1990301 1990318 1990450 1990477) (-1179 "STRING.spad" 1989088 1989097 1989309 1989336) (-1178 "STREAM.spad" 1985889 1985900 1988496 1988511) (-1177 "STREAM3.spad" 1985462 1985477 1985879 1985884) (-1176 "STREAM2.spad" 1984590 1984603 1985452 1985457) (-1175 "STREAM1.spad" 1984296 1984307 1984580 1984585) (-1174 "STINPROD.spad" 1983232 1983248 1984286 1984291) (-1173 "STEP.spad" 1982433 1982442 1983222 1983227) (-1172 "STEPAST.spad" 1981667 1981676 1982423 1982428) (-1171 "STBL.spad" 1979751 1979779 1979918 1979933) (-1170 "STAGG.spad" 1978826 1978837 1979741 1979746) (-1169 "STAGG.spad" 1977899 1977912 1978816 1978821) (-1168 "STACK.spad" 1977139 1977150 1977389 1977416) (-1167 "SREGSET.spad" 1974807 1974824 1976749 1976776) (-1166 "SRDCMPK.spad" 1973368 1973388 1974797 1974802) (-1165 "SRAGG.spad" 1968511 1968520 1973336 1973363) (-1164 "SRAGG.spad" 1963674 1963685 1968501 1968506) (-1163 "SQMATRIX.spad" 1961217 1961235 1962133 1962220) (-1162 "SPLTREE.spad" 1955613 1955626 1960497 1960524) (-1161 "SPLNODE.spad" 1952201 1952214 1955603 1955608) (-1160 "SPFCAT.spad" 1951010 1951019 1952191 1952196) (-1159 "SPECOUT.spad" 1949562 1949571 1951000 1951005) (-1158 "SPADXPT.spad" 1941157 1941166 1949552 1949557) (-1157 "spad-parser.spad" 1940622 1940631 1941147 1941152) (-1156 "SPADAST.spad" 1940323 1940332 1940612 1940617) (-1155 "SPACEC.spad" 1924522 1924533 1940313 1940318) (-1154 "SPACE3.spad" 1924298 1924309 1924512 1924517) (-1153 "SORTPAK.spad" 1923847 1923860 1924254 1924259) (-1152 "SOLVETRA.spad" 1921610 1921621 1923837 1923842) (-1151 "SOLVESER.spad" 1920138 1920149 1921600 1921605) (-1150 "SOLVERAD.spad" 1916164 1916175 1920128 1920133) (-1149 "SOLVEFOR.spad" 1914626 1914644 1916154 1916159) (-1148 "SNTSCAT.spad" 1914226 1914243 1914594 1914621) (-1147 "SMTS.spad" 1912498 1912524 1913791 1913888) (-1146 "SMP.spad" 1909973 1909993 1910363 1910490) (-1145 "SMITH.spad" 1908818 1908843 1909963 1909968) (-1144 "SMATCAT.spad" 1906928 1906958 1908762 1908813) (-1143 "SMATCAT.spad" 1904970 1905002 1906806 1906811) (-1142 "SKAGG.spad" 1903933 1903944 1904938 1904965) (-1141 "SINT.spad" 1902873 1902882 1903799 1903928) (-1140 "SIMPAN.spad" 1902601 1902610 1902863 1902868) (-1139 "SIG.spad" 1901931 1901940 1902591 1902596) (-1138 "SIGNRF.spad" 1901049 1901060 1901921 1901926) (-1137 "SIGNEF.spad" 1900328 1900345 1901039 1901044) (-1136 "SIGAST.spad" 1899713 1899722 1900318 1900323) (-1135 "SHP.spad" 1897641 1897656 1899669 1899674) (-1134 "SHDP.spad" 1885319 1885346 1885828 1885927) (-1133 "SGROUP.spad" 1884927 1884936 1885309 1885314) (-1132 "SGROUP.spad" 1884533 1884544 1884917 1884922) (-1131 "SGCF.spad" 1877672 1877681 1884523 1884528) (-1130 "SFRTCAT.spad" 1876602 1876619 1877640 1877667) (-1129 "SFRGCD.spad" 1875665 1875685 1876592 1876597) (-1128 "SFQCMPK.spad" 1870302 1870322 1875655 1875660) (-1127 "SFORT.spad" 1869741 1869755 1870292 1870297) (-1126 "SEXOF.spad" 1869584 1869624 1869731 1869736) (-1125 "SEX.spad" 1869476 1869485 1869574 1869579) (-1124 "SEXCAT.spad" 1867248 1867288 1869466 1869471) (-1123 "SET.spad" 1865536 1865547 1866633 1866672) (-1122 "SETMN.spad" 1863986 1864003 1865526 1865531) (-1121 "SETCAT.spad" 1863471 1863480 1863976 1863981) (-1120 "SETCAT.spad" 1862954 1862965 1863461 1863466) (-1119 "SETAGG.spad" 1859503 1859514 1862934 1862949) (-1118 "SETAGG.spad" 1856060 1856073 1859493 1859498) (-1117 "SEQAST.spad" 1855763 1855772 1856050 1856055) (-1116 "SEGXCAT.spad" 1854919 1854932 1855753 1855758) (-1115 "SEG.spad" 1854732 1854743 1854838 1854843) (-1114 "SEGCAT.spad" 1853657 1853668 1854722 1854727) (-1113 "SEGBIND.spad" 1853415 1853426 1853604 1853609) (-1112 "SEGBIND2.spad" 1853113 1853126 1853405 1853410) (-1111 "SEGAST.spad" 1852827 1852836 1853103 1853108) (-1110 "SEG2.spad" 1852262 1852275 1852783 1852788) (-1109 "SDVAR.spad" 1851538 1851549 1852252 1852257) (-1108 "SDPOL.spad" 1848871 1848882 1849162 1849289) (-1107 "SCPKG.spad" 1846960 1846971 1848861 1848866) (-1106 "SCOPE.spad" 1846113 1846122 1846950 1846955) (-1105 "SCACHE.spad" 1844809 1844820 1846103 1846108) (-1104 "SASTCAT.spad" 1844718 1844727 1844799 1844804) (-1103 "SAOS.spad" 1844590 1844599 1844708 1844713) (-1102 "SAERFFC.spad" 1844303 1844323 1844580 1844585) (-1101 "SAE.spad" 1841773 1841789 1842384 1842519) (-1100 "SAEFACT.spad" 1841474 1841494 1841763 1841768) (-1099 "RURPK.spad" 1839133 1839149 1841464 1841469) (-1098 "RULESET.spad" 1838586 1838610 1839123 1839128) (-1097 "RULE.spad" 1836826 1836850 1838576 1838581) (-1096 "RULECOLD.spad" 1836678 1836691 1836816 1836821) (-1095 "RTVALUE.spad" 1836413 1836422 1836668 1836673) (-1094 "RSTRCAST.spad" 1836130 1836139 1836403 1836408) (-1093 "RSETGCD.spad" 1832508 1832528 1836120 1836125) (-1092 "RSETCAT.spad" 1822444 1822461 1832476 1832503) (-1091 "RSETCAT.spad" 1812400 1812419 1822434 1822439) (-1090 "RSDCMPK.spad" 1810852 1810872 1812390 1812395) (-1089 "RRCC.spad" 1809236 1809266 1810842 1810847) (-1088 "RRCC.spad" 1807618 1807650 1809226 1809231) (-1087 "RPTAST.spad" 1807320 1807329 1807608 1807613) (-1086 "RPOLCAT.spad" 1786680 1786695 1807188 1807315) (-1085 "RPOLCAT.spad" 1765753 1765770 1786263 1786268) (-1084 "ROUTINE.spad" 1761174 1761183 1763938 1763965) (-1083 "ROMAN.spad" 1760502 1760511 1761040 1761169) (-1082 "ROIRC.spad" 1759582 1759614 1760492 1760497) (-1081 "RNS.spad" 1758485 1758494 1759484 1759577) (-1080 "RNS.spad" 1757474 1757485 1758475 1758480) (-1079 "RNG.spad" 1757209 1757218 1757464 1757469) (-1078 "RNGBIND.spad" 1756369 1756383 1757164 1757169) (-1077 "RMODULE.spad" 1756134 1756145 1756359 1756364) (-1076 "RMCAT2.spad" 1755554 1755611 1756124 1756129) (-1075 "RMATRIX.spad" 1754342 1754361 1754685 1754724) (-1074 "RMATCAT.spad" 1749921 1749952 1754298 1754337) (-1073 "RMATCAT.spad" 1745390 1745423 1749769 1749774) (-1072 "RLINSET.spad" 1745094 1745105 1745380 1745385) (-1071 "RINTERP.spad" 1744982 1745002 1745084 1745089) (-1070 "RING.spad" 1744452 1744461 1744962 1744977) (-1069 "RING.spad" 1743930 1743941 1744442 1744447) (-1068 "RIDIST.spad" 1743322 1743331 1743920 1743925) (-1067 "RGCHAIN.spad" 1741850 1741866 1742752 1742779) (-1066 "RGBCSPC.spad" 1741631 1741643 1741840 1741845) (-1065 "RGBCMDL.spad" 1741161 1741173 1741621 1741626) (-1064 "RF.spad" 1738803 1738814 1741151 1741156) (-1063 "RFFACTOR.spad" 1738265 1738276 1738793 1738798) (-1062 "RFFACT.spad" 1738000 1738012 1738255 1738260) (-1061 "RFDIST.spad" 1736996 1737005 1737990 1737995) (-1060 "RETSOL.spad" 1736415 1736428 1736986 1736991) (-1059 "RETRACT.spad" 1735843 1735854 1736405 1736410) (-1058 "RETRACT.spad" 1735269 1735282 1735833 1735838) (-1057 "RETAST.spad" 1735081 1735090 1735259 1735264) (-1056 "RESULT.spad" 1732679 1732688 1733266 1733293) (-1055 "RESRING.spad" 1732026 1732073 1732617 1732674) (-1054 "RESLATC.spad" 1731350 1731361 1732016 1732021) (-1053 "REPSQ.spad" 1731081 1731092 1731340 1731345) (-1052 "REP.spad" 1728635 1728644 1731071 1731076) (-1051 "REPDB.spad" 1728342 1728353 1728625 1728630) (-1050 "REP2.spad" 1718000 1718011 1728184 1728189) (-1049 "REP1.spad" 1712196 1712207 1717950 1717955) (-1048 "REGSET.spad" 1709957 1709974 1711806 1711833) (-1047 "REF.spad" 1709292 1709303 1709912 1709917) (-1046 "REDORDER.spad" 1708498 1708515 1709282 1709287) (-1045 "RECLOS.spad" 1707281 1707301 1707985 1708078) (-1044 "REALSOLV.spad" 1706421 1706430 1707271 1707276) (-1043 "REAL.spad" 1706293 1706302 1706411 1706416) (-1042 "REAL0Q.spad" 1703591 1703606 1706283 1706288) (-1041 "REAL0.spad" 1700435 1700450 1703581 1703586) (-1040 "RDUCEAST.spad" 1700156 1700165 1700425 1700430) (-1039 "RDIV.spad" 1699811 1699836 1700146 1700151) (-1038 "RDIST.spad" 1699378 1699389 1699801 1699806) (-1037 "RDETRS.spad" 1698242 1698260 1699368 1699373) (-1036 "RDETR.spad" 1696381 1696399 1698232 1698237) (-1035 "RDEEFS.spad" 1695480 1695497 1696371 1696376) (-1034 "RDEEF.spad" 1694490 1694507 1695470 1695475) (-1033 "RCFIELD.spad" 1691676 1691685 1694392 1694485) (-1032 "RCFIELD.spad" 1688948 1688959 1691666 1691671) (-1031 "RCAGG.spad" 1686876 1686887 1688938 1688943) (-1030 "RCAGG.spad" 1684731 1684744 1686795 1686800) (-1029 "RATRET.spad" 1684091 1684102 1684721 1684726) (-1028 "RATFACT.spad" 1683783 1683795 1684081 1684086) (-1027 "RANDSRC.spad" 1683102 1683111 1683773 1683778) (-1026 "RADUTIL.spad" 1682858 1682867 1683092 1683097) (-1025 "RADIX.spad" 1679682 1679696 1681228 1681321) (-1024 "RADFF.spad" 1677421 1677458 1677540 1677696) (-1023 "RADCAT.spad" 1677016 1677025 1677411 1677416) (-1022 "RADCAT.spad" 1676609 1676620 1677006 1677011) (-1021 "QUEUE.spad" 1675840 1675851 1676099 1676126) (-1020 "QUAT.spad" 1674328 1674339 1674671 1674736) (-1019 "QUATCT2.spad" 1673948 1673967 1674318 1674323) (-1018 "QUATCAT.spad" 1672118 1672129 1673878 1673943) (-1017 "QUATCAT.spad" 1670039 1670052 1671801 1671806) (-1016 "QUAGG.spad" 1668866 1668877 1670007 1670034) (-1015 "QQUTAST.spad" 1668634 1668643 1668856 1668861) (-1014 "QFORM.spad" 1668252 1668267 1668624 1668629) (-1013 "QFCAT.spad" 1666954 1666965 1668154 1668247) (-1012 "QFCAT.spad" 1665247 1665260 1666449 1666454) (-1011 "QFCAT2.spad" 1664939 1664956 1665237 1665242) (-1010 "QEQUAT.spad" 1664497 1664506 1664929 1664934) (-1009 "QCMPACK.spad" 1659243 1659263 1664487 1664492) (-1008 "QALGSET.spad" 1655321 1655354 1659157 1659162) (-1007 "QALGSET2.spad" 1653316 1653335 1655311 1655316) (-1006 "PWFFINTB.spad" 1650731 1650753 1653306 1653311) (-1005 "PUSHVAR.spad" 1650069 1650089 1650721 1650726) (-1004 "PTRANFN.spad" 1646196 1646207 1650059 1650064) (-1003 "PTPACK.spad" 1643283 1643294 1646186 1646191) (-1002 "PTFUNC2.spad" 1643105 1643120 1643273 1643278) (-1001 "PTCAT.spad" 1642359 1642370 1643073 1643100) (-1000 "PSQFR.spad" 1641665 1641690 1642349 1642354) (-999 "PSEUDLIN.spad" 1640551 1640561 1641655 1641660) (-998 "PSETPK.spad" 1625984 1626000 1640429 1640434) (-997 "PSETCAT.spad" 1619904 1619927 1625964 1625979) (-996 "PSETCAT.spad" 1613798 1613823 1619860 1619865) (-995 "PSCURVE.spad" 1612781 1612789 1613788 1613793) (-994 "PSCAT.spad" 1611564 1611593 1612679 1612776) (-993 "PSCAT.spad" 1610437 1610468 1611554 1611559) (-992 "PRTITION.spad" 1609135 1609143 1610427 1610432) (-991 "PRTDAST.spad" 1608854 1608862 1609125 1609130) (-990 "PRS.spad" 1598416 1598433 1608810 1608815) (-989 "PRQAGG.spad" 1597851 1597861 1598384 1598411) (-988 "PROPLOG.spad" 1597423 1597431 1597841 1597846) (-987 "PROPFUN2.spad" 1597046 1597059 1597413 1597418) (-986 "PROPFUN1.spad" 1596444 1596455 1597036 1597041) (-985 "PROPFRML.spad" 1595012 1595023 1596434 1596439) (-984 "PROPERTY.spad" 1594500 1594508 1595002 1595007) (-983 "PRODUCT.spad" 1592182 1592194 1592466 1592521) (-982 "PR.spad" 1590574 1590586 1591273 1591400) (-981 "PRINT.spad" 1590326 1590334 1590564 1590569) (-980 "PRIMES.spad" 1588579 1588589 1590316 1590321) (-979 "PRIMELT.spad" 1586660 1586674 1588569 1588574) (-978 "PRIMCAT.spad" 1586287 1586295 1586650 1586655) (-977 "PRIMARR.spad" 1585139 1585149 1585317 1585344) (-976 "PRIMARR2.spad" 1583906 1583918 1585129 1585134) (-975 "PREASSOC.spad" 1583288 1583300 1583896 1583901) (-974 "PPCURVE.spad" 1582425 1582433 1583278 1583283) (-973 "PORTNUM.spad" 1582200 1582208 1582415 1582420) (-972 "POLYROOT.spad" 1581049 1581071 1582156 1582161) (-971 "POLY.spad" 1578384 1578394 1578899 1579026) (-970 "POLYLIFT.spad" 1577649 1577672 1578374 1578379) (-969 "POLYCATQ.spad" 1575767 1575789 1577639 1577644) (-968 "POLYCAT.spad" 1569237 1569258 1575635 1575762) (-967 "POLYCAT.spad" 1562045 1562068 1568445 1568450) (-966 "POLY2UP.spad" 1561497 1561511 1562035 1562040) (-965 "POLY2.spad" 1561094 1561106 1561487 1561492) (-964 "POLUTIL.spad" 1560035 1560064 1561050 1561055) (-963 "POLTOPOL.spad" 1558783 1558798 1560025 1560030) (-962 "POINT.spad" 1557468 1557478 1557555 1557582) (-961 "PNTHEORY.spad" 1554170 1554178 1557458 1557463) (-960 "PMTOOLS.spad" 1552945 1552959 1554160 1554165) (-959 "PMSYM.spad" 1552494 1552504 1552935 1552940) (-958 "PMQFCAT.spad" 1552085 1552099 1552484 1552489) (-957 "PMPRED.spad" 1551564 1551578 1552075 1552080) (-956 "PMPREDFS.spad" 1551018 1551040 1551554 1551559) (-955 "PMPLCAT.spad" 1550098 1550116 1550950 1550955) (-954 "PMLSAGG.spad" 1549683 1549697 1550088 1550093) (-953 "PMKERNEL.spad" 1549262 1549274 1549673 1549678) (-952 "PMINS.spad" 1548842 1548852 1549252 1549257) (-951 "PMFS.spad" 1548419 1548437 1548832 1548837) (-950 "PMDOWN.spad" 1547709 1547723 1548409 1548414) (-949 "PMASS.spad" 1546719 1546727 1547699 1547704) (-948 "PMASSFS.spad" 1545686 1545702 1546709 1546714) (-947 "PLOTTOOL.spad" 1545466 1545474 1545676 1545681) (-946 "PLOT.spad" 1540389 1540397 1545456 1545461) (-945 "PLOT3D.spad" 1536853 1536861 1540379 1540384) (-944 "PLOT1.spad" 1536010 1536020 1536843 1536848) (-943 "PLEQN.spad" 1523300 1523327 1536000 1536005) (-942 "PINTERP.spad" 1522922 1522941 1523290 1523295) (-941 "PINTERPA.spad" 1522706 1522722 1522912 1522917) (-940 "PI.spad" 1522315 1522323 1522680 1522701) (-939 "PID.spad" 1521285 1521293 1522241 1522310) (-938 "PICOERCE.spad" 1520942 1520952 1521275 1521280) (-937 "PGROEB.spad" 1519543 1519557 1520932 1520937) (-936 "PGE.spad" 1511160 1511168 1519533 1519538) (-935 "PGCD.spad" 1510050 1510067 1511150 1511155) (-934 "PFRPAC.spad" 1509199 1509209 1510040 1510045) (-933 "PFR.spad" 1505862 1505872 1509101 1509194) (-932 "PFOTOOLS.spad" 1505120 1505136 1505852 1505857) (-931 "PFOQ.spad" 1504490 1504508 1505110 1505115) (-930 "PFO.spad" 1503909 1503936 1504480 1504485) (-929 "PF.spad" 1503483 1503495 1503714 1503807) (-928 "PFECAT.spad" 1501165 1501173 1503409 1503478) (-927 "PFECAT.spad" 1498875 1498885 1501121 1501126) (-926 "PFBRU.spad" 1496763 1496775 1498865 1498870) (-925 "PFBR.spad" 1494323 1494346 1496753 1496758) (-924 "PERM.spad" 1490130 1490140 1494153 1494168) (-923 "PERMGRP.spad" 1484900 1484910 1490120 1490125) (-922 "PERMCAT.spad" 1483561 1483571 1484880 1484895) (-921 "PERMAN.spad" 1482093 1482107 1483551 1483556) (-920 "PENDTREE.spad" 1481317 1481327 1481605 1481610) (-919 "PDSPC.spad" 1480130 1480140 1481307 1481312) (-918 "PDSPC.spad" 1478941 1478953 1480120 1480125) (-917 "PDRING.spad" 1478783 1478793 1478921 1478936) (-916 "PDMOD.spad" 1478599 1478611 1478751 1478778) (-915 "PDEPROB.spad" 1477614 1477622 1478589 1478594) (-914 "PDEPACK.spad" 1471654 1471662 1477604 1477609) (-913 "PDECOMP.spad" 1471124 1471141 1471644 1471649) (-912 "PDECAT.spad" 1469480 1469488 1471114 1471119) (-911 "PDDOM.spad" 1468918 1468931 1469470 1469475) (-910 "PDDOM.spad" 1468354 1468369 1468908 1468913) (-909 "PCOMP.spad" 1468207 1468220 1468344 1468349) (-908 "PBWLB.spad" 1466795 1466812 1468197 1468202) (-907 "PATTERN.spad" 1461334 1461344 1466785 1466790) (-906 "PATTERN2.spad" 1461072 1461084 1461324 1461329) (-905 "PATTERN1.spad" 1459408 1459424 1461062 1461067) (-904 "PATRES.spad" 1456983 1456995 1459398 1459403) (-903 "PATRES2.spad" 1456655 1456669 1456973 1456978) (-902 "PATMATCH.spad" 1454852 1454883 1456363 1456368) (-901 "PATMAB.spad" 1454281 1454291 1454842 1454847) (-900 "PATLRES.spad" 1453367 1453381 1454271 1454276) (-899 "PATAB.spad" 1453131 1453141 1453357 1453362) (-898 "PARTPERM.spad" 1451139 1451147 1453121 1453126) (-897 "PARSURF.spad" 1450573 1450601 1451129 1451134) (-896 "PARSU2.spad" 1450370 1450386 1450563 1450568) (-895 "script-parser.spad" 1449890 1449898 1450360 1450365) (-894 "PARSCURV.spad" 1449324 1449352 1449880 1449885) (-893 "PARSC2.spad" 1449115 1449131 1449314 1449319) (-892 "PARPCURV.spad" 1448577 1448605 1449105 1449110) (-891 "PARPC2.spad" 1448368 1448384 1448567 1448572) (-890 "PARAMAST.spad" 1447496 1447504 1448358 1448363) (-889 "PAN2EXPR.spad" 1446908 1446916 1447486 1447491) (-888 "PALETTE.spad" 1445878 1445886 1446898 1446903) (-887 "PAIR.spad" 1444865 1444878 1445466 1445471) (-886 "PADICRC.spad" 1442106 1442124 1443277 1443370) (-885 "PADICRAT.spad" 1440014 1440026 1440235 1440328) (-884 "PADIC.spad" 1439709 1439721 1439940 1440009) (-883 "PADICCT.spad" 1438258 1438270 1439635 1439704) (-882 "PADEPAC.spad" 1436947 1436966 1438248 1438253) (-881 "PADE.spad" 1435699 1435715 1436937 1436942) (-880 "OWP.spad" 1434939 1434969 1435557 1435624) (-879 "OVERSET.spad" 1434512 1434520 1434929 1434934) (-878 "OVAR.spad" 1434293 1434316 1434502 1434507) (-877 "OUT.spad" 1433379 1433387 1434283 1434288) (-876 "OUTFORM.spad" 1422771 1422779 1433369 1433374) (-875 "OUTBFILE.spad" 1422189 1422197 1422761 1422766) (-874 "OUTBCON.spad" 1421195 1421203 1422179 1422184) (-873 "OUTBCON.spad" 1420199 1420209 1421185 1421190) (-872 "OSI.spad" 1419674 1419682 1420189 1420194) (-871 "OSGROUP.spad" 1419592 1419600 1419664 1419669) (-870 "ORTHPOL.spad" 1418077 1418087 1419509 1419514) (-869 "OREUP.spad" 1417530 1417558 1417757 1417796) (-868 "ORESUP.spad" 1416831 1416855 1417210 1417249) (-867 "OREPCTO.spad" 1414688 1414700 1416751 1416756) (-866 "OREPCAT.spad" 1408835 1408845 1414644 1414683) (-865 "OREPCAT.spad" 1402872 1402884 1408683 1408688) (-864 "ORDTYPE.spad" 1402109 1402117 1402862 1402867) (-863 "ORDTYPE.spad" 1401344 1401354 1402099 1402104) (-862 "ORDSTRCT.spad" 1401171 1401186 1401334 1401339) (-861 "ORDSET.spad" 1400871 1400879 1401161 1401166) (-860 "ORDRING.spad" 1400261 1400269 1400851 1400866) (-859 "ORDRING.spad" 1399659 1399669 1400251 1400256) (-858 "ORDMON.spad" 1399514 1399522 1399649 1399654) (-857 "ORDFUNS.spad" 1398646 1398662 1399504 1399509) (-856 "ORDFIN.spad" 1398466 1398474 1398636 1398641) (-855 "ORDCOMP.spad" 1396931 1396941 1398013 1398042) (-854 "ORDCOMP2.spad" 1396224 1396236 1396921 1396926) (-853 "OPTPROB.spad" 1394862 1394870 1396214 1396219) (-852 "OPTPACK.spad" 1387271 1387279 1394852 1394857) (-851 "OPTCAT.spad" 1384950 1384958 1387261 1387266) (-850 "OPSIG.spad" 1384604 1384612 1384940 1384945) (-849 "OPQUERY.spad" 1384153 1384161 1384594 1384599) (-848 "OP.spad" 1383895 1383905 1383975 1384042) (-847 "OPERCAT.spad" 1383361 1383371 1383885 1383890) (-846 "OPERCAT.spad" 1382825 1382837 1383351 1383356) (-845 "ONECOMP.spad" 1381570 1381580 1382372 1382401) (-844 "ONECOMP2.spad" 1380994 1381006 1381560 1381565) (-843 "OMSERVER.spad" 1380000 1380008 1380984 1380989) (-842 "OMSAGG.spad" 1379788 1379798 1379956 1379995) (-841 "OMPKG.spad" 1378404 1378412 1379778 1379783) (-840 "OM.spad" 1377377 1377385 1378394 1378399) (-839 "OMLO.spad" 1376802 1376814 1377263 1377302) (-838 "OMEXPR.spad" 1376636 1376646 1376792 1376797) (-837 "OMERR.spad" 1376181 1376189 1376626 1376631) (-836 "OMERRK.spad" 1375215 1375223 1376171 1376176) (-835 "OMENC.spad" 1374559 1374567 1375205 1375210) (-834 "OMDEV.spad" 1368868 1368876 1374549 1374554) (-833 "OMCONN.spad" 1368277 1368285 1368858 1368863) (-832 "OINTDOM.spad" 1368040 1368048 1368203 1368272) (-831 "OFMONOID.spad" 1366163 1366173 1367996 1368001) (-830 "ODVAR.spad" 1365424 1365434 1366153 1366158) (-829 "ODR.spad" 1365068 1365094 1365236 1365385) (-828 "ODPOL.spad" 1362357 1362367 1362697 1362824) (-827 "ODP.spad" 1350171 1350191 1350544 1350643) (-826 "ODETOOLS.spad" 1348820 1348839 1350161 1350166) (-825 "ODESYS.spad" 1346514 1346531 1348810 1348815) (-824 "ODERTRIC.spad" 1342523 1342540 1346471 1346476) (-823 "ODERED.spad" 1341922 1341946 1342513 1342518) (-822 "ODERAT.spad" 1339537 1339554 1341912 1341917) (-821 "ODEPRRIC.spad" 1336574 1336596 1339527 1339532) (-820 "ODEPROB.spad" 1335831 1335839 1336564 1336569) (-819 "ODEPRIM.spad" 1333165 1333187 1335821 1335826) (-818 "ODEPAL.spad" 1332551 1332575 1333155 1333160) (-817 "ODEPACK.spad" 1319217 1319225 1332541 1332546) (-816 "ODEINT.spad" 1318652 1318668 1319207 1319212) (-815 "ODEIFTBL.spad" 1316047 1316055 1318642 1318647) (-814 "ODEEF.spad" 1311538 1311554 1316037 1316042) (-813 "ODECONST.spad" 1311075 1311093 1311528 1311533) (-812 "ODECAT.spad" 1309673 1309681 1311065 1311070) (-811 "OCT.spad" 1307809 1307819 1308523 1308562) (-810 "OCTCT2.spad" 1307455 1307476 1307799 1307804) (-809 "OC.spad" 1305251 1305261 1307411 1307450) (-808 "OC.spad" 1302772 1302784 1304934 1304939) (-807 "OCAMON.spad" 1302620 1302628 1302762 1302767) (-806 "OASGP.spad" 1302435 1302443 1302610 1302615) (-805 "OAMONS.spad" 1301957 1301965 1302425 1302430) (-804 "OAMON.spad" 1301818 1301826 1301947 1301952) (-803 "OAGROUP.spad" 1301680 1301688 1301808 1301813) (-802 "NUMTUBE.spad" 1301271 1301287 1301670 1301675) (-801 "NUMQUAD.spad" 1289247 1289255 1301261 1301266) (-800 "NUMODE.spad" 1280601 1280609 1289237 1289242) (-799 "NUMINT.spad" 1278167 1278175 1280591 1280596) (-798 "NUMFMT.spad" 1277007 1277015 1278157 1278162) (-797 "NUMERIC.spad" 1269121 1269131 1276812 1276817) (-796 "NTSCAT.spad" 1267629 1267645 1269089 1269116) (-795 "NTPOLFN.spad" 1267180 1267190 1267546 1267551) (-794 "NSUP.spad" 1260133 1260143 1264673 1264826) (-793 "NSUP2.spad" 1259525 1259537 1260123 1260128) (-792 "NSMP.spad" 1255755 1255774 1256063 1256190) (-791 "NREP.spad" 1254133 1254147 1255745 1255750) (-790 "NPCOEF.spad" 1253379 1253399 1254123 1254128) (-789 "NORMRETR.spad" 1252977 1253016 1253369 1253374) (-788 "NORMPK.spad" 1250879 1250898 1252967 1252972) (-787 "NORMMA.spad" 1250567 1250593 1250869 1250874) (-786 "NONE.spad" 1250308 1250316 1250557 1250562) (-785 "NONE1.spad" 1249984 1249994 1250298 1250303) (-784 "NODE1.spad" 1249471 1249487 1249974 1249979) (-783 "NNI.spad" 1248366 1248374 1249445 1249466) (-782 "NLINSOL.spad" 1246992 1247002 1248356 1248361) (-781 "NIPROB.spad" 1245533 1245541 1246982 1246987) (-780 "NFINTBAS.spad" 1243093 1243110 1245523 1245528) (-779 "NETCLT.spad" 1243067 1243078 1243083 1243088) (-778 "NCODIV.spad" 1241283 1241299 1243057 1243062) (-777 "NCNTFRAC.spad" 1240925 1240939 1241273 1241278) (-776 "NCEP.spad" 1239091 1239105 1240915 1240920) (-775 "NASRING.spad" 1238687 1238695 1239081 1239086) (-774 "NASRING.spad" 1238281 1238291 1238677 1238682) (-773 "NARNG.spad" 1237633 1237641 1238271 1238276) (-772 "NARNG.spad" 1236983 1236993 1237623 1237628) (-771 "NAGSP.spad" 1236060 1236068 1236973 1236978) (-770 "NAGS.spad" 1225721 1225729 1236050 1236055) (-769 "NAGF07.spad" 1224152 1224160 1225711 1225716) (-768 "NAGF04.spad" 1218554 1218562 1224142 1224147) (-767 "NAGF02.spad" 1212623 1212631 1218544 1218549) (-766 "NAGF01.spad" 1208384 1208392 1212613 1212618) (-765 "NAGE04.spad" 1202084 1202092 1208374 1208379) (-764 "NAGE02.spad" 1192744 1192752 1202074 1202079) (-763 "NAGE01.spad" 1188746 1188754 1192734 1192739) (-762 "NAGD03.spad" 1186750 1186758 1188736 1188741) (-761 "NAGD02.spad" 1179497 1179505 1186740 1186745) (-760 "NAGD01.spad" 1173790 1173798 1179487 1179492) (-759 "NAGC06.spad" 1169665 1169673 1173780 1173785) (-758 "NAGC05.spad" 1168166 1168174 1169655 1169660) (-757 "NAGC02.spad" 1167433 1167441 1168156 1168161) (-756 "NAALG.spad" 1166974 1166984 1167401 1167428) (-755 "NAALG.spad" 1166535 1166547 1166964 1166969) (-754 "MULTSQFR.spad" 1163493 1163510 1166525 1166530) (-753 "MULTFACT.spad" 1162876 1162893 1163483 1163488) (-752 "MTSCAT.spad" 1160970 1160991 1162774 1162871) (-751 "MTHING.spad" 1160629 1160639 1160960 1160965) (-750 "MSYSCMD.spad" 1160063 1160071 1160619 1160624) (-749 "MSET.spad" 1157985 1157995 1159733 1159772) (-748 "MSETAGG.spad" 1157830 1157840 1157953 1157980) (-747 "MRING.spad" 1154807 1154819 1157538 1157605) (-746 "MRF2.spad" 1154377 1154391 1154797 1154802) (-745 "MRATFAC.spad" 1153923 1153940 1154367 1154372) (-744 "MPRFF.spad" 1151963 1151982 1153913 1153918) (-743 "MPOLY.spad" 1149434 1149449 1149793 1149920) (-742 "MPCPF.spad" 1148698 1148717 1149424 1149429) (-741 "MPC3.spad" 1148515 1148555 1148688 1148693) (-740 "MPC2.spad" 1148161 1148194 1148505 1148510) (-739 "MONOTOOL.spad" 1146512 1146529 1148151 1148156) (-738 "MONOID.spad" 1145831 1145839 1146502 1146507) (-737 "MONOID.spad" 1145148 1145158 1145821 1145826) (-736 "MONOGEN.spad" 1143896 1143909 1145008 1145143) (-735 "MONOGEN.spad" 1142666 1142681 1143780 1143785) (-734 "MONADWU.spad" 1140696 1140704 1142656 1142661) (-733 "MONADWU.spad" 1138724 1138734 1140686 1140691) (-732 "MONAD.spad" 1137884 1137892 1138714 1138719) (-731 "MONAD.spad" 1137042 1137052 1137874 1137879) (-730 "MOEBIUS.spad" 1135778 1135792 1137022 1137037) (-729 "MODULE.spad" 1135648 1135658 1135746 1135773) (-728 "MODULE.spad" 1135538 1135550 1135638 1135643) (-727 "MODRING.spad" 1134873 1134912 1135518 1135533) (-726 "MODOP.spad" 1133538 1133550 1134695 1134762) (-725 "MODMONOM.spad" 1133269 1133287 1133528 1133533) (-724 "MODMON.spad" 1129971 1129987 1130690 1130843) (-723 "MODFIELD.spad" 1129333 1129372 1129873 1129966) (-722 "MMLFORM.spad" 1128193 1128201 1129323 1129328) (-721 "MMAP.spad" 1127935 1127969 1128183 1128188) (-720 "MLO.spad" 1126394 1126404 1127891 1127930) (-719 "MLIFT.spad" 1125006 1125023 1126384 1126389) (-718 "MKUCFUNC.spad" 1124541 1124559 1124996 1125001) (-717 "MKRECORD.spad" 1124145 1124158 1124531 1124536) (-716 "MKFUNC.spad" 1123552 1123562 1124135 1124140) (-715 "MKFLCFN.spad" 1122520 1122530 1123542 1123547) (-714 "MKBCFUNC.spad" 1122015 1122033 1122510 1122515) (-713 "MINT.spad" 1121454 1121462 1121917 1122010) (-712 "MHROWRED.spad" 1119965 1119975 1121444 1121449) (-711 "MFLOAT.spad" 1118485 1118493 1119855 1119960) (-710 "MFINFACT.spad" 1117885 1117907 1118475 1118480) (-709 "MESH.spad" 1115667 1115675 1117875 1117880) (-708 "MDDFACT.spad" 1113878 1113888 1115657 1115662) (-707 "MDAGG.spad" 1113169 1113179 1113858 1113873) (-706 "MCMPLX.spad" 1108600 1108608 1109214 1109415) (-705 "MCDEN.spad" 1107810 1107822 1108590 1108595) (-704 "MCALCFN.spad" 1104932 1104958 1107800 1107805) (-703 "MAYBE.spad" 1104216 1104227 1104922 1104927) (-702 "MATSTOR.spad" 1101524 1101534 1104206 1104211) (-701 "MATRIX.spad" 1100111 1100121 1100595 1100622) (-700 "MATLIN.spad" 1097455 1097479 1099995 1100000) (-699 "MATCAT.spad" 1088977 1088999 1097423 1097450) (-698 "MATCAT.spad" 1080371 1080395 1088819 1088824) (-697 "MATCAT2.spad" 1079653 1079701 1080361 1080366) (-696 "MAPPKG3.spad" 1078568 1078582 1079643 1079648) (-695 "MAPPKG2.spad" 1077906 1077918 1078558 1078563) (-694 "MAPPKG1.spad" 1076734 1076744 1077896 1077901) (-693 "MAPPAST.spad" 1076049 1076057 1076724 1076729) (-692 "MAPHACK3.spad" 1075861 1075875 1076039 1076044) (-691 "MAPHACK2.spad" 1075630 1075642 1075851 1075856) (-690 "MAPHACK1.spad" 1075274 1075284 1075620 1075625) (-689 "MAGMA.spad" 1073064 1073081 1075264 1075269) (-688 "MACROAST.spad" 1072643 1072651 1073054 1073059) (-687 "M3D.spad" 1070246 1070256 1071904 1071909) (-686 "LZSTAGG.spad" 1067484 1067494 1070236 1070241) (-685 "LZSTAGG.spad" 1064720 1064732 1067474 1067479) (-684 "LWORD.spad" 1061425 1061442 1064710 1064715) (-683 "LSTAST.spad" 1061209 1061217 1061415 1061420) (-682 "LSQM.spad" 1059366 1059380 1059760 1059811) (-681 "LSPP.spad" 1058901 1058918 1059356 1059361) (-680 "LSMP.spad" 1057751 1057779 1058891 1058896) (-679 "LSMP1.spad" 1055569 1055583 1057741 1057746) (-678 "LSAGG.spad" 1055238 1055248 1055537 1055564) (-677 "LSAGG.spad" 1054927 1054939 1055228 1055233) (-676 "LPOLY.spad" 1053881 1053900 1054783 1054852) (-675 "LPEFRAC.spad" 1053152 1053162 1053871 1053876) (-674 "LO.spad" 1052553 1052567 1053086 1053113) (-673 "LOGIC.spad" 1052155 1052163 1052543 1052548) (-672 "LOGIC.spad" 1051755 1051765 1052145 1052150) (-671 "LODOOPS.spad" 1050685 1050697 1051745 1051750) (-670 "LODO.spad" 1050069 1050085 1050365 1050404) (-669 "LODOF.spad" 1049115 1049132 1050026 1050031) (-668 "LODOCAT.spad" 1047781 1047791 1049071 1049110) (-667 "LODOCAT.spad" 1046445 1046457 1047737 1047742) (-666 "LODO2.spad" 1045718 1045730 1046125 1046164) (-665 "LODO1.spad" 1045118 1045128 1045398 1045437) (-664 "LODEEF.spad" 1043920 1043938 1045108 1045113) (-663 "LNAGG.spad" 1040067 1040077 1043910 1043915) (-662 "LNAGG.spad" 1036178 1036190 1040023 1040028) (-661 "LMOPS.spad" 1032946 1032963 1036168 1036173) (-660 "LMODULE.spad" 1032714 1032724 1032936 1032941) (-659 "LMDICT.spad" 1031884 1031894 1032148 1032175) (-658 "LLINSET.spad" 1031591 1031601 1031874 1031879) (-657 "LITERAL.spad" 1031497 1031508 1031581 1031586) (-656 "LIST.spad" 1029079 1029089 1030491 1030518) (-655 "LIST3.spad" 1028390 1028404 1029069 1029074) (-654 "LIST2.spad" 1027092 1027104 1028380 1028385) (-653 "LIST2MAP.spad" 1023995 1024007 1027082 1027087) (-652 "LINSET.spad" 1023774 1023784 1023985 1023990) (-651 "LINEXP.spad" 1022517 1022527 1023764 1023769) (-650 "LINDEP.spad" 1021326 1021338 1022429 1022434) (-649 "LIMITRF.spad" 1019254 1019264 1021316 1021321) (-648 "LIMITPS.spad" 1018157 1018170 1019244 1019249) (-647 "LIE.spad" 1016173 1016185 1017447 1017592) (-646 "LIECAT.spad" 1015649 1015659 1016099 1016168) (-645 "LIECAT.spad" 1015153 1015165 1015605 1015610) (-644 "LIB.spad" 1012904 1012912 1013350 1013365) (-643 "LGROBP.spad" 1010257 1010276 1012894 1012899) (-642 "LF.spad" 1009212 1009228 1010247 1010252) (-641 "LFCAT.spad" 1008271 1008279 1009202 1009207) (-640 "LEXTRIPK.spad" 1003774 1003789 1008261 1008266) (-639 "LEXP.spad" 1001777 1001804 1003754 1003769) (-638 "LETAST.spad" 1001476 1001484 1001767 1001772) (-637 "LEADCDET.spad" 999874 999891 1001466 1001471) (-636 "LAZM3PK.spad" 998578 998600 999864 999869) (-635 "LAUPOL.spad" 997178 997191 998078 998147) (-634 "LAPLACE.spad" 996761 996777 997168 997173) (-633 "LA.spad" 996201 996215 996683 996722) (-632 "LALG.spad" 995977 995987 996181 996196) (-631 "LALG.spad" 995761 995773 995967 995972) (-630 "KVTFROM.spad" 995496 995506 995751 995756) (-629 "KTVLOGIC.spad" 995008 995016 995486 995491) (-628 "KRCFROM.spad" 994746 994756 994998 995003) (-627 "KOVACIC.spad" 993469 993486 994736 994741) (-626 "KONVERT.spad" 993191 993201 993459 993464) (-625 "KOERCE.spad" 992928 992938 993181 993186) (-624 "KERNEL.spad" 991583 991593 992712 992717) (-623 "KERNEL2.spad" 991286 991298 991573 991578) (-622 "KDAGG.spad" 990395 990417 991266 991281) (-621 "KDAGG.spad" 989512 989536 990385 990390) (-620 "KAFILE.spad" 988366 988382 988601 988628) (-619 "JORDAN.spad" 986195 986207 987656 987801) (-618 "JOINAST.spad" 985889 985897 986185 986190) (-617 "JAVACODE.spad" 985755 985763 985879 985884) (-616 "IXAGG.spad" 983888 983912 985745 985750) (-615 "IXAGG.spad" 981876 981902 983735 983740) (-614 "IVECTOR.spad" 980493 980508 980648 980675) (-613 "ITUPLE.spad" 979654 979664 980483 980488) (-612 "ITRIGMNP.spad" 978493 978512 979644 979649) (-611 "ITFUN3.spad" 977999 978013 978483 978488) (-610 "ITFUN2.spad" 977743 977755 977989 977994) (-609 "ITFORM.spad" 977098 977106 977733 977738) (-608 "ITAYLOR.spad" 975092 975107 976962 977059) (-607 "ISUPS.spad" 967529 967544 974066 974163) (-606 "ISUMP.spad" 967030 967046 967519 967524) (-605 "ISTRING.spad" 965957 965970 966038 966065) (-604 "ISAST.spad" 965676 965684 965947 965952) (-603 "IRURPK.spad" 964393 964412 965666 965671) (-602 "IRSN.spad" 962365 962373 964383 964388) (-601 "IRRF2F.spad" 960850 960860 962321 962326) (-600 "IRREDFFX.spad" 960451 960462 960840 960845) (-599 "IROOT.spad" 958790 958800 960441 960446) (-598 "IR.spad" 956591 956605 958645 958672) (-597 "IRFORM.spad" 955915 955923 956581 956586) (-596 "IR2.spad" 954943 954959 955905 955910) (-595 "IR2F.spad" 954149 954165 954933 954938) (-594 "IPRNTPK.spad" 953909 953917 954139 954144) (-593 "IPF.spad" 953474 953486 953714 953807) (-592 "IPADIC.spad" 953235 953261 953400 953469) (-591 "IP4ADDR.spad" 952792 952800 953225 953230) (-590 "IOMODE.spad" 952314 952322 952782 952787) (-589 "IOBFILE.spad" 951675 951683 952304 952309) (-588 "IOBCON.spad" 951540 951548 951665 951670) (-587 "INVLAPLA.spad" 951189 951205 951530 951535) (-586 "INTTR.spad" 944571 944588 951179 951184) (-585 "INTTOOLS.spad" 942326 942342 944145 944150) (-584 "INTSLPE.spad" 941646 941654 942316 942321) (-583 "INTRVL.spad" 941212 941222 941560 941641) (-582 "INTRF.spad" 939636 939650 941202 941207) (-581 "INTRET.spad" 939068 939078 939626 939631) (-580 "INTRAT.spad" 937795 937812 939058 939063) (-579 "INTPM.spad" 936180 936196 937438 937443) (-578 "INTPAF.spad" 934044 934062 936112 936117) (-577 "INTPACK.spad" 924418 924426 934034 934039) (-576 "INT.spad" 923866 923874 924272 924413) (-575 "INTHERTR.spad" 923140 923157 923856 923861) (-574 "INTHERAL.spad" 922810 922834 923130 923135) (-573 "INTHEORY.spad" 919249 919257 922800 922805) (-572 "INTG0.spad" 912982 913000 919181 919186) (-571 "INTFTBL.spad" 907011 907019 912972 912977) (-570 "INTFACT.spad" 906070 906080 907001 907006) (-569 "INTEF.spad" 904455 904471 906060 906065) (-568 "INTDOM.spad" 903078 903086 904381 904450) (-567 "INTDOM.spad" 901763 901773 903068 903073) (-566 "INTCAT.spad" 900022 900032 901677 901758) (-565 "INTBIT.spad" 899529 899537 900012 900017) (-564 "INTALG.spad" 898717 898744 899519 899524) (-563 "INTAF.spad" 898217 898233 898707 898712) (-562 "INTABL.spad" 896293 896324 896456 896483) (-561 "INT8.spad" 896173 896181 896283 896288) (-560 "INT64.spad" 896052 896060 896163 896168) (-559 "INT32.spad" 895931 895939 896042 896047) (-558 "INT16.spad" 895810 895818 895921 895926) (-557 "INS.spad" 893313 893321 895712 895805) (-556 "INS.spad" 890902 890912 893303 893308) (-555 "INPSIGN.spad" 890350 890363 890892 890897) (-554 "INPRODPF.spad" 889446 889465 890340 890345) (-553 "INPRODFF.spad" 888534 888558 889436 889441) (-552 "INNMFACT.spad" 887509 887526 888524 888529) (-551 "INMODGCD.spad" 886997 887027 887499 887504) (-550 "INFSP.spad" 885294 885316 886987 886992) (-549 "INFPROD0.spad" 884374 884393 885284 885289) (-548 "INFORM.spad" 881573 881581 884364 884369) (-547 "INFORM1.spad" 881198 881208 881563 881568) (-546 "INFINITY.spad" 880750 880758 881188 881193) (-545 "INETCLTS.spad" 880727 880735 880740 880745) (-544 "INEP.spad" 879265 879287 880717 880722) (-543 "INDE.spad" 878994 879011 879255 879260) (-542 "INCRMAPS.spad" 878415 878425 878984 878989) (-541 "INBFILE.spad" 877487 877495 878405 878410) (-540 "INBFF.spad" 873281 873292 877477 877482) (-539 "INBCON.spad" 871571 871579 873271 873276) (-538 "INBCON.spad" 869859 869869 871561 871566) (-537 "INAST.spad" 869520 869528 869849 869854) (-536 "IMPTAST.spad" 869228 869236 869510 869515) (-535 "IMATRIX.spad" 868056 868082 868568 868595) (-534 "IMATQF.spad" 867150 867194 868012 868017) (-533 "IMATLIN.spad" 865755 865779 867106 867111) (-532 "ILIST.spad" 864260 864275 864785 864812) (-531 "IIARRAY2.spad" 863531 863569 863750 863777) (-530 "IFF.spad" 862941 862957 863212 863305) (-529 "IFAST.spad" 862555 862563 862931 862936) (-528 "IFARRAY.spad" 859895 859910 861585 861612) (-527 "IFAMON.spad" 859757 859774 859851 859856) (-526 "IEVALAB.spad" 859162 859174 859747 859752) (-525 "IEVALAB.spad" 858565 858579 859152 859157) (-524 "IDPO.spad" 858185 858197 858555 858560) (-523 "IDPOAMS.spad" 857941 857953 858175 858180) (-522 "IDPOAM.spad" 857661 857673 857931 857936) (-521 "IDPC.spad" 856390 856402 857651 857656) (-520 "IDPAM.spad" 855955 855967 856380 856385) (-519 "IDPAG.spad" 855702 855714 855945 855950) (-518 "IDENT.spad" 855352 855360 855692 855697) (-517 "IDECOMP.spad" 852591 852609 855342 855347) (-516 "IDEAL.spad" 847540 847579 852526 852531) (-515 "ICDEN.spad" 846729 846745 847530 847535) (-514 "ICARD.spad" 845920 845928 846719 846724) (-513 "IBPTOOLS.spad" 844527 844544 845910 845915) (-512 "IBITS.spad" 843692 843705 844125 844152) (-511 "IBATOOL.spad" 840669 840688 843682 843687) (-510 "IBACHIN.spad" 839176 839191 840659 840664) (-509 "IARRAY2.spad" 838047 838073 838666 838693) (-508 "IARRAY1.spad" 836939 836954 837077 837104) (-507 "IAN.spad" 835162 835170 836755 836848) (-506 "IALGFACT.spad" 834765 834798 835152 835157) (-505 "HYPCAT.spad" 834189 834197 834755 834760) (-504 "HYPCAT.spad" 833611 833621 834179 834184) (-503 "HOSTNAME.spad" 833419 833427 833601 833606) (-502 "HOMOTOP.spad" 833162 833172 833409 833414) (-501 "HOAGG.spad" 830444 830454 833152 833157) (-500 "HOAGG.spad" 827465 827477 830175 830180) (-499 "HEXADEC.spad" 825470 825478 825835 825928) (-498 "HEUGCD.spad" 824505 824516 825460 825465) (-497 "HELLFDIV.spad" 824095 824119 824495 824500) (-496 "HEAP.spad" 823370 823380 823585 823612) (-495 "HEADAST.spad" 822903 822911 823360 823365) (-494 "HDP.spad" 810713 810729 811090 811189) (-493 "HDMP.spad" 807927 807942 808543 808670) (-492 "HB.spad" 806178 806186 807917 807922) (-491 "HASHTBL.spad" 804206 804237 804417 804444) (-490 "HASAST.spad" 803922 803930 804196 804201) (-489 "HACKPI.spad" 803413 803421 803824 803917) (-488 "GTSET.spad" 802316 802332 803023 803050) (-487 "GSTBL.spad" 800393 800428 800567 800582) (-486 "GSERIES.spad" 797706 797733 798525 798674) (-485 "GROUP.spad" 796979 796987 797686 797701) (-484 "GROUP.spad" 796260 796270 796969 796974) (-483 "GROEBSOL.spad" 794754 794775 796250 796255) (-482 "GRMOD.spad" 793325 793337 794744 794749) (-481 "GRMOD.spad" 791894 791908 793315 793320) (-480 "GRIMAGE.spad" 784783 784791 791884 791889) (-479 "GRDEF.spad" 783162 783170 784773 784778) (-478 "GRAY.spad" 781625 781633 783152 783157) (-477 "GRALG.spad" 780702 780714 781615 781620) (-476 "GRALG.spad" 779777 779791 780692 780697) (-475 "GPOLSET.spad" 779195 779218 779423 779450) (-474 "GOSPER.spad" 778464 778482 779185 779190) (-473 "GMODPOL.spad" 777612 777639 778432 778459) (-472 "GHENSEL.spad" 776695 776709 777602 777607) (-471 "GENUPS.spad" 772988 773001 776685 776690) (-470 "GENUFACT.spad" 772565 772575 772978 772983) (-469 "GENPGCD.spad" 772151 772168 772555 772560) (-468 "GENMFACT.spad" 771603 771622 772141 772146) (-467 "GENEEZ.spad" 769554 769567 771593 771598) (-466 "GDMP.spad" 766610 766627 767384 767511) (-465 "GCNAALG.spad" 760533 760560 766404 766471) (-464 "GCDDOM.spad" 759709 759717 760459 760528) (-463 "GCDDOM.spad" 758947 758957 759699 759704) (-462 "GB.spad" 756473 756511 758903 758908) (-461 "GBINTERN.spad" 752493 752531 756463 756468) (-460 "GBF.spad" 748260 748298 752483 752488) (-459 "GBEUCLID.spad" 746142 746180 748250 748255) (-458 "GAUSSFAC.spad" 745455 745463 746132 746137) (-457 "GALUTIL.spad" 743781 743791 745411 745416) (-456 "GALPOLYU.spad" 742235 742248 743771 743776) (-455 "GALFACTU.spad" 740408 740427 742225 742230) (-454 "GALFACT.spad" 730597 730608 740398 740403) (-453 "FVFUN.spad" 727620 727628 730587 730592) (-452 "FVC.spad" 726672 726680 727610 727615) (-451 "FUNDESC.spad" 726350 726358 726662 726667) (-450 "FUNCTION.spad" 726199 726211 726340 726345) (-449 "FT.spad" 724496 724504 726189 726194) (-448 "FTEM.spad" 723661 723669 724486 724491) (-447 "FSUPFACT.spad" 722561 722580 723597 723602) (-446 "FST.spad" 720647 720655 722551 722556) (-445 "FSRED.spad" 720127 720143 720637 720642) (-444 "FSPRMELT.spad" 719009 719025 720084 720089) (-443 "FSPECF.spad" 717100 717116 718999 719004) (-442 "FS.spad" 711368 711378 716875 717095) (-441 "FS.spad" 705414 705426 710923 710928) (-440 "FSINT.spad" 705074 705090 705404 705409) (-439 "FSERIES.spad" 704265 704277 704894 704993) (-438 "FSCINT.spad" 703582 703598 704255 704260) (-437 "FSAGG.spad" 702699 702709 703538 703577) (-436 "FSAGG.spad" 701778 701790 702619 702624) (-435 "FSAGG2.spad" 700521 700537 701768 701773) (-434 "FS2UPS.spad" 695012 695046 700511 700516) (-433 "FS2.spad" 694659 694675 695002 695007) (-432 "FS2EXPXP.spad" 693784 693807 694649 694654) (-431 "FRUTIL.spad" 692738 692748 693774 693779) (-430 "FR.spad" 686361 686371 691669 691738) (-429 "FRNAALG.spad" 681630 681640 686303 686356) (-428 "FRNAALG.spad" 676911 676923 681586 681591) (-427 "FRNAAF2.spad" 676367 676385 676901 676906) (-426 "FRMOD.spad" 675777 675807 676298 676303) (-425 "FRIDEAL.spad" 675002 675023 675757 675772) (-424 "FRIDEAL2.spad" 674606 674638 674992 674997) (-423 "FRETRCT.spad" 674117 674127 674596 674601) (-422 "FRETRCT.spad" 673494 673506 673975 673980) (-421 "FRAMALG.spad" 671842 671855 673450 673489) (-420 "FRAMALG.spad" 670222 670237 671832 671837) (-419 "FRAC.spad" 667228 667238 667631 667804) (-418 "FRAC2.spad" 666833 666845 667218 667223) (-417 "FR2.spad" 666169 666181 666823 666828) (-416 "FPS.spad" 662984 662992 666059 666164) (-415 "FPS.spad" 659827 659837 662904 662909) (-414 "FPC.spad" 658873 658881 659729 659822) (-413 "FPC.spad" 658005 658015 658863 658868) (-412 "FPATMAB.spad" 657767 657777 657995 658000) (-411 "FPARFRAC.spad" 656617 656634 657757 657762) (-410 "FORTRAN.spad" 655123 655166 656607 656612) (-409 "FORT.spad" 654072 654080 655113 655118) (-408 "FORTFN.spad" 651242 651250 654062 654067) (-407 "FORTCAT.spad" 650926 650934 651232 651237) (-406 "FORMULA.spad" 648400 648408 650916 650921) (-405 "FORMULA1.spad" 647879 647889 648390 648395) (-404 "FORDER.spad" 647570 647594 647869 647874) (-403 "FOP.spad" 646771 646779 647560 647565) (-402 "FNLA.spad" 646195 646217 646739 646766) (-401 "FNCAT.spad" 644790 644798 646185 646190) (-400 "FNAME.spad" 644682 644690 644780 644785) (-399 "FMTC.spad" 644480 644488 644608 644677) (-398 "FMONOID.spad" 644145 644155 644436 644441) (-397 "FMONCAT.spad" 641298 641308 644135 644140) (-396 "FM.spad" 640993 641005 641232 641259) (-395 "FMFUN.spad" 638023 638031 640983 640988) (-394 "FMC.spad" 637075 637083 638013 638018) (-393 "FMCAT.spad" 634743 634761 637043 637070) (-392 "FM1.spad" 634100 634112 634677 634704) (-391 "FLOATRP.spad" 631835 631849 634090 634095) (-390 "FLOAT.spad" 625149 625157 631701 631830) (-389 "FLOATCP.spad" 622580 622594 625139 625144) (-388 "FLINEXP.spad" 622302 622312 622570 622575) (-387 "FLINEXP.spad" 621968 621980 622238 622243) (-386 "FLASORT.spad" 621294 621306 621958 621963) (-385 "FLALG.spad" 618940 618959 621220 621289) (-384 "FLAGG.spad" 615982 615992 618920 618935) (-383 "FLAGG.spad" 612925 612937 615865 615870) (-382 "FLAGG2.spad" 611650 611666 612915 612920) (-381 "FINRALG.spad" 609711 609724 611606 611645) (-380 "FINRALG.spad" 607698 607713 609595 609600) (-379 "FINITE.spad" 606850 606858 607688 607693) (-378 "FINAALG.spad" 595971 595981 606792 606845) (-377 "FINAALG.spad" 585104 585116 595927 595932) (-376 "FILE.spad" 584687 584697 585094 585099) (-375 "FILECAT.spad" 583213 583230 584677 584682) (-374 "FIELD.spad" 582619 582627 583115 583208) (-373 "FIELD.spad" 582111 582121 582609 582614) (-372 "FGROUP.spad" 580758 580768 582091 582106) (-371 "FGLMICPK.spad" 579545 579560 580748 580753) (-370 "FFX.spad" 578920 578935 579261 579354) (-369 "FFSLPE.spad" 578423 578444 578910 578915) (-368 "FFPOLY.spad" 569685 569696 578413 578418) (-367 "FFPOLY2.spad" 568745 568762 569675 569680) (-366 "FFP.spad" 568142 568162 568461 568554) (-365 "FF.spad" 567590 567606 567823 567916) (-364 "FFNBX.spad" 566102 566122 567306 567399) (-363 "FFNBP.spad" 564615 564632 565818 565911) (-362 "FFNB.spad" 563080 563101 564296 564389) (-361 "FFINTBAS.spad" 560594 560613 563070 563075) (-360 "FFIELDC.spad" 558171 558179 560496 560589) (-359 "FFIELDC.spad" 555834 555844 558161 558166) (-358 "FFHOM.spad" 554582 554599 555824 555829) (-357 "FFF.spad" 552017 552028 554572 554577) (-356 "FFCGX.spad" 550864 550884 551733 551826) (-355 "FFCGP.spad" 549753 549773 550580 550673) (-354 "FFCG.spad" 548545 548566 549434 549527) (-353 "FFCAT.spad" 541718 541740 548384 548540) (-352 "FFCAT.spad" 534970 534994 541638 541643) (-351 "FFCAT2.spad" 534717 534757 534960 534965) (-350 "FEXPR.spad" 526434 526480 534473 534512) (-349 "FEVALAB.spad" 526142 526152 526424 526429) (-348 "FEVALAB.spad" 525635 525647 525919 525924) (-347 "FDIV.spad" 525077 525101 525625 525630) (-346 "FDIVCAT.spad" 523141 523165 525067 525072) (-345 "FDIVCAT.spad" 521203 521229 523131 523136) (-344 "FDIV2.spad" 520859 520899 521193 521198) (-343 "FCTRDATA.spad" 519867 519875 520849 520854) (-342 "FCPAK1.spad" 518434 518442 519857 519862) (-341 "FCOMP.spad" 517813 517823 518424 518429) (-340 "FC.spad" 507820 507828 517803 517808) (-339 "FAXF.spad" 500791 500805 507722 507815) (-338 "FAXF.spad" 493814 493830 500747 500752) (-337 "FARRAY.spad" 491811 491821 492844 492871) (-336 "FAMR.spad" 489947 489959 491709 491806) (-335 "FAMR.spad" 488067 488081 489831 489836) (-334 "FAMONOID.spad" 487735 487745 488021 488026) (-333 "FAMONC.spad" 486031 486043 487725 487730) (-332 "FAGROUP.spad" 485655 485665 485927 485954) (-331 "FACUTIL.spad" 483859 483876 485645 485650) (-330 "FACTFUNC.spad" 483053 483063 483849 483854) (-329 "EXPUPXS.spad" 479886 479909 481185 481334) (-328 "EXPRTUBE.spad" 477174 477182 479876 479881) (-327 "EXPRODE.spad" 474334 474350 477164 477169) (-326 "EXPR.spad" 469509 469519 470223 470518) (-325 "EXPR2UPS.spad" 465631 465644 469499 469504) (-324 "EXPR2.spad" 465336 465348 465621 465626) (-323 "EXPEXPAN.spad" 462137 462162 462769 462862) (-322 "EXIT.spad" 461808 461816 462127 462132) (-321 "EXITAST.spad" 461544 461552 461798 461803) (-320 "EVALCYC.spad" 461004 461018 461534 461539) (-319 "EVALAB.spad" 460576 460586 460994 460999) (-318 "EVALAB.spad" 460146 460158 460566 460571) (-317 "EUCDOM.spad" 457720 457728 460072 460141) (-316 "EUCDOM.spad" 455356 455366 457710 457715) (-315 "ESTOOLS.spad" 447202 447210 455346 455351) (-314 "ESTOOLS2.spad" 446805 446819 447192 447197) (-313 "ESTOOLS1.spad" 446490 446501 446795 446800) (-312 "ES.spad" 439305 439313 446480 446485) (-311 "ES.spad" 432026 432036 439203 439208) (-310 "ESCONT.spad" 428819 428827 432016 432021) (-309 "ESCONT1.spad" 428568 428580 428809 428814) (-308 "ES2.spad" 428073 428089 428558 428563) (-307 "ES1.spad" 427643 427659 428063 428068) (-306 "ERROR.spad" 424970 424978 427633 427638) (-305 "EQTBL.spad" 423000 423022 423209 423236) (-304 "EQ.spad" 417805 417815 420592 420704) (-303 "EQ2.spad" 417523 417535 417795 417800) (-302 "EP.spad" 413849 413859 417513 417518) (-301 "ENV.spad" 412527 412535 413839 413844) (-300 "ENTIRER.spad" 412195 412203 412471 412522) (-299 "EMR.spad" 411483 411524 412121 412190) (-298 "ELTAGG.spad" 409737 409756 411473 411478) (-297 "ELTAGG.spad" 407955 407976 409693 409698) (-296 "ELTAB.spad" 407430 407443 407945 407950) (-295 "ELFUTS.spad" 406817 406836 407420 407425) (-294 "ELEMFUN.spad" 406506 406514 406807 406812) (-293 "ELEMFUN.spad" 406193 406203 406496 406501) (-292 "ELAGG.spad" 404164 404174 406173 406188) (-291 "ELAGG.spad" 402072 402084 404083 404088) (-290 "ELABOR.spad" 401418 401426 402062 402067) (-289 "ELABEXPR.spad" 400350 400358 401408 401413) (-288 "EFUPXS.spad" 397126 397156 400306 400311) (-287 "EFULS.spad" 393962 393985 397082 397087) (-286 "EFSTRUC.spad" 391977 391993 393952 393957) (-285 "EF.spad" 386753 386769 391967 391972) (-284 "EAB.spad" 385029 385037 386743 386748) (-283 "E04UCFA.spad" 384565 384573 385019 385024) (-282 "E04NAFA.spad" 384142 384150 384555 384560) (-281 "E04MBFA.spad" 383722 383730 384132 384137) (-280 "E04JAFA.spad" 383258 383266 383712 383717) (-279 "E04GCFA.spad" 382794 382802 383248 383253) (-278 "E04FDFA.spad" 382330 382338 382784 382789) (-277 "E04DGFA.spad" 381866 381874 382320 382325) (-276 "E04AGNT.spad" 377716 377724 381856 381861) (-275 "DVARCAT.spad" 374606 374616 377706 377711) (-274 "DVARCAT.spad" 371494 371506 374596 374601) (-273 "DSMP.spad" 368868 368882 369173 369300) (-272 "DSEXT.spad" 368170 368180 368858 368863) (-271 "DSEXT.spad" 367379 367391 368069 368074) (-270 "DROPT.spad" 361338 361346 367369 367374) (-269 "DROPT1.spad" 361003 361013 361328 361333) (-268 "DROPT0.spad" 355860 355868 360993 360998) (-267 "DRAWPT.spad" 354033 354041 355850 355855) (-266 "DRAW.spad" 346909 346922 354023 354028) (-265 "DRAWHACK.spad" 346217 346227 346899 346904) (-264 "DRAWCX.spad" 343687 343695 346207 346212) (-263 "DRAWCURV.spad" 343234 343249 343677 343682) (-262 "DRAWCFUN.spad" 332766 332774 343224 343229) (-261 "DQAGG.spad" 330944 330954 332734 332761) (-260 "DPOLCAT.spad" 326293 326309 330812 330939) (-259 "DPOLCAT.spad" 321728 321746 326249 326254) (-258 "DPMO.spad" 313488 313504 313626 313839) (-257 "DPMM.spad" 305261 305279 305386 305599) (-256 "DOMTMPLT.spad" 305032 305040 305251 305256) (-255 "DOMCTOR.spad" 304787 304795 305022 305027) (-254 "DOMAIN.spad" 303874 303882 304777 304782) (-253 "DMP.spad" 301134 301149 301704 301831) (-252 "DMEXT.spad" 301001 301011 301102 301129) (-251 "DLP.spad" 300353 300363 300991 300996) (-250 "DLIST.spad" 298779 298789 299383 299410) (-249 "DLAGG.spad" 297196 297206 298769 298774) (-248 "DIVRING.spad" 296738 296746 297140 297191) (-247 "DIVRING.spad" 296324 296334 296728 296733) (-246 "DISPLAY.spad" 294514 294522 296314 296319) (-245 "DIRPROD.spad" 282061 282077 282701 282800) (-244 "DIRPROD2.spad" 280879 280897 282051 282056) (-243 "DIRPCAT.spad" 280072 280088 280775 280874) (-242 "DIRPCAT.spad" 278892 278910 279597 279602) (-241 "DIOSP.spad" 277717 277725 278882 278887) (-240 "DIOPS.spad" 276713 276723 277697 277712) (-239 "DIOPS.spad" 275683 275695 276669 276674) (-238 "DIFRING.spad" 275521 275529 275663 275678) (-237 "DIFFSPC.spad" 275100 275108 275511 275516) (-236 "DIFFSPC.spad" 274677 274687 275090 275095) (-235 "DIFFMOD.spad" 274166 274176 274645 274672) (-234 "DIFFDOM.spad" 273331 273342 274156 274161) (-233 "DIFFDOM.spad" 272494 272507 273321 273326) (-232 "DIFEXT.spad" 272313 272323 272474 272489) (-231 "DIAGG.spad" 271943 271953 272293 272308) (-230 "DIAGG.spad" 271581 271593 271933 271938) (-229 "DHMATRIX.spad" 269776 269786 270921 270948) (-228 "DFSFUN.spad" 263416 263424 269766 269771) (-227 "DFLOAT.spad" 260147 260155 263306 263411) (-226 "DFINTTLS.spad" 258378 258394 260137 260142) (-225 "DERHAM.spad" 256292 256324 258358 258373) (-224 "DEQUEUE.spad" 255499 255509 255782 255809) (-223 "DEGRED.spad" 255116 255130 255489 255494) (-222 "DEFINTRF.spad" 252653 252663 255106 255111) (-221 "DEFINTEF.spad" 251163 251179 252643 252648) (-220 "DEFAST.spad" 250531 250539 251153 251158) (-219 "DECIMAL.spad" 248540 248548 248901 248994) (-218 "DDFACT.spad" 246353 246370 248530 248535) (-217 "DBLRESP.spad" 245953 245977 246343 246348) (-216 "DBASE.spad" 244617 244627 245943 245948) (-215 "DATAARY.spad" 244079 244092 244607 244612) (-214 "D03FAFA.spad" 243907 243915 244069 244074) (-213 "D03EEFA.spad" 243727 243735 243897 243902) (-212 "D03AGNT.spad" 242813 242821 243717 243722) (-211 "D02EJFA.spad" 242275 242283 242803 242808) (-210 "D02CJFA.spad" 241753 241761 242265 242270) (-209 "D02BHFA.spad" 241243 241251 241743 241748) (-208 "D02BBFA.spad" 240733 240741 241233 241238) (-207 "D02AGNT.spad" 235547 235555 240723 240728) (-206 "D01WGTS.spad" 233866 233874 235537 235542) (-205 "D01TRNS.spad" 233843 233851 233856 233861) (-204 "D01GBFA.spad" 233365 233373 233833 233838) (-203 "D01FCFA.spad" 232887 232895 233355 233360) (-202 "D01ASFA.spad" 232355 232363 232877 232882) (-201 "D01AQFA.spad" 231801 231809 232345 232350) (-200 "D01APFA.spad" 231225 231233 231791 231796) (-199 "D01ANFA.spad" 230719 230727 231215 231220) (-198 "D01AMFA.spad" 230229 230237 230709 230714) (-197 "D01ALFA.spad" 229769 229777 230219 230224) (-196 "D01AKFA.spad" 229295 229303 229759 229764) (-195 "D01AJFA.spad" 228818 228826 229285 229290) (-194 "D01AGNT.spad" 224885 224893 228808 228813) (-193 "CYCLOTOM.spad" 224391 224399 224875 224880) (-192 "CYCLES.spad" 221183 221191 224381 224386) (-191 "CVMP.spad" 220600 220610 221173 221178) (-190 "CTRIGMNP.spad" 219100 219116 220590 220595) (-189 "CTOR.spad" 218791 218799 219090 219095) (-188 "CTORKIND.spad" 218394 218402 218781 218786) (-187 "CTORCAT.spad" 217643 217651 218384 218389) (-186 "CTORCAT.spad" 216890 216900 217633 217638) (-185 "CTORCALL.spad" 216479 216489 216880 216885) (-184 "CSTTOOLS.spad" 215724 215737 216469 216474) (-183 "CRFP.spad" 209448 209461 215714 215719) (-182 "CRCEAST.spad" 209168 209176 209438 209443) (-181 "CRAPACK.spad" 208219 208229 209158 209163) (-180 "CPMATCH.spad" 207723 207738 208144 208149) (-179 "CPIMA.spad" 207428 207447 207713 207718) (-178 "COORDSYS.spad" 202437 202447 207418 207423) (-177 "CONTOUR.spad" 201848 201856 202427 202432) (-176 "CONTFRAC.spad" 197598 197608 201750 201843) (-175 "CONDUIT.spad" 197356 197364 197588 197593) (-174 "COMRING.spad" 197030 197038 197294 197351) (-173 "COMPPROP.spad" 196548 196556 197020 197025) (-172 "COMPLPAT.spad" 196315 196330 196538 196543) (-171 "COMPLEX.spad" 191692 191702 191936 192197) (-170 "COMPLEX2.spad" 191407 191419 191682 191687) (-169 "COMPILER.spad" 190956 190964 191397 191402) (-168 "COMPFACT.spad" 190558 190572 190946 190951) (-167 "COMPCAT.spad" 188630 188640 190292 190553) (-166 "COMPCAT.spad" 186430 186442 188094 188099) (-165 "COMMUPC.spad" 186178 186196 186420 186425) (-164 "COMMONOP.spad" 185711 185719 186168 186173) (-163 "COMM.spad" 185522 185530 185701 185706) (-162 "COMMAAST.spad" 185285 185293 185512 185517) (-161 "COMBOPC.spad" 184200 184208 185275 185280) (-160 "COMBINAT.spad" 182967 182977 184190 184195) (-159 "COMBF.spad" 180349 180365 182957 182962) (-158 "COLOR.spad" 179186 179194 180339 180344) (-157 "COLONAST.spad" 178852 178860 179176 179181) (-156 "CMPLXRT.spad" 178563 178580 178842 178847) (-155 "CLLCTAST.spad" 178225 178233 178553 178558) (-154 "CLIP.spad" 174333 174341 178215 178220) (-153 "CLIF.spad" 172988 173004 174289 174328) (-152 "CLAGG.spad" 169493 169503 172978 172983) (-151 "CLAGG.spad" 165869 165881 169356 169361) (-150 "CINTSLPE.spad" 165200 165213 165859 165864) (-149 "CHVAR.spad" 163338 163360 165190 165195) (-148 "CHARZ.spad" 163253 163261 163318 163333) (-147 "CHARPOL.spad" 162763 162773 163243 163248) (-146 "CHARNZ.spad" 162516 162524 162743 162758) (-145 "CHAR.spad" 160390 160398 162506 162511) (-144 "CFCAT.spad" 159718 159726 160380 160385) (-143 "CDEN.spad" 158914 158928 159708 159713) (-142 "CCLASS.spad" 157025 157033 158287 158326) (-141 "CATEGORY.spad" 156067 156075 157015 157020) (-140 "CATCTOR.spad" 155958 155966 156057 156062) (-139 "CATAST.spad" 155576 155584 155948 155953) (-138 "CASEAST.spad" 155290 155298 155566 155571) (-137 "CARTEN.spad" 150657 150681 155280 155285) (-136 "CARTEN2.spad" 150047 150074 150647 150652) (-135 "CARD.spad" 147342 147350 150021 150042) (-134 "CAPSLAST.spad" 147116 147124 147332 147337) (-133 "CACHSET.spad" 146740 146748 147106 147111) (-132 "CABMON.spad" 146295 146303 146730 146735) (-131 "BYTEORD.spad" 145970 145978 146285 146290) (-130 "BYTE.spad" 145397 145405 145960 145965) (-129 "BYTEBUF.spad" 143095 143103 144405 144432) (-128 "BTREE.spad" 142051 142061 142585 142612) (-127 "BTOURN.spad" 140939 140949 141541 141568) (-126 "BTCAT.spad" 140331 140341 140907 140934) (-125 "BTCAT.spad" 139743 139755 140321 140326) (-124 "BTAGG.spad" 139209 139217 139711 139738) (-123 "BTAGG.spad" 138695 138705 139199 139204) (-122 "BSTREE.spad" 137319 137329 138185 138212) (-121 "BRILL.spad" 135516 135527 137309 137314) (-120 "BRAGG.spad" 134456 134466 135506 135511) (-119 "BRAGG.spad" 133360 133372 134412 134417) (-118 "BPADICRT.spad" 131234 131246 131489 131582) (-117 "BPADIC.spad" 130898 130910 131160 131229) (-116 "BOUNDZRO.spad" 130554 130571 130888 130893) (-115 "BOP.spad" 125736 125744 130544 130549) (-114 "BOP1.spad" 123202 123212 125726 125731) (-113 "BOOLE.spad" 122852 122860 123192 123197) (-112 "BOOLEAN.spad" 122290 122298 122842 122847) (-111 "BMODULE.spad" 122002 122014 122258 122285) (-110 "BITS.spad" 121385 121393 121600 121627) (-109 "BINDING.spad" 120798 120806 121375 121380) (-108 "BINARY.spad" 118812 118820 119168 119261) (-107 "BGAGG.spad" 118017 118027 118792 118807) (-106 "BGAGG.spad" 117230 117242 118007 118012) (-105 "BFUNCT.spad" 116794 116802 117210 117225) (-104 "BEZOUT.spad" 115934 115961 116744 116749) (-103 "BBTREE.spad" 112662 112672 115424 115451) (-102 "BASTYPE.spad" 112158 112166 112652 112657) (-101 "BASTYPE.spad" 111652 111662 112148 112153) (-100 "BALFACT.spad" 111111 111124 111642 111647) (-99 "AUTOMOR.spad" 110562 110571 111091 111106) (-98 "ATTREG.spad" 107285 107292 110314 110557) (-97 "ATTRBUT.spad" 103308 103315 107265 107280) (-96 "ATTRAST.spad" 103025 103032 103298 103303) (-95 "ATRIG.spad" 102495 102502 103015 103020) (-94 "ATRIG.spad" 101963 101972 102485 102490) (-93 "ASTCAT.spad" 101867 101874 101953 101958) (-92 "ASTCAT.spad" 101769 101778 101857 101862) (-91 "ASTACK.spad" 100991 101000 101259 101286) (-90 "ASSOCEQ.spad" 99817 99828 100947 100952) (-89 "ASP9.spad" 98898 98911 99807 99812) (-88 "ASP8.spad" 97941 97954 98888 98893) (-87 "ASP80.spad" 97263 97276 97931 97936) (-86 "ASP7.spad" 96423 96436 97253 97258) (-85 "ASP78.spad" 95874 95887 96413 96418) (-84 "ASP77.spad" 95243 95256 95864 95869) (-83 "ASP74.spad" 94335 94348 95233 95238) (-82 "ASP73.spad" 93606 93619 94325 94330) (-81 "ASP6.spad" 92473 92486 93596 93601) (-80 "ASP55.spad" 90982 90995 92463 92468) (-79 "ASP50.spad" 88799 88812 90972 90977) (-78 "ASP4.spad" 88094 88107 88789 88794) (-77 "ASP49.spad" 87093 87106 88084 88089) (-76 "ASP42.spad" 85500 85539 87083 87088) (-75 "ASP41.spad" 84079 84118 85490 85495) (-74 "ASP35.spad" 83067 83080 84069 84074) (-73 "ASP34.spad" 82368 82381 83057 83062) (-72 "ASP33.spad" 81928 81941 82358 82363) (-71 "ASP31.spad" 81068 81081 81918 81923) (-70 "ASP30.spad" 79960 79973 81058 81063) (-69 "ASP29.spad" 79426 79439 79950 79955) (-68 "ASP28.spad" 70699 70712 79416 79421) (-67 "ASP27.spad" 69596 69609 70689 70694) (-66 "ASP24.spad" 68683 68696 69586 69591) (-65 "ASP20.spad" 68147 68160 68673 68678) (-64 "ASP1.spad" 67528 67541 68137 68142) (-63 "ASP19.spad" 62214 62227 67518 67523) (-62 "ASP12.spad" 61628 61641 62204 62209) (-61 "ASP10.spad" 60899 60912 61618 61623) (-60 "ARRAY2.spad" 60142 60151 60389 60416) (-59 "ARRAY1.spad" 58826 58835 59172 59199) (-58 "ARRAY12.spad" 57539 57550 58816 58821) (-57 "ARR2CAT.spad" 53313 53334 57507 57534) (-56 "ARR2CAT.spad" 49107 49130 53303 53308) (-55 "ARITY.spad" 48479 48486 49097 49102) (-54 "APPRULE.spad" 47739 47761 48469 48474) (-53 "APPLYORE.spad" 47358 47371 47729 47734) (-52 "ANY.spad" 46217 46224 47348 47353) (-51 "ANY1.spad" 45288 45297 46207 46212) (-50 "ANTISYM.spad" 43733 43749 45268 45283) (-49 "ANON.spad" 43426 43433 43723 43728) (-48 "AN.spad" 41735 41742 43242 43335) (-47 "AMR.spad" 39920 39931 41633 41730) (-46 "AMR.spad" 37942 37955 39657 39662) (-45 "ALIST.spad" 34842 34863 35192 35219) (-44 "ALGSC.spad" 33977 34003 34714 34767) (-43 "ALGPKG.spad" 29760 29771 33933 33938) (-42 "ALGMFACT.spad" 28953 28967 29750 29755) (-41 "ALGMANIP.spad" 26427 26442 28786 28791) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2293911 2293916 2293921 2293926) (-2 NIL 2293891 2293896 2293901 2293906) (-1 NIL 2293871 2293876 2293881 2293886) (0 NIL 2293851 2293856 2293861 2293866) (-1317 "ZMOD.spad" 2293660 2293673 2293789 2293846) (-1316 "ZLINDEP.spad" 2292726 2292737 2293650 2293655) (-1315 "ZDSOLVE.spad" 2282671 2282693 2292716 2292721) (-1314 "YSTREAM.spad" 2282166 2282177 2282661 2282666) (-1313 "YDIAGRAM.spad" 2281800 2281809 2282156 2282161) (-1312 "XRPOLY.spad" 2281020 2281040 2281656 2281725) (-1311 "XPR.spad" 2278815 2278828 2280738 2280837) (-1310 "XPOLY.spad" 2278370 2278381 2278671 2278740) (-1309 "XPOLYC.spad" 2277689 2277705 2278296 2278365) (-1308 "XPBWPOLY.spad" 2276126 2276146 2277469 2277538) (-1307 "XF.spad" 2274589 2274604 2276028 2276121) (-1306 "XF.spad" 2273032 2273049 2274473 2274478) (-1305 "XFALG.spad" 2270080 2270096 2272958 2273027) (-1304 "XEXPPKG.spad" 2269331 2269357 2270070 2270075) (-1303 "XDPOLY.spad" 2268945 2268961 2269187 2269256) (-1302 "XALG.spad" 2268605 2268616 2268901 2268940) (-1301 "WUTSET.spad" 2264408 2264425 2268215 2268242) (-1300 "WP.spad" 2263607 2263651 2264266 2264333) (-1299 "WHILEAST.spad" 2263405 2263414 2263597 2263602) (-1298 "WHEREAST.spad" 2263076 2263085 2263395 2263400) (-1297 "WFFINTBS.spad" 2260739 2260761 2263066 2263071) (-1296 "WEIER.spad" 2258961 2258972 2260729 2260734) (-1295 "VSPACE.spad" 2258634 2258645 2258929 2258956) (-1294 "VSPACE.spad" 2258327 2258340 2258624 2258629) (-1293 "VOID.spad" 2258004 2258013 2258317 2258322) (-1292 "VIEW.spad" 2255684 2255693 2257994 2257999) (-1291 "VIEWDEF.spad" 2250885 2250894 2255674 2255679) (-1290 "VIEW3D.spad" 2234846 2234855 2250875 2250880) (-1289 "VIEW2D.spad" 2222737 2222746 2234836 2234841) (-1288 "VECTOR.spad" 2221258 2221269 2221509 2221536) (-1287 "VECTOR2.spad" 2219897 2219910 2221248 2221253) (-1286 "VECTCAT.spad" 2217801 2217812 2219865 2219892) (-1285 "VECTCAT.spad" 2215512 2215525 2217578 2217583) (-1284 "VARIABLE.spad" 2215292 2215307 2215502 2215507) (-1283 "UTYPE.spad" 2214936 2214945 2215282 2215287) (-1282 "UTSODETL.spad" 2214231 2214255 2214892 2214897) (-1281 "UTSODE.spad" 2212447 2212467 2214221 2214226) (-1280 "UTS.spad" 2207394 2207422 2210914 2211011) (-1279 "UTSCAT.spad" 2204873 2204889 2207292 2207389) (-1278 "UTSCAT.spad" 2201996 2202014 2204417 2204422) (-1277 "UTS2.spad" 2201591 2201626 2201986 2201991) (-1276 "URAGG.spad" 2196264 2196275 2201581 2201586) (-1275 "URAGG.spad" 2190901 2190914 2196220 2196225) (-1274 "UPXSSING.spad" 2188546 2188572 2189982 2190115) (-1273 "UPXS.spad" 2185842 2185870 2186678 2186827) (-1272 "UPXSCONS.spad" 2183601 2183621 2183974 2184123) (-1271 "UPXSCCA.spad" 2182172 2182192 2183447 2183596) (-1270 "UPXSCCA.spad" 2180885 2180907 2182162 2182167) (-1269 "UPXSCAT.spad" 2179474 2179490 2180731 2180880) (-1268 "UPXS2.spad" 2179017 2179070 2179464 2179469) (-1267 "UPSQFREE.spad" 2177431 2177445 2179007 2179012) (-1266 "UPSCAT.spad" 2175218 2175242 2177329 2177426) (-1265 "UPSCAT.spad" 2172711 2172737 2174824 2174829) (-1264 "UPOLYC.spad" 2167751 2167762 2172553 2172706) (-1263 "UPOLYC.spad" 2162683 2162696 2167487 2167492) (-1262 "UPOLYC2.spad" 2162154 2162173 2162673 2162678) (-1261 "UP.spad" 2159260 2159275 2159647 2159800) (-1260 "UPMP.spad" 2158160 2158173 2159250 2159255) (-1259 "UPDIVP.spad" 2157725 2157739 2158150 2158155) (-1258 "UPDECOMP.spad" 2155970 2155984 2157715 2157720) (-1257 "UPCDEN.spad" 2155179 2155195 2155960 2155965) (-1256 "UP2.spad" 2154543 2154564 2155169 2155174) (-1255 "UNISEG.spad" 2153896 2153907 2154462 2154467) (-1254 "UNISEG2.spad" 2153393 2153406 2153852 2153857) (-1253 "UNIFACT.spad" 2152496 2152508 2153383 2153388) (-1252 "ULS.spad" 2142280 2142308 2143225 2143654) (-1251 "ULSCONS.spad" 2133414 2133434 2133784 2133933) (-1250 "ULSCCAT.spad" 2131151 2131171 2133260 2133409) (-1249 "ULSCCAT.spad" 2128996 2129018 2131107 2131112) (-1248 "ULSCAT.spad" 2127228 2127244 2128842 2128991) (-1247 "ULS2.spad" 2126742 2126795 2127218 2127223) (-1246 "UINT8.spad" 2126619 2126628 2126732 2126737) (-1245 "UINT64.spad" 2126495 2126504 2126609 2126614) (-1244 "UINT32.spad" 2126371 2126380 2126485 2126490) (-1243 "UINT16.spad" 2126247 2126256 2126361 2126366) (-1242 "UFD.spad" 2125312 2125321 2126173 2126242) (-1241 "UFD.spad" 2124439 2124450 2125302 2125307) (-1240 "UDVO.spad" 2123320 2123329 2124429 2124434) (-1239 "UDPO.spad" 2120813 2120824 2123276 2123281) (-1238 "TYPE.spad" 2120745 2120754 2120803 2120808) (-1237 "TYPEAST.spad" 2120664 2120673 2120735 2120740) (-1236 "TWOFACT.spad" 2119316 2119331 2120654 2120659) (-1235 "TUPLE.spad" 2118802 2118813 2119215 2119220) (-1234 "TUBETOOL.spad" 2115669 2115678 2118792 2118797) (-1233 "TUBE.spad" 2114316 2114333 2115659 2115664) (-1232 "TS.spad" 2112915 2112931 2113881 2113978) (-1231 "TSETCAT.spad" 2100042 2100059 2112883 2112910) (-1230 "TSETCAT.spad" 2087155 2087174 2099998 2100003) (-1229 "TRMANIP.spad" 2081521 2081538 2086861 2086866) (-1228 "TRIMAT.spad" 2080484 2080509 2081511 2081516) (-1227 "TRIGMNIP.spad" 2079011 2079028 2080474 2080479) (-1226 "TRIGCAT.spad" 2078523 2078532 2079001 2079006) (-1225 "TRIGCAT.spad" 2078033 2078044 2078513 2078518) (-1224 "TREE.spad" 2076491 2076502 2077523 2077550) (-1223 "TRANFUN.spad" 2076330 2076339 2076481 2076486) (-1222 "TRANFUN.spad" 2076167 2076178 2076320 2076325) (-1221 "TOPSP.spad" 2075841 2075850 2076157 2076162) (-1220 "TOOLSIGN.spad" 2075504 2075515 2075831 2075836) (-1219 "TEXTFILE.spad" 2074065 2074074 2075494 2075499) (-1218 "TEX.spad" 2071211 2071220 2074055 2074060) (-1217 "TEX1.spad" 2070767 2070778 2071201 2071206) (-1216 "TEMUTL.spad" 2070322 2070331 2070757 2070762) (-1215 "TBCMPPK.spad" 2068415 2068438 2070312 2070317) (-1214 "TBAGG.spad" 2067465 2067488 2068395 2068410) (-1213 "TBAGG.spad" 2066523 2066548 2067455 2067460) (-1212 "TANEXP.spad" 2065931 2065942 2066513 2066518) (-1211 "TALGOP.spad" 2065655 2065666 2065921 2065926) (-1210 "TABLE.spad" 2063624 2063647 2063894 2063921) (-1209 "TABLEAU.spad" 2063105 2063116 2063614 2063619) (-1208 "TABLBUMP.spad" 2059908 2059919 2063095 2063100) (-1207 "SYSTEM.spad" 2059136 2059145 2059898 2059903) (-1206 "SYSSOLP.spad" 2056619 2056630 2059126 2059131) (-1205 "SYSPTR.spad" 2056518 2056527 2056609 2056614) (-1204 "SYSNNI.spad" 2055700 2055711 2056508 2056513) (-1203 "SYSINT.spad" 2055104 2055115 2055690 2055695) (-1202 "SYNTAX.spad" 2051310 2051319 2055094 2055099) (-1201 "SYMTAB.spad" 2049378 2049387 2051300 2051305) (-1200 "SYMS.spad" 2045401 2045410 2049368 2049373) (-1199 "SYMPOLY.spad" 2044408 2044419 2044490 2044617) (-1198 "SYMFUNC.spad" 2043909 2043920 2044398 2044403) (-1197 "SYMBOL.spad" 2041412 2041421 2043899 2043904) (-1196 "SWITCH.spad" 2038183 2038192 2041402 2041407) (-1195 "SUTS.spad" 2035231 2035259 2036650 2036747) (-1194 "SUPXS.spad" 2032514 2032542 2033363 2033512) (-1193 "SUP.spad" 2029234 2029245 2030007 2030160) (-1192 "SUPFRACF.spad" 2028339 2028357 2029224 2029229) (-1191 "SUP2.spad" 2027731 2027744 2028329 2028334) (-1190 "SUMRF.spad" 2026705 2026716 2027721 2027726) (-1189 "SUMFS.spad" 2026342 2026359 2026695 2026700) (-1188 "SULS.spad" 2016113 2016141 2017071 2017500) (-1187 "SUCHTAST.spad" 2015882 2015891 2016103 2016108) (-1186 "SUCH.spad" 2015564 2015579 2015872 2015877) (-1185 "SUBSPACE.spad" 2007679 2007694 2015554 2015559) (-1184 "SUBRESP.spad" 2006849 2006863 2007635 2007640) (-1183 "STTF.spad" 2002948 2002964 2006839 2006844) (-1182 "STTFNC.spad" 1999416 1999432 2002938 2002943) (-1181 "STTAYLOR.spad" 1992051 1992062 1999297 1999302) (-1180 "STRTBL.spad" 1990102 1990119 1990251 1990278) (-1179 "STRING.spad" 1988889 1988898 1989110 1989137) (-1178 "STREAM.spad" 1985690 1985701 1988297 1988312) (-1177 "STREAM3.spad" 1985263 1985278 1985680 1985685) (-1176 "STREAM2.spad" 1984391 1984404 1985253 1985258) (-1175 "STREAM1.spad" 1984097 1984108 1984381 1984386) (-1174 "STINPROD.spad" 1983033 1983049 1984087 1984092) (-1173 "STEP.spad" 1982234 1982243 1983023 1983028) (-1172 "STEPAST.spad" 1981468 1981477 1982224 1982229) (-1171 "STBL.spad" 1979552 1979580 1979719 1979734) (-1170 "STAGG.spad" 1978627 1978638 1979542 1979547) (-1169 "STAGG.spad" 1977700 1977713 1978617 1978622) (-1168 "STACK.spad" 1976940 1976951 1977190 1977217) (-1167 "SREGSET.spad" 1974608 1974625 1976550 1976577) (-1166 "SRDCMPK.spad" 1973169 1973189 1974598 1974603) (-1165 "SRAGG.spad" 1968312 1968321 1973137 1973164) (-1164 "SRAGG.spad" 1963475 1963486 1968302 1968307) (-1163 "SQMATRIX.spad" 1961018 1961036 1961934 1962021) (-1162 "SPLTREE.spad" 1955414 1955427 1960298 1960325) (-1161 "SPLNODE.spad" 1952002 1952015 1955404 1955409) (-1160 "SPFCAT.spad" 1950811 1950820 1951992 1951997) (-1159 "SPECOUT.spad" 1949363 1949372 1950801 1950806) (-1158 "SPADXPT.spad" 1940958 1940967 1949353 1949358) (-1157 "spad-parser.spad" 1940423 1940432 1940948 1940953) (-1156 "SPADAST.spad" 1940124 1940133 1940413 1940418) (-1155 "SPACEC.spad" 1924323 1924334 1940114 1940119) (-1154 "SPACE3.spad" 1924099 1924110 1924313 1924318) (-1153 "SORTPAK.spad" 1923648 1923661 1924055 1924060) (-1152 "SOLVETRA.spad" 1921411 1921422 1923638 1923643) (-1151 "SOLVESER.spad" 1919939 1919950 1921401 1921406) (-1150 "SOLVERAD.spad" 1915965 1915976 1919929 1919934) (-1149 "SOLVEFOR.spad" 1914427 1914445 1915955 1915960) (-1148 "SNTSCAT.spad" 1914027 1914044 1914395 1914422) (-1147 "SMTS.spad" 1912299 1912325 1913592 1913689) (-1146 "SMP.spad" 1909774 1909794 1910164 1910291) (-1145 "SMITH.spad" 1908619 1908644 1909764 1909769) (-1144 "SMATCAT.spad" 1906729 1906759 1908563 1908614) (-1143 "SMATCAT.spad" 1904771 1904803 1906607 1906612) (-1142 "SKAGG.spad" 1903734 1903745 1904739 1904766) (-1141 "SINT.spad" 1902674 1902683 1903600 1903729) (-1140 "SIMPAN.spad" 1902402 1902411 1902664 1902669) (-1139 "SIG.spad" 1901732 1901741 1902392 1902397) (-1138 "SIGNRF.spad" 1900850 1900861 1901722 1901727) (-1137 "SIGNEF.spad" 1900129 1900146 1900840 1900845) (-1136 "SIGAST.spad" 1899514 1899523 1900119 1900124) (-1135 "SHP.spad" 1897442 1897457 1899470 1899475) (-1134 "SHDP.spad" 1885120 1885147 1885629 1885728) (-1133 "SGROUP.spad" 1884728 1884737 1885110 1885115) (-1132 "SGROUP.spad" 1884334 1884345 1884718 1884723) (-1131 "SGCF.spad" 1877473 1877482 1884324 1884329) (-1130 "SFRTCAT.spad" 1876403 1876420 1877441 1877468) (-1129 "SFRGCD.spad" 1875466 1875486 1876393 1876398) (-1128 "SFQCMPK.spad" 1870103 1870123 1875456 1875461) (-1127 "SFORT.spad" 1869542 1869556 1870093 1870098) (-1126 "SEXOF.spad" 1869385 1869425 1869532 1869537) (-1125 "SEX.spad" 1869277 1869286 1869375 1869380) (-1124 "SEXCAT.spad" 1867049 1867089 1869267 1869272) (-1123 "SET.spad" 1865337 1865348 1866434 1866473) (-1122 "SETMN.spad" 1863787 1863804 1865327 1865332) (-1121 "SETCAT.spad" 1863272 1863281 1863777 1863782) (-1120 "SETCAT.spad" 1862755 1862766 1863262 1863267) (-1119 "SETAGG.spad" 1859304 1859315 1862735 1862750) (-1118 "SETAGG.spad" 1855861 1855874 1859294 1859299) (-1117 "SEQAST.spad" 1855564 1855573 1855851 1855856) (-1116 "SEGXCAT.spad" 1854720 1854733 1855554 1855559) (-1115 "SEG.spad" 1854533 1854544 1854639 1854644) (-1114 "SEGCAT.spad" 1853458 1853469 1854523 1854528) (-1113 "SEGBIND.spad" 1853216 1853227 1853405 1853410) (-1112 "SEGBIND2.spad" 1852914 1852927 1853206 1853211) (-1111 "SEGAST.spad" 1852628 1852637 1852904 1852909) (-1110 "SEG2.spad" 1852063 1852076 1852584 1852589) (-1109 "SDVAR.spad" 1851339 1851350 1852053 1852058) (-1108 "SDPOL.spad" 1848672 1848683 1848963 1849090) (-1107 "SCPKG.spad" 1846761 1846772 1848662 1848667) (-1106 "SCOPE.spad" 1845914 1845923 1846751 1846756) (-1105 "SCACHE.spad" 1844610 1844621 1845904 1845909) (-1104 "SASTCAT.spad" 1844519 1844528 1844600 1844605) (-1103 "SAOS.spad" 1844391 1844400 1844509 1844514) (-1102 "SAERFFC.spad" 1844104 1844124 1844381 1844386) (-1101 "SAE.spad" 1841574 1841590 1842185 1842320) (-1100 "SAEFACT.spad" 1841275 1841295 1841564 1841569) (-1099 "RURPK.spad" 1838934 1838950 1841265 1841270) (-1098 "RULESET.spad" 1838387 1838411 1838924 1838929) (-1097 "RULE.spad" 1836627 1836651 1838377 1838382) (-1096 "RULECOLD.spad" 1836479 1836492 1836617 1836622) (-1095 "RTVALUE.spad" 1836214 1836223 1836469 1836474) (-1094 "RSTRCAST.spad" 1835931 1835940 1836204 1836209) (-1093 "RSETGCD.spad" 1832309 1832329 1835921 1835926) (-1092 "RSETCAT.spad" 1822245 1822262 1832277 1832304) (-1091 "RSETCAT.spad" 1812201 1812220 1822235 1822240) (-1090 "RSDCMPK.spad" 1810653 1810673 1812191 1812196) (-1089 "RRCC.spad" 1809037 1809067 1810643 1810648) (-1088 "RRCC.spad" 1807419 1807451 1809027 1809032) (-1087 "RPTAST.spad" 1807121 1807130 1807409 1807414) (-1086 "RPOLCAT.spad" 1786481 1786496 1806989 1807116) (-1085 "RPOLCAT.spad" 1765554 1765571 1786064 1786069) (-1084 "ROUTINE.spad" 1760975 1760984 1763739 1763766) (-1083 "ROMAN.spad" 1760303 1760312 1760841 1760970) (-1082 "ROIRC.spad" 1759383 1759415 1760293 1760298) (-1081 "RNS.spad" 1758286 1758295 1759285 1759378) (-1080 "RNS.spad" 1757275 1757286 1758276 1758281) (-1079 "RNG.spad" 1757010 1757019 1757265 1757270) (-1078 "RNGBIND.spad" 1756170 1756184 1756965 1756970) (-1077 "RMODULE.spad" 1755935 1755946 1756160 1756165) (-1076 "RMCAT2.spad" 1755355 1755412 1755925 1755930) (-1075 "RMATRIX.spad" 1754143 1754162 1754486 1754525) (-1074 "RMATCAT.spad" 1749722 1749753 1754099 1754138) (-1073 "RMATCAT.spad" 1745191 1745224 1749570 1749575) (-1072 "RLINSET.spad" 1744895 1744906 1745181 1745186) (-1071 "RINTERP.spad" 1744783 1744803 1744885 1744890) (-1070 "RING.spad" 1744253 1744262 1744763 1744778) (-1069 "RING.spad" 1743731 1743742 1744243 1744248) (-1068 "RIDIST.spad" 1743123 1743132 1743721 1743726) (-1067 "RGCHAIN.spad" 1741651 1741667 1742553 1742580) (-1066 "RGBCSPC.spad" 1741432 1741444 1741641 1741646) (-1065 "RGBCMDL.spad" 1740962 1740974 1741422 1741427) (-1064 "RF.spad" 1738604 1738615 1740952 1740957) (-1063 "RFFACTOR.spad" 1738066 1738077 1738594 1738599) (-1062 "RFFACT.spad" 1737801 1737813 1738056 1738061) (-1061 "RFDIST.spad" 1736797 1736806 1737791 1737796) (-1060 "RETSOL.spad" 1736216 1736229 1736787 1736792) (-1059 "RETRACT.spad" 1735644 1735655 1736206 1736211) (-1058 "RETRACT.spad" 1735070 1735083 1735634 1735639) (-1057 "RETAST.spad" 1734882 1734891 1735060 1735065) (-1056 "RESULT.spad" 1732480 1732489 1733067 1733094) (-1055 "RESRING.spad" 1731827 1731874 1732418 1732475) (-1054 "RESLATC.spad" 1731151 1731162 1731817 1731822) (-1053 "REPSQ.spad" 1730882 1730893 1731141 1731146) (-1052 "REP.spad" 1728436 1728445 1730872 1730877) (-1051 "REPDB.spad" 1728143 1728154 1728426 1728431) (-1050 "REP2.spad" 1717801 1717812 1727985 1727990) (-1049 "REP1.spad" 1711997 1712008 1717751 1717756) (-1048 "REGSET.spad" 1709758 1709775 1711607 1711634) (-1047 "REF.spad" 1709093 1709104 1709713 1709718) (-1046 "REDORDER.spad" 1708299 1708316 1709083 1709088) (-1045 "RECLOS.spad" 1707082 1707102 1707786 1707879) (-1044 "REALSOLV.spad" 1706222 1706231 1707072 1707077) (-1043 "REAL.spad" 1706094 1706103 1706212 1706217) (-1042 "REAL0Q.spad" 1703392 1703407 1706084 1706089) (-1041 "REAL0.spad" 1700236 1700251 1703382 1703387) (-1040 "RDUCEAST.spad" 1699957 1699966 1700226 1700231) (-1039 "RDIV.spad" 1699612 1699637 1699947 1699952) (-1038 "RDIST.spad" 1699179 1699190 1699602 1699607) (-1037 "RDETRS.spad" 1698043 1698061 1699169 1699174) (-1036 "RDETR.spad" 1696182 1696200 1698033 1698038) (-1035 "RDEEFS.spad" 1695281 1695298 1696172 1696177) (-1034 "RDEEF.spad" 1694291 1694308 1695271 1695276) (-1033 "RCFIELD.spad" 1691477 1691486 1694193 1694286) (-1032 "RCFIELD.spad" 1688749 1688760 1691467 1691472) (-1031 "RCAGG.spad" 1686677 1686688 1688739 1688744) (-1030 "RCAGG.spad" 1684532 1684545 1686596 1686601) (-1029 "RATRET.spad" 1683892 1683903 1684522 1684527) (-1028 "RATFACT.spad" 1683584 1683596 1683882 1683887) (-1027 "RANDSRC.spad" 1682903 1682912 1683574 1683579) (-1026 "RADUTIL.spad" 1682659 1682668 1682893 1682898) (-1025 "RADIX.spad" 1679483 1679497 1681029 1681122) (-1024 "RADFF.spad" 1677222 1677259 1677341 1677497) (-1023 "RADCAT.spad" 1676817 1676826 1677212 1677217) (-1022 "RADCAT.spad" 1676410 1676421 1676807 1676812) (-1021 "QUEUE.spad" 1675641 1675652 1675900 1675927) (-1020 "QUAT.spad" 1674129 1674140 1674472 1674537) (-1019 "QUATCT2.spad" 1673749 1673768 1674119 1674124) (-1018 "QUATCAT.spad" 1671919 1671930 1673679 1673744) (-1017 "QUATCAT.spad" 1669840 1669853 1671602 1671607) (-1016 "QUAGG.spad" 1668667 1668678 1669808 1669835) (-1015 "QQUTAST.spad" 1668435 1668444 1668657 1668662) (-1014 "QFORM.spad" 1668053 1668068 1668425 1668430) (-1013 "QFCAT.spad" 1666755 1666766 1667955 1668048) (-1012 "QFCAT.spad" 1665048 1665061 1666250 1666255) (-1011 "QFCAT2.spad" 1664740 1664757 1665038 1665043) (-1010 "QEQUAT.spad" 1664298 1664307 1664730 1664735) (-1009 "QCMPACK.spad" 1659044 1659064 1664288 1664293) (-1008 "QALGSET.spad" 1655122 1655155 1658958 1658963) (-1007 "QALGSET2.spad" 1653117 1653136 1655112 1655117) (-1006 "PWFFINTB.spad" 1650532 1650554 1653107 1653112) (-1005 "PUSHVAR.spad" 1649870 1649890 1650522 1650527) (-1004 "PTRANFN.spad" 1645997 1646008 1649860 1649865) (-1003 "PTPACK.spad" 1643084 1643095 1645987 1645992) (-1002 "PTFUNC2.spad" 1642906 1642921 1643074 1643079) (-1001 "PTCAT.spad" 1642160 1642171 1642874 1642901) (-1000 "PSQFR.spad" 1641466 1641491 1642150 1642155) (-999 "PSEUDLIN.spad" 1640352 1640362 1641456 1641461) (-998 "PSETPK.spad" 1625785 1625801 1640230 1640235) (-997 "PSETCAT.spad" 1619705 1619728 1625765 1625780) (-996 "PSETCAT.spad" 1613599 1613624 1619661 1619666) (-995 "PSCURVE.spad" 1612582 1612590 1613589 1613594) (-994 "PSCAT.spad" 1611365 1611394 1612480 1612577) (-993 "PSCAT.spad" 1610238 1610269 1611355 1611360) (-992 "PRTITION.spad" 1608936 1608944 1610228 1610233) (-991 "PRTDAST.spad" 1608655 1608663 1608926 1608931) (-990 "PRS.spad" 1598217 1598234 1608611 1608616) (-989 "PRQAGG.spad" 1597652 1597662 1598185 1598212) (-988 "PROPLOG.spad" 1597224 1597232 1597642 1597647) (-987 "PROPFUN2.spad" 1596847 1596860 1597214 1597219) (-986 "PROPFUN1.spad" 1596245 1596256 1596837 1596842) (-985 "PROPFRML.spad" 1594813 1594824 1596235 1596240) (-984 "PROPERTY.spad" 1594301 1594309 1594803 1594808) (-983 "PRODUCT.spad" 1591983 1591995 1592267 1592322) (-982 "PR.spad" 1590375 1590387 1591074 1591201) (-981 "PRINT.spad" 1590127 1590135 1590365 1590370) (-980 "PRIMES.spad" 1588380 1588390 1590117 1590122) (-979 "PRIMELT.spad" 1586461 1586475 1588370 1588375) (-978 "PRIMCAT.spad" 1586088 1586096 1586451 1586456) (-977 "PRIMARR.spad" 1584940 1584950 1585118 1585145) (-976 "PRIMARR2.spad" 1583707 1583719 1584930 1584935) (-975 "PREASSOC.spad" 1583089 1583101 1583697 1583702) (-974 "PPCURVE.spad" 1582226 1582234 1583079 1583084) (-973 "PORTNUM.spad" 1582001 1582009 1582216 1582221) (-972 "POLYROOT.spad" 1580850 1580872 1581957 1581962) (-971 "POLY.spad" 1578185 1578195 1578700 1578827) (-970 "POLYLIFT.spad" 1577450 1577473 1578175 1578180) (-969 "POLYCATQ.spad" 1575568 1575590 1577440 1577445) (-968 "POLYCAT.spad" 1569038 1569059 1575436 1575563) (-967 "POLYCAT.spad" 1561846 1561869 1568246 1568251) (-966 "POLY2UP.spad" 1561298 1561312 1561836 1561841) (-965 "POLY2.spad" 1560895 1560907 1561288 1561293) (-964 "POLUTIL.spad" 1559836 1559865 1560851 1560856) (-963 "POLTOPOL.spad" 1558584 1558599 1559826 1559831) (-962 "POINT.spad" 1557269 1557279 1557356 1557383) (-961 "PNTHEORY.spad" 1553971 1553979 1557259 1557264) (-960 "PMTOOLS.spad" 1552746 1552760 1553961 1553966) (-959 "PMSYM.spad" 1552295 1552305 1552736 1552741) (-958 "PMQFCAT.spad" 1551886 1551900 1552285 1552290) (-957 "PMPRED.spad" 1551365 1551379 1551876 1551881) (-956 "PMPREDFS.spad" 1550819 1550841 1551355 1551360) (-955 "PMPLCAT.spad" 1549899 1549917 1550751 1550756) (-954 "PMLSAGG.spad" 1549484 1549498 1549889 1549894) (-953 "PMKERNEL.spad" 1549063 1549075 1549474 1549479) (-952 "PMINS.spad" 1548643 1548653 1549053 1549058) (-951 "PMFS.spad" 1548220 1548238 1548633 1548638) (-950 "PMDOWN.spad" 1547510 1547524 1548210 1548215) (-949 "PMASS.spad" 1546520 1546528 1547500 1547505) (-948 "PMASSFS.spad" 1545487 1545503 1546510 1546515) (-947 "PLOTTOOL.spad" 1545267 1545275 1545477 1545482) (-946 "PLOT.spad" 1540190 1540198 1545257 1545262) (-945 "PLOT3D.spad" 1536654 1536662 1540180 1540185) (-944 "PLOT1.spad" 1535811 1535821 1536644 1536649) (-943 "PLEQN.spad" 1523101 1523128 1535801 1535806) (-942 "PINTERP.spad" 1522723 1522742 1523091 1523096) (-941 "PINTERPA.spad" 1522507 1522523 1522713 1522718) (-940 "PI.spad" 1522116 1522124 1522481 1522502) (-939 "PID.spad" 1521086 1521094 1522042 1522111) (-938 "PICOERCE.spad" 1520743 1520753 1521076 1521081) (-937 "PGROEB.spad" 1519344 1519358 1520733 1520738) (-936 "PGE.spad" 1510961 1510969 1519334 1519339) (-935 "PGCD.spad" 1509851 1509868 1510951 1510956) (-934 "PFRPAC.spad" 1509000 1509010 1509841 1509846) (-933 "PFR.spad" 1505663 1505673 1508902 1508995) (-932 "PFOTOOLS.spad" 1504921 1504937 1505653 1505658) (-931 "PFOQ.spad" 1504291 1504309 1504911 1504916) (-930 "PFO.spad" 1503710 1503737 1504281 1504286) (-929 "PF.spad" 1503284 1503296 1503515 1503608) (-928 "PFECAT.spad" 1500966 1500974 1503210 1503279) (-927 "PFECAT.spad" 1498676 1498686 1500922 1500927) (-926 "PFBRU.spad" 1496564 1496576 1498666 1498671) (-925 "PFBR.spad" 1494124 1494147 1496554 1496559) (-924 "PERM.spad" 1489931 1489941 1493954 1493969) (-923 "PERMGRP.spad" 1484701 1484711 1489921 1489926) (-922 "PERMCAT.spad" 1483362 1483372 1484681 1484696) (-921 "PERMAN.spad" 1481894 1481908 1483352 1483357) (-920 "PENDTREE.spad" 1481118 1481128 1481406 1481411) (-919 "PDSPC.spad" 1479931 1479941 1481108 1481113) (-918 "PDSPC.spad" 1478742 1478754 1479921 1479926) (-917 "PDRING.spad" 1478584 1478594 1478722 1478737) (-916 "PDMOD.spad" 1478400 1478412 1478552 1478579) (-915 "PDEPROB.spad" 1477415 1477423 1478390 1478395) (-914 "PDEPACK.spad" 1471455 1471463 1477405 1477410) (-913 "PDECOMP.spad" 1470925 1470942 1471445 1471450) (-912 "PDECAT.spad" 1469281 1469289 1470915 1470920) (-911 "PDDOM.spad" 1468719 1468732 1469271 1469276) (-910 "PDDOM.spad" 1468155 1468170 1468709 1468714) (-909 "PCOMP.spad" 1468008 1468021 1468145 1468150) (-908 "PBWLB.spad" 1466596 1466613 1467998 1468003) (-907 "PATTERN.spad" 1461135 1461145 1466586 1466591) (-906 "PATTERN2.spad" 1460873 1460885 1461125 1461130) (-905 "PATTERN1.spad" 1459209 1459225 1460863 1460868) (-904 "PATRES.spad" 1456784 1456796 1459199 1459204) (-903 "PATRES2.spad" 1456456 1456470 1456774 1456779) (-902 "PATMATCH.spad" 1454653 1454684 1456164 1456169) (-901 "PATMAB.spad" 1454082 1454092 1454643 1454648) (-900 "PATLRES.spad" 1453168 1453182 1454072 1454077) (-899 "PATAB.spad" 1452932 1452942 1453158 1453163) (-898 "PARTPERM.spad" 1450940 1450948 1452922 1452927) (-897 "PARSURF.spad" 1450374 1450402 1450930 1450935) (-896 "PARSU2.spad" 1450171 1450187 1450364 1450369) (-895 "script-parser.spad" 1449691 1449699 1450161 1450166) (-894 "PARSCURV.spad" 1449125 1449153 1449681 1449686) (-893 "PARSC2.spad" 1448916 1448932 1449115 1449120) (-892 "PARPCURV.spad" 1448378 1448406 1448906 1448911) (-891 "PARPC2.spad" 1448169 1448185 1448368 1448373) (-890 "PARAMAST.spad" 1447297 1447305 1448159 1448164) (-889 "PAN2EXPR.spad" 1446709 1446717 1447287 1447292) (-888 "PALETTE.spad" 1445679 1445687 1446699 1446704) (-887 "PAIR.spad" 1444666 1444679 1445267 1445272) (-886 "PADICRC.spad" 1441907 1441925 1443078 1443171) (-885 "PADICRAT.spad" 1439815 1439827 1440036 1440129) (-884 "PADIC.spad" 1439510 1439522 1439741 1439810) (-883 "PADICCT.spad" 1438059 1438071 1439436 1439505) (-882 "PADEPAC.spad" 1436748 1436767 1438049 1438054) (-881 "PADE.spad" 1435500 1435516 1436738 1436743) (-880 "OWP.spad" 1434740 1434770 1435358 1435425) (-879 "OVERSET.spad" 1434313 1434321 1434730 1434735) (-878 "OVAR.spad" 1434094 1434117 1434303 1434308) (-877 "OUT.spad" 1433180 1433188 1434084 1434089) (-876 "OUTFORM.spad" 1422572 1422580 1433170 1433175) (-875 "OUTBFILE.spad" 1421990 1421998 1422562 1422567) (-874 "OUTBCON.spad" 1420996 1421004 1421980 1421985) (-873 "OUTBCON.spad" 1420000 1420010 1420986 1420991) (-872 "OSI.spad" 1419475 1419483 1419990 1419995) (-871 "OSGROUP.spad" 1419393 1419401 1419465 1419470) (-870 "ORTHPOL.spad" 1417878 1417888 1419310 1419315) (-869 "OREUP.spad" 1417331 1417359 1417558 1417597) (-868 "ORESUP.spad" 1416632 1416656 1417011 1417050) (-867 "OREPCTO.spad" 1414489 1414501 1416552 1416557) (-866 "OREPCAT.spad" 1408636 1408646 1414445 1414484) (-865 "OREPCAT.spad" 1402673 1402685 1408484 1408489) (-864 "ORDTYPE.spad" 1401910 1401918 1402663 1402668) (-863 "ORDTYPE.spad" 1401145 1401155 1401900 1401905) (-862 "ORDSTRCT.spad" 1400972 1400987 1401135 1401140) (-861 "ORDSET.spad" 1400672 1400680 1400962 1400967) (-860 "ORDRING.spad" 1400062 1400070 1400652 1400667) (-859 "ORDRING.spad" 1399460 1399470 1400052 1400057) (-858 "ORDMON.spad" 1399315 1399323 1399450 1399455) (-857 "ORDFUNS.spad" 1398447 1398463 1399305 1399310) (-856 "ORDFIN.spad" 1398267 1398275 1398437 1398442) (-855 "ORDCOMP.spad" 1396732 1396742 1397814 1397843) (-854 "ORDCOMP2.spad" 1396025 1396037 1396722 1396727) (-853 "OPTPROB.spad" 1394663 1394671 1396015 1396020) (-852 "OPTPACK.spad" 1387072 1387080 1394653 1394658) (-851 "OPTCAT.spad" 1384751 1384759 1387062 1387067) (-850 "OPSIG.spad" 1384405 1384413 1384741 1384746) (-849 "OPQUERY.spad" 1383954 1383962 1384395 1384400) (-848 "OP.spad" 1383696 1383706 1383776 1383843) (-847 "OPERCAT.spad" 1383162 1383172 1383686 1383691) (-846 "OPERCAT.spad" 1382626 1382638 1383152 1383157) (-845 "ONECOMP.spad" 1381371 1381381 1382173 1382202) (-844 "ONECOMP2.spad" 1380795 1380807 1381361 1381366) (-843 "OMSERVER.spad" 1379801 1379809 1380785 1380790) (-842 "OMSAGG.spad" 1379589 1379599 1379757 1379796) (-841 "OMPKG.spad" 1378205 1378213 1379579 1379584) (-840 "OM.spad" 1377178 1377186 1378195 1378200) (-839 "OMLO.spad" 1376603 1376615 1377064 1377103) (-838 "OMEXPR.spad" 1376437 1376447 1376593 1376598) (-837 "OMERR.spad" 1375982 1375990 1376427 1376432) (-836 "OMERRK.spad" 1375016 1375024 1375972 1375977) (-835 "OMENC.spad" 1374360 1374368 1375006 1375011) (-834 "OMDEV.spad" 1368669 1368677 1374350 1374355) (-833 "OMCONN.spad" 1368078 1368086 1368659 1368664) (-832 "OINTDOM.spad" 1367841 1367849 1368004 1368073) (-831 "OFMONOID.spad" 1365964 1365974 1367797 1367802) (-830 "ODVAR.spad" 1365225 1365235 1365954 1365959) (-829 "ODR.spad" 1364869 1364895 1365037 1365186) (-828 "ODPOL.spad" 1362158 1362168 1362498 1362625) (-827 "ODP.spad" 1349972 1349992 1350345 1350444) (-826 "ODETOOLS.spad" 1348621 1348640 1349962 1349967) (-825 "ODESYS.spad" 1346315 1346332 1348611 1348616) (-824 "ODERTRIC.spad" 1342324 1342341 1346272 1346277) (-823 "ODERED.spad" 1341723 1341747 1342314 1342319) (-822 "ODERAT.spad" 1339338 1339355 1341713 1341718) (-821 "ODEPRRIC.spad" 1336375 1336397 1339328 1339333) (-820 "ODEPROB.spad" 1335632 1335640 1336365 1336370) (-819 "ODEPRIM.spad" 1332966 1332988 1335622 1335627) (-818 "ODEPAL.spad" 1332352 1332376 1332956 1332961) (-817 "ODEPACK.spad" 1319018 1319026 1332342 1332347) (-816 "ODEINT.spad" 1318453 1318469 1319008 1319013) (-815 "ODEIFTBL.spad" 1315848 1315856 1318443 1318448) (-814 "ODEEF.spad" 1311339 1311355 1315838 1315843) (-813 "ODECONST.spad" 1310876 1310894 1311329 1311334) (-812 "ODECAT.spad" 1309474 1309482 1310866 1310871) (-811 "OCT.spad" 1307610 1307620 1308324 1308363) (-810 "OCTCT2.spad" 1307256 1307277 1307600 1307605) (-809 "OC.spad" 1305052 1305062 1307212 1307251) (-808 "OC.spad" 1302573 1302585 1304735 1304740) (-807 "OCAMON.spad" 1302421 1302429 1302563 1302568) (-806 "OASGP.spad" 1302236 1302244 1302411 1302416) (-805 "OAMONS.spad" 1301758 1301766 1302226 1302231) (-804 "OAMON.spad" 1301619 1301627 1301748 1301753) (-803 "OAGROUP.spad" 1301481 1301489 1301609 1301614) (-802 "NUMTUBE.spad" 1301072 1301088 1301471 1301476) (-801 "NUMQUAD.spad" 1289048 1289056 1301062 1301067) (-800 "NUMODE.spad" 1280402 1280410 1289038 1289043) (-799 "NUMINT.spad" 1277968 1277976 1280392 1280397) (-798 "NUMFMT.spad" 1276808 1276816 1277958 1277963) (-797 "NUMERIC.spad" 1268922 1268932 1276613 1276618) (-796 "NTSCAT.spad" 1267430 1267446 1268890 1268917) (-795 "NTPOLFN.spad" 1266981 1266991 1267347 1267352) (-794 "NSUP.spad" 1259934 1259944 1264474 1264627) (-793 "NSUP2.spad" 1259326 1259338 1259924 1259929) (-792 "NSMP.spad" 1255556 1255575 1255864 1255991) (-791 "NREP.spad" 1253934 1253948 1255546 1255551) (-790 "NPCOEF.spad" 1253180 1253200 1253924 1253929) (-789 "NORMRETR.spad" 1252778 1252817 1253170 1253175) (-788 "NORMPK.spad" 1250680 1250699 1252768 1252773) (-787 "NORMMA.spad" 1250368 1250394 1250670 1250675) (-786 "NONE.spad" 1250109 1250117 1250358 1250363) (-785 "NONE1.spad" 1249785 1249795 1250099 1250104) (-784 "NODE1.spad" 1249272 1249288 1249775 1249780) (-783 "NNI.spad" 1248167 1248175 1249246 1249267) (-782 "NLINSOL.spad" 1246793 1246803 1248157 1248162) (-781 "NIPROB.spad" 1245334 1245342 1246783 1246788) (-780 "NFINTBAS.spad" 1242894 1242911 1245324 1245329) (-779 "NETCLT.spad" 1242868 1242879 1242884 1242889) (-778 "NCODIV.spad" 1241084 1241100 1242858 1242863) (-777 "NCNTFRAC.spad" 1240726 1240740 1241074 1241079) (-776 "NCEP.spad" 1238892 1238906 1240716 1240721) (-775 "NASRING.spad" 1238488 1238496 1238882 1238887) (-774 "NASRING.spad" 1238082 1238092 1238478 1238483) (-773 "NARNG.spad" 1237434 1237442 1238072 1238077) (-772 "NARNG.spad" 1236784 1236794 1237424 1237429) (-771 "NAGSP.spad" 1235861 1235869 1236774 1236779) (-770 "NAGS.spad" 1225522 1225530 1235851 1235856) (-769 "NAGF07.spad" 1223953 1223961 1225512 1225517) (-768 "NAGF04.spad" 1218355 1218363 1223943 1223948) (-767 "NAGF02.spad" 1212424 1212432 1218345 1218350) (-766 "NAGF01.spad" 1208185 1208193 1212414 1212419) (-765 "NAGE04.spad" 1201885 1201893 1208175 1208180) (-764 "NAGE02.spad" 1192545 1192553 1201875 1201880) (-763 "NAGE01.spad" 1188547 1188555 1192535 1192540) (-762 "NAGD03.spad" 1186551 1186559 1188537 1188542) (-761 "NAGD02.spad" 1179298 1179306 1186541 1186546) (-760 "NAGD01.spad" 1173591 1173599 1179288 1179293) (-759 "NAGC06.spad" 1169466 1169474 1173581 1173586) (-758 "NAGC05.spad" 1167967 1167975 1169456 1169461) (-757 "NAGC02.spad" 1167234 1167242 1167957 1167962) (-756 "NAALG.spad" 1166775 1166785 1167202 1167229) (-755 "NAALG.spad" 1166336 1166348 1166765 1166770) (-754 "MULTSQFR.spad" 1163294 1163311 1166326 1166331) (-753 "MULTFACT.spad" 1162677 1162694 1163284 1163289) (-752 "MTSCAT.spad" 1160771 1160792 1162575 1162672) (-751 "MTHING.spad" 1160430 1160440 1160761 1160766) (-750 "MSYSCMD.spad" 1159864 1159872 1160420 1160425) (-749 "MSET.spad" 1157786 1157796 1159534 1159573) (-748 "MSETAGG.spad" 1157631 1157641 1157754 1157781) (-747 "MRING.spad" 1154608 1154620 1157339 1157406) (-746 "MRF2.spad" 1154178 1154192 1154598 1154603) (-745 "MRATFAC.spad" 1153724 1153741 1154168 1154173) (-744 "MPRFF.spad" 1151764 1151783 1153714 1153719) (-743 "MPOLY.spad" 1149235 1149250 1149594 1149721) (-742 "MPCPF.spad" 1148499 1148518 1149225 1149230) (-741 "MPC3.spad" 1148316 1148356 1148489 1148494) (-740 "MPC2.spad" 1147962 1147995 1148306 1148311) (-739 "MONOTOOL.spad" 1146313 1146330 1147952 1147957) (-738 "MONOID.spad" 1145632 1145640 1146303 1146308) (-737 "MONOID.spad" 1144949 1144959 1145622 1145627) (-736 "MONOGEN.spad" 1143697 1143710 1144809 1144944) (-735 "MONOGEN.spad" 1142467 1142482 1143581 1143586) (-734 "MONADWU.spad" 1140497 1140505 1142457 1142462) (-733 "MONADWU.spad" 1138525 1138535 1140487 1140492) (-732 "MONAD.spad" 1137685 1137693 1138515 1138520) (-731 "MONAD.spad" 1136843 1136853 1137675 1137680) (-730 "MOEBIUS.spad" 1135579 1135593 1136823 1136838) (-729 "MODULE.spad" 1135449 1135459 1135547 1135574) (-728 "MODULE.spad" 1135339 1135351 1135439 1135444) (-727 "MODRING.spad" 1134674 1134713 1135319 1135334) (-726 "MODOP.spad" 1133339 1133351 1134496 1134563) (-725 "MODMONOM.spad" 1133070 1133088 1133329 1133334) (-724 "MODMON.spad" 1129772 1129788 1130491 1130644) (-723 "MODFIELD.spad" 1129134 1129173 1129674 1129767) (-722 "MMLFORM.spad" 1127994 1128002 1129124 1129129) (-721 "MMAP.spad" 1127736 1127770 1127984 1127989) (-720 "MLO.spad" 1126195 1126205 1127692 1127731) (-719 "MLIFT.spad" 1124807 1124824 1126185 1126190) (-718 "MKUCFUNC.spad" 1124342 1124360 1124797 1124802) (-717 "MKRECORD.spad" 1123946 1123959 1124332 1124337) (-716 "MKFUNC.spad" 1123353 1123363 1123936 1123941) (-715 "MKFLCFN.spad" 1122321 1122331 1123343 1123348) (-714 "MKBCFUNC.spad" 1121816 1121834 1122311 1122316) (-713 "MINT.spad" 1121255 1121263 1121718 1121811) (-712 "MHROWRED.spad" 1119766 1119776 1121245 1121250) (-711 "MFLOAT.spad" 1118286 1118294 1119656 1119761) (-710 "MFINFACT.spad" 1117686 1117708 1118276 1118281) (-709 "MESH.spad" 1115468 1115476 1117676 1117681) (-708 "MDDFACT.spad" 1113679 1113689 1115458 1115463) (-707 "MDAGG.spad" 1112970 1112980 1113659 1113674) (-706 "MCMPLX.spad" 1108401 1108409 1109015 1109216) (-705 "MCDEN.spad" 1107611 1107623 1108391 1108396) (-704 "MCALCFN.spad" 1104733 1104759 1107601 1107606) (-703 "MAYBE.spad" 1104017 1104028 1104723 1104728) (-702 "MATSTOR.spad" 1101325 1101335 1104007 1104012) (-701 "MATRIX.spad" 1099912 1099922 1100396 1100423) (-700 "MATLIN.spad" 1097256 1097280 1099796 1099801) (-699 "MATCAT.spad" 1088778 1088800 1097224 1097251) (-698 "MATCAT.spad" 1080172 1080196 1088620 1088625) (-697 "MATCAT2.spad" 1079454 1079502 1080162 1080167) (-696 "MAPPKG3.spad" 1078369 1078383 1079444 1079449) (-695 "MAPPKG2.spad" 1077707 1077719 1078359 1078364) (-694 "MAPPKG1.spad" 1076535 1076545 1077697 1077702) (-693 "MAPPAST.spad" 1075850 1075858 1076525 1076530) (-692 "MAPHACK3.spad" 1075662 1075676 1075840 1075845) (-691 "MAPHACK2.spad" 1075431 1075443 1075652 1075657) (-690 "MAPHACK1.spad" 1075075 1075085 1075421 1075426) (-689 "MAGMA.spad" 1072865 1072882 1075065 1075070) (-688 "MACROAST.spad" 1072444 1072452 1072855 1072860) (-687 "M3D.spad" 1070047 1070057 1071705 1071710) (-686 "LZSTAGG.spad" 1067285 1067295 1070037 1070042) (-685 "LZSTAGG.spad" 1064521 1064533 1067275 1067280) (-684 "LWORD.spad" 1061226 1061243 1064511 1064516) (-683 "LSTAST.spad" 1061010 1061018 1061216 1061221) (-682 "LSQM.spad" 1059167 1059181 1059561 1059612) (-681 "LSPP.spad" 1058702 1058719 1059157 1059162) (-680 "LSMP.spad" 1057552 1057580 1058692 1058697) (-679 "LSMP1.spad" 1055370 1055384 1057542 1057547) (-678 "LSAGG.spad" 1055039 1055049 1055338 1055365) (-677 "LSAGG.spad" 1054728 1054740 1055029 1055034) (-676 "LPOLY.spad" 1053682 1053701 1054584 1054653) (-675 "LPEFRAC.spad" 1052953 1052963 1053672 1053677) (-674 "LO.spad" 1052354 1052368 1052887 1052914) (-673 "LOGIC.spad" 1051956 1051964 1052344 1052349) (-672 "LOGIC.spad" 1051556 1051566 1051946 1051951) (-671 "LODOOPS.spad" 1050486 1050498 1051546 1051551) (-670 "LODO.spad" 1049870 1049886 1050166 1050205) (-669 "LODOF.spad" 1048916 1048933 1049827 1049832) (-668 "LODOCAT.spad" 1047582 1047592 1048872 1048911) (-667 "LODOCAT.spad" 1046246 1046258 1047538 1047543) (-666 "LODO2.spad" 1045519 1045531 1045926 1045965) (-665 "LODO1.spad" 1044919 1044929 1045199 1045238) (-664 "LODEEF.spad" 1043721 1043739 1044909 1044914) (-663 "LNAGG.spad" 1039868 1039878 1043711 1043716) (-662 "LNAGG.spad" 1035979 1035991 1039824 1039829) (-661 "LMOPS.spad" 1032747 1032764 1035969 1035974) (-660 "LMODULE.spad" 1032515 1032525 1032737 1032742) (-659 "LMDICT.spad" 1031685 1031695 1031949 1031976) (-658 "LLINSET.spad" 1031392 1031402 1031675 1031680) (-657 "LITERAL.spad" 1031298 1031309 1031382 1031387) (-656 "LIST.spad" 1028880 1028890 1030292 1030319) (-655 "LIST3.spad" 1028191 1028205 1028870 1028875) (-654 "LIST2.spad" 1026893 1026905 1028181 1028186) (-653 "LIST2MAP.spad" 1023796 1023808 1026883 1026888) (-652 "LINSET.spad" 1023575 1023585 1023786 1023791) (-651 "LINEXP.spad" 1022318 1022328 1023565 1023570) (-650 "LINDEP.spad" 1021127 1021139 1022230 1022235) (-649 "LIMITRF.spad" 1019055 1019065 1021117 1021122) (-648 "LIMITPS.spad" 1017958 1017971 1019045 1019050) (-647 "LIE.spad" 1015974 1015986 1017248 1017393) (-646 "LIECAT.spad" 1015450 1015460 1015900 1015969) (-645 "LIECAT.spad" 1014954 1014966 1015406 1015411) (-644 "LIB.spad" 1012705 1012713 1013151 1013166) (-643 "LGROBP.spad" 1010058 1010077 1012695 1012700) (-642 "LF.spad" 1009013 1009029 1010048 1010053) (-641 "LFCAT.spad" 1008072 1008080 1009003 1009008) (-640 "LEXTRIPK.spad" 1003575 1003590 1008062 1008067) (-639 "LEXP.spad" 1001578 1001605 1003555 1003570) (-638 "LETAST.spad" 1001277 1001285 1001568 1001573) (-637 "LEADCDET.spad" 999675 999692 1001267 1001272) (-636 "LAZM3PK.spad" 998379 998401 999665 999670) (-635 "LAUPOL.spad" 996979 996992 997879 997948) (-634 "LAPLACE.spad" 996562 996578 996969 996974) (-633 "LA.spad" 996002 996016 996484 996523) (-632 "LALG.spad" 995778 995788 995982 995997) (-631 "LALG.spad" 995562 995574 995768 995773) (-630 "KVTFROM.spad" 995297 995307 995552 995557) (-629 "KTVLOGIC.spad" 994809 994817 995287 995292) (-628 "KRCFROM.spad" 994547 994557 994799 994804) (-627 "KOVACIC.spad" 993270 993287 994537 994542) (-626 "KONVERT.spad" 992992 993002 993260 993265) (-625 "KOERCE.spad" 992729 992739 992982 992987) (-624 "KERNEL.spad" 991384 991394 992513 992518) (-623 "KERNEL2.spad" 991087 991099 991374 991379) (-622 "KDAGG.spad" 990196 990218 991067 991082) (-621 "KDAGG.spad" 989313 989337 990186 990191) (-620 "KAFILE.spad" 988167 988183 988402 988429) (-619 "JORDAN.spad" 985996 986008 987457 987602) (-618 "JOINAST.spad" 985690 985698 985986 985991) (-617 "JAVACODE.spad" 985556 985564 985680 985685) (-616 "IXAGG.spad" 983689 983713 985546 985551) (-615 "IXAGG.spad" 981677 981703 983536 983541) (-614 "IVECTOR.spad" 980294 980309 980449 980476) (-613 "ITUPLE.spad" 979455 979465 980284 980289) (-612 "ITRIGMNP.spad" 978294 978313 979445 979450) (-611 "ITFUN3.spad" 977800 977814 978284 978289) (-610 "ITFUN2.spad" 977544 977556 977790 977795) (-609 "ITFORM.spad" 976899 976907 977534 977539) (-608 "ITAYLOR.spad" 974893 974908 976763 976860) (-607 "ISUPS.spad" 967330 967345 973867 973964) (-606 "ISUMP.spad" 966831 966847 967320 967325) (-605 "ISTRING.spad" 965758 965771 965839 965866) (-604 "ISAST.spad" 965477 965485 965748 965753) (-603 "IRURPK.spad" 964194 964213 965467 965472) (-602 "IRSN.spad" 962166 962174 964184 964189) (-601 "IRRF2F.spad" 960651 960661 962122 962127) (-600 "IRREDFFX.spad" 960252 960263 960641 960646) (-599 "IROOT.spad" 958591 958601 960242 960247) (-598 "IR.spad" 956392 956406 958446 958473) (-597 "IRFORM.spad" 955716 955724 956382 956387) (-596 "IR2.spad" 954744 954760 955706 955711) (-595 "IR2F.spad" 953950 953966 954734 954739) (-594 "IPRNTPK.spad" 953710 953718 953940 953945) (-593 "IPF.spad" 953275 953287 953515 953608) (-592 "IPADIC.spad" 953036 953062 953201 953270) (-591 "IP4ADDR.spad" 952593 952601 953026 953031) (-590 "IOMODE.spad" 952115 952123 952583 952588) (-589 "IOBFILE.spad" 951476 951484 952105 952110) (-588 "IOBCON.spad" 951341 951349 951466 951471) (-587 "INVLAPLA.spad" 950990 951006 951331 951336) (-586 "INTTR.spad" 944372 944389 950980 950985) (-585 "INTTOOLS.spad" 942127 942143 943946 943951) (-584 "INTSLPE.spad" 941447 941455 942117 942122) (-583 "INTRVL.spad" 941013 941023 941361 941442) (-582 "INTRF.spad" 939437 939451 941003 941008) (-581 "INTRET.spad" 938869 938879 939427 939432) (-580 "INTRAT.spad" 937596 937613 938859 938864) (-579 "INTPM.spad" 935981 935997 937239 937244) (-578 "INTPAF.spad" 933845 933863 935913 935918) (-577 "INTPACK.spad" 924219 924227 933835 933840) (-576 "INT.spad" 923667 923675 924073 924214) (-575 "INTHERTR.spad" 922941 922958 923657 923662) (-574 "INTHERAL.spad" 922611 922635 922931 922936) (-573 "INTHEORY.spad" 919050 919058 922601 922606) (-572 "INTG0.spad" 912783 912801 918982 918987) (-571 "INTFTBL.spad" 906812 906820 912773 912778) (-570 "INTFACT.spad" 905871 905881 906802 906807) (-569 "INTEF.spad" 904256 904272 905861 905866) (-568 "INTDOM.spad" 902879 902887 904182 904251) (-567 "INTDOM.spad" 901564 901574 902869 902874) (-566 "INTCAT.spad" 899823 899833 901478 901559) (-565 "INTBIT.spad" 899330 899338 899813 899818) (-564 "INTALG.spad" 898518 898545 899320 899325) (-563 "INTAF.spad" 898018 898034 898508 898513) (-562 "INTABL.spad" 896094 896125 896257 896284) (-561 "INT8.spad" 895974 895982 896084 896089) (-560 "INT64.spad" 895853 895861 895964 895969) (-559 "INT32.spad" 895732 895740 895843 895848) (-558 "INT16.spad" 895611 895619 895722 895727) (-557 "INS.spad" 893114 893122 895513 895606) (-556 "INS.spad" 890703 890713 893104 893109) (-555 "INPSIGN.spad" 890151 890164 890693 890698) (-554 "INPRODPF.spad" 889247 889266 890141 890146) (-553 "INPRODFF.spad" 888335 888359 889237 889242) (-552 "INNMFACT.spad" 887310 887327 888325 888330) (-551 "INMODGCD.spad" 886798 886828 887300 887305) (-550 "INFSP.spad" 885095 885117 886788 886793) (-549 "INFPROD0.spad" 884175 884194 885085 885090) (-548 "INFORM.spad" 881374 881382 884165 884170) (-547 "INFORM1.spad" 880999 881009 881364 881369) (-546 "INFINITY.spad" 880551 880559 880989 880994) (-545 "INETCLTS.spad" 880528 880536 880541 880546) (-544 "INEP.spad" 879066 879088 880518 880523) (-543 "INDE.spad" 878795 878812 879056 879061) (-542 "INCRMAPS.spad" 878216 878226 878785 878790) (-541 "INBFILE.spad" 877288 877296 878206 878211) (-540 "INBFF.spad" 873082 873093 877278 877283) (-539 "INBCON.spad" 871372 871380 873072 873077) (-538 "INBCON.spad" 869660 869670 871362 871367) (-537 "INAST.spad" 869321 869329 869650 869655) (-536 "IMPTAST.spad" 869029 869037 869311 869316) (-535 "IMATRIX.spad" 867857 867883 868369 868396) (-534 "IMATQF.spad" 866951 866995 867813 867818) (-533 "IMATLIN.spad" 865556 865580 866907 866912) (-532 "ILIST.spad" 864061 864076 864586 864613) (-531 "IIARRAY2.spad" 863332 863370 863551 863578) (-530 "IFF.spad" 862742 862758 863013 863106) (-529 "IFAST.spad" 862356 862364 862732 862737) (-528 "IFARRAY.spad" 859696 859711 861386 861413) (-527 "IFAMON.spad" 859558 859575 859652 859657) (-526 "IEVALAB.spad" 858963 858975 859548 859553) (-525 "IEVALAB.spad" 858366 858380 858953 858958) (-524 "IDPO.spad" 858179 858191 858356 858361) (-523 "IDPOAMS.spad" 857935 857947 858169 858174) (-522 "IDPOAM.spad" 857655 857667 857925 857930) (-521 "IDPC.spad" 856384 856396 857645 857650) (-520 "IDPAM.spad" 856129 856141 856374 856379) (-519 "IDPAG.spad" 855702 855714 856119 856124) (-518 "IDENT.spad" 855352 855360 855692 855697) (-517 "IDECOMP.spad" 852591 852609 855342 855347) (-516 "IDEAL.spad" 847540 847579 852526 852531) (-515 "ICDEN.spad" 846729 846745 847530 847535) (-514 "ICARD.spad" 845920 845928 846719 846724) (-513 "IBPTOOLS.spad" 844527 844544 845910 845915) (-512 "IBITS.spad" 843692 843705 844125 844152) (-511 "IBATOOL.spad" 840669 840688 843682 843687) (-510 "IBACHIN.spad" 839176 839191 840659 840664) (-509 "IARRAY2.spad" 838047 838073 838666 838693) (-508 "IARRAY1.spad" 836939 836954 837077 837104) (-507 "IAN.spad" 835162 835170 836755 836848) (-506 "IALGFACT.spad" 834765 834798 835152 835157) (-505 "HYPCAT.spad" 834189 834197 834755 834760) (-504 "HYPCAT.spad" 833611 833621 834179 834184) (-503 "HOSTNAME.spad" 833419 833427 833601 833606) (-502 "HOMOTOP.spad" 833162 833172 833409 833414) (-501 "HOAGG.spad" 830444 830454 833152 833157) (-500 "HOAGG.spad" 827465 827477 830175 830180) (-499 "HEXADEC.spad" 825470 825478 825835 825928) (-498 "HEUGCD.spad" 824505 824516 825460 825465) (-497 "HELLFDIV.spad" 824095 824119 824495 824500) (-496 "HEAP.spad" 823370 823380 823585 823612) (-495 "HEADAST.spad" 822903 822911 823360 823365) (-494 "HDP.spad" 810713 810729 811090 811189) (-493 "HDMP.spad" 807927 807942 808543 808670) (-492 "HB.spad" 806178 806186 807917 807922) (-491 "HASHTBL.spad" 804206 804237 804417 804444) (-490 "HASAST.spad" 803922 803930 804196 804201) (-489 "HACKPI.spad" 803413 803421 803824 803917) (-488 "GTSET.spad" 802316 802332 803023 803050) (-487 "GSTBL.spad" 800393 800428 800567 800582) (-486 "GSERIES.spad" 797706 797733 798525 798674) (-485 "GROUP.spad" 796979 796987 797686 797701) (-484 "GROUP.spad" 796260 796270 796969 796974) (-483 "GROEBSOL.spad" 794754 794775 796250 796255) (-482 "GRMOD.spad" 793325 793337 794744 794749) (-481 "GRMOD.spad" 791894 791908 793315 793320) (-480 "GRIMAGE.spad" 784783 784791 791884 791889) (-479 "GRDEF.spad" 783162 783170 784773 784778) (-478 "GRAY.spad" 781625 781633 783152 783157) (-477 "GRALG.spad" 780702 780714 781615 781620) (-476 "GRALG.spad" 779777 779791 780692 780697) (-475 "GPOLSET.spad" 779195 779218 779423 779450) (-474 "GOSPER.spad" 778464 778482 779185 779190) (-473 "GMODPOL.spad" 777612 777639 778432 778459) (-472 "GHENSEL.spad" 776695 776709 777602 777607) (-471 "GENUPS.spad" 772988 773001 776685 776690) (-470 "GENUFACT.spad" 772565 772575 772978 772983) (-469 "GENPGCD.spad" 772151 772168 772555 772560) (-468 "GENMFACT.spad" 771603 771622 772141 772146) (-467 "GENEEZ.spad" 769554 769567 771593 771598) (-466 "GDMP.spad" 766610 766627 767384 767511) (-465 "GCNAALG.spad" 760533 760560 766404 766471) (-464 "GCDDOM.spad" 759709 759717 760459 760528) (-463 "GCDDOM.spad" 758947 758957 759699 759704) (-462 "GB.spad" 756473 756511 758903 758908) (-461 "GBINTERN.spad" 752493 752531 756463 756468) (-460 "GBF.spad" 748260 748298 752483 752488) (-459 "GBEUCLID.spad" 746142 746180 748250 748255) (-458 "GAUSSFAC.spad" 745455 745463 746132 746137) (-457 "GALUTIL.spad" 743781 743791 745411 745416) (-456 "GALPOLYU.spad" 742235 742248 743771 743776) (-455 "GALFACTU.spad" 740408 740427 742225 742230) (-454 "GALFACT.spad" 730597 730608 740398 740403) (-453 "FVFUN.spad" 727620 727628 730587 730592) (-452 "FVC.spad" 726672 726680 727610 727615) (-451 "FUNDESC.spad" 726350 726358 726662 726667) (-450 "FUNCTION.spad" 726199 726211 726340 726345) (-449 "FT.spad" 724496 724504 726189 726194) (-448 "FTEM.spad" 723661 723669 724486 724491) (-447 "FSUPFACT.spad" 722561 722580 723597 723602) (-446 "FST.spad" 720647 720655 722551 722556) (-445 "FSRED.spad" 720127 720143 720637 720642) (-444 "FSPRMELT.spad" 719009 719025 720084 720089) (-443 "FSPECF.spad" 717100 717116 718999 719004) (-442 "FS.spad" 711368 711378 716875 717095) (-441 "FS.spad" 705414 705426 710923 710928) (-440 "FSINT.spad" 705074 705090 705404 705409) (-439 "FSERIES.spad" 704265 704277 704894 704993) (-438 "FSCINT.spad" 703582 703598 704255 704260) (-437 "FSAGG.spad" 702699 702709 703538 703577) (-436 "FSAGG.spad" 701778 701790 702619 702624) (-435 "FSAGG2.spad" 700521 700537 701768 701773) (-434 "FS2UPS.spad" 695012 695046 700511 700516) (-433 "FS2.spad" 694659 694675 695002 695007) (-432 "FS2EXPXP.spad" 693784 693807 694649 694654) (-431 "FRUTIL.spad" 692738 692748 693774 693779) (-430 "FR.spad" 686361 686371 691669 691738) (-429 "FRNAALG.spad" 681630 681640 686303 686356) (-428 "FRNAALG.spad" 676911 676923 681586 681591) (-427 "FRNAAF2.spad" 676367 676385 676901 676906) (-426 "FRMOD.spad" 675777 675807 676298 676303) (-425 "FRIDEAL.spad" 675002 675023 675757 675772) (-424 "FRIDEAL2.spad" 674606 674638 674992 674997) (-423 "FRETRCT.spad" 674117 674127 674596 674601) (-422 "FRETRCT.spad" 673494 673506 673975 673980) (-421 "FRAMALG.spad" 671842 671855 673450 673489) (-420 "FRAMALG.spad" 670222 670237 671832 671837) (-419 "FRAC.spad" 667228 667238 667631 667804) (-418 "FRAC2.spad" 666833 666845 667218 667223) (-417 "FR2.spad" 666169 666181 666823 666828) (-416 "FPS.spad" 662984 662992 666059 666164) (-415 "FPS.spad" 659827 659837 662904 662909) (-414 "FPC.spad" 658873 658881 659729 659822) (-413 "FPC.spad" 658005 658015 658863 658868) (-412 "FPATMAB.spad" 657767 657777 657995 658000) (-411 "FPARFRAC.spad" 656617 656634 657757 657762) (-410 "FORTRAN.spad" 655123 655166 656607 656612) (-409 "FORT.spad" 654072 654080 655113 655118) (-408 "FORTFN.spad" 651242 651250 654062 654067) (-407 "FORTCAT.spad" 650926 650934 651232 651237) (-406 "FORMULA.spad" 648400 648408 650916 650921) (-405 "FORMULA1.spad" 647879 647889 648390 648395) (-404 "FORDER.spad" 647570 647594 647869 647874) (-403 "FOP.spad" 646771 646779 647560 647565) (-402 "FNLA.spad" 646195 646217 646739 646766) (-401 "FNCAT.spad" 644790 644798 646185 646190) (-400 "FNAME.spad" 644682 644690 644780 644785) (-399 "FMTC.spad" 644480 644488 644608 644677) (-398 "FMONOID.spad" 644145 644155 644436 644441) (-397 "FMONCAT.spad" 641298 641308 644135 644140) (-396 "FM.spad" 640993 641005 641232 641259) (-395 "FMFUN.spad" 638023 638031 640983 640988) (-394 "FMC.spad" 637075 637083 638013 638018) (-393 "FMCAT.spad" 634743 634761 637043 637070) (-392 "FM1.spad" 634100 634112 634677 634704) (-391 "FLOATRP.spad" 631835 631849 634090 634095) (-390 "FLOAT.spad" 625149 625157 631701 631830) (-389 "FLOATCP.spad" 622580 622594 625139 625144) (-388 "FLINEXP.spad" 622302 622312 622570 622575) (-387 "FLINEXP.spad" 621968 621980 622238 622243) (-386 "FLASORT.spad" 621294 621306 621958 621963) (-385 "FLALG.spad" 618940 618959 621220 621289) (-384 "FLAGG.spad" 615982 615992 618920 618935) (-383 "FLAGG.spad" 612925 612937 615865 615870) (-382 "FLAGG2.spad" 611650 611666 612915 612920) (-381 "FINRALG.spad" 609711 609724 611606 611645) (-380 "FINRALG.spad" 607698 607713 609595 609600) (-379 "FINITE.spad" 606850 606858 607688 607693) (-378 "FINAALG.spad" 595971 595981 606792 606845) (-377 "FINAALG.spad" 585104 585116 595927 595932) (-376 "FILE.spad" 584687 584697 585094 585099) (-375 "FILECAT.spad" 583213 583230 584677 584682) (-374 "FIELD.spad" 582619 582627 583115 583208) (-373 "FIELD.spad" 582111 582121 582609 582614) (-372 "FGROUP.spad" 580758 580768 582091 582106) (-371 "FGLMICPK.spad" 579545 579560 580748 580753) (-370 "FFX.spad" 578920 578935 579261 579354) (-369 "FFSLPE.spad" 578423 578444 578910 578915) (-368 "FFPOLY.spad" 569685 569696 578413 578418) (-367 "FFPOLY2.spad" 568745 568762 569675 569680) (-366 "FFP.spad" 568142 568162 568461 568554) (-365 "FF.spad" 567590 567606 567823 567916) (-364 "FFNBX.spad" 566102 566122 567306 567399) (-363 "FFNBP.spad" 564615 564632 565818 565911) (-362 "FFNB.spad" 563080 563101 564296 564389) (-361 "FFINTBAS.spad" 560594 560613 563070 563075) (-360 "FFIELDC.spad" 558171 558179 560496 560589) (-359 "FFIELDC.spad" 555834 555844 558161 558166) (-358 "FFHOM.spad" 554582 554599 555824 555829) (-357 "FFF.spad" 552017 552028 554572 554577) (-356 "FFCGX.spad" 550864 550884 551733 551826) (-355 "FFCGP.spad" 549753 549773 550580 550673) (-354 "FFCG.spad" 548545 548566 549434 549527) (-353 "FFCAT.spad" 541718 541740 548384 548540) (-352 "FFCAT.spad" 534970 534994 541638 541643) (-351 "FFCAT2.spad" 534717 534757 534960 534965) (-350 "FEXPR.spad" 526434 526480 534473 534512) (-349 "FEVALAB.spad" 526142 526152 526424 526429) (-348 "FEVALAB.spad" 525635 525647 525919 525924) (-347 "FDIV.spad" 525077 525101 525625 525630) (-346 "FDIVCAT.spad" 523141 523165 525067 525072) (-345 "FDIVCAT.spad" 521203 521229 523131 523136) (-344 "FDIV2.spad" 520859 520899 521193 521198) (-343 "FCTRDATA.spad" 519867 519875 520849 520854) (-342 "FCPAK1.spad" 518434 518442 519857 519862) (-341 "FCOMP.spad" 517813 517823 518424 518429) (-340 "FC.spad" 507820 507828 517803 517808) (-339 "FAXF.spad" 500791 500805 507722 507815) (-338 "FAXF.spad" 493814 493830 500747 500752) (-337 "FARRAY.spad" 491811 491821 492844 492871) (-336 "FAMR.spad" 489947 489959 491709 491806) (-335 "FAMR.spad" 488067 488081 489831 489836) (-334 "FAMONOID.spad" 487735 487745 488021 488026) (-333 "FAMONC.spad" 486031 486043 487725 487730) (-332 "FAGROUP.spad" 485655 485665 485927 485954) (-331 "FACUTIL.spad" 483859 483876 485645 485650) (-330 "FACTFUNC.spad" 483053 483063 483849 483854) (-329 "EXPUPXS.spad" 479886 479909 481185 481334) (-328 "EXPRTUBE.spad" 477174 477182 479876 479881) (-327 "EXPRODE.spad" 474334 474350 477164 477169) (-326 "EXPR.spad" 469509 469519 470223 470518) (-325 "EXPR2UPS.spad" 465631 465644 469499 469504) (-324 "EXPR2.spad" 465336 465348 465621 465626) (-323 "EXPEXPAN.spad" 462137 462162 462769 462862) (-322 "EXIT.spad" 461808 461816 462127 462132) (-321 "EXITAST.spad" 461544 461552 461798 461803) (-320 "EVALCYC.spad" 461004 461018 461534 461539) (-319 "EVALAB.spad" 460576 460586 460994 460999) (-318 "EVALAB.spad" 460146 460158 460566 460571) (-317 "EUCDOM.spad" 457720 457728 460072 460141) (-316 "EUCDOM.spad" 455356 455366 457710 457715) (-315 "ESTOOLS.spad" 447202 447210 455346 455351) (-314 "ESTOOLS2.spad" 446805 446819 447192 447197) (-313 "ESTOOLS1.spad" 446490 446501 446795 446800) (-312 "ES.spad" 439305 439313 446480 446485) (-311 "ES.spad" 432026 432036 439203 439208) (-310 "ESCONT.spad" 428819 428827 432016 432021) (-309 "ESCONT1.spad" 428568 428580 428809 428814) (-308 "ES2.spad" 428073 428089 428558 428563) (-307 "ES1.spad" 427643 427659 428063 428068) (-306 "ERROR.spad" 424970 424978 427633 427638) (-305 "EQTBL.spad" 423000 423022 423209 423236) (-304 "EQ.spad" 417805 417815 420592 420704) (-303 "EQ2.spad" 417523 417535 417795 417800) (-302 "EP.spad" 413849 413859 417513 417518) (-301 "ENV.spad" 412527 412535 413839 413844) (-300 "ENTIRER.spad" 412195 412203 412471 412522) (-299 "EMR.spad" 411483 411524 412121 412190) (-298 "ELTAGG.spad" 409737 409756 411473 411478) (-297 "ELTAGG.spad" 407955 407976 409693 409698) (-296 "ELTAB.spad" 407430 407443 407945 407950) (-295 "ELFUTS.spad" 406817 406836 407420 407425) (-294 "ELEMFUN.spad" 406506 406514 406807 406812) (-293 "ELEMFUN.spad" 406193 406203 406496 406501) (-292 "ELAGG.spad" 404164 404174 406173 406188) (-291 "ELAGG.spad" 402072 402084 404083 404088) (-290 "ELABOR.spad" 401418 401426 402062 402067) (-289 "ELABEXPR.spad" 400350 400358 401408 401413) (-288 "EFUPXS.spad" 397126 397156 400306 400311) (-287 "EFULS.spad" 393962 393985 397082 397087) (-286 "EFSTRUC.spad" 391977 391993 393952 393957) (-285 "EF.spad" 386753 386769 391967 391972) (-284 "EAB.spad" 385029 385037 386743 386748) (-283 "E04UCFA.spad" 384565 384573 385019 385024) (-282 "E04NAFA.spad" 384142 384150 384555 384560) (-281 "E04MBFA.spad" 383722 383730 384132 384137) (-280 "E04JAFA.spad" 383258 383266 383712 383717) (-279 "E04GCFA.spad" 382794 382802 383248 383253) (-278 "E04FDFA.spad" 382330 382338 382784 382789) (-277 "E04DGFA.spad" 381866 381874 382320 382325) (-276 "E04AGNT.spad" 377716 377724 381856 381861) (-275 "DVARCAT.spad" 374606 374616 377706 377711) (-274 "DVARCAT.spad" 371494 371506 374596 374601) (-273 "DSMP.spad" 368868 368882 369173 369300) (-272 "DSEXT.spad" 368170 368180 368858 368863) (-271 "DSEXT.spad" 367379 367391 368069 368074) (-270 "DROPT.spad" 361338 361346 367369 367374) (-269 "DROPT1.spad" 361003 361013 361328 361333) (-268 "DROPT0.spad" 355860 355868 360993 360998) (-267 "DRAWPT.spad" 354033 354041 355850 355855) (-266 "DRAW.spad" 346909 346922 354023 354028) (-265 "DRAWHACK.spad" 346217 346227 346899 346904) (-264 "DRAWCX.spad" 343687 343695 346207 346212) (-263 "DRAWCURV.spad" 343234 343249 343677 343682) (-262 "DRAWCFUN.spad" 332766 332774 343224 343229) (-261 "DQAGG.spad" 330944 330954 332734 332761) (-260 "DPOLCAT.spad" 326293 326309 330812 330939) (-259 "DPOLCAT.spad" 321728 321746 326249 326254) (-258 "DPMO.spad" 313488 313504 313626 313839) (-257 "DPMM.spad" 305261 305279 305386 305599) (-256 "DOMTMPLT.spad" 305032 305040 305251 305256) (-255 "DOMCTOR.spad" 304787 304795 305022 305027) (-254 "DOMAIN.spad" 303874 303882 304777 304782) (-253 "DMP.spad" 301134 301149 301704 301831) (-252 "DMEXT.spad" 301001 301011 301102 301129) (-251 "DLP.spad" 300353 300363 300991 300996) (-250 "DLIST.spad" 298779 298789 299383 299410) (-249 "DLAGG.spad" 297196 297206 298769 298774) (-248 "DIVRING.spad" 296738 296746 297140 297191) (-247 "DIVRING.spad" 296324 296334 296728 296733) (-246 "DISPLAY.spad" 294514 294522 296314 296319) (-245 "DIRPROD.spad" 282061 282077 282701 282800) (-244 "DIRPROD2.spad" 280879 280897 282051 282056) (-243 "DIRPCAT.spad" 280072 280088 280775 280874) (-242 "DIRPCAT.spad" 278892 278910 279597 279602) (-241 "DIOSP.spad" 277717 277725 278882 278887) (-240 "DIOPS.spad" 276713 276723 277697 277712) (-239 "DIOPS.spad" 275683 275695 276669 276674) (-238 "DIFRING.spad" 275521 275529 275663 275678) (-237 "DIFFSPC.spad" 275100 275108 275511 275516) (-236 "DIFFSPC.spad" 274677 274687 275090 275095) (-235 "DIFFMOD.spad" 274166 274176 274645 274672) (-234 "DIFFDOM.spad" 273331 273342 274156 274161) (-233 "DIFFDOM.spad" 272494 272507 273321 273326) (-232 "DIFEXT.spad" 272313 272323 272474 272489) (-231 "DIAGG.spad" 271943 271953 272293 272308) (-230 "DIAGG.spad" 271581 271593 271933 271938) (-229 "DHMATRIX.spad" 269776 269786 270921 270948) (-228 "DFSFUN.spad" 263416 263424 269766 269771) (-227 "DFLOAT.spad" 260147 260155 263306 263411) (-226 "DFINTTLS.spad" 258378 258394 260137 260142) (-225 "DERHAM.spad" 256292 256324 258358 258373) (-224 "DEQUEUE.spad" 255499 255509 255782 255809) (-223 "DEGRED.spad" 255116 255130 255489 255494) (-222 "DEFINTRF.spad" 252653 252663 255106 255111) (-221 "DEFINTEF.spad" 251163 251179 252643 252648) (-220 "DEFAST.spad" 250531 250539 251153 251158) (-219 "DECIMAL.spad" 248540 248548 248901 248994) (-218 "DDFACT.spad" 246353 246370 248530 248535) (-217 "DBLRESP.spad" 245953 245977 246343 246348) (-216 "DBASE.spad" 244617 244627 245943 245948) (-215 "DATAARY.spad" 244079 244092 244607 244612) (-214 "D03FAFA.spad" 243907 243915 244069 244074) (-213 "D03EEFA.spad" 243727 243735 243897 243902) (-212 "D03AGNT.spad" 242813 242821 243717 243722) (-211 "D02EJFA.spad" 242275 242283 242803 242808) (-210 "D02CJFA.spad" 241753 241761 242265 242270) (-209 "D02BHFA.spad" 241243 241251 241743 241748) (-208 "D02BBFA.spad" 240733 240741 241233 241238) (-207 "D02AGNT.spad" 235547 235555 240723 240728) (-206 "D01WGTS.spad" 233866 233874 235537 235542) (-205 "D01TRNS.spad" 233843 233851 233856 233861) (-204 "D01GBFA.spad" 233365 233373 233833 233838) (-203 "D01FCFA.spad" 232887 232895 233355 233360) (-202 "D01ASFA.spad" 232355 232363 232877 232882) (-201 "D01AQFA.spad" 231801 231809 232345 232350) (-200 "D01APFA.spad" 231225 231233 231791 231796) (-199 "D01ANFA.spad" 230719 230727 231215 231220) (-198 "D01AMFA.spad" 230229 230237 230709 230714) (-197 "D01ALFA.spad" 229769 229777 230219 230224) (-196 "D01AKFA.spad" 229295 229303 229759 229764) (-195 "D01AJFA.spad" 228818 228826 229285 229290) (-194 "D01AGNT.spad" 224885 224893 228808 228813) (-193 "CYCLOTOM.spad" 224391 224399 224875 224880) (-192 "CYCLES.spad" 221183 221191 224381 224386) (-191 "CVMP.spad" 220600 220610 221173 221178) (-190 "CTRIGMNP.spad" 219100 219116 220590 220595) (-189 "CTOR.spad" 218791 218799 219090 219095) (-188 "CTORKIND.spad" 218394 218402 218781 218786) (-187 "CTORCAT.spad" 217643 217651 218384 218389) (-186 "CTORCAT.spad" 216890 216900 217633 217638) (-185 "CTORCALL.spad" 216479 216489 216880 216885) (-184 "CSTTOOLS.spad" 215724 215737 216469 216474) (-183 "CRFP.spad" 209448 209461 215714 215719) (-182 "CRCEAST.spad" 209168 209176 209438 209443) (-181 "CRAPACK.spad" 208219 208229 209158 209163) (-180 "CPMATCH.spad" 207723 207738 208144 208149) (-179 "CPIMA.spad" 207428 207447 207713 207718) (-178 "COORDSYS.spad" 202437 202447 207418 207423) (-177 "CONTOUR.spad" 201848 201856 202427 202432) (-176 "CONTFRAC.spad" 197598 197608 201750 201843) (-175 "CONDUIT.spad" 197356 197364 197588 197593) (-174 "COMRING.spad" 197030 197038 197294 197351) (-173 "COMPPROP.spad" 196548 196556 197020 197025) (-172 "COMPLPAT.spad" 196315 196330 196538 196543) (-171 "COMPLEX.spad" 191692 191702 191936 192197) (-170 "COMPLEX2.spad" 191407 191419 191682 191687) (-169 "COMPILER.spad" 190956 190964 191397 191402) (-168 "COMPFACT.spad" 190558 190572 190946 190951) (-167 "COMPCAT.spad" 188630 188640 190292 190553) (-166 "COMPCAT.spad" 186430 186442 188094 188099) (-165 "COMMUPC.spad" 186178 186196 186420 186425) (-164 "COMMONOP.spad" 185711 185719 186168 186173) (-163 "COMM.spad" 185522 185530 185701 185706) (-162 "COMMAAST.spad" 185285 185293 185512 185517) (-161 "COMBOPC.spad" 184200 184208 185275 185280) (-160 "COMBINAT.spad" 182967 182977 184190 184195) (-159 "COMBF.spad" 180349 180365 182957 182962) (-158 "COLOR.spad" 179186 179194 180339 180344) (-157 "COLONAST.spad" 178852 178860 179176 179181) (-156 "CMPLXRT.spad" 178563 178580 178842 178847) (-155 "CLLCTAST.spad" 178225 178233 178553 178558) (-154 "CLIP.spad" 174333 174341 178215 178220) (-153 "CLIF.spad" 172988 173004 174289 174328) (-152 "CLAGG.spad" 169493 169503 172978 172983) (-151 "CLAGG.spad" 165869 165881 169356 169361) (-150 "CINTSLPE.spad" 165200 165213 165859 165864) (-149 "CHVAR.spad" 163338 163360 165190 165195) (-148 "CHARZ.spad" 163253 163261 163318 163333) (-147 "CHARPOL.spad" 162763 162773 163243 163248) (-146 "CHARNZ.spad" 162516 162524 162743 162758) (-145 "CHAR.spad" 160390 160398 162506 162511) (-144 "CFCAT.spad" 159718 159726 160380 160385) (-143 "CDEN.spad" 158914 158928 159708 159713) (-142 "CCLASS.spad" 157025 157033 158287 158326) (-141 "CATEGORY.spad" 156067 156075 157015 157020) (-140 "CATCTOR.spad" 155958 155966 156057 156062) (-139 "CATAST.spad" 155576 155584 155948 155953) (-138 "CASEAST.spad" 155290 155298 155566 155571) (-137 "CARTEN.spad" 150657 150681 155280 155285) (-136 "CARTEN2.spad" 150047 150074 150647 150652) (-135 "CARD.spad" 147342 147350 150021 150042) (-134 "CAPSLAST.spad" 147116 147124 147332 147337) (-133 "CACHSET.spad" 146740 146748 147106 147111) (-132 "CABMON.spad" 146295 146303 146730 146735) (-131 "BYTEORD.spad" 145970 145978 146285 146290) (-130 "BYTE.spad" 145397 145405 145960 145965) (-129 "BYTEBUF.spad" 143095 143103 144405 144432) (-128 "BTREE.spad" 142051 142061 142585 142612) (-127 "BTOURN.spad" 140939 140949 141541 141568) (-126 "BTCAT.spad" 140331 140341 140907 140934) (-125 "BTCAT.spad" 139743 139755 140321 140326) (-124 "BTAGG.spad" 139209 139217 139711 139738) (-123 "BTAGG.spad" 138695 138705 139199 139204) (-122 "BSTREE.spad" 137319 137329 138185 138212) (-121 "BRILL.spad" 135516 135527 137309 137314) (-120 "BRAGG.spad" 134456 134466 135506 135511) (-119 "BRAGG.spad" 133360 133372 134412 134417) (-118 "BPADICRT.spad" 131234 131246 131489 131582) (-117 "BPADIC.spad" 130898 130910 131160 131229) (-116 "BOUNDZRO.spad" 130554 130571 130888 130893) (-115 "BOP.spad" 125736 125744 130544 130549) (-114 "BOP1.spad" 123202 123212 125726 125731) (-113 "BOOLE.spad" 122852 122860 123192 123197) (-112 "BOOLEAN.spad" 122290 122298 122842 122847) (-111 "BMODULE.spad" 122002 122014 122258 122285) (-110 "BITS.spad" 121385 121393 121600 121627) (-109 "BINDING.spad" 120798 120806 121375 121380) (-108 "BINARY.spad" 118812 118820 119168 119261) (-107 "BGAGG.spad" 118017 118027 118792 118807) (-106 "BGAGG.spad" 117230 117242 118007 118012) (-105 "BFUNCT.spad" 116794 116802 117210 117225) (-104 "BEZOUT.spad" 115934 115961 116744 116749) (-103 "BBTREE.spad" 112662 112672 115424 115451) (-102 "BASTYPE.spad" 112158 112166 112652 112657) (-101 "BASTYPE.spad" 111652 111662 112148 112153) (-100 "BALFACT.spad" 111111 111124 111642 111647) (-99 "AUTOMOR.spad" 110562 110571 111091 111106) (-98 "ATTREG.spad" 107285 107292 110314 110557) (-97 "ATTRBUT.spad" 103308 103315 107265 107280) (-96 "ATTRAST.spad" 103025 103032 103298 103303) (-95 "ATRIG.spad" 102495 102502 103015 103020) (-94 "ATRIG.spad" 101963 101972 102485 102490) (-93 "ASTCAT.spad" 101867 101874 101953 101958) (-92 "ASTCAT.spad" 101769 101778 101857 101862) (-91 "ASTACK.spad" 100991 101000 101259 101286) (-90 "ASSOCEQ.spad" 99817 99828 100947 100952) (-89 "ASP9.spad" 98898 98911 99807 99812) (-88 "ASP8.spad" 97941 97954 98888 98893) (-87 "ASP80.spad" 97263 97276 97931 97936) (-86 "ASP7.spad" 96423 96436 97253 97258) (-85 "ASP78.spad" 95874 95887 96413 96418) (-84 "ASP77.spad" 95243 95256 95864 95869) (-83 "ASP74.spad" 94335 94348 95233 95238) (-82 "ASP73.spad" 93606 93619 94325 94330) (-81 "ASP6.spad" 92473 92486 93596 93601) (-80 "ASP55.spad" 90982 90995 92463 92468) (-79 "ASP50.spad" 88799 88812 90972 90977) (-78 "ASP4.spad" 88094 88107 88789 88794) (-77 "ASP49.spad" 87093 87106 88084 88089) (-76 "ASP42.spad" 85500 85539 87083 87088) (-75 "ASP41.spad" 84079 84118 85490 85495) (-74 "ASP35.spad" 83067 83080 84069 84074) (-73 "ASP34.spad" 82368 82381 83057 83062) (-72 "ASP33.spad" 81928 81941 82358 82363) (-71 "ASP31.spad" 81068 81081 81918 81923) (-70 "ASP30.spad" 79960 79973 81058 81063) (-69 "ASP29.spad" 79426 79439 79950 79955) (-68 "ASP28.spad" 70699 70712 79416 79421) (-67 "ASP27.spad" 69596 69609 70689 70694) (-66 "ASP24.spad" 68683 68696 69586 69591) (-65 "ASP20.spad" 68147 68160 68673 68678) (-64 "ASP1.spad" 67528 67541 68137 68142) (-63 "ASP19.spad" 62214 62227 67518 67523) (-62 "ASP12.spad" 61628 61641 62204 62209) (-61 "ASP10.spad" 60899 60912 61618 61623) (-60 "ARRAY2.spad" 60142 60151 60389 60416) (-59 "ARRAY1.spad" 58826 58835 59172 59199) (-58 "ARRAY12.spad" 57539 57550 58816 58821) (-57 "ARR2CAT.spad" 53313 53334 57507 57534) (-56 "ARR2CAT.spad" 49107 49130 53303 53308) (-55 "ARITY.spad" 48479 48486 49097 49102) (-54 "APPRULE.spad" 47739 47761 48469 48474) (-53 "APPLYORE.spad" 47358 47371 47729 47734) (-52 "ANY.spad" 46217 46224 47348 47353) (-51 "ANY1.spad" 45288 45297 46207 46212) (-50 "ANTISYM.spad" 43733 43749 45268 45283) (-49 "ANON.spad" 43426 43433 43723 43728) (-48 "AN.spad" 41735 41742 43242 43335) (-47 "AMR.spad" 39920 39931 41633 41730) (-46 "AMR.spad" 37942 37955 39657 39662) (-45 "ALIST.spad" 34842 34863 35192 35219) (-44 "ALGSC.spad" 33977 34003 34714 34767) (-43 "ALGPKG.spad" 29760 29771 33933 33938) (-42 "ALGMFACT.spad" 28953 28967 29750 29755) (-41 "ALGMANIP.spad" 26427 26442 28786 28791) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index afc7c6a5..612c3944 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,15 +1,15 @@ -(204908 . 3486833889) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((#0=(-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) #0#) |has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))))) -((((-576)) . T) (($) -2760 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2760 (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-1059 (-419 (-576))))) ((|#1|) . T)) +(204908 . 3486841623) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((#0=(-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) #0#) |has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))))) +((((-576)) . T) (($) -2759 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2759 (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-1059 (-419 (-576))))) ((|#1|) . T)) (((|#2| |#2|) . T)) ((((-576)) . T)) -((($ $) -2760 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((|#2| |#2|) . T) ((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576))))) +((($ $) -2759 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((|#2| |#2|) . T) ((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576))))) ((($) . T)) (((|#1|) . T)) ((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#2|) . T)) -((($) -2760 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) +((($) -2759 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) (|has| |#1| (-928)) ((((-876)) . T)) ((((-876)) . T)) @@ -22,23 +22,23 @@ ((((-548)) . T) (((-1179)) . T) (((-227)) . T) (((-390)) . T) (((-907 (-390))) . T)) (((|#1|) . T)) ((((-227)) . T) (((-876)) . T)) -(-2760 (|has| |#2| (-805)) (|has| |#2| (-861))) -(-2760 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))) +(-2759 (|has| |#2| (-805)) (|has| |#2| (-861))) +(-2759 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))) (((|#1|) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(-2760 (|has| |#1| (-21)) (|has| |#1| (-860))) -((($ $) . T) ((#0=(-419 (-576)) #0#) -2760 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1| |#1|) . T)) -(-2760 (|has| |#1| (-832)) (|has| |#1| (-861))) +(-2759 (|has| |#1| (-21)) (|has| |#1| (-860))) +((($ $) . T) ((#0=(-419 (-576)) #0#) -2759 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1| |#1|) . T)) +(-2759 (|has| |#1| (-832)) (|has| |#1| (-861))) ((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) |has| |#1| (-1059 (-576))) ((|#1|) . T)) ((((-876)) . T)) ((((-876)) . T)) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-568))) (|has| |#1| (-860)) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) ((((-326 |#1|)) . T) (((-576)) . T) (($) . T)) (((|#1| |#2| |#3|) . T)) ((((-576)) . T) (((-884 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((($) . T) (((-419 (-576))) -2760 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((($) . T) (((-419 (-576))) -2759 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) ((((-419 (-576))) . T) (((-711)) . T) (($) . T)) ((((-876)) . T)) ((((-1202)) . T)) @@ -51,14 +51,14 @@ (((|#1|) . T) ((|#2|) . T)) ((((-1202)) . T)) (((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) -(-2760 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) -(-2760 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -(((|#2| (-494 (-3503 |#1|) (-783))) . T)) -((((-1197)) -2760 (|has| (-419 |#2|) (-917 (-1197))) (|has| (-419 |#2|) (-919 (-1197))))) +(-2759 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +(-2759 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(((|#2| (-494 (-3502 |#1|) (-783))) . T)) +((((-1197)) -2759 (|has| (-419 |#2|) (-917 (-1197))) (|has| (-419 |#2|) (-919 (-1197))))) (((|#1| (-543 (-1197))) . T)) ((((-1179)) . T) (((-977 (-130))) . T) (((-876)) . T)) ((((-876)) . T)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) (((#0=(-884 |#1|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) (|has| |#4| (-379)) (|has| |#3| (-379)) @@ -74,14 +74,14 @@ (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-568)) -((((-576)) . T) (((-419 (-576))) -2760 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576))))) ((|#2|) . T) (($) -2760 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) (((-878 |#1|)) . T)) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-568))) -((((-2 (|:| -3224 |#1|) (|:| -3422 |#2|))) . T)) +((((-576)) . T) (((-419 (-576))) -2759 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576))))) ((|#2|) . T) (($) -2759 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) (((-878 |#1|)) . T)) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-568))) +((((-2 (|:| -3223 |#1|) (|:| -2508 |#2|))) . T)) ((($) . T)) (((|#1|) . T)) -((((-576)) . T) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) ((|#1|) . T) (($) -2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (((-1197)) . T)) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) +((((-576)) . T) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) ((|#1|) . T) (($) -2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (((-1197)) . T)) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) ((((-548)) |has| |#1| (-626 (-548)))) ((((-1197)) . T)) (((|#1|) . T)) @@ -102,12 +102,12 @@ ((((-876)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2760 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2759 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) (|has| |#1| (-1121)) (((|#1|) . T)) ((((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2760 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) -((($) -2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2759 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((($) -2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) ((((-117 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) @@ -115,14 +115,14 @@ ((((-419 (-576))) . T) (($) . T) (((-576)) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T)) (((|#2|) . T) (((-576)) . T) ((|#6|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2760 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2759 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) ((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2760 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2760 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2759 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) +(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2759 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) ((($ $) . T)) ((($) . T)) ((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) @@ -131,30 +131,30 @@ (|has| |#1| (-379)) (((|#1|) . T)) ((((-876)) . T)) -((((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) +((((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) -(((|#1|) . T) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) +(((|#1|) . T) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) ((((-576)) . T)) ((((-876)) . T)) (((|#1| |#2|) . T)) -(-2760 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) -(-2760 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) -((($) -2760 (|has| |#1| (-238)) (|has| |#1| (-237)))) +(-2759 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) +(-2759 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) +((($) -2759 (|has| |#1| (-238)) (|has| |#1| (-237)))) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (|has| |#1| (-568)) (((|#1|) . T) (((-576)) . T) (($) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -(-2760 (|has| |#1| (-21)) (|has| |#1| (-860))) +(-2759 (|has| |#1| (-21)) (|has| |#1| (-860))) ((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -(-2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-2760 (|has| |#1| (-861)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-861)) (|has| |#1| (-1121))) (|has| |#1| (-1121)) -(-2760 (|has| |#1| (-861)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-861)) (|has| |#1| (-1121))) (|has| |#1| (-1121)) -(-2760 (|has| |#1| (-861)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-861)) (|has| |#1| (-1121))) (|has| |#1| (-860)) (((|#1| |#1|) . T)) ((($) . T) (((-419 (-576))) . T)) @@ -169,12 +169,12 @@ (|has| |#3| (-805)) (|has| |#3| (-805)) (((|#1| |#2|) . T)) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-360))) ((((-1202)) . T)) (((|#1| |#2|) . T)) (((|#2| |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) (((-1197) |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-526 (-1197) |#2|)))) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-1121))) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-1121))) ((((-576)) . T) (((-419 (-576))) . T)) (((|#1| (-1197) (-1109 (-1197)) (-543 (-1109 (-1197)))) . T)) ((((-576) |#1|) . T)) @@ -194,29 +194,29 @@ ((((-1179) |#1|) . T)) ((((-1255 (-576)) $) . T) (((-576) (-130)) . T)) (((|#1|) . T)) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) (((|#3| (-783)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) ((($) . T) (((-419 (-576))) . T)) ((($) . T)) ((($) . T)) -(-2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((((-419 (-576))) . T) (($) . T)) ((($) . T)) ((($) . T)) (|has| |#1| (-1121)) ((((-419 (-576))) . T) (((-576)) . T)) ((((-576)) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) -((((-576)) . T) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) ((|#1|) . T) (($) -2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#2|) . T)) +((((-576)) . T) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) ((|#1|) . T) (($) -2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#2|) . T)) ((((-1197) |#2|) |has| |#2| (-526 (-1197) |#2|)) ((|#2| |#2|) |has| |#2| (-319 |#2|))) ((((-419 (-576))) . T) (((-576)) . T)) -((((-576)) . T) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (((-1103)) . T) ((|#1|) . T) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) +((((-576)) . T) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (((-1103)) . T) ((|#1|) . T) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (((|#1|) . T) (($) . T)) ((((-576)) . T)) ((((-576)) . T)) -((($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) ((((-576)) . T)) ((((-576)) . T)) ((((-419 (-576))) . T) (($) . T)) @@ -227,7 +227,7 @@ (((|#1|) . T)) (|has| |#2| (-374)) ((((-1255 (-576)) $) . T) (((-576) |#1|) . T)) -((($) -2760 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237)))) +((($) -2759 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237)))) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) (((|#1| |#2|) . T)) ((((-876)) . T)) @@ -240,13 +240,13 @@ ((((-876)) . T)) ((((-876)) . T)) (((|#1| |#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2760 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) -((($ $) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2759 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) +((($ $) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T)) (((|#1|) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2760 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#2|) -2760 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2759 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((|#2|) -2759 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) ((((-876)) . T)) ((((-876)) . T)) ((((-876)) . T)) @@ -257,10 +257,10 @@ ((((-171 (-227))) |has| |#1| (-1043)) (((-171 (-390))) |has| |#1| (-1043)) (((-548)) |has| |#1| (-626 (-548))) (((-1193 |#1|)) . T) (((-907 (-576))) |has| |#1| (-626 (-907 (-576)))) (((-907 (-390))) |has| |#1| (-626 (-907 (-390))))) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (((|#1|) . T)) -(-2760 (|has| |#1| (-21)) (|has| |#1| (-860))) -(-2760 (|has| |#1| (-21)) (|has| |#1| (-860))) -((((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568)))) +(-2759 (|has| |#1| (-21)) (|has| |#1| (-860))) +(-2759 (|has| |#1| (-21)) (|has| |#1| (-860))) +((((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568)))) (|has| |#1| (-374)) ((((-876)) . T)) ((($) . T)) @@ -268,7 +268,7 @@ ((((-130)) . T)) (-12 (|has| |#4| (-238)) (|has| |#4| (-1070))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) -((($) -2760 (|has| |#2| (-238)) (|has| |#2| (-237)))) +((($) -2759 (|has| |#2| (-238)) (|has| |#2| (-237)))) (|has| |#4| (-1070)) (|has| |#3| (-1070)) ((((-876)) . T) (((-1202)) . T)) @@ -279,45 +279,45 @@ (((|#1|) . T)) ((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) |has| |#1| (-1059 (-576))) ((|#1|) . T)) (((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) -(((|#2|) . T) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) . T)) +(((|#2|) . T) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) . T)) (|has| |#1| (-568)) -((((-576)) -2760 (-12 (|has| |#4| (-1059 (-576))) (|has| |#4| (-1121))) (|has| |#4| (-1070))) ((|#4|) |has| |#4| (-1121)) (((-419 (-576))) -12 (|has| |#4| (-1059 (-419 (-576)))) (|has| |#4| (-1121)))) -((((-576)) -2760 (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121))) (|has| |#3| (-1070))) ((|#3|) |has| |#3| (-1121)) (((-419 (-576))) -12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121)))) +((((-576)) -2759 (-12 (|has| |#4| (-1059 (-576))) (|has| |#4| (-1121))) (|has| |#4| (-1070))) ((|#4|) |has| |#4| (-1121)) (((-419 (-576))) -12 (|has| |#4| (-1059 (-419 (-576)))) (|has| |#4| (-1121)))) +((((-576)) -2759 (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121))) (|has| |#3| (-1070))) ((|#3|) |has| |#3| (-1121)) (((-419 (-576))) -12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121)))) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (|has| |#1| (-568)) -(-2760 (|has| |#1| (-861)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-861)) (|has| |#1| (-1121))) (((|#1|) . T)) (|has| |#1| (-568)) ((((-878 |#1|)) . T)) (|has| |#1| (-568)) (|has| |#1| (-568)) (((|#2|) . T)) -((((-1197)) -2760 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (((-1103)) . T)) +((((-1197)) -2759 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (((-1103)) . T)) ((((-711)) . T)) (((|#1|) . T)) -((((-1197)) -2760 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (((-1109 (-1197))) . T)) +((((-1197)) -2759 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (((-1109 (-1197))) . T)) (-12 (|has| |#1| (-1023)) (|has| |#1| (-1223))) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) (((|#2|) . T) (($) . T) (((-419 (-576))) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))) ((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) -((((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) +((((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) -(((|#4| |#4|) -2760 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1070)))) -(((|#3| |#3|) -2760 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070)))) +(((|#4| |#4|) -2759 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1070)))) +(((|#3| |#3|) -2759 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070)))) (((|#2|) . T)) (((|#1|) . T)) ((((-548)) |has| |#2| (-626 (-548))) (((-907 (-390))) |has| |#2| (-626 (-907 (-390)))) (((-907 (-576))) |has| |#2| (-626 (-907 (-576))))) ((((-876)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-2 (|:| -3224 |#1|) (|:| -3422 |#2|))) . T) (((-876)) . T)) +((((-2 (|:| -3223 |#1|) (|:| -2508 |#2|))) . T) (((-876)) . T)) ((((-548)) |has| |#1| (-626 (-548))) (((-907 (-390))) |has| |#1| (-626 (-907 (-390)))) (((-907 (-576))) |has| |#1| (-626 (-907 (-576))))) -(((|#4|) -2760 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1070)))) -(((|#3|) -2760 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070)))) -((((-2 (|:| -3224 |#1|) (|:| -3422 |#2|))) . T)) +(((|#4|) -2759 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1070)))) +(((|#3|) -2759 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070)))) +((((-2 (|:| -3223 |#1|) (|:| -2508 |#2|))) . T)) ((((-876)) . T)) ((((-876)) . T)) ((((-548)) . T) (((-576)) . T) (((-907 (-576))) . T) (((-390)) . T) (((-227)) . T)) @@ -325,15 +325,15 @@ (((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) ((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) ((((-419 $) (-419 $)) |has| |#2| (-568)) (($ $) . T) ((|#2| |#2|) . T)) -((($ (-1197)) -2760 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) -((((-2 (|:| -4301 (-1179)) (|:| -4440 (-52)))) . T)) +((($ (-1197)) -2759 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) +((((-2 (|:| -4300 (-1179)) (|:| -4439 (-52)))) . T)) (((|#1|) . T)) (|has| |#2| (-928)) ((((-1179) (-52)) . T)) ((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T)) ((((-548)) . T) (((-227)) . T) (((-390)) . T) (((-907 (-390))) . T)) ((((-876)) . T)) -(-2760 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) +(-2759 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) (((|#1|) |has| |#1| (-174))) (((|#1| $) |has| |#1| (-296 |#1| |#1|))) ((((-876)) . T)) @@ -347,15 +347,15 @@ (|has| |#1| (-1121)) ((((-929 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T)) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) ((((-548)) |has| |#1| (-626 (-548)))) ((((-876)) . T) (((-1202)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2760 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2759 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) ((((-1202)) . T)) -((($) -2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -2760 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2759 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-238)) -((($) -2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1| (-543 (-830 (-1197)))) . T)) (((|#1| (-992)) . T)) ((((-576)) . T) ((|#2|) . T)) @@ -367,7 +367,7 @@ (((|#1|) . T)) (((|#2| |#2|) . T)) (|has| |#1| (-1173)) -((((-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) . T)) +((((-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) . T)) (|has| (-1274 |#1| |#2| |#3| |#4|) (-146)) (|has| (-1274 |#1| |#2| |#3| |#4|) (-148)) (|has| |#1| (-146)) @@ -379,28 +379,28 @@ (((|#2|) . T)) (((|#1|) . T)) (((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) -((((-1146 |#1| (-1197))) . T) (((-576)) . T) (((-830 (-1197))) . T) (($) -2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) (((-1197)) . T)) +((((-1146 |#1| (-1197))) . T) (((-576)) . T) (((-830 (-1197))) . T) (($) -2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) (((-1197)) . T)) (|has| |#2| (-379)) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) ((($) . T) ((|#1|) . T)) (((|#2|) |has| |#2| (-1070))) ((((-876)) . T)) (|has| |#1| (-860)) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((#0=(-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) #0#) |has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((#0=(-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) #0#) |has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))))) (((|#1|) . T)) -((((-1288 (-350 (-3582) (-3582 (QUOTE X)) (-711)))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((#0=(-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) #0#) |has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))))) +((((-1288 (-350 (-3581) (-3581 (QUOTE X)) (-711)))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((#0=(-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) #0#) |has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-319 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))))) ((((-876)) . T)) ((((-576) |#1|) . T)) ((((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548)))) (((-907 (-390))) -12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390))))) (((-907 (-576))) -12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) ((($) . T)) ((((-876)) . T)) -((($ $) -2760 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +((($ $) -2759 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) ((((-876)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((((-876)) . T)) ((((-876)) . T)) (|has| (-1273 |#2| |#3| |#4|) (-148)) @@ -411,18 +411,18 @@ ((((-876)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-2760 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) +(-2759 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) (((|#1|) . T)) ((($) . T)) ((((-576) |#1|) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) -(-2760 (|has| |#1| (-21)) (|has| |#1| (-860))) +(-2759 (|has| |#1| (-21)) (|has| |#1| (-860))) ((((-876)) |has| |#1| (-1121))) -((($) -2760 (|has| |#1| (-238)) (|has| |#1| (-237)))) -(-2760 (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)) (|has| |#1| (-1133))) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-360))) +((($) -2759 (|has| |#1| (-238)) (|has| |#1| (-237)))) +(-2759 (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)) (|has| |#1| (-1133))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-360))) ((((-929 |#1|)) . T)) ((((-419 |#2|) |#3|) . T)) (|has| |#1| (-15 * (|#1| (-576) |#1|))) @@ -433,7 +433,7 @@ ((((-876)) . T)) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) (|has| |#1| (-374)) -(-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) +(-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-374)) (|has| |#1| (-15 * (|#1| (-783) |#1|))) @@ -447,23 +447,23 @@ ((((-1255 (-576)) $) . T) (((-576) |#1|) . T)) ((((-876)) . T)) (((|#2|) . T)) -(-2760 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +(-2759 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) ((($) |has| |#1| (-568)) (((-576)) . T)) (|has| |#2| (-805)) (|has| |#2| (-805)) -((((-1280 |#1| |#2| |#3|)) . T) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) -((((-1284 |#2|)) . T) (((-1280 |#1| |#2| |#3|)) . T) (((-1252 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-1280 |#1| |#2| |#3|)) . T) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) +((((-1284 |#2|)) . T) (((-1280 |#1| |#2| |#3|)) . T) (((-1252 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T)) (((|#1|) . T)) ((((-1197)) -12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070)))) (((|#1|) . T)) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) -(-2760 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2760 (|has| |#1| (-174)) (|has| |#1| (-568)))) +(-2759 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) +(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2759 (|has| |#1| (-174)) (|has| |#1| (-568)))) ((($ $) |has| |#1| (-568)) ((|#1| |#1|) . T)) -((($ (-1197)) -2760 (|has| (-419 |#2|) (-917 (-1197))) (|has| (-419 |#2|) (-919 (-1197))))) +((($ (-1197)) -2759 (|has| (-419 |#2|) (-917 (-1197))) (|has| (-419 |#2|) (-919 (-1197))))) (((#0=(-711) (-1193 #0#)) . T)) ((((-593 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) ((((-419 (-576))) . T) (($) . T)) @@ -471,18 +471,18 @@ ((((-876)) . T) (((-1288 |#3|)) . T)) ((((-593 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) ((($) . T) (((-419 (-576))) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2760 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2759 (|has| |#1| (-174)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) . T)) ((((-876)) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) ((($) . T)) -((($ $) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((#1=(-1280 |#1| |#2| |#3|) #1#) |has| |#1| (-374)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) -(((|#1|) . T) (($) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((($ $) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((#1=(-1280 |#1| |#2| |#3|) #1#) |has| |#1| (-374)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) +(((|#1|) . T) (($) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) (((|#3|) |has| |#3| (-1070))) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($ $) -2760 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($ $) -2759 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) (|has| (-1115 |#1|) (-1121)) (((|#2| (-831 |#1|)) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T)) @@ -490,20 +490,20 @@ (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2760 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2759 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) (((|#2|) . T) ((|#6|) . T)) (|has| |#1| (-374)) ((((-576)) . T) ((|#2|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2760 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2759 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) (((|#2|) . T) ((|#6|) . T)) -((($) -2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -2760 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2759 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T)) -((($) -2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((((-419 $) (-419 $)) |has| |#1| (-568)) (($ $) . T) ((|#1| |#1|) . T)) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((#0=(-1103) |#2|) . T) ((#0# $) . T) (($ $) . T)) ((((-876)) . T)) ((((-929 |#1|)) . T)) @@ -512,22 +512,22 @@ ((((-245 |#1| |#2|) |#2|) . T)) ((((-876)) . T)) (((|#3|) |has| |#3| (-1121)) (((-576)) -12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121))) (((-419 (-576))) -12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121)))) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) (((|#1|) . T)) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) ((((-548)) |has| |#1| (-626 (-548)))) (((|#1|) |has| |#1| (-174))) -((((-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) . T)) +((((-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) . T)) (|has| |#1| (-374)) ((((-1202)) . T)) (((|#1|) . T)) -(-2760 (|has| |#1| (-21)) (|has| |#1| (-860))) +(-2759 (|has| |#1| (-21)) (|has| |#1| (-860))) ((($) . T)) ((((-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) (|has| |#2| (-832)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-860)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1| |#2| |#3| (-543 |#3|)) . T)) ((((-876)) . T)) @@ -536,15 +536,15 @@ (|has| |#1| (-379)) ((((-419 (-576))) . T)) (((|#1|) . T)) -(-2760 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +(-2759 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((((-419 (-576))) . T)) ((((-1179) |#1|) . T)) (|has| |#1| (-379)) ((((-576)) . T)) ((((-576)) . T)) (((|#1|) . T) (((-576)) . T)) -(-2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -(-2760 (|has| |#1| (-861)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2759 (|has| |#1| (-861)) (|has| |#1| (-1121))) ((((-876)) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) ((((-1197)) -12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))))) @@ -558,12 +558,12 @@ ((((-576) |#3|) . T)) (((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) (|has| |#2| (-1070)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) -(-2760 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) +(-2759 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((((-876)) . T)) ((((-1274 |#1| |#2| |#3| |#4|)) . T)) ((((-419 (-576))) . T) (((-576)) . T)) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) @@ -572,9 +572,9 @@ ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) ((((-576)) . T)) ((((-576)) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) +((($) . T) (((-576)) . T) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -((((-576)) -2760 (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070))) ((|#2|) |has| |#2| (-1121)) (((-419 (-576))) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) +((((-576)) -2759 (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070))) ((|#2|) |has| |#2| (-1121)) (((-419 (-576))) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -590,7 +590,7 @@ ((((-576) |#3|) . T)) ((((-876)) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2760 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2759 (|has| |#1| (-174)) (|has| |#1| (-568)))) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) ((((-876)) . T)) ((((-576) |#1|) . T)) @@ -599,92 +599,92 @@ ((($) . T)) ((($ $) . T) ((#0=(-1197) $) . T) ((#0# |#1|) . T)) (((|#2|) |has| |#2| (-174))) -((($) -2760 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) -(((|#2| |#2|) -2760 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070)))) +((($) -2759 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) +(((|#2| |#2|) -2759 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070)))) ((((-145)) . T)) (((|#1|) . T)) (-12 (|has| |#1| (-379)) (|has| |#2| (-379))) ((((-876)) . T)) -(((|#2|) -2760 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070)))) +(((|#2|) -2759 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070)))) (((|#1|) . T)) ((((-876)) . T)) (|has| |#1| (-1121)) (|has| $ (-148)) ((((-1202)) . T)) -((((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) +((((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) ((((-1255 (-576)) $) . T) (((-576) |#1|) . T)) -((($) -2760 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2760 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((($) -2759 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2759 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) ((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (|has| |#1| (-374)) -(-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) +(-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-374)) (|has| |#1| (-15 * (|#1| (-783) |#1|))) (((|#1|) . T)) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) ((((-876)) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(-2760 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +(-2759 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) (((|#2| (-543 (-878 |#1|))) . T)) ((((-876)) . T)) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (((|#1|) . T)) -(-2760 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -(-2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2759 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((((-593 |#1|)) . T)) ((($) . T)) ((((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) (((|#1|) . T) (($) . T)) ((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) -((((-1195 |#1| |#2| |#3|)) . T) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) -((((-1284 |#2|)) . T) (((-1195 |#1| |#2| |#3|)) . T) (((-1188 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-1195 |#1| |#2| |#3|)) . T) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) +((((-1284 |#2|)) . T) (((-1195 |#1| |#2| |#3|)) . T) (((-1188 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568)))) (((|#4|) . T)) (((|#3|) . T)) ((((-884 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T)) ((((-1197)) -12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070)))) -(-2760 (|has| |#2| (-238)) (|has| |#2| (-237))) +(-2759 (|has| |#2| (-238)) (|has| |#2| (-237))) (((|#1|) . T)) ((((-878 |#1|)) . T)) -((((-1197)) -2760 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) ((|#3|) . T)) +((((-1197)) -2759 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) ((|#3|) . T)) ((($) . T)) ((((-876)) . T)) ((((-876)) . T)) -((((-576)) . T) (((-419 (-576))) -2760 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576))))) ((|#2|) . T) (($) -2760 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) (((-878 |#1|)) . T)) +((((-576)) . T) (((-419 (-576))) -2759 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576))))) ((|#2|) . T) (($) -2759 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) (((-878 |#1|)) . T)) ((((-576) |#2|) . T)) ((((-876)) . T)) ((($) . T) (((-576)) . T) ((|#2|) . T) (((-419 (-576))) . T)) ((((-876)) . T)) ((((-876)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2760 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((($ $) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((#1=(-1195 |#1| |#2| |#3|) #1#) |has| |#1| (-374)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($ $) -2760 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2759 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((($ $) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((#1=(-1195 |#1| |#2| |#3|) #1#) |has| |#1| (-374)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((($ $) -2759 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) ((((-876)) . T)) (((|#2|) |has| |#2| (-1070))) (|has| |#1| (-1121)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2760 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) -(((|#1|) . T) (($) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2759 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) +(((|#1|) . T) (($) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) |has| |#1| (-174)) (($) . T)) (((|#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2760 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2759 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) ((((-876)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2760 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2759 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) ((($ (-878 |#1|)) . T)) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) ((($ |#2|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2760 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) -((($ (-1197)) -2760 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (($ (-1103)) . T)) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2759 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((($ (-1197)) -2759 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (($ (-1103)) . T)) ((($) . T)) (((#0=(-1103) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ (-1197)) -2760 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (($ (-1109 (-1197))) . T)) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) +((($ (-1197)) -2759 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (($ (-1109 (-1197))) . T)) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) (((|#1|) . T)) (((|#2|) |has| |#2| (-1121)) (((-576)) -12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (((-419 (-576))) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) @@ -711,8 +711,8 @@ (|has| |#1| (-146)) (|has| |#1| (-148)) ((((-1202)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2760 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) -((($) -2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2759 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((($) -2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((((-419 (-576))) . T) (($) . T)) ((((-419 (-576))) . T) (($) . T)) ((((-419 (-576))) . T) (($) . T)) @@ -723,13 +723,13 @@ (((|#1| (-783) (-1103)) . T)) ((((-419 (-576))) |has| |#2| (-374)) (($) . T)) (((|#1| (-543 (-1109 (-1197))) (-1109 (-1197))) . T)) -(-2760 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2759 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (((|#2|) . T)) -(-2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (((|#1|) . T)) (((|#2|) . T)) -((((-1020 |#1|)) . T) (((-576)) . T) ((|#1|) . T) (((-419 (-576))) -2760 (|has| (-1020 |#1|) (-1059 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) +((((-1020 |#1|)) . T) (((-576)) . T) ((|#1|) . T) (((-419 (-576))) -2759 (|has| (-1020 |#1|) (-1059 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (|has| |#2| (-1070)) (|has| |#2| (-805)) (|has| |#2| (-805)) @@ -760,45 +760,45 @@ ((((-783) |#1|) . T) (($ $) . T)) (((|#1|) . T)) ((($ (-1197)) . T)) -(-2760 (|has| |#1| (-832)) (|has| |#1| (-861))) +(-2759 (|has| |#1| (-832)) (|has| |#1| (-861))) ((((-1161 |#1| |#2|)) |has| (-1161 |#1| |#2|) (-319 (-1161 |#1| |#2|)))) (((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) |has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) |has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))))) (((|#2|) . T) (((-576)) |has| |#2| (-1059 (-576))) (((-419 (-576))) |has| |#2| (-1059 (-419 (-576))))) (|has| |#1| (-860)) (((|#1|) . T)) -((((-1197)) -2760 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-919 (-1197)))))) +((((-1197)) -2759 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-919 (-1197)))))) (((|#1| |#2|) . T)) ((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-2760 (|has| |#1| (-861)) (|has| |#1| (-1121))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) |has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))))) +(-2759 (|has| |#1| (-861)) (|has| |#1| (-1121))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) |has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))))) (((|#2|) . T)) -((((-876)) -2760 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-876))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) (((-1288 |#2|)) . T)) +((((-876)) -2759 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-876))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) (((-1288 |#2|)) . T)) ((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((|#1|) . T) (((-576)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) ((((-576)) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) (|has| |#1| (-1121)) -((($) -2760 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2759 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((((-576) (-145)) . T)) -(((|#2|) -2760 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) +(((|#2|) -2759 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) ((((-576)) . T)) (((|#1|) . T) ((|#2|) . T) (((-576)) . T)) -((($) |has| |#1| (-568)) ((|#1|) . T) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) (((-576)) . T)) -(-2760 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) +((($) |has| |#1| (-568)) ((|#1|) . T) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) (((-576)) . T)) +(-2759 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) (((|#1|) . T)) -(-2760 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) +(-2759 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) ((($) . T) (((-576)) . T) ((|#2|) . T)) (((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T)) (((|#2|) |has| |#1| (-374))) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) ((((-1202)) . T)) ((((-419 (-576))) . T) (((-576)) . T) (($) . T)) @@ -806,26 +806,26 @@ (((|#1|) . T) (($) . T)) ((((-576)) . T)) (((#0=(-419 (-971 |#1|)) #0#) . T)) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-1121))) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-1121))) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-1121))) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) ((((-548)) |has| |#1| (-626 (-548)))) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) ((((-876)) . T) (((-1202)) . T)) ((((-1202)) . T)) (((|#1| |#1|) |has| |#1| (-174))) -(-2760 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237))) -((($ $) -2760 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +(-2759 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237))) +((($ $) -2759 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) ((((-419 (-971 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T) (((-576)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) -((((-1197)) -2760 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(-2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +((((-1197)) -2759 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(-2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((((-876)) . T)) ((((-876)) . T)) ((((-1274 |#1| |#2| |#3| |#4|)) . T)) @@ -834,8 +834,8 @@ (|has| |#3| (-1070)) (|has| |#3| (-805)) (|has| |#3| (-805)) -((((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568)))) (((|#2|) . T)) ((((-876)) . T)) ((((-876)) . T)) @@ -849,37 +849,37 @@ ((((-419 (-576))) . T) (($) . T)) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) ((($) . T) (((-419 (-576))) . T)) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-1121))) (((|#2|) . T)) ((((-548)) |has| |#2| (-626 (-548))) (((-907 (-390))) |has| |#2| (-626 (-907 (-390)))) (((-907 (-576))) |has| |#2| (-626 (-907 (-576))))) -(((|#4|) -2760 (|has| |#4| (-174)) (|has| |#4| (-374)))) -(((|#3|) -2760 (|has| |#3| (-174)) (|has| |#3| (-374)))) +(((|#4|) -2759 (|has| |#4| (-174)) (|has| |#4| (-374)))) +(((|#3|) -2759 (|has| |#3| (-174)) (|has| |#3| (-374)))) ((((-876)) . T)) (((|#1|) . T)) -(-2760 (|has| |#2| (-464)) (|has| |#2| (-928))) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2760 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) -((($) -2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(-2759 (|has| |#2| (-464)) (|has| |#2| (-928))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2759 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((($) -2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(-2760 (|has| |#1| (-464)) (|has| |#1| (-928))) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2760 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(-2759 (|has| |#1| (-464)) (|has| |#1| (-928))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2759 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#2|) . T)) (((|#2|) . T)) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-928))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-928))) ((($ $) . T) ((#0=(-1197) $) |has| |#1| (-238)) ((#0# |#1|) |has| |#1| (-238)) ((#1=(-830 (-1197)) |#1|) . T) ((#1# $) . T)) -(-2760 (|has| |#1| (-464)) (|has| |#1| (-928))) +(-2759 (|has| |#1| (-464)) (|has| |#1| (-928))) ((((-576) |#2|) . T)) ((((-876)) . T)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(((|#3|) -2760 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070))) (($) |has| |#3| (-1070)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) +(((|#3|) -2759 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070))) (($) |has| |#3| (-1070)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) ((((-576) |#1|) . T)) (|has| (-419 |#2|) (-148)) (|has| (-419 |#2|) (-146)) @@ -892,15 +892,15 @@ (|has| |#1| (-568)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) ((((-876)) . T)) -((((-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) . T)) +((((-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) . T)) (|has| |#1| (-38 (-419 (-576)))) -((((-400) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) . T)) +((((-400) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-1173)) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-568))) ((((-876)) . T) (((-1202)) . T)) ((((-876)) . T) (((-1202)) . T)) ((((-1202)) . T)) @@ -918,7 +918,7 @@ ((((-400) (-1179)) . T)) (|has| |#1| (-568)) ((((-1255 (-576)) $) . T) (((-576) |#1|) . T)) -(-2760 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2759 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) (((|#2|) . T)) @@ -936,7 +936,7 @@ ((((-656 |#1|)) . T)) ((((-876)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -(-2760 (|has| |#1| (-861)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-861)) (|has| |#1| (-1121))) (((|#2|) |has| |#2| (-319 |#2|))) (((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) (((|#1|) . T)) @@ -947,14 +947,14 @@ ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) (|has| |#2| (-379)) (((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) (((|#1| |#2|) . T)) -((((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) +((((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) (((|#1| |#2|) . T)) ((((-876)) . T)) @@ -962,8 +962,8 @@ ((((-876)) . T)) ((((-876)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) -((($) . T) (((-419 (-576))) -2760 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((($) . T) (((-419 (-576))) -2759 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) ((((-876)) . T)) ((((-1195 |#1| |#2| |#3|) $) -12 (|has| (-1195 |#1| |#2| |#3|) (-296 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374))) (($ $) . T) (((-576) |#1|) . T)) ((($ $) . T) (((-419 (-576)) |#1|) . T)) @@ -975,7 +975,7 @@ (((|#1|) . T)) (((|#1|) . T)) ((((-576)) . T) (($) . T)) -((($) -2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((($) . T) (((-576)) . T) ((|#2|) . T)) ((((-576)) . T) (($) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) ((((-419 (-576))) . T) (((-576)) . T)) @@ -984,29 +984,29 @@ (((|#1|) . T)) ((((-112)) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(-2760 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) +(-2759 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) ((((-112)) . T)) ((((-548)) |has| |#1| (-626 (-548))) (((-227)) . #0=(|has| |#1| (-1043))) (((-390)) . #0#)) ((((-876)) . T)) (((|#1|) . T)) ((((-1202)) . T)) (|has| |#1| (-832)) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) ((|#1|) . T)) -((((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(-2760 (|has| |#1| (-174)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) ((|#1|) . T)) +((((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(-2759 (|has| |#1| (-174)) (|has| |#1| (-568))) (|has| |#1| (-568)) -(((|#1|) . T) (($) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($) . T) (((-576)) . T) (((-419 (-576))) -2760 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +(((|#1|) . T) (($) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((($) . T) (((-576)) . T) (((-419 (-576))) -2759 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) ((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((|#1|) . T) (((-576)) . T)) (|has| |#1| (-928)) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568)))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568)))) (((|#1|) . T)) (|has| |#1| (-1121)) ((((-876)) . T)) -(-2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-2760 (|has| |#1| (-174)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-174)) (|has| |#1| (-568))) ((((-876)) . T)) ((((-876)) . T)) ((((-876)) . T)) @@ -1019,7 +1019,7 @@ ((((-1202)) . T) (((-876)) . T)) ((((-1202)) . T)) ((((-876)) . T)) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-1121))) (((|#1| (-992)) . T)) (((|#1| |#1|) . T)) ((($) . T)) @@ -1035,23 +1035,23 @@ (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) -(-2760 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) +(-2759 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) (((|#1| |#2|) . T)) (((|#1|) |has| |#1| (-174)) ((|#4|) . T) (((-576)) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) ((((-876)) . T)) -(-2760 (|has| |#1| (-238)) (|has| |#1| (-237))) +(-2759 (|has| |#1| (-238)) (|has| |#1| (-237))) (|has| |#1| (-360)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-419 (-576))) . T) (($) . T)) (((|#2|) . T) (($) . T) (((-419 (-576))) . T)) -((($) . T) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) +((($) . T) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) (|has| |#1| (-840)) ((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) |has| |#1| (-1059 (-576))) ((|#1|) . T)) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-1121))) (((|#1| $) |has| |#1| (-296 |#1| |#1|))) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) ((($) |has| |#1| (-568))) @@ -1059,8 +1059,8 @@ (((|#4|) |has| |#4| (-1121))) (((|#3|) |has| |#3| (-1121))) (|has| |#3| (-379)) -((($) |has| |#1| (-568)) ((|#1|) . T) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) (((-576)) . T)) -((((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +((($) |has| |#1| (-568)) ((|#1|) . T) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) (((-576)) . T)) +((((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) ((((-876)) . T)) (((|#1| |#2|) . T)) ((((-876)) . T)) @@ -1069,47 +1069,47 @@ (((|#2|) . T)) (|has| |#2| (-374)) ((((-419 (-576))) . T) (((-576)) . T)) -((($) -2760 (|has| |#2| (-238)) (|has| |#2| (-237)))) +((($) -2759 (|has| |#2| (-238)) (|has| |#2| (-237)))) ((($ (-878 |#1|)) . T)) -((($ (-1197)) -2760 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (($ |#3|) . T)) +((($ (-1197)) -2759 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (($ |#3|) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T)) (((|#1|) . T)) -((($ $) -2760 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((($ $) -2759 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568)))) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((($) . T) (((-576)) . T)) (((|#1|) |has| |#1| (-174))) (((|#1| |#1|) |has| |#1| (-174))) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) ((((-145)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2|) -2760 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) +(((|#2|) -2759 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) ((((-145)) . T)) ((((-145)) . T)) ((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#) ((|#2|) . T) (((-576)) . T)) (((|#1| |#2| |#3|) . T)) -(-2760 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) +(-2759 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) (((|#1|) |has| |#1| (-174))) (|has| $ (-148)) (|has| $ (-148)) ((((-1202)) . T)) (((|#1|) |has| |#1| (-174))) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-1121))) ((((-876)) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -(-2760 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-485)) (|has| |#1| (-568)) (|has| |#1| (-1070)) (|has| |#1| (-1133))) +(-2759 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-485)) (|has| |#1| (-568)) (|has| |#1| (-1070)) (|has| |#1| (-1133))) ((($ $) |has| |#1| (-296 $ $)) ((|#1| $) |has| |#1| (-296 |#1| |#1|))) (((|#1| (-419 (-576))) . T)) (((|#1|) . T)) ((((-419 (-576))) . T) (((-576)) . T) (($) . T)) ((((-1197)) . T)) (|has| |#1| (-568)) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-568))) (|has| |#1| (-568)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) @@ -1121,7 +1121,7 @@ (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-148)) -(((|#2| (-245 (-3503 |#1|) (-783)) (-878 |#1|)) . T)) +(((|#2| (-245 (-3502 |#1|) (-783)) (-878 |#1|)) . T)) (((|#1| (-543 |#3|) |#3|) . T)) (|has| |#1| (-146)) (((#0=(-419 (-576)) #0#) |has| |#2| (-374)) (($ $) . T)) @@ -1135,12 +1135,12 @@ (|has| |#1| (-146)) ((((-419 (-576))) |has| |#2| (-374)) (($) . T)) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(-2760 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) -(-2760 (|has| |#1| (-360)) (|has| |#1| (-379))) +(-2759 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +(-2759 (|has| |#1| (-360)) (|has| |#1| (-379))) ((((-1163 |#2| |#1|)) . T) ((|#1|) . T)) (((|#1| |#2|) . T)) (-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) -(((|#2|) . T) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) (|has| |#3| (-805)) (|has| |#3| (-805)) ((((-876)) . T)) @@ -1168,18 +1168,18 @@ ((((-876)) . T)) ((((-876)) . T)) (((|#1| |#2|) . T)) -((((-1197)) -2760 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197)))) (((-1103)) . T)) +((((-1197)) -2759 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197)))) (((-1103)) . T)) (((|#1|) . T)) (((|#3|) . T) (((-624 $)) . T)) (((|#1| (-419 (-576))) . T)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) ((($ (-1284 |#2|)) . T) (($ (-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) -((((-576)) -2760 (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070))) ((|#2|) |has| |#2| (-1121)) (((-419 (-576))) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) +((((-576)) -2759 (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070))) ((|#2|) |has| |#2| (-1121)) (((-419 (-576))) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) ((($ $) . T) ((|#2| $) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) @@ -1187,15 +1187,15 @@ ((((-876)) . T)) ((((-876)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) |has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) (((-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) |has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) |has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) (((-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) |has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-319 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))))) ((((-876)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#1|) . T)) ((($) . T) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) ((((-1197) (-52)) . T)) -((((-1197)) -2760 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) +((((-1197)) -2759 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) (((|#3|) . T)) ((($ $) . T) ((#0=(-878 |#1|) $) . T) ((#0# |#2|) . T)) (|has| |#1| (-840)) @@ -1203,10 +1203,10 @@ ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) ((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (|has| (-1115 |#1|) (-1121)) -(((|#2| |#2|) -2760 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070)))) -(((|#2|) -2760 (|has| |#2| (-174)) (|has| |#2| (-374)))) -((((-576) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -2760 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070)))) +(((|#2| |#2|) -2759 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070)))) +(((|#2|) -2759 (|has| |#2| (-174)) (|has| |#2| (-374)))) +((((-576) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -2759 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070)))) ((((-576)) . T)) ((((-1202)) . T)) ((((-783)) . T)) @@ -1225,34 +1225,34 @@ (((|#1|) . T)) ((((-419 (-576))) . T) (($) . T)) ((($) . T) (((-419 (-576))) . T)) -(-2760 (|has| |#1| (-174)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-174)) (|has| |#1| (-568))) ((((-1202)) . T)) -(-2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((((-576)) . T)) -(-2760 (|has| |#1| (-174)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-174)) (|has| |#1| (-568))) (|has| |#1| (-146)) ((((-576)) . T)) (|has| |#1| (-148)) -((($ (-1197)) -2760 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-919 (-1197)))))) +((($ (-1197)) -2759 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-919 (-1197)))))) ((($ (-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) ((((-907 (-576))) . T) (((-907 (-390))) . T) (((-548)) . T) (((-1197)) . T)) ((((-876)) . T)) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) ((((-876)) . T) (((-1202)) . T)) ((((-1202)) . T)) ((($) . T)) (((|#1|) . T)) ((((-876)) . T)) -(-2760 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +(-2759 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) (((|#1|) . T) (($) . T)) (((|#2|) |has| |#2| (-174))) -((($) -2760 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) +((($) -2759 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) ((((-884 |#1|)) . T)) -(-2760 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) +(-2759 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (|has| |#2| (-1173)) -(((#0=(-52)) . T) (((-2 (|:| -4301 (-1197)) (|:| -4440 #0#))) . T)) +(((#0=(-52)) . T) (((-2 (|:| -4300 (-1197)) (|:| -4439 #0#))) . T)) (((|#1| |#2|) . T)) (|has| |#3| (-1070)) (((|#1| (-576) (-1103)) . T)) @@ -1260,10 +1260,10 @@ (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (((|#1| (-419 (-576)) (-1103)) . T)) ((((-1197)) . T)) -((($) -2760 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2760 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((($) -2760 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237)))) +((($) -2759 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2759 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((($) -2759 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237)))) ((((-576) |#2|) . T)) -((($ (-1197)) -2760 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) +((($ (-1197)) -2759 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (|has| |#2| (-379)) @@ -1271,42 +1271,42 @@ ((((-876)) . T)) ((((-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) (-12 (|has| |#1| (-379)) (|has| |#2| (-379))) -(-2760 (|has| |#1| (-146)) (|has| |#1| (-379))) -(-2760 (|has| |#1| (-146)) (|has| |#1| (-379))) -(-2760 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2759 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2759 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2759 (|has| |#1| (-146)) (|has| |#1| (-379))) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) (((|#1|) . T)) -((((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568)))) (|has| |#1| (-360)) -((((-576)) -2760 (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121))) (|has| |#3| (-1070))) ((|#3|) |has| |#3| (-1121)) (((-419 (-576))) -12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121)))) +((((-576)) -2759 (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121))) (|has| |#3| (-1070))) ((|#3|) |has| |#3| (-1121)) (((-419 (-576))) -12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121)))) (((|#1|) . T)) (((|#1|) . T)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#4|) . T)) (((|#4|) . T) (((-876)) . T)) -(((|#3|) . T) ((|#2|) . T) (((-576)) . T) ((|#4|) -2760 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)) (|has| |#4| (-1070))) (($) |has| |#4| (-1070))) -(((|#2|) . T) (((-576)) . T) ((|#3|) -2760 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1070))) (($) |has| |#3| (-1070))) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((#0=(-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) #0#) |has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))))) +(((|#3|) . T) ((|#2|) . T) (((-576)) . T) ((|#4|) -2759 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)) (|has| |#4| (-1070))) (($) |has| |#4| (-1070))) +(((|#2|) . T) (((-576)) . T) ((|#3|) -2759 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1070))) (($) |has| |#3| (-1070))) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((#0=(-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) #0#) |has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))))) (|has| |#1| (-568)) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) ((((-876)) . T)) (((|#1| |#2|) . T)) -(-2760 (|has| |#2| (-464)) (|has| |#2| (-928))) -(-2760 (|has| |#1| (-861)) (|has| |#1| (-1121))) -(-2760 (|has| |#1| (-464)) (|has| |#1| (-928))) +(-2759 (|has| |#2| (-464)) (|has| |#2| (-928))) +(-2759 (|has| |#1| (-861)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-464)) (|has| |#1| (-928))) ((((-419 (-576))) . T) (((-576)) . T)) ((((-576)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2760 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2759 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) ((($) . T)) ((((-876)) . T)) (((|#1|) . T)) ((((-884 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) ((((-876)) . T)) -(((|#3| |#3|) -2760 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070)))) +(((|#3| |#3|) -2759 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070)))) (|has| |#1| (-1043)) ((((-876)) . T)) -(((|#3|) -2760 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070)))) +(((|#3|) -2759 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070)))) ((((-576) (-112)) . T)) ((((-1202)) . T)) (((|#1|) |has| |#1| (-319 |#1|))) @@ -1316,21 +1316,21 @@ (|has| |#1| (-379)) ((((-1197) $) |has| |#1| (-526 (-1197) $)) (($ $) |has| |#1| (-319 $)) ((|#1| |#1|) |has| |#1| (-319 |#1|)) (((-1197) |#1|) |has| |#1| (-526 (-1197) |#1|))) ((((-1197)) |has| |#1| (-917 (-1197)))) -(-2760 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-360))) +(-2759 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-360))) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) ((($) . T)) ((((-400) |#1|) . T)) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-360))) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-1121))) (((|#2|) . T) (((-876)) . T)) ((((-876)) . T)) (((|#2|) . T)) ((((-929 |#1|)) . T)) ((((-876)) . T) (((-1202)) . T)) ((((-1202)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2760 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2759 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) (((|#1| |#2|) . T)) ((($) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) @@ -1339,7 +1339,7 @@ (((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) (((|#1| |#1|) . T)) (((#0=(-884 |#1|)) |has| #0# (-319 #0#))) -((((-576)) . T) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2760 (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-1059 (-419 (-576))))) ((|#1|) . T)) +((((-576)) . T) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2759 (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-1059 (-419 (-576))))) ((|#1|) . T)) (((|#1| |#2|) . T)) (|has| |#2| (-805)) (|has| |#2| (-805)) @@ -1348,7 +1348,7 @@ (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (|has| |#2| (-1070)) ((($) . T) (((-576)) . T) ((|#2|) . T)) -(((|#2|) . T) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) (((|#2|) . T) (($) . T)) (|has| |#1| (-1223)) (((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) @@ -1362,7 +1362,7 @@ (((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) (|has| |#1| (-374)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) ((((-876)) . T)) ((((-876)) . T)) @@ -1370,39 +1370,39 @@ (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T)) ((((-876)) . T)) -((($ $) . T) ((#0=(-419 (-576)) #0#) -2760 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1| |#1|) . T)) +((($ $) . T) ((#0=(-419 (-576)) #0#) -2759 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1| |#1|) . T)) ((((-548)) |has| |#3| (-626 (-548)))) (((|#1| |#2|) . T)) (|has| |#1| (-860)) (|has| |#1| (-860)) ((((-701 |#3|)) . T) (((-876)) . T)) -((($) . T) (((-419 (-576))) -2760 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((($) . T) (((-419 (-576))) -2759 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) (((|#1|) . T)) -(-2760 (|has| |#1| (-174)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-174)) (|has| |#1| (-568))) ((($) . T)) -(((#0=(-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) #0#) |has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-319 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))))) +(((#0=(-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) #0#) |has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-319 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))))) ((((-576) |#3|) . T)) (((|#2|) . T)) ((($) . T)) ((($) . T)) -((((-1197)) -2760 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (((-1103)) . T)) +((((-1197)) -2759 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (((-1103)) . T)) (((|#2|) |has| |#2| (-1121))) -((((-876)) -2760 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-876))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) (((-1288 |#2|)) . T)) +((((-876)) -2759 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-876))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) (((-1288 |#2|)) . T)) ((($) . T)) ((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((((-1179) (-52)) . T)) (((|#2|) |has| |#2| (-174))) -((($) -2760 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) +((($) -2759 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) ((((-876)) . T)) (((|#2|) . T)) -((($) -2760 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) +((($) -2759 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) ((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T)) ((($) . T) (((-576)) . T)) ((((-576) (-145)) . T)) -((((-576) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T) ((|#1| |#2|) . T)) +((((-576) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T) ((|#1| |#2|) . T)) ((((-419 (-576))) . T) (($) . T)) (((|#1|) . T)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) ((((-876)) . T)) ((((-929 |#1|)) . T)) (|has| |#1| (-374)) @@ -1410,11 +1410,11 @@ (|has| |#1| (-374)) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-860)) -((($) -2760 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2760 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((($) -2759 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2759 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) (|has| |#1| (-374)) (((|#1|) . T) (($) . T)) (|has| |#1| (-860)) -((($) . T) (((-419 (-576))) -2760 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((($) . T) (((-419 (-576))) -2759 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) ((((-1197)) |has| |#1| (-917 (-1197)))) (|has| |#1| (-860)) ((((-518)) . T)) @@ -1430,7 +1430,7 @@ ((((-548)) . T)) ((((-876)) . T)) ((($) . T)) -((((-576) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T) (((-1255 (-576)) $) . T) ((|#1| |#2|) . T)) +((((-576) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T) (((-1255 (-576)) $) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) @@ -1440,22 +1440,22 @@ (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (((|#3|) . T)) (((|#1|) |has| |#1| (-174))) -((($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) -((($) -2760 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) +((($) -2759 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T)) (((|#1|) . T)) ((((-548)) |has| |#1| (-626 (-548))) (((-907 (-390))) |has| |#1| (-626 (-907 (-390)))) (((-907 (-576))) |has| |#1| (-626 (-907 (-576))))) ((((-876)) . T)) ((((-884 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -(((|#2|) . T) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) ((((-518)) . T)) ((((-518)) . T)) -((((-1197)) -2760 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) -((((-1197)) -2760 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) +((((-1197)) -2759 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) +((((-1197)) -2759 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (|has| |#1| (-568)) (-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) -(-2760 (|has| |#1| (-238)) (|has| |#1| (-237))) +(-2759 (|has| |#1| (-238)) (|has| |#1| (-237))) ((((-884 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) (|has| |#1| (-379)) (|has| |#1| (-379)) @@ -1464,7 +1464,7 @@ ((((-1179) |#1|) . T)) (|has| |#1| (-1173)) ((((-977 |#1|)) . T)) -(((#0=(-419 (-576)) #0#) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($ $) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1| |#1|) . T)) +(((#0=(-419 (-576)) #0#) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($ $) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1| |#1|) . T)) ((((-419 (-576))) |has| |#1| (-1059 (-576))) (((-576)) |has| |#1| (-1059 (-576))) (((-1197)) |has| |#1| (-1059 (-1197))) ((|#1|) . T)) ((($) . T)) ((($) . T)) @@ -1472,7 +1472,7 @@ ((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) |has| |#1| (-1059 (-576))) ((|#1|) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) ((((-576)) |has| |#1| (-901 (-576))) (((-390)) |has| |#1| (-901 (-390)))) -((((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) +((((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T) (((-576)) . T)) ((((-656 |#4|)) . T) (((-876)) . T)) @@ -1480,37 +1480,37 @@ ((((-548)) |has| |#4| (-626 (-548)))) ((((-876)) . T) (((-656 |#4|)) . T)) ((($) |has| |#1| (-860))) -((((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) -((((-576)) -2760 (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070))) ((|#2|) |has| |#2| (-1121)) (((-419 (-576))) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) +((((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) +((((-576)) -2759 (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070))) ((|#2|) |has| |#2| (-1121)) (((-419 (-576))) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (((|#1|) . T)) (((|#1|) . T)) ((((-656 |#4|)) . T) (((-876)) . T)) ((((-548)) |has| |#4| (-626 (-548)))) (((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) +(((|#1|) . T) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) ((((-1197)) |has| (-419 |#2|) (-917 (-1197)))) (((|#2|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((#0=(-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) #0#) |has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((#0=(-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) #0#) |has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))))) ((($) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2760 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2760 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) -((($) -2760 (|has| |#1| (-238)) (|has| |#1| (-237)))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2759 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2759 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((($) -2759 (|has| |#1| (-238)) (|has| |#1| (-237)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) ((($) . T)) ((($) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2760 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2759 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) ((($) . T)) ((($) . T)) -((((-876)) -2760 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-625 (-876))) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-861)) (|has| |#3| (-1070)) (|has| |#3| (-1121))) (((-1288 |#3|)) . T)) +((((-876)) -2759 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-625 (-876))) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-861)) (|has| |#3| (-1070)) (|has| |#3| (-1121))) (((-1288 |#3|)) . T)) (((|#2|) . T)) ((((-576) |#2|) . T)) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) -(((|#2| |#2|) -2760 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070)))) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) +(((|#2| |#2|) -2759 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070)))) (((|#2|) . T) (((-576)) . T)) ((((-876)) . T)) ((((-876)) . T)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T) ((|#2|) . T)) ((((-876)) . T)) ((((-876)) . T)) ((((-1179) (-1197) (-576) (-227) (-876)) . T)) @@ -1546,9 +1546,9 @@ ((((-419 (-576))) . T) (($) . T)) ((((-876)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) ((($) . T) (((-419 (-576))) . T)) -(((|#2|) -2760 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070)))) +(((|#2|) -2759 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070)))) (|has| $ (-148)) ((((-419 |#2|)) . T)) ((((-419 (-576))) |has| #0=(-419 |#2|) (-1059 (-419 (-576)))) (((-576)) |has| #0# (-1059 (-576))) ((#0#) . T)) @@ -1557,11 +1557,11 @@ (|has| |#2| (-148)) (|has| |#1| (-148)) (|has| |#1| (-146)) -(-2760 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2759 (|has| |#1| (-146)) (|has| |#1| (-379))) (|has| |#1| (-148)) -(-2760 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2759 (|has| |#1| (-146)) (|has| |#1| (-379))) (|has| |#1| (-148)) -(-2760 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2759 (|has| |#1| (-146)) (|has| |#1| (-379))) (|has| |#1| (-148)) (((|#1|) . T)) (|has| |#2| (-238)) @@ -1598,9 +1598,9 @@ ((((-876)) . T)) ((((-876)) . T)) ((((-1020 |#1|)) . T) ((|#1|) . T)) -((((-1197)) -2760 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (((-830 (-1197))) . T)) +((((-1197)) -2759 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (((-830 (-1197))) . T)) ((((-876)) . T)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) ((((-419 (-576))) . T) (((-419 |#1|)) . T) ((|#1|) . T) (($) . T)) (((|#1| (-1193 |#1|)) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) @@ -1609,8 +1609,8 @@ (((|#1|) . T) (((-576)) . T) (($) . T)) (((|#2|) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) . T)) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) . T)) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) ((((-576) |#2|) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) @@ -1621,9 +1621,9 @@ ((((-876)) . T)) (((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) -(-2760 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (-12 (|has| |#1| (-374)) (|has| |#2| (-237)))) +(-2759 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (-12 (|has| |#1| (-374)) (|has| |#2| (-237)))) (|has| |#1| (-38 (-419 (-576)))) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((#0=(-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) #0#) |has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((#0=(-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) #0#) |has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))))) (((|#2| |#2|) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-374)) @@ -1632,21 +1632,21 @@ (((|#2|) . T)) ((((-1280 |#1| |#2| |#3|)) |has| |#1| (-374))) (((|#1|) |has| |#1| (-174))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) -((($) -2760 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) +((($) -2759 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-1121)) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-38 (-419 (-576)))) ((((-1179) (-52)) . T)) (((|#1|) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2760 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($ (-1197)) -2760 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197)))) (($ (-1103)) . T)) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2759 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($ (-1197)) -2759 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197)))) (($ (-1103)) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (((|#2|) |has| |#2| (-174))) (((|#2|) . T)) -((((-576)) -2760 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) ((|#2|) -2760 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070))) +((((-576)) -2759 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) ((|#2|) -2759 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070))) (((|#1|) . T)) ((((-576) |#3|) . T)) ((((-576) (-145)) . T)) @@ -1662,7 +1662,7 @@ ((((-576)) . T) (($) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (((|#1|) . T)) -((($ (-1197)) -2760 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) +((($ (-1197)) -2759 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) (((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) ((((-145)) . T)) ((((-876)) . T)) @@ -1673,26 +1673,26 @@ (((|#1|) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (((|#1| |#2|) . T)) -(-2760 (|has| |#2| (-238)) (|has| |#2| (-237))) +(-2759 (|has| |#2| (-238)) (|has| |#2| (-237))) ((((-576) (-145)) . T) (((-1255 (-576)) $) . T)) -(((#0=(-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) #0#) |has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) -((($) -2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((#0=(-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) #0#) |has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) +((($) -2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-861)) (((|#2| (-783) (-1103)) . T)) (((|#1| |#2|) . T)) ((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (|has| |#1| (-803)) -(-2760 (|has| |#1| (-174)) (|has| |#1| (-568))) -((((-1197)) -2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) +(-2759 (|has| |#1| (-174)) (|has| |#1| (-568))) +((((-1197)) -2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) ((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) ((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (((|#1|) |has| |#1| (-174))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-2760 (|has| |#1| (-148)) (-12 (|has| |#1| (-374)) (|has| |#2| (-148)))) +(-2759 (|has| |#1| (-148)) (-12 (|has| |#1| (-374)) (|has| |#2| (-148)))) (((|#4|) . T)) -(-2760 (|has| |#1| (-146)) (-12 (|has| |#1| (-374)) (|has| |#2| (-146)))) +(-2759 (|has| |#1| (-146)) (-12 (|has| |#1| (-374)) (|has| |#2| (-146)))) ((((-1179) |#1|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) @@ -1706,24 +1706,24 @@ (((|#3|) . T)) ((((-1280 |#1| |#2| |#3|)) |has| |#1| (-374))) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) -((((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) +((((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) ((((-876)) . T)) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) (((|#1|) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121))) (((-977 |#1|)) . T)) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121))) (((-977 |#1|)) . T)) (|has| |#1| (-860)) (|has| |#1| (-860)) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) ((((-977 |#1|)) . T)) -(((|#4|) -2760 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)))) -(((|#3|) -2760 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)))) +(((|#4|) -2759 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)))) +(((|#3|) -2759 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)))) (|has| |#2| (-374)) (((|#1|) |has| |#1| (-174))) -(((|#4|) -2760 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)) (|has| |#4| (-1070)))) -(((|#3|) -2760 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1070)))) +(((|#4|) -2759 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)) (|has| |#4| (-1070)))) +(((|#3|) -2759 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1070)))) (((|#2|) |has| |#2| (-1070))) (((|#2|) |has| |#2| (-1070))) ((((-1179) |#1|) . T)) @@ -1735,8 +1735,8 @@ ((((-400) (-1179)) . T)) ((($ (-1197)) . T)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-876)) -2760 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-876))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) (((-1288 |#2|)) . T)) -(((#0=(-52)) . T) (((-2 (|:| -4301 (-1179)) (|:| -4440 #0#))) . T)) +((((-876)) -2759 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-876))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) (((-1288 |#2|)) . T)) +(((#0=(-52)) . T) (((-2 (|:| -4300 (-1179)) (|:| -4439 #0#))) . T)) (((|#1|) . T)) ((((-876)) . T)) (((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) @@ -1745,7 +1745,7 @@ ((((-576)) . T)) (|has| |#2| (-148)) (|has| |#1| (-485)) -(-2760 (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) +(-2759 (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) (|has| |#1| (-374)) ((((-876)) . T)) (|has| |#1| (-38 (-419 (-576)))) @@ -1756,8 +1756,8 @@ (|has| |#1| (-860)) ((((-876)) . T)) (((|#2|) . T)) -((((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#2|) . T) (((-576)) . T) (((-831 |#1|)) . T)) (((|#1| |#2|) . T)) @@ -1766,8 +1766,8 @@ ((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) ((((-876)) . T)) ((((-876)) . T)) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-1121))) -(((|#2| (-494 (-3503 |#1|) (-783)) (-878 |#1|)) . T)) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(((|#2| (-494 (-3502 |#1|) (-783)) (-878 |#1|)) . T)) ((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#)) (((|#1| (-543 (-1197)) (-1197)) . T)) (((|#1|) . T)) @@ -1787,19 +1787,19 @@ (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) . T)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) (((|#2|) . T)) -((((-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) . T)) +((((-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) . T)) ((((-1195 |#1| |#2| |#3|)) |has| |#1| (-374))) ((((-1195 |#1| |#2| |#3|)) |has| |#1| (-374))) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) ((((-1197) (-52)) . T)) ((((-419 (-576)) |#1|) . T) (($ $) . T)) (((|#1| (-576)) . T)) ((((-929 |#1|)) . T)) -(((|#1|) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1070))) (($) -2760 (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)))) -((((-1197)) -2760 (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))))) +(((|#1|) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1070))) (($) -2759 (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)))) +((((-1197)) -2759 (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))))) (((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) (|has| |#1| (-861)) (|has| |#1| (-861)) @@ -1820,15 +1820,15 @@ (((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (((|#1|) |has| |#1| (-174))) (((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) -(((|#3|) -2760 (|has| |#3| (-174)) (|has| |#3| (-374)))) -((($) -2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(-2760 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-928))) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((|#3|) -2759 (|has| |#3| (-174)) (|has| |#3| (-374)))) +((($) -2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(-2759 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-928))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((($ |#2|) . T)) -((($ (-1197)) -2760 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (($ (-1103)) . T)) +((($ (-1197)) -2759 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (($ (-1103)) . T)) ((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) ((((-576) |#2|) . T)) -(((|#2|) -2760 (|has| |#2| (-174)) (|has| |#2| (-374)))) +(((|#2|) -2759 (|has| |#2| (-174)) (|has| |#2| (-374)))) (|has| |#1| (-360)) (((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (((|#2|) . T) (((-576)) . T)) @@ -1837,7 +1837,7 @@ (|has| |#1| (-832)) (|has| |#1| (-832)) (((|#1|) . T)) -(-2760 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2759 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) (|has| |#1| (-860)) (|has| |#1| (-860)) (|has| |#1| (-860)) @@ -1846,14 +1846,14 @@ ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-360))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) ((((-1197)) |has| |#1| (-917 (-1197))) (((-1103)) . T)) (((|#1|) . T)) (|has| |#1| (-860)) -(((#0=(-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) #0#) |has| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-319 (-2 (|:| -4301 (-1179)) (|:| -4440 (-52)))))) +(((#0=(-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) #0#) |has| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-319 (-2 (|:| -4300 (-1179)) (|:| -4439 (-52)))))) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (|has| |#1| (-1121)) ((((-876)) . T) (((-1202)) . T)) @@ -1877,14 +1877,14 @@ (((|#1| (-783) (-1103)) . T)) (((|#3|) . T)) ((((-145)) . T)) -((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) -2760 (|has| |#1| (-860)) (|has| |#1| (-1059 (-576)))) ((|#1|) . T)) +((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) -2759 (|has| |#1| (-860)) (|has| |#1| (-1059 (-576)))) ((|#1|) . T)) (((|#1|) . T)) (((|#2|) . T)) ((((-145)) . T)) -((((-1197)) -2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) +((((-1197)) -2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) ((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) ((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) -(-2760 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) +(-2759 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) (((|#1|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) @@ -1903,31 +1903,31 @@ ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) ((($) |has| |#1| (-568))) (((|#2|) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2760 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2759 (|has| |#1| (-174)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) . T)) ((($) |has| |#1| (-860))) ((((-1195 |#1| |#2| |#3|)) |has| |#1| (-374))) (|has| |#1| (-928)) ((((-1197)) . T)) ((((-876)) . T)) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) -((((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) . T) (($) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) +((((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) . T) (($) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) ((((-576) |#2|) . T)) -((($ (-1197)) -2760 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) -((($ (-1197)) -2760 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) -((($) -2760 (|has| |#1| (-238)) (|has| |#1| (-237)))) +((($ (-1197)) -2759 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) +((($ (-1197)) -2759 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) +((($) -2759 (|has| |#1| (-238)) (|has| |#1| (-237)))) ((($) |has| |#1| (-379))) ((($) |has| |#1| (-379))) ((($) |has| |#1| (-379))) (((|#1| |#2|) . T)) -(-2760 (|has| |#2| (-464)) (|has| |#2| (-928))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((#0=(-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) #0#) |has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))))) -(-2760 (|has| |#1| (-464)) (|has| |#1| (-928))) +(-2759 (|has| |#2| (-464)) (|has| |#2| (-928))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((#0=(-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) #0#) |has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-319 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))))) +(-2759 (|has| |#1| (-464)) (|has| |#1| (-928))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) @@ -1936,23 +1936,23 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -2760 (|has| |#3| (-174)) (|has| |#3| (-374)))) +(((|#3|) -2759 (|has| |#3| (-174)) (|has| |#3| (-374)))) (|has| |#1| (-861)) (|has| |#1| (-568)) ((((-593 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-2760 (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) (-12 (|has| |#1| (-374)) (|has| |#2| (-861)))) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2759 (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) (-12 (|has| |#1| (-374)) (|has| |#2| (-861)))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-568))) ((((-929 |#1|)) . T)) (((|#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) (((|#1| (-783)) . T)) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -((((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) . T)) +((((-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) . T)) ((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T) (((-419 (-576))) . T) (($) . T)) ((((-684 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) @@ -1961,7 +1961,7 @@ ((((-876)) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) ((((-876)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2760 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2759 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) ((((-1202)) . T)) ((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T) (((-576)) . T)) (((|#3|) . T) (((-576)) . T) (((-624 $)) . T)) @@ -1969,12 +1969,12 @@ ((((-876)) . T)) ((((-876)) . T)) (((|#2|) . T)) -(-2760 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-861)) (|has| |#3| (-1070)) (|has| |#3| (-1121))) +(-2759 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-861)) (|has| |#3| (-1070)) (|has| |#3| (-1121))) (|has| |#2| (-1070)) ((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) |has| |#1| (-1059 (-576))) ((|#1|) . T)) (|has| |#1| (-1223)) (|has| |#1| (-1223)) -(-2760 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) +(-2759 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) (|has| |#1| (-1223)) (|has| |#1| (-1223)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) @@ -1993,16 +1993,16 @@ ((((-1179) (-52)) . T)) (|has| |#1| (-1121)) (((|#1|) |has| |#1| (-174)) (($) . T)) -(-2760 (|has| |#2| (-832)) (|has| |#2| (-861))) +(-2759 (|has| |#2| (-832)) (|has| |#2| (-861))) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) ((((-576)) . T) (($) . T)) ((((-783)) . T)) -(-2760 (|has| |#1| (-238)) (|has| |#1| (-237)) (|has| |#1| (-360))) -((((-1197)) -2760 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) -(-2760 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +(-2759 (|has| |#1| (-238)) (|has| |#1| (-237)) (|has| |#1| (-360))) +((((-1197)) -2759 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) +(-2759 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((((-876)) . T)) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (|has| |#2| (-928)) @@ -2010,32 +2010,32 @@ (((|#2|) |has| |#2| (-1121))) ((($) . T) (((-576)) . T)) ((($) . T)) -(-2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((((-548)) . T) (((-419 (-1193 (-576)))) . T) (((-227)) . T) (((-390)) . T)) ((((-390)) . T) (((-227)) . T) (((-876)) . T)) (|has| |#1| (-928)) (|has| |#1| (-928)) -((($ (-1197)) -2760 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (($ (-830 (-1197))) . T)) +((($ (-1197)) -2759 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (($ (-830 (-1197))) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) -((($) -2760 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2760 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) +((($) -2759 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2759 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) (|has| |#1| (-928)) -(-2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -(((|#2|) -2760 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)))) -(-2760 (|has| |#1| (-464)) (|has| |#1| (-928))) +(-2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(((|#2|) -2759 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)))) +(-2759 (|has| |#1| (-464)) (|has| |#1| (-928))) ((($) . T)) (((|#1|) . T)) ((($) . T) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) -(((|#2|) -2760 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1070)))) +(((|#2|) -2759 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1070)))) (((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) ((((-1195 |#1| |#2| |#3|)) -12 (|has| (-1195 |#1| |#2| |#3|) (-319 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374)))) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-928))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-928))) ((((-876)) . T)) ((((-876)) . T)) ((($ $) . T)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) -((($) -2760 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (-12 (|has| |#1| (-374)) (|has| |#2| (-237))))) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) +((($) -2759 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (-12 (|has| |#1| (-374)) (|has| |#2| (-237))))) ((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) ((((-992)) . T)) ((((-992)) . T) (((-876)) . T)) @@ -2044,7 +2044,7 @@ ((($) . T)) (((|#1|) . T)) ((((-112)) . T)) -(-2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((((-576)) . T)) (((|#1| (-576)) . T)) ((($) . T)) @@ -2067,7 +2067,7 @@ (((|#1| (-1252 |#1| |#2| |#3|)) . T)) ((((-876)) . T)) (|has| |#1| (-1121)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) (((|#1| (-783)) . T)) ((((-1179) |#1|) . T)) (((|#1|) . T)) @@ -2088,20 +2088,20 @@ ((((-576)) . T)) ((((-576)) . T)) ((((-876)) . T)) -(-2760 (|has| |#1| (-146)) (|has| |#1| (-360))) +(-2759 (|has| |#1| (-146)) (|has| |#1| (-360))) ((((-876)) . T)) (|has| |#1| (-148)) (((|#3|) . T)) ((((-876)) . T)) (|has| |#3| (-1070)) -((($) -2760 (|has| |#2| (-238)) (|has| |#2| (-237)))) +((($) -2759 (|has| |#2| (-238)) (|has| |#2| (-237)))) ((((-1273 |#2| |#3| |#4|)) . T) (((-1274 |#1| |#2| |#3| |#4|)) . T)) ((((-876)) . T)) -((((-48)) -12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576)))) (((-624 $)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) -2760 (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) (((-419 (-971 |#1|))) |has| |#1| (-568)) (((-971 |#1|)) |has| |#1| (-1070)) (((-1197)) . T)) +((((-48)) -12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576)))) (((-624 $)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) -2759 (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) (((-419 (-971 |#1|))) |has| |#1| (-568)) (((-971 |#1|)) |has| |#1| (-1070)) (((-1197)) . T)) (((|#1|) . T) (($) . T)) (((|#1| (-783)) . T)) (((|#1|) . T)) -((($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) (((|#1|) |has| |#1| (-319 |#1|))) ((((-1274 |#1| |#2| |#3| |#4|)) . T)) ((((-576)) |has| |#1| (-901 (-576))) (((-390)) |has| |#1| (-901 (-390)))) @@ -2110,31 +2110,31 @@ (((|#1|) . T)) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) (((|#1|) . T)) -((((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2760 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) -(((|#1|) . T) (($) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) |has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2759 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) +(((|#1|) . T) (($) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) |has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))))) (((|#1|) |has| |#1| (-174))) ((((-876)) . T)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (|has| |#1| (-568)) -((($ (-1284 |#2|)) . T) (($ (-1197)) -2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) +((($ (-1284 |#2|)) . T) (($ (-1197)) -2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) ((($ (-1284 |#2|)) . T) (($ (-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) ((($ (-1284 |#2|)) . T) (($ (-1197)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T)) (((|#1|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2760 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2760 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2759 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2759 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) (((|#3|) |has| |#3| (-1121))) ((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -(((|#2|) -2760 (|has| |#2| (-174)) (|has| |#2| (-374)))) +(((|#2|) -2759 (|has| |#2| (-174)) (|has| |#2| (-374)))) ((((-1273 |#2| |#3| |#4|)) . T)) ((((-112)) . T)) (|has| |#1| (-832)) @@ -2144,8 +2144,8 @@ (|has| |#1| (-860)) (|has| |#1| (-860)) (((|#1| (-576) (-1103)) . T)) -(-2760 (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +(-2759 (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) (((|#1| (-419 (-576)) (-1103)) . T)) (((|#1| (-783) (-1103)) . T)) (|has| |#1| (-861)) @@ -2159,41 +2159,41 @@ ((((-929 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) (|has| |#1| (-1121)) ((((-419 (-576))) |has| |#2| (-374)) (($) . T) (((-576)) . T)) -((((-576)) -2760 (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)))) +((((-576)) -2759 (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)))) (((|#1|) . T)) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-1121))) ((((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) ((|#2|) |has| |#1| (-374))) -(-2760 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) -((((-701 (-350 (-3582) (-3582 (QUOTE X) (QUOTE HESS)) (-711)))) . T)) +(-2759 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) +((((-701 (-350 (-3581) (-3581 (QUOTE X) (QUOTE HESS)) (-711)))) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) -((((-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) +((((-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) . T)) ((((-876)) . T)) ((((-876)) . T)) ((((-876)) . T)) ((((-1273 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) . T)) -(((|#1| |#1|) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1070)))) +(((|#1| |#1|) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1070)))) (((|#1|) . T)) ((((-576)) . T)) ((((-576)) . T)) -(((|#1|) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1070)))) +(((|#1|) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1070)))) (((|#2|) |has| |#2| (-374))) (((|#1|) . T)) ((($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-374)) (((-576)) |has| |#1| (-651 (-576)))) (|has| |#1| (-861)) (((|#1|) . T)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) (((|#1|) . T) (((-576)) . T)) (((|#2|) . T)) ((((-576)) . T) ((|#3|) . T)) -((((-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) |has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-319 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))))) -(-2760 (|has| |#1| (-464)) (|has| |#1| (-928))) +((((-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) |has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-319 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))))) +(-2759 (|has| |#1| (-464)) (|has| |#1| (-928))) (((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) ((((-876)) . T)) ((((-876)) . T)) -((($ (-1197)) -2760 (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))))) -((((-576)) -2760 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) ((|#2|) -2760 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070))) +((($ (-1197)) -2759 (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))))) +((((-576)) -2759 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) ((|#2|) -2759 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070))) ((((-548)) . T) (((-576)) . T) (((-907 (-576))) . T) (((-390)) . T) (((-227)) . T)) ((((-876)) . T)) ((($) |has| |#1| (-238))) @@ -2228,12 +2228,12 @@ (|has| |#1| (-146)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) |has| |#1| (-174))) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((((-576)) . T) ((|#1|) . T) (($) . T) (((-419 (-576))) . T) (((-1197)) |has| |#1| (-1059 (-1197)))) (((|#1| |#2|) . T)) -((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) -2760 (|has| |#1| (-860)) (|has| |#1| (-1059 (-576)))) ((|#1|) . T)) -(-2760 (-12 (|has| |#4| (-238)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1070)))) -(-2760 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))) +((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) -2759 (|has| |#1| (-860)) (|has| |#1| (-1059 (-576)))) ((|#1|) . T)) +(-2759 (-12 (|has| |#4| (-238)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1070)))) +(-2759 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))) ((((-145)) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) @@ -2244,13 +2244,13 @@ ((((-876)) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) ((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) (|has| |#1| (-374)) (|has| |#1| (-374)) ((($ |#2|) . T)) (|has| (-419 |#2|) (-238)) ((((-656 |#1|)) . T)) -((($ (-1284 |#2|)) . T) (($ (-1197)) -2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) +((($ (-1284 |#2|)) . T) (($ (-1197)) -2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) ((($ (-1284 |#2|)) . T) (($ (-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) ((($ (-1284 |#2|)) . T) (($ (-1197)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (|has| |#1| (-928)) @@ -2258,7 +2258,7 @@ (((|#2|) |has| |#2| (-1070))) (|has| |#1| (-374)) ((($) . T)) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) |has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) |has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))))) (((|#1|) |has| |#1| (-174))) ((($ (-878 |#1|)) . T)) (((|#1| |#1|) . T)) @@ -2269,7 +2269,7 @@ (((|#1|) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) ((((-656 $)) . T) (((-1179)) . T) (((-1197)) . T) (((-576)) . T) (((-227)) . T) (((-876)) . T)) -((((-576)) -2760 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070))) ((|#3|) -2760 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1070))) (($) |has| |#3| (-1070))) +((((-576)) -2759 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070))) ((|#3|) -2759 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1070))) (($) |has| |#3| (-1070))) ((((-419 (-576))) . T) (((-576)) . T) (((-624 $)) . T)) (((|#1|) . T)) ((((-876)) . T)) @@ -2284,7 +2284,7 @@ (((|#1| (-419 (-576)) (-1103)) . T)) (((|#1| (-783) (-1103)) . T)) (((#0=(-419 |#2|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-576)) -2760 (|has| (-419 (-576)) (-1059 (-576))) (|has| |#1| (-1059 (-576)))) (((-419 (-576))) . T)) +(((|#1|) . T) (((-576)) -2759 (|has| (-419 (-576)) (-1059 (-576))) (|has| |#1| (-1059 (-576)))) (((-419 (-576))) . T)) (((|#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) @@ -2304,37 +2304,37 @@ ((((-711)) . T)) ((((-711)) . T)) (((|#2|) |has| |#2| (-174))) -(-2760 (|has| |#1| (-238)) (|has| |#1| (-237))) +(-2759 (|has| |#1| (-238)) (|has| |#1| (-237))) ((((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1059 (-419 (-576))))) -((((-112)) |has| |#1| (-1121)) (((-876)) -2760 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)) (|has| |#1| (-1133)) (|has| |#1| (-1121)))) +((((-112)) |has| |#1| (-1121)) (((-876)) -2759 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)) (|has| |#1| (-1133)) (|has| |#1| (-1121)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-2 (|:| -4301 (-1179)) (|:| -4440 (-52)))) . T)) +((((-2 (|:| -4300 (-1179)) (|:| -4439 (-52)))) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) ((((-876)) . T)) -((((-1197)) -2760 (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))))) +((((-1197)) -2759 (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))))) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) ((((-876)) . T)) ((((-711)) . T) (((-419 (-576))) . T) (((-576)) . T)) (((|#1| |#1|) |has| |#1| (-174))) (((|#2|) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) -2760 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((($) . T) (((-576)) . T) (((-419 (-576))) -2759 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) ((((-576) |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) |has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) |has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))))) ((((-390)) . T)) ((((-711)) . T)) ((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#)) (((|#1|) |has| |#1| (-174))) ((((-419 (-971 |#1|))) . T)) (((|#2| |#2|) . T)) -(-2760 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) -(-2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2759 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +(-2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (((|#1|) . T)) (((|#2|) . T)) (((|#3|) |has| |#3| (-1070))) @@ -2346,7 +2346,7 @@ ((((-1197)) |has| |#2| (-917 (-1197)))) (|has| |#1| (-861)) ((((-876)) . T)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) (|has| |#1| (-803)) ((((-419 (-576))) . T) (($) . T)) (|has| |#1| (-485)) @@ -2354,8 +2354,8 @@ (|has| |#1| (-379)) (|has| |#1| (-379)) (|has| |#1| (-374)) -(-2760 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-485)) (|has| |#1| (-568)) (|has| |#1| (-1070)) (|has| |#1| (-1133))) -((($) -2760 (|has| |#1| (-238)) (|has| |#1| (-237)) (|has| |#1| (-360)))) +(-2759 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-485)) (|has| |#1| (-568)) (|has| |#1| (-1070)) (|has| |#1| (-1133))) +((($) -2759 (|has| |#1| (-238)) (|has| |#1| (-237)) (|has| |#1| (-360)))) ((((-117 |#1|)) . T)) ((((-117 |#1|)) . T)) (|has| |#1| (-360)) @@ -2366,7 +2366,7 @@ (|has| |#1| (-38 (-419 (-576)))) (((|#2|) . T) (((-876)) . T)) (((|#2|) . T) (((-876)) . T)) -((($ (-1197)) -2760 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) +((($ (-1197)) -2759 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) @@ -2377,18 +2377,18 @@ (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-861)) -((((-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) . T)) +((((-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-576)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) |has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) ((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) |has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) ((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (((|#2|) . T)) (|has| |#1| (-15 * (|#1| (-576) |#1|))) (((|#3|) . T)) ((((-117 |#1|)) . T)) (|has| |#1| (-379)) -(-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) +(-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-861)) (|has| |#1| (-15 * (|#1| (-783) |#1|))) @@ -2407,17 +2407,17 @@ (((|#1|) |has| |#1| (-374))) (((|#1|) |has| |#1| (-374))) ((((-876)) . T)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) ((($ $) . T) (((-624 $) $) . T)) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-568))) ((($) . T) (((-1274 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T)) -((($) -2760 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) ((|#1|) -2760 (|has| |#1| (-174)) (|has| |#1| (-1070))) (((-419 (-576))) |has| |#1| (-568)) (((-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) -((($) . T) (((-576)) . T) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) +((($) -2759 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) ((|#1|) -2759 (|has| |#1| (-174)) (|has| |#1| (-1070))) (((-419 (-576))) |has| |#1| (-568)) (((-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) +((($) . T) (((-576)) . T) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) (|has| |#1| (-374)) (|has| |#1| (-374)) (|has| |#1| (-374)) ((((-390)) . T) (((-576)) . T) (((-419 (-576))) . T)) -((((-1197)) -2760 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) +((((-1197)) -2759 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) ((((-656 (-792 |#1| (-878 |#2|)))) . T) (((-876)) . T)) ((((-548)) |has| (-792 |#1| (-878 |#2|)) (-626 (-548)))) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) @@ -2426,17 +2426,17 @@ (((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (((|#1|) |has| |#1| (-174))) ((((-876)) . T)) -(-2760 (|has| |#2| (-464)) (|has| |#2| (-928))) +(-2759 (|has| |#2| (-464)) (|has| |#2| (-928))) (((|#1|) . T)) ((($) . T)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) ((((-548)) |has| |#1| (-626 (-548)))) (((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) ((((-783)) . T)) (|has| |#1| (-1121)) -((((-576)) -2760 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) ((|#2|) -2760 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070))) +((((-576)) -2759 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) ((|#2|) -2759 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070))) ((((-876)) . T)) ((((-1197)) . T) (((-876)) . T)) ((((-576)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) @@ -2444,14 +2444,14 @@ (|has| |#1| (-146)) (|has| |#1| (-148)) ((((-576)) . T)) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-568))) (((#0=(-1273 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))) (($) . T)) ((((-576)) . T)) ((($) . T)) (|has| |#1| (-374)) -(-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-148)) (|has| |#1| (-374))) (|has| |#1| (-148))) -(-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))) +(-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-148)) (|has| |#1| (-374))) (|has| |#1| (-148))) +(-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))) (|has| |#1| (-374)) (|has| |#1| (-146)) (|has| |#1| (-148)) @@ -2472,29 +2472,29 @@ ((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#)) (|has| |#1| (-861)) ((((-419 (-576))) |has| |#2| (-374)) (($) . T)) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-1121))) ((((-1163 |#2| |#1|)) . T) ((|#1|) . T) (((-576)) . T)) (((|#1| |#2|) . T)) -((((-576)) . T) ((|#1|) . T) (((-419 (-576))) -2760 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576)))))) -((((-1197)) -2760 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))))) +((((-576)) . T) ((|#1|) . T) (((-419 (-576))) -2759 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576)))))) +((((-1197)) -2759 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))))) (((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) (((|#2|) . T) (($) . T) (((-576)) . T)) (((|#1|) . T) (($) . T) (((-576)) . T)) -(-2760 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) +(-2759 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) ((((-876)) . T)) ((((-576)) . T)) -(-2760 (-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) +(-2759 (-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (((|#1| $) |has| |#1| (-296 |#1| |#1|))) ((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T)) ((((-971 |#1|)) . T) (((-876)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -2760 (|has| |#1| (-300)) (|has| |#1| (-374))) ((#0=(-419 (-576)) #0#) |has| |#1| (-374))) +(((|#1| |#1|) . T) (($ $) -2759 (|has| |#1| (-300)) (|has| |#1| (-374))) ((#0=(-419 (-576)) #0#) |has| |#1| (-374))) ((((-971 |#1|)) . T)) -((((-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) . T)) +((((-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) . T)) ((($) . T)) ((((-576) |#1|) . T)) ((((-1197)) |has| (-419 |#2|) (-917 (-1197)))) -(((|#1|) . T) (($) -2760 (|has| |#1| (-300)) (|has| |#1| (-374))) (((-419 (-576))) |has| |#1| (-374))) +(((|#1|) . T) (($) -2759 (|has| |#1| (-300)) (|has| |#1| (-374))) (((-419 (-576))) |has| |#1| (-374))) ((((-548)) |has| |#2| (-626 (-548)))) ((((-701 |#2|)) . T) (((-876)) . T)) (((|#1|) . T)) @@ -2502,24 +2502,24 @@ (((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) ((((-884 |#1|)) . T)) (((|#1|) |has| |#1| (-174))) -(-2760 (|has| |#4| (-805)) (|has| |#4| (-861))) -(-2760 (|has| |#3| (-805)) (|has| |#3| (-861))) +(-2759 (|has| |#4| (-805)) (|has| |#4| (-861))) +(-2759 (|has| |#3| (-805)) (|has| |#3| (-861))) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) ((((-876)) . T)) (((|#1|) . T)) ((($) . T) (((-576)) . T) ((|#2|) . T)) ((((-876)) . T)) (((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) -(((|#3|) -2760 (|has| |#3| (-174)) (|has| |#3| (-374)))) +(((|#3|) -2759 (|has| |#3| (-174)) (|has| |#3| (-374)))) (((|#2|) |has| |#2| (-1070))) (((|#2|) |has| |#2| (-1070))) (((|#3|) . T)) ((($) . T)) (((|#1|) . T)) ((((-419 |#2|)) . T)) -(((|#2|) -2760 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)))) +(((|#2|) -2759 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)))) (((|#1|) . T)) -(((|#2|) -2760 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1070)))) +(((|#2|) -2759 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1070)))) (((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) ((((-1255 (-576)) $) . T) (((-576) |#1|) . T)) (((|#1|) . T)) @@ -2528,16 +2528,16 @@ ((((-419 (-576))) . T) (($) . T)) ((((-419 (-576))) . T) (($) . T)) ((((-419 (-576))) . T) (($) . T)) -(-2760 (|has| |#1| (-464)) (|has| |#1| (-1242))) +(-2759 (|has| |#1| (-464)) (|has| |#1| (-1242))) ((($) . T)) ((((-419 (-576))) |has| #0=(-419 |#2|) (-1059 (-419 (-576)))) (((-576)) |has| #0# (-1059 (-576))) ((#0#) . T)) (((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) (((|#1| (-783)) . T)) (|has| |#1| (-861)) (((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) -((($) -2760 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2760 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((($) -2759 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2759 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) ((((-576)) . T)) -((((-2 (|:| -4301 (-1179)) (|:| -4440 (-52)))) |has| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-319 (-2 (|:| -4301 (-1179)) (|:| -4440 (-52)))))) +((((-2 (|:| -4300 (-1179)) (|:| -4439 (-52)))) |has| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-319 (-2 (|:| -4300 (-1179)) (|:| -4439 (-52)))))) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (|has| |#1| (-860)) ((((-576) $) . T) (((-656 (-576)) $) . T)) @@ -2562,59 +2562,59 @@ (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) ((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) -(-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) +(-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-15 * (|#1| (-783) |#1|))) ((((-1179)) . T) (((-518)) . T) (((-227)) . T) (((-576)) . T)) ((((-876)) . T)) -(((|#2|) . T) (((-576)) . T) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (((-1103)) . T) ((|#1|) . T) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) +(((|#2|) . T) (((-576)) . T) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (((-1103)) . T) ((|#1|) . T) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (((|#1| |#2|) . T)) ((((-145)) . T)) ((((-792 |#1| (-878 |#2|))) . T)) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) (|has| |#1| (-1223)) ((((-876)) . T)) (((|#1|) . T)) -(-2760 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-861)) (|has| |#3| (-1070)) (|has| |#3| (-1121))) +(-2759 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-861)) (|has| |#3| (-1070)) (|has| |#3| (-1121))) ((((-1197) |#1|) |has| |#1| (-526 (-1197) |#1|))) (((|#2|) . T)) (((|#2|) . T)) -((($ $) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +((($ $) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) ((((-929 |#1|)) . T)) -((($) -2760 (-12 (|has| |#4| (-238)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1070))))) -((($) -2760 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070))))) +((($) -2759 (-12 (|has| |#4| (-238)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1070))))) +((($) -2759 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070))))) ((($) . T)) ((((-419 (-971 |#1|))) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (|has| |#1| (-861)) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-1197)) -2760 (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-1197)) -2759 (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))))) (|has| |#1| (-860)) ((((-548)) |has| |#4| (-626 (-548)))) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-1121))) ((((-876)) . T) (((-656 |#4|)) . T)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) (((|#1|) . T)) (|has| |#1| (-374)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) (((-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) |has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))))) -(-2760 (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) (-12 (|has| |#1| (-374)) (|has| |#2| (-861)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) (((-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) |has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-319 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))))) +(-2759 (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) (-12 (|has| |#1| (-374)) (|has| |#2| (-861)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -2760 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)))) +(((|#3|) -2759 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)))) ((((-684 |#1|)) . T)) -(((|#3|) -2760 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1070)))) +(((|#3|) -2759 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1070)))) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) (|has| |#1| (-146)) (|has| |#1| (-148)) -(-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-148)) (|has| |#1| (-374))) (|has| |#1| (-148))) -(-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))) +(-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-148)) (|has| |#1| (-374))) (|has| |#1| (-148))) +(-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) ((((-1280 |#1| |#2| |#3|)) |has| |#1| (-374))) (|has| |#1| (-860)) (((|#1| |#2|) . T)) @@ -2626,13 +2626,13 @@ ((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((|#1|) . T) (((-576)) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) -(-2760 (|has| |#2| (-832)) (|has| |#2| (-861))) +(-2759 (|has| |#2| (-832)) (|has| |#2| (-861))) ((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-1121))) ((((-576)) . T) ((|#1|) . T)) (((|#2|) . T) (($) . T) (((-576)) . T)) (((|#2|) . T)) -((((-1197)) -2760 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) +((((-1197)) -2759 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) (((|#1| |#1|) . T)) (((|#3|) |has| |#3| (-374))) ((((-419 |#2|)) . T)) @@ -2641,10 +2641,10 @@ ((((-876)) . T)) ((((-876)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) ((((-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) -(((|#1|) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)))) +(((|#1|) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)))) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) @@ -2654,14 +2654,14 @@ (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#2|) |has| |#2| (-374))) -((($) -2760 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2760 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((($) -2759 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2759 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) (((|#2|) . T)) ((((-419 (-576))) . T) (((-711)) . T) (($) . T)) -((($) . T) (((-419 (-576))) -2760 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((($) . T) (((-419 (-576))) -2759 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(-2760 (|has| |#1| (-238)) (|has| |#1| (-237))) +(-2759 (|has| |#1| (-238)) (|has| |#1| (-237))) (((#0=(-792 |#1| (-878 |#2|)) #0#) |has| (-792 |#1| (-878 |#2|)) (-319 (-792 |#1| (-878 |#2|))))) -((($) -2760 (|has| |#1| (-238)) (|has| |#1| (-237)))) +((($) -2759 (|has| |#1| (-238)) (|has| |#1| (-237)))) ((((-576)) . T) (($) . T)) ((((-878 |#1|)) . T)) (((|#2|) |has| |#2| (-174))) @@ -2670,7 +2670,7 @@ ((((-1197)) |has| |#1| (-917 (-1197))) (((-1103)) . T)) ((((-1197)) |has| |#1| (-917 (-1197))) (((-1109 (-1197))) . T)) (((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) -((($ (-1197)) -2760 (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))))) +((($ (-1197)) -2759 (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))))) ((((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (|has| |#1| (-38 (-419 (-576)))) @@ -2679,13 +2679,13 @@ (|has| |#1| (-146)) (|has| |#1| (-148)) ((($ $) . T)) -(-2760 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)) (|has| |#1| (-1133)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)) (|has| |#1| (-1133)) (|has| |#1| (-1121))) (|has| |#1| (-568)) (((|#2|) . T)) ((((-576)) . T)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) (((|#1|) . T)) -(-2760 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) +(-2759 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) ((((-593 |#1|)) . T)) ((($) . T)) (((|#1| (-59 |#1|) (-59 |#1|)) . T)) @@ -2694,7 +2694,7 @@ (((|#1|) . T)) ((((-876)) . T)) ((($) . T)) -(((|#2|) |has| |#2| (-6 (-4467 "*")))) +(((|#2|) |has| |#2| (-6 (-4466 "*")))) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) @@ -2705,37 +2705,37 @@ (((|#1|) . T)) (((|#3|) . T) (((-576)) . T)) ((((-1273 |#2| |#3| |#4|)) . T) (((-576)) . T) (((-1274 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-48)) -12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576)))) (((-576)) -2760 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1059 (-576))) (|has| |#1| (-1070))) ((|#1|) . T) (((-624 $)) . T) (($) |has| |#1| (-568)) (((-419 (-576))) -2760 (|has| |#1| (-568)) (|has| |#1| (-1059 (-419 (-576))))) (((-419 (-971 |#1|))) |has| |#1| (-568)) (((-971 |#1|)) |has| |#1| (-1070)) (((-1197)) . T)) +((((-48)) -12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576)))) (((-576)) -2759 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1059 (-576))) (|has| |#1| (-1070))) ((|#1|) . T) (((-624 $)) . T) (($) |has| |#1| (-568)) (((-419 (-576))) -2759 (|has| |#1| (-568)) (|has| |#1| (-1059 (-419 (-576))))) (((-419 (-971 |#1|))) |has| |#1| (-568)) (((-971 |#1|)) |has| |#1| (-1070)) (((-1197)) . T)) ((((-419 (-576))) |has| |#2| (-1059 (-419 (-576)))) (((-576)) |has| |#2| (-1059 (-576))) ((|#2|) . T) (((-878 |#1|)) . T)) ((($) . T) (((-117 |#1|)) . T) (((-419 (-576))) . T)) ((((-1146 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) ((((-1193 |#1|)) . T) (((-1103)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) ((((-1146 |#1| (-1197))) . T) (((-1109 (-1197))) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-1197)) . T)) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-1121))) ((($) . T)) (|has| |#1| (-1121)) ((((-576)) -12 (|has| |#1| (-901 (-576))) (|has| |#2| (-901 (-576)))) (((-390)) -12 (|has| |#1| (-901 (-390))) (|has| |#2| (-901 (-390))))) (((|#1| |#2|) . T)) ((((-1197) |#1|) . T)) (((|#4|) . T)) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-360))) ((((-1197) (-52)) . T)) ((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) |has| |#1| (-1059 (-576))) ((|#1|) . T)) ((((-1273 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) . T)) ((((-876)) . T)) -(-2760 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) +(-2759 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) (((#0=(-1274 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) (((|#1| |#1|) |has| |#1| (-174)) ((#0=(-419 (-576)) #0#) |has| |#1| (-568)) (($ $) |has| |#1| (-568))) ((($) |has| |#1| (-15 * (|#1| (-576) |#1|)))) -((($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1| $) |has| |#1| (-296 |#1| |#1|))) ((((-1274 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-568)) (($) |has| |#1| (-568))) -((((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) +((((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) (|has| |#1| (-374)) -((($) |has| |#1| (-860)) (((-576)) -2760 (|has| |#1| (-21)) (|has| |#1| (-860)))) -((($) -2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) +((($) |has| |#1| (-860)) (((-576)) -2759 (|has| |#1| (-21)) (|has| |#1| (-860)))) +((($) -2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) ((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (|has| |#1| (-146)) (|has| |#1| (-148)) @@ -2753,16 +2753,16 @@ (((|#2| |#3|) . T)) (((|#1| (-543 |#2|)) . T)) (((|#1| (-783)) . T)) -(-2760 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +(-2759 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) (((|#1| (-543 (-1109 (-1197)))) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) (|has| |#2| (-928)) -(-2760 (|has| |#2| (-805)) (|has| |#2| (-861))) +(-2759 (|has| |#2| (-805)) (|has| |#2| (-861))) ((((-876)) . T)) -(((|#2|) -2760 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)))) -(((|#2|) -2760 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1070)))) -((($ (-1197)) -2760 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) +(((|#2|) -2759 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)))) +(((|#2|) -2759 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1070)))) +((($ (-1197)) -2759 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) ((($ $) . T) ((#0=(-1273 |#2| |#3| |#4|) #0#) . T) ((#1=(-419 (-576)) #1#) |has| #0# (-38 (-419 (-576))))) ((((-929 |#1|)) . T)) (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) @@ -2770,14 +2770,14 @@ ((((-876)) . T)) ((($) . T) (((-576)) . T)) ((($) . T)) -(-2760 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (|has| |#1| (-374)) (|has| |#1| (-374)) (((|#1| |#2|) . T)) ((($) . T) ((#0=(-1273 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) ((((-1195 |#1| |#2| |#3|)) |has| |#1| (-374))) -(-2760 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374)) (|has| |#1| (-360))) -(-2760 (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) +(-2759 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2759 (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) ((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) (((|#1| |#2|) . T)) ((((-876)) . T)) @@ -2815,7 +2815,7 @@ ((($) . T)) (((|#4|) . T)) ((($) . T)) -((($ (-1197)) -2760 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))))) +((($ (-1197)) -2759 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))))) ((((-876)) . T)) (((|#1| (-543 (-1197))) . T)) ((($ $) . T)) @@ -2825,29 +2825,29 @@ (((|#2|) . T)) (((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (((|#2|) . T)) -(((|#2|) -2760 (|has| |#2| (-6 (-4467 "*"))) (|has| |#2| (-174)))) -(-2760 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) -(-2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(((|#2|) -2759 (|has| |#2| (-6 (-4466 "*"))) (|has| |#2| (-174)))) +(-2759 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +(-2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (|has| |#2| (-928)) (|has| |#1| (-928)) -((($) -2760 (-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1070))))) +((($) -2759 (-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1070))))) (((|#2|) |has| |#2| (-174))) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) ((((-1280 |#1| |#2| |#3|)) |has| |#1| (-374))) ((((-876)) . T)) ((((-876)) . T)) ((((-548)) . T) (((-576)) . T) (((-907 (-576))) . T) (((-390)) . T) (((-227)) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-576)) . T)) -((((-2 (|:| -4301 (-1179)) (|:| -4440 (-52)))) . T)) +((((-2 (|:| -4300 (-1179)) (|:| -4439 (-52)))) . T)) (((|#1|) . T)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) ((((-876)) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-576)) . T)) (((|#1| (-419 (-576))) . T)) (((|#1|) . T)) -(-2760 (|has| |#1| (-300)) (|has| |#1| (-374))) +(-2759 (|has| |#1| (-300)) (|has| |#1| (-374))) ((((-145)) . T)) ((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T) (((-419 (-576))) . T) (($) . T)) (|has| |#1| (-860)) @@ -2863,7 +2863,7 @@ ((((-876)) . T)) ((((-876)) . T)) ((((-189)) . T) (((-876)) . T)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) ((((-876)) . T)) ((((-876)) . T)) @@ -2880,8 +2880,8 @@ (|has| |#1| (-861)) ((((-876)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -((((-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) . T)) -((($) -2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) +((((-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) . T)) +((($) -2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) ((((-876)) . T)) (((|#2|) |has| |#2| (-374))) ((((-876)) . T)) @@ -2896,19 +2896,19 @@ (|has| |#3| (-1070)) (|has| |#1| (-1121)) ((((-1197) (-52)) . T)) -(-2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-2760 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) -(-2760 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) +(-2759 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) +(-2759 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) (|has| |#1| (-928)) ((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) (|has| |#1| (-928)) (((|#1|) . T) (((-576)) . T) (((-419 (-576))) . T) (($) . T)) (((|#2|) . T)) -((($ (-1197)) -2760 (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))))) +((($ (-1197)) -2759 (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))))) (((#0=(-419 (-576)) #0#) . T) (($ $) . T)) ((((-576)) . T)) (((|#1|) . T)) @@ -2920,12 +2920,12 @@ (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (|has| |#1| (-832)) (((#0=(-929 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T)) ((((-419 |#2|)) . T)) (|has| |#1| (-860)) -((((-1224 |#1|)) . T) (((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-1224 |#1|)) . T) (((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) (((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) . T) ((#1=(-576) #1#) . T) (($ $) . T)) ((((-929 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) (((|#2|) |has| |#2| (-1070)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) @@ -2942,35 +2942,35 @@ (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#2|) . T)) -(-2760 (|has| |#1| (-146)) (|has| |#1| (-379))) -(-2760 (|has| |#1| (-146)) (|has| |#1| (-379))) -(-2760 (|has| |#1| (-146)) (|has| |#1| (-379))) -((((-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) . T)) +(-2759 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2759 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2759 (|has| |#1| (-146)) (|has| |#1| (-379))) +((((-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) . T)) ((((-576) |#3|) . T)) -(((#0=(-52)) . T) (((-2 (|:| -4301 (-1197)) (|:| -4440 #0#))) . T)) +(((#0=(-52)) . T) (((-2 (|:| -4300 (-1197)) (|:| -4439 #0#))) . T)) (|has| |#1| (-360)) ((((-576)) . T)) ((((-876)) . T)) (((|#1|) . T)) (((#0=(-1274 |#1| |#2| |#3| |#4|) $) |has| #0# (-296 #0# #0#))) (|has| |#1| (-374)) -(-2760 (-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) -(((|#1|) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1070))) (($) -2760 (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) (((-576)) -2760 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)))) +(-2759 (-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) +(((|#1|) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1070))) (($) -2759 (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) (((-576)) -2759 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)))) (((#0=(-1103) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-360))) (((#0=(-419 (-576)) #0#) . T) ((#1=(-711) #1#) . T) (($ $) . T)) ((((-326 |#1|)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-374))) ((((-876)) . T)) (|has| |#1| (-1121)) (((|#1|) . T)) -(((|#1|) -2760 (|has| |#2| (-378 |#1|)) (|has| |#2| (-429 |#1|)))) -(((|#1|) -2760 (|has| |#2| (-378 |#1|)) (|has| |#2| (-429 |#1|)))) +(((|#1|) -2759 (|has| |#2| (-378 |#1|)) (|has| |#2| (-429 |#1|)))) +(((|#1|) -2759 (|has| |#2| (-378 |#1|)) (|has| |#2| (-429 |#1|)))) (((|#2|) . T)) ((((-419 (-576))) . T) (((-711)) . T) (($) . T)) ((((-591)) . T)) (((|#3| |#3|) . T)) -((($ (-1197)) -2760 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) +((($ (-1197)) -2759 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) (|has| |#1| (-861)) (|has| |#2| (-238)) ((((-878 |#1|)) . T)) @@ -2991,10 +2991,10 @@ (|has| |#1| (-1121)) (((|#2|) . T)) (((|#1|) . T)) -((($) -2760 (|has| |#1| (-238)) (|has| |#1| (-237)))) +((($) -2759 (|has| |#1| (-238)) (|has| |#1| (-237)))) ((((-576)) . T)) (((|#2|) . T) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((|#1|) . T) (($) . T) (((-576)) . T)) -(-2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) (((|#1| |#2|) . T)) ((($) . T)) @@ -3037,7 +3037,7 @@ (|has| |#2| (-1043)) ((($) . T)) (|has| |#1| (-928)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) (((|#4|) . T)) ((($) . T)) (((|#2|) . T)) @@ -3047,32 +3047,32 @@ (|has| |#1| (-374)) ((((-929 |#1|)) . T)) ((($) . T) (((-576)) . T) ((|#1|) . T) (((-419 (-576))) . T)) -((($) -2760 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) |has| |#1| (-860)) (((-576)) -2760 (|has| |#1| (-21)) (|has| |#1| (-860)))) +((($) -2759 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) |has| |#1| (-860)) (((-576)) -2759 (|has| |#1| (-21)) (|has| |#1| (-860)))) ((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -(-2760 (|has| |#1| (-379)) (|has| |#1| (-861))) +(-2759 (|has| |#1| (-379)) (|has| |#1| (-861))) (((|#1|) . T)) ((((-783)) . T)) ((((-876)) . T)) ((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) ((((-419 |#2|) |#3|) . T)) -(-2760 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))) +(-2759 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))) ((($) . T) (((-419 (-576))) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T) (((-624 $)) . T)) ((((-576)) . T) (($) . T)) ((((-576)) . T) (($) . T)) ((((-783) |#1|) . T)) -(((|#2| (-245 (-3503 |#1|) (-783))) . T)) +(((|#2| (-245 (-3502 |#1|) (-783))) . T)) (((|#1| (-543 |#3|)) . T)) ((((-419 (-576))) . T)) -(-2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((((-1179)) . T) (((-876)) . T)) -(((#0=(-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) #0#) |has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-319 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))))) +(((#0=(-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) #0#) |has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-319 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))))) ((((-1179)) . T)) (|has| |#1| (-928)) (|has| |#2| (-374)) (((|#1|) . T) (($) . T) (((-576)) . T)) -(-2760 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) +(-2759 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) ((((-171 (-390))) . T) (((-227)) . T) (((-390)) . T)) ((((-876)) . T)) (((|#1|) . T)) @@ -3089,11 +3089,11 @@ (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -(-2760 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2759 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) (|has| |#1| (-38 (-419 (-576)))) (-12 (|has| |#1| (-557)) (|has| |#1| (-840))) ((((-876)) . T)) -((((-1197)) -2760 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1197)))))) +((((-1197)) -2759 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1197)))))) (|has| |#1| (-374)) ((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (|has| |#1| (-374)) @@ -3106,13 +3106,13 @@ ((((-576) |#1|) . T)) ((((-1197)) |has| |#1| (-917 (-1197)))) (((|#1|) . T)) -(-2760 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360))) +(-2759 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360))) (((|#2|) |has| |#1| (-374))) (((|#2|) |has| |#1| (-374))) -(-2760 (|has| |#4| (-805)) (|has| |#4| (-861))) -(-2760 (|has| |#3| (-805)) (|has| |#3| (-861))) +(-2759 (|has| |#4| (-805)) (|has| |#4| (-861))) +(-2759 (|has| |#3| (-805)) (|has| |#3| (-861))) ((((-576)) . T) (($) . T)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) @@ -3147,32 +3147,32 @@ ((((-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-901 (-390)))) (((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-901 (-576))))) (((|#1|) . T)) ((($) . T) (((-576)) . T) ((|#2|) . T)) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-568))) (((|#3|) . T)) ((((-1179)) . T) (((-518)) . T) (((-227)) . T) (((-576)) . T)) (((|#1|) . T)) (|has| |#1| (-374)) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-568))) (|has| |#1| (-374)) (|has| |#1| (-568)) (((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -(-2760 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) +(-2759 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) (((|#2|) . T)) (((|#2|) . T)) (|has| |#2| (-1070)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) -((((-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) . T)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) +((((-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) (|has| |#1| (-38 (-419 (-576)))) (((|#1| |#2|) . T)) (|has| |#1| (-38 (-419 (-576)))) -(-2760 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2759 (|has| |#1| (-146)) (|has| |#1| (-379))) ((($) . T)) (|has| |#1| (-148)) -(-2760 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2759 (|has| |#1| (-146)) (|has| |#1| (-379))) (|has| |#1| (-148)) -(-2760 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2759 (|has| |#1| (-146)) (|has| |#1| (-379))) (|has| |#1| (-148)) ((($) . T)) ((((-593 |#1|)) . T)) @@ -3188,7 +3188,7 @@ ((((-419 (-576))) |has| |#2| (-1059 (-576))) (((-576)) |has| |#2| (-1059 (-576))) (((-1197)) |has| |#2| (-1059 (-1197))) ((|#2|) . T)) (((#0=(-419 |#2|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -(-2760 (|has| |#1| (-146)) (|has| |#1| (-360))) +(-2759 (|has| |#1| (-146)) (|has| |#1| (-360))) (|has| |#1| (-148)) ((((-876)) . T)) ((($) . T)) @@ -3208,15 +3208,15 @@ ((((-419 |#2|)) . T)) ((((-876)) . T)) (((|#1|) . T)) -((((-1197)) -2760 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-1121))) +((((-1197)) -2759 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-1121))) (|has| |#1| (-803)) (|has| |#1| (-803)) ((((-876)) . T)) ((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) ((((-876)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) ((((-115)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -3225,7 +3225,7 @@ ((((-1274 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)) (((-419 (-576))) |has| |#1| (-568))) ((((-876)) . T)) -(-2760 (-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) +(-2759 (-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) ((((-876)) . T)) (((|#2|) . T)) (((|#2|) . T)) @@ -3238,10 +3238,10 @@ ((((-876)) . T)) (((|#2|) . T)) ((((-576)) . T)) -((((-1197)) -2760 (|has| (-419 |#2|) (-917 (-1197))) (|has| (-419 |#2|) (-919 (-1197))))) +((((-1197)) -2759 (|has| (-419 |#2|) (-917 (-1197))) (|has| (-419 |#2|) (-919 (-1197))))) ((((-876)) . T)) ((((-576)) . T)) -(-2760 (|has| |#2| (-805)) (|has| |#2| (-861))) +(-2759 (|has| |#2| (-805)) (|has| |#2| (-861))) ((((-171 (-390))) . T) (((-227)) . T) (((-390)) . T)) ((((-876)) . T)) ((((-876)) . T)) @@ -3253,10 +3253,10 @@ (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (|has| |#1| (-374)) (|has| |#1| (-374)) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) ((((-576) $) . T) (((-656 (-576)) $) . T)) -(-2760 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)) (|has| |#1| (-1133)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)) (|has| |#1| (-1133)) (|has| |#1| (-1121))) (|has| |#1| (-1173)) ((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) ((($) . T)) @@ -3266,20 +3266,20 @@ (((#0=(-117 |#1|) $) |has| #0# (-296 #0# #0#))) (((|#1|) |has| |#1| (-174))) ((((-326 |#1|)) . T) (((-576)) . T)) -(-2760 (|has| |#2| (-238)) (|has| |#2| (-237))) +(-2759 (|has| |#2| (-238)) (|has| |#2| (-237))) (((|#1|) . T)) ((((-876)) . T)) ((((-115)) . T) ((|#1|) . T)) ((((-876)) . T)) -((((-1197)) -2760 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) +((((-1197)) -2759 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) (((|#1|) |has| |#1| (-319 |#1|))) ((((-576) |#1|) . T) (((-1255 (-576)) $) . T)) (((|#1| |#2|) . T)) ((((-1197) |#1|) . T)) -(((|#1|) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)))) +(((|#1|) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)))) (((|#1|) . T)) ((($ (-1197)) . T)) -(((|#1|) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1070)))) +(((|#1|) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1070)))) ((((-576)) . T) (((-419 (-576))) . T)) (((|#1|) . T)) (|has| |#1| (-568)) @@ -3288,15 +3288,15 @@ (((|#1|) . T)) (((|#1|) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-568))) (|has| |#1| (-374)) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-568))) (|has| |#1| (-374)) (|has| |#1| (-568)) ((($) . T)) (|has| |#1| (-1121)) ((((-792 |#1| (-878 |#2|))) |has| (-792 |#1| (-878 |#2|)) (-319 (-792 |#1| (-878 |#2|))))) -(-2760 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +(-2759 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) (((|#1|) . T)) (((|#2| |#3|) . T)) (((|#1|) . T)) @@ -3305,17 +3305,17 @@ (((|#1| (-783)) . T)) (|has| |#1| (-238)) (((|#1| (-543 (-1109 (-1197)))) . T)) -((($) -2760 (-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1070))))) +((($) -2759 (-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1070))))) ((((-593 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((((-2 (|:| -4301 (-1179)) (|:| -4440 (-52)))) . T)) +((((-2 (|:| -4300 (-1179)) (|:| -4439 (-52)))) . T)) (((|#1|) . T)) (((|#1|) . T) (((-576)) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (|has| |#2| (-374)) ((((-876)) . T)) ((((-876)) . T)) -(-2760 (|has| |#3| (-805)) (|has| |#3| (-861))) +(-2759 (|has| |#3| (-805)) (|has| |#3| (-861))) ((((-876)) . T)) ((((-1141)) . T) (((-876)) . T)) ((((-548)) . T) (((-876)) . T)) @@ -3326,14 +3326,14 @@ ((((-576)) . T)) (((|#3|) . T)) ((((-876)) . T)) -(-2760 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-576)) . T) (((-419 (-576))) -2760 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576))))) ((|#2|) . T) (($) -2760 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) (((-878 |#1|)) . T)) -((((-1146 |#1| |#2|)) . T) ((|#2|) . T) (($) -2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) (((-576)) . T)) -((((-1193 |#1|)) . T) (((-576)) . T) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (((-1103)) . T) ((|#1|) . T) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) -(-2760 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) +(-2759 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) +((((-576)) . T) (((-419 (-576))) -2759 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576))))) ((|#2|) . T) (($) -2759 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) (((-878 |#1|)) . T)) +((((-1146 |#1| |#2|)) . T) ((|#2|) . T) (($) -2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) (((-576)) . T)) +((((-1193 |#1|)) . T) (((-576)) . T) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (((-1103)) . T) ((|#1|) . T) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) +(-2759 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) (((#0=(-593 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T)) ((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -((((-1146 |#1| (-1197))) . T) (((-576)) . T) (((-1109 (-1197))) . T) (($) -2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) (((-1197)) . T)) +((((-1146 |#1| (-1197))) . T) (((-576)) . T) (((-1109 (-1197))) . T) (($) -2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) (((-1197)) . T)) (((|#1|) |has| |#1| (-174))) (((|#1| (-1288 |#1|) (-1288 |#1|)) . T)) ((((-593 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) @@ -3343,12 +3343,12 @@ (((|#1|) . T)) (((|#1|) . T)) ((($) . T) (((-419 (-576))) . T)) -(((|#2|) |has| |#2| (-6 (-4467 "*")))) +(((|#2|) |has| |#2| (-6 (-4466 "*")))) (((|#1|) . T)) ((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((|#1|) . T) (((-576)) . T)) (((|#1|) . T)) ((((-876)) . T)) -(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2760 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2759 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) ((((-304 |#3|)) . T)) (((|#1|) . T)) @@ -3357,30 +3357,30 @@ (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -((($ $) -2760 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -((($ $) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +((($ $) -2759 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +((($ $) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) (((|#2|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2760 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2759 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -2760 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +((($ $) -2759 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) ((((-876)) . T)) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (|has| |#2| (-928)) (|has| |#1| (-928)) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((((-876)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) . T)) +((((-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-2760 (|has| |#2| (-805)) (|has| |#2| (-861))) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(-2759 (|has| |#2| (-805)) (|has| |#2| (-861))) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-1121))) (((|#1|) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) ((((-1197)) . T) ((|#1|) . T)) @@ -3392,15 +3392,15 @@ (((#0=(-419 (-576)) #0#) . T)) ((((-419 (-576))) . T)) (((|#1|) |has| |#1| (-174))) -(-2760 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) +(-2759 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) (((|#1|) . T)) (((|#1|) . T)) -(-2760 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) +(-2759 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) (((|#1|) . T)) ((((-419 (-576))) . T) (((-576)) . T) (($) . T)) ((((-548)) . T)) ((((-876)) . T)) -((($) -2760 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070))))) +((($) -2759 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070))))) (|has| |#1| (-861)) ((((-876)) . T)) ((((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) @@ -3416,21 +3416,21 @@ ((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) ((((-1197)) |has| |#1| (-917 (-1197)))) ((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((($) . T) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2760 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((($) . T) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) +(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2759 (|has| |#1| (-174)) (|has| |#1| (-568)))) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) ((($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#2|) |has| |#2| (-1070)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2760 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2759 (|has| |#1| (-174)) (|has| |#1| (-568)))) (|has| |#1| (-568)) (((|#1|) |has| |#1| (-374))) ((((-576)) . T)) ((((-1197) #0=(-117 |#1|)) |has| #0# (-526 (-1197) #0#)) ((#0# #0#) |has| #0# (-319 #0#))) (|has| |#1| (-803)) (|has| |#1| (-803)) -((((-1197)) -2760 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) +((((-1197)) -2759 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) (((|#2|) . T) (((-576)) |has| |#2| (-1059 (-576))) (((-419 (-576))) |has| |#2| (-1059 (-419 (-576))))) ((((-1103)) . T) ((|#2|) . T) (((-576)) |has| |#2| (-1059 (-576))) (((-419 (-576))) |has| |#2| (-1059 (-419 (-576))))) (((|#1|) . T)) @@ -3449,11 +3449,11 @@ ((($) |has| |#1| (-379))) (|has| |#2| (-832)) (|has| |#2| (-832)) -((((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) +((((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) ((($ (-1197)) |has| |#1| (-917 (-1197)))) (((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) -((($) -2760 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) -(((|#1|) . T) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) +((($) -2759 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) +(((|#1|) . T) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) ((((-576)) |has| |#1| (-901 (-576))) (((-390)) |has| |#1| (-901 (-390)))) (((|#1|) . T)) @@ -3468,7 +3468,7 @@ (|has| |#1| (-374)) (|has| |#1| (-374)) (((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) -(((|#2|) -2760 (|has| |#2| (-6 (-4467 "*"))) (|has| |#2| (-174)))) +(((|#2|) -2759 (|has| |#2| (-6 (-4466 "*"))) (|has| |#2| (-174)))) (((|#2|) . T)) (|has| |#1| (-374)) (((|#2|) . T)) @@ -3482,12 +3482,12 @@ (((|#2| (-783)) . T)) ((((-1197)) . T)) ((((-884 |#1|)) . T)) -(-2760 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070))) -(-2760 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1070))) +(-2759 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070))) +(-2759 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1070))) ((((-876)) . T)) (((|#1|) . T)) -(-2760 (|has| |#2| (-805)) (|has| |#2| (-861))) -(-2760 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))) +(-2759 (|has| |#2| (-805)) (|has| |#2| (-861))) +(-2759 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))) ((((-884 |#1|)) . T)) (((|#1|) . T)) (|has| |#1| (-379)) @@ -3505,7 +3505,7 @@ (((|#1|) . T)) ((((-876)) . T)) ((($) . T) ((|#2|) . T) (((-419 (-576))) . T) (((-576)) |has| |#2| (-651 (-576)))) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-1121))) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) @@ -3514,7 +3514,7 @@ (((|#1|) . T)) ((((-876)) . T)) (|has| |#2| (-928)) -((((-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) . T)) +((((-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) . T)) ((((-548)) |has| |#2| (-626 (-548))) (((-907 (-390))) |has| |#2| (-626 (-907 (-390)))) (((-907 (-576))) |has| |#2| (-626 (-907 (-576))))) ((((-876)) . T)) ((((-876)) . T)) @@ -3525,7 +3525,7 @@ ((((-1193 |#1|)) . T) (((-876)) . T)) ((((-876)) . T)) ((((-419 (-576))) |has| |#2| (-1059 (-419 (-576)))) (((-576)) |has| |#2| (-1059 (-576))) ((|#2|) . T) (((-878 |#1|)) . T)) -((((-1197)) -2760 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (((-1103)) . T)) +((((-1197)) -2759 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (((-1103)) . T)) ((((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) ((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) |has| |#1| (-1059 (-576))) ((|#1|) . T) (((-1197)) . T)) ((((-876)) . T)) @@ -3544,10 +3544,10 @@ ((((-656 |#1|)) . T)) ((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) ((($) . T) (((-576)) . T) (((-1274 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T)) -((((-576)) -2760 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) (($) -2760 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) ((|#1|) -2760 (|has| |#1| (-174)) (|has| |#1| (-1070))) (((-419 (-576))) |has| |#1| (-568))) +((((-576)) -2759 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) (($) -2759 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) ((|#1|) -2759 (|has| |#1| (-174)) (|has| |#1| (-1070))) (((-419 (-576))) |has| |#1| (-568))) ((((-1202)) . T)) ((((-576)) . T) (((-419 (-576))) . T)) -((($ (-1197)) -2760 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) +((($ (-1197)) -2759 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) ((((-1202)) . T)) ((((-1202)) . T)) (((|#1|) |has| |#1| (-174)) (($) . T)) @@ -3561,16 +3561,16 @@ ((((-419 |#2|) |#3|) . T)) ((((-876)) . T)) (((|#1|) . T)) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-1121))) -(((|#2| (-494 (-3503 |#1|) (-783))) . T)) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(((|#2| (-494 (-3502 |#1|) (-783))) . T)) ((((-576) |#1|) . T)) ((((-1179)) . T) (((-876)) . T)) (((|#2| |#2|) . T)) (((|#1| (-543 (-1197))) . T)) -(-2760 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) +(-2759 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) ((((-576)) . T)) (((|#2|) . T)) -((($) -2760 (-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1070))))) +((($) -2759 (-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1070))))) (((|#2|) . T)) ((((-1197)) |has| |#1| (-917 (-1197))) (((-1103)) . T)) (((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) @@ -3579,9 +3579,9 @@ ((($) . T) (((-419 (-576))) . T)) ((($) . T)) ((($) . T)) -(-2760 (|has| |#1| (-861)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-861)) (|has| |#1| (-1121))) (((|#1|) . T)) -((($) -2760 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2759 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((((-876)) . T)) ((((-145)) . T)) (((|#1|) . T) (((-419 (-576))) . T)) @@ -3590,7 +3590,7 @@ ((((-876)) . T)) (((|#1|) . T)) (|has| |#1| (-1173)) -((($ (-1197)) -2760 (|has| (-419 |#2|) (-917 (-1197))) (|has| (-419 |#2|) (-919 (-1197))))) +((($ (-1197)) -2759 (|has| (-419 |#2|) (-917 (-1197))) (|has| (-419 |#2|) (-919 (-1197))))) (((|#1|) . T)) (((|#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|))) . T)) ((((-419 $) (-419 $)) |has| |#1| (-568)) (($ $) . T) ((|#1| |#1|) . T)) @@ -3615,44 +3615,44 @@ (|has| |#1| (-1121)) (|has| |#1| (-1121)) (|has| |#2| (-374)) -(((|#1|) . T) (($) -2760 (|has| |#1| (-300)) (|has| |#1| (-374))) (((-419 (-576))) |has| |#1| (-374))) +(((|#1|) . T) (($) -2759 (|has| |#1| (-300)) (|has| |#1| (-374))) (((-419 (-576))) |has| |#1| (-374))) (|has| |#1| (-374)) (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576)))) -((($) -2760 (|has| |#2| (-238)) (|has| |#2| (-237)))) +((($) -2759 (|has| |#2| (-238)) (|has| |#2| (-237)))) ((((-576)) . T)) (|has| |#1| (-1121)) -((($ (-1197)) -2760 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) +((($ (-1197)) -2759 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) ((((-1197)) -12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070)))) ((((-1197)) -12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070)))) (((|#1|) . T)) (|has| |#1| (-238)) -(((|#2| (-245 (-3503 |#1|) (-783))) . T)) +(((|#2| (-245 (-3502 |#1|) (-783))) . T)) (((|#1| (-543 |#3|)) . T)) (|has| |#1| (-379)) (|has| |#1| (-379)) (|has| |#1| (-379)) (((|#1|) . T) (($) . T)) (((|#1| (-543 |#2|)) . T)) -(-2760 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) +(-2759 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) (((|#1| (-783)) . T)) (|has| |#1| (-568)) -(-2760 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) -(-2760 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) +(-2759 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) +(-2759 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ((((-876)) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -(-2760 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) -(-2760 (|has| |#3| (-21)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1070))) +(-2759 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) +(-2759 (|has| |#3| (-21)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1070))) (|has| |#2| (-1070)) (((|#1|) |has| |#1| (-174))) (((|#4|) |has| |#4| (-1070))) (((|#3|) |has| |#3| (-1070))) (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) -((((-576)) . T) (((-419 (-576))) -2760 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576))))) ((|#2|) . T) (($) -2760 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) (((-878 |#1|)) . T)) -((((-1146 |#1| |#2|)) . T) (((-576)) . T) ((|#3|) . T) (($) -2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) ((|#2|) . T)) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) +((((-576)) . T) (((-419 (-576))) -2759 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576))))) ((|#2|) . T) (($) -2759 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) (((-878 |#1|)) . T)) +((((-1146 |#1| |#2|)) . T) (((-576)) . T) ((|#3|) . T) (($) -2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) ((|#2|) . T)) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) ((((-548)) |has| |#1| (-626 (-548)))) (((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) @@ -3671,18 +3671,18 @@ (((|#3|) |has| |#3| (-1121)) (((-576)) -12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121))) (((-419 (-576))) -12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121)))) (|has| |#2| (-374)) (((|#2|) |has| |#2| (-1070)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) -(-2760 (|has| |#1| (-379)) (|has| |#1| (-861))) +(-2759 (|has| |#1| (-379)) (|has| |#1| (-861))) (((|#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2760 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) -((($ $) -2760 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2759 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((($ $) -2759 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) ((((-1197)) |has| |#1| (-1070))) (|has| |#2| (-374)) (((|#2| |#2|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2760 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2759 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) @@ -3694,11 +3694,11 @@ (((|#1|) . T)) (|has| |#2| (-832)) (|has| |#2| (-832)) -((($) -2760 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2759 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-374)) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-374)) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-374)) (((|#1|) |has| |#2| (-429 |#1|))) (((|#1|) |has| |#2| (-429 |#1|))) @@ -3707,7 +3707,7 @@ ((((-876)) . T) (((-1202)) . T)) ((((-876)) . T) (((-1202)) . T)) ((((-876)) . T) (((-1202)) . T)) -((((-656 |#1|)) . T) (((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) +((((-656 |#1|)) . T) (((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) ((((-1202)) . T)) ((((-1202)) . T)) ((((-1202)) . T)) @@ -3722,19 +3722,19 @@ ((((-1202)) . T)) ((((-876)) . T) (((-1202)) . T)) ((((-1202)) . T)) -((((-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) |has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-319 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))))) -(-2760 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +((((-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) |has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-319 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))))) +(-2759 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((((-576) |#1|) . T)) ((((-576) |#1|) . T)) ((((-576) |#1|) . T)) -(-2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((((-576) |#1|) . T)) (((|#1|) . T)) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -(-2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -((($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +((($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) ((((-1197)) |has| |#1| (-917 (-1197))) (((-830 (-1197))) . T)) -(-2760 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1070))) +(-2759 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1070))) ((((-831 |#1|)) . T)) (((|#1| |#2|) . T)) ((((-876)) . T)) @@ -3747,21 +3747,21 @@ (((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)) (((-419 (-576))) |has| |#1| (-568))) (((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) (|has| |#1| (-374)) -(-2760 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238)))) +(-2759 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238)))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-374)) (((|#1|) . T)) -(((#0=(-419 (-576)) #0#) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($ $) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1| |#1|) . T)) +(((#0=(-419 (-576)) #0#) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($ $) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1| |#1|) . T)) ((((-1255 (-576)) $) . T) (((-576) |#1|) . T)) ((((-326 |#1|)) . T)) ((((-929 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((#0=(-711) (-1193 #0#)) . T)) -((((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) +((((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) (((|#1|) . T) (($) . T) (((-576)) . T) (((-419 (-576))) . T)) (((|#1| |#2| |#3| |#4|) . T)) (|has| |#1| (-860)) -(((|#2|) . T) (((-1197)) -12 (|has| |#1| (-374)) (|has| |#2| (-1059 (-1197)))) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) -(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -2760 (|has| |#1| (-374)) (|has| |#1| (-568)))) +(((|#2|) . T) (((-1197)) -12 (|has| |#1| (-374)) (|has| |#2| (-1059 (-1197)))) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) +(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -2759 (|has| |#1| (-374)) (|has| |#1| (-568)))) ((($ $) . T) ((#0=(-878 |#1|) $) . T) ((#0# |#2|) . T)) ((((-1146 |#1| (-1197))) . T) (((-830 (-1197))) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-1197)) . T)) ((($) . T)) @@ -3779,12 +3779,12 @@ (((#0=(-1274 |#1| |#2| |#3| |#4|)) |has| #0# (-319 #0#))) ((($) . T)) (((|#1|) . T)) -((($ $) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2| |#2|) |has| |#1| (-374)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((($ $) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2| |#2|) |has| |#1| (-374)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) (|has| |#2| (-238)) (|has| $ (-148)) ((((-876)) . T)) -((($) . T) (((-419 (-576))) -2760 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) +((($) . T) (((-419 (-576))) -2759 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) ((((-876)) . T)) (|has| |#1| (-860)) ((((-130)) . T)) @@ -3792,7 +3792,7 @@ ((((-419 (-576))) . T) (((-711)) . T) (($) . T) (((-576)) . T)) (((|#1|) . T)) ((((-130)) . T)) -((($ (-1197)) -2760 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) +((($ (-1197)) -2759 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) ((((-876)) . T)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (((|#2| (-684 |#1|)) . T)) @@ -3801,24 +3801,24 @@ ((((-876)) |has| |#1| (-1121))) (((|#4|) . T)) (|has| |#1| (-568)) -((($) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) ((|#1|) . T)) -((((-1197)) -2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) -(((|#1|) . T) (($) -2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((($) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) ((|#1|) . T)) +((((-1197)) -2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) +(((|#1|) . T) (($) -2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) ((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) ((((-1255 (-576)) $) . T) (((-576) |#1|) . T)) -(-2760 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +(-2759 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (((|#1|) . T)) (((|#1| (-543 (-830 (-1197)))) . T)) -(-2760 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -(-2760 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2759 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2759 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((((-576)) . T) ((|#2|) . T) (($) . T) (((-419 (-576))) . T) (((-1197)) |has| |#2| (-1059 (-1197)))) (((|#1|) . T)) -(-2760 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2759 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (((|#1|) . T)) -(-2760 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) -(-2760 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) +(-2759 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) +(-2759 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) ((((-1280 |#1| |#2| |#3|)) |has| |#1| (-374))) ((($) . T) (((-884 |#1|)) . T) (((-419 (-576))) . T)) ((((-1280 |#1| |#2| |#3|)) |has| |#1| (-374))) @@ -3827,15 +3827,15 @@ (((|#1|) . T)) (((|#1|) . T)) ((((-419 |#2|)) . T)) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-360))) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) ((((-548)) |has| |#1| (-626 (-548)))) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) ((((-548)) |has| |#1| (-626 (-548)))) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) ((((-548)) |has| |#1| (-626 (-548)))) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) (((|#1|) . T)) (((|#2| |#2|) . T) ((#0=(-419 (-576)) #0#) . T) (($ $) . T)) (((|#2|) . T) (((-419 (-576))) . T) (($) . T)) @@ -3855,7 +3855,7 @@ ((((-876)) . T)) ((((-876)) . T)) ((((-876)) . T)) -(-2760 (|has| |#1| (-238)) (|has| |#1| (-237))) +(-2759 (|has| |#1| (-238)) (|has| |#1| (-237))) (((|#1|) . T) (((-876)) . T) (((-1202)) . T)) ((((-1202)) . T)) ((((-876)) . T)) @@ -3864,21 +3864,21 @@ ((($) . T) (((-576)) . T) (((-117 |#1|)) . T) (((-419 (-576))) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (((|#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|))) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2760 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2759 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) (((|#2|) . T) ((|#6|) . T)) ((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) ((($) . T) (((-576)) . T)) -((($) -2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((((-1125)) . T)) ((((-876)) . T)) ((((-1202)) . T) (((-876)) . T)) ((((-1202)) . T) (((-876)) . T)) ((((-1202)) . T)) ((((-1202)) . T)) -((($) -2760 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2759 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) ((($) . T) (((-576)) . T)) -((($) -2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (|has| |#2| (-928)) (((|#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T)) ((((-876)) . T)) @@ -3894,9 +3894,9 @@ (((|#1| |#1|) |has| |#1| (-174))) ((((-711)) . T)) ((((-711)) . T)) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) ((((-1202)) . T)) -(-2760 (|has| |#2| (-805)) (|has| |#2| (-861))) +(-2759 (|has| |#2| (-805)) (|has| |#2| (-861))) (((|#1|) |has| |#1| (-174))) ((((-1202)) . T)) ((((-1274 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) @@ -3906,20 +3906,20 @@ (((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-568)) (($) |has| |#1| (-568))) ((((-419 (-576))) . T) (($) . T)) (((|#1| (-576)) . T)) -((($ (-1197)) -2760 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (($ (-1103)) . T)) +((($ (-1197)) -2759 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (($ (-1103)) . T)) ((((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) ((((-1202)) . T)) ((((-1202)) . T)) ((((-1202)) . T)) ((((-1202)) . T)) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-360))) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-360))) ((((-1202)) . T)) ((((-1202)) . T)) (|has| |#1| (-374)) (|has| |#1| (-374)) -(-2760 (|has| |#1| (-174)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-174)) (|has| |#1| (-568))) (((|#1| (-576)) . T)) (((|#1| (-419 (-576))) . T)) (((|#1| (-783)) . T)) @@ -3927,24 +3927,24 @@ (((|#1| (-543 |#2|) |#2|) . T)) ((((-576) |#1|) . T)) ((((-576) |#1|) . T)) -(-2760 (|has| |#1| (-102)) (|has| |#1| (-1121))) -(-2760 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237))) +(-2759 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(-2759 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237))) ((((-576) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-907 (-390))) . T) (((-907 (-576))) . T) (((-1197)) . T) (((-548)) . T)) -(-2760 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) -(-2760 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) +(-2759 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) +(-2759 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) ((((-876)) . T)) ((((-576)) . T)) ((((-576)) . T)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) ((((-1197)) -12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070)))) (|has| |#2| (-1070)) -(-2760 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) +(-2759 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-374)) @@ -3977,7 +3977,7 @@ (((|#1| |#2|) . T)) ((((-576)) . T) ((|#2|) |has| |#2| (-174))) ((((-115)) . T) ((|#1|) . T) (((-576)) . T)) -(-2760 (|has| |#1| (-360)) (|has| |#1| (-379))) +(-2759 (|has| |#1| (-360)) (|has| |#1| (-379))) (((|#1| |#2|) . T)) ((((-227)) . T)) ((((-419 (-576))) . T) (($) . T) (((-576)) . T)) @@ -3986,11 +3986,11 @@ ((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) ((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#2|) |has| |#2| (-1121)) (((-576)) -12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (((-419 (-576))) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) -(-2760 (|has| |#2| (-238)) (|has| |#2| (-237))) +(-2759 (|has| |#2| (-238)) (|has| |#2| (-237))) (((|#1|) . T)) (((|#1|) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) ((((-576) $) . T) (((-656 (-576)) $) . T)) ((($) . T) (((-419 (-576))) . T)) (|has| |#1| (-928)) @@ -4002,14 +4002,14 @@ (((|#1| |#1|) |has| |#1| (-174))) (((|#1|) . T) (((-576)) . T)) ((((-1202)) . T)) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-2760 (|has| |#1| (-21)) (|has| |#1| (-860))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2759 (|has| |#1| (-21)) (|has| |#1| (-860))) (((|#2|) . T)) -(-2760 (|has| |#1| (-21)) (|has| |#1| (-860))) +(-2759 (|has| |#1| (-21)) (|has| |#1| (-860))) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) (((|#1|) . T)) -((((-876)) -2760 (-12 (|has| |#1| (-625 (-876))) (|has| |#2| (-625 (-876)))) (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))))) +((((-876)) -2759 (-12 (|has| |#1| (-625 (-876))) (|has| |#2| (-625 (-876)))) (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))))) ((((-419 |#2|) |#3|) . T)) ((((-419 (-576))) . T) (($) . T)) (|has| |#1| (-38 (-419 (-576)))) @@ -4018,7 +4018,7 @@ ((($) . T) (((-576)) . T)) (|has| (-419 |#2|) (-148)) (|has| (-419 |#2|) (-146)) -(-2760 (|has| |#3| (-805)) (|has| |#3| (-861))) +(-2759 (|has| |#3| (-805)) (|has| |#3| (-861))) ((($) . T)) ((((-711)) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) @@ -4034,7 +4034,7 @@ ((((-1202)) . T)) ((((-576)) . T)) (((|#2|) . T)) -((((-1197)) -2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) +((((-1197)) -2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) ((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) ((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (((|#1| |#1|) . T) (($ $) . T)) @@ -4050,11 +4050,11 @@ ((((-1195 |#1| |#2| |#3|)) |has| |#1| (-374))) ((((-1161 |#1| |#2|)) . T)) ((((-1195 |#1| |#2| |#3|)) |has| |#1| (-374))) -(((|#2|) . T) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) -((((-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) . T)) +(((|#2|) . T) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) +((((-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) . T)) ((($) . T)) (|has| |#1| (-1043)) -(((|#2|) . T) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) ((($) . T)) ((((-876)) . T)) ((((-548)) |has| |#2| (-626 (-548))) (((-907 (-576))) |has| |#2| (-626 (-907 (-576)))) (((-907 (-390))) |has| |#2| (-626 (-907 (-390)))) (((-390)) . #0=(|has| |#2| (-1043))) (((-227)) . #0#)) @@ -4063,7 +4063,7 @@ (((|#1|) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -((((-1197)) -2760 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) +((((-1197)) -2759 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) ((((-876)) . T)) (((|#2|) . T)) ((((-876)) . T)) @@ -4073,15 +4073,15 @@ ((((-1195 |#1| |#2| |#3|)) . T)) ((((-1195 |#1| |#2| |#3|)) . T) (((-1188 |#1| |#2| |#3|)) . T)) ((((-876)) . T)) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) ((((-576) |#1|) . T)) ((((-1195 |#1| |#2| |#3|)) |has| |#1| (-374))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) (|has| |#2| (-374)) -(((|#3|) . T) ((|#2|) . T) ((|#4|) -2760 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1070))) (($) |has| |#4| (-1070)) (((-576)) -12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1070)))) -(((|#2|) . T) ((|#3|) -2760 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070))) (($) |has| |#3| (-1070)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) +(((|#3|) . T) ((|#2|) . T) ((|#4|) -2759 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1070))) (($) |has| |#4| (-1070)) (((-576)) -12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1070)))) +(((|#2|) . T) ((|#3|) -2759 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070))) (($) |has| |#3| (-1070)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) (((|#1|) . T)) (((|#1|) . T)) ((((-117 |#1|)) . T)) @@ -4095,7 +4095,7 @@ ((((-189)) . T) (((-876)) . T)) ((((-876)) . T)) (((|#1|) . T)) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) ((((-130)) . T) (((-876)) . T)) ((((-576) |#1|) . T) (((-1255 (-576)) $) . T)) ((((-130)) . T)) @@ -4104,14 +4104,14 @@ (((|#1|) . T)) (((|#2| $) -12 (|has| |#1| (-374)) (|has| |#2| (-296 |#2| |#2|))) (($ $) . T) (((-576) |#1|) . T)) ((($ $) . T) (((-419 (-576)) |#1|) . T)) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-928))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-928))) ((($ (-1197)) |has| |#1| (-1070))) -(-2760 (|has| |#1| (-861)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-861)) (|has| |#1| (-1121))) ((((-876)) . T)) ((((-876)) . T)) ((((-876)) . T)) (((|#1| (-543 |#2|)) . T)) -((((-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) . T)) +((((-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) . T)) ((((-576) (-130)) . T)) (((|#1| (-576)) . T)) (((|#1| (-419 (-576))) . T)) @@ -4126,8 +4126,8 @@ ((((-1202)) . T)) ((((-876)) . T) (((-1202)) . T)) ((((-876)) . T) (((-1202)) . T)) -(-2760 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) -(-2760 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2759 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +(-2759 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((($) . T)) (((|#2| (-543 (-878 |#1|))) . T)) ((((-1202)) . T)) @@ -4142,7 +4142,7 @@ ((((-1202)) . T)) ((((-876)) . T) (((-1202)) . T)) ((((-1202)) . T)) -((((-876)) -2760 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-876)) -2759 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) (((|#1| |#2|) . T)) (((|#1|) . T)) ((((-1179) |#1|) . T)) @@ -4150,7 +4150,7 @@ ((((-419 |#2|)) . T)) (|has| |#1| (-568)) (|has| |#1| (-568)) -((((-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T)) (((|#2| (-783)) . T)) ((($) . T) ((|#2|) . T)) ((($) . T) (((-419 (-576))) . T)) @@ -4160,14 +4160,14 @@ ((((-576)) . T) (($) . T)) (((|#2| $) |has| |#2| (-296 |#2| |#2|))) (((|#1| (-656 |#1|)) |has| |#1| (-860))) -(-2760 (|has| |#1| (-238)) (|has| |#1| (-360))) -(-2760 (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2759 (|has| |#1| (-238)) (|has| |#1| (-360))) +(-2759 (|has| |#1| (-374)) (|has| |#1| (-360))) ((((-1284 |#1|)) . T) (((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1059 (-419 (-576))))) (|has| |#1| (-1121)) (((|#1|) . T)) ((((-419 (-576))) . T) (($) . T)) -((((-1284 |#1|)) . T) (((-576)) . T) (($) -2760 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) (((-1103)) . T) ((|#2|) . T) (((-419 (-576))) -2760 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576)))))) -((((-1020 |#1|)) . T) ((|#1|) . T) (((-576)) -2760 (|has| (-1020 |#1|) (-1059 (-576))) (|has| |#1| (-1059 (-576)))) (((-419 (-576))) -2760 (|has| (-1020 |#1|) (-1059 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) +((((-1284 |#1|)) . T) (((-576)) . T) (($) -2759 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) (((-1103)) . T) ((|#2|) . T) (((-419 (-576))) -2759 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576)))))) +((((-1020 |#1|)) . T) ((|#1|) . T) (((-576)) -2759 (|has| (-1020 |#1|) (-1059 (-576))) (|has| |#1| (-1059 (-576)))) (((-419 (-576))) -2759 (|has| (-1020 |#1|) (-1059 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) ((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) @@ -4184,11 +4184,11 @@ (((|#1| |#2| |#3| |#4|) . T)) (((#0=(-1161 |#1| |#2|) #0#) |has| (-1161 |#1| |#2|) (-319 (-1161 |#1| |#2|)))) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((#0=(-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) #0#) |has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))))) -(-2760 (|has| |#1| (-238)) (|has| |#1| (-237))) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((#0=(-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) #0#) |has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))))) +(-2759 (|has| |#1| (-238)) (|has| |#1| (-237))) (((#0=(-117 |#1|)) |has| #0# (-319 #0#))) ((($ $) . T)) -(-2760 (|has| |#1| (-861)) (|has| |#1| (-1121))) +(-2759 (|has| |#1| (-861)) (|has| |#1| (-1121))) ((($ $) . T) ((#0=(-878 |#1|) $) . T) ((#0# |#2|) . T)) ((($ $) . T) ((|#2| $) |has| |#1| (-238)) ((|#2| |#1|) |has| |#1| (-238)) ((|#3| |#1|) . T) ((|#3| $) . T)) (((-490 . -1121) T) ((-273 . -526) 204799) ((-253 . -526) 204742) ((-250 . -1121) 204692) ((-583 . -111) 204677) ((-543 . -23) T) ((-139 . -1121) T) ((-138 . -1121) T) ((-118 . -319) 204634) ((-134 . -1121) T) ((-1020 . -237) 204585) ((-811 . -1238) T) ((-491 . -526) 204377) ((-689 . -628) 204361) ((-706 . -102) T) ((-1162 . -526) 204280) ((-411 . -237) T) ((-402 . -132) T) ((-1301 . -997) 204249) ((-1045 . -1072) 204186) ((-329 . -864) T) ((-31 . -93) T) ((-614 . -501) 204170) ((-1045 . -652) 204107) ((-633 . -132) T) ((-831 . -858) T) ((-535 . -57) 204057) ((-531 . -526) 203990) ((-362 . -234) 203977) ((-365 . -1072) 203922) ((-59 . -526) 203855) ((-528 . -526) 203788) ((-430 . -917) 203747) ((-171 . -1070) T) ((-509 . -526) 203680) ((-508 . -526) 203613) ((-365 . -652) 203558) ((-811 . -1059) 203338) ((-1261 . -628) 203086) ((-711 . -38) 203051) ((-1115 . -1114) 203035) ((-354 . -360) T) ((-480 . -1238) T) ((-1115 . -1121) 203013) ((-869 . -628) 202910) ((-171 . -248) 202861) ((-171 . -238) 202812) ((-1115 . -1116) 202770) ((-886 . -296) 202728) ((-227 . -807) T) ((-227 . -804) T) ((-706 . -294) NIL) ((-583 . -628) 202700) ((-1171 . -1214) 202679) ((-419 . -1013) 202663) ((-48 . -1072) 202628) ((-713 . -21) T) ((-713 . -25) T) ((-48 . -652) 202593) ((-1303 . -660) 202567) ((-1261 . -336) 202544) ((-1171 . -107) 202494) ((-326 . -161) 202473) ((-326 . -144) 202452) ((-117 . -21) T) ((-40 . -232) 202429) ((-40 . -272) 202406) ((-135 . -25) T) ((-117 . -25) T) ((-1261 . -238) T) ((-1261 . -1070) T) ((-620 . -298) 202382) ((-869 . -1070) T) ((-618 . -1238) T) ((-811 . -349) 202366) ((-487 . -298) 202345) ((-683 . -1238) T) ((-182 . -1238) T) ((-162 . -1238) T) ((-157 . -1238) T) ((-155 . -1238) T) ((-140 . -187) T) ((-118 . -1173) NIL) ((-91 . -625) 202277) ((-489 . -132) T) ((-1186 . -1238) T) ((-1117 . -502) 202258) ((-1117 . -625) 202224) ((-1111 . -502) 202205) ((-1111 . -625) 202171) ((-605 . -1238) T) ((-1094 . -502) 202152) ((-583 . -1070) T) ((-1094 . -625) 202118) ((-674 . -729) 202102) ((-1087 . -502) 202083) ((-1087 . -625) 202049) ((-977 . -298) 202026) ((-60 . -34) T) ((-1083 . -807) T) ((-1083 . -804) T) ((-1057 . -502) 202007) ((-1040 . -502) 201988) ((-828 . -738) T) ((-743 . -47) 201953) ((-635 . -38) 201940) ((-366 . -300) T) ((-363 . -300) T) ((-355 . -300) T) ((-273 . -300) 201871) ((-253 . -300) 201802) ((-1057 . -625) 201768) ((-1045 . -102) T) ((-1040 . -625) 201734) ((-638 . -502) 201715) ((-425 . -738) T) ((-118 . -38) 201660) ((-495 . -502) 201641) ((-638 . -625) 201607) ((-425 . -485) T) ((-220 . -502) 201588) ((-495 . -625) 201554) ((-365 . -102) T) ((-220 . -625) 201520) ((-1232 . -1079) T) ((-354 . -658) 201450) ((-723 . -1079) T) ((-1195 . -47) 201427) ((-1194 . -47) 201397) ((-1188 . -47) 201374) ((-129 . -298) 201349) ((-1056 . -152) 201295) ((-929 . -300) T) ((-1147 . -47) 201267) ((-706 . -319) NIL) ((-527 . -625) 201249) ((-522 . -625) 201231) ((-520 . -625) 201213) ((-497 . -1238) T) ((-337 . -1121) 201163) ((-326 . -911) 201127) ((-323 . -911) NIL) ((-724 . -464) 201058) ((-48 . -102) T) ((-1272 . -296) 201016) ((-1251 . -296) 200916) ((-656 . -678) 200900) ((-656 . -663) 200884) ((-350 . -21) T) ((-350 . -25) T) ((-40 . -360) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-656 . -384) 200868) ((-617 . -502) 200850) ((-614 . -296) 200802) ((-617 . -625) 200769) ((-400 . -102) T) ((-1141 . -144) T) ((-127 . -625) 200701) ((-888 . -1121) T) ((-670 . -423) 200685) ((-743 . -1238) T) ((-726 . -625) 200667) ((-255 . -625) 200634) ((-189 . -625) 200616) ((-163 . -625) 200598) ((-158 . -625) 200580) ((-1303 . -738) T) ((-1123 . -34) T) ((-885 . -807) NIL) ((-885 . -804) NIL) ((-872 . -861) T) ((-743 . -901) NIL) ((-1312 . -132) T) ((-392 . -132) T) ((-907 . -628) 200548) ((-923 . -102) T) ((-743 . -1059) 200424) ((-1195 . -1238) T) ((-1194 . -1238) T) ((-543 . -132) T) ((-1188 . -1238) T) ((-1108 . -423) 200408) ((-1021 . -501) 200392) ((-118 . -412) 200369) ((-1147 . -1238) T) ((-794 . -423) 200353) ((-792 . -423) 200337) ((-962 . -34) T) ((-706 . -1173) NIL) ((-258 . -660) 200157) ((-257 . -660) 199964) ((-829 . -939) 199943) ((-466 . -423) 199927) ((-614 . -19) 199911) ((-1167 . -1231) 199880) ((-1188 . -901) NIL) ((-1188 . -899) 199832) ((-614 . -616) 199809) ((-108 . -864) T) ((-1224 . -625) 199741) ((-1196 . -625) 199723) ((-62 . -407) T) ((-1194 . -1059) 199658) ((-1188 . -1059) 199624) ((-706 . -38) 199574) ((-40 . -658) 199504) ((-486 . -296) 199462) ((-1244 . -625) 199444) ((-743 . -388) 199428) ((-850 . -625) 199410) ((-670 . -1079) T) ((-635 . -919) 199333) ((-1272 . -1023) 199299) ((-448 . -1238) T) ((-1251 . -1023) 199265) ((-256 . -1238) T) ((-1109 . -628) 199249) ((-1084 . -1214) 199224) ((-1097 . -628) 199201) ((-886 . -626) 199008) ((-886 . -625) 198990) ((-118 . -919) NIL) ((-713 . -234) 198977) ((-1210 . -501) 198914) ((-430 . -1043) 198892) ((-48 . -319) 198879) ((-1084 . -107) 198825) ((-491 . -501) 198762) ((-537 . -1238) T) ((-532 . -1238) T) ((-1188 . -349) 198714) ((-1162 . -501) 198685) ((-1188 . -388) 198637) ((-1108 . -1079) T) ((-449 . -102) T) ((-185 . -1121) T) ((-258 . -34) T) ((-257 . -34) T) ((-1179 . -864) T) ((-862 . -628) 198621) ((-794 . -1079) T) ((-792 . -1079) T) ((-743 . -917) 198598) ((-466 . -1079) T) ((-59 . -501) 198582) ((-1055 . -1077) 198556) ((-531 . -501) 198540) ((-528 . -501) 198524) ((-509 . -501) 198508) ((-508 . -501) 198492) ((-250 . -526) 198425) ((-1055 . -111) 198392) ((-1195 . -917) 198305) ((-1194 . -917) 198211) ((-682 . -1133) T) ((-1188 . -917) 198044) ((-657 . -93) T) ((-1147 . -917) 198028) ((-365 . -1173) T) ((-332 . -1077) 198010) ((-31 . -502) 197991) ((-258 . -806) 197970) ((-258 . -805) 197949) ((-257 . -806) 197928) ((-257 . -805) 197907) ((-31 . -625) 197873) ((-50 . -1079) T) ((-258 . -738) 197851) ((-257 . -738) 197829) ((-1232 . -1121) T) ((-682 . -23) T) ((-593 . -1079) T) ((-530 . -1079) T) ((-390 . -1077) 197794) ((-332 . -111) 197769) ((-73 . -394) T) ((-73 . -407) T) ((-1045 . -38) 197706) ((-706 . -412) 197688) ((-99 . -102) T) ((-1317 . -1072) 197675) ((-723 . -1121) T) ((-1134 . -864) 197626) ((-1024 . -146) 197598) ((-1024 . -148) 197570) ((-884 . -658) 197542) ((-390 . -111) 197498) ((-329 . -1242) 197477) ((-486 . -1023) 197443) ((-365 . -38) 197408) ((-40 . -381) 197380) ((-887 . -625) 197252) ((-128 . -126) 197236) ((-122 . -126) 197220) ((-848 . -1077) 197190) ((-845 . -21) 197142) ((-839 . -1077) 197126) ((-845 . -25) 197078) ((-329 . -568) 197029) ((-529 . -628) 197010) ((-576 . -840) T) ((-245 . -1238) T) ((-1055 . -628) 196979) ((-848 . -111) 196944) ((-839 . -111) 196923) ((-1272 . -625) 196905) ((-1251 . -625) 196887) ((-1251 . -626) 196558) ((-1193 . -928) 196537) ((-1146 . -928) 196516) ((-48 . -38) 196481) ((-1310 . -1133) T) ((-548 . -296) 196437) ((-614 . -625) 196349) ((-614 . -626) 196310) ((-1308 . -1133) T) ((-372 . -628) 196294) ((-332 . -628) 196278) ((-1163 . -237) 196229) ((-245 . -1059) 196056) ((-1193 . -660) 195945) ((-1146 . -660) 195834) ((-868 . -660) 195808) ((-730 . -625) 195790) ((-558 . -379) T) ((-1310 . -23) T) ((-706 . -919) NIL) ((-1308 . -23) T) ((-503 . -1121) T) ((-390 . -628) 195740) ((-390 . -630) 195722) ((-1055 . -1070) T) ((-879 . -102) T) ((-1210 . -296) 195701) ((-171 . -379) 195652) ((-1025 . -1238) T) ((-992 . -1238) T) ((-933 . -1238) T) ((-848 . -628) 195606) ((-839 . -628) 195561) ((-44 . -23) T) ((-1317 . -102) T) ((-491 . -296) 195540) ((-598 . -1121) T) ((-1167 . -1130) 195509) ((-439 . -1238) T) ((-1125 . -1124) 195461) ((-402 . -21) T) ((-402 . -25) T) ((-153 . -1133) T) ((-1232 . -729) 195358) ((-1218 . -1121) T) ((-1025 . -899) 195340) ((-1025 . -901) 195322) ((-635 . -232) 195306) ((-635 . -272) 195290) ((-633 . -21) T) ((-299 . -568) T) ((-633 . -25) T) ((-1025 . -1059) 195250) ((-723 . -729) 195215) ((-245 . -388) 195184) ((-390 . -1070) T) ((-225 . -1079) T) ((-118 . -272) 195161) ((-118 . -232) 195138) ((-59 . -296) 195090) ((-153 . -23) T) ((-528 . -296) 195042) ((-337 . -526) 194975) ((-508 . -296) 194927) ((-390 . -248) T) ((-390 . -238) T) ((-848 . -1070) T) ((-839 . -1070) T) ((-724 . -968) 194896) ((-713 . -861) T) ((-624 . -864) T) ((-486 . -625) 194878) ((-1274 . -1072) 194783) ((-592 . -658) 194755) ((-576 . -658) 194727) ((-507 . -658) 194677) ((-839 . -238) 194656) ((-135 . -861) T) ((-1274 . -652) 194548) ((-670 . -1121) T) ((-1210 . -616) 194527) ((-562 . -1214) 194506) ((-347 . -1121) T) ((-329 . -374) 194485) ((-419 . -148) 194464) ((-419 . -146) 194443) ((-983 . -1133) 194342) ((-827 . -1133) 194320) ((-245 . -917) 194252) ((-666 . -866) 194236) ((-491 . -616) 194215) ((-110 . -864) T) ((-536 . -1238) T) ((-562 . -107) 194165) ((-1025 . -388) 194147) ((-1025 . -349) 194129) ((-1197 . -625) 194111) ((-97 . -1121) T) ((-983 . -23) 193922) ((-489 . -21) T) ((-489 . -25) T) ((-827 . -23) 193774) ((-1197 . -626) 193696) ((-59 . -19) 193680) ((-1193 . -738) T) ((-1146 . -738) T) ((-1108 . -1121) T) ((-528 . -19) 193664) ((-508 . -19) 193648) ((-59 . -616) 193625) ((-1024 . -237) 193562) ((-920 . -102) 193512) ((-868 . -738) T) ((-794 . -1121) T) ((-528 . -616) 193489) ((-508 . -616) 193466) ((-792 . -1121) T) ((-792 . -1086) 193433) ((-473 . -1121) T) ((-466 . -1121) T) ((-598 . -729) 193408) ((-661 . -1121) T) ((-1280 . -47) 193385) ((-1274 . -102) T) ((-1273 . -47) 193355) ((-1252 . -47) 193332) ((-1232 . -174) 193283) ((-1194 . -317) 193262) ((-1188 . -317) 193241) ((-1117 . -628) 193222) ((-1111 . -628) 193203) ((-1101 . -568) 193154) ((-1101 . -1242) 193105) ((-1025 . -917) NIL) ((-1094 . -628) 193086) ((-682 . -132) T) ((-639 . -1133) T) ((-1087 . -628) 193067) ((-1057 . -628) 193048) ((-1040 . -628) 193029) ((-726 . -1077) 192999) ((-711 . -658) 192949) ((-284 . -1121) T) ((-85 . -453) T) ((-85 . -407) T) ((-724 . -911) 192852) ((-723 . -174) T) ((-50 . -1121) T) ((-607 . -47) 192829) ((-227 . -660) 192794) ((-593 . -1121) T) ((-530 . -1121) T) ((-499 . -832) T) ((-499 . -939) T) ((-370 . -1242) T) ((-364 . -1242) T) ((-356 . -1242) T) ((-329 . -1133) T) ((-326 . -1072) 192704) ((-323 . -1072) 192633) ((-108 . -1242) T) ((-638 . -628) 192614) ((-370 . -568) T) ((-219 . -939) T) ((-219 . -832) T) ((-326 . -652) 192524) ((-323 . -652) 192453) ((-364 . -568) T) ((-356 . -568) T) ((-495 . -628) 192434) ((-108 . -568) T) ((-1188 . -1043) NIL) ((-670 . -729) 192404) ((-494 . -864) 192355) ((-220 . -628) 192336) ((-329 . -23) T) ((-67 . -1238) T) ((-1021 . -625) 192268) ((-1317 . -1173) T) ((-706 . -272) 192250) ((-706 . -232) 192232) ((-1312 . -21) T) ((-726 . -111) 192197) ((-1312 . -25) T) ((-656 . -34) T) ((-250 . -501) 192181) ((-1310 . -132) T) ((-1308 . -132) T) ((-1301 . -102) T) ((-1284 . -625) 192147) ((-1123 . -1119) 192131) ((-173 . -1121) T) ((-1280 . -1238) T) ((-1273 . -1238) T) ((-1273 . -1059) 192066) ((-1252 . -1238) T) ((-1252 . -901) NIL) ((-971 . -928) 192045) ((-1252 . -899) 191997) ((-1252 . -1059) 191963) ((-1232 . -526) 191930) ((-527 . -628) 191914) ((-1210 . -626) NIL) ((-1210 . -625) 191896) ((-1163 . -1144) 191841) ((-493 . -928) 191820) ((-1108 . -729) 191669) ((-1083 . -660) 191641) ((-971 . -660) 191530) ((-830 . -864) T) ((-794 . -729) 191359) ((-609 . -502) 191340) ((-597 . -502) 191321) ((-609 . -625) 191287) ((-597 . -625) 191253) ((-548 . -625) 191235) ((-591 . -1238) T) ((-548 . -626) 191216) ((-792 . -729) 191065) ((-1098 . -102) T) ((-635 . -658) 191037) ((-392 . -25) T) ((-392 . -21) T) ((-493 . -660) 190926) ((-473 . -729) 190897) ((-466 . -729) 190746) ((-1008 . -102) T) ((-1067 . -1231) 190675) ((-920 . -319) 190613) ((-890 . -93) T) ((-749 . -102) T) ((-118 . -658) 190543) ((-617 . -628) 190525) ((-726 . -628) 190479) ((-693 . -93) T) ((-543 . -25) T) ((-688 . -93) T) ((-676 . -625) 190461) ((-657 . -502) 190442) ((-657 . -625) 190395) ((-142 . -102) T) ((-44 . -132) T) ((-608 . -1238) T) ((-607 . -1238) T) ((-354 . -1079) T) ((-299 . -1133) T) ((-490 . -93) T) ((-419 . -237) 190346) ((-366 . -625) 190328) ((-363 . -625) 190310) ((-355 . -625) 190292) ((-273 . -626) 190040) ((-273 . -625) 190022) ((-253 . -625) 190004) ((-253 . -626) 189865) ((-139 . -93) T) ((-138 . -93) T) ((-134 . -93) T) ((-1162 . -625) 189847) ((-1141 . -652) 189834) ((-1141 . -1072) 189821) ((-831 . -738) T) ((-831 . -871) T) ((-614 . -298) 189798) ((-593 . -729) 189763) ((-491 . -626) NIL) ((-491 . -625) 189745) ((-530 . -729) 189690) ((-326 . -102) T) ((-323 . -102) T) ((-299 . -23) T) ((-153 . -132) T) ((-929 . -625) 189672) ((-929 . -626) 189654) ((-398 . -738) T) ((-886 . -1077) 189606) ((-886 . -111) 189544) ((-726 . -1070) T) ((-724 . -1264) 189528) ((-706 . -360) NIL) ((-115 . -102) T) ((-140 . -102) T) ((-137 . -102) T) ((-531 . -625) 189460) ((-390 . -807) T) ((-169 . -1238) T) ((-225 . -1121) T) ((-390 . -804) T) ((-59 . -626) 189421) ((-227 . -806) T) ((-227 . -803) T) ((-59 . -625) 189333) ((-227 . -738) T) ((-528 . -626) 189294) ((-528 . -625) 189206) ((-509 . -625) 189138) ((-508 . -626) 189099) ((-508 . -625) 189011) ((-1101 . -374) 188962) ((-40 . -423) 188939) ((-77 . -1238) T) ((-885 . -928) NIL) ((-370 . -339) 188923) ((-370 . -374) T) ((-364 . -339) 188907) ((-364 . -374) T) ((-356 . -339) 188891) ((-356 . -374) T) ((-326 . -294) 188870) ((-108 . -374) T) ((-70 . -1238) T) ((-1252 . -349) 188822) ((-885 . -660) 188767) ((-1252 . -388) 188719) ((-983 . -132) 188574) ((-827 . -132) 188445) ((-45 . -864) NIL) ((-977 . -663) 188429) ((-1108 . -174) 188340) ((-977 . -384) 188324) ((-1083 . -806) T) ((-1083 . -803) T) ((-886 . -628) 188222) ((-794 . -174) 188113) ((-792 . -174) 188024) ((-828 . -47) 187986) ((-1083 . -738) T) ((-337 . -501) 187970) ((-971 . -738) T) ((-1301 . -319) 187908) ((-1280 . -917) 187821) ((-466 . -174) 187732) ((-250 . -296) 187684) ((-1273 . -917) 187590) ((-1272 . -1077) 187425) ((-1252 . -917) 187258) ((-493 . -738) T) ((-1251 . -1077) 187066) ((-1232 . -300) 187045) ((-1207 . -1238) T) ((-1204 . -379) T) ((-1203 . -379) T) ((-1167 . -152) 187029) ((-1141 . -102) T) ((-1139 . -1121) T) ((-1101 . -23) T) ((-1101 . -1133) T) ((-1096 . -102) T) ((-1078 . -625) 186996) ((-1024 . -421) 186968) ((-946 . -974) T) ((-749 . -319) 186906) ((-75 . -1238) T) ((-676 . -393) 186878) ((-171 . -928) 186831) ((-30 . -974) T) ((-112 . -856) T) ((-1 . -625) 186813) ((-1020 . -911) 186734) ((-129 . -663) 186716) ((-50 . -632) 186700) ((-706 . -658) 186635) ((-607 . -917) 186548) ((-450 . -102) T) ((-129 . -384) 186530) ((-142 . -319) NIL) ((-886 . -1070) T) ((-845 . -861) 186509) ((-81 . -1238) T) ((-723 . -300) T) ((-40 . -1079) T) ((-593 . -174) T) ((-530 . -174) T) ((-523 . -625) 186491) ((-171 . -660) 186365) ((-519 . -625) 186347) ((-362 . -148) 186329) ((-362 . -146) T) ((-370 . -1133) T) ((-364 . -1133) T) ((-356 . -1133) T) ((-1025 . -317) T) ((-933 . -317) T) ((-886 . -248) T) ((-108 . -1133) T) ((-886 . -238) 186308) ((-1272 . -111) 186129) ((-1251 . -111) 185918) ((-250 . -1276) 185902) ((-576 . -860) T) ((-370 . -23) T) ((-365 . -360) T) ((-326 . -319) 185889) ((-323 . -319) 185830) ((-364 . -23) T) ((-329 . -132) T) ((-356 . -23) T) ((-1025 . -1043) T) ((-31 . -628) 185811) ((-108 . -23) T) ((-666 . -1072) 185795) ((-250 . -616) 185772) ((-343 . -1121) T) ((-666 . -652) 185742) ((-1274 . -38) 185634) ((-1261 . -928) 185613) ((-112 . -1121) T) ((-828 . -1238) T) ((-425 . -1238) T) ((-1056 . -102) T) ((-1261 . -660) 185502) ((-885 . -806) NIL) ((-869 . -660) 185476) ((-885 . -803) NIL) ((-828 . -901) NIL) ((-885 . -738) T) ((-1108 . -526) 185349) ((-794 . -526) 185296) ((-792 . -526) 185248) ((-583 . -660) 185235) ((-828 . -1059) 185063) ((-466 . -526) 185006) ((-400 . -401) T) ((-1272 . -628) 184819) ((-1251 . -628) 184567) ((-60 . -1238) T) ((-633 . -861) 184546) ((-512 . -673) T) ((-1167 . -997) 184515) ((-1045 . -658) 184452) ((-1024 . -464) T) ((-711 . -860) T) ((-522 . -804) T) ((-486 . -1077) 184287) ((-512 . -113) T) ((-354 . -1121) T) ((-323 . -1173) NIL) ((-299 . -132) T) ((-406 . -1121) T) ((-884 . -1079) T) ((-706 . -381) 184254) ((-365 . -658) 184184) ((-225 . -632) 184161) ((-337 . -296) 184113) ((-486 . -111) 183934) ((-1272 . -1070) T) ((-1251 . -1070) T) ((-828 . -388) 183918) ((-836 . -1238) T) ((-171 . -738) T) ((-1303 . -1238) T) ((-666 . -102) T) ((-1272 . -248) 183897) ((-1272 . -238) 183849) ((-1251 . -238) 183754) ((-1251 . -248) 183733) ((-1024 . -414) NIL) ((-682 . -651) 183681) ((-326 . -38) 183591) ((-323 . -38) 183520) ((-69 . -625) 183502) ((-329 . -505) 183468) ((-48 . -658) 183418) ((-1210 . -298) 183397) ((-1246 . -861) T) ((-1134 . -1133) 183375) ((-83 . -1238) T) ((-61 . -625) 183357) ((-878 . -864) T) ((-491 . -298) 183336) ((-1303 . -1059) 183313) ((-1185 . -1121) T) ((-1134 . -23) 183165) ((-828 . -917) 183101) ((-1261 . -738) T) ((-1123 . -1238) T) ((-486 . -628) 182927) ((-362 . -237) T) ((-1108 . -300) 182858) ((-985 . -1121) T) ((-908 . -102) T) ((-794 . -300) 182769) ((-337 . -19) 182753) ((-59 . -298) 182730) ((-792 . -300) 182661) ((-869 . -738) T) ((-118 . -860) NIL) ((-528 . -298) 182638) ((-337 . -616) 182615) ((-508 . -298) 182592) ((-466 . -300) 182523) ((-1056 . -319) 182374) ((-890 . -502) 182355) ((-890 . -625) 182321) ((-693 . -502) 182302) ((-583 . -738) T) ((-688 . -502) 182283) ((-693 . -625) 182233) ((-688 . -625) 182199) ((-674 . -625) 182181) ((-490 . -502) 182162) ((-490 . -625) 182128) ((-250 . -626) 182089) ((-250 . -502) 182066) ((-139 . -502) 182047) ((-138 . -502) 182028) ((-134 . -502) 182009) ((-250 . -625) 181901) ((-215 . -102) T) ((-139 . -625) 181867) ((-138 . -625) 181833) ((-134 . -625) 181799) ((-1168 . -34) T) ((-962 . -1238) T) ((-354 . -729) 181744) ((-682 . -25) T) ((-682 . -21) T) ((-1197 . -628) 181725) ((-341 . -1238) T) ((-486 . -1070) T) ((-647 . -429) 181690) ((-619 . -429) 181655) ((-1141 . -1173) T) ((-1273 . -317) 181634) ((-724 . -1072) 181457) ((-593 . -300) T) ((-530 . -300) T) ((-1252 . -317) 181436) ((-486 . -238) 181388) ((-486 . -248) 181367) ((-451 . -1238) T) ((-724 . -652) 181196) ((-1252 . -1043) NIL) ((-1101 . -132) T) ((-886 . -807) 181175) ((-145 . -102) T) ((-40 . -1121) T) ((-886 . -804) 181154) ((-656 . -1031) 181138) ((-592 . -1079) T) ((-576 . -1079) T) ((-507 . -1079) T) ((-419 . -464) T) ((-370 . -132) T) ((-326 . -412) 181122) ((-323 . -412) 181083) ((-364 . -132) T) ((-356 . -132) T) ((-1202 . -1121) T) ((-1141 . -38) 181070) ((-1115 . -625) 181037) ((-108 . -132) T) ((-973 . -1121) T) ((-940 . -1121) T) ((-783 . -1121) T) ((-684 . -1121) T) ((-713 . -148) T) ((-117 . -148) T) ((-1310 . -21) T) ((-1310 . -25) T) ((-1308 . -21) T) ((-1308 . -25) T) ((-676 . -1077) 181021) ((-543 . -861) T) ((-512 . -861) T) ((-376 . -1238) T) ((-366 . -1077) 180973) ((-363 . -1077) 180925) ((-355 . -1077) 180877) ((-258 . -1238) T) ((-257 . -1238) T) ((-273 . -1077) 180720) ((-253 . -1077) 180563) ((-676 . -111) 180542) ((-829 . -1242) 180521) ((-559 . -856) T) ((-326 . -919) 180487) ((-366 . -111) 180425) ((-363 . -111) 180363) ((-355 . -111) 180301) ((-273 . -111) 180130) ((-253 . -111) 179959) ((-323 . -919) NIL) ((-635 . -423) 179943) ((-44 . -21) T) ((-44 . -25) T) ((-924 . -864) 179894) ((-827 . -651) 179800) ((-829 . -568) 179779) ((-499 . -864) T) ((-258 . -1059) 179606) ((-257 . -1059) 179433) ((-127 . -120) 179417) ((-219 . -864) T) ((-929 . -1077) 179382) ((-724 . -102) T) ((-711 . -1079) T) ((-609 . -628) 179363) ((-597 . -628) 179344) ((-548 . -630) 179247) ((-354 . -174) T) ((-153 . -21) T) ((-153 . -25) T) ((-88 . -625) 179229) ((-929 . -111) 179185) ((-40 . -729) 179130) ((-884 . -1121) T) ((-676 . -628) 179107) ((-657 . -628) 179088) ((-366 . -628) 179025) ((-363 . -628) 178962) ((-355 . -628) 178899) ((-559 . -1121) T) ((-337 . -626) 178860) ((-337 . -625) 178772) ((-273 . -628) 178525) ((-253 . -628) 178310) ((-188 . -1238) T) ((-1251 . -804) 178263) ((-1251 . -807) 178216) ((-258 . -388) 178185) ((-257 . -388) 178154) ((-561 . -864) T) ((-666 . -38) 178124) ((-620 . -34) T) ((-494 . -1133) 178102) ((-487 . -34) T) ((-1134 . -132) 177973) ((-983 . -25) 177784) ((-929 . -628) 177734) ((-888 . -625) 177716) ((-983 . -21) 177671) ((-827 . -25) 177504) ((-827 . -21) 177415) ((-1244 . -379) T) ((-635 . -1079) T) ((-1199 . -568) 177394) ((-1193 . -47) 177371) ((-366 . -1070) T) ((-363 . -1070) T) ((-494 . -23) 177223) ((-355 . -1070) T) ((-273 . -1070) T) ((-253 . -1070) T) ((-1146 . -47) 177195) ((-118 . -1079) T) ((-1055 . -660) 177169) ((-977 . -34) T) ((-366 . -238) 177148) ((-366 . -248) T) ((-363 . -238) 177127) ((-363 . -248) T) ((-355 . -238) 177106) ((-355 . -248) T) ((-273 . -336) 177078) ((-253 . -336) 177035) ((-273 . -238) 177014) ((-1178 . -152) 176998) ((-258 . -917) 176930) ((-257 . -917) 176862) ((-1163 . -911) 176783) ((-1103 . -861) T) ((-1255 . -1238) 176761) ((-426 . -1133) T) ((-1075 . -23) T) ((-1045 . -860) T) ((-929 . -1070) T) ((-332 . -660) 176743) ((-713 . -237) T) ((-682 . -234) 176688) ((-1232 . -1023) 176654) ((-1194 . -939) 176633) ((-1188 . -939) 176612) ((-1188 . -832) NIL) ((-1020 . -1072) 176508) ((-986 . -1238) T) ((-929 . -248) T) ((-829 . -374) 176487) ((-396 . -23) T) ((-128 . -1121) 176465) ((-122 . -1121) 176443) ((-929 . -238) T) ((-129 . -34) T) ((-390 . -660) 176408) ((-1020 . -652) 176356) ((-884 . -729) 176343) ((-1317 . -658) 176315) ((-1067 . -152) 176280) ((-1014 . -1238) T) ((-876 . -1238) T) ((-40 . -174) T) ((-706 . -423) 176262) ((-724 . -319) 176249) ((-848 . -660) 176209) ((-839 . -660) 176183) ((-329 . -25) T) ((-329 . -21) T) ((-670 . -296) 176162) ((-592 . -1121) T) ((-576 . -1121) T) ((-507 . -1121) T) ((-1193 . -1238) T) ((-250 . -298) 176139) ((-1146 . -1238) T) ((-868 . -1238) T) ((-323 . -272) 176100) ((-323 . -232) 176061) ((-1243 . -864) T) ((-1193 . -901) NIL) ((-55 . -1121) T) ((-1146 . -901) 175920) ((-130 . -861) T) ((-1193 . -1059) 175800) ((-1146 . -1059) 175683) ((-185 . -625) 175665) ((-868 . -1059) 175561) ((-794 . -296) 175488) ((-829 . -1133) T) ((-1055 . -738) T) ((-1067 . -997) 175417) ((-614 . -663) 175401) ((-1024 . -911) 175308) ((-1020 . -102) T) ((-829 . -23) T) ((-724 . -1173) 175286) ((-706 . -1079) T) ((-614 . -384) 175270) ((-362 . -464) T) ((-354 . -300) T) ((-1289 . -1121) T) ((-254 . -1121) T) ((-411 . -102) T) ((-299 . -21) T) ((-299 . -25) T) ((-372 . -738) T) ((-722 . -1121) T) ((-711 . -1121) T) ((-372 . -485) T) ((-1232 . -625) 175252) ((-1193 . -388) 175236) ((-1146 . -388) 175220) ((-1045 . -423) 175182) ((-142 . -231) 175164) ((-390 . -806) T) ((-390 . -803) T) ((-884 . -174) T) ((-390 . -738) T) ((-723 . -625) 175146) ((-724 . -38) 174975) ((-1288 . -1286) 174959) ((-362 . -414) T) ((-1288 . -1121) 174909) ((-1211 . -1121) T) ((-592 . -729) 174896) ((-576 . -729) 174883) ((-507 . -729) 174848) ((-1274 . -658) 174738) ((-326 . -641) 174717) ((-848 . -738) T) ((-839 . -738) T) ((-1136 . -1238) T) ((-656 . -1238) T) ((-1101 . -651) 174665) ((-1193 . -917) 174608) ((-1146 . -917) 174592) ((-827 . -234) 174483) ((-674 . -1077) 174467) ((-108 . -651) 174449) ((-494 . -132) 174320) ((-1199 . -1133) T) ((-831 . -1238) T) ((-971 . -47) 174289) ((-635 . -1121) T) ((-674 . -111) 174268) ((-503 . -625) 174234) ((-337 . -298) 174211) ((-398 . -1238) T) ((-334 . -1238) T) ((-493 . -47) 174168) ((-1199 . -23) T) ((-118 . -1121) T) ((-103 . -102) 174118) ((-1300 . -1133) T) ((-560 . -861) T) ((-227 . -1238) T) ((-1075 . -132) T) ((-1045 . -1079) T) ((-1300 . -23) T) ((-831 . -1059) 174102) ((-1218 . -625) 174084) ((-1024 . -736) 174056) ((-1141 . -840) T) ((-711 . -729) 174021) ((-598 . -625) 174003) ((-398 . -1059) 173987) ((-365 . -1079) T) ((-396 . -132) T) ((-334 . -1059) 173971) ((-1126 . -1121) T) ((-1101 . -21) T) ((-1101 . -25) T) ((-227 . -901) 173953) ((-1025 . -939) T) ((-91 . -34) T) ((-1025 . -832) T) ((-933 . -939) T) ((-1020 . -319) 173918) ((-890 . -628) 173899) ((-499 . -1242) T) ((-726 . -660) 173859) ((-693 . -628) 173840) ((-688 . -628) 173821) ((-219 . -1242) T) ((-419 . -911) 173742) ((-227 . -1059) 173702) ((-40 . -300) T) ((-499 . -568) T) ((-490 . -628) 173683) ((-370 . -25) T) ((-326 . -658) 173338) ((-323 . -658) 173252) ((-370 . -21) T) ((-364 . -25) T) ((-364 . -21) T) ((-219 . -568) T) ((-356 . -25) T) ((-356 . -21) T) ((-329 . -234) 173198) ((-250 . -628) 173175) ((-139 . -628) 173156) ((-138 . -628) 173137) ((-134 . -628) 173118) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1079) T) ((-592 . -174) T) ((-576 . -174) T) ((-507 . -174) T) ((-1083 . -1238) T) ((-971 . -1238) T) ((-725 . -1238) T) ((-670 . -625) 173100) ((-493 . -1238) T) ((-749 . -748) 173084) ((-347 . -625) 173066) ((-68 . -394) T) ((-68 . -407) T) ((-1123 . -107) 173050) ((-1083 . -901) 173032) ((-971 . -901) 172957) ((-665 . -1133) T) ((-635 . -729) 172944) ((-493 . -901) NIL) ((-1167 . -102) T) ((-1115 . -630) 172928) ((-1083 . -1059) 172910) ((-97 . -625) 172892) ((-489 . -148) T) ((-971 . -1059) 172772) ((-118 . -729) 172717) ((-724 . -919) 172624) ((-665 . -23) T) ((-493 . -1059) 172500) ((-1108 . -626) NIL) ((-1108 . -625) 172482) ((-794 . -626) NIL) ((-794 . -625) 172443) ((-792 . -626) 172077) ((-792 . -625) 171991) ((-1134 . -651) 171897) ((-811 . -864) 171876) ((-473 . -625) 171858) ((-466 . -625) 171840) ((-466 . -626) 171701) ((-1056 . -231) 171647) ((-886 . -928) 171626) ((-127 . -34) T) ((-829 . -132) T) ((-661 . -625) 171608) ((-590 . -102) T) ((-366 . -1307) 171592) ((-363 . -1307) 171576) ((-355 . -1307) 171560) ((-122 . -526) 171493) ((-128 . -526) 171426) ((-523 . -804) T) ((-523 . -807) T) ((-522 . -806) T) ((-103 . -319) 171364) ((-224 . -102) 171314) ((-711 . -174) T) ((-706 . -1121) T) ((-886 . -660) 171230) ((-65 . -395) T) ((-284 . -625) 171212) ((-65 . -407) T) ((-971 . -388) 171196) ((-884 . -300) T) ((-50 . -625) 171178) ((-1020 . -38) 171126) ((-1141 . -658) 171098) ((-593 . -625) 171080) ((-493 . -388) 171064) ((-593 . -626) 171046) ((-530 . -625) 171028) ((-929 . -1307) 171015) ((-885 . -1238) T) ((-713 . -464) T) ((-507 . -526) 170981) ((-1299 . -1238) T) ((-1298 . -1238) T) ((-499 . -374) T) ((-366 . -379) 170960) ((-363 . -379) 170939) ((-355 . -379) 170918) ((-726 . -738) T) ((-219 . -374) T) ((-117 . -464) T) ((-1311 . -1302) 170902) ((-885 . -899) 170879) ((-885 . -901) NIL) ((-983 . -861) 170778) ((-827 . -861) 170729) ((-1245 . -102) T) ((-666 . -668) 170713) ((-1224 . -34) T) ((-173 . -625) 170695) ((-1134 . -25) 170528) ((-1134 . -21) 170439) ((-885 . -1059) 170416) ((-971 . -917) 170397) ((-1261 . -47) 170374) ((-929 . -379) T) ((-605 . -864) T) ((-59 . -663) 170358) ((-528 . -663) 170342) ((-493 . -917) 170319) ((-71 . -453) T) ((-71 . -407) T) ((-508 . -663) 170303) ((-59 . -384) 170287) ((-635 . -174) T) ((-528 . -384) 170271) ((-508 . -384) 170255) ((-558 . -1238) T) ((-839 . -720) 170239) ((-1193 . -317) 170218) ((-1199 . -132) T) ((-1163 . -1072) 170202) ((-118 . -174) T) ((-1163 . -652) 170134) ((-1167 . -319) 170072) ((-171 . -1238) T) ((-1300 . -132) T) ((-1273 . -939) 170051) ((-1252 . -939) 170030) ((-1252 . -832) NIL) ((-880 . -1072) 170000) ((-647 . -756) 169984) ((-619 . -756) 169968) ((-1251 . -928) 169921) ((-1045 . -1121) T) ((-924 . -1133) T) ((-880 . -652) 169891) ((-706 . -729) 169841) ((-915 . -1238) T) ((-885 . -388) 169818) ((-885 . -349) 169795) ((-853 . -1238) T) ((-820 . -1238) T) ((-171 . -899) 169779) ((-171 . -901) 169704) ((-781 . -1238) T) ((-689 . -1238) T) ((-1288 . -526) 169637) ((-1272 . -660) 169534) ((-1101 . -234) 169407) ((-499 . -1133) T) ((-365 . -1121) T) ((-219 . -1133) T) ((-76 . -453) T) ((-76 . -407) T) ((-171 . -1059) 169303) ((-304 . -911) 169260) ((-329 . -861) T) ((-1251 . -660) 169068) ((-886 . -806) 169047) ((-886 . -803) 169026) ((-886 . -738) T) ((-499 . -23) T) ((-370 . -234) 168999) ((-364 . -234) 168972) ((-356 . -234) 168945) ((-176 . -464) T) ((-86 . -453) T) ((-224 . -319) 168883) ((-86 . -407) T) ((-225 . -625) 168865) ((-108 . -234) 168852) ((-219 . -23) T) ((-1312 . -1305) 168831) ((-689 . -1059) 168815) ((-592 . -300) T) ((-576 . -300) T) ((-507 . -300) T) ((-1261 . -1238) T) ((-137 . -482) 168770) ((-869 . -1238) T) ((-666 . -658) 168729) ((-48 . -1121) T) ((-724 . -272) 168713) ((-724 . -232) 168697) ((-885 . -917) NIL) ((-583 . -1238) T) ((-1261 . -901) NIL) ((-904 . -102) T) ((-900 . -102) T) ((-400 . -1121) T) ((-171 . -388) 168681) ((-171 . -349) 168665) ((-1261 . -1059) 168545) ((-869 . -1059) 168441) ((-1163 . -102) T) ((-1020 . -919) 168364) ((-674 . -804) 168343) ((-665 . -132) T) ((-674 . -807) 168322) ((-118 . -526) 168230) ((-583 . -1059) 168212) ((-304 . -1295) 168182) ((-1188 . -864) NIL) ((-880 . -102) T) ((-982 . -568) 168161) ((-1232 . -1077) 168044) ((-1024 . -1072) 167989) ((-494 . -651) 167895) ((-923 . -1121) T) ((-1045 . -729) 167832) ((-723 . -1077) 167797) ((-1024 . -652) 167742) ((-629 . -102) T) ((-614 . -34) T) ((-1168 . -1238) T) ((-1232 . -111) 167611) ((-486 . -660) 167508) ((-365 . -729) 167453) ((-171 . -917) 167412) ((-711 . -300) T) ((-706 . -174) T) ((-723 . -111) 167368) ((-1317 . -1079) T) ((-1261 . -388) 167352) ((-430 . -1242) 167330) ((-1139 . -625) 167312) ((-323 . -860) NIL) ((-430 . -568) T) ((-227 . -317) T) ((-1251 . -803) 167265) ((-1251 . -806) 167218) ((-1272 . -738) T) ((-1251 . -738) T) ((-48 . -729) 167183) ((-227 . -1043) T) ((-1274 . -423) 167149) ((-1261 . -917) 167092) ((-362 . -1295) 167069) ((-1232 . -628) 166951) ((-730 . -738) T) ((-343 . -625) 166933) ((-532 . -864) 166912) ((-1134 . -234) 166803) ((-112 . -625) 166785) ((-112 . -626) 166767) ((-730 . -485) T) ((-723 . -628) 166717) ((-1311 . -1072) 166701) ((-494 . -25) 166534) ((-128 . -501) 166518) ((-122 . -501) 166502) ((-494 . -21) 166413) ((-1311 . -652) 166383) ((-635 . -300) T) ((-598 . -1077) 166358) ((-449 . -1121) T) ((-1083 . -317) T) ((-118 . -300) T) ((-1125 . -102) T) ((-1024 . -102) T) ((-598 . -111) 166326) ((-1232 . -1070) T) ((-1163 . -319) 166264) ((-1083 . -1043) T) ((-1075 . -25) T) ((-66 . -1238) T) ((-907 . -1238) T) ((-1075 . -21) T) ((-723 . -1070) T) ((-396 . -21) T) ((-396 . -25) T) ((-706 . -526) NIL) ((-1045 . -174) T) ((-723 . -248) T) ((-1083 . -557) T) ((-724 . -658) 166174) ((-518 . -102) T) ((-514 . -102) T) ((-365 . -174) T) ((-354 . -625) 166156) ((-419 . -1072) 166108) ((-406 . -625) 166090) ((-1141 . -860) T) ((-486 . -738) T) ((-907 . -1059) 166058) ((-419 . -652) 166010) ((-108 . -861) T) ((-670 . -1077) 165994) ((-499 . -132) T) ((-1274 . -1079) T) ((-219 . -132) T) ((-1178 . -102) 165944) ((-99 . -1121) T) ((-245 . -864) 165895) ((-250 . -678) 165879) ((-250 . -663) 165863) ((-670 . -111) 165842) ((-598 . -628) 165826) ((-326 . -423) 165810) ((-250 . -384) 165794) ((-1180 . -240) 165741) ((-1020 . -272) 165725) ((-1020 . -232) 165709) ((-74 . -1238) T) ((-48 . -174) T) ((-713 . -399) T) ((-713 . -144) T) ((-1311 . -102) T) ((-1219 . -1238) T) ((-1218 . -628) 165691) ((-1109 . -1238) T) ((-1108 . -1077) 165534) ((-1097 . -1238) T) ((-273 . -928) 165513) ((-253 . -928) 165492) ((-794 . -1077) 165315) ((-792 . -1077) 165158) ((-620 . -1238) T) ((-1185 . -625) 165140) ((-1108 . -111) 164969) ((-1067 . -102) T) ((-487 . -1238) T) ((-473 . -1077) 164940) ((-466 . -1077) 164783) ((-676 . -660) 164767) ((-885 . -317) T) ((-794 . -111) 164576) ((-792 . -111) 164405) ((-366 . -660) 164357) ((-363 . -660) 164309) ((-355 . -660) 164261) ((-273 . -660) 164150) ((-253 . -660) 164039) ((-1179 . -861) T) ((-1109 . -1059) 164023) ((-1097 . -1059) 164000) ((-1025 . -864) T) ((-1021 . -34) T) ((-473 . -111) 163961) ((-466 . -111) 163790) ((-992 . -864) T) ((-985 . -625) 163772) ((-982 . -1133) T) ((-977 . -1238) T) ((-127 . -1031) 163756) ((-862 . -1238) T) ((-885 . -1043) NIL) ((-747 . -1133) T) ((-727 . -1133) T) ((-670 . -628) 163674) ((-1288 . -501) 163658) ((-1205 . -1238) T) ((-1204 . -1238) T) ((-1163 . -38) 163618) ((-982 . -23) T) ((-929 . -660) 163583) ((-879 . -1121) T) ((-855 . -102) T) ((-829 . -21) T) ((-647 . -1072) 163567) ((-619 . -1072) 163551) ((-829 . -25) T) ((-747 . -23) T) ((-727 . -23) T) ((-647 . -652) 163535) ((-110 . -673) T) ((-619 . -652) 163519) ((-593 . -1077) 163484) ((-530 . -1077) 163429) ((-229 . -57) 163387) ((-465 . -23) T) ((-419 . -102) T) ((-1203 . -1238) T) ((-270 . -102) T) ((-110 . -113) T) ((-706 . -300) T) ((-880 . -38) 163357) ((-1108 . -628) 163093) ((-593 . -111) 163049) ((-530 . -111) 162978) ((-430 . -1133) T) ((-326 . -1079) 162868) ((-323 . -1079) T) ((-129 . -1238) T) ((-131 . -1238) T) ((-794 . -628) 162616) ((-792 . -628) 162382) ((-670 . -1070) T) ((-1317 . -1121) T) ((-466 . -628) 162167) ((-171 . -317) 162098) ((-430 . -23) T) ((-40 . -625) 162080) ((-40 . -626) 162064) ((-108 . -1013) 162046) ((-117 . -883) 162030) ((-661 . -628) 162014) ((-48 . -526) 161980) ((-1224 . -1031) 161964) ((-1202 . -625) 161931) ((-1210 . -34) T) ((-973 . -625) 161897) ((-940 . -625) 161879) ((-1134 . -861) 161830) ((-783 . -625) 161812) ((-684 . -625) 161794) ((-529 . -1238) T) ((-1261 . -317) 161773) ((-1178 . -319) 161711) ((-1162 . -34) T) ((-491 . -34) T) ((-1113 . -1238) T) ((-489 . -464) T) ((-1055 . -1238) T) ((-1108 . -1070) T) ((-50 . -628) 161680) ((-794 . -1070) T) ((-792 . -1070) T) ((-659 . -240) 161664) ((-644 . -240) 161610) ((-1199 . -21) T) ((-593 . -628) 161560) ((-530 . -628) 161490) ((-494 . -234) 161381) ((-1199 . -25) T) ((-1108 . -336) 161342) ((-466 . -1070) T) ((-1108 . -238) 161321) ((-794 . -336) 161298) ((-794 . -238) T) ((-792 . -336) 161270) ((-743 . -1242) 161249) ((-531 . -34) T) ((-337 . -663) 161233) ((-528 . -34) T) ((-59 . -34) T) ((-509 . -34) T) ((-508 . -34) T) ((-466 . -336) 161212) ((-337 . -384) 161196) ((-372 . -1238) T) ((-332 . -1238) T) ((-1024 . -1173) NIL) ((-743 . -568) 161127) ((-647 . -102) T) ((-619 . -102) T) ((-366 . -738) T) ((-363 . -738) T) ((-355 . -738) T) ((-273 . -738) T) ((-253 . -738) T) ((-390 . -1238) T) ((-1300 . -21) T) ((-1067 . -319) 161035) ((-1300 . -25) T) ((-920 . -1121) 161013) ((-830 . -234) 161000) ((-50 . -1070) T) ((-1195 . -568) 160979) ((-1194 . -1242) 160958) ((-1194 . -568) 160909) ((-1188 . -1242) 160888) ((-1188 . -568) 160839) ((-1045 . -300) T) ((-593 . -1070) T) ((-530 . -1070) T) ((-1024 . -38) 160784) ((-372 . -1059) 160768) ((-332 . -1059) 160752) ((-1020 . -658) 160675) ((-390 . -901) 160657) ((-848 . -1238) T) ((-839 . -1238) T) ((-837 . -1238) T) ((-811 . -1133) T) ((-929 . -738) T) ((-593 . -248) T) ((-593 . -238) T) ((-530 . -238) T) ((-530 . -248) T) ((-1147 . -568) 160636) ((-365 . -300) T) ((-659 . -707) 160620) ((-390 . -1059) 160580) ((-304 . -1072) 160501) ((-350 . -911) 160480) ((-1141 . -1079) T) ((-103 . -126) 160464) ((-304 . -652) 160406) ((-811 . -23) T) ((-1310 . -1305) 160382) ((-1308 . -1305) 160361) ((-1288 . -296) 160313) ((-419 . -319) 160278) ((-1274 . -1121) T) ((-1163 . -919) 160201) ((-884 . -625) 160183) ((-848 . -1059) 160152) ((-205 . -799) T) ((-204 . -799) T) ((-203 . -799) T) ((-202 . -799) T) ((-201 . -799) T) ((-200 . -799) T) ((-199 . -799) T) ((-198 . -799) T) ((-197 . -799) T) ((-196 . -799) T) ((-559 . -625) 160134) ((-507 . -1023) T) ((-283 . -851) T) ((-282 . -851) T) ((-281 . -851) T) ((-280 . -851) T) ((-48 . -300) T) ((-279 . -851) T) ((-278 . -851) T) ((-277 . -851) T) ((-195 . -799) T) ((-624 . -861) T) ((-666 . -423) 160118) ((-682 . -237) 160069) ((-225 . -628) 160031) ((-110 . -861) T) ((-665 . -21) T) ((-665 . -25) T) ((-1311 . -38) 160001) ((-118 . -296) 159952) ((-1288 . -19) 159936) ((-1252 . -864) NIL) ((-1288 . -616) 159913) ((-1301 . -1121) T) ((-362 . -1072) 159858) ((-1098 . -1121) T) ((-1008 . -1121) T) ((-982 . -132) T) ((-829 . -234) 159845) ((-749 . -1121) T) ((-362 . -652) 159790) ((-747 . -132) T) ((-727 . -132) T) ((-523 . -805) T) ((-523 . -806) T) ((-465 . -132) T) ((-419 . -1173) 159768) ((-225 . -1070) T) ((-304 . -102) 159550) ((-142 . -1121) T) ((-711 . -1023) T) ((-1126 . -296) 159506) ((-91 . -1238) T) ((-128 . -625) 159438) ((-122 . -625) 159370) ((-1317 . -174) T) ((-1194 . -374) 159349) ((-1188 . -374) 159328) ((-326 . -1121) T) ((-430 . -132) T) ((-323 . -1121) T) ((-419 . -38) 159280) ((-1154 . -102) T) ((-1274 . -729) 159172) ((-1156 . -1283) T) ((-1117 . -1238) T) ((-1111 . -1238) T) ((-666 . -1079) T) ((-1094 . -1238) T) ((-1087 . -1238) T) ((-1057 . -1238) T) ((-1040 . -1238) T) ((-329 . -146) 159151) ((-329 . -148) 159130) ((-140 . -1121) T) ((-137 . -1121) T) ((-115 . -1121) T) ((-872 . -102) T) ((-638 . -1238) T) ((-495 . -1238) T) ((-592 . -625) 159112) ((-576 . -626) 159011) ((-576 . -625) 158993) ((-507 . -625) 158975) ((-507 . -626) 158920) ((-497 . -23) T) ((-220 . -1238) T) ((-494 . -861) 158871) ((-499 . -651) 158853) ((-984 . -625) 158835) ((-1024 . -919) 158744) ((-219 . -651) 158726) ((-227 . -416) T) ((-674 . -660) 158710) ((-55 . -625) 158692) ((-1193 . -939) 158671) ((-743 . -1133) T) ((-527 . -1238) T) ((-522 . -1238) T) ((-520 . -1238) T) ((-362 . -102) T) ((-1237 . -1104) T) ((-1141 . -856) T) ((-830 . -861) T) ((-743 . -23) T) ((-354 . -1077) 158616) ((-1168 . -107) 158600) ((-1289 . -625) 158582) ((-1195 . -23) T) ((-1195 . -1133) T) ((-1194 . -1133) T) ((-1194 . -23) T) ((-527 . -1059) 158566) ((-1188 . -1133) T) ((-1147 . -1133) T) ((-354 . -111) 158495) ((-1025 . -1242) T) ((-127 . -1238) T) ((-933 . -1242) T) ((-1188 . -23) T) ((-1163 . -272) 158479) ((-706 . -296) NIL) ((-726 . -1238) T) ((-1163 . -232) 158463) ((-1147 . -23) T) ((-1096 . -1121) T) ((-1025 . -568) T) ((-933 . -568) T) ((-255 . -1238) T) ((-189 . -1238) T) ((-163 . -1238) T) ((-158 . -1238) T) ((-254 . -625) 158445) ((-827 . -237) 158342) ((-811 . -132) T) ((-722 . -625) 158324) ((-326 . -729) 158234) ((-323 . -729) 158163) ((-711 . -625) 158145) ((-711 . -626) 158090) ((-419 . -412) 158074) ((-450 . -1121) T) ((-499 . -25) T) ((-499 . -21) T) ((-1141 . -1121) T) ((-219 . -25) T) ((-219 . -21) T) ((-724 . -423) 158058) ((-726 . -1059) 158027) ((-1288 . -625) 157939) ((-1288 . -626) 157900) ((-1274 . -174) T) ((-1211 . -625) 157882) ((-250 . -34) T) ((-354 . -628) 157812) ((-406 . -628) 157794) ((-945 . -995) T) ((-1224 . -1238) T) ((-674 . -803) 157773) ((-674 . -806) 157752) ((-410 . -407) T) ((-535 . -102) 157702) ((-1244 . -1238) T) ((-1056 . -1121) T) ((-419 . -919) 157625) ((-224 . -1016) 157609) ((-850 . -1238) T) ((-516 . -102) T) ((-635 . -625) 157591) ((-45 . -861) NIL) ((-635 . -626) 157568) ((-1056 . -622) 157543) ((-920 . -526) 157476) ((-329 . -237) 157428) ((-354 . -1070) T) ((-118 . -626) NIL) ((-118 . -625) 157410) ((-886 . -1238) T) ((-682 . -429) 157394) ((-682 . -1144) 157339) ((-512 . -152) 157321) ((-354 . -238) T) ((-354 . -248) T) ((-40 . -1077) 157266) ((-886 . -899) 157250) ((-886 . -901) 157175) ((-724 . -1079) T) ((-706 . -1023) NIL) ((-1272 . -47) 157145) ((-1251 . -47) 157122) ((-1162 . -1031) 157093) ((-1141 . -729) 157080) ((-3 . |UnionCategory|) T) ((-1126 . -625) 157062) ((-1101 . -148) 157041) ((-1101 . -146) 156992) ((-1025 . -374) T) ((-985 . -628) 156976) ((-227 . -939) T) ((-40 . -111) 156905) ((-886 . -1059) 156769) ((-1024 . -232) 156746) ((-1024 . -272) 156723) ((-713 . -1072) 156710) ((-933 . -374) T) ((-713 . -652) 156697) ((-329 . -1226) 156663) ((-390 . -317) T) ((-329 . -1223) 156629) ((-326 . -174) 156608) ((-323 . -174) T) ((-620 . -1214) 156584) ((-593 . -1307) 156571) ((-530 . -1307) 156548) ((-117 . -1072) 156535) ((-370 . -148) 156514) ((-370 . -146) 156465) ((-364 . -148) 156444) ((-364 . -146) 156395) ((-356 . -148) 156374) ((-117 . -652) 156361) ((-356 . -146) 156312) ((-329 . -35) 156278) ((-487 . -1214) 156257) ((0 . |EnumerationCategory|) T) ((-329 . -95) 156223) ((-390 . -1043) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -240) 156173) ((-666 . -1121) T) ((-620 . -107) 156120) ((-497 . -132) T) ((-487 . -107) 156070) ((-245 . -1133) 156048) ((-31 . -1238) T) ((-886 . -388) 156032) ((-886 . -349) 156016) ((-245 . -23) 155868) ((-40 . -628) 155798) ((-1301 . -526) 155731) ((-1083 . -939) T) ((-1083 . -832) T) ((-593 . -379) T) ((-530 . -379) T) ((-1280 . -568) 155710) ((-1273 . -1242) 155689) ((-1273 . -568) 155640) ((-1272 . -1238) T) ((-1252 . -1242) 155619) ((-362 . -1173) T) ((-337 . -34) T) ((-44 . -429) 155603) ((-1202 . -628) 155539) ((-887 . -1238) T) ((-402 . -756) 155523) ((-1252 . -568) 155474) ((-1251 . -1238) T) ((-1163 . -658) 155433) ((-743 . -132) T) ((-684 . -628) 155417) ((-1251 . -901) 155290) ((-1251 . -899) 155260) ((-1195 . -132) T) ((-1194 . -132) T) ((-1188 . -132) T) ((-1147 . -132) T) ((-321 . -1104) T) ((-1045 . -1023) T) ((-749 . -526) 155193) ((-1025 . -23) T) ((-1025 . -1133) T) ((-908 . -1121) T) ((-145 . -856) T) ((-1024 . -360) NIL) ((-703 . -625) 155175) ((-962 . -864) 155154) ((-535 . -319) 155092) ((-992 . -23) T) ((-142 . -526) NIL) ((-880 . -658) 155037) ((-933 . -1133) T) ((-933 . -23) T) ((-886 . -917) 154996) ((-362 . -38) 154961) ((-884 . -1077) 154948) ((-341 . -864) T) ((-82 . -625) 154930) ((-40 . -1070) T) ((-884 . -111) 154915) ((-730 . -1238) T) ((-713 . -102) T) ((-706 . -625) 154897) ((-614 . -1238) T) ((-608 . -568) 154876) ((-439 . -1133) T) ((-350 . -1072) 154860) ((-215 . -1121) T) ((-176 . -1072) 154792) ((-486 . -47) 154762) ((-40 . -238) 154734) ((-40 . -248) T) ((-135 . -102) T) ((-117 . -102) T) ((-607 . -568) 154713) ((-350 . -652) 154697) ((-706 . -626) 154605) ((-326 . -526) 154571) ((-176 . -652) 154503) ((-323 . -526) 154395) ((-499 . -234) 154382) ((-1272 . -1059) 154366) ((-1251 . -1059) 154152) ((-1020 . -423) 154136) ((-219 . -234) 154123) ((-439 . -23) T) ((-1141 . -174) T) ((-1274 . -300) T) ((-666 . -729) 154093) ((-145 . -1121) T) ((-48 . -1023) T) ((-419 . -272) 154077) ((-419 . -232) 154061) ((-305 . -240) 154011) ((-885 . -939) T) ((-885 . -832) NIL) ((-884 . -628) 153983) ((-258 . -864) 153934) ((-257 . -864) 153885) ((-878 . -861) T) ((-1251 . -349) 153855) ((-1251 . -388) 153825) ((-1101 . -237) 153704) ((-224 . -1142) 153688) ((-304 . -919) 153647) ((-1288 . -298) 153624) ((-370 . -237) 153603) ((-364 . -237) 153582) ((-486 . -1238) T) ((-356 . -237) 153561) ((-108 . -237) T) ((-1232 . -660) 153486) ((-1024 . -658) 153416) ((-982 . -21) T) ((-982 . -25) T) ((-747 . -21) T) ((-747 . -25) T) ((-727 . -21) T) ((-727 . -25) T) ((-723 . -660) 153381) ((-465 . -21) T) ((-465 . -25) T) ((-350 . -102) T) ((-176 . -102) T) ((-1020 . -1079) T) ((-884 . -1070) T) ((-786 . -102) T) ((-1273 . -374) 153360) ((-1272 . -917) 153266) ((-1252 . -374) 153245) ((-1251 . -917) 153096) ((-1197 . -1238) T) ((-1045 . -625) 153078) ((-419 . -840) 153031) ((-1195 . -505) 152997) ((-171 . -939) 152928) ((-1194 . -505) 152894) ((-1188 . -505) 152860) ((-724 . -1121) T) ((-1147 . -505) 152826) ((-592 . -1077) 152813) ((-576 . -1077) 152800) ((-507 . -1077) 152765) ((-326 . -300) 152744) ((-323 . -300) T) ((-365 . -625) 152726) ((-430 . -25) T) ((-430 . -21) T) ((-99 . -296) 152705) ((-592 . -111) 152690) ((-576 . -111) 152675) ((-507 . -111) 152631) ((-1197 . -901) 152598) ((-920 . -501) 152582) ((-48 . -625) 152564) ((-48 . -626) 152509) ((-245 . -132) 152380) ((-1311 . -658) 152339) ((-1261 . -939) 152318) ((-828 . -1242) 152297) ((-400 . -502) 152278) ((-1056 . -526) 152122) ((-400 . -625) 152088) ((-828 . -568) 152019) ((-598 . -660) 151994) ((-273 . -47) 151966) ((-253 . -47) 151923) ((-543 . -521) 151900) ((-592 . -628) 151872) ((-576 . -628) 151844) ((-507 . -628) 151777) ((-1095 . -1238) T) ((-1021 . -1238) T) ((-1280 . -23) T) ((-1280 . -1133) T) ((-1273 . -1133) T) ((-1273 . -23) T) ((-1252 . -1133) T) ((-711 . -1077) 151742) ((-1252 . -23) T) ((-1232 . -738) T) ((-1141 . -300) T) ((-1134 . -237) 151639) ((-1025 . -132) T) ((-1024 . -381) 151611) ((-112 . -379) T) ((-486 . -917) 151517) ((-992 . -132) T) ((-923 . -625) 151499) ((-55 . -628) 151481) ((-91 . -107) 151465) ((-933 . -132) T) ((-924 . -861) 151416) ((-713 . -1173) T) ((-711 . -111) 151372) ((-855 . -658) 151289) ((-608 . -1133) T) ((-607 . -1133) T) ((-724 . -729) 151118) ((-723 . -738) T) ((-811 . -25) T) ((-811 . -21) T) ((-499 . -861) T) ((-609 . -1238) T) ((-597 . -1238) T) ((-592 . -1070) T) ((-219 . -861) T) ((-419 . -658) 151055) ((-576 . -1070) T) ((-548 . -1238) T) ((-507 . -1070) T) ((-608 . -23) T) ((-354 . -1307) 151032) ((-329 . -464) 151011) ((-350 . -319) 150998) ((-607 . -23) T) ((-439 . -132) T) ((-670 . -660) 150972) ((-250 . -1031) 150956) ((-886 . -317) T) ((-1312 . -1302) 150940) ((-783 . -804) T) ((-783 . -807) T) ((-713 . -38) 150927) ((-576 . -238) T) ((-507 . -248) T) ((-507 . -238) T) ((-1301 . -501) 150911) ((-1284 . -1238) T) ((-1171 . -240) 150861) ((-1108 . -928) 150840) ((-117 . -38) 150827) ((-211 . -812) T) ((-210 . -812) T) ((-209 . -812) T) ((-208 . -812) T) ((-886 . -1043) 150805) ((-676 . -1238) T) ((-657 . -1238) T) ((-794 . -928) 150784) ((-792 . -928) 150763) ((-1210 . -1238) T) ((-366 . -1238) T) ((-363 . -1238) T) ((-355 . -1238) T) ((-273 . -1238) T) ((-253 . -1238) T) ((-466 . -928) 150742) ((-749 . -501) 150726) ((-1108 . -660) 150615) ((-711 . -628) 150550) ((-794 . -660) 150439) ((-635 . -1077) 150426) ((-491 . -1238) T) ((-354 . -379) T) ((-142 . -501) 150408) ((-792 . -660) 150297) ((-1162 . -1238) T) ((-561 . -861) T) ((-473 . -660) 150268) ((-273 . -901) 150127) ((-253 . -901) NIL) ((-118 . -1077) 150072) ((-466 . -660) 149961) ((-676 . -1059) 149938) ((-635 . -111) 149923) ((-402 . -1072) 149907) ((-366 . -1059) 149891) ((-363 . -1059) 149875) ((-355 . -1059) 149859) ((-273 . -1059) 149703) ((-253 . -1059) 149579) ((-929 . -1238) T) ((-118 . -111) 149508) ((-59 . -1238) T) ((-402 . -652) 149492) ((-633 . -1072) 149476) ((-531 . -1238) T) ((-528 . -1238) T) ((-509 . -1238) T) ((-508 . -1238) T) ((-449 . -625) 149458) ((-446 . -625) 149440) ((-633 . -652) 149424) ((-3 . -102) T) ((-1048 . -1231) 149393) ((-845 . -102) T) ((-701 . -57) 149351) ((-711 . -1070) T) ((-647 . -658) 149320) ((-619 . -658) 149289) ((-50 . -660) 149263) ((-299 . -464) T) ((-488 . -1231) 149232) ((0 . -102) T) ((-593 . -660) 149197) ((-530 . -660) 149142) ((-49 . -102) T) ((-929 . -1059) 149129) ((-711 . -248) T) ((-1101 . -421) 149108) ((-743 . -651) 149056) ((-1020 . -1121) T) ((-724 . -174) 148947) ((-635 . -628) 148842) ((-499 . -1013) 148824) ((-430 . -234) 148769) ((-273 . -388) 148753) ((-253 . -388) 148737) ((-411 . -1121) T) ((-1047 . -102) 148715) ((-350 . -38) 148699) ((-219 . -1013) 148681) ((-118 . -628) 148611) ((-176 . -38) 148543) ((-1272 . -317) 148522) ((-1251 . -317) 148501) ((-670 . -738) T) ((-99 . -625) 148483) ((-489 . -1072) 148448) ((-1188 . -651) 148400) ((-489 . -652) 148365) ((-656 . -864) 148344) ((-497 . -25) T) ((-497 . -21) T) ((-1251 . -1043) 148296) ((-1078 . -1238) T) ((-1 . -1238) T) ((-635 . -1070) T) ((-390 . -416) T) ((-402 . -102) T) ((-1126 . -630) 148211) ((-273 . -917) 148157) ((-253 . -917) 148134) ((-118 . -1070) T) ((-1108 . -738) T) ((-828 . -1133) T) ((-831 . -864) T) ((-635 . -238) 148113) ((-633 . -102) T) ((-523 . -1238) T) ((-519 . -1238) T) ((-794 . -738) T) ((-792 . -738) T) ((-1243 . -861) T) ((-425 . -1133) T) ((-118 . -248) T) ((-40 . -379) NIL) ((-118 . -238) NIL) ((-398 . -864) 148092) ((-466 . -738) T) ((-828 . -23) T) ((-743 . -25) T) ((-743 . -21) T) ((-682 . -911) 148013) ((-1098 . -296) 147992) ((-78 . -408) T) ((-78 . -407) T) ((-545 . -779) 147974) ((-227 . -864) T) ((-706 . -1077) 147924) ((-1313 . -102) T) ((-1280 . -132) T) ((-1273 . -132) T) ((-1252 . -132) T) ((-1195 . -25) T) ((-1163 . -423) 147908) ((-647 . -378) 147840) ((-619 . -378) 147772) ((-1178 . -1170) 147756) ((-103 . -1121) 147734) ((-1195 . -21) T) ((-1194 . -21) T) ((-879 . -625) 147716) ((-1020 . -729) 147664) ((-225 . -660) 147631) ((-706 . -111) 147565) ((-50 . -738) T) ((-1194 . -25) T) ((-362 . -360) T) ((-1188 . -21) T) ((-1101 . -464) 147516) ((-1188 . -25) T) ((-724 . -526) 147463) ((-593 . -738) T) ((-530 . -738) T) ((-1147 . -21) T) ((-1147 . -25) T) ((-608 . -132) T) ((-607 . -132) T) ((-304 . -658) 147198) ((-494 . -237) 147095) ((-370 . -464) T) ((-364 . -464) T) ((-356 . -464) T) ((-486 . -317) 147074) ((-1246 . -102) T) ((-323 . -296) 147009) ((-108 . -464) T) ((-79 . -453) T) ((-79 . -407) T) ((-489 . -102) T) ((-703 . -628) 146993) ((-1317 . -625) 146975) ((-1317 . -626) 146957) ((-1101 . -414) 146936) ((-1056 . -501) 146867) ((-137 . -296) 146844) ((-576 . -807) T) ((-576 . -804) T) ((-1084 . -240) 146790) ((-1083 . -864) T) ((-725 . -864) T) ((-370 . -414) 146741) ((-364 . -414) 146692) ((-356 . -414) 146643) ((-1303 . -1133) T) ((-1312 . -1072) 146627) ((-392 . -1072) 146611) ((-1312 . -652) 146581) ((-830 . -237) T) ((-392 . -652) 146551) ((-706 . -628) 146486) ((-1303 . -23) T) ((-1290 . -102) T) ((-350 . -919) 146467) ((-177 . -625) 146449) ((-1163 . -1079) T) ((-559 . -379) T) ((-682 . -756) 146433) ((-1199 . -146) 146412) ((-1199 . -148) 146391) ((-1167 . -1121) T) ((-1167 . -1092) 146360) ((-69 . -1238) T) ((-1045 . -1077) 146297) ((-362 . -658) 146227) ((-880 . -1079) T) ((-245 . -651) 146133) ((-706 . -1070) T) ((-365 . -1077) 146078) ((-61 . -1238) T) ((-1045 . -111) 145994) ((-920 . -625) 145905) ((-706 . -248) T) ((-706 . -238) NIL) ((-855 . -860) 145884) ((-711 . -807) T) ((-711 . -804) T) ((-1024 . -423) 145861) ((-365 . -111) 145790) ((-390 . -939) T) ((-419 . -860) 145769) ((-724 . -300) 145680) ((-225 . -738) T) ((-1280 . -505) 145646) ((-1273 . -505) 145612) ((-1252 . -505) 145578) ((-590 . -1121) T) ((-326 . -1023) 145557) ((-224 . -1121) 145535) ((-1245 . -856) T) ((-329 . -994) 145497) ((-105 . -102) T) ((-48 . -1077) 145462) ((-885 . -864) NIL) ((-1312 . -102) T) ((-392 . -102) T) ((-1274 . -625) 145444) ((-1154 . -1155) 145428) ((-1025 . -651) 145410) ((-890 . -1238) T) ((-48 . -111) 145366) ((-693 . -1238) T) ((-688 . -1238) T) ((-674 . -1238) T) ((-827 . -911) 145233) ((-490 . -1238) T) ((-250 . -1238) T) ((-543 . -102) T) ((-512 . -102) T) ((-153 . -1295) 145217) ((-139 . -1238) T) ((-138 . -1238) T) ((-134 . -1238) T) ((-1237 . -102) T) ((-1045 . -628) 145154) ((-829 . -237) T) ((-1193 . -1242) 145133) ((-365 . -628) 145063) ((-1146 . -1242) 145042) ((-245 . -25) 144875) ((-245 . -21) 144786) ((-128 . -120) 144770) ((-122 . -120) 144754) ((-44 . -756) 144738) ((-1193 . -568) 144649) ((-1146 . -568) 144580) ((-1245 . -1121) T) ((-558 . -864) T) ((-1056 . -296) 144555) ((-1187 . -1104) T) ((-1015 . -1104) T) ((-828 . -132) T) ((-118 . -807) NIL) ((-118 . -804) NIL) ((-366 . -317) T) ((-363 . -317) T) ((-355 . -317) T) ((-1115 . -1238) 144533) ((-258 . -1133) 144511) ((-257 . -1133) 144489) ((-1045 . -1070) T) ((-1024 . -1079) T) ((-48 . -628) 144422) ((-354 . -660) 144367) ((-1301 . -625) 144329) ((-1301 . -626) 144290) ((-633 . -38) 144274) ((-1195 . -234) 144227) ((-1194 . -234) 144173) ((-1098 . -625) 144155) ((-1045 . -248) T) ((-365 . -1070) T) ((-827 . -1295) 144125) ((-258 . -23) T) ((-257 . -23) T) ((-1008 . -625) 144107) ((-1188 . -234) 143924) ((-1180 . -152) 143871) ((-749 . -626) 143832) ((-749 . -625) 143814) ((-1025 . -25) T) ((-811 . -861) 143793) ((-1020 . -526) 143705) ((-689 . -864) T) ((-365 . -238) T) ((-365 . -248) T) ((-400 . -628) 143686) ((-929 . -317) T) ((-142 . -625) 143668) ((-142 . -626) 143627) ((-329 . -911) 143531) ((-1025 . -21) T) ((-992 . -25) T) ((-933 . -21) T) ((-933 . -25) T) ((-439 . -21) T) ((-439 . -25) T) ((-855 . -423) 143515) ((-48 . -1070) T) ((-1310 . -1302) 143499) ((-1308 . -1302) 143483) ((-1056 . -616) 143458) ((-326 . -626) 143319) ((-326 . -625) 143301) ((-323 . -626) NIL) ((-323 . -625) 143283) ((-48 . -248) T) ((-48 . -238) T) ((-666 . -296) 143244) ((-562 . -240) 143194) ((-583 . -864) T) ((-140 . -625) 143161) ((-137 . -625) 143143) ((-115 . -625) 143125) ((-489 . -38) 143090) ((-1312 . -1309) 143069) ((-1303 . -132) T) ((-1311 . -1079) T) ((-1103 . -102) T) ((-88 . -1238) T) ((-512 . -319) NIL) ((-1021 . -107) 143053) ((-904 . -1121) T) ((-900 . -1121) T) ((-1288 . -663) 143037) ((-1288 . -384) 143021) ((-337 . -1238) T) ((-605 . -861) T) ((-1163 . -1121) T) ((-1163 . -1074) 142961) ((-103 . -526) 142894) ((-946 . -625) 142876) ((-354 . -738) T) ((-30 . -625) 142858) ((-880 . -1121) T) ((-855 . -1079) 142837) ((-40 . -660) 142744) ((-227 . -1242) T) ((-419 . -1079) T) ((-1179 . -152) 142726) ((-1020 . -300) 142677) ((-888 . -1238) T) ((-629 . -1121) T) ((-227 . -568) T) ((-329 . -1269) 142661) ((-329 . -1266) 142631) ((-713 . -658) 142603) ((-1210 . -1214) 142582) ((-1096 . -625) 142564) ((-1210 . -107) 142514) ((-659 . -152) 142498) ((-644 . -152) 142444) ((-117 . -658) 142416) ((-491 . -1214) 142395) ((-499 . -148) T) ((-499 . -146) NIL) ((-1141 . -626) 142310) ((-450 . -625) 142292) ((-219 . -148) T) ((-219 . -146) NIL) ((-1141 . -625) 142274) ((-130 . -102) T) ((-52 . -102) T) ((-1252 . -651) 142226) ((-491 . -107) 142176) ((-1014 . -23) T) ((-1312 . -38) 142146) ((-1193 . -1133) T) ((-1146 . -1133) T) ((-1083 . -1242) T) ((-245 . -234) 142037) ((-321 . -102) T) ((-868 . -1133) T) ((-971 . -1242) 142016) ((-493 . -1242) 141995) ((-1083 . -568) T) ((-971 . -568) 141926) ((-1193 . -23) T) ((-1172 . -1104) T) ((-1146 . -23) T) ((-868 . -23) T) ((-493 . -568) 141857) ((-1163 . -729) 141789) ((-682 . -1072) 141773) ((-1167 . -526) 141706) ((-682 . -652) 141690) ((-1056 . -626) NIL) ((-1056 . -625) 141672) ((-96 . -1104) T) ((-1317 . -1077) 141659) ((-880 . -729) 141629) ((-1317 . -111) 141614) ((-1232 . -47) 141583) ((-1188 . -861) NIL) ((-258 . -132) T) ((-257 . -132) T) ((-1125 . -1121) T) ((-1024 . -1121) T) ((-62 . -625) 141565) ((-1101 . -911) 141434) ((-1045 . -804) T) ((-1045 . -807) T) ((-1280 . -25) T) ((-1280 . -21) T) ((-1273 . -21) T) ((-1273 . -25) T) ((-884 . -660) 141421) ((-1252 . -21) T) ((-1252 . -25) T) ((-1048 . -152) 141405) ((-1025 . -234) 141392) ((-886 . -832) 141371) ((-886 . -939) T) ((-724 . -296) 141298) ((-608 . -21) T) ((-350 . -658) 141257) ((-108 . -911) NIL) ((-608 . -25) T) ((-607 . -21) T) ((-176 . -658) 141174) ((-40 . -738) T) ((-224 . -526) 141107) ((-607 . -25) T) ((-488 . -152) 141091) ((-475 . -152) 141075) ((-185 . -1238) T) ((-940 . -806) T) ((-940 . -738) T) ((-783 . -805) T) ((-783 . -806) T) ((-518 . -1121) T) ((-514 . -1121) T) ((-783 . -738) T) ((-227 . -374) T) ((-1310 . -1072) 141059) ((-1308 . -1072) 141043) ((-1310 . -652) 141013) ((-1178 . -1121) 140991) ((-885 . -1242) T) ((-1308 . -652) 140961) ((-1109 . -864) T) ((-666 . -625) 140943) ((-885 . -568) T) ((-706 . -379) NIL) ((-44 . -1072) 140927) ((-1317 . -628) 140909) ((-1311 . -1121) T) ((-682 . -102) T) ((-370 . -1295) 140893) ((-364 . -1295) 140877) ((-44 . -652) 140861) ((-356 . -1295) 140845) ((-560 . -102) T) ((-1232 . -1238) T) ((-532 . -861) 140824) ((-723 . -1238) T) ((-977 . -864) 140803) ((-862 . -864) T) ((-499 . -237) T) ((-219 . -237) T) ((-1067 . -1121) T) ((-829 . -464) 140782) ((-153 . -1072) 140766) ((-1067 . -1092) 140695) ((-1048 . -997) 140664) ((-831 . -1133) T) ((-1024 . -729) 140609) ((-153 . -652) 140593) ((-398 . -1133) T) ((-488 . -997) 140562) ((-475 . -997) 140531) ((-1204 . -864) T) ((-110 . -152) 140513) ((-73 . -625) 140495) ((-908 . -625) 140477) ((-1203 . -864) T) ((-1101 . -736) 140456) ((-1317 . -1070) T) ((-828 . -651) 140404) ((-304 . -1079) 140346) ((-171 . -1242) 140251) ((-227 . -1133) T) ((-334 . -23) T) ((-1188 . -1013) 140203) ((-1274 . -1077) 140108) ((-855 . -1121) T) ((-129 . -864) T) ((-1147 . -752) 140087) ((-1272 . -939) 140066) ((-1251 . -939) 140045) ((-884 . -738) T) ((-171 . -568) 139956) ((-592 . -660) 139943) ((-576 . -660) 139915) ((-419 . -1121) T) ((-270 . -1121) T) ((-215 . -625) 139897) ((-507 . -660) 139847) ((-227 . -23) T) ((-1251 . -832) 139800) ((-1310 . -102) T) ((-503 . -1238) T) ((-365 . -1307) 139777) ((-1308 . -102) T) ((-1274 . -111) 139669) ((-1134 . -911) 139536) ((-827 . -1072) 139437) ((-827 . -652) 139359) ((-145 . -625) 139341) ((-1014 . -132) T) ((-44 . -102) T) ((-245 . -861) 139292) ((-598 . -1238) T) ((-1261 . -1242) 139271) ((-103 . -501) 139255) ((-1311 . -729) 139225) ((-1108 . -47) 139186) ((-1083 . -1133) T) ((-971 . -1133) T) ((-128 . -34) T) ((-122 . -34) T) ((-1261 . -568) 139097) ((-794 . -47) 139074) ((-792 . -47) 139046) ((-1218 . -1238) T) ((-1193 . -132) T) ((-365 . -379) T) ((-493 . -1133) T) ((-1146 . -132) T) ((-885 . -374) T) ((-466 . -47) 139025) ((-868 . -132) T) ((-332 . -864) 139004) ((-153 . -102) T) ((-1083 . -23) T) ((-971 . -23) T) ((-583 . -568) T) ((-828 . -25) T) ((-828 . -21) T) ((-1163 . -526) 138937) ((-604 . -1104) T) ((-598 . -1059) 138921) ((-1274 . -628) 138795) ((-493 . -23) T) ((-362 . -1079) T) ((-390 . -864) T) ((-1232 . -917) 138776) ((-682 . -319) 138714) ((-1280 . -234) 138667) ((-1134 . -1295) 138637) ((-711 . -660) 138602) ((-1025 . -861) T) ((-1024 . -174) T) ((-982 . -146) 138581) ((-647 . -1121) T) ((-619 . -1121) T) ((-982 . -148) 138560) ((-747 . -148) 138539) ((-747 . -146) 138518) ((-670 . -1238) T) ((-992 . -861) T) ((-1273 . -234) 138464) ((-1252 . -234) 138281) ((-845 . -658) 138198) ((-486 . -939) 138177) ((-347 . -1238) T) ((-329 . -1072) 138012) ((-326 . -1077) 137922) ((-323 . -1077) 137851) ((-1020 . -296) 137809) ((-419 . -729) 137761) ((-329 . -652) 137602) ((-607 . -234) 137555) ((-713 . -860) T) ((-1274 . -1070) T) ((-326 . -111) 137451) ((-323 . -111) 137364) ((-97 . -1238) T) ((-983 . -102) T) ((-827 . -102) 137096) ((-724 . -626) NIL) ((-724 . -625) 137078) ((-1274 . -336) 137022) ((-670 . -1059) 136918) ((-1108 . -1238) T) ((-1056 . -298) 136893) ((-592 . -738) T) ((-576 . -806) T) ((-171 . -374) 136844) ((-576 . -803) T) ((-576 . -738) T) ((-507 . -738) T) ((-794 . -1238) T) ((-792 . -1238) T) ((-1167 . -501) 136828) ((-473 . -1238) T) ((-466 . -1238) T) ((-1310 . -1309) 136804) ((-1108 . -901) NIL) ((-885 . -1133) T) ((-118 . -928) NIL) ((-1308 . -1309) 136783) ((-661 . -1238) T) ((-794 . -901) NIL) ((-792 . -901) 136642) ((-1303 . -25) T) ((-1303 . -21) T) ((-1235 . -102) 136620) ((-1127 . -407) T) ((-635 . -660) 136607) ((-466 . -901) NIL) ((-687 . -102) 136557) ((-1108 . -1059) 136384) ((-885 . -23) T) ((-794 . -1059) 136243) ((-792 . -1059) 136100) ((-118 . -660) 136045) ((-466 . -1059) 135921) ((-284 . -1238) T) ((-326 . -628) 135485) ((-323 . -628) 135368) ((-50 . -1238) T) ((-402 . -658) 135337) ((-661 . -1059) 135321) ((-639 . -102) T) ((-593 . -1238) T) ((-530 . -1238) T) ((-224 . -501) 135305) ((-1288 . -34) T) ((-633 . -658) 135264) ((-299 . -1072) 135251) ((-137 . -628) 135235) ((-299 . -652) 135222) ((-647 . -729) 135206) ((-619 . -729) 135190) ((-682 . -38) 135150) ((-329 . -102) T) ((-1141 . -1077) 135137) ((-85 . -625) 135119) ((-50 . -1059) 135103) ((-1108 . -388) 135087) ((-794 . -388) 135071) ((-711 . -738) T) ((-711 . -806) T) ((-711 . -803) T) ((-60 . -57) 135033) ((-593 . -1059) 135020) ((-530 . -1059) 134997) ((-173 . -1238) T) ((-334 . -132) T) ((-326 . -1070) 134887) ((-323 . -1070) T) ((-171 . -1133) T) ((-792 . -388) 134871) ((-45 . -152) 134821) ((-1025 . -1013) 134803) ((-466 . -388) 134787) ((-419 . -174) T) ((-326 . -248) 134766) ((-323 . -248) T) ((-323 . -238) NIL) ((-304 . -1121) 134548) ((-227 . -132) T) ((-1141 . -111) 134533) ((-171 . -23) T) ((-811 . -148) 134512) ((-811 . -146) 134491) ((-258 . -651) 134397) ((-257 . -651) 134303) ((-329 . -294) 134269) ((-1178 . -526) 134202) ((-489 . -658) 134152) ((-494 . -911) 134019) ((-1154 . -1121) T) ((-227 . -1081) T) ((-827 . -319) 133957) ((-1108 . -917) 133892) ((-794 . -917) 133835) ((-792 . -917) 133819) ((-1310 . -38) 133789) ((-1308 . -38) 133759) ((-1261 . -1133) T) ((-869 . -1133) T) ((-466 . -917) 133736) ((-872 . -1121) T) ((-1261 . -23) T) ((-1141 . -628) 133708) ((-1083 . -132) T) ((-869 . -23) T) ((-583 . -1133) T) ((-635 . -738) T) ((-522 . -864) T) ((-366 . -939) T) ((-363 . -939) T) ((-299 . -102) T) ((-355 . -939) T) ((-991 . -1104) T) ((-971 . -132) T) ((-828 . -234) 133653) ((-118 . -806) NIL) ((-118 . -803) NIL) ((-118 . -738) T) ((-1067 . -526) 133554) ((-706 . -928) NIL) ((-583 . -23) T) ((-493 . -132) T) ((-430 . -237) 133505) ((-687 . -319) 133443) ((-225 . -1238) T) ((-647 . -773) T) ((-619 . -773) T) ((-1252 . -861) NIL) ((-1101 . -1072) 133353) ((-1024 . -300) T) ((-706 . -660) 133303) ((-258 . -25) T) ((-362 . -1121) T) ((-258 . -21) T) ((-257 . -25) T) ((-257 . -21) T) ((-153 . -38) 133287) ((-2 . -102) T) ((-929 . -939) T) ((-1101 . -652) 133155) ((-494 . -1295) 133125) ((-1141 . -1070) T) ((-723 . -317) T) ((-370 . -1072) 133077) ((-364 . -1072) 133029) ((-356 . -1072) 132981) ((-370 . -652) 132933) ((-225 . -1059) 132910) ((-364 . -652) 132862) ((-108 . -1072) 132812) ((-356 . -652) 132764) ((-304 . -729) 132706) ((-713 . -1079) T) ((-499 . -464) T) ((-419 . -526) 132618) ((-108 . -652) 132568) ((-219 . -464) T) ((-1141 . -238) T) ((-305 . -152) 132518) ((-1020 . -626) 132479) ((-1020 . -625) 132461) ((-1010 . -625) 132443) ((-117 . -1079) T) ((-666 . -1077) 132427) ((-227 . -505) T) ((-411 . -625) 132409) ((-411 . -626) 132386) ((-1075 . -1295) 132356) ((-666 . -111) 132335) ((-682 . -919) 132258) ((-1163 . -501) 132242) ((-1312 . -658) 132201) ((-392 . -658) 132170) ((-63 . -453) T) ((-63 . -407) T) ((-1180 . -102) T) ((-885 . -132) T) ((-496 . -102) 132120) ((-1139 . -1238) T) ((-1244 . -864) T) ((-1317 . -379) T) ((-1101 . -102) T) ((-1082 . -102) T) ((-362 . -729) 132065) ((-886 . -864) 132016) ((-743 . -148) 131995) ((-743 . -146) 131974) ((-666 . -628) 131892) ((-1045 . -660) 131829) ((-535 . -1121) 131807) ((-370 . -102) T) ((-364 . -102) T) ((-356 . -102) T) ((-108 . -102) T) ((-516 . -1121) T) ((-365 . -660) 131752) ((-1193 . -651) 131700) ((-1146 . -651) 131648) ((-396 . -521) 131627) ((-845 . -860) 131606) ((-706 . -738) T) ((-390 . -1242) T) ((-343 . -1238) T) ((-1252 . -1013) 131558) ((-350 . -1079) T) ((-112 . -1238) T) ((-176 . -1079) T) ((-103 . -625) 131490) ((-1195 . -146) 131469) ((-1195 . -148) 131448) ((-390 . -568) T) ((-1194 . -148) 131427) ((-1194 . -146) 131406) ((-1188 . -146) 131313) ((-419 . -300) T) ((-1188 . -148) 131220) ((-1147 . -148) 131199) ((-1147 . -146) 131178) ((-329 . -38) 131019) ((-171 . -132) T) ((-323 . -807) NIL) ((-323 . -804) NIL) ((-666 . -1070) T) ((-48 . -660) 130969) ((-1134 . -1072) 130870) ((-908 . -628) 130847) ((-1134 . -652) 130769) ((-1187 . -102) T) ((-1015 . -102) T) ((-1014 . -21) T) ((-128 . -1031) 130753) ((-122 . -1031) 130737) ((-1014 . -25) T) ((-920 . -120) 130721) ((-1179 . -102) T) ((-1261 . -132) T) ((-1251 . -864) 130620) ((-1193 . -25) T) ((-1193 . -21) T) ((-1180 . -319) 130415) ((-354 . -1238) T) ((-1146 . -25) T) ((-869 . -132) T) ((-406 . -1238) T) ((-1146 . -21) T) ((-868 . -25) T) ((-868 . -21) T) ((-794 . -317) 130394) ((-1178 . -501) 130378) ((-1171 . -152) 130328) ((-1167 . -625) 130290) ((-659 . -102) 130240) ((-644 . -102) T) ((-1167 . -626) 130201) ((-583 . -132) T) ((-633 . -860) 130180) ((-1045 . -803) T) ((-1045 . -806) T) ((-1045 . -738) T) ((-827 . -919) 130049) ((-724 . -1077) 129872) ((-614 . -864) 129851) ((-496 . -319) 129789) ((-465 . -429) 129759) ((-362 . -174) T) ((-299 . -38) 129746) ((-258 . -234) 129637) ((-257 . -234) 129528) ((-283 . -102) T) ((-282 . -102) T) ((-281 . -102) T) ((-280 . -102) T) ((-279 . -102) T) ((-278 . -102) T) ((-354 . -1059) 129505) ((-277 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-724 . -111) 129314) ((-365 . -738) T) ((-682 . -272) 129298) ((-682 . -232) 129282) ((-593 . -317) T) ((-530 . -317) T) ((-304 . -526) 129231) ((-1185 . -1238) T) ((-108 . -319) NIL) ((-72 . -407) T) ((-1134 . -102) 128963) ((-845 . -423) 128947) ((-1141 . -807) T) ((-1141 . -804) T) ((-713 . -1121) T) ((-590 . -625) 128929) ((-390 . -374) T) ((-171 . -505) 128907) ((-224 . -625) 128839) ((-135 . -1121) T) ((-117 . -1121) T) ((-985 . -1238) T) ((-48 . -738) T) ((-1067 . -501) 128804) ((-142 . -437) 128786) ((-142 . -379) T) ((-1048 . -102) T) ((-524 . -521) 128765) ((-724 . -628) 128521) ((-1245 . -625) 128503) ((-1202 . -1238) T) ((-1202 . -1059) 128439) ((-1195 . -237) 128398) ((-488 . -102) T) ((-475 . -102) T) ((-1194 . -237) 128350) ((-1188 . -237) 128173) ((-1055 . -1133) T) ((-329 . -919) 128079) ((-1197 . -864) T) ((-1195 . -35) 128045) ((-1195 . -95) 128011) ((-1195 . -1226) 127977) ((-1195 . -1223) 127943) ((-1194 . -1223) 127909) ((-1194 . -1226) 127875) ((-1194 . -95) 127841) ((-1194 . -35) 127807) ((-1188 . -1223) 127773) ((-1188 . -1226) 127739) ((-1179 . -319) NIL) ((-89 . -408) T) ((-89 . -407) T) ((-1101 . -1173) 127718) ((-40 . -1238) T) ((-1188 . -95) 127684) ((-1055 . -23) T) ((-1188 . -35) 127650) ((-583 . -505) T) ((-1147 . -35) 127616) ((-1147 . -95) 127582) ((-1147 . -1226) 127548) ((-1147 . -1223) 127514) ((-372 . -1133) T) ((-370 . -1173) 127493) ((-364 . -1173) 127472) ((-356 . -1173) 127451) ((-1125 . -296) 127407) ((-973 . -1238) T) ((-940 . -1238) T) ((-108 . -1173) T) ((-845 . -1079) 127386) ((-783 . -1238) T) ((-659 . -319) 127324) ((-644 . -319) 127175) ((-684 . -1238) T) ((-724 . -1070) T) ((-1083 . -651) 127157) ((-1101 . -38) 127025) ((-971 . -651) 126973) ((-1025 . -148) T) ((-1025 . -146) NIL) ((-390 . -1133) T) ((-334 . -25) T) ((-332 . -23) T) ((-962 . -861) 126952) ((-724 . -336) 126929) ((-493 . -651) 126877) ((-40 . -1059) 126765) ((-724 . -238) T) ((-713 . -729) 126752) ((-350 . -1121) T) ((-176 . -1121) T) ((-341 . -861) T) ((-430 . -464) 126702) ((-390 . -23) T) ((-370 . -38) 126667) ((-364 . -38) 126632) ((-356 . -38) 126597) ((-80 . -453) T) ((-80 . -407) T) ((-227 . -25) T) ((-227 . -21) T) ((-848 . -1133) T) ((-108 . -38) 126547) ((-839 . -1133) T) ((-786 . -1121) T) ((-117 . -729) 126534) ((-684 . -1059) 126518) ((-624 . -102) T) ((-848 . -23) T) ((-839 . -23) T) ((-1178 . -296) 126470) ((-1134 . -319) 126408) ((-494 . -1072) 126309) ((-1123 . -240) 126293) ((-64 . -408) T) ((-64 . -407) T) ((-1172 . -102) T) ((-110 . -102) T) ((-494 . -652) 126215) ((-40 . -388) 126192) ((-96 . -102) T) ((-665 . -866) 126176) ((-1193 . -234) 126163) ((-1156 . -1104) T) ((-1083 . -21) T) ((-1083 . -25) T) ((-1075 . -1072) 126147) ((-827 . -272) 126116) ((-827 . -232) 126085) ((-971 . -25) T) ((-971 . -21) T) ((-1141 . -379) T) ((-1075 . -652) 126027) ((-633 . -1079) T) ((-1048 . -319) 125965) ((-904 . -625) 125947) ((-682 . -658) 125906) ((-493 . -25) T) ((-493 . -21) T) ((-396 . -1072) 125890) ((-900 . -625) 125872) ((-884 . -1238) T) ((-535 . -526) 125805) ((-258 . -861) 125756) ((-257 . -861) 125707) ((-396 . -652) 125677) ((-885 . -651) 125654) ((-488 . -319) 125592) ((-559 . -1238) T) ((-475 . -319) 125530) ((-362 . -300) T) ((-1178 . -1276) 125514) ((-1163 . -625) 125476) ((-1163 . -626) 125437) ((-1161 . -102) T) ((-1020 . -1077) 125333) ((-40 . -917) 125285) ((-1178 . -616) 125262) ((-1317 . -660) 125249) ((-1084 . -152) 125195) ((-499 . -911) NIL) ((-880 . -502) 125172) ((-1020 . -111) 125054) ((-886 . -1242) T) ((-219 . -911) NIL) ((-350 . -729) 125038) ((-880 . -625) 125000) ((-176 . -729) 124932) ((-886 . -568) T) ((-419 . -296) 124890) ((-245 . -237) 124787) ((-108 . -412) 124769) ((-84 . -395) T) ((-84 . -407) T) ((-713 . -174) T) ((-629 . -625) 124751) ((-99 . -738) T) ((-494 . -102) 124483) ((-99 . -485) T) ((-117 . -174) T) ((-1310 . -658) 124442) ((-1308 . -658) 124401) ((-171 . -651) 124349) ((-1101 . -919) 124220) ((-1075 . -102) T) ((-1020 . -628) 124110) ((-885 . -25) T) ((-827 . -243) 124089) ((-885 . -21) T) ((-830 . -102) T) ((-44 . -658) 124032) ((-1025 . -237) T) ((-426 . -102) T) ((-396 . -102) T) ((-110 . -319) NIL) ((-229 . -102) 123982) ((-128 . -1238) T) ((-122 . -1238) T) ((-108 . -919) NIL) ((-829 . -1072) 123933) ((-59 . -864) 123912) ((-829 . -652) 123854) ((-528 . -864) 123833) ((-508 . -864) 123812) ((-1055 . -132) T) ((-682 . -378) 123796) ((-153 . -658) 123755) ((-1317 . -738) T) ((-647 . -296) 123713) ((-619 . -296) 123671) ((-1280 . -146) 123650) ((-1261 . -651) 123598) ((-1020 . -1070) T) ((-1125 . -625) 123580) ((-1024 . -625) 123562) ((-592 . -1238) T) ((-576 . -1238) T) ((-507 . -1238) T) ((-527 . -23) T) ((-522 . -23) T) ((-354 . -317) T) ((-520 . -23) T) ((-332 . -132) T) ((-3 . -1121) T) ((-1024 . -626) 123546) ((-1020 . -248) 123525) ((-1020 . -238) 123504) ((-1280 . -148) 123483) ((-1273 . -148) 123462) ((-845 . -1121) T) ((-1273 . -146) 123441) ((-1272 . -1242) 123420) ((-1252 . -146) 123327) ((-1252 . -148) 123234) ((-1251 . -1242) 123213) ((-390 . -132) T) ((-227 . -234) 123200) ((-176 . -174) T) ((-576 . -901) 123182) ((0 . -1121) T) ((-171 . -21) T) ((-171 . -25) T) ((-55 . -1238) T) ((-49 . -1121) T) ((-1274 . -660) 123087) ((-1272 . -568) 123038) ((-726 . -1133) T) ((-1251 . -568) 122989) ((-576 . -1059) 122971) ((-607 . -148) 122950) ((-607 . -146) 122929) ((-507 . -1059) 122872) ((-1156 . -1158) T) ((-87 . -395) T) ((-87 . -407) T) ((-886 . -374) T) ((-848 . -132) T) ((-839 . -132) T) ((-983 . -658) 122816) ((-726 . -23) T) ((-518 . -625) 122782) ((-514 . -625) 122764) ((-827 . -658) 122543) ((-1312 . -1079) T) ((-390 . -1081) T) ((-1047 . -1121) 122521) ((-55 . -1059) 122503) ((-920 . -34) T) ((-494 . -319) 122441) ((-604 . -102) T) ((-1178 . -626) 122402) ((-1178 . -625) 122334) ((-1199 . -1072) 122217) ((-45 . -102) T) ((-829 . -102) T) ((-1199 . -652) 122114) ((-1289 . -1238) T) ((-1261 . -25) T) ((-1261 . -21) T) ((-1083 . -234) 122101) ((-869 . -25) T) ((-523 . -864) T) ((-254 . -1238) T) ((-44 . -378) 122085) ((-869 . -21) T) ((-743 . -464) 122036) ((-1311 . -625) 122018) ((-722 . -1238) T) ((-711 . -1238) T) ((-1300 . -1072) 121988) ((-1075 . -319) 121926) ((-683 . -1104) T) ((-618 . -1104) T) ((-402 . -1121) T) ((-583 . -25) T) ((-583 . -21) T) ((-182 . -1104) T) ((-162 . -1104) T) ((-157 . -1104) T) ((-155 . -1104) T) ((-1300 . -652) 121896) ((-633 . -1121) T) ((-711 . -901) 121878) ((-1288 . -1238) T) ((-229 . -319) 121816) ((-145 . -379) T) ((-1211 . -1238) T) ((-1067 . -626) 121758) ((-1067 . -625) 121701) ((-323 . -928) NIL) ((-1246 . -856) T) ((-1134 . -919) 121570) ((-711 . -1059) 121515) ((-723 . -939) T) ((-486 . -1242) 121494) ((-1194 . -464) 121473) ((-1188 . -464) 121452) ((-340 . -102) T) ((-886 . -1133) T) ((-329 . -658) 121334) ((-326 . -660) 121063) ((-323 . -660) 120992) ((-486 . -568) 120943) ((-350 . -526) 120909) ((-562 . -152) 120859) ((-40 . -317) T) ((-855 . -625) 120841) ((-713 . -300) T) ((-886 . -23) T) ((-390 . -505) T) ((-1101 . -272) 120811) ((-1101 . -232) 120781) ((-524 . -102) T) ((-419 . -626) 120588) ((-419 . -625) 120570) ((-270 . -625) 120552) ((-117 . -300) T) ((-1274 . -738) T) ((-635 . -1238) T) ((-1313 . -1121) T) ((-1272 . -374) 120531) ((-1251 . -374) 120510) ((-1301 . -34) T) ((-1246 . -1121) T) ((-118 . -1238) T) ((-108 . -272) 120492) ((-108 . -232) 120474) ((-1199 . -102) T) ((-489 . -1121) T) ((-535 . -501) 120458) ((-749 . -34) T) ((-665 . -1072) 120442) ((-665 . -652) 120412) ((-885 . -234) NIL) ((-142 . -34) T) ((-118 . -899) 120389) ((-118 . -901) NIL) ((-635 . -1059) 120272) ((-1300 . -102) T) ((-1280 . -237) 120231) ((-656 . -861) 120210) ((-1273 . -237) 120162) ((-1252 . -237) 119985) ((-305 . -102) T) ((-724 . -379) 119964) ((-118 . -1059) 119941) ((-402 . -729) 119925) ((-607 . -237) 119884) ((-633 . -729) 119868) ((-1126 . -1238) T) ((-45 . -319) 119672) ((-828 . -146) 119651) ((-828 . -148) 119630) ((-299 . -658) 119602) ((-1311 . -393) 119581) ((-831 . -861) T) ((-1290 . -1121) T) ((-1180 . -231) 119528) ((-398 . -861) 119507) ((-1280 . -35) 119473) ((-1280 . -1226) 119439) ((-1280 . -1223) 119405) ((-1273 . -1223) 119371) ((-527 . -132) T) ((-1273 . -1226) 119337) ((-1252 . -1223) 119303) ((-1252 . -1226) 119269) ((-1280 . -95) 119235) ((-1273 . -95) 119201) ((-430 . -911) 119122) ((-647 . -625) 119091) ((-619 . -625) 119060) ((-227 . -861) T) ((-1273 . -35) 119026) ((-1272 . -1133) T) ((-1252 . -95) 118992) ((-1141 . -660) 118964) ((-1252 . -35) 118930) ((-1251 . -1133) T) ((-605 . -152) 118912) ((-1101 . -360) 118891) ((-176 . -300) T) ((-118 . -388) 118868) ((-118 . -349) 118845) ((-171 . -234) 118770) ((-884 . -317) T) ((-323 . -806) NIL) ((-323 . -803) NIL) ((-326 . -738) 118619) ((-323 . -738) T) ((-486 . -374) 118598) ((-370 . -360) 118577) ((-364 . -360) 118556) ((-356 . -360) 118535) ((-326 . -485) 118514) ((-1272 . -23) T) ((-1251 . -23) T) ((-730 . -1133) T) ((-726 . -132) T) ((-665 . -102) T) ((-489 . -729) 118479) ((-674 . -864) 118458) ((-45 . -292) 118408) ((-105 . -1121) T) ((-68 . -625) 118390) ((-250 . -864) 118369) ((-991 . -102) T) ((-878 . -102) T) ((-635 . -917) 118328) ((-1312 . -1121) T) ((-392 . -1121) T) ((-1261 . -234) 118315) ((-1237 . -1121) T) ((-82 . -1238) T) ((-1134 . -272) 118284) ((-1083 . -861) T) ((-118 . -917) NIL) ((-794 . -939) 118263) ((-725 . -861) T) ((-543 . -1121) T) ((-512 . -1121) T) ((-366 . -1242) T) ((-363 . -1242) T) ((-355 . -1242) T) ((-273 . -1242) 118242) ((-253 . -1242) 118221) ((-545 . -874) T) ((-1134 . -232) 118190) ((-1179 . -840) T) ((-1163 . -1077) 118174) ((-402 . -773) T) ((-706 . -1238) T) ((-703 . -1059) 118158) ((-366 . -568) T) ((-363 . -568) T) ((-355 . -568) T) ((-273 . -568) 118089) ((-253 . -568) 118020) ((-537 . -1104) T) ((-1163 . -111) 117999) ((-465 . -756) 117969) ((-880 . -1077) 117939) ((-829 . -38) 117881) ((-706 . -899) 117863) ((-706 . -901) 117845) ((-305 . -319) 117649) ((-1178 . -298) 117626) ((-929 . -1242) T) ((-1101 . -658) 117521) ((-1025 . -464) T) ((-682 . -423) 117505) ((-880 . -111) 117470) ((-933 . -464) T) ((-706 . -1059) 117415) ((-929 . -568) T) ((-545 . -625) 117397) ((-593 . -939) T) ((-499 . -1072) 117347) ((-486 . -1133) T) ((-530 . -939) T) ((-494 . -919) 117216) ((-65 . -625) 117198) ((-219 . -1072) 117148) ((-499 . -652) 117098) ((-370 . -658) 117035) ((-364 . -658) 116972) ((-356 . -658) 116909) ((-644 . -231) 116855) ((-219 . -652) 116805) ((-108 . -658) 116755) ((-486 . -23) T) ((-1141 . -806) T) ((-886 . -132) T) ((-1141 . -803) T) ((-1303 . -1305) 116734) ((-1141 . -738) T) ((-666 . -660) 116708) ((-304 . -625) 116449) ((-1163 . -628) 116367) ((-1056 . -34) T) ((-828 . -237) 116318) ((-592 . -317) T) ((-576 . -317) T) ((-507 . -317) T) ((-1312 . -729) 116288) ((-706 . -388) 116270) ((-706 . -349) 116252) ((-489 . -174) T) ((-392 . -729) 116222) ((-880 . -628) 116157) ((-885 . -861) NIL) ((-576 . -1043) T) ((-507 . -1043) T) ((-1154 . -625) 116139) ((-1134 . -243) 116118) ((-216 . -102) T) ((-1171 . -102) T) ((-71 . -625) 116100) ((-1045 . -1238) T) ((-1163 . -1070) T) ((-1199 . -38) 115997) ((-872 . -625) 115979) ((-576 . -557) T) ((-682 . -1079) T) ((-743 . -968) 115932) ((-1163 . -238) 115911) ((-365 . -1238) T) ((-1103 . -1121) T) ((-1055 . -25) T) ((-1055 . -21) T) ((-1024 . -1077) 115856) ((-337 . -864) 115835) ((-924 . -102) T) ((-880 . -1070) T) ((-706 . -917) NIL) ((-366 . -339) 115819) ((-366 . -374) T) ((-363 . -339) 115803) ((-363 . -374) T) ((-355 . -339) 115787) ((-355 . -374) T) ((-499 . -102) T) ((-1300 . -38) 115757) ((-558 . -861) T) ((-535 . -699) 115707) ((-219 . -102) T) ((-1045 . -1059) 115587) ((-1024 . -111) 115516) ((-1195 . -994) 115485) ((-1194 . -994) 115447) ((-532 . -152) 115431) ((-1101 . -381) 115410) ((-362 . -625) 115392) ((-332 . -21) T) ((-365 . -1059) 115369) ((-332 . -25) T) ((-1188 . -994) 115338) ((-48 . -1238) T) ((-76 . -625) 115320) ((-1147 . -994) 115287) ((-711 . -317) T) ((-130 . -856) T) ((-929 . -374) T) ((-390 . -25) T) ((-390 . -21) T) ((-929 . -339) 115274) ((-86 . -625) 115256) ((-711 . -1043) T) ((-689 . -861) T) ((-400 . -1238) T) ((-1272 . -132) T) ((-1251 . -132) T) ((-920 . -1031) 115240) ((-848 . -21) T) ((-48 . -1059) 115183) ((-848 . -25) T) ((-839 . -25) T) ((-839 . -21) T) ((-1134 . -658) 114962) ((-1310 . -1079) T) ((-561 . -102) T) ((-1308 . -1079) T) ((-666 . -738) T) ((-1125 . -630) 114865) ((-1024 . -628) 114795) ((-1311 . -1077) 114779) ((-923 . -1238) T) ((-827 . -423) 114748) ((-103 . -120) 114732) ((-130 . -1121) T) ((-52 . -1121) T) ((-945 . -625) 114714) ((-885 . -1013) 114691) ((-835 . -102) T) ((-1311 . -111) 114670) ((-743 . -911) 114645) ((-665 . -38) 114615) ((-583 . -861) T) ((-366 . -1133) T) ((-363 . -1133) T) ((-355 . -1133) T) ((-273 . -1133) T) ((-253 . -1133) T) ((-1171 . -319) 114419) ((-1109 . -234) 114406) ((-635 . -317) 114385) ((-676 . -23) T) ((-536 . -1104) T) ((-321 . -1121) T) ((-494 . -272) 114354) ((-494 . -232) 114323) ((-153 . -1079) T) ((-366 . -23) T) ((-363 . -23) T) ((-355 . -23) T) ((-118 . -317) T) ((-273 . -23) T) ((-253 . -23) T) ((-1024 . -1070) T) ((-724 . -928) 114302) ((-1195 . -911) 114190) ((-1194 . -911) 114071) ((-1188 . -911) 113807) ((-1178 . -628) 113784) ((-1024 . -238) 113756) ((-1024 . -248) T) ((-1147 . -911) 113738) ((-118 . -1043) NIL) ((-929 . -1133) T) ((-1273 . -464) 113717) ((-1252 . -464) 113696) ((-535 . -625) 113628) ((-724 . -660) 113517) ((-419 . -1077) 113469) ((-516 . -625) 113451) ((-929 . -23) T) ((-499 . -319) NIL) ((-1311 . -628) 113407) ((-486 . -132) T) ((-219 . -319) NIL) ((-419 . -111) 113345) ((-827 . -1079) 113323) ((-749 . -1119) 113307) ((-1272 . -505) 113273) ((-1251 . -505) 113239) ((-449 . -1238) T) ((-560 . -856) T) ((-142 . -1119) 113221) ((-489 . -300) T) ((-1311 . -1070) T) ((-258 . -237) 113118) ((-257 . -237) 113015) ((-1243 . -102) T) ((-1084 . -102) T) ((-855 . -628) 112883) ((-512 . -526) NIL) ((-494 . -243) 112862) ((-419 . -628) 112760) ((-982 . -1072) 112643) ((-747 . -1072) 112613) ((-982 . -652) 112510) ((-1193 . -146) 112489) ((-747 . -652) 112459) ((-465 . -1072) 112429) ((-1193 . -148) 112408) ((-1146 . -148) 112387) ((-1146 . -146) 112366) ((-647 . -1077) 112350) ((-619 . -1077) 112334) ((-465 . -652) 112304) ((-1195 . -1279) 112288) ((-1195 . -1266) 112265) ((-1194 . -1271) 112226) ((-682 . -1121) T) ((-682 . -1074) 112166) ((-1194 . -1266) 112136) ((-560 . -1121) T) ((-499 . -1173) T) ((-1194 . -1269) 112120) ((-1188 . -1250) 112081) ((-830 . -275) 112065) ((-219 . -1173) T) ((-354 . -939) T) ((-99 . -1238) T) ((-647 . -111) 112044) ((-619 . -111) 112023) ((-1188 . -1266) 112000) ((-855 . -1070) 111979) ((-1188 . -1248) 111963) ((-527 . -25) T) ((-507 . -312) T) ((-523 . -23) T) ((-522 . -25) T) ((-520 . -25) T) ((-519 . -23) T) ((-430 . -1072) 111937) ((-419 . -1070) T) ((-329 . -1079) T) ((-706 . -317) T) ((-430 . -652) 111911) ((-108 . -860) T) ((-724 . -738) T) ((-419 . -248) T) ((-419 . -238) 111890) ((-390 . -234) 111877) ((-499 . -38) 111827) ((-219 . -38) 111777) ((-486 . -505) 111743) ((-1245 . -379) T) ((-1179 . -1165) T) ((-1122 . -102) T) ((-839 . -234) 111716) ((-713 . -625) 111698) ((-713 . -626) 111613) ((-726 . -21) T) ((-726 . -25) T) ((-1156 . -102) T) ((-494 . -658) 111392) ((-245 . -911) 111259) ((-135 . -625) 111241) ((-117 . -625) 111223) ((-158 . -25) T) ((-1310 . -1121) T) ((-886 . -651) 111171) ((-1308 . -1121) T) ((-879 . -1238) T) ((-982 . -102) T) ((-747 . -102) T) ((-727 . -102) T) ((-465 . -102) T) ((-828 . -464) 111122) ((-44 . -1121) T) ((-1109 . -861) T) ((-1084 . -319) 110973) ((-676 . -132) T) ((-1075 . -658) 110942) ((-682 . -729) 110926) ((-299 . -1079) T) ((-366 . -132) T) ((-363 . -132) T) ((-355 . -132) T) ((-273 . -132) T) ((-253 . -132) T) ((-396 . -658) 110895) ((-1317 . -1238) T) ((-430 . -102) T) ((-153 . -1121) T) ((-45 . -231) 110845) ((-1025 . -911) NIL) ((-811 . -1072) 110829) ((-977 . -861) 110808) ((-1020 . -660) 110710) ((-811 . -652) 110694) ((-245 . -1295) 110664) ((-1045 . -317) T) ((-304 . -1077) 110585) ((-929 . -132) T) ((-40 . -939) T) ((-499 . -412) 110567) ((-365 . -317) T) ((-219 . -412) 110549) ((-1101 . -423) 110533) ((-304 . -111) 110449) ((-1204 . -861) T) ((-1203 . -861) T) ((-886 . -25) T) ((-886 . -21) T) ((-1274 . -47) 110393) ((-350 . -625) 110375) ((-1193 . -237) T) ((-227 . -148) T) ((-176 . -625) 110357) ((-786 . -625) 110339) ((-129 . -861) T) ((-620 . -240) 110286) ((-487 . -240) 110236) ((-1310 . -729) 110206) ((-48 . -317) T) ((-1308 . -729) 110176) ((-65 . -628) 110105) ((-983 . -1121) T) ((-827 . -1121) 109857) ((-322 . -102) T) ((-920 . -1238) T) ((-48 . -1043) T) ((-1251 . -651) 109765) ((-701 . -102) 109715) ((-44 . -729) 109699) ((-562 . -102) T) ((-304 . -628) 109630) ((-67 . -394) T) ((-499 . -919) NIL) ((-67 . -407) T) ((-284 . -864) T) ((-219 . -919) NIL) ((-674 . -23) T) ((-829 . -658) 109566) ((-682 . -773) T) ((-1235 . -1121) 109544) ((-362 . -1077) 109489) ((-687 . -1121) 109467) ((-1083 . -148) T) ((-971 . -148) 109446) ((-971 . -146) 109425) ((-811 . -102) T) ((-153 . -729) 109409) ((-493 . -148) 109388) ((-493 . -146) 109367) ((-362 . -111) 109296) ((-1101 . -1079) T) ((-332 . -861) 109275) ((-1280 . -994) 109244) ((-1274 . -1238) T) ((-639 . -1121) T) ((-1273 . -994) 109206) ((-523 . -132) T) ((-519 . -132) T) ((-305 . -231) 109156) ((-370 . -1079) T) ((-364 . -1079) T) ((-356 . -1079) T) ((-304 . -1070) 109098) ((-1252 . -994) 109067) ((-390 . -861) T) ((-108 . -1079) T) ((-1020 . -738) T) ((-884 . -939) T) ((-855 . -807) 109046) ((-855 . -804) 109025) ((-430 . -319) 108964) ((-480 . -102) T) ((-607 . -994) 108933) ((-329 . -1121) T) ((-419 . -807) 108912) ((-419 . -804) 108891) ((-512 . -501) 108873) ((-1274 . -1059) 108839) ((-1272 . -21) T) ((-1272 . -25) T) ((-1251 . -21) T) ((-1251 . -25) T) ((-827 . -729) 108781) ((-362 . -628) 108711) ((-711 . -416) T) ((-1301 . -1238) T) ((-1134 . -423) 108680) ((-1098 . -1238) T) ((-618 . -102) T) ((-1024 . -379) NIL) ((-1008 . -1238) T) ((-683 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1199 . -658) 108590) ((-749 . -1238) T) ((-743 . -1072) 108433) ((-44 . -773) T) ((-743 . -652) 108282) ((-605 . -102) T) ((-665 . -668) 108266) ((-77 . -408) T) ((-77 . -407) T) ((-142 . -1238) T) ((-885 . -148) T) ((-885 . -146) NIL) ((-1300 . -658) 108211) ((-1280 . -911) 108099) ((-1273 . -911) 107980) ((-1237 . -93) T) ((-362 . -1070) T) ((-227 . -237) T) ((-70 . -394) T) ((-70 . -407) T) ((-1186 . -102) T) ((-682 . -526) 107913) ((-1252 . -911) 107649) ((-1232 . -568) 107628) ((-701 . -319) 107566) ((-982 . -38) 107463) ((-1201 . -625) 107445) ((-747 . -38) 107415) ((-562 . -319) 107219) ((-1195 . -1072) 107102) ((-326 . -1238) T) ((-362 . -238) T) ((-362 . -248) T) ((-323 . -1238) T) ((-299 . -1121) T) ((-1194 . -1072) 106937) ((-1188 . -1072) 106727) ((-1147 . -1072) 106610) ((-1195 . -652) 106507) ((-1194 . -652) 106348) ((-723 . -1242) T) ((-1188 . -652) 106144) ((-1178 . -663) 106128) ((-1147 . -652) 106025) ((-831 . -397) 106009) ((-723 . -568) T) ((-607 . -911) 105920) ((-326 . -899) 105904) ((-326 . -901) 105829) ((-323 . -899) 105790) ((-140 . -1238) T) ((-137 . -1238) T) ((-115 . -1238) T) ((-323 . -901) NIL) ((-811 . -319) 105755) ((-329 . -729) 105596) ((-398 . -397) 105580) ((-334 . -333) 105557) ((-497 . -102) T) ((-486 . -25) T) ((-486 . -21) T) ((-430 . -38) 105531) ((-326 . -1059) 105194) ((-227 . -1223) T) ((-227 . -1226) T) ((-3 . -625) 105176) ((-323 . -1059) 105106) ((-886 . -234) 105051) ((-2 . -1121) T) ((-2 . |RecordCategory|) T) ((-1134 . -1079) 105029) ((-845 . -625) 105011) ((-1083 . -237) T) ((-592 . -939) T) ((-576 . -832) T) ((-576 . -939) T) ((-507 . -939) T) ((-137 . -1059) 104995) ((-227 . -95) T) ((-171 . -148) 104974) ((-75 . -453) T) ((0 . -625) 104956) ((-75 . -407) T) ((-171 . -146) 104907) ((-227 . -35) T) ((-49 . -625) 104889) ((-489 . -1079) T) ((-499 . -272) 104871) ((-499 . -232) 104853) ((-496 . -989) 104837) ((-219 . -272) 104819) ((-219 . -232) 104801) ((-81 . -453) T) ((-81 . -407) T) ((-1167 . -34) T) ((-743 . -102) T) ((-665 . -658) 104760) ((-1047 . -625) 104727) ((-512 . -296) 104677) ((-326 . -388) 104646) ((-323 . -388) 104607) ((-323 . -349) 104568) ((-1106 . -625) 104550) ((-828 . -968) 104497) ((-674 . -132) T) ((-1261 . -146) 104476) ((-1261 . -148) 104455) ((-1195 . -102) T) ((-1194 . -102) T) ((-1188 . -102) T) ((-1180 . -1121) T) ((-1147 . -102) T) ((-1096 . -1238) T) ((-224 . -34) T) ((-299 . -729) 104442) ((-1280 . -1279) 104426) ((-1180 . -622) 104402) ((-605 . -319) NIL) ((-1280 . -1266) 104379) ((-1171 . -231) 104329) ((-496 . -1121) 104307) ((-450 . -1238) T) ((-402 . -625) 104289) ((-522 . -861) T) ((-1141 . -1238) T) ((-1273 . -1271) 104250) ((-1273 . -1266) 104220) ((-1273 . -1269) 104204) ((-1252 . -1250) 104165) ((-1252 . -1266) 104142) ((-1252 . -1248) 104126) ((-1195 . -294) 104092) ((-633 . -625) 104074) ((-1194 . -294) 104040) ((-711 . -939) T) ((-1188 . -294) 104006) ((-1147 . -294) 103972) ((-1141 . -901) 103954) ((-1101 . -1121) T) ((-1082 . -1121) T) ((-48 . -312) T) ((-326 . -917) 103920) ((-323 . -917) NIL) ((-1082 . -1089) 103899) ((-811 . -38) 103883) ((-273 . -651) 103831) ((-112 . -864) T) ((-253 . -651) 103779) ((-713 . -1077) 103766) ((-607 . -1266) 103743) ((-1141 . -1059) 103725) ((-329 . -174) 103656) ((-370 . -1121) T) ((-364 . -1121) T) ((-356 . -1121) T) ((-512 . -19) 103638) ((-1123 . -152) 103622) ((-885 . -237) NIL) ((-108 . -1121) T) ((-117 . -1077) 103609) ((-723 . -374) T) ((-512 . -616) 103584) ((-713 . -111) 103569) ((-1313 . -625) 103536) ((-1313 . -502) 103518) ((-1272 . -234) 103464) ((-1251 . -234) 103317) ((-448 . -102) T) ((-890 . -1283) T) ((-256 . -102) T) ((-45 . -1170) 103267) ((-117 . -111) 103252) ((-1290 . -625) 103234) ((-1261 . -237) T) ((-1246 . -625) 103216) ((-1244 . -861) T) ((-647 . -732) T) ((-619 . -732) T) ((-1232 . -1133) T) ((-1232 . -23) T) ((-1193 . -464) 103147) ((-1188 . -319) 103032) ((-1187 . -1121) T) ((-827 . -526) 102965) ((-1056 . -1238) T) ((-245 . -1072) 102866) ((-1179 . -1121) T) ((-1163 . -660) 102804) ((-962 . -152) 102788) ((-1147 . -319) 102775) ((-1146 . -464) 102726) ((-245 . -652) 102648) ((-1108 . -568) 102579) ((-1108 . -1242) 102558) ((-1101 . -729) 102426) ((-537 . -102) T) ((-532 . -102) 102356) ((-1025 . -1072) 102306) ((-1015 . -1121) T) ((-828 . -911) 102202) ((-794 . -1242) 102181) ((-792 . -1242) 102160) ((-62 . -1238) T) ((-489 . -625) 102112) ((-489 . -626) 102034) ((-794 . -568) 101945) ((-792 . -568) 101876) ((-743 . -319) 101863) ((-713 . -628) 101835) ((-494 . -423) 101804) ((-635 . -939) 101783) ((-466 . -1242) 101762) ((-687 . -526) 101695) ((-676 . -25) T) ((-410 . -625) 101677) ((-676 . -21) T) ((-466 . -568) 101608) ((-430 . -919) 101531) ((-366 . -25) T) ((-366 . -21) T) ((-363 . -25) T) ((-118 . -939) T) ((-118 . -832) NIL) ((-363 . -21) T) ((-355 . -25) T) ((-355 . -21) T) ((-273 . -25) T) ((-273 . -21) T) ((-253 . -25) T) ((-253 . -21) T) ((-171 . -237) 101462) ((-83 . -395) T) ((-83 . -407) T) ((-135 . -628) 101444) ((-117 . -628) 101416) ((-1025 . -652) 101366) ((-962 . -1001) 101350) ((-933 . -652) 101302) ((-933 . -1072) 101254) ((-929 . -21) T) ((-929 . -25) T) ((-886 . -861) 101205) ((-880 . -660) 101165) ((-723 . -1133) T) ((-723 . -23) T) ((-713 . -1070) T) ((-713 . -238) T) ((-299 . -174) T) ((-666 . -1238) T) ((-321 . -93) T) ((-659 . -1121) 101143) ((-644 . -622) 101118) ((-644 . -1121) T) ((-593 . -1242) T) ((-593 . -568) T) ((-530 . -1242) T) ((-530 . -568) T) ((-499 . -658) 101068) ((-486 . -234) 101014) ((-439 . -1072) 100998) ((-439 . -652) 100982) ((-370 . -729) 100934) ((-364 . -729) 100886) ((-350 . -1077) 100870) ((-356 . -729) 100822) ((-350 . -111) 100801) ((-176 . -1077) 100733) ((-176 . -111) 100644) ((-108 . -729) 100594) ((-219 . -658) 100544) ((-283 . -1121) T) ((-282 . -1121) T) ((-281 . -1121) T) ((-280 . -1121) T) ((-279 . -1121) T) ((-278 . -1121) T) ((-277 . -1121) T) ((-214 . -1121) T) ((-213 . -1121) T) ((-171 . -1226) 100522) ((-171 . -1223) 100500) ((-211 . -1121) T) ((-210 . -1121) T) ((-117 . -1070) T) ((-209 . -1121) T) ((-208 . -1121) T) ((-205 . -1121) T) ((-204 . -1121) T) ((-203 . -1121) T) ((-202 . -1121) T) ((-201 . -1121) T) ((-200 . -1121) T) ((-199 . -1121) T) ((-198 . -1121) T) ((-197 . -1121) T) ((-196 . -1121) T) ((-195 . -1121) T) ((-245 . -102) 100232) ((-171 . -35) 100210) ((-171 . -95) 100188) ((-666 . -1059) 100084) ((-494 . -1079) 100062) ((-1134 . -1121) 99814) ((-1163 . -34) T) ((-682 . -501) 99798) ((-73 . -1238) T) ((-105 . -625) 99780) ((-908 . -1238) T) ((-1312 . -625) 99762) ((-392 . -625) 99744) ((-350 . -628) 99696) ((-176 . -628) 99613) ((-1237 . -502) 99594) ((-743 . -38) 99443) ((-583 . -1226) T) ((-583 . -1223) T) ((-543 . -625) 99425) ((-532 . -319) 99363) ((-512 . -625) 99345) ((-512 . -626) 99327) ((-1237 . -625) 99293) ((-1188 . -1173) NIL) ((-215 . -1238) T) ((-1048 . -1092) 99262) ((-1048 . -1121) T) ((-1025 . -102) T) ((-992 . -102) T) ((-933 . -102) T) ((-908 . -1059) 99239) ((-1163 . -738) T) ((-1024 . -660) 99146) ((-488 . -1121) T) ((-475 . -1121) T) ((-598 . -23) T) ((-583 . -35) T) ((-583 . -95) T) ((-439 . -102) T) ((-1084 . -231) 99092) ((-1195 . -38) 98989) ((-1194 . -38) 98830) ((-940 . -864) T) ((-880 . -738) T) ((-783 . -864) T) ((-706 . -939) T) ((-684 . -864) T) ((-523 . -25) T) ((-519 . -21) T) ((-519 . -25) T) ((-1188 . -38) 98626) ((-350 . -1070) T) ((-145 . -1238) T) ((-1101 . -174) T) ((-176 . -1070) T) ((-1147 . -38) 98523) ((-724 . -47) 98500) ((-370 . -174) T) ((-364 . -174) T) ((-531 . -57) 98474) ((-509 . -57) 98424) ((-362 . -1307) 98401) ((-227 . -464) T) ((-329 . -300) 98352) ((-356 . -174) T) ((-176 . -248) T) ((-1251 . -861) 98251) ((-108 . -174) T) ((-886 . -1013) 98235) ((-670 . -1133) T) ((-593 . -374) T) ((-593 . -339) 98222) ((-530 . -339) 98199) ((-530 . -374) T) ((-326 . -317) 98178) ((-323 . -317) T) ((-614 . -861) 98157) ((-1134 . -729) 98099) ((-532 . -292) 98083) ((-670 . -23) T) ((-430 . -232) 98067) ((-430 . -272) 98051) ((-323 . -1043) NIL) ((-347 . -23) T) ((-103 . -1031) 98035) ((-45 . -36) 98014) ((-624 . -1121) T) ((-362 . -379) T) ((-536 . -102) T) ((-507 . -27) T) ((-245 . -319) 97952) ((-1108 . -1133) T) ((-1311 . -660) 97926) ((-794 . -1133) T) ((-792 . -1133) T) ((-1199 . -423) 97910) ((-466 . -1133) T) ((-1083 . -464) T) ((-1172 . -1121) T) ((-971 . -464) 97861) ((-1136 . -1104) T) ((-110 . -1121) T) ((-1108 . -23) T) ((-1180 . -526) 97644) ((-829 . -1079) T) ((-794 . -23) T) ((-792 . -23) T) ((-493 . -464) 97595) ((-473 . -23) T) ((-392 . -393) 97574) ((-366 . -234) 97547) ((-363 . -234) 97520) ((-355 . -234) 97493) ((-466 . -23) T) ((-273 . -234) 97438) ((-258 . -911) 97305) ((-257 . -911) 97172) ((-96 . -1121) T) ((-724 . -1238) T) ((-682 . -296) 97149) ((-496 . -526) 97082) ((-1280 . -1072) 96965) ((-1280 . -652) 96862) ((-1273 . -652) 96703) ((-1273 . -1072) 96538) ((-1252 . -652) 96334) ((-1252 . -1072) 96124) ((-299 . -300) T) ((-1103 . -625) 96106) ((-559 . -864) T) ((-1103 . -626) 96087) ((-419 . -928) 96066) ((-1232 . -132) T) ((-50 . -1133) T) ((-1188 . -412) 96018) ((-1045 . -939) T) ((-1024 . -738) T) ((-855 . -660) 95991) ((-724 . -901) NIL) ((-608 . -1072) 95951) ((-593 . -1133) T) ((-530 . -1133) T) ((-607 . -1072) 95834) ((-1178 . -34) T) ((-1025 . -319) NIL) ((-827 . -501) 95818) ((-608 . -652) 95791) ((-365 . -939) T) ((-607 . -652) 95688) ((-929 . -234) 95675) ((-419 . -660) 95591) ((-50 . -23) T) ((-723 . -132) T) ((-724 . -1059) 95471) ((-593 . -23) T) ((-108 . -526) NIL) ((-530 . -23) T) ((-171 . -421) 95442) ((-1161 . -1121) T) ((-1303 . -1302) 95426) ((-743 . -919) 95403) ((-713 . -807) T) ((-713 . -804) T) ((-1141 . -317) T) ((-390 . -148) T) ((-290 . -625) 95385) ((-289 . -625) 95367) ((-1251 . -1013) 95337) ((-48 . -939) T) ((-687 . -501) 95321) ((-258 . -1295) 95291) ((-257 . -1295) 95261) ((-1109 . -237) T) ((-1197 . -861) T) ((-1141 . -1043) T) ((-1067 . -34) T) ((-848 . -148) 95240) ((-848 . -146) 95219) ((-749 . -107) 95203) ((-624 . -133) T) ((-1199 . -1079) T) ((-494 . -1121) 94955) ((-1195 . -919) 94868) ((-1194 . -919) 94774) ((-1188 . -919) 94535) ((-885 . -464) T) ((-85 . -1238) T) ((-142 . -107) 94517) ((-1147 . -919) 94501) ((-724 . -388) 94485) ((-845 . -628) 94353) ((-1311 . -738) T) ((-1300 . -1079) T) ((-1280 . -102) T) ((-1141 . -557) T) ((-591 . -102) T) ((-130 . -502) 94335) ((-1273 . -102) T) ((-402 . -1077) 94319) ((-1193 . -968) 94288) ((-44 . -296) 94265) ((-130 . -625) 94232) ((-52 . -625) 94214) ((-1146 . -968) 94181) ((-665 . -423) 94165) ((-1252 . -102) T) ((-1179 . -526) NIL) ((-674 . -25) T) ((-633 . -1077) 94149) ((-674 . -21) T) ((-982 . -658) 94059) ((-747 . -658) 94004) ((-727 . -658) 93976) ((-402 . -111) 93955) ((-224 . -261) 93939) ((-1075 . -1074) 93879) ((-1075 . -1121) T) ((-1025 . -1173) T) ((-830 . -1121) T) ((-465 . -658) 93794) ((-647 . -660) 93778) ((-633 . -111) 93757) ((-619 . -660) 93741) ((-354 . -1242) T) ((-608 . -102) T) ((-321 . -502) 93722) ((-598 . -132) T) ((-607 . -102) T) ((-426 . -1121) T) ((-396 . -1121) T) ((-321 . -625) 93688) ((-229 . -1121) 93666) ((-659 . -526) 93599) ((-644 . -526) 93443) ((-845 . -1070) 93422) ((-656 . -152) 93406) ((-354 . -568) T) ((-724 . -917) 93349) ((-562 . -231) 93299) ((-1280 . -294) 93265) ((-1273 . -294) 93231) ((-1101 . -300) 93182) ((-576 . -864) T) ((-499 . -860) T) ((-225 . -1133) T) ((-1252 . -294) 93148) ((-1232 . -505) 93114) ((-1025 . -38) 93064) ((-219 . -860) T) ((-430 . -658) 93023) ((-933 . -38) 92975) ((-855 . -806) 92954) ((-855 . -803) 92933) ((-855 . -738) 92912) ((-370 . -300) T) ((-364 . -300) T) ((-356 . -300) T) ((-171 . -464) 92843) ((-439 . -38) 92827) ((-225 . -23) T) ((-108 . -300) T) ((-419 . -806) 92806) ((-419 . -803) 92785) ((-419 . -738) T) ((-512 . -298) 92760) ((-489 . -1077) 92725) ((-670 . -132) T) ((-633 . -628) 92694) ((-1134 . -526) 92627) ((-347 . -132) T) ((-171 . -414) 92606) ((-494 . -729) 92548) ((-827 . -296) 92525) ((-489 . -111) 92481) ((-665 . -1079) T) ((-1193 . -911) 92384) ((-1146 . -911) 92366) ((-828 . -1072) 92209) ((-1299 . -1104) T) ((-1261 . -464) 92140) ((-828 . -652) 91989) ((-1298 . -1104) T) ((-1108 . -132) T) ((-1075 . -729) 91931) ((-1048 . -526) 91864) ((-794 . -132) T) ((-792 . -132) T) ((-711 . -864) T) ((-583 . -464) T) ((-633 . -1070) T) ((-604 . -1121) T) ((-545 . -175) T) ((-473 . -132) T) ((-466 . -132) T) ((-390 . -237) T) ((-1020 . -1238) T) ((-45 . -1121) T) ((-396 . -729) 91834) ((-829 . -1121) T) ((-488 . -526) 91767) ((-475 . -526) 91700) ((-1313 . -628) 91682) ((-465 . -378) 91652) ((-45 . -622) 91631) ((-411 . -1238) T) ((-326 . -312) T) ((-1288 . -864) 91610) ((-839 . -237) 91589) ((-489 . -628) 91539) ((-1252 . -319) 91424) ((-682 . -625) 91386) ((-59 . -861) 91365) ((-1025 . -412) 91347) ((-560 . -625) 91329) ((-811 . -658) 91288) ((-827 . -616) 91265) ((-528 . -861) 91244) ((-508 . -861) 91223) ((-1020 . -1059) 91119) ((-40 . -1242) T) ((-245 . -919) 90988) ((-50 . -132) T) ((-593 . -132) T) ((-530 . -132) T) ((-304 . -660) 90848) ((-354 . -339) 90825) ((-354 . -374) T) ((-332 . -333) 90802) ((-329 . -296) 90760) ((-40 . -568) T) ((-390 . -1223) T) ((-390 . -1226) T) ((-1056 . -1214) 90735) ((-1210 . -240) 90685) ((-1188 . -232) 90637) ((-1188 . -272) 90589) ((-340 . -1121) T) ((-390 . -95) T) ((-390 . -35) T) ((-1056 . -107) 90535) ((-489 . -1070) T) ((-1312 . -1077) 90519) ((-491 . -240) 90469) ((-1180 . -501) 90403) ((-1303 . -1072) 90387) ((-392 . -1077) 90371) ((-1303 . -652) 90341) ((-828 . -102) T) ((-489 . -248) T) ((-726 . -148) 90320) ((-726 . -146) 90299) ((-118 . -864) NIL) ((-496 . -501) 90283) ((-497 . -346) 90252) ((-524 . -1121) T) ((-1312 . -111) 90231) ((-1020 . -388) 90215) ((-425 . -102) T) ((-392 . -111) 90194) ((-1020 . -349) 90178) ((-288 . -1004) 90162) ((-287 . -1004) 90146) ((-1025 . -919) NIL) ((-1310 . -625) 90128) ((-1308 . -625) 90110) ((-110 . -526) NIL) ((-1193 . -1264) 90094) ((-868 . -866) 90078) ((-1199 . -1121) T) ((-103 . -1238) T) ((-971 . -968) 90039) ((-829 . -729) 89981) ((-1252 . -1173) NIL) ((-493 . -968) 89926) ((-1083 . -144) T) ((-60 . -102) 89876) ((-44 . -625) 89858) ((-78 . -625) 89840) ((-362 . -660) 89785) ((-1300 . -1121) T) ((-523 . -861) T) ((-299 . -296) 89764) ((-354 . -1133) T) ((-305 . -1121) T) ((-1020 . -917) 89723) ((-305 . -622) 89702) ((-1312 . -628) 89651) ((-1280 . -38) 89548) ((-1273 . -38) 89389) ((-1252 . -38) 89185) ((-499 . -1079) T) ((-392 . -628) 89169) ((-219 . -1079) T) ((-354 . -23) T) ((-153 . -625) 89151) ((-845 . -807) 89130) ((-845 . -804) 89109) ((-1237 . -628) 89090) ((-608 . -38) 89063) ((-607 . -38) 88960) ((-884 . -568) T) ((-225 . -132) T) ((-329 . -1023) 88926) ((-79 . -625) 88908) ((-724 . -317) 88887) ((-304 . -738) 88789) ((-836 . -102) T) ((-878 . -856) T) ((-304 . -485) 88768) ((-1303 . -102) T) ((-40 . -374) T) ((-886 . -148) 88747) ((-497 . -658) 88729) ((-886 . -146) 88708) ((-1179 . -501) 88690) ((-1312 . -1070) T) ((-494 . -526) 88623) ((-1167 . -1238) T) ((-983 . -625) 88605) ((-659 . -501) 88589) ((-644 . -501) 88520) ((-827 . -625) 88213) ((-48 . -27) T) ((-1199 . -729) 88110) ((-971 . -911) 88089) ((-665 . -1121) T) ((-875 . -874) T) ((-448 . -375) 88063) ((-743 . -658) 87973) ((-493 . -911) 87948) ((-1123 . -102) T) ((-991 . -1121) T) ((-878 . -1121) T) ((-828 . -319) 87935) ((-545 . -539) T) ((-545 . -588) T) ((-1308 . -393) 87907) ((-706 . -864) T) ((-1075 . -526) 87840) ((-1180 . -296) 87816) ((-245 . -272) 87785) ((-245 . -232) 87754) ((-258 . -1072) 87655) ((-257 . -1072) 87556) ((-1300 . -729) 87526) ((-1187 . -93) T) ((-1015 . -93) T) ((-829 . -174) 87505) ((-258 . -652) 87427) ((-257 . -652) 87349) ((-1235 . -502) 87326) ((-590 . -1238) T) ((-229 . -526) 87259) ((-633 . -807) 87238) ((-633 . -804) 87217) ((-1235 . -625) 87129) ((-224 . -1238) T) ((-687 . -625) 87061) ((-1195 . -658) 86971) ((-1178 . -1031) 86955) ((-962 . -102) 86885) ((-362 . -738) T) ((-875 . -625) 86867) ((-1194 . -658) 86749) ((-1188 . -658) 86586) ((-1147 . -658) 86496) ((-1252 . -412) 86448) ((-1134 . -501) 86432) ((-60 . -319) 86370) ((-341 . -102) T) ((-1232 . -21) T) ((-1232 . -25) T) ((-40 . -1133) T) ((-723 . -21) T) ((-639 . -625) 86352) ((-527 . -333) 86331) ((-723 . -25) T) ((-451 . -102) T) ((-108 . -296) NIL) ((-940 . -1133) T) ((-40 . -23) T) ((-783 . -1133) T) ((-576 . -1242) T) ((-507 . -1242) T) ((-1025 . -272) 86313) ((-329 . -625) 86295) ((-1025 . -232) 86277) ((-171 . -167) 86261) ((-592 . -568) T) ((-576 . -568) T) ((-507 . -568) T) ((-783 . -23) T) ((-1272 . -148) 86240) ((-1272 . -146) 86219) ((-1180 . -616) 86195) ((-1251 . -146) 86120) ((-1048 . -501) 86104) ((-1245 . -1238) T) ((-1251 . -148) 86029) ((-1303 . -1309) 86008) ((-885 . -911) NIL) ((-488 . -501) 85992) ((-475 . -501) 85976) ((-535 . -34) T) ((-665 . -729) 85946) ((-1280 . -919) 85859) ((-1273 . -919) 85765) ((-1252 . -919) 85526) ((-112 . -988) T) ((-1199 . -174) 85477) ((-674 . -861) 85456) ((-376 . -102) T) ((-607 . -919) 85369) ((-245 . -243) 85348) ((-258 . -102) T) ((-257 . -102) T) ((-1261 . -968) 85317) ((-250 . -861) 85296) ((-1045 . -864) T) ((-828 . -38) 85145) ((-45 . -526) 84937) ((-1179 . -296) 84887) ((-216 . -1121) T) ((-1171 . -1121) T) ((-886 . -237) 84838) ((-1171 . -622) 84817) ((-598 . -25) T) ((-598 . -21) T) ((-1123 . -319) 84755) ((-982 . -423) 84739) ((-711 . -1242) T) ((-644 . -296) 84692) ((-1108 . -651) 84640) ((-924 . -1121) T) ((-794 . -651) 84588) ((-792 . -651) 84536) ((-354 . -132) T) ((-299 . -625) 84518) ((-884 . -1133) T) ((-711 . -568) T) ((-130 . -628) 84500) ((-466 . -651) 84448) ((-171 . -911) 84369) ((-924 . -922) 84353) ((-390 . -464) T) ((-499 . -1121) T) ((-962 . -319) 84291) ((-713 . -660) 84263) ((-561 . -856) T) ((-219 . -1121) T) ((-326 . -939) 84242) ((-323 . -939) T) ((-323 . -832) NIL) ((-402 . -732) T) ((-884 . -23) T) ((-117 . -660) 84229) ((-486 . -146) 84208) ((-430 . -423) 84192) ((-486 . -148) 84171) ((-110 . -501) 84153) ((-321 . -628) 84134) ((-2 . -625) 84116) ((-188 . -102) T) ((-1179 . -19) 84098) ((-1179 . -616) 84073) ((-670 . -21) T) ((-670 . -25) T) ((-605 . -1165) T) ((-1134 . -296) 84050) ((-347 . -25) T) ((-347 . -21) T) ((-904 . -1238) T) ((-900 . -1238) T) ((-1310 . -1077) 84034) ((-245 . -658) 83813) ((-507 . -374) T) ((-1308 . -1077) 83797) ((-1303 . -38) 83767) ((-1272 . -1223) 83733) ((-1272 . -1226) 83699) ((-1261 . -911) 83602) ((-1193 . -1072) 83425) ((-1163 . -1238) T) ((-1146 . -1072) 83268) ((-868 . -1072) 83252) ((-644 . -616) 83227) ((-1272 . -95) 83193) ((-1272 . -237) 83145) ((-1255 . -102) 83123) ((-1193 . -652) 82952) ((-1146 . -652) 82801) ((-868 . -652) 82771) ((-1252 . -232) 82723) ((-1108 . -25) T) ((-561 . -1121) T) ((-1108 . -21) T) ((-982 . -1079) T) ((-543 . -804) T) ((-543 . -807) T) ((-118 . -1242) T) ((-880 . -1238) T) ((-635 . -568) T) ((-794 . -25) T) ((-794 . -21) T) ((-792 . -21) T) ((-792 . -25) T) ((-747 . -1079) T) ((-727 . -1079) T) ((-682 . -1077) 82707) ((-529 . -1104) T) ((-473 . -25) T) ((-118 . -568) T) ((-473 . -21) T) ((-466 . -25) T) ((-466 . -21) T) ((-1252 . -272) 82659) ((-1172 . -93) T) ((-1163 . -1059) 82555) ((-829 . -300) 82534) ((-1251 . -1223) 82500) ((-835 . -1121) T) ((-985 . -988) T) ((-682 . -111) 82479) ((-629 . -1238) T) ((-305 . -526) 82271) ((-1251 . -1226) 82237) ((-1251 . -237) 82096) ((-1246 . -379) T) ((-258 . -319) 82034) ((-257 . -319) 81972) ((-1243 . -856) T) ((-1180 . -626) NIL) ((-1180 . -625) 81954) ((-1163 . -388) 81938) ((-1141 . -832) T) ((-1141 . -939) T) ((-96 . -93) T) ((-1134 . -616) 81915) ((-1101 . -626) 81899) ((-1101 . -625) 81881) ((-1025 . -658) 81831) ((-933 . -658) 81768) ((-827 . -298) 81745) ((-496 . -625) 81677) ((-620 . -152) 81624) ((-499 . -729) 81574) ((-430 . -1079) T) ((-494 . -501) 81558) ((-439 . -658) 81517) ((-337 . -861) 81496) ((-350 . -660) 81470) ((-50 . -21) T) ((-50 . -25) T) ((-219 . -729) 81420) ((-171 . -736) 81391) ((-176 . -660) 81323) ((-593 . -21) T) ((-593 . -25) T) ((-530 . -25) T) ((-530 . -21) T) ((-487 . -152) 81273) ((-1082 . -625) 81255) ((-1014 . -102) T) ((-876 . -102) T) ((-828 . -919) 81155) ((-811 . -423) 81118) ((-40 . -132) T) ((-711 . -374) T) ((-713 . -738) T) ((-713 . -806) T) ((-713 . -803) T) ((-214 . -912) T) ((-592 . -1133) T) ((-576 . -1133) T) ((-507 . -1133) T) ((-370 . -625) 81100) ((-364 . -625) 81082) ((-356 . -625) 81064) ((-66 . -408) T) ((-66 . -407) T) ((-108 . -626) 80994) ((-108 . -625) 80936) ((-213 . -912) T) ((-977 . -152) 80920) ((-783 . -132) T) ((-682 . -628) 80838) ((-135 . -738) T) ((-117 . -738) T) ((-1272 . -35) 80804) ((-1075 . -501) 80788) ((-592 . -23) T) ((-576 . -23) T) ((-507 . -23) T) ((-1251 . -95) 80754) ((-1251 . -35) 80720) ((-1193 . -102) T) ((-1146 . -102) T) ((-868 . -102) T) ((-229 . -501) 80704) ((-1310 . -111) 80683) ((-1308 . -111) 80662) ((-44 . -1077) 80646) ((-1311 . -1238) T) ((-1310 . -628) 80592) ((-1310 . -1070) T) ((-1308 . -628) 80521) ((-1308 . -1070) T) ((-1261 . -1264) 80505) ((-869 . -866) 80489) ((-1199 . -300) 80468) ((-1125 . -1238) T) ((-110 . -296) 80418) ((-1024 . -1238) T) ((-129 . -152) 80400) ((-1163 . -917) 80359) ((-44 . -111) 80338) ((-1243 . -1121) T) ((-1202 . -1283) T) ((-1188 . -860) NIL) ((-1187 . -502) 80319) ((-682 . -1070) T) ((-1187 . -625) 80285) ((-1179 . -625) 80267) ((-486 . -237) 80219) ((-1084 . -622) 80194) ((-1015 . -502) 80175) ((-74 . -453) T) ((-74 . -407) T) ((-1084 . -1121) T) ((-153 . -1077) 80159) ((-1015 . -625) 80125) ((-682 . -238) 80104) ((-583 . -566) 80088) ((-366 . -148) 80067) ((-366 . -146) 80018) ((-363 . -148) 79997) ((-363 . -146) 79948) ((-355 . -148) 79927) ((-355 . -146) 79878) ((-273 . -146) 79857) ((-273 . -148) 79836) ((-253 . -148) 79815) ((-118 . -374) T) ((-253 . -146) 79794) ((-1179 . -626) NIL) ((-153 . -111) 79773) ((-1024 . -1059) 79661) ((-1178 . -1238) T) ((-706 . -1242) T) ((-811 . -1079) T) ((-711 . -1133) T) ((-1024 . -388) 79638) ((-518 . -1238) T) ((-514 . -1238) T) ((-929 . -146) T) ((-929 . -148) 79620) ((-884 . -132) T) ((-827 . -1077) 79541) ((-711 . -23) T) ((-706 . -568) T) ((-227 . -1072) 79506) ((-659 . -625) 79438) ((-659 . -626) 79399) ((-644 . -626) NIL) ((-644 . -625) 79381) ((-499 . -174) T) ((-227 . -652) 79346) ((-219 . -174) T) ((-225 . -21) T) ((-225 . -25) T) ((-486 . -1226) 79312) ((-486 . -1223) 79278) ((-283 . -625) 79260) ((-282 . -625) 79242) ((-281 . -625) 79224) ((-280 . -625) 79206) ((-279 . -625) 79188) ((-512 . -663) 79170) ((-278 . -625) 79152) ((-350 . -738) T) ((-277 . -625) 79134) ((-110 . -19) 79116) ((-176 . -738) T) ((-512 . -384) 79098) ((-214 . -625) 79080) ((-532 . -1170) 79064) ((-512 . -124) T) ((-110 . -616) 79039) ((-213 . -625) 79021) ((-486 . -35) 78987) ((-486 . -95) 78953) ((-211 . -625) 78935) ((-210 . -625) 78917) ((-209 . -625) 78899) ((-208 . -625) 78881) ((-205 . -625) 78863) ((-204 . -625) 78845) ((-203 . -625) 78827) ((-202 . -625) 78809) ((-201 . -625) 78791) ((-200 . -625) 78773) ((-199 . -625) 78755) ((-548 . -1124) 78707) ((-198 . -625) 78689) ((-197 . -625) 78671) ((-45 . -501) 78608) ((-196 . -625) 78590) ((-195 . -625) 78572) ((-153 . -628) 78541) ((-1136 . -102) T) ((-827 . -111) 78457) ((-656 . -102) 78387) ((-494 . -296) 78364) ((-1311 . -1059) 78348) ((-1134 . -625) 78041) ((-1122 . -1121) T) ((-1067 . -1238) T) ((-1193 . -319) 78028) ((-1083 . -1072) 78015) ((-1156 . -1121) T) ((-971 . -1072) 77858) ((-1146 . -319) 77845) ((-1117 . -1104) T) ((-635 . -1133) T) ((-1083 . -652) 77832) ((-1111 . -1104) T) ((-971 . -652) 77681) ((-1108 . -234) 77626) ((-493 . -1072) 77469) ((-1094 . -1104) T) ((-1087 . -1104) T) ((-1057 . -1104) T) ((-1040 . -1104) T) ((-118 . -1133) T) ((-493 . -652) 77318) ((-794 . -234) 77305) ((-831 . -102) T) ((-638 . -1104) T) ((-635 . -23) T) ((-1171 . -526) 77097) ((-495 . -1104) T) ((-982 . -1121) T) ((-398 . -102) T) ((-334 . -102) T) ((-220 . -1104) T) ((-855 . -1238) T) ((-153 . -1070) T) ((-743 . -423) 77081) ((-118 . -23) T) ((-1024 . -917) 77033) ((-747 . -1121) T) ((-727 . -1121) T) ((-1280 . -658) 76943) ((-1273 . -658) 76825) ((-465 . -1121) T) ((-419 . -1238) T) ((-326 . -442) 76809) ((-604 . -93) T) ((-1048 . -626) 76770) ((-270 . -1238) T) ((-1045 . -1242) T) ((-227 . -102) T) ((-1048 . -625) 76732) ((-828 . -272) 76716) ((-828 . -232) 76700) ((-827 . -628) 76498) ((-1252 . -658) 76335) ((-1045 . -568) T) ((-845 . -660) 76308) ((-365 . -1242) T) ((-488 . -625) 76270) ((-488 . -626) 76231) ((-475 . -626) 76192) ((-475 . -625) 76154) ((-608 . -658) 76113) ((-419 . -899) 76097) ((-329 . -1077) 75932) ((-419 . -901) 75857) ((-607 . -658) 75767) ((-855 . -1059) 75663) ((-499 . -526) NIL) ((-494 . -616) 75640) ((-593 . -234) 75627) ((-365 . -568) T) ((-530 . -234) 75614) ((-219 . -526) NIL) ((-886 . -464) T) ((-430 . -1121) T) ((-419 . -1059) 75478) ((-329 . -111) 75299) ((-706 . -374) T) ((-227 . -294) T) ((-1235 . -628) 75276) ((-48 . -1242) T) ((-1193 . -1173) 75254) ((-1180 . -298) 75230) ((-1083 . -102) T) ((-971 . -102) T) ((-827 . -1070) 75208) ((-592 . -132) T) ((-576 . -132) T) ((-507 . -132) T) ((-366 . -237) 75187) ((-363 . -237) 75166) ((-355 . -237) 75145) ((-48 . -568) T) ((-885 . -1072) 75090) ((-273 . -237) 75041) ((-827 . -238) 74993) ((-326 . -27) 74972) ((-258 . -919) 74841) ((-257 . -919) 74710) ((-255 . -847) 74692) ((-189 . -847) 74674) ((-725 . -102) T) ((-305 . -501) 74611) ((-885 . -652) 74556) ((-493 . -102) T) ((-743 . -1079) T) ((-624 . -625) 74538) ((-624 . -626) 74399) ((-419 . -388) 74383) ((-419 . -349) 74367) ((-1193 . -38) 74196) ((-1146 . -38) 74045) ((-329 . -628) 73871) ((-929 . -237) T) ((-647 . -1238) T) ((-619 . -1238) T) ((-868 . -38) 73841) ((-402 . -660) 73825) ((-656 . -319) 73763) ((-1172 . -502) 73744) ((-1172 . -625) 73710) ((-982 . -729) 73607) ((-747 . -729) 73577) ((-633 . -660) 73551) ((-224 . -107) 73535) ((-45 . -296) 73435) ((-322 . -1121) T) ((-299 . -1077) 73422) ((-110 . -625) 73404) ((-110 . -626) 73386) ((-465 . -729) 73356) ((-828 . -260) 73295) ((-701 . -1121) 73273) ((-562 . -1121) T) ((-1195 . -1079) T) ((-1194 . -1079) T) ((-96 . -502) 73254) ((-1188 . -1079) T) ((-299 . -111) 73239) ((-1147 . -1079) T) ((-562 . -622) 73218) ((-96 . -625) 73184) ((-1025 . -860) T) ((-229 . -699) 73142) ((-706 . -1133) T) ((-1232 . -752) 73118) ((-1045 . -374) T) ((-850 . -847) 73100) ((-845 . -806) 73079) ((-419 . -917) 73038) ((-329 . -1070) T) ((-354 . -25) T) ((-354 . -21) T) ((-171 . -1072) 72948) ((-68 . -1238) T) ((-845 . -803) 72927) ((-430 . -729) 72901) ((-811 . -1121) T) ((-724 . -939) 72880) ((-711 . -132) T) ((-171 . -652) 72708) ((-706 . -23) T) ((-499 . -300) T) ((-845 . -738) 72687) ((-329 . -238) 72639) ((-329 . -248) 72618) ((-219 . -300) T) ((-130 . -379) T) ((-1272 . -464) 72597) ((-1251 . -464) 72576) ((-365 . -339) 72553) ((-365 . -374) T) ((-1161 . -625) 72535) ((-45 . -1276) 72485) ((-885 . -102) T) ((-656 . -292) 72469) ((-711 . -1081) T) ((-1299 . -102) T) ((-1298 . -102) T) ((-489 . -660) 72434) ((-480 . -1121) T) ((-45 . -616) 72359) ((-1179 . -298) 72334) ((-299 . -628) 72306) ((-40 . -651) 72245) ((-1261 . -1072) 72068) ((-869 . -1072) 72052) ((-48 . -374) T) ((-1127 . -625) 72034) ((-1261 . -652) 71863) ((-869 . -652) 71833) ((-644 . -298) 71808) ((-828 . -658) 71718) ((-583 . -1072) 71705) ((-494 . -625) 71398) ((-245 . -423) 71367) ((-1193 . -919) 71274) ((-1186 . -1121) T) ((-971 . -319) 71261) ((-583 . -652) 71248) ((-65 . -1238) T) ((-1154 . -1238) T) ((-1146 . -919) 71232) ((-1134 . -298) 71209) ((-1084 . -526) 71053) ((-683 . -1121) T) ((-635 . -132) T) ((-618 . -1121) T) ((-493 . -319) 71040) ((-558 . -102) T) ((-118 . -132) T) ((-299 . -1070) T) ((-182 . -1121) T) ((-162 . -1121) T) ((-157 . -1121) T) ((-155 . -1121) T) ((-465 . -773) T) ((-31 . -1104) T) ((-982 . -174) 70991) ((-1123 . -231) 70975) ((-991 . -93) T) ((-1101 . -1077) 70885) ((-1075 . -625) 70847) ((-633 . -738) T) ((-633 . -806) 70826) ((-605 . -1121) T) ((-633 . -803) 70805) ((-305 . -296) 70784) ((-304 . -1238) T) ((-1075 . -626) 70745) ((-1045 . -1133) T) ((-323 . -864) NIL) ((-171 . -102) T) ((-284 . -861) T) ((-1101 . -111) 70641) ((-830 . -625) 70623) ((-1045 . -23) T) ((-1024 . -317) T) ((-915 . -102) T) ((-811 . -729) 70607) ((-370 . -1077) 70559) ((-365 . -1133) T) ((-364 . -1077) 70511) ((-426 . -625) 70493) ((-396 . -625) 70475) ((-356 . -1077) 70427) ((-229 . -625) 70359) ((-853 . -102) T) ((-820 . -102) T) ((-108 . -1077) 70309) ((-781 . -102) T) ((-689 . -102) T) ((-115 . -864) T) ((-486 . -464) 70288) ((-430 . -174) T) ((-370 . -111) 70226) ((-364 . -111) 70164) ((-356 . -111) 70102) ((-258 . -272) 70071) ((-258 . -232) 70040) ((-257 . -272) 70009) ((-257 . -232) 69978) ((-365 . -23) T) ((-71 . -1238) T) ((-227 . -38) 69943) ((-108 . -111) 69877) ((-40 . -25) T) ((-40 . -21) T) ((-682 . -732) T) ((-171 . -294) 69855) ((-48 . -1133) T) ((-872 . -1238) T) ((-940 . -25) T) ((-783 . -25) T) ((-1312 . -660) 69829) ((-1171 . -501) 69766) ((-497 . -1121) T) ((-1303 . -658) 69725) ((-1261 . -102) T) ((-1083 . -1173) T) ((-869 . -102) T) ((-245 . -1079) 69703) ((-983 . -804) 69656) ((-983 . -807) 69609) ((-392 . -660) 69593) ((-48 . -23) T) ((-827 . -807) 69572) ((-827 . -804) 69551) ((-560 . -379) T) ((-305 . -616) 69530) ((-489 . -738) T) ((-583 . -102) T) ((-1101 . -628) 69348) ((-255 . -187) T) ((-189 . -187) T) ((-885 . -319) 69305) ((-665 . -296) 69284) ((-112 . -673) T) ((-362 . -1238) T) ((-370 . -628) 69221) ((-364 . -628) 69158) ((-356 . -628) 69095) ((-76 . -1238) T) ((-108 . -628) 69045) ((-112 . -113) T) ((-1083 . -38) 69032) ((-676 . -385) 69011) ((-971 . -38) 68860) ((-743 . -1121) T) ((-493 . -38) 68709) ((-86 . -1238) T) ((-604 . -502) 68690) ((-1252 . -860) NIL) ((-1195 . -1121) T) ((-583 . -294) T) ((-1194 . -1121) T) ((-604 . -625) 68656) ((-1188 . -1121) T) ((-1141 . -864) T) ((-1101 . -1070) T) ((-362 . -1059) 68633) ((-829 . -502) 68617) ((-1025 . -1079) T) ((-45 . -625) 68599) ((-45 . -626) NIL) ((-933 . -1079) T) ((-829 . -625) 68568) ((-1168 . -102) 68518) ((-1101 . -248) 68469) ((-439 . -1079) T) ((-370 . -1070) T) ((-364 . -1070) T) ((-376 . -375) 68446) ((-356 . -1070) T) ((-354 . -234) 68433) ((-258 . -243) 68412) ((-257 . -243) 68391) ((-1101 . -238) 68316) ((-1147 . -1121) T) ((-304 . -917) 68275) ((-108 . -1070) T) ((-706 . -132) T) ((-430 . -526) 68117) ((-370 . -238) 68096) ((-370 . -248) T) ((-44 . -732) T) ((-364 . -238) 68075) ((-364 . -248) T) ((-356 . -238) 68054) ((-356 . -248) T) ((-1187 . -628) 68035) ((-171 . -319) 68000) ((-108 . -248) T) ((-108 . -238) T) ((-1015 . -628) 67981) ((-329 . -804) T) ((-884 . -21) T) ((-884 . -25) T) ((-419 . -317) T) ((-512 . -34) T) ((-110 . -298) 67956) ((-1134 . -1077) 67877) ((-885 . -1173) NIL) ((-340 . -625) 67859) ((-419 . -1043) 67837) ((-1134 . -111) 67753) ((-703 . -1283) T) ((-448 . -1121) T) ((-256 . -1121) T) ((-1312 . -738) T) ((-63 . -625) 67735) ((-885 . -38) 67680) ((-614 . -152) 67664) ((-535 . -1238) T) ((-524 . -625) 67646) ((-1261 . -319) 67633) ((-743 . -729) 67482) ((-543 . -805) T) ((-543 . -806) T) ((-576 . -651) 67464) ((-507 . -651) 67424) ((-516 . -1238) T) ((-366 . -464) T) ((-363 . -464) T) ((-355 . -464) T) ((-273 . -464) 67375) ((-537 . -1121) T) ((-532 . -1121) 67325) ((-253 . -464) 67276) ((-1171 . -296) 67255) ((-1199 . -625) 67237) ((-701 . -526) 67170) ((-982 . -300) 67149) ((-562 . -526) 66941) ((-258 . -658) 66789) ((-257 . -658) 66624) ((-1300 . -625) 66593) ((-1300 . -502) 66577) ((-1195 . -729) 66474) ((-1193 . -272) 66458) ((-1193 . -232) 66442) ((-1134 . -628) 66240) ((-171 . -1173) 66219) ((-1194 . -729) 66060) ((-1188 . -729) 65856) ((-985 . -113) T) ((-907 . -102) T) ((-1178 . -686) 65840) ((-1147 . -729) 65737) ((-1045 . -132) T) ((-366 . -414) 65688) ((-363 . -414) 65639) ((-355 . -414) 65590) ((-983 . -379) 65543) ((-811 . -526) 65455) ((-305 . -626) NIL) ((-305 . -625) 65437) ((-929 . -464) T) ((-924 . -296) 65416) ((-827 . -379) 65395) ((-522 . -521) 65374) ((-520 . -521) 65353) ((-886 . -911) 65274) ((-499 . -296) NIL) ((-494 . -298) 65251) ((-430 . -300) T) ((-365 . -132) T) ((-219 . -296) NIL) ((-706 . -505) NIL) ((-99 . -1133) T) ((-40 . -234) 65182) ((-171 . -38) 65010) ((-971 . -919) 64991) ((-1272 . -994) 64953) ((-1168 . -319) 64891) ((-493 . -919) 64868) ((-1251 . -994) 64837) ((-929 . -414) T) ((-1134 . -1070) 64815) ((-1274 . -568) T) ((-1171 . -616) 64794) ((-112 . -861) T) ((-1084 . -501) 64725) ((-592 . -21) T) ((-592 . -25) T) ((-576 . -21) T) ((-576 . -25) T) ((-507 . -25) T) ((-507 . -21) T) ((-1261 . -1173) 64703) ((-1134 . -238) 64655) ((-48 . -132) T) ((-1219 . -102) T) ((-245 . -1121) 64407) ((-885 . -412) 64384) ((-1109 . -102) T) ((-1097 . -102) T) ((-908 . -864) T) ((-620 . -102) T) ((-487 . -102) T) ((-1261 . -38) 64213) ((-869 . -38) 64183) ((-1055 . -1072) 64157) ((-743 . -174) 64068) ((-665 . -625) 64050) ((-657 . -1104) T) ((-1055 . -652) 64034) ((-583 . -38) 64021) ((-991 . -502) 64002) ((-991 . -625) 63968) ((-977 . -102) 63898) ((-878 . -625) 63880) ((-878 . -626) 63802) ((-605 . -526) NIL) ((-862 . -102) T) ((-1317 . -1133) T) ((-1280 . -1079) T) ((-1273 . -1079) T) ((-1272 . -911) 63706) ((-1252 . -1079) T) ((-1251 . -911) 63501) ((-1232 . -148) 63480) ((-332 . -1072) 63462) ((-1232 . -146) 63441) ((-1205 . -102) T) ((-1204 . -102) T) ((-1203 . -102) T) ((-1195 . -174) 63392) ((-332 . -652) 63374) ((-713 . -1238) T) ((-1194 . -174) 63305) ((-1188 . -174) 63236) ((-1172 . -628) 63217) ((-1147 . -174) 63168) ((-608 . -1079) T) ((-607 . -1079) T) ((-1025 . -1121) T) ((-992 . -1121) T) ((-390 . -1072) 63133) ((-135 . -1238) T) ((-117 . -1238) T) ((-933 . -1121) T) ((-885 . -919) NIL) ((-390 . -652) 63098) ((-145 . -864) T) ((-811 . -809) 63082) ((-711 . -25) T) ((-711 . -21) T) ((-118 . -651) 63059) ((-713 . -901) 63041) ((-439 . -1121) T) ((-326 . -1242) 63020) ((-323 . -1242) T) ((-171 . -412) 63004) ((-848 . -1072) 62974) ((-486 . -994) 62936) ((-129 . -102) T) ((-72 . -625) 62918) ((-131 . -102) T) ((-839 . -1072) 62902) ((-108 . -807) T) ((-108 . -804) T) ((-713 . -1059) 62884) ((-326 . -568) 62863) ((-323 . -568) T) ((-848 . -652) 62833) ((-839 . -652) 62803) ((-1317 . -23) T) ((-135 . -1059) 62785) ((-96 . -628) 62766) ((-1014 . -658) 62748) ((-494 . -1077) 62669) ((-45 . -298) 62594) ((-245 . -729) 62536) ((-529 . -102) T) ((-494 . -111) 62452) ((-1113 . -102) 62422) ((-1055 . -102) T) ((-1193 . -658) 62332) ((-1146 . -658) 62242) ((-868 . -658) 62201) ((-656 . -840) 62180) ((-743 . -526) 62123) ((-1075 . -1077) 62107) ((-171 . -919) 62030) ((-1156 . -93) T) ((-1084 . -296) 62005) ((-635 . -21) T) ((-635 . -25) T) ((-536 . -1121) T) ((-682 . -660) 61943) ((-372 . -102) T) ((-332 . -102) T) ((-396 . -1077) 61927) ((-1075 . -111) 61906) ((-828 . -423) 61890) ((-118 . -25) T) ((-89 . -625) 61872) ((-118 . -21) T) ((-620 . -319) 61667) ((-1171 . -626) NIL) ((-487 . -319) 61471) ((-350 . -1238) T) ((-176 . -1238) T) ((-396 . -111) 61450) ((-390 . -102) T) ((-216 . -625) 61432) ((-1171 . -625) 61414) ((-786 . -1238) T) ((-1188 . -526) 61183) ((-1025 . -729) 61133) ((-1147 . -526) 61103) ((-933 . -729) 61055) ((-494 . -628) 60853) ((-362 . -317) T) ((-1210 . -152) 60803) ((-486 . -911) 60684) ((-977 . -319) 60622) ((-848 . -102) T) ((-439 . -729) 60606) ((-227 . -840) T) ((-839 . -102) T) ((-837 . -102) T) ((-1310 . -660) 60580) ((-1272 . -1271) 60559) ((-491 . -152) 60509) ((-1272 . -1266) 60479) ((-1141 . -1242) T) ((-350 . -1059) 60446) ((-1272 . -1269) 60430) ((-1261 . -919) 60337) ((-1251 . -1250) 60316) ((-80 . -625) 60298) ((-924 . -625) 60280) ((-1251 . -1266) 60257) ((-1141 . -568) T) ((-940 . -861) T) ((-783 . -861) T) ((-684 . -861) T) ((-499 . -626) 60187) ((-499 . -625) 60128) ((-390 . -294) T) ((-1251 . -1248) 60112) ((-1274 . -1133) T) ((-219 . -626) 60042) ((-219 . -625) 59983) ((-1084 . -616) 59958) ((-830 . -628) 59942) ((-576 . -234) 59929) ((-528 . -152) 59913) ((-59 . -152) 59897) ((-508 . -152) 59881) ((-507 . -234) 59868) ((-370 . -1307) 59852) ((-364 . -1307) 59836) ((-356 . -1307) 59820) ((-326 . -374) 59799) ((-323 . -374) T) ((-494 . -1070) 59777) ((-706 . -651) 59759) ((-1308 . -660) 59733) ((-129 . -319) NIL) ((-1274 . -23) T) ((-701 . -501) 59717) ((-64 . -625) 59699) ((-1134 . -807) 59678) ((-1134 . -804) 59657) ((-562 . -501) 59594) ((-682 . -34) T) ((-494 . -238) 59546) ((-305 . -298) 59525) ((-828 . -1079) T) ((-44 . -660) 59483) ((-1101 . -379) 59434) ((-743 . -300) 59365) ((-532 . -526) 59298) ((-829 . -1077) 59249) ((-1108 . -146) 59228) ((-561 . -625) 59210) ((-370 . -379) 59189) ((-364 . -379) 59168) ((-356 . -379) 59147) ((-1108 . -148) 59126) ((-987 . -1238) T) ((-885 . -272) 59103) ((-885 . -232) 59080) ((-829 . -111) 59022) ((-794 . -146) 59001) ((-273 . -968) 58968) ((-253 . -968) 58913) ((-794 . -148) 58892) ((-792 . -146) 58871) ((-792 . -148) 58850) ((-153 . -660) 58824) ((-591 . -1121) T) ((-465 . -296) 58787) ((-466 . -148) 58766) ((-466 . -146) 58745) ((-682 . -738) T) ((-835 . -625) 58727) ((-1280 . -1121) T) ((-1273 . -1121) T) ((-1252 . -1121) T) ((-1232 . -1226) 58693) ((-1232 . -1223) 58659) ((-1195 . -300) 58638) ((-1194 . -300) 58589) ((-1188 . -300) 58540) ((-1147 . -300) 58519) ((-350 . -917) 58500) ((-1025 . -174) T) ((-933 . -174) T) ((-706 . -21) T) ((-706 . -25) T) ((-227 . -658) 58450) ((-608 . -1121) T) ((-607 . -1121) T) ((-486 . -1269) 58434) ((-486 . -1266) 58404) ((-430 . -296) 58332) ((-559 . -861) T) ((-326 . -1133) 58181) ((-323 . -1133) T) ((-1232 . -35) 58147) ((-1232 . -95) 58113) ((-84 . -625) 58095) ((-91 . -102) 58045) ((-1317 . -132) T) ((-726 . -1072) 58015) ((-604 . -628) 57996) ((-593 . -146) T) ((-593 . -148) 57978) ((-530 . -148) 57960) ((-530 . -146) T) ((-726 . -652) 57930) ((-326 . -23) 57782) ((-40 . -353) 57756) ((-323 . -23) T) ((-829 . -628) 57670) ((-1179 . -663) 57652) ((-1303 . -1079) T) ((-1179 . -384) 57634) ((-1117 . -102) T) ((-827 . -660) 57467) ((-1111 . -102) T) ((-1094 . -102) T) ((-171 . -272) 57451) ((-171 . -232) 57435) ((-1087 . -102) T) ((-1057 . -102) T) ((-1040 . -102) T) ((-605 . -501) 57417) ((-638 . -102) T) ((-245 . -526) 57350) ((-495 . -102) T) ((-1310 . -738) T) ((-1308 . -738) T) ((-220 . -102) T) ((-1199 . -1077) 57233) ((-1300 . -111) 57198) ((-1300 . -1077) 57168) ((-1083 . -658) 57140) ((-1280 . -729) 57037) ((-971 . -658) 56947) ((-1273 . -729) 56788) ((-1199 . -111) 56657) ((-1055 . -38) 56641) ((-890 . -1104) T) ((-875 . -175) T) ((-493 . -658) 56551) ((-273 . -911) 56457) ((-253 . -911) 56432) ((-829 . -1070) T) ((-693 . -1104) T) ((-688 . -1104) T) ((-635 . -234) 56377) ((-527 . -102) T) ((-522 . -102) T) ((-48 . -651) 56337) ((-520 . -102) T) ((-490 . -1104) T) ((-118 . -234) NIL) ((-3 . -1238) T) ((-139 . -1104) T) ((-138 . -1104) T) ((-134 . -1104) T) ((-845 . -1238) T) ((-829 . -238) T) ((-829 . -248) 56316) ((-1261 . -272) 56300) ((-1261 . -232) 56284) ((-1020 . -864) 56263) ((-1243 . -625) 56245) ((-562 . -296) 56224) ((-1084 . -626) NIL) ((-1084 . -625) 56206) ((-618 . -93) T) ((-683 . -93) T) ((0 . -1238) T) ((-49 . -1238) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-1252 . -729) 56002) ((-1024 . -939) T) ((-153 . -738) T) ((-1199 . -628) 55855) ((-1134 . -379) 55834) ((-1045 . -25) T) ((-1025 . -526) NIL) ((-258 . -423) 55803) ((-257 . -423) 55772) ((-1045 . -21) T) ((-886 . -1072) 55724) ((-608 . -729) 55697) ((-607 . -729) 55594) ((-811 . -296) 55552) ((-127 . -102) 55502) ((-845 . -1059) 55398) ((-171 . -840) 55377) ((-329 . -660) 55274) ((-827 . -34) T) ((-726 . -102) T) ((-1141 . -1133) T) ((-1047 . -1238) T) ((-886 . -652) 55226) ((-390 . -38) 55191) ((-365 . -25) T) ((-365 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-255 . -102) T) ((-158 . -102) T) ((-366 . -1295) 55175) ((-363 . -1295) 55159) ((-355 . -1295) 55143) ((-171 . -360) 55122) ((-576 . -861) T) ((-1108 . -237) 55073) ((-1141 . -23) T) ((-87 . -625) 55055) ((-794 . -237) T) ((-713 . -317) T) ((-848 . -38) 55025) ((-839 . -38) 54995) ((-1300 . -628) 54937) ((-1274 . -132) T) ((-1171 . -298) 54916) ((-983 . -738) 54815) ((-983 . -805) 54768) ((-983 . -806) 54721) ((-117 . -317) T) ((-91 . -319) 54659) ((-687 . -34) T) ((-562 . -616) 54638) ((-48 . -25) T) ((-48 . -21) T) ((-827 . -806) 54617) ((-827 . -805) 54596) ((-713 . -1043) T) ((-665 . -1077) 54580) ((-885 . -658) 54510) ((-827 . -738) 54488) ((-402 . -1238) T) ((-983 . -485) 54441) ((-494 . -807) 54420) ((-494 . -804) 54399) ((-929 . -1295) 54386) ((-1199 . -1070) T) ((-633 . -1238) T) ((-665 . -111) 54365) ((-1199 . -336) 54342) ((-1224 . -102) 54292) ((-1122 . -625) 54274) ((-713 . -557) T) ((-828 . -1121) T) ((-593 . -237) T) ((-530 . -237) T) ((-1300 . -1070) T) ((-1156 . -502) 54255) ((-1244 . -102) T) ((-425 . -1121) T) ((-1156 . -625) 54221) ((-258 . -1079) 54199) ((-257 . -1079) 54177) ((-850 . -102) T) ((-299 . -660) 54164) ((-605 . -296) 54114) ((-701 . -699) 54072) ((-1313 . -1238) T) ((-1288 . -861) 54051) ((-982 . -625) 54033) ((-886 . -102) T) ((-747 . -625) 54015) ((-727 . -625) 53997) ((-1280 . -174) 53948) ((-1273 . -174) 53879) ((-1252 . -174) 53810) ((-711 . -861) T) ((-1025 . -300) T) ((-465 . -625) 53792) ((-639 . -738) T) ((-60 . -1121) 53770) ((-250 . -152) 53754) ((-1272 . -652) 53595) ((-933 . -300) T) ((-1045 . -1033) T) ((-639 . -485) T) ((-724 . -1242) 53574) ((-706 . -234) NIL) ((-665 . -628) 53492) ((-171 . -658) 53387) ((-1272 . -1072) 53222) ((-608 . -174) 53201) ((-607 . -174) 53152) ((-1251 . -652) 52966) ((-1251 . -1072) 52774) ((-1246 . -1238) T) ((-724 . -568) 52685) ((-419 . -832) 52664) ((-419 . -939) T) ((-329 . -806) T) ((-489 . -1238) T) ((-991 . -628) 52645) ((-329 . -738) T) ((-656 . -1170) 52629) ((-430 . -625) 52611) ((-430 . -626) 52518) ((-110 . -663) 52500) ((-326 . -132) 52371) ((-176 . -317) T) ((-127 . -319) 52309) ((-410 . -1238) T) ((-110 . -384) 52291) ((-323 . -132) T) ((-69 . -407) T) ((-110 . -124) T) ((-532 . -501) 52275) ((-666 . -1133) T) ((-605 . -19) 52257) ((-61 . -453) T) ((-61 . -407) T) ((-836 . -1121) T) ((-605 . -616) 52232) ((-489 . -1059) 52192) ((-665 . -1070) T) ((-666 . -23) T) ((-1303 . -1121) T) ((-31 . -102) T) ((-1261 . -658) 52102) ((-869 . -658) 52061) ((-828 . -729) 51910) ((-1290 . -1238) T) ((-589 . -874) T) ((-583 . -658) 51882) ((-118 . -861) NIL) ((-1193 . -423) 51866) ((-1146 . -423) 51850) ((-868 . -423) 51834) ((-887 . -102) 51785) ((-1272 . -102) T) ((-1252 . -526) 51554) ((-1251 . -102) T) ((-1224 . -319) 51492) ((-1195 . -296) 51457) ((-1194 . -296) 51415) ((-537 . -93) T) ((-1188 . -296) 51243) ((-322 . -625) 51225) ((-1123 . -1121) T) ((-1101 . -660) 51099) ((-723 . -464) T) ((-701 . -625) 51031) ((-299 . -738) T) ((-108 . -928) NIL) ((-701 . -626) 50992) ((-613 . -625) 50974) ((-589 . -625) 50956) ((-562 . -626) NIL) ((-562 . -625) 50938) ((-541 . -625) 50920) ((-523 . -521) 50899) ((-499 . -1077) 50849) ((-486 . -1072) 50684) ((-519 . -521) 50663) ((-486 . -652) 50504) ((-219 . -1077) 50454) ((-370 . -660) 50406) ((-364 . -660) 50358) ((-227 . -860) T) ((-356 . -660) 50310) ((-614 . -102) 50240) ((-499 . -111) 50174) ((-494 . -379) 50153) ((-108 . -660) 50103) ((-365 . -234) 50090) ((-245 . -501) 50074) ((-354 . -148) 50056) ((-354 . -146) T) ((-171 . -381) 50027) ((-962 . -1286) 50011) ((-105 . -1238) T) ((-219 . -111) 49945) ((-886 . -319) 49910) ((-962 . -1121) 49860) ((-811 . -626) 49821) ((-811 . -625) 49803) ((-730 . -102) T) ((-1312 . -1238) T) ((-392 . -1238) T) ((-341 . -1121) T) ((-216 . -628) 49780) ((-1141 . -132) T) ((-1303 . -729) 49750) ((-726 . -38) 49720) ((-326 . -505) 49699) ((-543 . -1238) T) ((-512 . -1238) T) ((-1272 . -294) 49665) ((-1251 . -294) 49631) ((-337 . -152) 49615) ((-451 . -1121) T) ((-1237 . -1238) T) ((-1084 . -298) 49590) ((-1245 . -864) T) ((-48 . -234) 49577) ((-1180 . -34) T) ((-1312 . -1059) 49554) ((-496 . -34) T) ((-480 . -625) 49536) ((-256 . -296) 49510) ((-392 . -1059) 49494) ((-1193 . -1079) T) ((-1146 . -1079) T) ((-868 . -1079) T) ((-1083 . -860) T) ((-499 . -628) 49444) ((-219 . -628) 49394) ((-828 . -174) 49305) ((-532 . -296) 49257) ((-1280 . -300) 49236) ((-1219 . -375) 49210) ((-1109 . -275) 49194) ((-683 . -502) 49175) ((-683 . -625) 49141) ((-618 . -502) 49122) ((-118 . -1013) 49099) ((-618 . -625) 49049) ((-486 . -102) T) ((-182 . -502) 49030) ((-182 . -625) 48996) ((-162 . -502) 48977) ((-162 . -625) 48943) ((-157 . -502) 48924) ((-155 . -502) 48905) ((-157 . -625) 48871) ((-376 . -1121) T) ((-258 . -1121) T) ((-257 . -1121) T) ((-155 . -625) 48837) ((-1273 . -300) 48788) ((-1252 . -300) 48739) ((-886 . -1173) 48717) ((-1195 . -1023) 48683) ((-620 . -375) 48623) ((-1194 . -1023) 48589) ((-620 . -231) 48536) ((-706 . -861) T) ((-605 . -625) 48518) ((-605 . -626) NIL) ((-487 . -231) 48468) ((-499 . -1070) T) ((-1188 . -1023) 48434) ((-88 . -452) T) ((-88 . -407) T) ((-219 . -1070) T) ((-1147 . -1023) 48400) ((-1101 . -738) T) ((-724 . -1133) T) ((-608 . -300) 48379) ((-607 . -300) 48358) ((-499 . -248) T) ((-499 . -238) T) ((-219 . -248) T) ((-219 . -238) T) ((-1186 . -625) 48340) ((-886 . -38) 48292) ((-370 . -738) T) ((-364 . -738) T) ((-356 . -738) T) ((-108 . -806) T) ((-108 . -803) T) ((-724 . -23) T) ((-108 . -738) T) ((-532 . -1276) 48276) ((-1317 . -25) T) ((-486 . -294) 48242) ((-1317 . -21) T) ((-1251 . -319) 48181) ((-1197 . -102) T) ((-40 . -146) 48153) ((-40 . -148) 48125) ((-532 . -616) 48102) ((-1134 . -660) 47935) ((-614 . -319) 47873) ((-45 . -663) 47823) ((-45 . -678) 47773) ((-45 . -384) 47723) ((-1179 . -34) T) ((-885 . -860) NIL) ((-666 . -132) T) ((-497 . -625) 47705) ((-245 . -296) 47682) ((-1103 . -1238) T) ((-188 . -1121) T) ((-1108 . -464) 47633) ((-828 . -526) 47507) ((-794 . -464) 47438) ((-676 . -1072) 47422) ((-659 . -34) T) ((-644 . -34) T) ((-676 . -652) 47406) ((-366 . -1072) 47358) ((-354 . -237) T) ((-363 . -1072) 47310) ((-355 . -1072) 47262) ((-273 . -1072) 47105) ((-253 . -1072) 46948) ((-792 . -464) 46899) ((-366 . -652) 46851) ((-363 . -652) 46803) ((-355 . -652) 46755) ((-273 . -652) 46604) ((-253 . -652) 46453) ((-466 . -464) 46404) ((-971 . -423) 46388) ((-743 . -625) 46370) ((-258 . -729) 46312) ((-257 . -729) 46254) ((-743 . -626) 46115) ((-493 . -423) 46099) ((-350 . -312) T) ((-536 . -93) T) ((-362 . -939) T) ((-1021 . -102) 46049) ((-929 . -1072) 46014) ((-1045 . -861) T) ((-60 . -526) 45947) ((-929 . -652) 45912) ((-1251 . -1173) 45864) ((-1025 . -296) NIL) ((-227 . -1079) T) ((-390 . -840) T) ((-1134 . -34) T) ((-593 . -464) T) ((-530 . -464) T) ((-1255 . -1114) 45848) ((-1255 . -1121) 45826) ((-245 . -616) 45803) ((-1255 . -1116) 45760) ((-1195 . -625) 45742) ((-1194 . -625) 45724) ((-1188 . -625) 45706) ((-1188 . -626) NIL) ((-1147 . -625) 45688) ((-886 . -412) 45672) ((-609 . -102) T) ((-597 . -102) T) ((-548 . -102) T) ((-1272 . -38) 45513) ((-1251 . -38) 45327) ((-130 . -1238) T) ((-52 . -1238) T) ((-884 . -148) T) ((-593 . -414) T) ((-530 . -414) T) ((-1284 . -102) T) ((-1274 . -21) T) ((-1274 . -25) T) ((-1210 . -102) T) ((-1134 . -806) 45306) ((-1134 . -805) 45285) ((-1014 . -1121) T) ((-1048 . -34) T) ((-876 . -1121) T) ((-1134 . -738) 45263) ((-676 . -102) T) ((-657 . -102) T) ((-562 . -298) 45242) ((-488 . -34) T) ((-475 . -34) T) ((-366 . -102) T) ((-363 . -102) T) ((-321 . -1238) T) ((-355 . -102) T) ((-273 . -102) T) ((-253 . -102) T) ((-489 . -317) T) ((-1083 . -1079) T) ((-971 . -1079) T) ((-326 . -651) 45148) ((-323 . -651) 45109) ((-1193 . -1121) T) ((-493 . -1079) T) ((-491 . -102) T) ((-448 . -625) 45091) ((-1146 . -1121) T) ((-256 . -625) 45073) ((-868 . -1121) T) ((-1162 . -102) T) ((-828 . -300) 45004) ((-982 . -1077) 44887) ((-489 . -1043) T) ((-886 . -919) 44810) ((-747 . -1077) 44780) ((-1055 . -658) 44739) ((-1168 . -1142) 44723) ((-465 . -1077) 44693) ((-1123 . -526) 44626) ((-982 . -111) 44495) ((-929 . -102) T) ((-40 . -237) 44432) ((-747 . -111) 44397) ((-537 . -502) 44378) ((-537 . -625) 44344) ((-59 . -102) 44274) ((-532 . -626) 44235) ((-532 . -625) 44147) ((-531 . -102) 44097) ((-528 . -102) 44027) ((-509 . -102) 43977) ((-508 . -102) 43907) ((-465 . -111) 43870) ((-332 . -658) 43852) ((-514 . -864) T) ((-430 . -1077) 43826) ((-1232 . -994) 43788) ((-1020 . -1133) T) ((-390 . -658) 43738) ((-1156 . -628) 43719) ((-962 . -526) 43652) ((-499 . -807) T) ((-486 . -38) 43493) ((-430 . -111) 43460) ((-499 . -804) T) ((-1021 . -319) 43398) ((-219 . -807) T) ((-219 . -804) T) ((-1020 . -23) T) ((-724 . -132) T) ((-1251 . -412) 43368) ((-848 . -658) 43313) ((-839 . -658) 43272) ((-326 . -25) 43124) ((-171 . -423) 43108) ((-326 . -21) 42979) ((-323 . -25) T) ((-323 . -21) T) ((-878 . -379) T) ((-982 . -628) 42832) ((-110 . -34) T) ((-747 . -628) 42788) ((-727 . -628) 42770) ((-494 . -660) 42603) ((-885 . -1079) T) ((-605 . -298) 42578) ((-592 . -148) T) ((-576 . -148) T) ((-507 . -148) T) ((-1193 . -729) 42407) ((-1078 . -102) 42385) ((-1146 . -729) 42234) ((-1141 . -651) 42216) ((-868 . -729) 42186) ((-682 . -1238) T) ((-1 . -102) T) ((-560 . -1238) T) ((-430 . -628) 42094) ((-245 . -625) 41787) ((-1136 . -1121) T) ((-1261 . -423) 41771) ((-1210 . -319) 41575) ((-982 . -1070) T) ((-747 . -1070) T) ((-727 . -1070) T) ((-656 . -1121) 41525) ((-1075 . -660) 41509) ((-869 . -423) 41493) ((-523 . -102) T) ((-519 . -102) T) ((-273 . -319) 41480) ((-253 . -319) 41467) ((-1272 . -919) 41373) ((-982 . -336) 41352) ((-1251 . -919) 41149) ((-396 . -660) 41133) ((-855 . -864) 41112) ((-682 . -1059) 41008) ((-491 . -319) 40812) ((-258 . -526) 40745) ((-257 . -526) 40678) ((-1162 . -319) 40604) ((-419 . -864) 40555) ((-1232 . -911) 40534) ((-831 . -1121) T) ((-811 . -1077) 40518) ((-1280 . -296) 40483) ((-1273 . -296) 40441) ((-1252 . -296) 40269) ((-398 . -1121) T) ((-334 . -1121) T) ((-430 . -1070) T) ((-171 . -1079) T) ((-59 . -319) 40207) ((-811 . -111) 40186) ((-607 . -296) 40151) ((-531 . -319) 40089) ((-528 . -319) 40027) ((-509 . -319) 39965) ((-508 . -319) 39903) ((-430 . -238) 39882) ((-494 . -34) T) ((-227 . -1121) T) ((-1025 . -626) 39812) ((-1025 . -625) 39772) ((-992 . -625) 39732) ((-933 . -625) 39714) ((-711 . -148) T) ((-1310 . -1238) T) ((-1308 . -1238) T) ((-713 . -939) T) ((-713 . -832) T) ((-439 . -625) 39696) ((-1141 . -21) T) ((-1141 . -25) T) ((-682 . -388) 39680) ((-117 . -939) T) ((-886 . -272) 39664) ((-886 . -232) 39648) ((-44 . -1238) T) ((-78 . -1238) T) ((-127 . -126) 39632) ((-1075 . -34) T) ((-1310 . -1059) 39606) ((-1308 . -1059) 39563) ((-1261 . -1079) T) ((-869 . -1079) T) ((-366 . -1173) 39542) ((-363 . -1173) 39521) ((-355 . -1173) 39500) ((-494 . -806) 39479) ((-494 . -805) 39458) ((-229 . -34) T) ((-494 . -738) 39436) ((-811 . -628) 39282) ((-674 . -1072) 39266) ((-60 . -501) 39250) ((-583 . -1079) T) ((-1193 . -174) 39141) ((-674 . -652) 39125) ((-486 . -919) 39031) ((-153 . -1238) T) ((-1146 . -174) 38942) ((-1083 . -1121) T) ((-1108 . -968) 38887) ((-971 . -1121) T) ((-829 . -660) 38838) ((-794 . -968) 38807) ((-725 . -1121) T) ((-792 . -968) 38774) ((-528 . -292) 38758) ((-682 . -917) 38717) ((-493 . -1121) T) ((-466 . -968) 38684) ((-79 . -1238) T) ((-366 . -38) 38649) ((-363 . -38) 38614) ((-355 . -38) 38579) ((-273 . -38) 38428) ((-253 . -38) 38277) ((-929 . -1173) T) ((-536 . -502) 38258) ((-635 . -148) 38237) ((-635 . -146) 38216) ((-536 . -625) 38182) ((-118 . -148) T) ((-118 . -146) NIL) ((-426 . -738) T) ((-811 . -1070) T) ((-576 . -237) T) ((-507 . -237) T) ((-354 . -464) T) ((-1280 . -1023) 38148) ((-1273 . -1023) 38114) ((-1252 . -1023) 38080) ((-929 . -38) 38045) ((-227 . -729) 38010) ((-1020 . -132) T) ((-329 . -47) 37980) ((-40 . -421) 37952) ((-141 . -625) 37934) ((-983 . -1238) T) ((-827 . -1238) T) ((-176 . -939) T) ((-561 . -379) T) ((-726 . -658) 37879) ((-618 . -628) 37860) ((-354 . -414) T) ((-683 . -628) 37841) ((-323 . -234) NIL) ((-182 . -628) 37822) ((-162 . -628) 37803) ((-157 . -628) 37784) ((-155 . -628) 37765) ((-532 . -298) 37742) ((-1251 . -232) 37712) ((-1251 . -272) 37682) ((-1235 . -1238) 37660) ((-1199 . -660) 37585) ((-890 . -102) T) ((-827 . -1059) 37412) ((-45 . -34) T) ((-693 . -102) T) ((-688 . -102) T) ((-674 . -102) T) ((-666 . -21) T) ((-666 . -25) T) ((-1123 . -501) 37396) ((-687 . -1238) T) ((-490 . -102) T) ((-250 . -102) 37326) ((-558 . -856) T) ((-139 . -102) T) ((-138 . -102) T) ((-134 . -102) T) ((-1108 . -911) 37221) ((-885 . -1121) T) ((-1193 . -526) 37168) ((-1083 . -729) 37155) ((-794 . -911) 37058) ((-743 . -1077) 36901) ((-792 . -911) 36883) ((-971 . -729) 36732) ((-1146 . -526) 36684) ((-1299 . -1121) T) ((-1298 . -1121) T) ((-466 . -911) 36659) ((-493 . -729) 36508) ((-67 . -625) 36490) ((-639 . -1238) T) ((-743 . -111) 36319) ((-962 . -501) 36303) ((-1300 . -660) 36263) ((-1195 . -1077) 36146) ((-829 . -738) T) ((-1194 . -1077) 35981) ((-1188 . -1077) 35771) ((-329 . -1238) T) ((-1147 . -1077) 35654) ((-1024 . -1242) T) ((-1115 . -102) 35632) ((-827 . -388) 35601) ((-591 . -625) 35583) ((-558 . -1121) T) ((-1024 . -568) T) ((-1195 . -111) 35452) ((-1194 . -111) 35273) ((-1188 . -111) 35042) ((-1147 . -111) 34911) ((-1126 . -1124) 34875) ((-390 . -860) T) ((-1280 . -625) 34857) ((-1273 . -625) 34839) ((-886 . -658) 34776) ((-1252 . -625) 34758) ((-1252 . -626) NIL) ((-245 . -298) 34735) ((-40 . -464) T) ((-227 . -174) T) ((-171 . -1121) T) ((-743 . -628) 34520) ((-706 . -148) T) ((-706 . -146) NIL) ((-608 . -625) 34502) ((-607 . -625) 34484) ((-1141 . -234) 34471) ((-915 . -1121) T) ((-853 . -1121) T) ((-820 . -1121) T) ((-273 . -919) 34381) ((-253 . -919) 34358) ((-781 . -1121) T) ((-689 . -1121) T) ((-670 . -866) 34342) ((-635 . -237) 34293) ((-827 . -917) 34225) ((-872 . -864) T) ((-1243 . -379) T) ((-40 . -414) NIL) ((-118 . -237) NIL) ((-1195 . -628) 34107) ((-1141 . -673) T) ((-885 . -729) 34052) ((-258 . -501) 34036) ((-257 . -501) 34020) ((-1194 . -628) 33763) ((-1188 . -628) 33558) ((-724 . -651) 33506) ((-665 . -660) 33480) ((-1147 . -628) 33362) ((-305 . -34) T) ((-1141 . -113) T) ((-743 . -1070) T) ((-593 . -1295) 33349) ((-530 . -1295) 33326) ((-1261 . -1121) T) ((-1193 . -300) 33237) ((-1146 . -300) 33168) ((-1083 . -174) T) ((-299 . -1238) T) ((-869 . -1121) T) ((-971 . -174) 33079) ((-794 . -1264) 33063) ((-656 . -526) 32996) ((-77 . -625) 32978) ((-743 . -336) 32943) ((-1199 . -738) T) ((-583 . -1121) T) ((-493 . -174) 32854) ((-250 . -319) 32792) ((-1163 . -1133) T) ((-70 . -625) 32774) ((-1300 . -738) T) ((-1195 . -1070) T) ((-1194 . -1070) T) ((-1188 . -1070) T) ((-337 . -102) 32704) ((-1163 . -23) T) ((-2 . -1238) T) ((-1147 . -1070) T) ((-91 . -1142) 32688) ((-880 . -1133) T) ((-1195 . -238) 32647) ((-1194 . -248) 32626) ((-1194 . -238) 32578) ((-1188 . -238) 32465) ((-1188 . -248) 32444) ((-329 . -917) 32350) ((-880 . -23) T) ((-171 . -729) 32178) ((-419 . -1242) T) ((-1122 . -379) T) ((-1024 . -374) T) ((-884 . -464) T) ((-1045 . -148) T) ((-962 . -296) 32130) ((-323 . -861) NIL) ((-1272 . -658) 32012) ((-888 . -102) T) ((-1251 . -658) 31867) ((-724 . -25) T) ((-419 . -568) T) ((-724 . -21) T) ((-537 . -628) 31848) ((-365 . -148) 31830) ((-365 . -146) T) ((-1168 . -1121) 31808) ((-465 . -732) T) ((-75 . -625) 31790) ((-115 . -861) T) ((-250 . -292) 31774) ((-245 . -1077) 31695) ((-81 . -625) 31677) ((-747 . -379) 31630) ((-1197 . -840) T) ((-749 . -240) 31614) ((-1180 . -1238) T) ((-142 . -240) 31596) ((-245 . -111) 31512) ((-1261 . -729) 31341) ((-48 . -148) T) ((-885 . -174) T) ((-869 . -729) 31311) ((-496 . -1238) T) ((-971 . -526) 31258) ((-665 . -738) T) ((-583 . -729) 31245) ((-1055 . -1079) T) ((-706 . -237) NIL) ((-493 . -526) 31188) ((-962 . -19) 31172) ((-962 . -616) 31149) ((-1101 . -1238) T) ((-1082 . -1238) T) ((-828 . -626) NIL) ((-828 . -625) 31131) ((-1232 . -652) 31028) ((-1232 . -1072) 30911) ((-1025 . -1077) 30861) ((-425 . -625) 30843) ((-258 . -296) 30820) ((-370 . -1238) T) ((-364 . -1238) T) ((-356 . -1238) T) ((-257 . -296) 30797) ((-499 . -928) NIL) ((-326 . -29) 30767) ((-108 . -1238) T) ((-1024 . -1133) T) ((-219 . -928) NIL) ((-1101 . -1059) 30663) ((-933 . -1077) 30615) ((-1025 . -111) 30549) ((-1024 . -23) T) ((-723 . -1072) 30514) ((-933 . -111) 30452) ((-749 . -707) 30436) ((-723 . -652) 30401) ((-273 . -272) 30385) ((-273 . -232) 30369) ((-439 . -1077) 30353) ((-390 . -1079) T) ((-245 . -628) 30151) ((-706 . -1226) NIL) ((-499 . -660) 30101) ((-486 . -658) 29983) ((-108 . -899) 29965) ((-108 . -901) 29947) ((-706 . -1223) NIL) ((-219 . -660) 29897) ((-370 . -1059) 29881) ((-364 . -1059) 29865) ((-337 . -319) 29803) ((-356 . -1059) 29787) ((-227 . -300) T) ((-439 . -111) 29766) ((-60 . -625) 29698) ((-171 . -174) T) ((-1141 . -861) T) ((-108 . -1059) 29658) ((-907 . -1121) T) ((-848 . -1079) T) ((-839 . -1079) T) ((-706 . -35) NIL) ((-706 . -95) NIL) ((-323 . -1013) 29619) ((-185 . -102) T) ((-1311 . -1133) T) ((-1311 . -23) T) ((-592 . -464) T) ((-576 . -464) T) ((-507 . -464) T) ((-1303 . -625) 29601) ((-1261 . -174) 29492) ((-1232 . -102) T) ((-419 . -374) T) ((-1219 . -1121) T) ((-1210 . -231) 29442) ((-1204 . -856) T) ((-1203 . -856) T) ((-1187 . -1238) T) ((-245 . -1070) 29420) ((-1015 . -1238) T) ((-1171 . -34) T) ((-1188 . -804) NIL) ((-1188 . -807) NIL) ((-1179 . -1238) T) ((-489 . -939) T) ((-1020 . -651) 29368) ((-258 . -616) 29345) ((-257 . -616) 29322) ((-1163 . -132) T) ((-1123 . -626) 29283) ((-1101 . -388) 29267) ((-885 . -526) 29175) ((-245 . -238) 29127) ((-1123 . -625) 29109) ((-1109 . -1121) T) ((-1025 . -628) 29059) ((-1101 . -917) 28992) ((-933 . -628) 28929) ((-836 . -625) 28911) ((-1097 . -1121) T) ((-1083 . -300) T) ((-1025 . -248) T) ((-1025 . -238) T) ((-1025 . -1070) T) ((-977 . -1121) 28861) ((-971 . -300) 28792) ((-439 . -628) 28761) ((-108 . -388) 28743) ((-108 . -349) 28725) ((-933 . -1070) T) ((-933 . -248) T) ((-811 . -379) 28704) ((-723 . -102) T) ((-713 . -864) T) ((-659 . -1238) T) ((-644 . -1238) T) ((-620 . -1121) T) ((-620 . -622) 28680) ((-598 . -1072) 28655) ((-493 . -300) 28586) ((-583 . -174) T) ((-337 . -292) 28570) ((-365 . -237) T) ((-598 . -652) 28545) ((-366 . -360) 28524) ((-363 . -360) 28503) ((-355 . -360) 28482) ((-214 . -1238) T) ((-83 . -625) 28464) ((-213 . -1238) T) ((-211 . -1238) T) ((-210 . -1238) T) ((-209 . -1238) T) ((-208 . -1238) T) ((-205 . -1238) T) ((-204 . -1238) T) ((-203 . -1238) T) ((-202 . -1238) T) ((-487 . -1121) T) ((-201 . -1238) T) ((-273 . -260) 28426) ((-200 . -1238) T) ((-199 . -1238) T) ((-198 . -1238) T) ((-197 . -1238) T) ((-196 . -1238) T) ((-487 . -622) 28405) ((-195 . -1238) T) ((-283 . -1238) T) ((-282 . -1238) T) ((-281 . -1238) T) ((-280 . -1238) T) ((-491 . -231) 28355) ((-279 . -1238) T) ((-278 . -1238) T) ((-277 . -1238) T) ((-439 . -1070) T) ((-880 . -132) T) ((-855 . -1133) 28334) ((-48 . -237) T) ((-711 . -464) T) ((-108 . -917) NIL) ((-135 . -864) T) ((-1232 . -294) 28300) ((-1134 . -1238) T) ((-886 . -860) 28279) ((-1020 . -25) T) ((-924 . -738) T) ((-171 . -526) 28191) ((-1020 . -21) T) ((-924 . -485) T) ((-419 . -1133) T) ((-499 . -806) T) ((-499 . -803) T) ((-929 . -360) T) ((-499 . -738) T) ((-219 . -806) T) ((-219 . -803) T) ((-724 . -234) 28178) ((-219 . -738) T) ((-855 . -23) 28130) ((-1205 . -1121) T) ((-670 . -1072) 28114) ((-1204 . -1121) T) ((-536 . -628) 28095) ((-1203 . -1121) T) ((-329 . -317) 28074) ((-1056 . -240) 28020) ((-670 . -652) 27990) ((-419 . -23) T) ((-962 . -626) 27951) ((-962 . -625) 27863) ((-656 . -501) 27847) ((-45 . -1031) 27797) ((-1134 . -1059) 27624) ((-629 . -988) T) ((-503 . -102) T) ((-341 . -625) 27606) ((-1014 . -296) 27573) ((-605 . -663) 27555) ((-129 . -1121) T) ((-131 . -1121) T) ((-605 . -384) 27537) ((-354 . -1295) 27514) ((-451 . -625) 27496) ((-1261 . -526) 27443) ((-1108 . -1072) 27286) ((-1048 . -1238) T) ((-885 . -300) T) ((-1193 . -296) 27213) ((-1108 . -652) 27062) ((-1021 . -1016) 27046) ((-794 . -1072) 26869) ((-792 . -1072) 26712) ((-794 . -652) 26541) ((-792 . -652) 26390) ((-488 . -1238) T) ((-475 . -1238) T) ((-598 . -102) T) ((-473 . -1072) 26361) ((-466 . -1072) 26204) ((-676 . -658) 26173) ((-635 . -464) 26152) ((-473 . -652) 26123) ((-466 . -652) 25972) ((-366 . -658) 25909) ((-363 . -658) 25846) ((-355 . -658) 25783) ((-273 . -658) 25693) ((-253 . -658) 25603) ((-1303 . -393) 25575) ((-529 . -1121) T) ((-118 . -464) T) ((-1218 . -102) T) ((-1113 . -1121) 25545) ((-1055 . -1121) T) ((-1136 . -93) T) ((-908 . -861) T) ((-1280 . -111) 25414) ((-362 . -1242) T) ((-1280 . -1077) 25297) ((-1134 . -388) 25266) ((-1273 . -1077) 25101) ((-1252 . -1077) 24891) ((-1273 . -111) 24712) ((-1252 . -111) 24481) ((-1232 . -319) 24468) ((-1024 . -132) T) ((-929 . -658) 24418) ((-376 . -625) 24400) ((-362 . -568) T) ((-299 . -317) T) ((-608 . -1077) 24360) ((-607 . -1077) 24243) ((-593 . -1072) 24208) ((-530 . -1072) 24153) ((-372 . -1121) T) ((-332 . -1121) T) ((-258 . -625) 24114) ((-257 . -625) 24075) ((-593 . -652) 24040) ((-530 . -652) 23985) ((-706 . -421) 23952) ((-647 . -23) T) ((-619 . -23) T) ((-40 . -911) 23859) ((-670 . -102) T) ((-608 . -111) 23812) ((-607 . -111) 23681) ((-390 . -1121) T) ((-347 . -102) T) ((-171 . -300) 23592) ((-1251 . -860) 23545) ((-726 . -1079) T) ((-624 . -1238) T) ((-1168 . -526) 23478) ((-1211 . -847) 23462) ((-1134 . -917) 23394) ((-848 . -1121) T) ((-839 . -1121) T) ((-837 . -1121) T) ((-97 . -102) T) ((-145 . -861) T) ((-624 . -899) 23378) ((-1172 . -1238) T) ((-110 . -1238) T) ((-1108 . -102) T) ((-1084 . -34) T) ((-794 . -102) T) ((-792 . -102) T) ((-1280 . -628) 23260) ((-1273 . -628) 23003) ((-473 . -102) T) ((-466 . -102) T) ((-1252 . -628) 22798) ((-96 . -1238) T) ((-245 . -807) 22777) ((-245 . -804) 22756) ((-661 . -102) T) ((-608 . -628) 22714) ((-607 . -628) 22596) ((-1261 . -300) 22507) ((-676 . -646) 22491) ((-188 . -625) 22473) ((-656 . -296) 22425) ((-1055 . -729) 22409) ((-583 . -300) T) ((-982 . -660) 22334) ((-1311 . -132) T) ((-747 . -660) 22294) ((-727 . -660) 22281) ((-284 . -102) T) ((-465 . -660) 22211) ((-50 . -102) T) ((-593 . -102) T) ((-530 . -102) T) ((-1280 . -1070) T) ((-1273 . -1070) T) ((-1252 . -1070) T) ((-1161 . -1238) T) ((-519 . -658) 22193) ((-332 . -729) 22175) ((-1280 . -238) 22134) ((-1273 . -248) 22113) ((-1273 . -238) 22065) ((-1252 . -238) 21952) ((-1252 . -248) 21931) ((-1232 . -38) 21828) ((-608 . -1070) T) ((-607 . -1070) T) ((-1025 . -807) T) ((-1025 . -804) T) ((-992 . -807) T) ((-992 . -804) T) ((-886 . -1079) T) ((-109 . -625) 21810) ((-706 . -464) T) ((-390 . -729) 21775) ((-430 . -660) 21749) ((-884 . -883) 21733) ((-723 . -38) 21698) ((-607 . -238) 21657) ((-40 . -736) 21629) ((-362 . -339) 21606) ((-362 . -374) T) ((-1101 . -317) 21557) ((-304 . -1133) 21438) ((-1127 . -1238) T) ((-1020 . -234) 21383) ((-173 . -102) T) ((-1255 . -625) 21350) ((-855 . -132) 21302) ((-848 . -729) 21272) ((-656 . -1276) 21256) ((-839 . -729) 21226) ((-656 . -616) 21203) ((-494 . -1238) T) ((-370 . -317) T) ((-364 . -317) T) ((-356 . -317) T) ((-411 . -234) 21190) ((-419 . -132) T) ((-532 . -678) 21174) ((-108 . -317) T) ((-304 . -23) 21057) ((-532 . -663) 21041) ((-706 . -414) NIL) ((-532 . -384) 21025) ((-301 . -625) 21007) ((-91 . -1121) 20985) ((-108 . -1043) T) ((-576 . -144) T) ((-1288 . -152) 20969) ((-494 . -1059) 20796) ((-1274 . -146) 20757) ((-1274 . -148) 20718) ((-1075 . -1238) T) ((-1299 . -93) T) ((-1014 . -625) 20700) ((-830 . -1238) T) ((-876 . -625) 20682) ((-828 . -1077) 20525) ((-1298 . -93) T) ((-1193 . -626) NIL) ((-1117 . -1121) T) ((-1111 . -1121) T) ((-1108 . -319) 20512) ((-426 . -1238) T) ((-396 . -1238) T) ((-1094 . -1121) T) ((-229 . -1238) T) ((-1087 . -1121) T) ((-1057 . -1121) T) ((-1040 . -1121) T) ((-794 . -319) 20499) ((-792 . -319) 20486) ((-1193 . -625) 20468) ((-828 . -111) 20297) ((-1146 . -625) 20279) ((-638 . -1121) T) ((-589 . -175) T) ((-541 . -175) T) ((-466 . -319) 20266) ((-495 . -1121) T) ((-1146 . -626) 20014) ((-1055 . -174) T) ((-962 . -298) 19991) ((-220 . -1121) T) ((-868 . -625) 19973) ((-620 . -526) 19756) ((-81 . -628) 19697) ((-830 . -1059) 19681) ((-487 . -526) 19473) ((-845 . -864) 19452) ((-982 . -738) T) ((-747 . -738) T) ((-727 . -738) T) ((-362 . -1133) T) ((-1200 . -625) 19434) ((-225 . -102) T) ((-494 . -388) 19403) ((-527 . -1121) T) ((-522 . -1121) T) ((-520 . -1121) T) ((-811 . -660) 19377) ((-1045 . -464) T) ((-977 . -526) 19310) ((-362 . -23) T) ((-647 . -132) T) ((-619 . -132) T) ((-365 . -464) T) ((-245 . -379) 19289) ((-390 . -174) T) ((-1272 . -1079) T) ((-1251 . -1079) T) ((-227 . -1023) T) ((-828 . -628) 19026) ((-711 . -399) T) ((-430 . -738) T) ((-713 . -1242) T) ((-1163 . -651) 18974) ((-592 . -883) 18958) ((-1303 . -1077) 18942) ((-1180 . -1214) 18918) ((-713 . -568) T) ((-127 . -1121) 18896) ((-726 . -1121) T) ((-670 . -38) 18866) ((-494 . -917) 18798) ((-255 . -1121) T) ((-189 . -1121) T) ((-365 . -414) T) ((-326 . -148) 18777) ((-326 . -146) 18756) ((-117 . -568) T) ((-129 . -526) NIL) ((-323 . -148) 18712) ((-323 . -146) 18668) ((-48 . -464) T) ((-163 . -1121) T) ((-158 . -1121) T) ((-1180 . -107) 18615) ((-794 . -1173) 18593) ((-1303 . -111) 18572) ((-701 . -34) T) ((-604 . -1238) T) ((-562 . -34) T) ((-496 . -107) 18556) ((-258 . -298) 18533) ((-257 . -298) 18510) ((-1244 . -856) T) ((-885 . -296) 18461) ((-45 . -1238) T) ((-1232 . -919) 18442) ((-829 . -1238) T) ((-828 . -1070) T) ((-633 . -864) 18421) ((-674 . -658) 18390) ((-1199 . -47) 18367) ((-828 . -336) 18329) ((-1108 . -38) 18178) ((-828 . -238) 18157) ((-794 . -38) 17986) ((-792 . -38) 17835) ((-1136 . -502) 17816) ((-466 . -38) 17665) ((-1136 . -625) 17631) ((-1139 . -102) T) ((-656 . -626) 17592) ((-656 . -625) 17504) ((-593 . -1173) T) ((-530 . -1173) T) ((-1168 . -501) 17488) ((-354 . -1072) 17433) ((-1224 . -1121) 17411) ((-1163 . -25) T) ((-1163 . -21) T) ((-354 . -652) 17356) ((-1303 . -628) 17305) ((-340 . -1238) T) ((-486 . -1079) T) ((-1244 . -1121) T) ((-1252 . -804) NIL) ((-1252 . -807) NIL) ((-1020 . -861) 17284) ((-850 . -1121) T) ((-831 . -625) 17266) ((-880 . -21) T) ((-880 . -25) T) ((-811 . -738) T) ((-176 . -1242) T) ((-593 . -38) 17231) ((-530 . -38) 17196) ((-398 . -625) 17178) ((-343 . -102) T) ((-334 . -625) 17160) ((-171 . -296) 17118) ((-1246 . -864) T) ((-63 . -1238) T) ((-112 . -102) T) ((-886 . -1121) T) ((-524 . -1238) T) ((-176 . -568) T) ((-726 . -729) 17088) ((-304 . -132) 16971) ((-227 . -625) 16953) ((-227 . -626) 16883) ((-1024 . -651) 16822) ((-1303 . -1070) T) ((-1199 . -1238) T) ((-1141 . -148) T) ((-644 . -1214) 16797) ((-743 . -928) 16776) ((-605 . -34) T) ((-659 . -107) 16760) ((-644 . -107) 16706) ((-1300 . -1238) T) ((-635 . -911) 16627) ((-1261 . -296) 16554) ((-743 . -660) 16443) ((-305 . -1238) T) ((-1199 . -1059) 16339) ((-962 . -630) 16316) ((-589 . -588) T) ((-589 . -539) T) ((-541 . -539) T) ((-118 . -911) NIL) ((-1188 . -928) NIL) ((-1083 . -626) 16231) ((-1083 . -625) 16213) ((-971 . -625) 16195) ((-725 . -502) 16145) ((-354 . -102) T) ((-258 . -1077) 16066) ((-257 . -1077) 15987) ((-406 . -102) T) ((-31 . -1121) T) ((-971 . -626) 15848) ((-725 . -625) 15783) ((-1301 . -1231) 15752) ((-493 . -625) 15734) ((-493 . -626) 15595) ((-273 . -423) 15579) ((-253 . -423) 15563) ((-323 . -237) NIL) ((-258 . -111) 15479) ((-257 . -111) 15395) ((-1195 . -660) 15320) ((-1194 . -660) 15217) ((-1188 . -660) 15069) ((-1147 . -660) 14994) ((-362 . -132) T) ((-82 . -453) T) ((-82 . -407) T) ((-1024 . -25) T) ((-1024 . -21) T) ((-887 . -1121) 14945) ((-40 . -1072) 14890) ((-886 . -729) 14842) ((-40 . -652) 14787) ((-390 . -300) T) ((-171 . -1023) 14738) ((-1108 . -919) 14637) ((-706 . -399) T) ((-1020 . -1018) 14621) ((-713 . -1133) T) ((-706 . -167) 14603) ((-794 . -919) 14510) ((-792 . -919) 14494) ((-1272 . -1121) T) ((-1251 . -1121) T) ((-1185 . -102) T) ((-326 . -1223) 14473) ((-326 . -1226) 14452) ((-466 . -919) 14429) ((-326 . -978) 14408) ((-135 . -1133) T) ((-117 . -1133) T) ((-991 . -1238) T) ((-878 . -1238) T) ((-713 . -23) T) ((-665 . -1238) T) ((-614 . -1286) 14392) ((-614 . -1121) 14342) ((-543 . -864) T) ((-512 . -864) T) ((-326 . -95) 14321) ((-91 . -526) 14254) ((-176 . -374) T) ((-258 . -628) 14052) ((-257 . -628) 13850) ((-326 . -35) 13829) ((-620 . -501) 13763) ((-135 . -23) T) ((-117 . -23) T) ((-985 . -102) T) ((-730 . -1121) T) ((-487 . -501) 13700) ((-419 . -651) 13648) ((-665 . -1059) 13544) ((-977 . -501) 13528) ((-366 . -1079) T) ((-363 . -1079) T) ((-355 . -1079) T) ((-273 . -1079) T) ((-253 . -1079) T) ((-885 . -626) NIL) ((-885 . -625) 13510) ((-1299 . -502) 13491) ((-1298 . -502) 13472) ((-1311 . -21) T) ((-1299 . -625) 13438) ((-1298 . -625) 13404) ((-583 . -1023) T) ((-743 . -738) T) ((-1311 . -25) T) ((-258 . -1070) 13382) ((-257 . -1070) 13360) ((-72 . -1238) T) ((-1163 . -234) 13305) ((-258 . -238) 13257) ((-257 . -238) 13209) ((-1141 . -237) T) ((-40 . -102) T) ((-929 . -1079) T) ((-706 . -911) NIL) ((-1202 . -102) T) ((-129 . -501) 13191) ((-1195 . -738) T) ((-1194 . -738) T) ((-1188 . -738) T) ((-1188 . -803) NIL) ((-1188 . -806) NIL) ((-973 . -102) T) ((-940 . -102) T) ((-884 . -1072) 13178) ((-1147 . -738) T) ((-783 . -102) T) ((-684 . -102) T) ((-884 . -652) 13165) ((-558 . -625) 13147) ((-486 . -1121) T) ((-350 . -1133) T) ((-176 . -1133) T) ((-329 . -939) 13126) ((-1272 . -729) 12967) ((-886 . -174) T) ((-1251 . -729) 12781) ((-855 . -21) 12733) ((-855 . -25) 12685) ((-250 . -1170) 12669) ((-127 . -526) 12602) ((-419 . -25) T) ((-419 . -21) T) ((-350 . -23) T) ((-171 . -626) 12368) ((-171 . -625) 12350) ((-176 . -23) T) ((-656 . -298) 12327) ((-532 . -34) T) ((-915 . -625) 12309) ((-89 . -1238) T) ((-853 . -625) 12291) ((-820 . -625) 12273) ((-781 . -625) 12255) ((-689 . -625) 12237) ((-245 . -660) 12070) ((-629 . -113) T) ((-1197 . -1121) T) ((-1193 . -1077) 11893) ((-216 . -1238) T) ((-1171 . -1238) T) ((-1146 . -1077) 11736) ((-868 . -1077) 11720) ((-1103 . -864) T) ((-1255 . -630) 11704) ((-1193 . -111) 11513) ((-1146 . -111) 11342) ((-868 . -111) 11321) ((-1245 . -861) T) ((-1261 . -626) NIL) ((-1261 . -625) 11303) ((-354 . -1173) T) ((-869 . -625) 11285) ((-1097 . -296) 11264) ((-1232 . -658) 11174) ((-80 . -1238) T) ((-924 . -1238) T) ((-1224 . -526) 11107) ((-1025 . -928) NIL) ((-1108 . -272) 11091) ((-620 . -296) 11067) ((-1108 . -232) 11051) ((-499 . -1238) T) ((-583 . -625) 11033) ((-487 . -296) 11012) ((-1025 . -660) 10962) ((-529 . -93) T) ((-1024 . -234) 10893) ((-219 . -1238) T) ((-977 . -296) 10845) ((-884 . -102) T) ((-299 . -939) T) ((-829 . -317) 10824) ((-794 . -272) 10808) ((-794 . -232) 10792) ((-933 . -660) 10744) ((-723 . -658) 10694) ((-706 . -736) 10661) ((-647 . -21) T) ((-647 . -25) T) ((-619 . -21) T) ((-559 . -102) T) ((-354 . -38) 10626) ((-499 . -899) 10608) ((-499 . -901) 10590) ((-486 . -729) 10431) ((-64 . -1238) T) ((-219 . -899) 10413) ((-219 . -901) 10395) ((-619 . -25) T) ((-439 . -660) 10369) ((-1193 . -628) 10138) ((-499 . -1059) 10098) ((-886 . -526) 10010) ((-1146 . -628) 9802) ((-868 . -628) 9720) ((-219 . -1059) 9680) ((-245 . -34) T) ((-1021 . -1121) 9658) ((-592 . -1072) 9645) ((-576 . -1072) 9632) ((-507 . -1072) 9597) ((-1272 . -174) 9528) ((-1251 . -174) 9459) ((-592 . -652) 9446) ((-576 . -652) 9433) ((-507 . -652) 9398) ((-724 . -146) 9377) ((-724 . -148) 9356) ((-130 . -864) T) ((-713 . -132) T) ((-561 . -1238) T) ((-137 . -477) 9333) ((-1168 . -625) 9265) ((-670 . -668) 9249) ((-129 . -296) 9199) ((-117 . -132) T) ((-489 . -1242) T) ((-620 . -616) 9175) ((-487 . -616) 9154) ((-609 . -1121) T) ((-347 . -346) 9123) ((-597 . -1121) T) ((-548 . -1121) T) ((-489 . -568) T) ((-1193 . -1070) T) ((-1146 . -1070) T) ((-868 . -1070) T) ((-835 . -1238) T) ((-245 . -806) 9102) ((-245 . -805) 9081) ((-1193 . -336) 9058) ((-245 . -738) 9036) ((-977 . -19) 9020) ((-499 . -388) 9002) ((-499 . -349) 8984) ((-1146 . -336) 8956) ((-365 . -1295) 8933) ((-219 . -388) 8915) ((-219 . -349) 8897) ((-977 . -616) 8874) ((-1193 . -238) T) ((-1284 . -1121) T) ((-676 . -1121) T) ((-657 . -1121) T) ((-1210 . -1121) T) ((-1108 . -260) 8811) ((-598 . -658) 8771) ((-366 . -1121) T) ((-363 . -1121) T) ((-355 . -1121) T) ((-273 . -1121) T) ((-253 . -1121) T) ((-84 . -1238) T) ((-128 . -102) 8721) ((-122 . -102) 8671) ((-1251 . -526) 8531) ((-1210 . -622) 8510) ((-1162 . -1121) T) ((-1136 . -628) 8491) ((-1101 . -939) 8442) ((-491 . -1121) T) ((-1025 . -806) T) ((-1025 . -803) T) ((-491 . -622) 8421) ((-258 . -807) 8400) ((-258 . -804) 8379) ((-257 . -807) 8358) ((-40 . -1173) NIL) ((-257 . -804) 8337) ((-1025 . -738) T) ((-129 . -19) 8319) ((-992 . -806) T) ((-711 . -1072) 8284) ((-933 . -738) T) ((-929 . -1121) T) ((-907 . -625) 8266) ((-129 . -616) 8241) ((-711 . -652) 8206) ((-91 . -501) 8190) ((-499 . -917) NIL) ((-886 . -300) T) ((-227 . -1077) 8155) ((-848 . -296) 8134) ((-219 . -917) NIL) ((-845 . -1133) 8113) ((-59 . -1121) 8063) ((-531 . -1121) 8041) ((-528 . -1121) 7991) ((-509 . -1121) 7969) ((-508 . -1121) 7919) ((-592 . -102) T) ((-576 . -102) T) ((-507 . -102) T) ((-486 . -174) 7850) ((-370 . -939) T) ((-364 . -939) T) ((-356 . -939) T) ((-227 . -111) 7806) ((-845 . -23) 7758) ((-439 . -738) T) ((-108 . -939) T) ((-40 . -38) 7703) ((-108 . -832) T) ((-593 . -360) T) ((-530 . -360) T) ((-670 . -658) 7662) ((-326 . -464) 7641) ((-323 . -464) T) ((-614 . -526) 7574) ((-419 . -234) 7519) ((-350 . -132) T) ((-176 . -132) T) ((-304 . -25) 7383) ((-304 . -21) 7266) ((-45 . -1214) 7245) ((-66 . -625) 7227) ((-55 . -102) T) ((-347 . -658) 7209) ((-1289 . -102) T) ((-1288 . -102) 7139) ((-1280 . -660) 7064) ((-1273 . -660) 6961) ((-45 . -107) 6911) ((-831 . -628) 6895) ((-1252 . -660) 6747) ((-1252 . -928) NIL) ((-1243 . -1238) T) ((-1219 . -625) 6729) ((-1211 . -102) T) ((-1123 . -437) 6713) ((-1123 . -379) 6692) ((-398 . -628) 6676) ((-334 . -628) 6660) ((-1117 . -93) T) ((-1108 . -658) 6570) ((-1084 . -1238) T) ((-1083 . -1077) 6557) ((-1083 . -111) 6542) ((-971 . -111) 6371) ((-971 . -1077) 6214) ((-794 . -658) 6124) ((-792 . -658) 6034) ((-676 . -729) 6018) ((-635 . -1072) 6005) ((-635 . -652) 5992) ((-560 . -864) T) ((-493 . -1077) 5835) ((-489 . -374) T) ((-473 . -658) 5791) ((-466 . -658) 5701) ((-227 . -628) 5651) ((-366 . -729) 5603) ((-363 . -729) 5555) ((-118 . -1072) 5500) ((-355 . -729) 5452) ((-273 . -729) 5301) ((-253 . -729) 5150) ((-1111 . -93) T) ((-1094 . -93) T) ((-118 . -652) 5095) ((-1087 . -93) T) ((-962 . -663) 5079) ((-1078 . -1121) 5057) ((-493 . -111) 4886) ((-1057 . -93) T) ((-1040 . -93) T) ((-962 . -384) 4870) ((-254 . -102) T) ((-982 . -47) 4849) ((-74 . -625) 4831) ((-724 . -237) T) ((-722 . -102) T) ((-711 . -102) T) ((-1 . -1121) T) ((-633 . -1133) T) ((-1109 . -625) 4813) ((-638 . -93) T) ((-1097 . -625) 4795) ((-929 . -729) 4760) ((-127 . -501) 4744) ((-495 . -93) T) ((-633 . -23) T) ((-402 . -23) T) ((-87 . -1238) T) ((-220 . -93) T) ((-620 . -625) 4726) ((-620 . -626) NIL) ((-487 . -626) NIL) ((-487 . -625) 4708) ((-362 . -25) T) ((-362 . -21) T) ((-50 . -658) 4667) ((-523 . -1121) T) ((-519 . -1121) T) ((-122 . -319) 4605) ((-128 . -319) 4543) ((-608 . -660) 4517) ((-607 . -660) 4442) ((-593 . -658) 4392) ((-227 . -1070) T) ((-530 . -658) 4322) ((-1083 . -628) 4294) ((-390 . -1023) T) ((-227 . -248) T) ((-227 . -238) T) ((-862 . -502) 4278) ((-1083 . -630) 4259) ((-977 . -626) 4220) ((-977 . -625) 4132) ((-971 . -628) 3921) ((-862 . -625) 3905) ((-884 . -38) 3892) ((-725 . -628) 3842) ((-1272 . -300) 3793) ((-1251 . -300) 3744) ((-493 . -628) 3529) ((-1141 . -464) T) ((-514 . -861) T) ((-326 . -1160) 3508) ((-1122 . -1238) T) ((-1020 . -148) 3487) ((-1020 . -146) 3466) ((-507 . -319) 3453) ((-1205 . -625) 3435) ((-305 . -1214) 3414) ((-1204 . -625) 3396) ((-1156 . -1238) T) ((-1203 . -625) 3378) ((-885 . -1077) 3323) ((-489 . -1133) T) ((-140 . -847) 3305) ((-115 . -847) 3286) ((-1224 . -501) 3270) ((-1083 . -1070) T) ((-635 . -102) T) ((-982 . -1238) T) ((-971 . -1070) T) ((-258 . -379) 3249) ((-257 . -379) 3228) ((-885 . -111) 3157) ((-305 . -107) 3107) ((-131 . -625) 3089) ((-129 . -626) NIL) ((-129 . -625) 3033) ((-118 . -102) T) ((-747 . -1238) T) ((-727 . -1238) T) ((-489 . -23) T) ((-465 . -1238) T) ((-493 . -1070) T) ((-1083 . -238) T) ((-971 . -336) 3002) ((-40 . -919) 2911) ((-493 . -336) 2868) ((-366 . -174) T) ((-363 . -174) T) ((-355 . -174) T) ((-273 . -174) 2779) ((-253 . -174) 2690) ((-982 . -1059) 2586) ((-529 . -502) 2567) ((-747 . -1059) 2538) ((-529 . -625) 2504) ((-430 . -1238) T) ((-1126 . -102) T) ((-1113 . -625) 2463) ((-1055 . -625) 2445) ((-706 . -1072) 2395) ((-1301 . -152) 2379) ((-1299 . -628) 2360) ((-1298 . -628) 2341) ((-1293 . -625) 2323) ((-1280 . -738) T) ((-706 . -652) 2273) ((-1273 . -738) T) ((-1252 . -803) NIL) ((-1252 . -806) NIL) ((-171 . -1077) 2183) ((-929 . -174) T) ((-885 . -628) 2113) ((-1252 . -738) T) ((-1024 . -353) 2087) ((-225 . -658) 2039) ((-1021 . -526) 1972) ((-855 . -861) 1951) ((-576 . -1173) T) ((-486 . -300) 1902) ((-608 . -738) T) ((-372 . -625) 1884) ((-332 . -625) 1866) ((-430 . -1059) 1762) ((-607 . -738) T) ((-419 . -861) 1713) ((-171 . -111) 1609) ((-845 . -132) 1561) ((-1288 . -319) 1499) ((-749 . -152) 1483) ((-983 . -864) 1382) ((-827 . -864) 1333) ((-499 . -317) T) ((-390 . -625) 1300) ((-532 . -1031) 1284) ((-390 . -626) 1198) ((-219 . -317) T) ((-142 . -152) 1180) ((-726 . -296) 1159) ((-499 . -1043) T) ((-592 . -38) 1146) ((-576 . -38) 1133) ((-507 . -38) 1098) ((-219 . -1043) T) ((-885 . -1070) T) ((-848 . -625) 1080) ((-839 . -625) 1062) ((-837 . -625) 1044) ((-828 . -928) 1023) ((-1312 . -1133) T) ((-322 . -1238) T) ((-1261 . -1077) 846) ((-869 . -1077) 830) ((-885 . -248) T) ((-885 . -238) NIL) ((-701 . -1238) T) ((-1312 . -23) T) ((-828 . -660) 719) ((-562 . -1238) T) ((-430 . -349) 703) ((-583 . -1077) 690) ((-1261 . -111) 499) ((-713 . -651) 481) ((-869 . -111) 460) ((-392 . -23) T) ((-171 . -628) 238) ((-1210 . -526) 30) ((-890 . -1121) T) ((-693 . -1121) T) ((-688 . -1121) T) ((-674 . -1121) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 709498d4..ce7cca06 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3486833879) -(4468 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3486841613) +(4467 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| @@ -488,663 +488,665 @@ |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |YoungDiagram| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |is?| |direction| |wrregime| - |removeRedundantFactorsInPols| |arg2| |string| |radicalSimplify| - |monomRDEsys| |less?| |monomialIntPoly| |cAtanh| |distFact| |nthr| - |pair?| |mesh?| |deepCopy| |imagi| |normalise| |say| |setClipValue| - |OMgetEndBVar| |OMgetEndAttr| |quoByVar| |shufflein| |isOr| - |conditions| |relationsIdeal| |lazyIntegrate| |setfirst!| - |decreasePrecision| |integralAtInfinity?| |leadingIndex| |e02def| - |quoted?| |oddInfiniteProduct| |title| |match| |imports| |pdct| - |reset| |characteristicSet| |mapdiv| |external?| |hermiteH| - |stoseInvertibleSet| |semiIndiceSubResultantEuclidean| |exponential| - |sum| |baseRDEsys| |tanh2coth| |mirror| |inc| |zeroDim?| - |rootDirectory| |iFTable| |stronglyReduce| |multiplyCoefficients| - |coefChoose| |computeCycleLength| |norm| |write| |redPo| |cycleElt| - |isTimes| |radicalEigenvector| |genericRightNorm| |shuffle| |e| - |curveColorPalette| |bigEndian| |save| |secIfCan| |nullity| |lp| - |raisePolynomial| |d01bbf| |isConnected?| |f02akf| |diophantineSystem| - |coerceImages| |rangePascalTriangle| |recur| |nothing| - |SturmHabichtSequence| |simpleBounds?| |iiasin| |processTemplate| - |normalizeAtInfinity| |variable?| |const| |printStats!| |cylindrical| - |extractProperty| |removeDuplicates| |setDifference| |mindeg| |exp1| - |top| |regularRepresentation| |integer?| |rationalPower| |optpair| - |pole?| |extension| |curry| |makeprod| |lagrange| |continue| - |polarCoordinates| |isAbsolutelyIrreducible?| |permutation| |lprop| - |lex| |quickSort| |readUInt8!| |choosemon| |infRittWu?| |lazyPquo| - |constantKernel| |acscIfCan| |limitedIntegrate| |lllp| |addPoint| - |primlimitedint| |palgLODE| |middle| |iiacoth| ** |hash| |radPoly| - |groebner?| |minGbasis| |isAnd| |viewport3D| |groebner| |elem?| - |generalLambert| |createMultiplicationTable| |count| |localUnquote| - |normalizedAssociate| |component| |primlimintfrac| |uniform01| - |pleskenSplit| |ddFact| |wholeRagits| |generateIrredPoly| |module| - |invertibleSet| |f07adf| |monomRDE| |ridHack1| |byteBuffer| - |trace2PowMod| |d02kef| |lSpaceBasis| |viewDeltaXDefault| |constant| - |patternMatchTimes| |primeFactor| |particularSolution| |aspFilename| - |OMreadStr| |controlPanel| |rotatey| |cscIfCan| |yellow| - |messagePrint| |integrate| |mantissa| |rootBound| |cup| |branchPoint?| - |bombieriNorm| |contractSolve| |c06gsf| |setProperties| |OMclose| - |string?| |iisinh| |scanOneDimSubspaces| |s14abf| |returnTypeOf| - |readIfCan!| |c05adf| |decompose| |pdf2ef| |rdregime| |associative?| - |sPol| |dAndcExp| |partitions| |ode1| |exponential1| |mainExpression| - |meshPar2Var| |localAbs| |s17akf| |OMputEndAttr| |headReduce| - |reducedForm| |rangeIsFinite| |backOldPos| |interactiveEnv| - |separateDegrees| |OMgetString| |numFunEvals3D| |complexElementary| - |gcdPolynomial| |factorByRecursion| |shiftRight| |elaborateFile| - |createPrimitiveElement| |normal?| |zeroMatrix| |isImplies| - |toseSquareFreePart| |lastSubResultant| |find| |axes| |leastMonomial| - |iisin| |status| |intChoose| |showIntensityFunctions| |groebnerIdeal| - |rootNormalize| |maximumExponent| |OMgetBind| |mapUnivariateIfCan| - |permutationGroup| |perfectNthRoot| |OMopenString| |cAcos| |infix| - |complexNumericIfCan| |unitNormalize| |makeSin| |recip| |s18aef| - |linearlyDependentOverZ?| |categories| |OMgetInteger| - |leftExtendedGcd| |insertTop!| |algebraicDecompose| |integral?| - |numer| |iiexp| |retractIfCan| |kovacic| |fixedPoints| |hasSolution?| - |powerAssociative?| |innerEigenvectors| |iiasech| |retractable?| - |insertMatch| |denom| |traverse| |algebraicVariables| - |collectQuasiMonic| |environment| |host| |makeResult| - |stoseInvertibleSetsqfreg| |henselFact| |identity| |legendreP| - |stiffnessAndStabilityOfODEIF| |basis| |smith| |semicolonSeparate| - |iteratedInitials| |inspect| |innerint| |eulerPhi| |pi| - |createZechTable| |cRationalPower| |initiallyReduced?| |idealiser| - |symmetricProduct| |lastSubResultantEuclidean| |elseBranch| - |monomials| |integralDerivationMatrix| |infinity| |approxNthRoot| - |member?| |stronglyReduced?| |rewriteIdealWithQuasiMonicGenerators| - |concat| |step| |extendedIntegrate| |coefficients| |df2mf| |red| - |duplicates| |ode| |stirling1| |OMputObject| |finiteBound| |edf2fi| - |firstUncouplingMatrix| |branchPointAtInfinity?| |indiceSubResultant| - |cyclic| |setRow!| |denominators| |modulus| |negative?| |reopen!| - |OMwrite| |OMgetError| |gderiv| |iifact| |kernel| |karatsubaOnce| - |internalIntegrate0| |maxdeg| |subMatrix| |formula| |ef2edf| - |reducedQPowers| |pade| |linearAssociatedExp| |list| |ptree| |closed?| - |invmultisect| |linearMatrix| |fortranDoubleComplex| |polygon?| |lhs| - |zeroSquareMatrix| |subResultantsChain| |setRealSteps| |subSet| |draw| - |OMreadFile| |digit?| |clearCache| |interReduce| - |permutationRepresentation| |fixPredicate| |rhs| |leftTraceMatrix| - |remove!| |bezoutDiscriminant| |nthFractionalTerm| |cot2trig| |shape| - |solveInField| |cyclicGroup| |gcdprim| |systemSizeIF| |sncndn| - |double?| |safeCeiling| |categoryFrame| |stFuncN| |debug3D| - |composites| |color| |currentEnv| |nrows| |isPlus| |initTable!| - |cartesian| |SturmHabichtCoefficients| |cAsec| |rk4a| |e01sbf| - |laguerreL| |ratpart| |ncols| |parabolic| |addmod| |plus!| - |removeDuplicates!| |makeObject| |qPot| |lieAlgebra?| - |leftAlternative?| |wholeRadix| |outlineRender| |sorted?| - |monomialIntegrate| |stopTableGcd!| |cot2tan| |coef| |tanSum| - |symbolTableOf| |cardinality| |startStats!| |mkIntegral| - |alphanumeric?| |singRicDE| |iiGamma| |modifyPoint| |e04jaf| |curve?| - |freeOf?| |Lazard| |lookupFunction| |readInt8!| |d02raf| - |cyclotomicDecomposition| |makeSUP| |asecIfCan| |iisech| |inRadical?| - |closeComponent| |argument| |rightNorm| |curve| - |LagrangeInterpolation| |back| |solveLinearlyOverQ| |zeroDimPrimary?| - |rischNormalize| |imagK| |d01alf| |kind| |in?| |extend| |eulerE| - |withPredicates| |gbasis| |linears| |toroidal| |groebnerFactorize| - |LyndonBasis| |op| |lieAdmissible?| |omError| |anticoord| - |ReduceOrder| |updatF| |kernels| |leftRemainder| |reduction| - |indicialEquationAtInfinity| |printCode| |write!| |deepestInitial| - |region| |quadratic| |removeCosSq| |tablePow| |oneDimensionalArray| - |anfactor| |minimumExponent| |operator| |leftUnit| - |genericRightTraceForm| |appendPoint| |minrank| |iicoth| |leftPower| - |interval| SEGMENT |inverseLaplace| |scalarMatrix| - |zeroSetSplitIntoTriangularSystems| |droot| |e04naf| |defineProperty| - |leftFactorIfCan| |points| |lazyPseudoRemainder| |sort| |rootsOf| - |exponents| |univariate| |stoseInternalLastSubResultant| |invertIfCan| - |UnVectorise| |OMmakeConn| |factorial| |pseudoQuotient| - |setScreenResolution| |dec| |trivialIdeal?| |size?| |hostByteOrder| - |rotatez| |factorPolynomial| |quasiRegular| |parabolicCylindrical| - |multMonom| |leftScalarTimes!| |cyclicEqual?| |regime| |parent| - |radix| |union| |unknownEndian| |lfextendedint| - |generalizedEigenvector| |epilogue| |laplacian| |binaryTree| |forLoop| - |factor| |idealSimplify| |integralMatrixAtInfinity| |nextNormalPoly| - |clipSurface| |readInt32!| |unvectorise| |reducedDiscriminant| - |random| |modTree| |cTan| |sqrt| |patternMatch| |intcompBasis| - |FormatRoman| |selectFiniteRoutines| |showTheFTable| |qualifier| - |comp| |e01bhf| |irVar| |cyclotomic| |real| |laurentIfCan| - |numericIfCan| |removeConstantTerm| |digamma| |getProperties| |e02bcf| - |leftGcd| |setprevious!| |compound?| |imag| |octon| |supersub| |super| - |properties| |useSingleFactorBound| |s15adf| |extractPoint| - |var2StepsDefault| |reducedContinuedFraction| |copy| |rootSimp| - |directProduct| |matrixGcd| |changeVar| |permanent| |repeating?| - |translate| |tubeRadiusDefault| |randomLC| |exactQuotient!| - |internalSubQuasiComponent?| |hex| |padicFraction| |roughBase?| - |screenResolution3D| |c06gcf| |removeIrreducibleRedundantFactors| - |depth| |HermiteIntegrate| |yCoord| |upperCase?| |gensym| |brace| - |setchildren!| |aQuadratic| |powers| |sparsityIF| |pseudoRemainder| - |lfextlimint| |OMReadError?| |insert!| |dioSolve| |bandedHessian| - |f02bbf| |destruct| |graphs| |listOfLists| |localIntegralBasis| - |palgLODE0| |fixedPointExquo| |OMopenFile| |nand| |edf2ef| - |whatInfinity| |genericRightTrace| |match?| |getMultiplicationMatrix| - |besselK| |conical| |weight| |PollardSmallFactor| |autoCoerce| - |getCurve| |colorFunction| |c06ekf| |position!| |arguments| |subset?| - |list?| |iExquo| |solveLinear| |expandPower| |primitivePart!| - |setTex!| |s19adf| |f02ajf| |enterInCache| |linearAssociatedOrder| - |stopMusserTrials| |product| |ScanRoman| |expand| |mapUp!| - |dualSignature| |monomial| |OMsupportsCD?| |bitLength| |OMgetEndError| - |multiple?| |scan| |binding| |minColIndex| |filterWhile| - |insertBottom!| |multivariate| |graphState| |outputSpacing| |close| - |pascalTriangle| |leastPower| |acotIfCan| F - |solveLinearPolynomialEquation| |eigenvalues| |sumOfKthPowerDivisors| - |filterUntil| |euclideanSize| |flagFactor| |variables| |youngGroup| - |paraboloidal| |overset?| |iilog| |select| |vark| |f04qaf| |display| - |closedCurve?| |rightRankPolynomial| |randomR| |iiacos| |gradient| - |exprToGenUPS| |wordsForStrongGenerators| |imagJ| |complexForm| - |completeHensel| |rst| |fi2df| |setLabelValue| |cSech| - |doublyTransitive?| |rootSplit| |changeThreshhold| |palgintegrate| - |trunc| |critB| |lighting| |quatern| |viewDeltaYDefault| |predicate| - |rightAlternative?| |dimension| |nextPrimitivePoly| |primitiveElement| - |resultantReduit| |perfectSqrt| |internalAugment| |debug| |taylor| - |f02bjf| |measure| |mesh| |members| |karatsubaDivide| |cn| |nullary| - |reflect| |unparse| D |laurent| |input| |extractIndex| |f2df| - |csc2sin| |checkForZero| |c06fqf| |tubeRadius| |addMatch| |rowEchelon| - |puiseux| |library| |rCoord| |OMsend| |noncommutativeJordanAlgebra?| - |fortranLiteralLine| EQ |infieldIntegrate| |sortConstraints| |isExpt| - |buildSyntax| |createThreeSpace| |divisor| |SturmHabicht| |e01saf| - |printTypes| |swap!| |alphabetic| |createPrimitiveNormalPoly| |inv| - |solid?| |unitVector| |mapExpon| |lquo| |exprHasWeightCosWXorSinWX| - |setLegalFortranSourceExtensions| |normalizedDivide| |dihedral| - |commutativeEquality| |ground?| |dimensionsOf| |errorInfo| |slash| - |newSubProgram| |primaryDecomp| |power| |deref| |solveid| |medialSet| - |ground| |set| |intermediateResultsIF| |dark| |cubic| |setleaves!| - |commutator| |fortranDouble| |integralCoordinates| |critMonD1| - |decimal| |leadingMonomial| |OMputEndBind| |jordanAlgebra?| - |symmetricGroup| |accuracyIF| |coercePreimagesImages| |positive?| - |complexExpand| |besselI| |recoverAfterFail| |leadingCoefficient| - |parameters| |extendedSubResultantGcd| |fortranCarriageReturn| - |divideIfCan!| |makeMulti| |airyAi| |size| |tanhIfCan| - |shanksDiscLogAlgorithm| |calcRanges| |standardBasisOfCyclicSubmodule| - |primitiveMonomials| |separant| |isOpen?| |mainVariable?| |numerators| - |makeop| |lflimitedint| |squareFreeFactors| |allRootsOf| - |insertionSort!| |print| |reductum| |corrPoly| |c06fuf| |substring?| - |dot| |iflist2Result| |clipPointsDefault| |nthRoot| |abs| |qfactor| - |virtualDegree| |resolve| |s13aaf| |outputFixed| |trailingCoefficient| - |column| |numberOfPrimitivePoly| |scale| |deepestTail| |squareMatrix| - |figureUnits| |prem| |neglist| |maxIndex| |atrapezoidal| - |setCondition!| |mainCharacterization| |suffix?| |true| |denominator| - |cfirst| |category| |ref| |arrayStack| |alphabetic?| |enumerate| - |c06gqf| |oddintegers| |domain| |float?| - |inverseIntegralMatrixAtInfinity| |preprocess| |trapezoidalo| - |RemainderList| |leastAffineMultiple| |optional| |OMreceive| |delete!| - |numericalIntegration| |f04arf| |nilFactor| |mathieu24| - |lastSubResultantElseSplit| |prefix?| |qinterval| - |countRealRootsMultiple| |package| |numerator| |isNot| |constantRight| - |principalIdeal| |generic?| |insert| |indicialEquation| |signAround| - |numberOfFractionalTerms| |baseRDE| |extractIfCan| |tube| - |useEisensteinCriterion?| |s20adf| |tRange| - |solveLinearPolynomialEquationByFractions| |show| |divideIfCan| - |convergents| |rootOfIrreduciblePoly| |rightTraceMatrix| |addiag| - |fortranComplex| |logIfCan| |commutative?| |nullSpace| |search| - |c05nbf| |listLoops| |cAtan| |quotedOperators| |overlap| |predicates| - |reducedSystem| |node| |clearDenominator| |geometric| |ode2| - |rightLcm| |trace| |clipParametric| |inverseIntegralMatrix| - |setFormula!| |getMatch| |removeRoughlyRedundantFactorsInPol| - |resetNew| |numberOfMonomials| |setButtonValue| |componentUpperBound| - |getSyntaxFormsFromFile| |besselY| |character?| |contains?| - |screenResolution| |removeSuperfluousCases| |leftRank| |d01ajf| - |f04jgf| |sub| |pointData| |mapCoef| |infix?| |sturmSequence| - |mainVariables| |localReal?| |paren| |sinh2csch| |pointPlot| - |createNormalPoly| |nextItem| |polCase| |mask| |imagE| - |setTopPredicate| |chainSubResultants| |unitNormal| |alternatingGroup| - |increase| |areEquivalent?| |chiSquare| |rationalFunction| - |showArrayValues| |flatten| |aLinear| |firstNumer| |deleteRoutine!| - |removeZeroes| |diagonals| |hMonic| |lazyGintegrate| |clipBoolean| - |bytes| |ramified?| |laurentRep| |compose| |shiftLeft| - |rightDiscriminant| |indiceSubResultantEuclidean| |mdeg| |qqq| - |dictionary| |mainCoefficients| |uncouplingMatrices| |isQuotient| - |factorials| |basisOfLeftNucleus| |karatsuba| |leadingSupport| - |setOfMinN| |headRemainder| |entries| |complexLimit| |symmetric?| - |halfExtendedSubResultantGcd2| |s20acf| |computeInt| |e02akf| - |extendedEuclidean| |OMgetEndObject| |fortranLogical| |subHeight| - |solveLinearPolynomialEquationByRecursion| |deriv| |getOperator| - |listYoungTableaus| |leftLcm| |setlast!| |nonLinearPart| |simplifyExp| - |select!| |extensionDegree| |badValues| |axesColorDefault| |prime| - |groebSolve| |yCoordinates| |subNodeOf?| |compiledFunction| |c06fpf| - |directory| |rewriteIdealWithRemainder| |linearPart| |extractBottom!| - |conjugate| |lazyPremWithDefault| |mergeFactors| |inf| |explimitedint| - |high| |e04mbf| |chebyshevT| |bottom!| |maxPoints| |sup| |internal?| - |truncate| |height| |units| |complementaryBasis| |log10| |s13acf| - |createRandomElement| |Hausdorff| |c05pbf| |selectPolynomials| |hcrf| - |equation| |midpoint| |critpOrder| |taylorQuoByVar| |f04atf| - |logical?| |bitand| |functionIsOscillatory| |powern| - |radicalOfLeftTraceForm| |coerceL| |makeYoungTableau| |unravel| - |getIdentifier| |cSin| |iiatan| |leaves| |e04ycf| |outerProduct| - |bitior| |ratDsolve| |selectOptimizationRoutines| |numberOfChildren| - |f02fjf| |linear| |readUInt32!| |safeFloor| - |stiffnessAndStabilityFactor| |UP2ifCan| |stoseInvertible?| |rightGcd| - |makeGraphImage| |modularGcd| |variationOfParameters| |prefixRagits| - |connectTo| |changeMeasure| |s17acf| |stoseInvertible?sqfreg| - |macroExpand| |incrementKthElement| |genericLeftDiscriminant| - |rewriteSetByReducingWithParticularGenerators| |matrixDimensions| - |lambert| |semiResultantReduitEuclidean| |polynomial| |fintegrate| - |someBasis| |seriesSolve| |nodes| |multiEuclideanTree| |comment| - |iiacot| |radicalEigenvalues| |algebraicCoefficients?| |fractionPart| - |csubst| |BasicMethod| |center| |rightFactorCandidate| - |fullPartialFraction| |bandedJacobian| |tubePointsDefault| - |triangSolve| |complexIntegrate| |integralLastSubResultant| |e01bef| - |inR?| |factorsOfCyclicGroupSize| |rootKerSimp| |sturmVariationsOf| - |findBinding| |f02adf| |binarySearchTree| |expextendedint| - |identification| |nthExpon| |mainPrimitivePart| |rule| |ranges| - |declare| |makingStats?| |selectAndPolynomials| |youngDiagram| - |s18acf| |nullary?| |nativeModuleExtension| |e01daf| |getMeasure| - |common| |approxSqrt| |imaginary| |e02bbf| |pomopo!| |normalForm| - |derivationCoordinates| |setAttributeButtonStep| |splitDenominator| - |intPatternMatch| |length| |linSolve| |separateFactors| |wreath| - |transcendent?| |palgRDE| |floor| |d03eef| |scripts| |ODESolve| - |tanIfCan| |RittWuCompare| |homogeneous?| |OMputInteger| - |hyperelliptic| |fixedDivisor| |merge!| |rightRecip| |parametersOf| - |polyRDE| |content| |changeName| |imagk| |attributeData| |orbit| - |quotientByP| |complexEigenvectors| |over| |clikeUniv| - |selectOrPolynomials| |matrix| |belong?| |viewWriteDefault| |bitTruth| - |minordet| |putProperty| |c06gbf| |bsolve| |complexNormalize| - |dimensionOfIrreducibleRepresentation| |hspace| |limitPlus| |npcoef| - |basisOfCommutingElements| |nextPrime| |call| |subresultantSequence| - |bitCoef| |iicot| |bipolarCylindrical| |squareFreePart| |split| - |makeTerm| |iibinom| |cAcot| |setMinPoints3D| |create3Space| - |getGoodPrime| Y |rotate!| |iicosh| |normalDenom| |getGraph| - |pushuconst| |cschIfCan| |OMgetObject| |shade| |label| - |monicCompleteDecompose| |sayLength| |composite| |shallowExpand| - |degreeSubResultantEuclidean| |solve1| |iiperm| |linearAssociatedLog| - |iidsum| |OMconnInDevice| |setsubMatrix!| |vectorise| |tubePoints| - |kmax| |printHeader| |exteriorDifferential| - |irreducibleRepresentation| |flexible?| |mightHaveRoots| |e01baf| - |eof?| |setMaxPoints3D| |atanhIfCan| |totalDifferential| |compdegd| - |numberOfImproperPartitions| |result| |createNormalElement| |evaluate| - |constantCoefficientRicDE| |ScanFloatIgnoreSpaces| |pureLex| |setref| - |semiResultantEuclidean2| |functionIsContinuousAtEndPoints| |e02agf| - |binomThmExpt| |gcdcofact| |rdHack1| |f02agf| |rational?| |putGraph| - |makeEq| |f04mbf| |splitNodeOf!| |numeric| |setScreenResolution3D| - |f2st| |mathieu23| |representationType| |s17dhf| - |numberOfComputedEntries| |radical| |ip4Address| |f01maf| |lazyPrem| - |extractSplittingLeaf| |eisensteinIrreducible?| |atanIfCan| |iCompose| - |OMputString| |constructor| |pow| |rational| |maxColIndex| - |differentialVariables| |factorSFBRlcUnit| |triangularSystems| |ipow| - |cSinh| |wholePart| |top!| |bindings| |option| |isEquiv| |child| - |multinomial| |listOfMonoms| |symbolTable| |showSummary| |infieldint| - |d02bhf| |split!| |isOp| |monicModulo| |mat| |rowEch| |factorset| - |e01sff| |tracePowMod| |commaSeparate| |heapSort| |showTheSymbolTable| - |fmecg| |drawComplexVectorField| |genericLeftNorm| - |nextIrreduciblePoly| |pushFortranOutputStack| |constDsolve| - |showAttributes| |explicitEntries?| |semiDegreeSubResultantEuclidean| - |rootOf| |mainKernel| |factorSquareFreeByRecursion| |setPosition| - |makeRecord| |badNum| |dual| |popFortranOutputStack| - |currentSubProgram| |algint| |lepol| |duplicates?| |linGenPos| |mvar| - |child?| |ksec| |outputAsFortran| |reduceBasisAtInfinity| |diagonal| - |s18aff| |mergeDifference| |noKaratsuba| |name| |parents| |notelem| - |rk4| |generic| |topPredicate| |mapMatrixIfCan| |leftMult| - |collectUnder| |rightTrim| |irreducibleFactor| |nonQsign| |body| - |lexTriangular| |Ci| |leadingTerm| |unrankImproperPartitions1| - |bivariateSLPEBR| |setvalue!| |leftTrim| |oddlambert| - |complexEigenvalues| |goodnessOfFit| |genericPosition| |null| - |rightCharacteristicPolynomial| |getMultiplicationTable| |d02bbf| - |overlabel| |stack| |gcdcofactprim| |endSubProgram| |reify| - |idealiserMatrix| |not| |transcendenceDegree| |quadratic?| - |wordInStrongGenerators| |intensity| |mix| BY |lyndon?| |B1solve| - |associates?| |failed?| |iitan| |and| |linearlyDependent?| - |explicitlyEmpty?| |pquo| |outputList| |startTableGcd!| |finite?| - |bumptab| |rightScalarTimes!| |modifyPointData| |c02agf| |or| - |cycleLength| |doubleRank| |roughBasicSet| |bernoulli| - |monicDecomposeIfCan| |alphanumeric| |exprToUPS| |outputFloating| - |xor| |iitanh| |drawComplex| |var2Steps| |inconsistent?| |colorDef| - |push| |f02aef| |outputAsScript| |palgextint0| |signature| |dim| - |highCommonTerms| |case| |extendedResultant| |rightFactorIfCan| - |null?| |assert| |errorKind| |untab| |quotient| |f07aef| |port| - |bubbleSort!| |removeSinSq| |pattern| |Zero| |expressIdealMember| - |prinpolINFO| |splitConstant| |OMputError| |compBound| |atom?| - |s21baf| |reverseLex| |realElementary| |minimalPolynomial| |One| - |subResultantChain| |critMTonD1| |OMcloseConn| |argumentList!| - |reduceByQuasiMonic| |repSq| |expintegrate| |factor1| |t| - |unaryFunction| |expt| |safetyMargin| |shift| NOT |countable?| - |s17ahf| |numberOfOperations| |limitedint| |output| |getBadValues| - |inputBinaryFile| |charClass| |numberOfHues| |leftTrace| - |unitCanonical| |Vectorise| |leader| OR |factors| |vector| |df2fi| - |rspace| |unrankImproperPartitions0| |multisect| |solve| - |readLineIfCan!| |laplace| |lowerBound| |message| |separate| AND - |d02cjf| |differentiate| |mkcomm| |c06frf| |unit| |c02aff| - |prolateSpheroidal| |rightOne| |d03edf| |cyclicSubmodule| - |diagonalMatrix| |copy!| |typeLists| |selectPDERoutines| - |wronskianMatrix| |distance| |fortran| |atanh| |sqfrFactor| - |showTheIFTable| |supDimElseRittWu?| |BumInSepFFE| |logGamma| |elt| - |diag| |cAcsc| |sequences| |expint| |setMaxPoints| |acoth| |infinite?| - |bivariatePolynomials| |integerIfCan| |inverse| |integerBound| - |coerceListOfPairs| |ratDenom| |exportedOperators| |prod| - |roughSubIdeal?| |cycleRagits| |asech| |level| |seriesToOutputForm| - UP2UTS |removeRoughlyRedundantFactorsInContents| |symbol?| - |sumOfSquares| |dominantTerm| |monomial?| |distdfact| |plot| - |absolutelyIrreducible?| |setStatus!| |reindex| |OMputSymbol| - |exponentialOrder| |setOrder| |expenseOfEvaluationIF| |autoReduced?| - |internalInfRittWu?| |addMatchRestricted| |quasiAlgebraicSet| |d01anf| - |acothIfCan| |multiple| |cons| |factorsOfDegree| - |semiSubResultantGcdEuclidean2| |s17adf| |inGroundField?| |SFunction| - |magnitude| |radicalSolve| |approximants| |leftQuotient| - |infiniteProduct| |expandTrigProducts| |applyQuote| |toScale| - |integralRepresents| |xn| |cond| |rename| |complexSolve| - |splitSquarefree| |retract| |completeHermite| |hasoln| |prologue| - |constantIfCan| |pseudoDivide| |arbitrary| |tanintegrate| |getlo| - |cdr| |f01ref| |nextLatticePermutation| |makeFR| |swapRows!| - |removeRedundantFactorsInContents| |meshFun2Var| |makeViewport2D| - |generalizedContinuumHypothesisAssumed?| |minus!| |FormatArabic| - |mindegTerm| |rightExactQuotient| |OMputAtp| |second| |chiSquare1| * - |getProperty| |conditionP| |bumptab1| |makeCos| |euler| |ruleset| - |coerceP| |combineFeatureCompatibility| |Ei| |OMgetBVar| - |setEpilogue!| |taylorIfCan| |third| |isList| |leftFactor| - |setIntersection| |children| |leftRegularRepresentation| |changeBase| - |toseLastSubResultant| |subresultantVector| |associatedEquations| - |symFunc| |rationalApproximation| |primeFrobenius| |symmetricPower| - |OMputEndObject| |internalZeroSetSplit| |nthExponent| |totalGroebner| - |source| |void| |makeSketch| |light| |constantOpIfCan| - |fortranInteger| |LyndonCoordinates| |normalize| |minIndex| = - |innerSolve| |numericalOptimization| |setErrorBound| |OMgetEndBind| - |suchThat| |sylvesterSequence| |nthRootIfCan| |s17aff| |cycleTail| - |outputArgs| |lowerCase!| |normalDeriv| |OMgetEndAtp| |element?| - |ParCondList| |leftRecip| |script| |createIrreduciblePoly| - |decomposeFunc| |palginfieldint| |odd?| |fglmIfCan| |horizConcat| - |bothWays| < |range| |setAdaptive3D| |tryFunctionalDecomposition| - |open?| |plusInfinity| |elColumn2!| |stoseIntegralLastSubResultant| - |bfEntry| |integers| |alternating| |newTypeLists| |char| |f04axf| > - |ScanArabic| |generalInfiniteProduct| |s17agf| - |univariatePolynomialsGcds| |socf2socdf| |minusInfinity| - |scalarTypeOf| |systemCommand| |argumentListOf| |concat!| - |stoseInvertible?reg| |fortranTypeOf| |fortranReal| <= |binomial| - |redPol| |acschIfCan| |semiDiscriminantEuclidean| |tex| |target| - |matrixConcat3D| |boundOfCauchy| |setProperty| |zag| - |createPrimitivePoly| |OMgetType| |iprint| >= |pmComplexintegrate| - |interpretString| |genericLeftTraceForm| |create| |dequeue| - |validExponential| |mapExponents| |writeBytes!| |equiv| |f04faf| - |torsion?| |expr| |adaptive?| |elliptic?| |LowTriBddDenomInv| |fTable| - |outputBinaryFile| |prinshINFO| |exQuo| |atoms| |nodeOf?| |normal| - |subscript| |f01bsf| |viewport2D| |writeLine!| |OMgetAttr| |sec2cos| - |totalLex| |queue| |iiacsch| |drawCurves| |copyInto!| - |removeSquaresIfCan| |hessian| |OMgetApp| |bits| + |moreAlgebraic?| - |showAllElements| |primintfldpoly| |dmp2rfi| |type| |whileLoop| - |selectODEIVPRoutines| |elementary| |conjunction| |tanQ| |OMlistCDs| - |binaryTournament| |point| - |float| |firstDenom| |generalSqFr| - |supRittWu?| |subResultantGcd| |hypergeometric0F1| |Frobenius| - |zerosOf| |nthCoef| |rightDivide| |variable| |stFunc1| / |leftZero| - |bounds| |mappingAst| |OMputFloat| |iicsc| |scopes| |primextendedint| - |prepareDecompose| |nextsousResultant2| |iterators| |numFunEvals| - |sumSquares| |removeSinhSq| |ListOfTerms| |fractRagits| |nor| - |polyRicDE| |maxrow| |partialDenominators| |rk4qc| |readable?| - |gramschmidt| |series| |basisOfLeftAnnihilator| |f02aff| - |balancedFactorisation| |testDim| |capacity| |eigenMatrix| |newReduc| - |conjug| |polyred| |outputGeneral| |continuedFraction| |showAll?| - |OMUnknownCD?| |doubleDisc| |critM| |radicalRoots| |minPol| |myDegree| - |id| |quadraticForm| |zeroDimensional?| - |selectMultiDimensionalRoutines| |e02daf| |rationalIfCan| |prevPrime| - |value| |constantOperator| |modularFactor| |pushucoef| |symbol| - |relativeApprox| |rightQuotient| |lo| |internalIntegrate| |nary?| - |pointColorDefault| |fixedPoint| |collectUpper| |complexRoots| - |harmonic| |simpsono| |coord| |expression| |lazyResidueClass| |min| - |complete| |d01apf| |s13adf| |showFortranOutputStack| |aQuartic| - |mappingMode| |qroot| |max| |listexp| |integer| |hclf| - |pushNewContour| |physicalLength| GE |OMbindTCP| |cycles| - |constantToUnaryFunction| |divisors| |problemPoints| - |leftCharacteristicPolynomial| |inputOutputBinaryFile| |froot| - |putProperties| |rowEchelonLocal| |bat| GT |makeFloatFunction| - |resize| |createMultiplicationMatrix| |univariatePolynomial| - |generalizedInverse| |charpol| |e04ucf| |real?| |OMunhandledSymbol| - |largest| LE |hdmpToDmp| |selectsecond| |btwFact| |explicitlyFinite?| - |deepExpand| |adaptive3D?| |testModulus| |zCoord| |f01qcf| - |encodingDirectory| LT |se2rfi| |semiSubResultantGcdEuclidean1| - |expandLog| |coefficient| |iiasinh| |invertibleElseSplit?| |cotIfCan| - |mainDefiningPolynomial| |explogs2trigs| |symmetricSquare| |nsqfree| - |algDsolve| |normalized?| |pile| |rename!| |nextsubResultant2| - |cos2sec| |fortranCompilerName| |OMputEndAtp| |createGenericMatrix| - |decrease| |OMconnOutDevice| |style| |e02adf| |d01asf| - |mainSquareFreePart| |rightRank| |disjunction| |lllip| |keys| - |difference| |viewWriteAvailable| |enqueue!| |nextSubsetGray| - |semiLastSubResultantEuclidean| |iisec| |structuralConstants| - |typeList| |dimensions| |setLength!| |identityMatrix| - |leftExactQuotient| |f04adf| |evenInfiniteProduct| |hermite| |sin2csc| - |bivariate?| |clearTheSymbolTable| |s17dgf| |xCoord| |index| - |generators| |iroot| |numberOfVariables| |generalTwoFactor| |isMult| - |resultant| |halfExtendedResultant2| |toseInvertible?| - |antisymmetricTensors| |outputForm| |e02dcf| |resultantEuclidean| - |goodPoint| |nil?| |subResultantGcdEuclidean| |square?| |asinhIfCan| - |updateStatus!| |OMconnectTCP| |transpose| |maxrank| - |restorePrecision| |numberOfComponents| |repeating| |basisOfCenter| - |moebius| |rightUnits| |polygon| |pair| |completeSmith| - |optAttributes| |tree| |open| |df2ef| |lfinfieldint| |rightUnit| - |internalLastSubResultant| |reciprocalPolynomial| |bright| - |upDateBranches| |skewSFunction| |shallowCopy| |stoseSquareFreePart| - |closedCurve| |number?| |viewThetaDefault| |powmod| |eyeDistance| - |vedf2vef| |divide| |findCycle| |stFunc2| |PDESolve| |tanAn| |build| - |palgRDE0| |s17dcf| |mathieu12| |integralBasisAtInfinity| |eval| - |intersect| |computeCycleEntry| |ScanFloatIgnoreSpacesIfCan| |palgint| - |rischDEsys| |hconcat| |subCase?| |createLowComplexityNormalBasis| - |cothIfCan| |meshPar1Var| |node?| |setValue!| |operations| |augment| - |f01mcf| |OMputAttr| |useNagFunctions| |evenlambert| |weakBiRank| - |OMgetEndApp| |pushup| |stosePrepareSubResAlgo| |pol| |sign| - |eigenvector| |mapGen| |interpret| |computeBasis| |laguerre| |error| - |moebiusMu| |compactFraction| |collect| |branchIfCan| - |symmetricDifference| |cyclicEntries| |any?| |triangulate| |edf2df| - |outputMeasure| |curryRight| |getOperands| |midpoints| |sqfree| - |leftOne| |twoFactor| |rightTrace| |imagj| |optimize| |elliptic| - |OMputApp| |applyRules| |dfRange| |nextNormalPrimitivePoly| |limit| - |precision| |function| |s19abf| |upperCase| |rotatex| |d02ejf| - |zeroOf| RF2UTS |s21bcf| |isPower| |trim| |cExp| - |rightRegularRepresentation| |e04gcf| |index?| |rroot| |iiacosh| - |musserTrials| |monicLeftDivide| |selectSumOfSquaresRoutines| |e02gaf| - |width| |substitute| |computePowers| |redpps| |balancedBinaryTree| - |rules| |diagonalProduct| |subQuasiComponent?| |cycleEntry| |double| - |clearFortranOutputStack| |chineseRemainder| |increasePrecision| - |gcdPrimitive| |sin?| |critT| |rightPower| |getExplanations| - |euclideanNormalForm| UTS2UP |hue| |f01qdf| |completeEchelonBasis| - |extendIfCan| |Nul| |groebgen| |polynomialZeros| - |rewriteSetWithReduction| |s21bbf| |scripted?| |merge| |cAsinh| - |divisorCascade| |leftNorm| |squareTop| |move| |schwerpunkt| - |plotPolar| |specialTrigs| |s14aaf| |makeViewport3D| |f02abf| - |resultantnaif| |elRow1!| |e02aef| |checkPrecision| |mr| |upperBound| - |cross| |generalizedEigenvectors| |viewpoint| - |indexedDirectProductObject| |singularAtInfinity?| - |generalizedContinuumHypothesisAssumed| |OMgetVariable| |ptFunc| - |ricDsolve| |jacobian| |algebraic?| |fullDisplay| |e02dff| |exponent| - |close!| |clipWithRanges| |coerceS| |iipow| |graeffe| |subst| |rem| - |vertConcat| |writeUInt8!| |f04asf| |OMencodingBinary| |flexibleArray| - |squareFreePrim| |s18def| |cosh2sech| |stripCommentsAndBlanks| - |reduced?| |exprHasAlgebraicWeight| |quo| |listConjugateBases| |leaf?| - |increment| |binary| |declare!| |varList| |coordinate| |extract!| - |removeCoshSq| |complexZeros| |conjugates| |d02gaf| |e04dgf| - |directSum| |weighted| |noValueMode| |lcm| |rur| - |genericRightDiscriminant| |just| |definingEquations| |extractClosed| - |ellipticCylindrical| |div| |delete| |cyclePartition| |solid| |pop!| - |rowEchLocal| |rightMinimalPolynomial| |dmpToP| |loopPoints| - |physicalLength!| |symmetricRemainder| |exquo| |completeEval| - |sech2cosh| |splitLinear| |stoseInvertibleSetreg| - |resultantEuclideannaif| |any| |primextintfrac| |f01qef| |append| - |lazyEvaluate| |genericLeftTrace| |s17dlf| ~= |exprex| - |lazyPseudoDivide| |infinityNorm| |tanNa| |degreeSubResultant| - |f04maf| |distribute| |s15aef| |gcd| |components| |newLine| - |linkToFortran| |objects| |#| |headAst| |sincos| - |stoseLastSubResultant| |root?| |primPartElseUnitCanonical!| |presub| - |polar| |fractionFreeGauss!| |consnewpol| |false| |partition| - |positiveSolve| |base| ~ |exptMod| |graphCurves| - |genericLeftMinimalPolynomial| |cyclicParents| |heap| |setleft!| - |iiasec| |resultantReduitEuclidean| |singleFactorBound| |orbits| - |ravel| |rk4f| |viewDefaults| |edf2efi| |transcendentalDecompose| - |currentCategoryFrame| |segment| |constant?| |cap| |hostPlatform| |dn| - |f02axf| |init| |scaleRoots| |sumOfDivisors| |totalDegree| |poisson| - |operators| |reshape| |identitySquareMatrix| |leftRankPolynomial| - |irDef| |LiePoly| |modularGcdPrimitive| |/\\| |mkAnswer| - |resetBadValues| |normFactors| |postfix| |upperCase!| |prindINFO| - |writeInt8!| |hasPredicate?| |lfintegrate| |property| |\\/| - |crushedSet| |toseInvertibleSet| |goto| |e02zaf| |insertRoot!| |apply| - |coerce| |adaptive| |tan2cot| |integralBasis| |univariate?| - |coshIfCan| |integralMatrix| |argscript| |readByte!| |headReduced?| - |OMlistSymbols| |first| |construct| |internalSubPolSet?| |unary?| - |frst| |bit?| |dmpToHdmp| |Si| |halfExtendedResultant1| |leftUnits| - |unmakeSUP| |monic?| |rest| |pointLists| |setFieldInfo| |redmat| - |summation| |csch2sinh| |block| |factorList| |squareFreePolynomial| - |implies| |zeroSetSplit| |plus| |update| |e01bgf| |c06eaf| - |primPartElseUnitCanonical| |brillhartIrreducible?| |maxint| |f07fef| - |linear?| |nonSingularModel| |imagI| |dihedralGroup| |rootProduct| - |cyclic?| |perspective| |getStream| |rightRemainder| |d01akf| - |hitherPlane| |central?| |remainder| |Gamma| |c06ebf| - |topFortranOutputStack| |aromberg| |lowerPolynomial| |viewPosDefault| - |fortranLiteral| |OMencodingXML| |algintegrate| |degree| - |linearDependenceOverZ| |times| |ocf2ocdf| |possiblyNewVariety?| - |llprop| |optional?| |mathieu22| |previous| |delta| |even?| - |realSolve| |putColorInfo| |OMserve| |graphImage| |typeForm| - |presuper| |bumprow| |zoom| |ldf2lst| |primes| |domainTemplate| - |numberOfIrreduciblePoly| |generalPosition| |acosIfCan| |push!| - |position| |d01aqf| |initializeGroupForWordProblem| |getPickedPoints| - |basisOfRightAnnihilator| |linearPolynomials| |OMgetSymbol| - |polygamma| |d01gbf| |terms| |rationalPoints| |datalist| |lift| - |denomLODE| |tab1| |cCosh| |numberOfCycles| |nextSublist| - |factorFraction| |pointColor| |nlde| |box| |nextPrimitiveNormalPoly| - |selectIntegrationRoutines| |monicRightDivide| |monom| |reduce| |cLog| - |janko2| |antiCommutative?| |rischDE| |quote| |dequeue!| |iiacsc| - |tensorProduct| |chebyshevU| |SturmHabichtMultiple| |varselect| - |loadNativeModule| |latex| |countRealRoots| |checkRur| |rightMult| - |rightExtendedGcd| |sinIfCan| |s17def| |quartic| |taylorRep| - |polyPart| |numberOfDivisors| |shrinkable| |f02wef| |delay| - |roughUnitIdeal?| |mpsode| |bringDown| |replace| |maxPoints3D| - |biRank| |copies| |rarrow| |mainVariable| |showClipRegion| - |wordInGenerators| |rootRadius| |LyndonWordsList| |prinb| |routines| - |lambda| |repeatUntilLoop| |OMencodingSGML| |option?| |subspace| - |e02bef| |rank| |kroneckerDelta| |lyndonIfCan| |OMputEndBVar| - |ffactor| |listBranches| |patternVariable| |var1StepsDefault| |cycle| - |bat1| |symbolIfCan| |log| |getDatabase| |relerror| |hdmpToP| - |tubePlot| |contours| |minimumDegree| |endOfFile?| |algSplitSimple| - |c06ecf| |curryLeft| |setelt| |orthonormalBasis| |definingInequation| - |changeWeightLevel| |useEisensteinCriterion| |linearDependence| - |deleteProperty!| FG2F |e01sef| |basicSet| |internalDecompose| - |primitivePart| |escape| |returns| |normalizeIfCan| |mathieu11| - |probablyZeroDim?| |purelyAlgebraicLeadingMonomial?| |connect| - |besselJ| |viewZoomDefault| |numberOfNormalPoly| |numberOfFactors| - |d01gaf| |OMputBind| |palgextint| |assign| |singularitiesOf| |s14baf| - |digit| |partialFraction| |invertible?| |unit?| |iiatanh| |associator| - |palglimint0| |blue| |discreteLog| |OMsupportsSymbol?| |bipolar| - |curveColor| |indicialEquations| |realEigenvalues| |enterPointData| - |roman| |subPolSet?| |pdf2df| |trigs2explogs| |principalAncestors| - |userOrdered?| |startPolynomial| |categoryMode| |printStatement| - |byte| |lists| |head| |roughEqualIdeals?| |rootPoly| - |leftDiscriminant| |OMgetAtp| |externalList| |elaborate| - |antiAssociative?| |pToDmp| |quasiRegular?| |f01rdf| - |pointSizeDefault| |refine| |LiePolyIfCan| |removeRedundantFactors| - |lazyIrreducibleFactors| |erf| |irForm| |expintfldpoly| - |antisymmetric?| |hasHi| |zero| |makeCrit| |interpolate| - |partialNumerators| |reverse| |exprHasLogarithmicWeights| - |extendedint| |basisOfCentroid| |inverseColeman| |degreePartition| - |tanh2trigh| |setnext!| |extractTop!| |entry?| |OMgetFloat| |chvar| - |low| |lifting| |diff| |li| |cycleSplit!| |swap| |getZechTable| - |cAsech| |tryFunctionalDecomposition?| |And| |bracket| |palglimint| - |Lazard2| |iterationVar| |primintegrate| |unknown| |dilog| |e02bdf| - |legendre| |definingPolynomial| |setStatus| |Or| |more?| |stirling2| - |multiEuclidean| |addPoint2| |birth| |fortranCharacter| |trigs| |sin| - |euclideanGroebner| |univcase| |drawStyle| |characteristicSerie| |Not| - |front| |genus| |minPoints3D| |sample| |Is| |coleman| |cos| |po| - |coHeight| |has?| |invmod| |viewPhiDefault| |useSingleFactorBound?| - |int| |jordanAdmissible?| |resetVariableOrder| |basisOfNucleus| - |maxRowIndex| |tan| |realEigenvectors| |quasiMonicPolynomials| - |pastel| |makeSeries| |comparison| |quadraticNorm| |HenselLift| - |initiallyReduce| |cot| |fractRadix| |bezoutMatrix| - |leftReducedSystem| F2FG |changeNameToObjf| |e02ddf| |order| - |readInt16!| |abelianGroup| |sec| |squareFree| |s17ajf| - |rectangularMatrix| |overbar| |sizeMultiplication| |strongGenerators| - |coth2trigh| |bezoutResultant| |certainlySubVariety?| |csc| - |clearTheIFTable| |var1Steps| |expenseOfEvaluation| |setelt!| - |numberOfComposites| |read!| |romberg| |asin| |univariatePolynomials| - |test| |positiveRemainder| |unitsColorDefault| |bag| - |pointColorPalette| |derivative| |remove| |operation| |integral| - |addBadValue| |selectfirst| |acos| |cCoth| |knownInfBasis| |cAcosh| - |cCos| |d02gbf| |f01brf| |mapmult| |Aleph| |adjoint| |atan| - |minPoints| |recolor| |sn| |trapezoidal| |parts| |sh| |exprToXXP| - |last| |basisOfRightNucleus| |minPoly| |mapUnivariate| |empty?| |acot| - |pushdown| |getButtonValue| |assoc| |cAcsch| |setImagSteps| - |clearTable!| |mkPrim| |pack!| |asec| |s21bdf| |simplifyLog| - |asimpson| |condition| |tower| |pushdterm| |reverse!| |simplifyPower| - |leadingIdeal| |setUnion| |removeZero| |acsc| |characteristic| - |iicsch| |jacobiIdentity?| |associatedSystem| |Beta| |padicallyExpand| - |diagonal?| |divergence| |fortranLinkerArgs| |prefix| |sinh| - |inrootof| |key?| |lazyPseudoQuotient| |mapBivariate| |blankSeparate| - |ratPoly| |iomode| |cosh| |denomRicDE| |sizeLess?| |plenaryPower| - |support| |getVariableOrder| |fracPart| |makeUnit| |complement| - |OMUnknownSymbol?| |obj| |tanh| |triangular?| |eq| |makeVariable| - |KrullNumber| |showRegion| |sizePascalTriangle| |ord| |getConstant| - |conditionsForIdempotents| |subNode?| |cache| |coth| |iter| |s01eaf| - |eq?| |callForm?| |doubleResultant| |complexNumeric| |credPol| |arity| - |fill!| |lazy?| |d01amf| |unprotectedRemoveRedundantFactors| |sech| - |OMputEndError| |att2Result| |moduleSum| |torsionIfCan| |before?| - |lowerCase| |ldf2vmf| |f01rcf| |tan2trig| |getOrder| |csch| |lfunc| - |expPot| |antiCommutator| |setClosed| |permutations| |factorAndSplit| - |mainContent| |opeval| |setEmpty!| |asinh| |nthFlag| |gethi| - |normal01| |thenBranch| |setMinPoints| |OMputVariable| - |LazardQuotient| |meatAxe| |printInfo!| |resetAttributeButtons| - |cAcoth| |acosh| |iisqrt3| |cCsch| |normInvertible?| |ran| |s18adf| - |subscriptedVariables| |primitive?| |stopTable!| |hasTopPredicate?| - |row| |removeSuperfluousQuasiComponents| |lowerCase?| |zeroDimPrime?| - |basisOfRightNucloid| |clip| |s17aef| |factorSquareFreePolynomial| - |traceMatrix| |iiabs| |outputAsTex| |exp| |reseed| |rotate| |closed| - |fibonacci| |listRepresentation| |rubiksGroup| |innerSolve1| - |swapColumns!| |showScalarValues| |e02baf| |point?| - |multiplyExponents| |map| |ceiling| |represents| |setAdaptive| - |setright!| |shellSort| |aCubic| |pr2dmp| |drawToScale| |superHeight| - |graphStates| |table| |generator| |monicDivide| |oblateSpheroidal| - |firstSubsetGray| |ignore?| |sequence| |nil| |isobaric?| - |evaluateInverse| |space| |elaboration| |halfExtendedSubResultantGcd1| - |new| |reduceLODE| |findConstructor| |fillPascalTriangle| |ideal| - |setVariableOrder| |measure2Result| |purelyTranscendental?| |compile| - |OMputEndApp| |zeroVector| |coordinates| |symmetricTensors| - |nextColeman| |constantLeft| |thetaCoord| |satisfy?| |cCsc| - |viewSizeDefault| |beauzamyBound| |crest| |d03faf| |e02ajf| - |leftMinimalPolynomial| |lintgcd| |approximate| |iisqrt2| |stop| - |radicalEigenvectors| |green| |log2| |convert| |commonDenominator| - |GospersMethod| |writeByte!| |An| |divideExponents| |complex| - |shiftRoots| |rationalPoint?| |check| |usingTable?| - |tableForDiscreteLogarithm| |OMputBVar| |returnType!| |e02ahf| - |startTable!| |finiteBasis| |totalfract| |cyclicCopy| |simpson| - |mapSolve| |one?| |leadingCoefficientRicDE| |mapDown!| |dflist| - |failed| |hexDigit| |lifting1| |randnum| |addPointLast| |times!| - |revert| LODO2FUN |readUInt16!| |simplify| |bfKeys| - |associatorDependence| |printingInfo?| |realRoots| |mainMonomials| - |doubleComplex?| |bernoulliB| |equality| |cAsin| |lyndon| - |factorOfDegree| |algebraicOf| |univariateSolve| |incr| - |UpTriBddDenomInv| |rombergo| |determinant| |clearTheFTable| |empty| - |contract| |parametric?| |asinIfCan| |spherical| |hi| |writable?| - |morphism| |ramifiedAtInfinity?| |indices| |LazardQuotient2| - |voidMode| |cyclotomicFactorization| |OMread| |padecf| |left| |e01bff| - |logpart| |mainValue| |binaryFunction| |readLine!| |eigenvectors| - |lexGroebner| |part?| |prime?| |right| |power!| |powerSum| |isAtom| - |schema| |startTableInvSet!| |f07fdf| |cCot| |leftDivide| |cPower| - |root| |readBytes!| |currentScope| |normalElement| |lineColorDefault| - |pToHdmp| |d01fcf| |minRowIndex| |signatureAst| |sylvesterMatrix| - |infLex?| |perfectSquare?| |nextPartition| |elRow2!| |qelt| |initials| - |nthFactor| |weierstrass| |LyndonWordsList1| |qsetelt| |s19aaf| - |characteristicPolynomial| |showTheRoutinesTable| |cTanh| |getRef| - |hexDigit?| |initial| |elements| |coth2tanh| |acoshIfCan| - |noLinearFactor?| |sinhcosh| |lexico| |unexpand| |setPredicates| - |xRange| |next| |functionIsFracPolynomial?| |sort!| |vspace| |round| - |key| |partialQuotients| |slex| |pmintegrate| |OMencodingUnknown| - |singular?| |yRange| |zero?| |solveRetract| |stopTableInvSet!| - |setPrologue!| |df2st| |sdf2lst| |critBonD| |ParCond| |zRange| - |htrigs| |basisOfLeftNucloid| |reorder| |every?| |vconcat| |filename| - |map!| |sts2stst| |moduloP| |digits| |discriminantEuclidean| - |algebraicSort| |sinhIfCan| |setPoly| |expIfCan| |parseString| - |littleEndian| |uniform| |qsetelt!| |charthRoot| - |genericRightMinimalPolynomial| |subTriSet?| |quasiMonic?| - |principal?| |minset| |f02awf| |parse| |replaceKthElement| |exists?| - |realZeros| |rootPower| |normDeriv2| |code| |OMsetEncoding| - |frobenius| |discriminant| |car| |generate| |cosSinInfo| |surface| - |exactQuotient| |universe| |seed| |minimize| |basisOfMiddleNucleus| - |twist| |removeRoughlyRedundantFactorsInPols| |setrest!| |cSec| - |superscript| |subtractIfCan| |multiset| |leadingExponent| - |lazyVariations| |prepareSubResAlgo| |trueEqual| |incrementBy| |iicos| - |semiResultantEuclidean1| |rewriteIdealWithHeadRemainder| - |doubleFloatFormat| |whitePoint| |mulmod| |iidprod| |asechIfCan| - |phiCoord| |fprindINFO| |totolex| |tValues| |airyBi| |f02xef| |acsch| - |brillhartTrials| |mainMonomial| |factorSquareFree| |f02aaf| - |functorData| GF2FG |alternative?| |printInfo| |leviCivitaSymbol| - |squareFreeLexTriangular| |transform| |factorGroebnerBasis| |lookup| - |tab| |jokerMode| |OMParseError?| |quasiComponent| |rightZero| - |f04mcf| |updatD| |createNormalPrimitivePoly| |sechIfCan| - |createLowComplexityTable| |irreducibleFactors| |perfectNthPower?| - |companionBlocks| |getCode| |s19acf| |submod| |irCtor| - |possiblyInfinite?| |options| |irreducible?| |complex?| |inHallBasis?| - |psolve| |mainForm| |tail| |cosIfCan| |dom| |palgint0| |tableau| - |monicRightFactorIfCan| |jacobi| |weights| |leadingBasisTerm| - |semiResultantEuclideannaif| |setColumn!| |packageCall| |arg1| - |saturate| |entry| |purelyAlgebraic?| |rquo| |selectNonFiniteRoutines| - |e04fdf| |s18dcf| |nil| |infinite| |arbitraryExponent| |approximate| - |complex| |shallowMutable| |canonical| |noetherian| |central| - |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| - |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| - |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| - |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file + |Record| |Union| |asinhIfCan| |RemainderList| |lazyIntegrate| + |wronskianMatrix| |arg2| |forLoop| |string| |upperCase!| |clikeUniv| + |simpson| |leastAffineMultiple| |legendre| |updateStatus!| |distance| + |setfirst!| |idealSimplify| |prindINFO| |selectOrPolynomials| |say| + |mapSolve| |decreasePrecision| |OMconnectTCP| |OMreceive| |sqfrFactor| + |definingPolynomial| |conditions| |integralMatrixAtInfinity| |belong?| + |writeInt8!| |one?| |delete!| |integralAtInfinity?| |transpose| + |showTheIFTable| |setStatus| |title| |match| |nextNormalPoly| + |hasPredicate?| |reset| |viewWriteDefault| |leadingCoefficientRicDE| + |leadingIndex| |numericalIntegration| |maxrank| |supDimElseRittWu?| + |more?| |sum| |bitTruth| |lfintegrate| |mapDown!| |inc| |stirling2| + |f04arf| |restorePrecision| |e02def| |BumInSepFFE| |outlineRender| + |property| |minordet| |write| |dflist| |logGamma| |nilFactor| + |numberOfComponents| |multiEuclidean| |quoted?| |e| |sorted?| + |putProperty| |save| |crushedSet| |hexDigit| |lp| |diag| |mathieu24| + |repeating| |oddInfiniteProduct| |addPoint2| |monomialIntegrate| + |nothing| |c06gbf| |toseInvertibleSet| |lifting1| |imports| |cAcsc| + |birth| |stopTableGcd!| |goto| |bsolve| |randnum| + |noncommutativeJordanAlgebra?| |aQuartic| |fortranCharacter| + |sequences| |pdct| |cot2tan| |top| |e02zaf| |complexNormalize| + |addPointLast| |fortranLiteralLine| |mappingMode| |expint| |trigs| + |characteristicSet| |tanSum| |continue| |insertRoot!| + |dimensionOfIrreducibleRepresentation| |times!| |infieldIntegrate| + |qroot| |euclideanGroebner| |setMaxPoints| |mapdiv| |symbolTableOf| + |revert| |sortConstraints| |max| |external?| |univcase| |infinite?| + |cardinality| |cSin| |squareFreePrim| ** LODO2FUN |hash| |listexp| + |isExpt| |hermiteH| |bivariatePolynomials| |drawStyle| |startStats!| + |iiatan| |s18def| |readUInt16!| |count| |hclf| |buildSyntax| + |integerIfCan| |stoseInvertibleSet| |characteristicSerie| |mkIntegral| + |e04ycf| |cosh2sech| |simplify| |pushNewContour| |createThreeSpace| + |alphanumeric?| |ratDsolve| |stripCommentsAndBlanks| |bfKeys| + |divisor| |physicalLength| |mix| |changeWeightLevel| |constant| + |singRicDE| |selectOptimizationRoutines| |reduced?| + |associatorDependence| |OMbindTCP| |SturmHabicht| + |useEisensteinCriterion| |lyndon?| |iiGamma| |exprHasAlgebraicWeight| + |numberOfChildren| |mantissa| |printingInfo?| |e01saf| |cycles| + |linearDependence| |B1solve| |modifyPoint| |listConjugateBases| + |f02fjf| |shuffle| |constantToUnaryFunction| |printTypes| + |deleteProperty!| |associates?| |e04jaf| |readUInt32!| |leaf?| + |normInvertible?| |curveColorPalette| |divisors| |swap!| FG2F + |failed?| |curve?| |safeFloor| |increment| |ran| |alphabetic| + |problemPoints| |iitan| |e01sef| |freeOf?| + |stiffnessAndStabilityFactor| |binary| |s18adf| + |createPrimitiveNormalPoly| |leftCharacteristicPolynomial| + |linearlyDependent?| |basicSet| |Lazard| |UP2ifCan| |coordinate| + |subscriptedVariables| |solid?| |inputOutputBinaryFile| + |explicitlyEmpty?| |internalDecompose| |transform| |lookupFunction| + |extract!| |stoseInvertible?| |primitive?| |froot| |unitVector| |pquo| + |primitivePart| |factorGroebnerBasis| |readInt8!| |rightGcd| + |removeCoshSq| |stopTable!| |bigEndian| |putProperties| |mapExpon| + |escape| |startTableGcd!| |lookup| |d02raf| |complexZeros| + |makeGraphImage| |hasTopPredicate?| |secIfCan| |categories| + |rowEchelonLocal| |lquo| |returns| |finite?| |tab| |numer| + |cyclotomicDecomposition| |retractIfCan| |modularGcd| |conjugates| + |row| |exprHasWeightCosWXorSinWX| |bat| |normalizeIfCan| |bumptab| + |jokerMode| |denom| |makeSUP| |d02gaf| |variationOfParameters| + |removeSuperfluousQuasiComponents| |setLegalFortranSourceExtensions| + |makeFloatFunction| |rightScalarTimes!| |mathieu11| |OMParseError?| + |asecIfCan| |e04dgf| |prefixRagits| |lowerCase?| |normalizedDivide| + |resize| |probablyZeroDim?| |modifyPointData| |quasiComponent| |pi| + |iisech| |directSum| |connectTo| |zeroDimPrime?| |dihedral| + |createMultiplicationMatrix| |c02agf| + |purelyAlgebraicLeadingMonomial?| |rightZero| |infinity| |inRadical?| + |weighted| |changeMeasure| |basisOfRightNucloid| |concat| |step| + |commutativeEquality| |univariatePolynomial| |cycleLength| |connect| + |f04mcf| |closeComponent| |noValueMode| |s17acf| |clip| + |generalizedInverse| |dimensionsOf| |doubleRank| |besselJ| |updatD| + |argument| |rur| |stoseInvertible?sqfreg| |s17aef| |charpol| + |errorInfo| |roughBasicSet| |viewZoomDefault| + |createNormalPrimitivePoly| |kernel| |rightNorm| + |genericRightDiscriminant| |incrementKthElement| + |factorSquareFreePolynomial| |formula| |numberOfNormalPoly| |e04ucf| + |slash| |list| |bernoulli| |ptree| |sechIfCan| |curve| + |genericLeftDiscriminant| |just| |traceMatrix| |lhs| |newSubProgram| + |real?| |numberOfFactors| |monicDecomposeIfCan| |draw| + |createLowComplexityTable| |LagrangeInterpolation| |clearCache| + |rewriteSetByReducingWithParticularGenerators| |definingEquations| + |iiabs| |rhs| |primaryDecomp| |OMunhandledSymbol| |alphanumeric| + |d01gaf| |irreducibleFactors| |back| |matrixDimensions| + |extractClosed| |outputAsTex| |power| |largest| |exprToUPS| + |OMputBind| |perfectNthPower?| |solveLinearlyOverQ| + |ellipticCylindrical| |lambert| |reseed| |currentEnv| |nrows| + |hdmpToDmp| |deref| |outputFloating| |palgextint| |companionBlocks| + |zeroDimPrimary?| |cyclePartition| |semiResultantReduitEuclidean| + |rotate| |ncols| |solveid| |selectsecond| |iitanh| |assign| + |makeObject| |getCode| |rischNormalize| |solid| |fintegrate| |closed| + |btwFact| |medialSet| |drawComplex| |singularitiesOf| |s19acf| |coef| + |imagK| |someBasis| |pop!| |fibonacci| |intermediateResultsIF| + |explicitlyFinite?| |var2Steps| |s14baf| |submod| |d01alf| + |seriesSolve| |rowEchLocal| |listRepresentation| |deepExpand| |dark| + |digit| |inconsistent?| |irCtor| |in?| |rightMinimalPolynomial| + |nodes| |rubiksGroup| |adaptive3D?| |cubic| |partialFraction| + |colorDef| |possiblyInfinite?| |extend| |multiEuclideanTree| |dmpToP| + |innerSolve1| |kind| |setleaves!| |testModulus| |push| |invertible?| + |irreducible?| |eulerE| |iiacot| |loopPoints| |swapColumns!| |op| + |commutator| |zCoord| |unit?| |f02aef| |complex?| |kernels| + |withPredicates| |physicalLength!| |radicalEigenvalues| + |showScalarValues| |nullity| |fortranDouble| |f01qcf| |iiatanh| + |outputAsScript| |inHallBasis?| |gbasis| |symmetricRemainder| + |operator| |algebraicCoefficients?| |e02baf| |raisePolynomial| + |encodingDirectory| |integralCoordinates| |palgextint0| |associator| + |psolve| SEGMENT |linears| |completeEval| |fractionPart| |point?| + |critMonD1| |se2rfi| |highCommonTerms| |palglimint0| |mainForm| |sort| + |toroidal| |univariate| |csubst| |sech2cosh| |multiplyExponents| + |decimal| |semiSubResultantGcdEuclidean1| |extendedResultant| |blue| + |cosIfCan| |groebnerFactorize| |dec| |splitLinear| |BasicMethod| + |ceiling| |OMputEndBind| |expandLog| |discreteLog| |rightFactorIfCan| + |palgint0| |LyndonBasis| |rightFactorCandidate| + |stoseInvertibleSetreg| |represents| |union| |jordanAlgebra?| + |coefficient| |OMsupportsSymbol?| |null?| |tableau| |lieAdmissible?| + |fullPartialFraction| |factor| |resultantEuclideannaif| |setAdaptive| + |iiasinh| |symmetricGroup| |bipolar| |errorKind| + |monicRightFactorIfCan| |random| |primextintfrac| |omError| + |bandedJacobian| |sqrt| |setright!| |accuracyIF| + |invertibleElseSplit?| |curveColor| |untab| |jacobi| |comp| + |anticoord| |f01qef| |real| |tubePointsDefault| |shellSort| + |coercePreimagesImages| |cotIfCan| |quotient| |indicialEquations| + |weights| |lazyEvaluate| |ReduceOrder| |imag| |triangSolve| |aCubic| + |super| |properties| |mainDefiningPolynomial| |positive?| |f07aef| + |realEigenvalues| |leadingBasisTerm| |copy| |directProduct| |updatF| + |genericLeftTrace| |complexIntegrate| |pr2dmp| |complexExpand| + |explogs2trigs| |translate| |bubbleSort!| |enterPointData| + |semiResultantEuclideannaif| |leftRemainder| |s17dlf| + |integralLastSubResultant| |drawToScale| |symmetricSquare| |depth| + |besselI| |roman| |removeSinSq| |setColumn!| |reduction| |exprex| + |e01bef| |brace| |superHeight| |nsqfree| |recoverAfterFail| + |expressIdealMember| |subPolSet?| |packageCall| + |indicialEquationAtInfinity| |destruct| |inR?| |lazyPseudoDivide| + |graphStates| |algDsolve| |extendedSubResultantGcd| |pdf2df| + |prinpolINFO| |saturate| |printCode| |factorsOfCyclicGroupSize| + |infinityNorm| |monicDivide| |match?| |fortranCarriageReturn| + |normalized?| |splitConstant| |trigs2explogs| |purelyAlgebraic?| + |autoCoerce| |write!| |rootKerSimp| |tanNa| |oblateSpheroidal| + |principalAncestors| |divideIfCan!| |pile| |arguments| |OMputError| + |rquo| |sturmVariationsOf| |degreeSubResultant| |firstSubsetGray| + |makeMulti| |rename!| |compBound| |userOrdered?| + |selectNonFiniteRoutines| |internalIntegrate0| |expand| |f04maf| + |monomial| |findBinding| |ignore?| |nextsubResultant2| |airyAi| + |startPolynomial| |atom?| |e04fdf| |filterWhile| |maxdeg| |distribute| + |f02adf| |multivariate| |sequence| |close| |categoryMode| |tanhIfCan| + |cos2sec| |s21baf| F |s18dcf| |subMatrix| |filterUntil| + |binarySearchTree| |s15aef| |variables| |isobaric?| |printStatement| + |reverseLex| |ef2edf| |select| |expextendedint| |components| |display| + |evaluateInverse| |euclideanSize| |nextsousResultant2| + |realElementary| |head| |reducedQPowers| |newLine| |identification| + |space| |flagFactor| |numFunEvals| |minimalPolynomial| + |roughEqualIdeals?| |pade| |linkToFortran| |nthExpon| |elaboration| + |sumSquares| |youngGroup| |rootPoly| |subResultantChain| + |linearAssociatedExp| |halfExtendedSubResultantGcd1| |predicate| + |paraboloidal| |removeSinhSq| |leftDiscriminant| |critMTonD1| + |closed?| |sin?| |OMgetEndObject| |debug| |taylor| |reduceLODE| + |ListOfTerms| |overset?| |OMcloseConn| |OMgetAtp| |cn| |invmultisect| + |fortranLogical| |critT| D |laurent| |findConstructor| |input| |iilog| + |fractRagits| |argumentList!| |externalList| |linearMatrix| + |rightPower| |subHeight| |puiseux| |fillPascalTriangle| |library| + |removeDuplicates| |nor| |vark| EQ |fortranDoubleComplex| + |solveLinearPolynomialEquationByRecursion| |getExplanations| |ideal| + |setDifference| |f04qaf| |polyRicDE| |drawComplexVectorField| |latex| + |polygon?| |euclideanNormalForm| |deriv| |inv| |setVariableOrder| + |mindeg| |closedCurve?| |maxrow| |genericLeftNorm| |countRealRoots| + |zeroSquareMatrix| |getOperator| UTS2UP |ground?| |measure2Result| + |exp1| |partialDenominators| |rightRankPolynomial| + |nextIrreduciblePoly| |checkRur| |subResultantsChain| |hue| + |listYoungTableaus| |ground| |set| |regularRepresentation| |rk4qc| + |randomR| |rightMult| |constDsolve| |setRealSteps| |f01qdf| |leftLcm| + |getVariableOrder| |leadingMonomial| |integer?| |iiacos| |readable?| + |explicitEntries?| |rightExtendedGcd| |subSet| |completeEchelonBasis| + |setlast!| |fracPart| |leadingCoefficient| |parameters| + |rationalPower| |gradient| |gramschmidt| + |semiDegreeSubResultantEuclidean| |sinIfCan| |size| |OMreadFile| + |nonLinearPart| |extendIfCan| |makeUnit| |primitiveMonomials| + |optpair| |basisOfLeftAnnihilator| |exprToGenUPS| |s17def| |rootOf| + |digit?| |Nul| |complement| |simplifyExp| |print| |reductum| |f02aff| + |pole?| |wordsForStrongGenerators| |substring?| |mainKernel| |quartic| + |genericRightMinimalPolynomial| |interReduce| |select!| |groebgen| + |resolve| |OMUnknownSymbol?| |extension| |balancedFactorisation| + |imagJ| |factorSquareFreeByRecursion| |taylorRep| |subTriSet?| + |permutationRepresentation| |polynomialZeros| |extensionDegree| + |triangular?| |rootDirectory| |testDim| |curry| |suffix?| + |complexForm| |true| |setPosition| |polyPart| |category| |quasiMonic?| + |fixPredicate| |badValues| |rewriteSetWithReduction| |makeVariable| + |iFTable| |capacity| |makeprod| |domain| |completeHensel| + |numberOfDivisors| |badNum| |principal?| |optional| |leftTraceMatrix| + |s21bbf| |axesColorDefault| |KrullNumber| |rst| |lagrange| + |eigenMatrix| |prefix?| |shrinkable| |dual| |package| |minset| + |remove!| |prime| |scripted?| |showRegion| |insert| |polarCoordinates| + |fi2df| |newReduc| |f02wef| |currentSubProgram| |f02awf| + |bezoutDiscriminant| |groebSolve| |merge| |sizePascalTriangle| |show| + |isAbsolutelyIrreducible?| |setLabelValue| |conjug| |algint| |delay| + |replaceKthElement| |nthFractionalTerm| |yCoordinates| |cAsinh| |ord| + |search| |permutation| |cSech| |polyred| |lepol| |roughUnitIdeal?| + |exists?| |node| |cot2trig| |divisorCascade| |subNodeOf?| + |getConstant| |trace| |lprop| |doublyTransitive?| |outputGeneral| + |duplicates?| |mpsode| |realZeros| |shape| |leftNorm| + |compiledFunction| |conditionsForIdempotents| |lex| |rootSplit| + |continuedFraction| |bringDown| |linGenPos| |rootPower| |solveInField| + |squareTop| |c06fpf| |subNode?| |quickSort| |infix?| + |changeThreshhold| |showAll?| |mvar| |replace| |normDeriv2| + |cyclicGroup| |rewriteIdealWithRemainder| |move| |s01eaf| |readUInt8!| + |mask| |palgintegrate| |OMUnknownCD?| |maxPoints3D| |child?| + |OMsetEncoding| |gcdprim| |schwerpunkt| |linearPart| |eq?| |flatten| + |choosemon| |doubleDisc| |trunc| |biRank| |ksec| |frobenius| + |systemSizeIF| |extractBottom!| |plotPolar| |callForm?| |infRittWu?| + |critM| |critB| |copies| |reduceBasisAtInfinity| |discriminant| + |sncndn| |specialTrigs| |conjugate| |doubleResultant| |isQuotient| + |lazyPquo| |radicalRoots| |lighting| |rarrow| |diagonal| |car| + |double?| |s14aaf| |lazyPremWithDefault| |credPol| |constantKernel| + |minPol| |quatern| |s18aff| |mainVariable| |cosSinInfo| |safeCeiling| + |mergeFactors| |makeViewport3D| |arity| |acscIfCan| |myDegree| + |viewDeltaYDefault| |mergeDifference| |showClipRegion| |surface| + |categoryFrame| |inf| |f02abf| |fill!| |limitedIntegrate| + |rightAlternative?| |quadraticForm| |wordInGenerators| |noKaratsuba| + |directory| |exactQuotient| |stFuncN| |explimitedint| |resultantnaif| + |lazy?| |rootRadius| |lllp| |zeroDimensional?| |dimension| |notelem| + |radicalEigenvector| |universe| |elRow1!| |debug3D| |d01amf| |high| + |height| |units| |nextPrimitivePoly| |log10| |addPoint| + |genericRightNorm| |selectMultiDimensionalRoutines| |LyndonWordsList| + |rk4| |seed| |equation| |composites| |e02aef| |e04mbf| + |unprotectedRemoveRedundantFactors| |primlimitedint| |bitand| |e02daf| + |primitiveElement| |prinb| |generic| |minimize| |color| |chebyshevT| + |upperBound| |OMputEndError| |leaves| |palgLODE| |outerProduct| + |resultantReduit| |bitior| |rationalIfCan| |topPredicate| |routines| + |linear| |basisOfMiddleNucleus| |isPlus| |bottom!| |cross| + |att2Result| |middle| |perfectSqrt| |prevPrime| |repeatUntilLoop| + |mapMatrixIfCan| |twist| |initTable!| |generalizedEigenvectors| + |maxPoints| |macroExpand| |moduleSum| |constantOperator| |iiacoth| + |leftMult| |internalAugment| |OMencodingSGML| |polynomial| + |removeRoughlyRedundantFactorsInPols| |cartesian| |sup| |viewpoint| + |torsionIfCan| |comment| |radPoly| |modularFactor| |f02bjf| |option?| + |collectUnder| |setrest!| |center| |SturmHabichtCoefficients| + |internal?| |before?| |groebner?| |pushucoef| |measure| + |irreducibleFactor| |subspace| |cSec| |cAsec| |singularAtInfinity?| + |truncate| |lowerCase| |minGbasis| |e02bef| |relativeApprox| |mesh| + |rule| |nonQsign| |superscript| |declare| |rk4a| + |generalizedContinuumHypothesisAssumed| |complementaryBasis| |ldf2vmf| + |kroneckerDelta| |isAnd| |rightQuotient| |members| |common| + |lexTriangular| |subtractIfCan| |e01sbf| |s13acf| |OMgetVariable| + |f01rcf| |internalIntegrate| |viewport3D| |length| |karatsubaDivide| + |Ci| |lyndonIfCan| |multiset| |laguerreL| |ptFunc| + |createRandomElement| |tan2trig| |nary?| |groebner| |nullary| + |scripts| |leadingTerm| |OMputEndBVar| |leadingExponent| |ratpart| + |semiIndiceSubResultantEuclidean| |ricDsolve| |Hausdorff| |getOrder| + |elem?| |reflect| |pointColorDefault| |ffactor| + |unrankImproperPartitions1| |lazyVariations| |parabolic| |jacobian| + |exponential| |c05pbf| |matrix| |lfunc| |generalLambert| |unparse| + |fixedPoint| |bivariateSLPEBR| |listBranches| |prepareSubResAlgo| + |addmod| |selectPolynomials| |algebraic?| |expPot| + |createMultiplicationTable| |collectUpper| |extractIndex| + |patternVariable| |setvalue!| |trueEqual| |plus!| |hcrf| |fullDisplay| + |antiCommutator| |localUnquote| |f2df| |complexRoots| |oddlambert| + |var1StepsDefault| |iicos| Y |removeDuplicates!| |e02dff| |midpoint| + |setClosed| |harmonic| |normalizedAssociate| |complexEigenvalues| + |csc2sin| |label| |cycle| |semiResultantEuclidean1| |qPot| + |critpOrder| |exponent| |permutations| |checkForZero| |simpsono| + |goodnessOfFit| |bat1| |rewriteIdealWithHeadRemainder| |lieAlgebra?| + |close!| |taylorQuoByVar| |factorAndSplit| |coord| |c06fqf| + |genericPosition| |symbolIfCan| |doubleFloatFormat| |leftAlternative?| + |clipWithRanges| |f04atf| |mainContent| |tubeRadius| + |lazyResidueClass| |result| |rightCharacteristicPolynomial| + |getDatabase| |whitePoint| |wholeRadix| |logical?| |coerceS| |opeval| + |addMatch| |complete| |getMultiplicationTable| |relerror| |mulmod| + |iipow| |functionIsOscillatory| |setEmpty!| |d01apf| |d02bbf| + |rowEchelon| |numeric| |hdmpToP| |iidprod| |insertMatch| |graeffe| + |powern| |nthFlag| |tubePlot| |s13adf| |rCoord| |radical| |overlabel| + |asechIfCan| |traverse| |radicalOfLeftTraceForm| |vertConcat| + |constructor| |gethi| |showFortranOutputStack| |OMsend| + |gcdcofactprim| |contours| |phiCoord| |algebraicVariables| |coerceL| + |writeUInt8!| |normal01| |bindings| |option| |minimumDegree| + |endSubProgram| |fprindINFO| |symbolTable| |collectQuasiMonic| + |showSummary| |f04asf| |makeYoungTableau| |thenBranch| |OMReadError?| + |equiv| |reify| |endOfFile?| |totolex| |environment| |unravel| + |OMencodingBinary| |setMinPoints| |f04faf| |insert!| |algSplitSimple| + |idealiserMatrix| |tValues| |pushFortranOutputStack| |host| + |getIdentifier| |flexibleArray| |showAttributes| |OMputVariable| + |dioSolve| |torsion?| |makeRecord| |c06ecf| |transcendenceDegree| + |airyBi| |popFortranOutputStack| |makeResult| |LazardQuotient| + |bandedHessian| |adaptive?| |quadratic?| |curryLeft| |f02xef| + |stoseInvertibleSetsqfreg| |outputAsFortran| |computeBasis| |sub| + |meatAxe| |elliptic?| |f02bbf| |name| |parents| + |wordInStrongGenerators| |orthonormalBasis| |brillhartTrials| + |henselFact| |laguerre| |pointData| |rightTrim| |printInfo!| + |LowTriBddDenomInv| |graphs| |body| |definingInequation| |intensity| + |mainMonomial| |identity| |mapCoef| |moebiusMu| + |resetAttributeButtons| |leftTrim| |fTable| |listOfLists| |null| + |factorSquareFree| |legendreP| |compactFraction| |sturmSequence| + |cAcoth| |stack| |outputBinaryFile| |localIntegralBasis| + |OMencodingXML| |pureLex| |f02aaf| |not| + |stiffnessAndStabilityOfODEIF| |collect| |mainVariables| |iisqrt3| BY + |prinshINFO| |palgLODE0| |algintegrate| |setref| |functorData| |and| + |basis| |localReal?| |branchIfCan| |cCsch| |outputList| |exQuo| + |fixedPointExquo| |semiResultantEuclidean2| |degree| GF2FG |or| + |smith| |paren| |symmetricDifference| |OMopenFile| |atoms| + |functionIsContinuousAtEndPoints| |linearDependenceOverZ| + |alternative?| |xor| |semicolonSeparate| |cyclicEntries| |sinh2csch| + |f01ref| |addBadValue| |nand| |ocf2ocdf| |nodeOf?| |e02agf| + |signature| |dim| |leviCivitaSymbol| |case| |any?| |iteratedInitials| + |pointPlot| |assert| |selectfirst| |nextLatticePermutation| |edf2ef| + |port| |subscript| |binomThmExpt| |possiblyNewVariety?| |pattern| + |squareFreeLexTriangular| |Zero| |inspect| |createNormalPoly| + |triangulate| |makeFR| |cCoth| |f01bsf| |whatInfinity| |gcdcofact| + |llprop| |One| |innerint| |edf2df| |nextItem| |knownInfBasis| + |swapRows!| |genericRightTrace| |norm| |t| |viewport2D| |optional?| + |rdHack1| |shift| |infLex?| NOT |outputMeasure| |eulerPhi| |cAcosh| + |polCase| |output| |removeRedundantFactorsInContents| |redPo| + |getMultiplicationMatrix| |writeLine!| |f02agf| |mathieu22| + |perfectSquare?| |leader| OR |createZechTable| |vector| |curryRight| + |imagE| |cCos| |meshFun2Var| |OMgetAttr| |besselK| |even?| |rational?| + |message| |nextPartition| AND |cRationalPower| |differentiate| + |setTopPredicate| |getOperands| |d02gbf| |makeViewport2D| |conical| + |sec2cos| |putGraph| |realSolve| |elRow2!| + |generalizedContinuumHypothesisAssumed?| |initiallyReduced?| + |chainSubResultants| |midpoints| |f01brf| |fortran| |atanh| |weight| + |totalLex| |putColorInfo| |makeEq| |initials| |elt| |idealiser| + |unitNormal| |sqfree| |minus!| |mapmult| |acoth| |PollardSmallFactor| + |queue| |f04mbf| |OMserve| |nthFactor| |is?| |symmetricProduct| + |leftOne| |alternatingGroup| |Aleph| |FormatArabic| |asech| |level| + |iiacsch| |getCurve| |graphImage| |splitNodeOf!| |direction| + |weierstrass| |lastSubResultantEuclidean| |increase| |twoFactor| + |adjoint| |mindegTerm| |colorFunction| |drawCurves| |presuper| + |setScreenResolution3D| |LyndonWordsList1| |wrregime| |elseBranch| + |rightTrace| |areEquivalent?| |rightExactQuotient| |minPoints| + |multiple| |cons| |copyInto!| |c06ekf| |f2st| |bumprow| |s19aaf| + |removeRedundantFactorsInPols| |monomials| |imagj| |chiSquare| + |recolor| |OMputAtp| |applyQuote| |cond| |position!| + |removeSquaresIfCan| |mathieu23| |zoom| |characteristicPolynomial| + |radicalSimplify| |retract| |integralDerivationMatrix| |elliptic| + |rationalFunction| |trapezoidal| |chiSquare1| |hessian| |subset?| + |ldf2lst| |representationType| |monomRDEsys| |showTheRoutinesTable| + |approxNthRoot| |OMputApp| |showArrayValues| |getProperty| |sh| + |cTanh| |f02akf| |OMgetApp| |list?| |s17dhf| |primes| |second| |less?| + * |member?| |applyRules| |aLinear| |exprToXXP| |conditionP| |ruleset| + |domainTemplate| |bits| |monomialIntPoly| |iExquo| |getRef| + |numberOfComputedEntries| |diophantineSystem| |third| + |stronglyReduced?| |dfRange| |firstNumer| |basisOfRightNucleus| + |bumptab1| |solveLinear| |moreAlgebraic?| |numberOfIrreduciblePoly| + |ip4Address| |hexDigit?| |cAtanh| + |rewriteIdealWithQuasiMonicGenerators| |nextNormalPrimitivePoly| + |deleteRoutine!| |minPoly| |makeCos| |source| |void| |showAllElements| + |expandPower| |generalPosition| |f01maf| |distFact| |elements| + |extendedIntegrate| = |limit| |removeZeroes| |mapUnivariate| |euler| + |suchThat| |primintfldpoly| |primitivePart!| |acosIfCan| |lazyPrem| + |nthr| |coth2tanh| |coerceP| |coefficients| |s19abf| |diagonals| + |empty?| |script| |dmp2rfi| |setTex!| |push!| |extractSplittingLeaf| + |acoshIfCan| |pair?| |df2mf| < |hMonic| |upperCase| + |combineFeatureCompatibility| |pushdown| |plusInfinity| |whileLoop| + |s19adf| |eisensteinIrreducible?| |d01aqf| |noLinearFactor?| |mesh?| + |char| > |red| |rotatex| |lazyGintegrate| |getButtonValue| |Ei| + |systemCommand| |minusInfinity| |f02ajf| |selectODEIVPRoutines| + |initializeGroupForWordProblem| |atanIfCan| |sinhcosh| |deepCopy| + |clipBoolean| |duplicates| <= |cAcsch| |d02ejf| |OMgetBVar| |tex| + |target| |elementary| |enterInCache| |iCompose| |getPickedPoints| + |imagi| |lexico| >= |ode| |zeroOf| |bytes| |setImagSteps| + |setEpilogue!| |basisOfRightAnnihilator| |linearAssociatedOrder| + |conjunction| |OMputString| |coerceImages| |normalise| |unexpand| + |expr| |stirling1| |ramified?| RF2UTS |clearTable!| |taylorIfCan| + |setClipValue| |tanQ| |stopMusserTrials| |pow| |linearPolynomials| + |normal| |rangePascalTriangle| |setPredicates| |OMputObject| |s21bcf| + |laurentRep| |mkPrim| |isList| |OMlistCDs| |product| |OMgetSymbol| + |rational| |functionIsFracPolynomial?| |OMgetEndBVar| |finiteBound| + + |isPower| |compose| |pack!| |leftFactor| |type| |binaryTournament| + |ScanRoman| |maxColIndex| |polygamma| |sort!| |OMgetEndAttr| |edf2fi| + |point| - |float| |trim| |shiftLeft| |setIntersection| |s21bdf| + |mapUp!| |firstDenom| |differentialVariables| |d01gbf| |vspace| + |variable| |firstUncouplingMatrix| / |rightDiscriminant| |cExp| + |children| |simplifyLog| |dualSignature| |generalSqFr| + |factorSFBRlcUnit| |terms| |round| |iterators| + |branchPointAtInfinity?| |rightRegularRepresentation| + |indiceSubResultantEuclidean| |leftRegularRepresentation| |asimpson| + |variable?| |OMsupportsCD?| |supRittWu?| |rationalPoints| + |triangularSystems| |partialQuotients| |indiceSubResultant| |series| + |e04gcf| |mdeg| |pushdterm| |changeBase| |bitLength| |subResultantGcd| + |ipow| |denomLODE| |slex| |cyclic| |index?| |qqq| |reverse!| + |toseLastSubResultant| |hypergeometric0F1| |OMgetEndError| |cSinh| + |tab1| |pmintegrate| |id| |setRow!| |dictionary| |simplifyPower| + |rroot| |value| |subresultantVector| |cCosh| |multiple?| |Frobenius| + |symbol| |wholePart| |OMencodingUnknown| |lo| |denominators| |iiacosh| + |mainCoefficients| |associatedEquations| |leadingIdeal| |top!| + |zerosOf| |scan| |expression| |numberOfCycles| |singular?| |min| + |modulus| |uncouplingMatrices| |musserTrials| |setUnion| |symFunc| + |binding| |nthCoef| |integer| |nextSublist| |isEquiv| |zero?| + |quoByVar| |negative?| GE |factorials| |monicLeftDivide| + |rationalApproximation| |removeZero| |rightDivide| |minColIndex| + |factorFraction| |child| |shufflein| |solveRetract| |reopen!| GT + |basisOfLeftNucleus| |selectSumOfSquaresRoutines| |primeFrobenius| + |characteristic| |insertBottom!| |stFunc1| |multinomial| |pointColor| + |stopTableInvSet!| |OMwrite| LE |e02gaf| |karatsuba| |iicsch| + |symmetricPower| |leftZero| |graphState| |listOfMonoms| |nlde| + |setPrologue!| |OMgetError| LT |leadingSupport| |substitute| + |jacobiIdentity?| |OMputEndObject| |outputSpacing| |bounds| + |nextPrimitiveNormalPoly| |infieldint| |df2st| |associatedSystem| + |gderiv| |computePowers| |setOfMinN| |internalZeroSetSplit| |mirror| + |pascalTriangle| |mappingAst| |d02bhf| |selectIntegrationRoutines| + |sdf2lst| |iifact| |nthExponent| |redpps| |headRemainder| |zeroDim?| + |Beta| |leastPower| |keys| |OMputFloat| |monicRightDivide| |split!| + |critBonD| |karatsubaOnce| |balancedBinaryTree| |entries| + |padicallyExpand| |totalGroebner| |iicsc| |acotIfCan| |cLog| |isOp| + |ParCond| |complexLimit| |diagonalProduct| |makeSketch| |diagonal?| + |scopes| |solveLinearPolynomialEquation| |janko2| |monicModulo| + |index| |htrigs| |OMputEndAttr| |symmetric?| |subQuasiComponent?| + |divergence| |light| |eigenvalues| |primextendedint| |mat| + |antiCommutative?| |basisOfLeftNucloid| |headReduce| + |halfExtendedSubResultantGcd2| |cycleEntry| |constantOpIfCan| + |fortranLinkerArgs| |sumOfKthPowerDivisors| |prepareDecompose| + |rowEch| |rischDE| |reorder| |reducedForm| |clearFortranOutputStack| + |s20acf| |inrootof| |fortranInteger| |quote| |factorset| |every?| + |pair| |rangeIsFinite| |tree| |open| |computeInt| |chineseRemainder| + |key?| |LyndonCoordinates| |bright| |cycleTail| |clipSurface| |e01sff| + |dequeue!| |vconcat| |backOldPos| |increasePrecision| |e02akf| + |normalize| |lazyPseudoQuotient| |readInt32!| |outputArgs| + |tracePowMod| |iiacsc| |sts2stst| |interactiveEnv| |extendedEuclidean| + |gcdPrimitive| |mapBivariate| |minIndex| |eval| |unvectorise| + |lowerCase!| |commaSeparate| |tensorProduct| |moduloP| + |separateDegrees| |innerSolve| |blankSeparate| |normalDeriv| + |reducedDiscriminant| |heapSort| |chebyshevU| |digits| |basisOfCenter| + |OMgetString| |operations| |lastSubResultantElseSplit| |ratPoly| + |numericalOptimization| |modTree| |OMgetEndAtp| |SturmHabichtMultiple| + |showTheSymbolTable| |discriminantEuclidean| |numFunEvals3D| + |qinterval| |moebius| |setErrorBound| |iomode| |interpret| |error| + |element?| |cTan| |varselect| |fmecg| |algebraicSort| + |complexElementary| |rightUnits| |countRealRootsMultiple| |denomRicDE| + |OMgetEndBind| |ParCondList| |patternMatch| |sinhIfCan| + |gcdPolynomial| |numerator| |polygon| |sizeLess?| |sylvesterSequence| + |optimize| |intcompBasis| |leftRecip| |adaptive| |hspace| |precision| + |setPoly| |function| |factorByRecursion| |isNot| |completeSmith| + |plenaryPower| |nthRootIfCan| |createIrreduciblePoly| |FormatRoman| + |tan2cot| |limitPlus| |expIfCan| |shiftRight| |optAttributes| + |constantRight| |s17aff| |support| |selectFiniteRoutines| + |decomposeFunc| |npcoef| |integralBasis| |parseString| |width| + |elaborateFile| |df2ef| |principalIdeal| |basisOfCommutingElements| + |palginfieldint| |showTheFTable| |univariate?| |rules| |double| + |littleEndian| |createPrimitiveElement| |lfinfieldint| |generic?| + |front| |inverse| |odd?| |qualifier| |nextPrime| |coshIfCan| |uniform| + |normal?| |rightUnit| |indicialEquation| |integerBound| |genus| + |fglmIfCan| |e01bhf| |call| |integralMatrix| |charthRoot| |zeroMatrix| + |signAround| |internalLastSubResultant| |coerceListOfPairs| + |minPoints3D| |irVar| |horizConcat| |subresultantSequence| |argscript| + |isImplies| |reciprocalPolynomial| |numberOfFractionalTerms| + |ratDenom| |sample| |checkPrecision| |mr| |bothWays| |cyclotomic| + |readByte!| |bitCoef| |realRoots| |toseSquareFreePart| |baseRDE| + |upDateBranches| |exportedOperators| |Is| |range| |laurentIfCan| + |iicot| |headReduced?| |mainMonomials| |lastSubResultant| + |skewSFunction| |extractIfCan| |prod| |coleman| |subst| |rem| + |numericIfCan| |setAdaptive3D| |bipolarCylindrical| |OMlistSymbols| + |doubleComplex?| |find| |shallowCopy| |tube| |po| |roughSubIdeal?| + |tryFunctionalDecomposition| |quo| |removeConstantTerm| |bernoulliB| + |internalSubPolSet?| |squareFreePart| |declare!| |varList| |axes| + |useEisensteinCriterion?| |stoseSquareFreePart| |cycleRagits| + |coHeight| |digamma| |open?| |unary?| |split| |equality| |lcm| + |leastMonomial| |s20adf| |closedCurve| |has?| |seriesToOutputForm| + |getProperties| |div| |delete| |elColumn2!| |makeTerm| |frst| |cAsin| + |iisin| |number?| |tRange| |invmod| UP2UTS |exquo| |e02bcf| + |stoseIntegralLastSubResultant| |iibinom| |bit?| |lyndon| |any| + |append| |status| |solveLinearPolynomialEquationByFractions| + |viewThetaDefault| |removeRoughlyRedundantFactorsInContents| + |viewPhiDefault| ~= |bfEntry| |leftGcd| |cAcot| |dmpToHdmp| + |factorOfDegree| |iiasin| |powmod| |intChoose| |gcd| |divideIfCan| + |useSingleFactorBound?| |symbol?| |objects| |#| |setprevious!| + |integers| |Si| |setMinPoints3D| |algebraicOf| |processTemplate| + |convergents| |showIntensityFunctions| |false| |eyeDistance| + |sumOfSquares| |jordanAdmissible?| |base| ~ |alternating| |compound?| + |halfExtendedResultant1| |create3Space| |univariateSolve| + |groebnerIdeal| |vedf2vef| |rootOfIrreduciblePoly| + |resetVariableOrder| |dominantTerm| |ravel| |octon| |newTypeLists| + |leftUnits| |getGoodPrime| |UpTriBddDenomInv| |segment| + |rootNormalize| |rightTraceMatrix| |divide| |basisOfNucleus| + |monomial?| |init| |f04axf| |supersub| |rotate!| |unmakeSUP| |reshape| + |rombergo| |maximumExponent| |findCycle| |addiag| |distdfact| + |maxRowIndex| |/\\| |useSingleFactorBound| |ScanArabic| |iicosh| + |monic?| |determinant| |OMgetBind| |fortranComplex| |stFunc2| + |realEigenvectors| |plot| |\\/| |s15adf| |generalInfiniteProduct| + |pointLists| |normalDenom| |clearTheFTable| |apply| |coerce| + |mapUnivariateIfCan| |PDESolve| |logIfCan| |absolutelyIrreducible?| + |quasiMonicPolynomials| |s17agf| |extractPoint| |setFieldInfo| + |getGraph| |empty| |first| |construct| |permutationGroup| + |commutative?| |tanAn| |pastel| |setStatus!| + |univariatePolynomialsGcds| |var2StepsDefault| |pushuconst| |redmat| + |contract| |rest| |perfectNthRoot| |build| |nullSpace| |reindex| + |makeSeries| |summation| |reducedContinuedFraction| |socf2socdf| + |plus| |cschIfCan| |parametric?| |update| |OMopenString| |palgRDE0| + |c05nbf| |comparison| |OMputSymbol| |rootSimp| |scalarTypeOf| + |OMgetObject| |csch2sinh| |asinIfCan| |cAcos| |s17dcf| |listLoops| + |exponentialOrder| |quadraticNorm| |matrixGcd| |argumentListOf| + |block| |shade| |spherical| |infix| |cAtan| |mathieu12| |HenselLift| + |setOrder| |changeVar| |concat!| |factorList| |monicCompleteDecompose| + |writable?| |times| |complexNumericIfCan| |integralBasisAtInfinity| + |quotedOperators| |expenseOfEvaluationIF| |initiallyReduce| |previous| + |delta| |permanent| |stoseInvertible?reg| |sayLength| + |squareFreePolynomial| |morphism| |typeForm| |unitNormalize| |overlap| + |intersect| |fractRadix| |autoReduced?| |repeating?| |fortranTypeOf| + |implies| |composite| |ramifiedAtInfinity?| |position| |makeSin| + |computeCycleEntry| |predicates| |bezoutMatrix| |internalInfRittWu?| + |fortranReal| |tubeRadiusDefault| |shallowExpand| |zeroSetSplit| + |indices| |datalist| |lift| |const| |recip| |reducedSystem| + |ScanFloatIgnoreSpacesIfCan| |leftReducedSystem| |addMatchRestricted| + |randomLC| |binomial| |box| |e01bgf| |degreeSubResultantEuclidean| + |LazardQuotient2| |monom| |reduce| |s18aef| |printStats!| |palgint| + |clearDenominator| F2FG |quasiAlgebraicSet| |redPol| |exactQuotient!| + |solve1| |c06eaf| |voidMode| |loadNativeModule| |cylindrical| + |linearlyDependentOverZ?| |rischDEsys| |geometric| |changeNameToObjf| + |d01anf| |d01bbf| |acschIfCan| |internalSubQuasiComponent?| |iiperm| + |primPartElseUnitCanonical| |cyclotomicFactorization| |OMgetInteger| + |extractProperty| |hconcat| |ode2| |e02ddf| |acothIfCan| + |isConnected?| |hex| |semiDiscriminantEuclidean| + |brillhartIrreducible?| |linearAssociatedLog| |OMread| + |leftExtendedGcd| |rightLcm| |subCase?| |factorsOfDegree| |order| + |lambda| |matrixConcat3D| |padicFraction| |iidsum| |maxint| |padecf| + |rank| |insertTop!| |clipParametric| |createLowComplexityNormalBasis| + |readInt16!| |semiSubResultantGcdEuclidean2| |boundOfCauchy| + |roughBase?| |f07fef| |OMconnInDevice| |e01bff| |log| + |algebraicDecompose| |inverseIntegralMatrix| |cothIfCan| |s17adf| + |abelianGroup| |setProperty| |screenResolution3D| |setsubMatrix!| + |linear?| |logpart| |setelt| |integral?| |setFormula!| |meshPar1Var| + |inGroundField?| |squareFree| |c06gcf| |zag| |nonSingularModel| + |vectorise| |mainValue| |tanh2coth| |iiexp| |node?| |getMatch| + |SFunction| |s17ajf| |createPrimitivePoly| + |removeIrreducibleRedundantFactors| |tubePoints| |imagI| + |binaryFunction| |kovacic| |removeRoughlyRedundantFactorsInPol| + |setValue!| |rectangularMatrix| |magnitude| |HermiteIntegrate| + |OMgetType| |kmax| |dihedralGroup| |readLine!| |fixedPoints| |augment| + |resetNew| |overbar| |radicalSolve| |iprint| |yCoord| |rootProduct| + |printHeader| |eigenvectors| |hasSolution?| |stronglyReduce| + |numberOfMonomials| |f01mcf| |approximants| |sizeMultiplication| + |upperCase?| |pmComplexintegrate| |exteriorDifferential| |cyclic?| + |lexGroebner| |byte| |lists| |powerAssociative?| + |multiplyCoefficients| |setButtonValue| |OMputAttr| |leftQuotient| + |strongGenerators| |gensym| |interpretString| + |irreducibleRepresentation| |perspective| |part?| |innerEigenvectors| + |useNagFunctions| |componentUpperBound| |infiniteProduct| |coth2trigh| + |erf| |flexible?| |genericLeftTraceForm| |setchildren!| |getStream| + |zero| |cycleElt| |prime?| |iiasech| |reverse| + |getSyntaxFormsFromFile| |evenlambert| |bezoutResultant| + |expandTrigProducts| |create| |aQuadratic| |rightRemainder| + |mightHaveRoots| |power!| |isTimes| |weakBiRank| |retractable?| + |toScale| |besselY| |li| |certainlySubVariety?| |dequeue| |d01akf| + |powers| |e01baf| |And| |powerSum| |integralRepresents| |character?| + |OMgetEndApp| |unknown| |clearTheIFTable| |dilog| |sparsityIF| + |validExponential| |eof?| |hitherPlane| |Or| |isAtom| |component| + |baseRDEsys| |contains?| |pushup| |var1Steps| |xn| |sin| |central?| + |mapExponents| |pseudoRemainder| |setMaxPoints3D| |Not| |schema| + |primlimintfrac| |screenResolution| |stosePrepareSubResAlgo| + |expenseOfEvaluation| |rename| |cos| |lfextlimint| |writeBytes!| + |remainder| |atanhIfCan| |startTableInvSet!| |int| |uniform01| |pol| + |removeSuperfluousCases| |complexSolve| |setelt!| |tan| + |totalDifferential| |Gamma| |f07fdf| |pleskenSplit| |leftRank| |sign| + |splitSquarefree| |numberOfComposites| |cot| |deepestInitial| + |compdegd| |c06ebf| |cCot| |ddFact| |eigenvector| |d01ajf| |read!| + |completeHermite| |sec| |region| |topFortranOutputStack| + |numberOfImproperPartitions| |leftDivide| |wholeRagits| |mapGen| + |f04jgf| |romberg| |hasoln| |csc| |quadratic| |createNormalElement| + |aromberg| |cPower| |generateIrredPoly| |univariatePolynomials| + |prologue| |asin| |removeCosSq| |test| |lowerPolynomial| |evaluate| + |shanksDiscLogAlgorithm| |root| |module| |remove| |operation| + |fortranCompilerName| |positiveRemainder| |constantIfCan| |acos| + |tablePow| |constantCoefficientRicDE| |viewPosDefault| |readBytes!| + |invertibleSet| |OMputEndAtp| |calcRanges| |pseudoDivide| + |unitsColorDefault| |atan| |oneDimensionalArray| |sn| |fortranLiteral| + |ScanFloatIgnoreSpaces| |parts| |currentScope| |f07adf| |last| + |createGenericMatrix| |standardBasisOfCyclicSubmodule| |arbitrary| + |bag| |acot| |anfactor| |normalElement| |assoc| |monomRDE| |decrease| + |separant| |pointColorPalette| |tanintegrate| |asec| |headAst| + |minimumExponent| |mainPrimitivePart| |condition| |tower| + |lineColorDefault| |ridHack1| |OMconnOutDevice| |isOpen?| |derivative| + |getlo| |acsc| |leftUnit| |ranges| |sincos| |pToHdmp| |byteBuffer| + |style| |mainVariable?| |prefix| |integral| |cdr| |sinh| + |genericRightTraceForm| |stoseLastSubResultant| |makingStats?| + |d01fcf| |trace2PowMod| |numerators| |e02adf| |cosh| |appendPoint| + |selectAndPolynomials| |root?| |minRowIndex| |d02kef| |d01asf| + |makeop| |elaborate| |reduceByQuasiMonic| |obj| |tanh| |minrank| |eq| + |primPartElseUnitCanonical!| |youngDiagram| |signatureAst| + |lSpaceBasis| |lflimitedint| |mainSquareFreePart| |antiAssociative?| + |repSq| |cache| |coth| |iicoth| |iter| |s18acf| |presub| + |sylvesterMatrix| |complexNumeric| |rightRank| |viewDeltaXDefault| + |expintegrate| |squareFreeFactors| |pToDmp| |isOr| |sech| |leftPower| + |nullary?| |polar| |recur| |relationsIdeal| |patternMatchTimes| + |disjunction| |allRootsOf| |factor1| |quasiRegular?| |csch| |interval| + |fractionFreeGauss!| |nativeModuleExtension| |purelyTranscendental?| + |primeFactor| |insertionSort!| |lllip| |unaryFunction| |f01rdf| + |asinh| |inverseLaplace| |consnewpol| |e01daf| |OMputEndApp| + |SturmHabichtSequence| |normalizeAtInfinity| |particularSolution| + |corrPoly| |difference| |expt| |pointSizeDefault| |acosh| + |scalarMatrix| |partition| |getMeasure| |simpleBounds?| |zeroVector| + |aspFilename| |c06fuf| |viewWriteAvailable| |safetyMargin| |refine| + |zeroSetSplitIntoTriangularSystems| |approxSqrt| |positiveSolve| + |coordinates| |OMreadStr| |enqueue!| |dot| |countable?| |LiePolyIfCan| + |droot| |exp| |imaginary| |exptMod| |symmetricTensors| |controlPanel| + |iflist2Result| |nextSubsetGray| |s17ahf| |removeRedundantFactors| + |e04naf| |e02bbf| |graphCurves| |nextColeman| |map| |rotatey| + |clipPointsDefault| |semiLastSubResultantEuclidean| + |numberOfOperations| |lazyIrreducibleFactors| |coefChoose| + |defineProperty| |pomopo!| |genericLeftMinimalPolynomial| + |constantLeft| |table| |generator| |cscIfCan| |iisec| |nthRoot| + |irForm| |limitedint| |nil| |computeCycleLength| |leftFactorIfCan| + |normalForm| |cyclicParents| |thetaCoord| |new| |yellow| + |structuralConstants| |abs| |expintfldpoly| |getBadValues| |heap| + |points| |compile| |derivationCoordinates| |satisfy?| |messagePrint| + |qfactor| |typeList| |inputBinaryFile| |antisymmetric?| + |lazyPseudoRemainder| |setAttributeButtonStep| |setleft!| |cCsc| + |integrate| |virtualDegree| |dimensions| |charClass| |hasHi| + |approximate| |rootsOf| |iiasec| |stop| |splitDenominator| + |viewSizeDefault| |convert| |rootBound| |setLength!| |s13aaf| + |numberOfHues| |makeCrit| |complex| |exponents| |intPatternMatch| + |resultantReduitEuclidean| |beauzamyBound| |cup| |outputFixed| + |identityMatrix| |leftTrace| |interpolate| + |stoseInternalLastSubResultant| |singleFactorBound| |linSolve| |crest| + |branchPoint?| |trailingCoefficient| |leftExactQuotient| + |partialNumerators| |unitCanonical| |failed| |invertIfCan| + |separateFactors| |orbits| |d03faf| |bombieriNorm| |f04adf| |column| + |exprHasLogarithmicWeights| |Vectorise| |UnVectorise| |wreath| |rk4f| + |e02ajf| |contractSolve| |numberOfPrimitivePoly| |evenInfiniteProduct| + |factors| |extendedint| |OMmakeConn| |viewDefaults| |transcendent?| + |leftMinimalPolynomial| |incr| |c06gsf| |hermite| |scale| + |basisOfCentroid| |df2fi| |factorial| |edf2efi| |palgRDE| |lintgcd| + |hi| |setProperties| |deepestTail| |sin2csc| |rspace| |inverseColeman| + |pseudoQuotient| |floor| |transcendentalDecompose| |iisqrt2| |left| + |OMclose| |bivariate?| |squareMatrix| |degreePartition| + |unrankImproperPartitions0| |setScreenResolution| |d03eef| + |currentCategoryFrame| |radicalEigenvectors| |right| |string?| + |figureUnits| |clearTheSymbolTable| |tanh2trigh| |multisect| + |trivialIdeal?| |ODESolve| |constant?| |green| |iisinh| |s17dgf| + |prem| |setnext!| |solve| |size?| |cap| |tanIfCan| |log2| + |extractTop!| |scanOneDimSubspaces| |neglist| |xCoord| |qelt| + |readLineIfCan!| |hostByteOrder| |RittWuCompare| |hostPlatform| + |commonDenominator| |qsetelt| |s14abf| |maxIndex| |generators| + |entry?| |laplace| |homogeneous?| |rotatez| |initial| |dn| + |GospersMethod| |iroot| |returnTypeOf| |atrapezoidal| |OMgetFloat| + |xRange| |lowerBound| |next| |factorPolynomial| |f02axf| + |OMputInteger| |writeByte!| |key| |chvar| |readIfCan!| |setCondition!| + |numberOfVariables| |yRange| |separate| |quasiRegular| |hyperelliptic| + |scaleRoots| |An| |c05adf| |d02cjf| |mainCharacterization| + |generalTwoFactor| |zRange| |low| |parabolicCylindrical| + |sumOfDivisors| |fixedDivisor| |divideExponents| |filename| |mkcomm| + |decompose| |isMult| |denominator| |map!| |lifting| |multMonom| + |totalDegree| |merge!| |shiftRoots| |qsetelt!| |pdf2ef| |resultant| + |cfirst| |c06frf| |diff| |leftScalarTimes!| |rightRecip| |poisson| + |rationalPoint?| |parse| |rdregime| |halfExtendedResultant2| |ref| + |unit| |cycleSplit!| |operators| |cyclicEqual?| |code| |parametersOf| + |check| |generate| |associative?| |arrayStack| |toseInvertible?| + |swap| |c02aff| |regime| |identitySquareMatrix| |polyRDE| + |usingTable?| |sPol| |alphabetic?| |antisymmetricTensors| + |prolateSpheroidal| |getZechTable| |parent| |leftRankPolynomial| + |content| |tableForDiscreteLogarithm| |incrementBy| |dAndcExp| + |enumerate| |outputForm| |rightOne| |cAsech| |radix| |changeName| + |irDef| |OMputBVar| |tryFunctionalDecomposition?| |partitions| + |c06gqf| |e02dcf| |d03edf| |acsch| |unknownEndian| |LiePoly| |imagk| + |returnType!| |resultantEuclidean| |ode1| |printInfo| |oddintegers| + |bracket| |cyclicSubmodule| |lfextendedint| |attributeData| + |modularGcdPrimitive| |e02ahf| |exponential1| |goodPoint| |float?| + |palglimint| |diagonalMatrix| |generalizedEigenvector| |mkAnswer| + |orbit| |startTable!| |mainExpression| + |inverseIntegralMatrixAtInfinity| |nil?| |copy!| |Lazard2| + |quotientByP| |epilogue| |resetBadValues| |options| |finiteBasis| + |meshPar2Var| |subResultantGcdEuclidean| |preprocess| |tail| + |iterationVar| |typeLists| |dom| |laplacian| |complexEigenvectors| + |normFactors| |totalfract| |localAbs| |trapezoidalo| |square?| + |primintegrate| |selectPDERoutines| |arg1| |binaryTree| |entry| |over| + |postfix| |cyclicCopy| |e02bdf| |s17akf| |nil| |infinite| + |arbitraryExponent| |approximate| |complex| |shallowMutable| + |canonical| |noetherian| |central| |partiallyOrderedSet| + |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors| + |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown| + |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate| + |shallowlyMutable| |commutative|)
\ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index 20e9b2e5..a69f4976 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,1039 +1,1039 @@ -(3262861 . 3486833905) -((-1710 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-4298 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3756 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-1255 (-576)) |#2|) 44)) (-3990 (($ $) 80)) (-3686 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-3660 (((-576) (-1 (-112) |#2|) $) 27) (((-576) |#2| $) NIL) (((-576) |#2| $ (-576)) 96)) (-3966 (((-656 |#2|) $) 13)) (-3391 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-4323 (($ (-1 |#2| |#2|) $) 37)) (-4117 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-2176 (($ |#2| $ (-576)) NIL) (($ $ $ (-576)) 67)) (-1541 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-4320 (((-112) (-1 (-112) |#2|) $) 23)) (-2797 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL) (($ $ (-1255 (-576))) 66)) (-3466 (($ $ (-576)) 76) (($ $ (-1255 (-576))) 75)) (-1460 (((-783) (-1 (-112) |#2|) $) 34) (((-783) |#2| $) NIL)) (-3025 (($ $ $ (-576)) 69)) (-1870 (($ $) 68)) (-3582 (($ (-656 |#2|)) 73)) (-1615 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-656 $)) 85)) (-3570 (((-876) $) 92)) (-3321 (((-112) (-1 (-112) |#2|) $) 22)) (-2925 (((-112) $ $) 95)) (-2950 (((-112) $ $) 99))) -(((-18 |#1| |#2|) (-10 -8 (-15 -2925 ((-112) |#1| |#1|)) (-15 -3570 ((-876) |#1|)) (-15 -2950 ((-112) |#1| |#1|)) (-15 -4298 (|#1| |#1|)) (-15 -4298 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3990 (|#1| |#1|)) (-15 -3025 (|#1| |#1| |#1| (-576))) (-15 -1710 ((-112) |#1|)) (-15 -3391 (|#1| |#1| |#1|)) (-15 -3660 ((-576) |#2| |#1| (-576))) (-15 -3660 ((-576) |#2| |#1|)) (-15 -3660 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -1710 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3391 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3756 (|#2| |#1| (-1255 (-576)) |#2|)) (-15 -2176 (|#1| |#1| |#1| (-576))) (-15 -2176 (|#1| |#2| |#1| (-576))) (-15 -3466 (|#1| |#1| (-1255 (-576)))) (-15 -3466 (|#1| |#1| (-576))) (-15 -4117 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1615 (|#1| (-656 |#1|))) (-15 -1615 (|#1| |#1| |#1|)) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#2|)) (-15 -2797 (|#1| |#1| (-1255 (-576)))) (-15 -3582 (|#1| (-656 |#2|))) (-15 -1541 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3686 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3686 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3686 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2797 (|#2| |#1| (-576))) (-15 -2797 (|#2| |#1| (-576) |#2|)) (-15 -3756 (|#2| |#1| (-576) |#2|)) (-15 -1460 ((-783) |#2| |#1|)) (-15 -3966 ((-656 |#2|) |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -4320 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3321 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4323 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4117 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1870 (|#1| |#1|))) (-19 |#2|) (-1238)) (T -18)) +(3262608 . 3486841638) +((-1390 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-3039 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3755 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-1255 (-576)) |#2|) 44)) (-3092 (($ $) 80)) (-3685 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-3659 (((-576) (-1 (-112) |#2|) $) 27) (((-576) |#2| $) NIL) (((-576) |#2| $ (-576)) 96)) (-3965 (((-656 |#2|) $) 13)) (-2185 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-4326 (($ (-1 |#2| |#2|) $) 37)) (-4116 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-2176 (($ |#2| $ (-576)) NIL) (($ $ $ (-576)) 67)) (-3434 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-3252 (((-112) (-1 (-112) |#2|) $) 23)) (-2796 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL) (($ $ (-1255 (-576))) 66)) (-3465 (($ $ (-576)) 76) (($ $ (-1255 (-576))) 75)) (-1460 (((-783) (-1 (-112) |#2|) $) 34) (((-783) |#2| $) NIL)) (-2840 (($ $ $ (-576)) 69)) (-1870 (($ $) 68)) (-3581 (($ (-656 |#2|)) 73)) (-1615 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-656 $)) 85)) (-3569 (((-876) $) 92)) (-2708 (((-112) (-1 (-112) |#2|) $) 22)) (-2924 (((-112) $ $) 95)) (-2949 (((-112) $ $) 99))) +(((-18 |#1| |#2|) (-10 -8 (-15 -2924 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -2949 ((-112) |#1| |#1|)) (-15 -3039 (|#1| |#1|)) (-15 -3039 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3092 (|#1| |#1|)) (-15 -2840 (|#1| |#1| |#1| (-576))) (-15 -1390 ((-112) |#1|)) (-15 -2185 (|#1| |#1| |#1|)) (-15 -3659 ((-576) |#2| |#1| (-576))) (-15 -3659 ((-576) |#2| |#1|)) (-15 -3659 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -1390 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2185 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3755 (|#2| |#1| (-1255 (-576)) |#2|)) (-15 -2176 (|#1| |#1| |#1| (-576))) (-15 -2176 (|#1| |#2| |#1| (-576))) (-15 -3465 (|#1| |#1| (-1255 (-576)))) (-15 -3465 (|#1| |#1| (-576))) (-15 -4116 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1615 (|#1| (-656 |#1|))) (-15 -1615 (|#1| |#1| |#1|)) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#2|)) (-15 -2796 (|#1| |#1| (-1255 (-576)))) (-15 -3581 (|#1| (-656 |#2|))) (-15 -3434 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2796 (|#2| |#1| (-576))) (-15 -2796 (|#2| |#1| (-576) |#2|)) (-15 -3755 (|#2| |#1| (-576) |#2|)) (-15 -1460 ((-783) |#2| |#1|)) (-15 -3965 ((-656 |#2|) |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3252 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2708 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4326 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1870 (|#1| |#1|))) (-19 |#2|) (-1238)) (T -18)) NIL -(-10 -8 (-15 -2925 ((-112) |#1| |#1|)) (-15 -3570 ((-876) |#1|)) (-15 -2950 ((-112) |#1| |#1|)) (-15 -4298 (|#1| |#1|)) (-15 -4298 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3990 (|#1| |#1|)) (-15 -3025 (|#1| |#1| |#1| (-576))) (-15 -1710 ((-112) |#1|)) (-15 -3391 (|#1| |#1| |#1|)) (-15 -3660 ((-576) |#2| |#1| (-576))) (-15 -3660 ((-576) |#2| |#1|)) (-15 -3660 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -1710 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3391 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3756 (|#2| |#1| (-1255 (-576)) |#2|)) (-15 -2176 (|#1| |#1| |#1| (-576))) (-15 -2176 (|#1| |#2| |#1| (-576))) (-15 -3466 (|#1| |#1| (-1255 (-576)))) (-15 -3466 (|#1| |#1| (-576))) (-15 -4117 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1615 (|#1| (-656 |#1|))) (-15 -1615 (|#1| |#1| |#1|)) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#2|)) (-15 -2797 (|#1| |#1| (-1255 (-576)))) (-15 -3582 (|#1| (-656 |#2|))) (-15 -1541 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3686 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3686 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3686 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2797 (|#2| |#1| (-576))) (-15 -2797 (|#2| |#1| (-576) |#2|)) (-15 -3756 (|#2| |#1| (-576) |#2|)) (-15 -1460 ((-783) |#2| |#1|)) (-15 -3966 ((-656 |#2|) |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -4320 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3321 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4323 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4117 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1870 (|#1| |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2047 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4466)))) (-1710 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-4298 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4466))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4466))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-1808 (((-112) $ (-783)) 8)) (-3756 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4466))) ((|#1| $ (-1255 (-576)) |#1|) 60 (|has| $ (-6 -4466)))) (-1974 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4465)))) (-3886 (($) 7 T CONST)) (-3990 (($ $) 93 (|has| $ (-6 -4466)))) (-3836 (($ $) 103)) (-1415 (($ $) 80 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-3946 (($ |#1| $) 79 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4465)))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4465)))) (-4335 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4466)))) (-4274 ((|#1| $ (-576)) 52)) (-3660 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1121)))) (-3966 (((-656 |#1|) $) 31 (|has| $ (-6 -4465)))) (-4141 (($ (-783) |#1|) 70)) (-3870 (((-112) $ (-783)) 9)) (-2924 (((-576) $) 44 (|has| (-576) (-861)))) (-3125 (($ $ $) 85 (|has| |#1| (-861)))) (-3391 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-2137 (((-576) $) 45 (|has| (-576) (-861)))) (-3133 (($ $ $) 86 (|has| |#1| (-861)))) (-4323 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1330 (((-112) $ (-783)) 10)) (-3699 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2176 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-4234 (((-656 (-576)) $) 47)) (-3354 (((-112) (-576) $) 48)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3581 ((|#1| $) 43 (|has| (-576) (-861)))) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4046 (($ $ |#1|) 42 (|has| $ (-6 -4466)))) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3845 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2281 (((-656 |#1|) $) 49)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-2797 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1255 (-576))) 71)) (-3466 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-3025 (($ $ $ (-576)) 94 (|has| $ (-6 -4466)))) (-1870 (($ $) 13)) (-4172 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) 72)) (-1615 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3570 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2992 (((-112) $ $) 87 (|has| |#1| (-861)))) (-2964 (((-112) $ $) 89 (|has| |#1| (-861)))) (-2925 (((-112) $ $) 19 (|has| |#1| (-102)))) (-2978 (((-112) $ $) 88 (|has| |#1| (-861)))) (-2950 (((-112) $ $) 90 (|has| |#1| (-861)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +(-10 -8 (-15 -2924 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -2949 ((-112) |#1| |#1|)) (-15 -3039 (|#1| |#1|)) (-15 -3039 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3092 (|#1| |#1|)) (-15 -2840 (|#1| |#1| |#1| (-576))) (-15 -1390 ((-112) |#1|)) (-15 -2185 (|#1| |#1| |#1|)) (-15 -3659 ((-576) |#2| |#1| (-576))) (-15 -3659 ((-576) |#2| |#1|)) (-15 -3659 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -1390 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2185 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3755 (|#2| |#1| (-1255 (-576)) |#2|)) (-15 -2176 (|#1| |#1| |#1| (-576))) (-15 -2176 (|#1| |#2| |#1| (-576))) (-15 -3465 (|#1| |#1| (-1255 (-576)))) (-15 -3465 (|#1| |#1| (-576))) (-15 -4116 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1615 (|#1| (-656 |#1|))) (-15 -1615 (|#1| |#1| |#1|)) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#2|)) (-15 -2796 (|#1| |#1| (-1255 (-576)))) (-15 -3581 (|#1| (-656 |#2|))) (-15 -3434 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2796 (|#2| |#1| (-576))) (-15 -2796 (|#2| |#1| (-576) |#2|)) (-15 -3755 (|#2| |#1| (-576) |#2|)) (-15 -1460 ((-783) |#2| |#1|)) (-15 -3965 ((-656 |#2|) |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3252 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2708 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4326 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1870 (|#1| |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1512 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4465)))) (-1390 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-3039 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4465))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4465))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-4264 (((-112) $ (-783)) 8)) (-3755 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 60 (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4464)))) (-3404 (($) 7 T CONST)) (-3092 (($ $) 93 (|has| $ (-6 -4465)))) (-3835 (($ $) 103)) (-2034 (($ $) 80 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ |#1| $) 79 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) 52)) (-3659 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1121)))) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-4140 (($ (-783) |#1|) 70)) (-1368 (((-112) $ (-783)) 9)) (-3281 (((-576) $) 44 (|has| (-576) (-861)))) (-3124 (($ $ $) 85 (|has| |#1| (-861)))) (-2185 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4280 (((-576) $) 45 (|has| (-576) (-861)))) (-1441 (($ $ $) 86 (|has| |#1| (-861)))) (-4326 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2883 (((-112) $ (-783)) 10)) (-2046 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2176 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3669 (((-656 (-576)) $) 47)) (-3090 (((-112) (-576) $) 48)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3580 ((|#1| $) 43 (|has| (-576) (-861)))) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2304 (($ $ |#1|) 42 (|has| $ (-6 -4465)))) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-4282 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3207 (((-656 |#1|) $) 49)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-2796 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1255 (-576))) 71)) (-3465 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2840 (($ $ $ (-576)) 94 (|has| $ (-6 -4465)))) (-1870 (($ $) 13)) (-4171 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 72)) (-1615 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2990 (((-112) $ $) 87 (|has| |#1| (-861)))) (-2962 (((-112) $ $) 89 (|has| |#1| (-861)))) (-2924 (((-112) $ $) 19 (|has| |#1| (-102)))) (-2978 (((-112) $ $) 88 (|has| |#1| (-861)))) (-2949 (((-112) $ $) 90 (|has| |#1| (-861)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-19 |#1|) (-141) (-1238)) (T -19)) NIL -(-13 (-384 |t#1|) (-10 -7 (-6 -4466))) -(((-34) . T) ((-102) -2760 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-625 (-876)) -2760 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1121) -2760 (|has| |#1| (-1121)) (|has| |#1| (-861))) ((-1238) . T)) -((-4367 (((-3 $ "failed") $ $) 12)) (-3044 (($ $) NIL) (($ $ $) 9)) (* (($ (-940) $) NIL) (($ (-783) $) 16) (($ (-576) $) 26))) -(((-20 |#1|) (-10 -8 (-15 -3044 (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -4367 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) (-21)) (T -20)) +(-13 (-384 |t#1|) (-10 -7 (-6 -4465))) +(((-34) . T) ((-102) -2759 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-625 (-876)) -2759 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1121) -2759 (|has| |#1| (-1121)) (|has| |#1| (-861))) ((-1238) . T)) +((-2428 (((-3 $ "failed") $ $) 12)) (-3043 (($ $) NIL) (($ $ $) 9)) (* (($ (-940) $) NIL) (($ (-783) $) 16) (($ (-576) $) 26))) +(((-20 |#1|) (-10 -8 (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -2428 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) (-21)) (T -20)) NIL -(-10 -8 (-15 -3044 (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -4367 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24))) +(-10 -8 (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -2428 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24))) (((-21) (-141)) (T -21)) -((-3044 (*1 *1 *1) (-4 *1 (-21))) (-3044 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-132) (-658 (-576)) (-10 -8 (-15 -3044 ($ $)) (-15 -3044 ($ $ $)))) +((-3043 (*1 *1 *1) (-4 *1 (-21))) (-3043 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-132) (-658 (-576)) (-10 -8 (-15 -3043 ($ $)) (-15 -3043 ($ $ $)))) (((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-1121) . T) ((-1238) . T)) -((-4308 (((-112) $) 10)) (-3886 (($) 15)) (* (($ (-940) $) 14) (($ (-783) $) 19))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-783) |#1|)) (-15 -4308 ((-112) |#1|)) (-15 -3886 (|#1|)) (-15 * (|#1| (-940) |#1|))) (-23)) (T -22)) +((-3135 (((-112) $) 10)) (-3404 (($) 15)) (* (($ (-940) $) 14) (($ (-783) $) 19))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-783) |#1|)) (-15 -3135 ((-112) |#1|)) (-15 -3404 (|#1|)) (-15 * (|#1| (-940) |#1|))) (-23)) (T -22)) NIL -(-10 -8 (-15 * (|#1| (-783) |#1|)) (-15 -4308 ((-112) |#1|)) (-15 -3886 (|#1|)) (-15 * (|#1| (-940) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-3886 (($) 18 T CONST)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2925 (((-112) $ $) 8)) (-3030 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16))) +(-10 -8 (-15 * (|#1| (-783) |#1|)) (-15 -3135 ((-112) |#1|)) (-15 -3404 (|#1|)) (-15 * (|#1| (-940) |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-3404 (($) 18 T CONST)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2924 (((-112) $ $) 8)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16))) (((-23) (-141)) (T -23)) -((-2721 (*1 *1) (-4 *1 (-23))) (-3886 (*1 *1) (-4 *1 (-23))) (-4308 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-783))))) -(-13 (-25) (-10 -8 (-15 (-2721) ($) -1480) (-15 -3886 ($) -1480) (-15 -4308 ((-112) $)) (-15 * ($ (-783) $)))) +((-2721 (*1 *1) (-4 *1 (-23))) (-3404 (*1 *1) (-4 *1 (-23))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-783))))) +(-13 (-25) (-10 -8 (-15 (-2721) ($) -1480) (-15 -3404 ($) -1480) (-15 -3135 ((-112) $)) (-15 * ($ (-783) $)))) (((-25) . T) ((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) ((* (($ (-940) $) 10))) (((-24 |#1|) (-10 -8 (-15 * (|#1| (-940) |#1|))) (-25)) (T -24)) NIL (-10 -8 (-15 * (|#1| (-940) |#1|))) -((-3489 (((-112) $ $) 7)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2925 (((-112) $ $) 8)) (-3030 (($ $ $) 15)) (* (($ (-940) $) 14))) +((-3488 (((-112) $ $) 7)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2924 (((-112) $ $) 8)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14))) (((-25) (-141)) (T -25)) -((-3030 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-940))))) -(-13 (-1121) (-10 -8 (-15 -3030 ($ $ $)) (-15 * ($ (-940) $)))) +((-3029 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-940))))) +(-13 (-1121) (-10 -8 (-15 -3029 ($ $ $)) (-15 * ($ (-940) $)))) (((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-3052 (((-656 $) (-971 $)) 32) (((-656 $) (-1193 $)) 16) (((-656 $) (-1193 $) (-1197)) 20)) (-3346 (($ (-971 $)) 30) (($ (-1193 $)) 11) (($ (-1193 $) (-1197)) 60)) (-1796 (((-656 $) (-971 $)) 33) (((-656 $) (-1193 $)) 18) (((-656 $) (-1193 $) (-1197)) 19)) (-2607 (($ (-971 $)) 31) (($ (-1193 $)) 13) (($ (-1193 $) (-1197)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -3052 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -3052 ((-656 |#1|) (-1193 |#1|))) (-15 -3052 ((-656 |#1|) (-971 |#1|))) (-15 -3346 (|#1| (-1193 |#1|) (-1197))) (-15 -3346 (|#1| (-1193 |#1|))) (-15 -3346 (|#1| (-971 |#1|))) (-15 -1796 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -1796 ((-656 |#1|) (-1193 |#1|))) (-15 -1796 ((-656 |#1|) (-971 |#1|))) (-15 -2607 (|#1| (-1193 |#1|) (-1197))) (-15 -2607 (|#1| (-1193 |#1|))) (-15 -2607 (|#1| (-971 |#1|)))) (-27)) (T -26)) +((-3119 (((-656 $) (-971 $)) 32) (((-656 $) (-1193 $)) 16) (((-656 $) (-1193 $) (-1197)) 20)) (-2992 (($ (-971 $)) 30) (($ (-1193 $)) 11) (($ (-1193 $) (-1197)) 60)) (-4166 (((-656 $) (-971 $)) 33) (((-656 $) (-1193 $)) 18) (((-656 $) (-1193 $) (-1197)) 19)) (-2108 (($ (-971 $)) 31) (($ (-1193 $)) 13) (($ (-1193 $) (-1197)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -3119 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -3119 ((-656 |#1|) (-1193 |#1|))) (-15 -3119 ((-656 |#1|) (-971 |#1|))) (-15 -2992 (|#1| (-1193 |#1|) (-1197))) (-15 -2992 (|#1| (-1193 |#1|))) (-15 -2992 (|#1| (-971 |#1|))) (-15 -4166 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -4166 ((-656 |#1|) (-1193 |#1|))) (-15 -4166 ((-656 |#1|) (-971 |#1|))) (-15 -2108 (|#1| (-1193 |#1|) (-1197))) (-15 -2108 (|#1| (-1193 |#1|))) (-15 -2108 (|#1| (-971 |#1|)))) (-27)) (T -26)) NIL -(-10 -8 (-15 -3052 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -3052 ((-656 |#1|) (-1193 |#1|))) (-15 -3052 ((-656 |#1|) (-971 |#1|))) (-15 -3346 (|#1| (-1193 |#1|) (-1197))) (-15 -3346 (|#1| (-1193 |#1|))) (-15 -3346 (|#1| (-971 |#1|))) (-15 -1796 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -1796 ((-656 |#1|) (-1193 |#1|))) (-15 -1796 ((-656 |#1|) (-971 |#1|))) (-15 -2607 (|#1| (-1193 |#1|) (-1197))) (-15 -2607 (|#1| (-1193 |#1|))) (-15 -2607 (|#1| (-971 |#1|)))) -((-3489 (((-112) $ $) 7)) (-3052 (((-656 $) (-971 $)) 88) (((-656 $) (-1193 $)) 87) (((-656 $) (-1193 $) (-1197)) 86)) (-3346 (($ (-971 $)) 91) (($ (-1193 $)) 90) (($ (-1193 $) (-1197)) 89)) (-4308 (((-112) $) 17)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 47)) (-2757 (($ $) 46)) (-3788 (((-112) $) 44)) (-4367 (((-3 $ "failed") $ $) 20)) (-2487 (($ $) 81)) (-3921 (((-430 $) $) 80)) (-1839 (($ $) 100)) (-4016 (((-112) $ $) 65)) (-3886 (($) 18 T CONST)) (-1796 (((-656 $) (-971 $)) 94) (((-656 $) (-1193 $)) 93) (((-656 $) (-1193 $) (-1197)) 92)) (-2607 (($ (-971 $)) 97) (($ (-1193 $)) 96) (($ (-1193 $) (-1197)) 95)) (-3429 (($ $ $) 61)) (-1561 (((-3 $ "failed") $) 37)) (-3441 (($ $ $) 62)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) 57)) (-4249 (((-112) $) 79)) (-4193 (((-112) $) 35)) (-2121 (($ $ (-576)) 99)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3458 (($ $ $) 52) (($ (-656 $)) 51)) (-3699 (((-1179) $) 10)) (-2050 (($ $) 78)) (-1450 (((-1141) $) 11)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-1828 (((-430 $) $) 82)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3476 (((-3 $ "failed") $ $) 48)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1967 (((-783) $) 64)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 63)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2672 (((-112) $ $) 45)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3057 (($ $ $) 73)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 98)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) +(-10 -8 (-15 -3119 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -3119 ((-656 |#1|) (-1193 |#1|))) (-15 -3119 ((-656 |#1|) (-971 |#1|))) (-15 -2992 (|#1| (-1193 |#1|) (-1197))) (-15 -2992 (|#1| (-1193 |#1|))) (-15 -2992 (|#1| (-971 |#1|))) (-15 -4166 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -4166 ((-656 |#1|) (-1193 |#1|))) (-15 -4166 ((-656 |#1|) (-971 |#1|))) (-15 -2108 (|#1| (-1193 |#1|) (-1197))) (-15 -2108 (|#1| (-1193 |#1|))) (-15 -2108 (|#1| (-971 |#1|)))) +((-3488 (((-112) $ $) 7)) (-3119 (((-656 $) (-971 $)) 88) (((-656 $) (-1193 $)) 87) (((-656 $) (-1193 $) (-1197)) 86)) (-2992 (($ (-971 $)) 91) (($ (-1193 $)) 90) (($ (-1193 $) (-1197)) 89)) (-3135 (((-112) $) 17)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-4195 (($ $) 46)) (-1760 (((-112) $) 44)) (-2428 (((-3 $ "failed") $ $) 20)) (-3444 (($ $) 81)) (-3760 (((-430 $) $) 80)) (-1840 (($ $) 100)) (-3330 (((-112) $ $) 65)) (-3404 (($) 18 T CONST)) (-4166 (((-656 $) (-971 $)) 94) (((-656 $) (-1193 $)) 93) (((-656 $) (-1193 $) (-1197)) 92)) (-2108 (($ (-971 $)) 97) (($ (-1193 $)) 96) (($ (-1193 $) (-1197)) 95)) (-3428 (($ $ $) 61)) (-3673 (((-3 $ "failed") $) 37)) (-3440 (($ $ $) 62)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) 57)) (-3833 (((-112) $) 79)) (-1351 (((-112) $) 35)) (-4131 (($ $ (-576)) 99)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-2046 (((-1179) $) 10)) (-2050 (($ $) 78)) (-1450 (((-1141) $) 11)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3497 (($ $ $) 54) (($ (-656 $)) 53)) (-1828 (((-430 $) $) 82)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3475 (((-3 $ "failed") $ $) 48)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1979 (((-783) $) 64)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 63)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-1505 (((-112) $ $) 45)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3056 (($ $ $) 73)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 98)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) (((-27) (-141)) (T -27)) -((-2607 (*1 *1 *2) (-12 (-5 *2 (-971 *1)) (-4 *1 (-27)))) (-2607 (*1 *1 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-27)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1193 *1)) (-5 *3 (-1197)) (-4 *1 (-27)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-971 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-1193 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-1796 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *1)) (-5 *4 (-1197)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-3346 (*1 *1 *2) (-12 (-5 *2 (-971 *1)) (-4 *1 (-27)))) (-3346 (*1 *1 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-27)))) (-3346 (*1 *1 *2 *3) (-12 (-5 *2 (-1193 *1)) (-5 *3 (-1197)) (-4 *1 (-27)))) (-3052 (*1 *2 *3) (-12 (-5 *3 (-971 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-3052 (*1 *2 *3) (-12 (-5 *3 (-1193 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-3052 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *1)) (-5 *4 (-1197)) (-4 *1 (-27)) (-5 *2 (-656 *1))))) -(-13 (-374) (-1023) (-10 -8 (-15 -2607 ($ (-971 $))) (-15 -2607 ($ (-1193 $))) (-15 -2607 ($ (-1193 $) (-1197))) (-15 -1796 ((-656 $) (-971 $))) (-15 -1796 ((-656 $) (-1193 $))) (-15 -1796 ((-656 $) (-1193 $) (-1197))) (-15 -3346 ($ (-971 $))) (-15 -3346 ($ (-1193 $))) (-15 -3346 ($ (-1193 $) (-1197))) (-15 -3052 ((-656 $) (-971 $))) (-15 -3052 ((-656 $) (-1193 $))) (-15 -3052 ((-656 $) (-1193 $) (-1197))))) +((-2108 (*1 *1 *2) (-12 (-5 *2 (-971 *1)) (-4 *1 (-27)))) (-2108 (*1 *1 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-27)))) (-2108 (*1 *1 *2 *3) (-12 (-5 *2 (-1193 *1)) (-5 *3 (-1197)) (-4 *1 (-27)))) (-4166 (*1 *2 *3) (-12 (-5 *3 (-971 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-4166 (*1 *2 *3) (-12 (-5 *3 (-1193 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-4166 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *1)) (-5 *4 (-1197)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-2992 (*1 *1 *2) (-12 (-5 *2 (-971 *1)) (-4 *1 (-27)))) (-2992 (*1 *1 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-27)))) (-2992 (*1 *1 *2 *3) (-12 (-5 *2 (-1193 *1)) (-5 *3 (-1197)) (-4 *1 (-27)))) (-3119 (*1 *2 *3) (-12 (-5 *3 (-971 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-3119 (*1 *2 *3) (-12 (-5 *3 (-1193 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-3119 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *1)) (-5 *4 (-1197)) (-4 *1 (-27)) (-5 *2 (-656 *1))))) +(-13 (-374) (-1023) (-10 -8 (-15 -2108 ($ (-971 $))) (-15 -2108 ($ (-1193 $))) (-15 -2108 ($ (-1193 $) (-1197))) (-15 -4166 ((-656 $) (-971 $))) (-15 -4166 ((-656 $) (-1193 $))) (-15 -4166 ((-656 $) (-1193 $) (-1197))) (-15 -2992 ($ (-971 $))) (-15 -2992 ($ (-1193 $))) (-15 -2992 ($ (-1193 $) (-1197))) (-15 -3119 ((-656 $) (-971 $))) (-15 -3119 ((-656 $) (-1193 $))) (-15 -3119 ((-656 $) (-1193 $) (-1197))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-939) . T) ((-1023) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T)) -((-3052 (((-656 $) (-971 $)) NIL) (((-656 $) (-1193 $)) NIL) (((-656 $) (-1193 $) (-1197)) 55) (((-656 $) $) 22) (((-656 $) $ (-1197)) 46)) (-3346 (($ (-971 $)) NIL) (($ (-1193 $)) NIL) (($ (-1193 $) (-1197)) 57) (($ $) 20) (($ $ (-1197)) 40)) (-1796 (((-656 $) (-971 $)) NIL) (((-656 $) (-1193 $)) NIL) (((-656 $) (-1193 $) (-1197)) 53) (((-656 $) $) 18) (((-656 $) $ (-1197)) 48)) (-2607 (($ (-971 $)) NIL) (($ (-1193 $)) NIL) (($ (-1193 $) (-1197)) NIL) (($ $) 15) (($ $ (-1197)) 42))) -(((-28 |#1| |#2|) (-10 -8 (-15 -3052 ((-656 |#1|) |#1| (-1197))) (-15 -3346 (|#1| |#1| (-1197))) (-15 -3052 ((-656 |#1|) |#1|)) (-15 -3346 (|#1| |#1|)) (-15 -1796 ((-656 |#1|) |#1| (-1197))) (-15 -2607 (|#1| |#1| (-1197))) (-15 -1796 ((-656 |#1|) |#1|)) (-15 -2607 (|#1| |#1|)) (-15 -3052 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -3052 ((-656 |#1|) (-1193 |#1|))) (-15 -3052 ((-656 |#1|) (-971 |#1|))) (-15 -3346 (|#1| (-1193 |#1|) (-1197))) (-15 -3346 (|#1| (-1193 |#1|))) (-15 -3346 (|#1| (-971 |#1|))) (-15 -1796 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -1796 ((-656 |#1|) (-1193 |#1|))) (-15 -1796 ((-656 |#1|) (-971 |#1|))) (-15 -2607 (|#1| (-1193 |#1|) (-1197))) (-15 -2607 (|#1| (-1193 |#1|))) (-15 -2607 (|#1| (-971 |#1|)))) (-29 |#2|) (-568)) (T -28)) +((-3119 (((-656 $) (-971 $)) NIL) (((-656 $) (-1193 $)) NIL) (((-656 $) (-1193 $) (-1197)) 55) (((-656 $) $) 22) (((-656 $) $ (-1197)) 46)) (-2992 (($ (-971 $)) NIL) (($ (-1193 $)) NIL) (($ (-1193 $) (-1197)) 57) (($ $) 20) (($ $ (-1197)) 40)) (-4166 (((-656 $) (-971 $)) NIL) (((-656 $) (-1193 $)) NIL) (((-656 $) (-1193 $) (-1197)) 53) (((-656 $) $) 18) (((-656 $) $ (-1197)) 48)) (-2108 (($ (-971 $)) NIL) (($ (-1193 $)) NIL) (($ (-1193 $) (-1197)) NIL) (($ $) 15) (($ $ (-1197)) 42))) +(((-28 |#1| |#2|) (-10 -8 (-15 -3119 ((-656 |#1|) |#1| (-1197))) (-15 -2992 (|#1| |#1| (-1197))) (-15 -3119 ((-656 |#1|) |#1|)) (-15 -2992 (|#1| |#1|)) (-15 -4166 ((-656 |#1|) |#1| (-1197))) (-15 -2108 (|#1| |#1| (-1197))) (-15 -4166 ((-656 |#1|) |#1|)) (-15 -2108 (|#1| |#1|)) (-15 -3119 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -3119 ((-656 |#1|) (-1193 |#1|))) (-15 -3119 ((-656 |#1|) (-971 |#1|))) (-15 -2992 (|#1| (-1193 |#1|) (-1197))) (-15 -2992 (|#1| (-1193 |#1|))) (-15 -2992 (|#1| (-971 |#1|))) (-15 -4166 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -4166 ((-656 |#1|) (-1193 |#1|))) (-15 -4166 ((-656 |#1|) (-971 |#1|))) (-15 -2108 (|#1| (-1193 |#1|) (-1197))) (-15 -2108 (|#1| (-1193 |#1|))) (-15 -2108 (|#1| (-971 |#1|)))) (-29 |#2|) (-568)) (T -28)) NIL -(-10 -8 (-15 -3052 ((-656 |#1|) |#1| (-1197))) (-15 -3346 (|#1| |#1| (-1197))) (-15 -3052 ((-656 |#1|) |#1|)) (-15 -3346 (|#1| |#1|)) (-15 -1796 ((-656 |#1|) |#1| (-1197))) (-15 -2607 (|#1| |#1| (-1197))) (-15 -1796 ((-656 |#1|) |#1|)) (-15 -2607 (|#1| |#1|)) (-15 -3052 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -3052 ((-656 |#1|) (-1193 |#1|))) (-15 -3052 ((-656 |#1|) (-971 |#1|))) (-15 -3346 (|#1| (-1193 |#1|) (-1197))) (-15 -3346 (|#1| (-1193 |#1|))) (-15 -3346 (|#1| (-971 |#1|))) (-15 -1796 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -1796 ((-656 |#1|) (-1193 |#1|))) (-15 -1796 ((-656 |#1|) (-971 |#1|))) (-15 -2607 (|#1| (-1193 |#1|) (-1197))) (-15 -2607 (|#1| (-1193 |#1|))) (-15 -2607 (|#1| (-971 |#1|)))) -((-3489 (((-112) $ $) 7)) (-3052 (((-656 $) (-971 $)) 88) (((-656 $) (-1193 $)) 87) (((-656 $) (-1193 $) (-1197)) 86) (((-656 $) $) 138) (((-656 $) $ (-1197)) 136)) (-3346 (($ (-971 $)) 91) (($ (-1193 $)) 90) (($ (-1193 $) (-1197)) 89) (($ $) 139) (($ $ (-1197)) 137)) (-4308 (((-112) $) 17)) (-1969 (((-656 (-1197)) $) 207)) (-1798 (((-419 (-1193 $)) $ (-624 $)) 239 (|has| |#1| (-568)))) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 47)) (-2757 (($ $) 46)) (-3788 (((-112) $) 44)) (-3988 (((-656 (-624 $)) $) 170)) (-4367 (((-3 $ "failed") $ $) 20)) (-3428 (($ $ (-656 (-624 $)) (-656 $)) 160) (($ $ (-656 (-304 $))) 159) (($ $ (-304 $)) 158)) (-2487 (($ $) 81)) (-3921 (((-430 $) $) 80)) (-1839 (($ $) 100)) (-4016 (((-112) $ $) 65)) (-3886 (($) 18 T CONST)) (-1796 (((-656 $) (-971 $)) 94) (((-656 $) (-1193 $)) 93) (((-656 $) (-1193 $) (-1197)) 92) (((-656 $) $) 142) (((-656 $) $ (-1197)) 140)) (-2607 (($ (-971 $)) 97) (($ (-1193 $)) 96) (($ (-1193 $) (-1197)) 95) (($ $) 143) (($ $ (-1197)) 141)) (-1572 (((-3 (-971 |#1|) "failed") $) 258 (|has| |#1| (-1070))) (((-3 (-419 (-971 |#1|)) "failed") $) 241 (|has| |#1| (-568))) (((-3 |#1| "failed") $) 203) (((-3 (-576) "failed") $) 200 (|has| |#1| (-1059 (-576)))) (((-3 (-1197) "failed") $) 194) (((-3 (-624 $) "failed") $) 145) (((-3 (-419 (-576)) "failed") $) 133 (-2760 (-12 (|has| |#1| (-1059 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1059 (-419 (-576))))))) (-2860 (((-971 |#1|) $) 257 (|has| |#1| (-1070))) (((-419 (-971 |#1|)) $) 240 (|has| |#1| (-568))) ((|#1| $) 202) (((-576) $) 201 (|has| |#1| (-1059 (-576)))) (((-1197) $) 193) (((-624 $) $) 144) (((-419 (-576)) $) 134 (-2760 (-12 (|has| |#1| (-1059 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1059 (-419 (-576))))))) (-3429 (($ $ $) 61)) (-2204 (((-701 |#1|) (-701 $)) 246 (|has| |#1| (-1070))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 245 (|has| |#1| (-1070))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 132 (-2760 (-2675 (|has| |#1| (-1070)) (|has| |#1| (-651 (-576)))) (-2675 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (((-701 (-576)) (-701 $)) 131 (-2760 (-2675 (|has| |#1| (-1070)) (|has| |#1| (-651 (-576)))) (-2675 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))))) (-1561 (((-3 $ "failed") $) 37)) (-3441 (($ $ $) 62)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) 57)) (-4249 (((-112) $) 79)) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 199 (|has| |#1| (-901 (-390)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 198 (|has| |#1| (-901 (-576))))) (-2236 (($ (-656 $)) 164) (($ $) 163)) (-3545 (((-656 (-115)) $) 171)) (-1777 (((-115) (-115)) 172)) (-4193 (((-112) $) 35)) (-2946 (((-112) $) 192 (|has| $ (-1059 (-576))))) (-2171 (($ $) 224 (|has| |#1| (-1070)))) (-1570 (((-1146 |#1| (-624 $)) $) 223 (|has| |#1| (-1070)))) (-2121 (($ $ (-576)) 99)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3971 (((-1193 $) (-624 $)) 189 (|has| $ (-1070)))) (-4117 (($ (-1 $ $) (-624 $)) 178)) (-2608 (((-3 (-624 $) "failed") $) 168)) (-3913 (((-701 |#1|) (-1288 $)) 248 (|has| |#1| (-1070))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 247 (|has| |#1| (-1070))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 130 (-2760 (-2675 (|has| |#1| (-1070)) (|has| |#1| (-651 (-576)))) (-2675 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (((-701 (-576)) (-1288 $)) 129 (-2760 (-2675 (|has| |#1| (-1070)) (|has| |#1| (-651 (-576)))) (-2675 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))))) (-3458 (($ $ $) 52) (($ (-656 $)) 51)) (-3699 (((-1179) $) 10)) (-1763 (((-656 (-624 $)) $) 169)) (-1640 (($ (-115) (-656 $)) 177) (($ (-115) $) 176)) (-1385 (((-3 (-656 $) "failed") $) 218 (|has| |#1| (-1133)))) (-3349 (((-3 (-2 (|:| |val| $) (|:| -3422 (-576))) "failed") $) 227 (|has| |#1| (-1070)))) (-1690 (((-3 (-656 $) "failed") $) 220 (|has| |#1| (-25)))) (-3229 (((-3 (-2 (|:| -1714 (-576)) (|:| |var| (-624 $))) "failed") $) 221 (|has| |#1| (-25)))) (-2040 (((-3 (-2 (|:| |var| (-624 $)) (|:| -3422 (-576))) "failed") $ (-1197)) 226 (|has| |#1| (-1070))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -3422 (-576))) "failed") $ (-115)) 225 (|has| |#1| (-1070))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -3422 (-576))) "failed") $) 219 (|has| |#1| (-1133)))) (-1322 (((-112) $ (-1197)) 175) (((-112) $ (-115)) 174)) (-2050 (($ $) 78)) (-2327 (((-783) $) 167)) (-1450 (((-1141) $) 11)) (-2060 (((-112) $) 205)) (-2070 ((|#1| $) 206)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-1726 (((-112) $ (-1197)) 180) (((-112) $ $) 179)) (-1828 (((-430 $) $) 82)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3476 (((-3 $ "failed") $ $) 48)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3644 (((-112) $) 191 (|has| $ (-1059 (-576))))) (-3284 (($ $ (-1197) (-783) (-1 $ $)) 231 (|has| |#1| (-1070))) (($ $ (-1197) (-783) (-1 $ (-656 $))) 230 (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 229 (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ $))) 228 (|has| |#1| (-1070))) (($ $ (-656 (-115)) (-656 $) (-1197)) 217 (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1197)) 216 (|has| |#1| (-626 (-548)))) (($ $) 215 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1197))) 214 (|has| |#1| (-626 (-548)))) (($ $ (-1197)) 213 (|has| |#1| (-626 (-548)))) (($ $ (-115) (-1 $ $)) 188) (($ $ (-115) (-1 $ (-656 $))) 187) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 186) (($ $ (-656 (-115)) (-656 (-1 $ $))) 185) (($ $ (-1197) (-1 $ $)) 184) (($ $ (-1197) (-1 $ (-656 $))) 183) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) 182) (($ $ (-656 (-1197)) (-656 (-1 $ $))) 181) (($ $ (-656 $) (-656 $)) 152) (($ $ $ $) 151) (($ $ (-304 $)) 150) (($ $ (-656 (-304 $))) 149) (($ $ (-656 (-624 $)) (-656 $)) 148) (($ $ (-624 $) $) 147)) (-1967 (((-783) $) 64)) (-2797 (($ (-115) (-656 $)) 157) (($ (-115) $ $ $ $) 156) (($ (-115) $ $ $) 155) (($ (-115) $ $) 154) (($ (-115) $) 153)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 63)) (-3496 (($ $ $) 166) (($ $) 165)) (-2775 (($ $ (-656 (-1197)) (-656 (-783))) 253 (|has| |#1| (-1070))) (($ $ (-1197) (-783)) 252 (|has| |#1| (-1070))) (($ $ (-656 (-1197))) 251 (|has| |#1| (-1070))) (($ $ (-1197)) 249 (|has| |#1| (-1070)))) (-2143 (($ $) 234 (|has| |#1| (-568)))) (-1581 (((-1146 |#1| (-624 $)) $) 233 (|has| |#1| (-568)))) (-3867 (($ $) 190 (|has| $ (-1070)))) (-4172 (((-548) $) 262 (|has| |#1| (-626 (-548)))) (($ (-430 $)) 232 (|has| |#1| (-568))) (((-907 (-390)) $) 197 (|has| |#1| (-626 (-907 (-390))))) (((-907 (-576)) $) 196 (|has| |#1| (-626 (-907 (-576)))))) (-2314 (($ $ $) 261 (|has| |#1| (-485)))) (-2076 (($ $ $) 260 (|has| |#1| (-485)))) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-971 |#1|)) 259 (|has| |#1| (-1070))) (($ (-419 (-971 |#1|))) 242 (|has| |#1| (-568))) (($ (-419 (-971 (-419 |#1|)))) 238 (|has| |#1| (-568))) (($ (-971 (-419 |#1|))) 237 (|has| |#1| (-568))) (($ (-419 |#1|)) 236 (|has| |#1| (-568))) (($ (-1146 |#1| (-624 $))) 222 (|has| |#1| (-1070))) (($ |#1|) 204) (($ (-1197)) 195) (($ (-624 $)) 146)) (-4336 (((-3 $ "failed") $) 244 (|has| |#1| (-146)))) (-3996 (((-783)) 32 T CONST)) (-3681 (($ (-656 $)) 162) (($ $) 161)) (-2468 (((-112) (-115)) 173)) (-4055 (((-112) $ $) 6)) (-2672 (((-112) $ $) 45)) (-2852 (($ (-1197) (-656 $)) 212) (($ (-1197) $ $ $ $) 211) (($ (-1197) $ $ $) 210) (($ (-1197) $ $) 209) (($ (-1197) $) 208)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2020 (($ $ (-656 (-1197)) (-656 (-783))) 256 (|has| |#1| (-1070))) (($ $ (-1197) (-783)) 255 (|has| |#1| (-1070))) (($ $ (-656 (-1197))) 254 (|has| |#1| (-1070))) (($ $ (-1197)) 250 (|has| |#1| (-1070)))) (-2925 (((-112) $ $) 8)) (-3057 (($ $ $) 73) (($ (-1146 |#1| (-624 $)) (-1146 |#1| (-624 $))) 235 (|has| |#1| (-568)))) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 98)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 243 (|has| |#1| (-174))) (($ |#1| $) 135 (|has| |#1| (-1070))))) +(-10 -8 (-15 -3119 ((-656 |#1|) |#1| (-1197))) (-15 -2992 (|#1| |#1| (-1197))) (-15 -3119 ((-656 |#1|) |#1|)) (-15 -2992 (|#1| |#1|)) (-15 -4166 ((-656 |#1|) |#1| (-1197))) (-15 -2108 (|#1| |#1| (-1197))) (-15 -4166 ((-656 |#1|) |#1|)) (-15 -2108 (|#1| |#1|)) (-15 -3119 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -3119 ((-656 |#1|) (-1193 |#1|))) (-15 -3119 ((-656 |#1|) (-971 |#1|))) (-15 -2992 (|#1| (-1193 |#1|) (-1197))) (-15 -2992 (|#1| (-1193 |#1|))) (-15 -2992 (|#1| (-971 |#1|))) (-15 -4166 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -4166 ((-656 |#1|) (-1193 |#1|))) (-15 -4166 ((-656 |#1|) (-971 |#1|))) (-15 -2108 (|#1| (-1193 |#1|) (-1197))) (-15 -2108 (|#1| (-1193 |#1|))) (-15 -2108 (|#1| (-971 |#1|)))) +((-3488 (((-112) $ $) 7)) (-3119 (((-656 $) (-971 $)) 88) (((-656 $) (-1193 $)) 87) (((-656 $) (-1193 $) (-1197)) 86) (((-656 $) $) 138) (((-656 $) $ (-1197)) 136)) (-2992 (($ (-971 $)) 91) (($ (-1193 $)) 90) (($ (-1193 $) (-1197)) 89) (($ $) 139) (($ $ (-1197)) 137)) (-3135 (((-112) $) 17)) (-1969 (((-656 (-1197)) $) 207)) (-1797 (((-419 (-1193 $)) $ (-624 $)) 239 (|has| |#1| (-568)))) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-4195 (($ $) 46)) (-1760 (((-112) $) 44)) (-3987 (((-656 (-624 $)) $) 170)) (-2428 (((-3 $ "failed") $ $) 20)) (-3427 (($ $ (-656 (-624 $)) (-656 $)) 160) (($ $ (-656 (-304 $))) 159) (($ $ (-304 $)) 158)) (-3444 (($ $) 81)) (-3760 (((-430 $) $) 80)) (-1840 (($ $) 100)) (-3330 (((-112) $ $) 65)) (-3404 (($) 18 T CONST)) (-4166 (((-656 $) (-971 $)) 94) (((-656 $) (-1193 $)) 93) (((-656 $) (-1193 $) (-1197)) 92) (((-656 $) $) 142) (((-656 $) $ (-1197)) 140)) (-2108 (($ (-971 $)) 97) (($ (-1193 $)) 96) (($ (-1193 $) (-1197)) 95) (($ $) 143) (($ $ (-1197)) 141)) (-1572 (((-3 (-971 |#1|) "failed") $) 258 (|has| |#1| (-1070))) (((-3 (-419 (-971 |#1|)) "failed") $) 241 (|has| |#1| (-568))) (((-3 |#1| "failed") $) 203) (((-3 (-576) "failed") $) 200 (|has| |#1| (-1059 (-576)))) (((-3 (-1197) "failed") $) 194) (((-3 (-624 $) "failed") $) 145) (((-3 (-419 (-576)) "failed") $) 133 (-2759 (-12 (|has| |#1| (-1059 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1059 (-419 (-576))))))) (-2859 (((-971 |#1|) $) 257 (|has| |#1| (-1070))) (((-419 (-971 |#1|)) $) 240 (|has| |#1| (-568))) ((|#1| $) 202) (((-576) $) 201 (|has| |#1| (-1059 (-576)))) (((-1197) $) 193) (((-624 $) $) 144) (((-419 (-576)) $) 134 (-2759 (-12 (|has| |#1| (-1059 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1059 (-419 (-576))))))) (-3428 (($ $ $) 61)) (-3674 (((-701 |#1|) (-701 $)) 246 (|has| |#1| (-1070))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 245 (|has| |#1| (-1070))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 132 (-2759 (-2674 (|has| |#1| (-1070)) (|has| |#1| (-651 (-576)))) (-2674 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (((-701 (-576)) (-701 $)) 131 (-2759 (-2674 (|has| |#1| (-1070)) (|has| |#1| (-651 (-576)))) (-2674 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))))) (-3673 (((-3 $ "failed") $) 37)) (-3440 (($ $ $) 62)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) 57)) (-3833 (((-112) $) 79)) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 199 (|has| |#1| (-901 (-390)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 198 (|has| |#1| (-901 (-576))))) (-2687 (($ (-656 $)) 164) (($ $) 163)) (-4348 (((-656 (-115)) $) 171)) (-1776 (((-115) (-115)) 172)) (-1351 (((-112) $) 35)) (-3376 (((-112) $) 192 (|has| $ (-1059 (-576))))) (-3328 (($ $) 224 (|has| |#1| (-1070)))) (-1570 (((-1146 |#1| (-624 $)) $) 223 (|has| |#1| (-1070)))) (-4131 (($ $ (-576)) 99)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-2913 (((-1193 $) (-624 $)) 189 (|has| $ (-1070)))) (-4116 (($ (-1 $ $) (-624 $)) 178)) (-2119 (((-3 (-624 $) "failed") $) 168)) (-3676 (((-701 |#1|) (-1288 $)) 248 (|has| |#1| (-1070))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 247 (|has| |#1| (-1070))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 130 (-2759 (-2674 (|has| |#1| (-1070)) (|has| |#1| (-651 (-576)))) (-2674 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (((-701 (-576)) (-1288 $)) 129 (-2759 (-2674 (|has| |#1| (-1070)) (|has| |#1| (-651 (-576)))) (-2674 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))))) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-2046 (((-1179) $) 10)) (-1763 (((-656 (-624 $)) $) 169)) (-1640 (($ (-115) (-656 $)) 177) (($ (-115) $) 176)) (-3845 (((-3 (-656 $) "failed") $) 218 (|has| |#1| (-1133)))) (-3030 (((-3 (-2 (|:| |val| $) (|:| -2508 (-576))) "failed") $) 227 (|has| |#1| (-1070)))) (-2363 (((-3 (-656 $) "failed") $) 220 (|has| |#1| (-25)))) (-4324 (((-3 (-2 (|:| -1715 (-576)) (|:| |var| (-624 $))) "failed") $) 221 (|has| |#1| (-25)))) (-1452 (((-3 (-2 (|:| |var| (-624 $)) (|:| -2508 (-576))) "failed") $ (-1197)) 226 (|has| |#1| (-1070))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2508 (-576))) "failed") $ (-115)) 225 (|has| |#1| (-1070))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2508 (-576))) "failed") $) 219 (|has| |#1| (-1133)))) (-2808 (((-112) $ (-1197)) 175) (((-112) $ (-115)) 174)) (-2050 (($ $) 78)) (-2327 (((-783) $) 167)) (-1450 (((-1141) $) 11)) (-2060 (((-112) $) 205)) (-2070 ((|#1| $) 206)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3497 (($ $ $) 54) (($ (-656 $)) 53)) (-1523 (((-112) $ (-1197)) 180) (((-112) $ $) 179)) (-1828 (((-430 $) $) 82)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3475 (((-3 $ "failed") $ $) 48)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2768 (((-112) $) 191 (|has| $ (-1059 (-576))))) (-3282 (($ $ (-1197) (-783) (-1 $ $)) 231 (|has| |#1| (-1070))) (($ $ (-1197) (-783) (-1 $ (-656 $))) 230 (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 229 (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ $))) 228 (|has| |#1| (-1070))) (($ $ (-656 (-115)) (-656 $) (-1197)) 217 (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1197)) 216 (|has| |#1| (-626 (-548)))) (($ $) 215 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1197))) 214 (|has| |#1| (-626 (-548)))) (($ $ (-1197)) 213 (|has| |#1| (-626 (-548)))) (($ $ (-115) (-1 $ $)) 188) (($ $ (-115) (-1 $ (-656 $))) 187) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 186) (($ $ (-656 (-115)) (-656 (-1 $ $))) 185) (($ $ (-1197) (-1 $ $)) 184) (($ $ (-1197) (-1 $ (-656 $))) 183) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) 182) (($ $ (-656 (-1197)) (-656 (-1 $ $))) 181) (($ $ (-656 $) (-656 $)) 152) (($ $ $ $) 151) (($ $ (-304 $)) 150) (($ $ (-656 (-304 $))) 149) (($ $ (-656 (-624 $)) (-656 $)) 148) (($ $ (-624 $) $) 147)) (-1979 (((-783) $) 64)) (-2796 (($ (-115) (-656 $)) 157) (($ (-115) $ $ $ $) 156) (($ (-115) $ $ $) 155) (($ (-115) $ $) 154) (($ (-115) $) 153)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 63)) (-1954 (($ $ $) 166) (($ $) 165)) (-2774 (($ $ (-656 (-1197)) (-656 (-783))) 253 (|has| |#1| (-1070))) (($ $ (-1197) (-783)) 252 (|has| |#1| (-1070))) (($ $ (-656 (-1197))) 251 (|has| |#1| (-1070))) (($ $ (-1197)) 249 (|has| |#1| (-1070)))) (-4325 (($ $) 234 (|has| |#1| (-568)))) (-1581 (((-1146 |#1| (-624 $)) $) 233 (|has| |#1| (-568)))) (-1346 (($ $) 190 (|has| $ (-1070)))) (-4171 (((-548) $) 262 (|has| |#1| (-626 (-548)))) (($ (-430 $)) 232 (|has| |#1| (-568))) (((-907 (-390)) $) 197 (|has| |#1| (-626 (-907 (-390))))) (((-907 (-576)) $) 196 (|has| |#1| (-626 (-907 (-576)))))) (-2272 (($ $ $) 261 (|has| |#1| (-485)))) (-1758 (($ $ $) 260 (|has| |#1| (-485)))) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-971 |#1|)) 259 (|has| |#1| (-1070))) (($ (-419 (-971 |#1|))) 242 (|has| |#1| (-568))) (($ (-419 (-971 (-419 |#1|)))) 238 (|has| |#1| (-568))) (($ (-971 (-419 |#1|))) 237 (|has| |#1| (-568))) (($ (-419 |#1|)) 236 (|has| |#1| (-568))) (($ (-1146 |#1| (-624 $))) 222 (|has| |#1| (-1070))) (($ |#1|) 204) (($ (-1197)) 195) (($ (-624 $)) 146)) (-3390 (((-3 $ "failed") $) 244 (|has| |#1| (-146)))) (-3154 (((-783)) 32 T CONST)) (-3680 (($ (-656 $)) 162) (($ $) 161)) (-1349 (((-112) (-115)) 173)) (-2399 (((-112) $ $) 6)) (-1505 (((-112) $ $) 45)) (-2851 (($ (-1197) (-656 $)) 212) (($ (-1197) $ $ $ $) 211) (($ (-1197) $ $ $) 210) (($ (-1197) $ $) 209) (($ (-1197) $) 208)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2020 (($ $ (-656 (-1197)) (-656 (-783))) 256 (|has| |#1| (-1070))) (($ $ (-1197) (-783)) 255 (|has| |#1| (-1070))) (($ $ (-656 (-1197))) 254 (|has| |#1| (-1070))) (($ $ (-1197)) 250 (|has| |#1| (-1070)))) (-2924 (((-112) $ $) 8)) (-3056 (($ $ $) 73) (($ (-1146 |#1| (-624 $)) (-1146 |#1| (-624 $))) 235 (|has| |#1| (-568)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 98)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 243 (|has| |#1| (-174))) (($ |#1| $) 135 (|has| |#1| (-1070))))) (((-29 |#1|) (-141) (-568)) (T -29)) -((-2607 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) (-1796 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) (-2607 (*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) (-1796 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *4)))) (-3346 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) (-3052 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) (-3346 (*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) (-3052 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-442 |t#1|) (-10 -8 (-15 -2607 ($ $)) (-15 -1796 ((-656 $) $)) (-15 -2607 ($ $ (-1197))) (-15 -1796 ((-656 $) $ (-1197))) (-15 -3346 ($ $)) (-15 -3052 ((-656 $) $)) (-15 -3346 ($ $ (-1197))) (-15 -3052 ((-656 $) $ (-1197))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 #1=(-419 (-971 |#1|))) |has| |#1| (-568)) ((-628 (-576)) . T) ((-628 #2=(-624 $)) . T) ((-628 #3=(-971 |#1|)) |has| |#1| (-1070)) ((-628 #4=(-1197)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-907 (-390))) |has| |#1| (-626 (-907 (-390)))) ((-626 (-907 (-576))) |has| |#1| (-626 (-907 (-576)))) ((-248) . T) ((-300) . T) ((-317) . T) ((-319 $) . T) ((-312) . T) ((-374) . T) ((-388 |#1|) |has| |#1| (-1070)) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-442 |#1|) . T) ((-464) . T) ((-485) |has| |#1| (-485)) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) -2760 (|has| |#1| (-1070)) (|has| |#1| (-174))) ((-658 $) . T) ((-660 #0#) . T) ((-660 #5=(-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))) ((-660 |#1|) -2760 (|has| |#1| (-1070)) (|has| |#1| (-174))) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) . T) ((-651 #5#) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))) ((-651 |#1|) |has| |#1| (-1070)) ((-729 #0#) . T) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) . T) ((-738) . T) ((-911 $ #6=(-1197)) |has| |#1| (-1070)) ((-917 #6#) |has| |#1| (-1070)) ((-919 #6#) |has| |#1| (-1070)) ((-901 (-390)) |has| |#1| (-901 (-390))) ((-901 (-576)) |has| |#1| (-901 (-576))) ((-899 |#1|) . T) ((-939) . T) ((-1023) . T) ((-1059 (-419 (-576))) -2760 (|has| |#1| (-1059 (-419 (-576)))) (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576))))) ((-1059 #1#) |has| |#1| (-568)) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 #2#) . T) ((-1059 #3#) |has| |#1| (-1070)) ((-1059 #4#) . T) ((-1059 |#1|) . T) ((-1072 #0#) . T) ((-1072 |#1|) |has| |#1| (-174)) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 |#1|) |has| |#1| (-174)) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T)) -((-4307 (((-1115 (-227)) $) NIL)) (-4295 (((-1115 (-227)) $) NIL)) (-3823 (($ $ (-227)) 164)) (-2918 (($ (-971 (-576)) (-1197) (-1197) (-1115 (-419 (-576))) (-1115 (-419 (-576)))) 104)) (-3739 (((-656 (-656 (-962 (-227)))) $) 180)) (-3570 (((-876) $) 194))) -(((-30) (-13 (-974) (-10 -8 (-15 -2918 ($ (-971 (-576)) (-1197) (-1197) (-1115 (-419 (-576))) (-1115 (-419 (-576))))) (-15 -3823 ($ $ (-227)))))) (T -30)) -((-2918 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-971 (-576))) (-5 *3 (-1197)) (-5 *4 (-1115 (-419 (-576)))) (-5 *1 (-30)))) (-3823 (*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30))))) -(-13 (-974) (-10 -8 (-15 -2918 ($ (-971 (-576)) (-1197) (-1197) (-1115 (-419 (-576))) (-1115 (-419 (-576))))) (-15 -3823 ($ $ (-227))))) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 17) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2641 (((-1156) $) 11)) (-4055 (((-112) $ $) NIL)) (-3516 (((-1156) $) 9)) (-2925 (((-112) $ $) NIL))) -(((-31) (-13 (-1104) (-10 -8 (-15 -3516 ((-1156) $)) (-15 -2641 ((-1156) $))))) (T -31)) -((-3516 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-31)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-31))))) -(-13 (-1104) (-10 -8 (-15 -3516 ((-1156) $)) (-15 -2641 ((-1156) $)))) -((-2607 ((|#2| (-1193 |#2|) (-1197)) 41)) (-1777 (((-115) (-115)) 55)) (-3971 (((-1193 |#2|) (-624 |#2|)) 149 (|has| |#1| (-1059 (-576))))) (-3226 ((|#2| |#1| (-576)) 137 (|has| |#1| (-1059 (-576))))) (-4007 ((|#2| (-1193 |#2|) |#2|) 29)) (-1789 (((-876) (-656 |#2|)) 86)) (-3867 ((|#2| |#2|) 144 (|has| |#1| (-1059 (-576))))) (-2468 (((-112) (-115)) 17)) (** ((|#2| |#2| (-419 (-576))) 103 (|has| |#1| (-1059 (-576)))))) -(((-32 |#1| |#2|) (-10 -7 (-15 -2607 (|#2| (-1193 |#2|) (-1197))) (-15 -1777 ((-115) (-115))) (-15 -2468 ((-112) (-115))) (-15 -4007 (|#2| (-1193 |#2|) |#2|)) (-15 -1789 ((-876) (-656 |#2|))) (IF (|has| |#1| (-1059 (-576))) (PROGN (-15 ** (|#2| |#2| (-419 (-576)))) (-15 -3971 ((-1193 |#2|) (-624 |#2|))) (-15 -3867 (|#2| |#2|)) (-15 -3226 (|#2| |#1| (-576)))) |%noBranch|)) (-568) (-442 |#1|)) (T -32)) -((-3226 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *2 (-442 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1059 *4)) (-4 *3 (-568)))) (-3867 (*1 *2 *2) (-12 (-4 *3 (-1059 (-576))) (-4 *3 (-568)) (-5 *1 (-32 *3 *2)) (-4 *2 (-442 *3)))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-624 *5)) (-4 *5 (-442 *4)) (-4 *4 (-1059 (-576))) (-4 *4 (-568)) (-5 *2 (-1193 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-1059 (-576))) (-4 *4 (-568)) (-5 *1 (-32 *4 *2)) (-4 *2 (-442 *4)))) (-1789 (*1 *2 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-568)) (-5 *2 (-876)) (-5 *1 (-32 *4 *5)))) (-4007 (*1 *2 *3 *2) (-12 (-5 *3 (-1193 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-32 *4 *2)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-442 *4)))) (-1777 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-32 *3 *4)) (-4 *4 (-442 *3)))) (-2607 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *2)) (-5 *4 (-1197)) (-4 *2 (-442 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-568))))) -(-10 -7 (-15 -2607 (|#2| (-1193 |#2|) (-1197))) (-15 -1777 ((-115) (-115))) (-15 -2468 ((-112) (-115))) (-15 -4007 (|#2| (-1193 |#2|) |#2|)) (-15 -1789 ((-876) (-656 |#2|))) (IF (|has| |#1| (-1059 (-576))) (PROGN (-15 ** (|#2| |#2| (-419 (-576)))) (-15 -3971 ((-1193 |#2|) (-624 |#2|))) (-15 -3867 (|#2| |#2|)) (-15 -3226 (|#2| |#1| (-576)))) |%noBranch|)) -((-1808 (((-112) $ (-783)) 20)) (-3886 (($) 10)) (-3870 (((-112) $ (-783)) 19)) (-1330 (((-112) $ (-783)) 17)) (-4040 (((-112) $ $) 8)) (-3973 (((-112) $) 15))) -(((-33 |#1|) (-10 -8 (-15 -3886 (|#1|)) (-15 -1808 ((-112) |#1| (-783))) (-15 -3870 ((-112) |#1| (-783))) (-15 -1330 ((-112) |#1| (-783))) (-15 -3973 ((-112) |#1|)) (-15 -4040 ((-112) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -3886 (|#1|)) (-15 -1808 ((-112) |#1| (-783))) (-15 -3870 ((-112) |#1| (-783))) (-15 -1330 ((-112) |#1| (-783))) (-15 -3973 ((-112) |#1|)) (-15 -4040 ((-112) |#1| |#1|))) -((-1808 (((-112) $ (-783)) 8)) (-3886 (($) 7 T CONST)) (-3870 (((-112) $ (-783)) 9)) (-1330 (((-112) $ (-783)) 10)) (-4040 (((-112) $ $) 14)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-1870 (($ $) 13)) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-2108 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) (-4166 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) (-2108 (*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) (-4166 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *4)))) (-2992 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) (-3119 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) (-2992 (*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) (-3119 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-442 |t#1|) (-10 -8 (-15 -2108 ($ $)) (-15 -4166 ((-656 $) $)) (-15 -2108 ($ $ (-1197))) (-15 -4166 ((-656 $) $ (-1197))) (-15 -2992 ($ $)) (-15 -3119 ((-656 $) $)) (-15 -2992 ($ $ (-1197))) (-15 -3119 ((-656 $) $ (-1197))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 #1=(-419 (-971 |#1|))) |has| |#1| (-568)) ((-628 (-576)) . T) ((-628 #2=(-624 $)) . T) ((-628 #3=(-971 |#1|)) |has| |#1| (-1070)) ((-628 #4=(-1197)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-907 (-390))) |has| |#1| (-626 (-907 (-390)))) ((-626 (-907 (-576))) |has| |#1| (-626 (-907 (-576)))) ((-248) . T) ((-300) . T) ((-317) . T) ((-319 $) . T) ((-312) . T) ((-374) . T) ((-388 |#1|) |has| |#1| (-1070)) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-442 |#1|) . T) ((-464) . T) ((-485) |has| |#1| (-485)) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) -2759 (|has| |#1| (-1070)) (|has| |#1| (-174))) ((-658 $) . T) ((-660 #0#) . T) ((-660 #5=(-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))) ((-660 |#1|) -2759 (|has| |#1| (-1070)) (|has| |#1| (-174))) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) . T) ((-651 #5#) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))) ((-651 |#1|) |has| |#1| (-1070)) ((-729 #0#) . T) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) . T) ((-738) . T) ((-911 $ #6=(-1197)) |has| |#1| (-1070)) ((-917 #6#) |has| |#1| (-1070)) ((-919 #6#) |has| |#1| (-1070)) ((-901 (-390)) |has| |#1| (-901 (-390))) ((-901 (-576)) |has| |#1| (-901 (-576))) ((-899 |#1|) . T) ((-939) . T) ((-1023) . T) ((-1059 (-419 (-576))) -2759 (|has| |#1| (-1059 (-419 (-576)))) (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576))))) ((-1059 #1#) |has| |#1| (-568)) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 #2#) . T) ((-1059 #3#) |has| |#1| (-1070)) ((-1059 #4#) . T) ((-1059 |#1|) . T) ((-1072 #0#) . T) ((-1072 |#1|) |has| |#1| (-174)) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 |#1|) |has| |#1| (-174)) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T)) +((-4305 (((-1115 (-227)) $) NIL)) (-4293 (((-1115 (-227)) $) NIL)) (-4092 (($ $ (-227)) 164)) (-3217 (($ (-971 (-576)) (-1197) (-1197) (-1115 (-419 (-576))) (-1115 (-419 (-576)))) 104)) (-2472 (((-656 (-656 (-962 (-227)))) $) 180)) (-3569 (((-876) $) 194))) +(((-30) (-13 (-974) (-10 -8 (-15 -3217 ($ (-971 (-576)) (-1197) (-1197) (-1115 (-419 (-576))) (-1115 (-419 (-576))))) (-15 -4092 ($ $ (-227)))))) (T -30)) +((-3217 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-971 (-576))) (-5 *3 (-1197)) (-5 *4 (-1115 (-419 (-576)))) (-5 *1 (-30)))) (-4092 (*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30))))) +(-13 (-974) (-10 -8 (-15 -3217 ($ (-971 (-576)) (-1197) (-1197) (-1115 (-419 (-576))) (-1115 (-419 (-576))))) (-15 -4092 ($ $ (-227))))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 17) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2640 (((-1156) $) 11)) (-2399 (((-112) $ $) NIL)) (-3515 (((-1156) $) 9)) (-2924 (((-112) $ $) NIL))) +(((-31) (-13 (-1104) (-10 -8 (-15 -3515 ((-1156) $)) (-15 -2640 ((-1156) $))))) (T -31)) +((-3515 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-31)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-31))))) +(-13 (-1104) (-10 -8 (-15 -3515 ((-1156) $)) (-15 -2640 ((-1156) $)))) +((-2108 ((|#2| (-1193 |#2|) (-1197)) 41)) (-1776 (((-115) (-115)) 55)) (-2913 (((-1193 |#2|) (-624 |#2|)) 149 (|has| |#1| (-1059 (-576))))) (-4289 ((|#2| |#1| (-576)) 137 (|has| |#1| (-1059 (-576))))) (-3248 ((|#2| (-1193 |#2|) |#2|) 29)) (-4102 (((-876) (-656 |#2|)) 86)) (-1346 ((|#2| |#2|) 144 (|has| |#1| (-1059 (-576))))) (-1349 (((-112) (-115)) 17)) (** ((|#2| |#2| (-419 (-576))) 103 (|has| |#1| (-1059 (-576)))))) +(((-32 |#1| |#2|) (-10 -7 (-15 -2108 (|#2| (-1193 |#2|) (-1197))) (-15 -1776 ((-115) (-115))) (-15 -1349 ((-112) (-115))) (-15 -3248 (|#2| (-1193 |#2|) |#2|)) (-15 -4102 ((-876) (-656 |#2|))) (IF (|has| |#1| (-1059 (-576))) (PROGN (-15 ** (|#2| |#2| (-419 (-576)))) (-15 -2913 ((-1193 |#2|) (-624 |#2|))) (-15 -1346 (|#2| |#2|)) (-15 -4289 (|#2| |#1| (-576)))) |%noBranch|)) (-568) (-442 |#1|)) (T -32)) +((-4289 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *2 (-442 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1059 *4)) (-4 *3 (-568)))) (-1346 (*1 *2 *2) (-12 (-4 *3 (-1059 (-576))) (-4 *3 (-568)) (-5 *1 (-32 *3 *2)) (-4 *2 (-442 *3)))) (-2913 (*1 *2 *3) (-12 (-5 *3 (-624 *5)) (-4 *5 (-442 *4)) (-4 *4 (-1059 (-576))) (-4 *4 (-568)) (-5 *2 (-1193 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-1059 (-576))) (-4 *4 (-568)) (-5 *1 (-32 *4 *2)) (-4 *2 (-442 *4)))) (-4102 (*1 *2 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-568)) (-5 *2 (-876)) (-5 *1 (-32 *4 *5)))) (-3248 (*1 *2 *3 *2) (-12 (-5 *3 (-1193 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-32 *4 *2)))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-442 *4)))) (-1776 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-32 *3 *4)) (-4 *4 (-442 *3)))) (-2108 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *2)) (-5 *4 (-1197)) (-4 *2 (-442 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-568))))) +(-10 -7 (-15 -2108 (|#2| (-1193 |#2|) (-1197))) (-15 -1776 ((-115) (-115))) (-15 -1349 ((-112) (-115))) (-15 -3248 (|#2| (-1193 |#2|) |#2|)) (-15 -4102 ((-876) (-656 |#2|))) (IF (|has| |#1| (-1059 (-576))) (PROGN (-15 ** (|#2| |#2| (-419 (-576)))) (-15 -2913 ((-1193 |#2|) (-624 |#2|))) (-15 -1346 (|#2| |#2|)) (-15 -4289 (|#2| |#1| (-576)))) |%noBranch|)) +((-4264 (((-112) $ (-783)) 20)) (-3404 (($) 10)) (-1368 (((-112) $ (-783)) 19)) (-2883 (((-112) $ (-783)) 17)) (-2252 (((-112) $ $) 8)) (-2940 (((-112) $) 15))) +(((-33 |#1|) (-10 -8 (-15 -3404 (|#1|)) (-15 -4264 ((-112) |#1| (-783))) (-15 -1368 ((-112) |#1| (-783))) (-15 -2883 ((-112) |#1| (-783))) (-15 -2940 ((-112) |#1|)) (-15 -2252 ((-112) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -3404 (|#1|)) (-15 -4264 ((-112) |#1| (-783))) (-15 -1368 ((-112) |#1| (-783))) (-15 -2883 ((-112) |#1| (-783))) (-15 -2940 ((-112) |#1|)) (-15 -2252 ((-112) |#1| |#1|))) +((-4264 (((-112) $ (-783)) 8)) (-3404 (($) 7 T CONST)) (-1368 (((-112) $ (-783)) 9)) (-2883 (((-112) $ (-783)) 10)) (-2252 (((-112) $ $) 14)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-1870 (($ $) 13)) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-34) (-141)) (T -34)) -((-4040 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1870 (*1 *1 *1) (-4 *1 (-34))) (-4225 (*1 *1) (-4 *1 (-34))) (-3973 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1330 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-3870 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-1808 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-3886 (*1 *1) (-4 *1 (-34))) (-3503 (*1 *2 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-34)) (-5 *2 (-783))))) -(-13 (-1238) (-10 -8 (-15 -4040 ((-112) $ $)) (-15 -1870 ($ $)) (-15 -4225 ($)) (-15 -3973 ((-112) $)) (-15 -1330 ((-112) $ (-783))) (-15 -3870 ((-112) $ (-783))) (-15 -1808 ((-112) $ (-783))) (-15 -3886 ($) -1480) (IF (|has| $ (-6 -4465)) (-15 -3503 ((-783) $)) |%noBranch|))) +((-2252 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1870 (*1 *1 *1) (-4 *1 (-34))) (-3579 (*1 *1) (-4 *1 (-34))) (-2940 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2883 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-1368 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-4264 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-3404 (*1 *1) (-4 *1 (-34))) (-3502 (*1 *2 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-34)) (-5 *2 (-783))))) +(-13 (-1238) (-10 -8 (-15 -2252 ((-112) $ $)) (-15 -1870 ($ $)) (-15 -3579 ($)) (-15 -2940 ((-112) $)) (-15 -2883 ((-112) $ (-783))) (-15 -1368 ((-112) $ (-783))) (-15 -4264 ((-112) $ (-783))) (-15 -3404 ($) -1480) (IF (|has| $ (-6 -4464)) (-15 -3502 ((-783) $)) |%noBranch|))) (((-1238) . T)) -((-2791 (($ $) 11)) (-4071 (($ $) 10)) (-2815 (($ $) 9)) (-4388 (($ $) 8)) (-2803 (($ $) 7)) (-4083 (($ $) 6))) +((-2790 (($ $) 11)) (-4070 (($ $) 10)) (-2814 (($ $) 9)) (-4387 (($ $) 8)) (-2802 (($ $) 7)) (-4082 (($ $) 6))) (((-35) (-141)) (T -35)) -((-2791 (*1 *1 *1) (-4 *1 (-35))) (-4071 (*1 *1 *1) (-4 *1 (-35))) (-2815 (*1 *1 *1) (-4 *1 (-35))) (-4388 (*1 *1 *1) (-4 *1 (-35))) (-2803 (*1 *1 *1) (-4 *1 (-35))) (-4083 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -4083 ($ $)) (-15 -2803 ($ $)) (-15 -4388 ($ $)) (-15 -2815 ($ $)) (-15 -4071 ($ $)) (-15 -2791 ($ $)))) -((-3489 (((-112) $ $) 20 (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102))))) (-3106 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 127)) (-2898 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 150)) (-4426 (($ $) 148)) (-4128 (($) 73) (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) 72)) (-2047 (((-1293) $ |#1| |#1|) 100 (|has| $ (-6 -4466))) (((-1293) $ (-576) (-576)) 180 (|has| $ (-6 -4466)))) (-2587 (($ $ (-576)) 161 (|has| $ (-6 -4466)))) (-1710 (((-112) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 211) (((-112) $) 205 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-861)))) (-4298 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 202 (|has| $ (-6 -4466))) (($ $) 201 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-861)) (|has| $ (-6 -4466))))) (-1795 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 212) (($ $) 206 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-861)))) (-1808 (((-112) $ (-783)) 8)) (-2647 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 136 (|has| $ (-6 -4466)))) (-4364 (($ $ $) 157 (|has| $ (-6 -4466)))) (-2297 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 159 (|has| $ (-6 -4466)))) (-1350 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 155 (|has| $ (-6 -4466)))) (-3756 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ (-576) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 191 (|has| $ (-6 -4466))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ (-1255 (-576)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 162 (|has| $ (-6 -4466))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ "last" (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 160 (|has| $ (-6 -4466))) (($ $ "rest" $) 158 (|has| $ (-6 -4466))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ "first" (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 156 (|has| $ (-6 -4466))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ "value" (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 135 (|has| $ (-6 -4466)))) (-1894 (($ $ (-656 $)) 134 (|has| $ (-6 -4466)))) (-2300 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 46 (|has| $ (-6 -4465))) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 218)) (-1974 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 56 (|has| $ (-6 -4465))) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 177 (|has| $ (-6 -4465)))) (-2883 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 149)) (-2197 (((-3 |#2| "failed") |#1| $) 62)) (-3886 (($) 7 T CONST)) (-3990 (($ $) 203 (|has| $ (-6 -4466)))) (-3836 (($ $) 213)) (-3593 (($ $ (-783)) 144) (($ $) 142)) (-1703 (($ $) 216 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (-1415 (($ $) 59 (-2760 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| $ (-6 -4465))) (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| $ (-6 -4465)))))) (-1671 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 48 (|has| $ (-6 -4465))) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 47 (|has| $ (-6 -4465))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 222) (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 217 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (-3946 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| $ (-6 -4465)))) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 55 (|has| $ (-6 -4465))) (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 179 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| $ (-6 -4465)))) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 176 (|has| $ (-6 -4465)))) (-3686 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 57 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| $ (-6 -4465)))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 54 (|has| $ (-6 -4465))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 53 (|has| $ (-6 -4465))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 178 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| $ (-6 -4465)))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 175 (|has| $ (-6 -4465))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 174 (|has| $ (-6 -4465)))) (-4335 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4466))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ (-576) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 192 (|has| $ (-6 -4466)))) (-4274 ((|#2| $ |#1|) 89) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ (-576)) 190)) (-4419 (((-112) $) 194)) (-3660 (((-576) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 210) (((-576) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 209 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121))) (((-576) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ (-576)) 208 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (-3966 (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 31 (|has| $ (-6 -4465))) (((-656 |#2|) $) 80 (|has| $ (-6 -4465))) (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 116 (|has| $ (-6 -4465)))) (-2387 (((-656 $) $) 125)) (-3295 (((-112) $ $) 133 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (-4141 (($ (-783) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 170)) (-3870 (((-112) $ (-783)) 9)) (-2924 ((|#1| $) 97 (|has| |#1| (-861))) (((-576) $) 182 (|has| (-576) (-861)))) (-3125 (($ $ $) 195 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-861)))) (-2453 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ $) 219) (($ $ $) 215 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-861)))) (-3391 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ $) 214) (($ $ $) 207 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-861)))) (-2014 (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 30 (|has| $ (-6 -4465))) (((-656 |#2|) $) 81 (|has| $ (-6 -4465))) (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 117 (|has| $ (-6 -4465)))) (-1612 (((-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| $ (-6 -4465)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4465)))) (((-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 119 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| $ (-6 -4465))))) (-2137 ((|#1| $) 96 (|has| |#1| (-861))) (((-576) $) 183 (|has| (-576) (-861)))) (-3133 (($ $ $) 196 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-861)))) (-4323 (($ (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 35 (|has| $ (-6 -4466))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4466))) (($ (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 112 (|has| $ (-6 -4466)))) (-4117 (($ (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 111)) (-1650 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 227)) (-1330 (((-112) $ (-783)) 10)) (-2353 (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 130)) (-3443 (((-112) $) 126)) (-3699 (((-1179) $) 23 (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| |#2| (-1121)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121))))) (-3969 (($ $ (-783)) 147) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 145)) (-3203 (((-656 |#1|) $) 64)) (-4008 (((-112) |#1| $) 65)) (-1597 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 40)) (-1901 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 41) (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ (-576)) 221) (($ $ $ (-576)) 220)) (-2176 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ (-576)) 164) (($ $ $ (-576)) 163)) (-4234 (((-656 |#1|) $) 94) (((-656 (-576)) $) 185)) (-3354 (((-112) |#1| $) 93) (((-112) (-576) $) 186)) (-1450 (((-1141) $) 22 (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| |#2| (-1121)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121))))) (-3581 ((|#2| $) 98 (|has| |#1| (-861))) (($ $ (-783)) 141) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 139)) (-1541 (((-3 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 52) (((-3 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 173)) (-4046 (($ $ |#2|) 99 (|has| $ (-6 -4466))) (($ $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 181 (|has| $ (-6 -4466)))) (-3449 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 42)) (-3166 (((-112) $) 193)) (-4320 (((-112) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 33 (|has| $ (-6 -4465))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4465))) (((-112) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 114 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))))) 27 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) 26 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 25 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) 24 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) 87 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) 85 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) 84 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) 123 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 122 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) 121 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-656 (-304 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))))) 120 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121))))) (-4040 (((-112) $ $) 14)) (-3845 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121)))) (((-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 184 (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121))))) (-2281 (((-656 |#2|) $) 92) (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 187)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-2797 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ (-576) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 189) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ (-576)) 188) (($ $ (-1255 (-576))) 171) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ "last") 146) (($ $ "rest") 143) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ "first") 140) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ "value") 128)) (-2789 (((-576) $ $) 131)) (-2271 (($) 50) (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) 49)) (-2161 (($ $ (-576)) 224) (($ $ (-1255 (-576))) 223)) (-3466 (($ $ (-576)) 166) (($ $ (-1255 (-576))) 165)) (-3617 (((-112) $) 129)) (-2934 (($ $) 153)) (-3852 (($ $) 154 (|has| $ (-6 -4466)))) (-2687 (((-783) $) 152)) (-3369 (($ $) 151)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 32 (|has| $ (-6 -4465))) (((-783) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| $ (-6 -4465)))) (((-783) |#2| $) 82 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4465)))) (((-783) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4465))) (((-783) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 118 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| $ (-6 -4465)))) (((-783) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 115 (|has| $ (-6 -4465)))) (-3025 (($ $ $ (-576)) 204 (|has| $ (-6 -4466)))) (-1870 (($ $) 13)) (-4172 (((-548) $) 60 (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-626 (-548))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-626 (-548)))))) (-3582 (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) 51) (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) 172)) (-2974 (($ $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 226) (($ $ $) 225)) (-1615 (($ $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 169) (($ (-656 $)) 168) (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 138) (($ $ $) 137)) (-3570 (((-876) $) 18 (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-625 (-876)))))) (-2902 (((-656 $) $) 124)) (-2621 (((-112) $ $) 132 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (-4055 (((-112) $ $) 21 (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102))))) (-3943 (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) 43)) (-3977 (((-3 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) "failed") |#1| $) 110)) (-3321 (((-112) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 34 (|has| $ (-6 -4465))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4465))) (((-112) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 113 (|has| $ (-6 -4465)))) (-2992 (((-112) $ $) 197 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-861)))) (-2964 (((-112) $ $) 199 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-861)))) (-2925 (((-112) $ $) 19 (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102))))) (-2978 (((-112) $ $) 198 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-861)))) (-2950 (((-112) $ $) 200 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-861)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-2790 (*1 *1 *1) (-4 *1 (-35))) (-4070 (*1 *1 *1) (-4 *1 (-35))) (-2814 (*1 *1 *1) (-4 *1 (-35))) (-4387 (*1 *1 *1) (-4 *1 (-35))) (-2802 (*1 *1 *1) (-4 *1 (-35))) (-4082 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -4082 ($ $)) (-15 -2802 ($ $)) (-15 -4387 ($ $)) (-15 -2814 ($ $)) (-15 -4070 ($ $)) (-15 -2790 ($ $)))) +((-3488 (((-112) $ $) 20 (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102))))) (-3104 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 127)) (-2898 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 150)) (-4424 (($ $) 148)) (-4127 (($) 73) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) 72)) (-1512 (((-1293) $ |#1| |#1|) 100 (|has| $ (-6 -4465))) (((-1293) $ (-576) (-576)) 180 (|has| $ (-6 -4465)))) (-3203 (($ $ (-576)) 161 (|has| $ (-6 -4465)))) (-1390 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 211) (((-112) $) 205 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-861)))) (-3039 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 202 (|has| $ (-6 -4465))) (($ $) 201 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-861)) (|has| $ (-6 -4465))))) (-1795 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 212) (($ $) 206 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-861)))) (-4264 (((-112) $ (-783)) 8)) (-2482 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 136 (|has| $ (-6 -4465)))) (-2395 (($ $ $) 157 (|has| $ (-6 -4465)))) (-2089 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 159 (|has| $ (-6 -4465)))) (-1336 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 155 (|has| $ (-6 -4465)))) (-3755 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ (-576) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 191 (|has| $ (-6 -4465))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ (-1255 (-576)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 162 (|has| $ (-6 -4465))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ "last" (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 160 (|has| $ (-6 -4465))) (($ $ "rest" $) 158 (|has| $ (-6 -4465))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ "first" (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 156 (|has| $ (-6 -4465))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ "value" (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 135 (|has| $ (-6 -4465)))) (-3829 (($ $ (-656 $)) 134 (|has| $ (-6 -4465)))) (-2123 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 46 (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 218)) (-1974 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 56 (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 177 (|has| $ (-6 -4464)))) (-2882 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 149)) (-2198 (((-3 |#2| "failed") |#1| $) 62)) (-3404 (($) 7 T CONST)) (-3092 (($ $) 203 (|has| $ (-6 -4465)))) (-3835 (($ $) 213)) (-3592 (($ $ (-783)) 144) (($ $) 142)) (-2495 (($ $) 216 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (-2034 (($ $) 59 (-2759 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| $ (-6 -4464))) (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| $ (-6 -4464)))))) (-2172 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 48 (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 47 (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 222) (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 217 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (-3945 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 55 (|has| $ (-6 -4464))) (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 179 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 176 (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 57 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 54 (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 53 (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 178 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 175 (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 174 (|has| $ (-6 -4464)))) (-4332 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4465))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ (-576) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 192 (|has| $ (-6 -4465)))) (-4272 ((|#2| $ |#1|) 89) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ (-576)) 190)) (-1742 (((-112) $) 194)) (-3659 (((-576) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 210) (((-576) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 209 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121))) (((-576) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ (-576)) 208 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (-3965 (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 31 (|has| $ (-6 -4464))) (((-656 |#2|) $) 80 (|has| $ (-6 -4464))) (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 116 (|has| $ (-6 -4464)))) (-1736 (((-656 $) $) 125)) (-3768 (((-112) $ $) 133 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (-4140 (($ (-783) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 170)) (-1368 (((-112) $ (-783)) 9)) (-3281 ((|#1| $) 97 (|has| |#1| (-861))) (((-576) $) 182 (|has| (-576) (-861)))) (-3124 (($ $ $) 195 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-861)))) (-4330 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ $) 219) (($ $ $) 215 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-861)))) (-2185 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ $) 214) (($ $ $) 207 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-861)))) (-2425 (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 30 (|has| $ (-6 -4464))) (((-656 |#2|) $) 81 (|has| $ (-6 -4464))) (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 117 (|has| $ (-6 -4464)))) (-2885 (((-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464)))) (((-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 119 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| $ (-6 -4464))))) (-4280 ((|#1| $) 96 (|has| |#1| (-861))) (((-576) $) 183 (|has| (-576) (-861)))) (-1441 (($ $ $) 196 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-861)))) (-4326 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 35 (|has| $ (-6 -4465))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4465))) (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 112 (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 111)) (-1649 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 227)) (-2883 (((-112) $ (-783)) 10)) (-2353 (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 130)) (-1508 (((-112) $) 126)) (-2046 (((-1179) $) 23 (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| |#2| (-1121)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121))))) (-3968 (($ $ (-783)) 147) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 145)) (-3200 (((-656 |#1|) $) 64)) (-3259 (((-112) |#1| $) 65)) (-2722 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 40)) (-2597 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 41) (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ (-576)) 221) (($ $ $ (-576)) 220)) (-2176 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ (-576)) 164) (($ $ $ (-576)) 163)) (-3669 (((-656 |#1|) $) 94) (((-656 (-576)) $) 185)) (-3090 (((-112) |#1| $) 93) (((-112) (-576) $) 186)) (-1450 (((-1141) $) 22 (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| |#2| (-1121)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121))))) (-3580 ((|#2| $) 98 (|has| |#1| (-861))) (($ $ (-783)) 141) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 139)) (-3434 (((-3 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) "failed") (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 52) (((-3 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) "failed") (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 173)) (-2304 (($ $ |#2|) 99 (|has| $ (-6 -4465))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 181 (|has| $ (-6 -4465)))) (-1541 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 42)) (-1721 (((-112) $) 193)) (-3252 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 33 (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 114 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))))) 27 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) 26 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 25 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) 24 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) 87 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) 85 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) 84 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) 123 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 122 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) 121 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-656 (-304 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))))) 120 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121))))) (-2252 (((-112) $ $) 14)) (-4282 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 184 (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121))))) (-3207 (((-656 |#2|) $) 92) (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 187)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-2796 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ (-576) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 189) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ (-576)) 188) (($ $ (-1255 (-576))) 171) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ "last") 146) (($ $ "rest") 143) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ "first") 140) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ "value") 128)) (-1335 (((-576) $ $) 131)) (-3101 (($) 50) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) 49)) (-1352 (($ $ (-576)) 224) (($ $ (-1255 (-576))) 223)) (-3465 (($ $ (-576)) 166) (($ $ (-1255 (-576))) 165)) (-3806 (((-112) $) 129)) (-3262 (($ $) 153)) (-4347 (($ $) 154 (|has| $ (-6 -4465)))) (-1619 (((-783) $) 152)) (-3237 (($ $) 151)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 32 (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (((-783) |#2| $) 82 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 118 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 115 (|has| $ (-6 -4464)))) (-2840 (($ $ $ (-576)) 204 (|has| $ (-6 -4465)))) (-1870 (($ $) 13)) (-4171 (((-548) $) 60 (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-626 (-548))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-626 (-548)))))) (-3581 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) 51) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) 172)) (-3631 (($ $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 226) (($ $ $) 225)) (-1615 (($ $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 169) (($ (-656 $)) 168) (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 138) (($ $ $) 137)) (-3569 (((-876) $) 18 (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-625 (-876)))))) (-3059 (((-656 $) $) 124)) (-2247 (((-112) $ $) 132 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (-2399 (((-112) $ $) 21 (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102))))) (-3972 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) 43)) (-3976 (((-3 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) "failed") |#1| $) 110)) (-2708 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 34 (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 113 (|has| $ (-6 -4464)))) (-2990 (((-112) $ $) 197 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-861)))) (-2962 (((-112) $ $) 199 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-861)))) (-2924 (((-112) $ $) 19 (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102))))) (-2978 (((-112) $ $) 198 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-861)))) (-2949 (((-112) $ $) 200 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-861)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-36 |#1| |#2|) (-141) (-1121) (-1121)) (T -36)) -((-3977 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-5 *2 (-2 (|:| -4301 *3) (|:| -4440 *4)))))) -(-13 (-1214 |t#1| |t#2|) (-678 (-2 (|:| -4301 |t#1|) (|:| -4440 |t#2|))) (-10 -8 (-15 -3977 ((-3 (-2 (|:| -4301 |t#1|) (|:| -4440 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T) ((-102) -2760 (|has| |#2| (-1121)) (|has| |#2| (-102)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-861)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102))) ((-625 (-876)) -2760 (|has| |#2| (-1121)) (|has| |#2| (-625 (-876))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-861)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-625 (-876)))) ((-152 #1=(-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T) ((-626 (-548)) |has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-296 #2=(-576) #1#) . T) ((-296 (-1255 (-576)) $) . T) ((-296 |#1| |#2|) . T) ((-298 #2# #1#) . T) ((-298 |#1| |#2|) . T) ((-319 #1#) -12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121))) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-292 #1#) . T) ((-384 #1#) . T) ((-501 #1#) . T) ((-501 |#2|) . T) ((-616 #2# #1#) . T) ((-616 |#1| |#2|) . T) ((-526 #1# #1#) -12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121))) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-622 |#1| |#2|) . T) ((-663 #1#) . T) ((-678 #1#) . T) ((-861) |has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-861)) ((-864) |has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-861)) ((-1031 #1#) . T) ((-1121) -2760 (|has| |#2| (-1121)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-861))) ((-1170 #1#) . T) ((-1214 |#1| |#2|) . T) ((-1238) . T) ((-1276 #1#) . T)) -((-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) 10))) -(((-37 |#1| |#2|) (-10 -8 (-15 -3570 (|#1| |#2|)) (-15 -3570 (|#1| (-576))) (-15 -3570 ((-876) |#1|))) (-38 |#2|) (-174)) (T -37)) -NIL -(-10 -8 (-15 -3570 (|#1| |#2|)) (-15 -3570 (|#1| (-576))) (-15 -3570 ((-876) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-1561 (((-3 $ "failed") $) 37)) (-4193 (((-112) $) 35)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +((-3976 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-5 *2 (-2 (|:| -4300 *3) (|:| -4439 *4)))))) +(-13 (-1214 |t#1| |t#2|) (-678 (-2 (|:| -4300 |t#1|) (|:| -4439 |t#2|))) (-10 -8 (-15 -3976 ((-3 (-2 (|:| -4300 |t#1|) (|:| -4439 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T) ((-102) -2759 (|has| |#2| (-1121)) (|has| |#2| (-102)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-861)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102))) ((-625 (-876)) -2759 (|has| |#2| (-1121)) (|has| |#2| (-625 (-876))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-861)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-625 (-876)))) ((-152 #1=(-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T) ((-626 (-548)) |has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-296 #2=(-576) #1#) . T) ((-296 (-1255 (-576)) $) . T) ((-296 |#1| |#2|) . T) ((-298 #2# #1#) . T) ((-298 |#1| |#2|) . T) ((-319 #1#) -12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121))) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-292 #1#) . T) ((-384 #1#) . T) ((-501 #1#) . T) ((-501 |#2|) . T) ((-616 #2# #1#) . T) ((-616 |#1| |#2|) . T) ((-526 #1# #1#) -12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121))) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-622 |#1| |#2|) . T) ((-663 #1#) . T) ((-678 #1#) . T) ((-861) |has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-861)) ((-864) |has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-861)) ((-1031 #1#) . T) ((-1121) -2759 (|has| |#2| (-1121)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-861))) ((-1170 #1#) . T) ((-1214 |#1| |#2|) . T) ((-1238) . T) ((-1276 #1#) . T)) +((-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) 10))) +(((-37 |#1| |#2|) (-10 -8 (-15 -3569 (|#1| |#2|)) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) (-38 |#2|) (-174)) (T -37)) +NIL +(-10 -8 (-15 -3569 (|#1| |#2|)) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-3673 (((-3 $ "failed") $) 37)) (-1351 (((-112) $) 35)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) (((-38 |#1|) (-141) (-174)) (T -38)) NIL (-13 (-1070) (-729 |t#1|) (-628 |t#1|)) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-2488 (((-430 |#1|) |#1|) 41)) (-1828 (((-430 |#1|) |#1|) 30) (((-430 |#1|) |#1| (-656 (-48))) 33)) (-1992 (((-112) |#1|) 59))) -(((-39 |#1|) (-10 -7 (-15 -1828 ((-430 |#1|) |#1| (-656 (-48)))) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -2488 ((-430 |#1|) |#1|)) (-15 -1992 ((-112) |#1|))) (-1264 (-48))) (T -39)) -((-1992 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48))))) (-2488 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48))))) (-1828 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48))))) (-1828 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48)))))) -(-10 -7 (-15 -1828 ((-430 |#1|) |#1| (-656 (-48)))) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -2488 ((-430 |#1|) |#1|)) (-15 -1992 ((-112) |#1|))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2306 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-374)))) (-2757 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3788 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-4101 (((-701 (-419 |#2|)) (-1288 $)) NIL) (((-701 (-419 |#2|))) NIL)) (-2210 (((-419 |#2|) $) NIL)) (-4183 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-419 |#2|) (-360)))) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3921 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-4016 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2098 (((-783)) NIL (|has| (-419 |#2|) (-379)))) (-3413 (((-112)) NIL)) (-4306 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| (-419 |#2|) (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 |#2|) (-1059 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) NIL)) (-2860 (((-576) $) NIL (|has| (-419 |#2|) (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| (-419 |#2|) (-1059 (-419 (-576))))) (((-419 |#2|) $) NIL)) (-4119 (($ (-1288 (-419 |#2|)) (-1288 $)) NIL) (($ (-1288 (-419 |#2|))) 61) (($ (-1288 |#2|) |#2|) 131)) (-2554 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-360)))) (-3429 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-1420 (((-701 (-419 |#2|)) $ (-1288 $)) NIL) (((-701 (-419 |#2|)) $) NIL)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-701 $) (-1288 $)) NIL) (((-701 (-419 |#2|)) (-701 $)) NIL)) (-2624 (((-1288 $) (-1288 $)) NIL)) (-3686 (($ |#3|) NIL) (((-3 $ "failed") (-419 |#3|)) NIL (|has| (-419 |#2|) (-374)))) (-1561 (((-3 $ "failed") $) NIL)) (-3670 (((-656 (-656 |#1|))) NIL (|has| |#1| (-379)))) (-4180 (((-112) |#1| |#1|) NIL)) (-3734 (((-940)) NIL)) (-1836 (($) NIL (|has| (-419 |#2|) (-379)))) (-4233 (((-112)) NIL)) (-2263 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3441 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL (|has| (-419 |#2|) (-374)))) (-3767 (($ $) NIL)) (-2005 (($) NIL (|has| (-419 |#2|) (-360)))) (-4090 (((-112) $) NIL (|has| (-419 |#2|) (-360)))) (-2910 (($ $ (-783)) NIL (|has| (-419 |#2|) (-360))) (($ $) NIL (|has| (-419 |#2|) (-360)))) (-4249 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-3917 (((-940) $) NIL (|has| (-419 |#2|) (-360))) (((-845 (-940)) $) NIL (|has| (-419 |#2|) (-360)))) (-4193 (((-112) $) NIL)) (-3247 (((-783)) NIL)) (-1409 (((-1288 $) (-1288 $)) 106)) (-1381 (((-419 |#2|) $) NIL)) (-3613 (((-656 (-971 |#1|)) (-1197)) NIL (|has| |#1| (-374)))) (-2240 (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-360)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2731 ((|#3| $) NIL (|has| (-419 |#2|) (-374)))) (-4401 (((-940) $) NIL (|has| (-419 |#2|) (-379)))) (-3672 ((|#3| $) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-1288 $) $) NIL) (((-701 (-419 |#2|)) (-1288 $)) NIL)) (-3458 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3699 (((-1179) $) NIL)) (-3953 (((-1293) (-783)) 84)) (-2154 (((-701 (-419 |#2|))) 56)) (-2212 (((-701 (-419 |#2|))) 49)) (-2050 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-2854 (($ (-1288 |#2|) |#2|) 132)) (-1830 (((-701 (-419 |#2|))) 50)) (-3576 (((-701 (-419 |#2|))) 48)) (-1609 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130)) (-2078 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) 68)) (-3283 (((-1288 $)) 47)) (-3573 (((-1288 $)) 46)) (-1352 (((-112) $) NIL)) (-1569 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3540 (($) NIL (|has| (-419 |#2|) (-360)) CONST)) (-3224 (($ (-940)) NIL (|has| (-419 |#2|) (-379)))) (-2451 (((-3 |#2| "failed")) NIL)) (-1450 (((-1141) $) NIL)) (-3884 (((-783)) NIL)) (-4129 (($) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| (-419 |#2|) (-374)))) (-3498 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2406 (((-656 (-2 (|:| -1828 (-576)) (|:| -3422 (-576))))) NIL (|has| (-419 |#2|) (-360)))) (-1828 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-3476 (((-3 $ "failed") $ $) NIL (|has| (-419 |#2|) (-374)))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-1967 (((-783) $) NIL (|has| (-419 |#2|) (-374)))) (-2797 ((|#1| $ |#1| |#1|) NIL)) (-3334 (((-3 |#2| "failed")) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-4352 (((-419 |#2|) (-1288 $)) NIL) (((-419 |#2|)) 44)) (-3793 (((-783) $) NIL (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) NIL (|has| (-419 |#2|) (-360)))) (-2775 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) 126) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2760 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2760 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2760 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197)) NIL (-2760 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-783)) NIL (-2760 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-2760 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-2433 (((-701 (-419 |#2|)) (-1288 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374)))) (-3867 ((|#3|) 55)) (-1535 (($) NIL (|has| (-419 |#2|) (-360)))) (-4152 (((-1288 (-419 |#2|)) $ (-1288 $)) NIL) (((-701 (-419 |#2|)) (-1288 $) (-1288 $)) NIL) (((-1288 (-419 |#2|)) $) 62) (((-701 (-419 |#2|)) (-1288 $)) 107)) (-4172 (((-1288 (-419 |#2|)) $) NIL) (($ (-1288 (-419 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| (-419 |#2|) (-360)))) (-2329 (((-1288 $) (-1288 $)) NIL)) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 |#2|)) NIL) (($ (-419 (-576))) NIL (-2760 (|has| (-419 |#2|) (-1059 (-419 (-576)))) (|has| (-419 |#2|) (-374)))) (($ $) NIL (|has| (-419 |#2|) (-374)))) (-4336 (($ $) NIL (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-146)))) (-4281 ((|#3| $) NIL)) (-3996 (((-783)) NIL T CONST)) (-1628 (((-112)) 42)) (-1495 (((-112) |#1|) 54) (((-112) |#2|) 138)) (-4055 (((-112) $ $) NIL)) (-1593 (((-1288 $)) NIL)) (-2672 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-3753 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2826 (((-112)) NIL)) (-2721 (($) 17 T CONST)) (-2732 (($) 27 T CONST)) (-2020 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2760 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2760 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2760 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197)) NIL (-2760 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-783)) NIL (-2760 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-2760 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| (-419 |#2|) (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 |#2|)) NIL) (($ (-419 |#2|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) NIL (|has| (-419 |#2|) (-374))))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-353 |#1| |#2| |#3|) (-10 -7 (-15 -3953 ((-1293) (-783))))) (-374) (-1264 |#1|) (-1264 (-419 |#2|)) |#3|) (T -40)) -((-3953 (*1 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-4 *5 (-1264 *4)) (-5 *2 (-1293)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1264 (-419 *5))) (-14 *7 *6)))) -(-13 (-353 |#1| |#2| |#3|) (-10 -7 (-15 -3953 ((-1293) (-783))))) -((-1993 ((|#2| |#2|) 47)) (-1871 ((|#2| |#2|) 139 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1059 (-576))))))) (-3616 ((|#2| |#2|) 100 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1059 (-576))))))) (-4347 ((|#2| |#2|) 101 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1059 (-576))))))) (-2407 ((|#2| (-115) |#2| (-783)) 135 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1059 (-576))))))) (-4012 (((-1193 |#2|) |#2|) 44)) (-2810 ((|#2| |#2| (-656 (-624 |#2|))) 18) ((|#2| |#2| (-656 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-41 |#1| |#2|) (-10 -7 (-15 -1993 (|#2| |#2|)) (-15 -2810 (|#2| |#2|)) (-15 -2810 (|#2| |#2| |#2|)) (-15 -2810 (|#2| |#2| (-656 |#2|))) (-15 -2810 (|#2| |#2| (-656 (-624 |#2|)))) (-15 -4012 ((-1193 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1059 (-576)))) (IF (|has| |#2| (-442 |#1|)) (PROGN (-15 -4347 (|#2| |#2|)) (-15 -3616 (|#2| |#2|)) (-15 -1871 (|#2| |#2|)) (-15 -2407 (|#2| (-115) |#2| (-783)))) |%noBranch|) |%noBranch|)) (-568) (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 |#1| (-624 $)) $)) (-15 -1581 ((-1146 |#1| (-624 $)) $)) (-15 -3570 ($ (-1146 |#1| (-624 $))))))) (T -41)) -((-2407 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1059 (-576)))) (-4 *5 (-568)) (-5 *1 (-41 *5 *2)) (-4 *2 (-442 *5)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *5 (-624 $)) $)) (-15 -1581 ((-1146 *5 (-624 $)) $)) (-15 -3570 ($ (-1146 *5 (-624 $))))))))) (-1871 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) (-15 -1581 ((-1146 *3 (-624 $)) $)) (-15 -3570 ($ (-1146 *3 (-624 $))))))))) (-3616 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) (-15 -1581 ((-1146 *3 (-624 $)) $)) (-15 -3570 ($ (-1146 *3 (-624 $))))))))) (-4347 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) (-15 -1581 ((-1146 *3 (-624 $)) $)) (-15 -3570 ($ (-1146 *3 (-624 $))))))))) (-4012 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-1193 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *4 (-624 $)) $)) (-15 -1581 ((-1146 *4 (-624 $)) $)) (-15 -3570 ($ (-1146 *4 (-624 $))))))))) (-2810 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-624 *2))) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *4 (-624 $)) $)) (-15 -1581 ((-1146 *4 (-624 $)) $)) (-15 -3570 ($ (-1146 *4 (-624 $))))))) (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) (-2810 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *4 (-624 $)) $)) (-15 -1581 ((-1146 *4 (-624 $)) $)) (-15 -3570 ($ (-1146 *4 (-624 $))))))) (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) (-2810 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) (-15 -1581 ((-1146 *3 (-624 $)) $)) (-15 -3570 ($ (-1146 *3 (-624 $))))))))) (-2810 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) (-15 -1581 ((-1146 *3 (-624 $)) $)) (-15 -3570 ($ (-1146 *3 (-624 $))))))))) (-1993 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) (-15 -1581 ((-1146 *3 (-624 $)) $)) (-15 -3570 ($ (-1146 *3 (-624 $)))))))))) -(-10 -7 (-15 -1993 (|#2| |#2|)) (-15 -2810 (|#2| |#2|)) (-15 -2810 (|#2| |#2| |#2|)) (-15 -2810 (|#2| |#2| (-656 |#2|))) (-15 -2810 (|#2| |#2| (-656 (-624 |#2|)))) (-15 -4012 ((-1193 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1059 (-576)))) (IF (|has| |#2| (-442 |#1|)) (PROGN (-15 -4347 (|#2| |#2|)) (-15 -3616 (|#2| |#2|)) (-15 -1871 (|#2| |#2|)) (-15 -2407 (|#2| (-115) |#2| (-783)))) |%noBranch|) |%noBranch|)) +((-3455 (((-430 |#1|) |#1|) 41)) (-1828 (((-430 |#1|) |#1|) 30) (((-430 |#1|) |#1| (-656 (-48))) 33)) (-2212 (((-112) |#1|) 59))) +(((-39 |#1|) (-10 -7 (-15 -1828 ((-430 |#1|) |#1| (-656 (-48)))) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -3455 ((-430 |#1|) |#1|)) (-15 -2212 ((-112) |#1|))) (-1264 (-48))) (T -39)) +((-2212 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48))))) (-3455 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48))))) (-1828 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48))))) (-1828 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48)))))) +(-10 -7 (-15 -1828 ((-430 |#1|) |#1| (-656 (-48)))) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -3455 ((-430 |#1|) |#1|)) (-15 -2212 ((-112) |#1|))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2195 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-374)))) (-4195 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-1760 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-1656 (((-701 (-419 |#2|)) (-1288 $)) NIL) (((-701 (-419 |#2|))) NIL)) (-2210 (((-419 |#2|) $) NIL)) (-4371 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-419 |#2|) (-360)))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3760 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-3330 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2098 (((-783)) NIL (|has| (-419 |#2|) (-379)))) (-2407 (((-112)) NIL)) (-3123 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| (-419 |#2|) (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 |#2|) (-1059 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) NIL)) (-2859 (((-576) $) NIL (|has| (-419 |#2|) (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| (-419 |#2|) (-1059 (-419 (-576))))) (((-419 |#2|) $) NIL)) (-1819 (($ (-1288 (-419 |#2|)) (-1288 $)) NIL) (($ (-1288 (-419 |#2|))) 61) (($ (-1288 |#2|) |#2|) 131)) (-2868 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-360)))) (-3428 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2072 (((-701 (-419 |#2|)) $ (-1288 $)) NIL) (((-701 (-419 |#2|)) $) NIL)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-701 $) (-1288 $)) NIL) (((-701 (-419 |#2|)) (-701 $)) NIL)) (-2268 (((-1288 $) (-1288 $)) NIL)) (-3685 (($ |#3|) NIL) (((-3 $ "failed") (-419 |#3|)) NIL (|has| (-419 |#2|) (-374)))) (-3673 (((-3 $ "failed") $) NIL)) (-3075 (((-656 (-656 |#1|))) NIL (|has| |#1| (-379)))) (-4341 (((-112) |#1| |#1|) NIL)) (-3733 (((-940)) NIL)) (-1836 (($) NIL (|has| (-419 |#2|) (-379)))) (-3658 (((-112)) NIL)) (-3005 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3440 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| (-419 |#2|) (-374)))) (-1547 (($ $) NIL)) (-2345 (($) NIL (|has| (-419 |#2|) (-360)))) (-1543 (((-112) $) NIL (|has| (-419 |#2|) (-360)))) (-3153 (($ $ (-783)) NIL (|has| (-419 |#2|) (-360))) (($ $) NIL (|has| (-419 |#2|) (-360)))) (-3833 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-3726 (((-940) $) NIL (|has| (-419 |#2|) (-360))) (((-845 (-940)) $) NIL (|has| (-419 |#2|) (-360)))) (-1351 (((-112) $) NIL)) (-1386 (((-783)) NIL)) (-4076 (((-1288 $) (-1288 $)) 106)) (-2738 (((-419 |#2|) $) NIL)) (-3763 (((-656 (-971 |#1|)) (-1197)) NIL (|has| |#1| (-374)))) (-2734 (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-360)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-1989 ((|#3| $) NIL (|has| (-419 |#2|) (-374)))) (-1558 (((-940) $) NIL (|has| (-419 |#2|) (-379)))) (-3671 ((|#3| $) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-1288 $) $) NIL) (((-701 (-419 |#2|)) (-1288 $)) NIL)) (-3457 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2046 (((-1179) $) NIL)) (-2735 (((-1293) (-783)) 84)) (-4412 (((-701 (-419 |#2|))) 56)) (-3746 (((-701 (-419 |#2|))) 49)) (-2050 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3858 (($ (-1288 |#2|) |#2|) 132)) (-1348 (((-701 (-419 |#2|))) 50)) (-3389 (((-701 (-419 |#2|))) 48)) (-2860 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130)) (-1781 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) 68)) (-3637 (((-1288 $)) 47)) (-3358 (((-1288 $)) 46)) (-1353 (((-112) $) NIL)) (-3756 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3539 (($) NIL (|has| (-419 |#2|) (-360)) CONST)) (-3223 (($ (-940)) NIL (|has| (-419 |#2|) (-379)))) (-4308 (((-3 |#2| "failed")) NIL)) (-1450 (((-1141) $) NIL)) (-3385 (((-783)) NIL)) (-4128 (($) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| (-419 |#2|) (-374)))) (-3497 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-1913 (((-656 (-2 (|:| -1828 (-576)) (|:| -2508 (-576))))) NIL (|has| (-419 |#2|) (-360)))) (-1828 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-3475 (((-3 $ "failed") $ $) NIL (|has| (-419 |#2|) (-374)))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-1979 (((-783) $) NIL (|has| (-419 |#2|) (-374)))) (-2796 ((|#1| $ |#1| |#1|) NIL)) (-2861 (((-3 |#2| "failed")) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2269 (((-419 |#2|) (-1288 $)) NIL) (((-419 |#2|)) 44)) (-1813 (((-783) $) NIL (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) NIL (|has| (-419 |#2|) (-360)))) (-2774 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) 126) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2759 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2759 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2759 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197)) NIL (-2759 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-783)) NIL (-2759 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-2759 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-4149 (((-701 (-419 |#2|)) (-1288 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374)))) (-1346 ((|#3|) 55)) (-3371 (($) NIL (|has| (-419 |#2|) (-360)))) (-4096 (((-1288 (-419 |#2|)) $ (-1288 $)) NIL) (((-701 (-419 |#2|)) (-1288 $) (-1288 $)) NIL) (((-1288 (-419 |#2|)) $) 62) (((-701 (-419 |#2|)) (-1288 $)) 107)) (-4171 (((-1288 (-419 |#2|)) $) NIL) (($ (-1288 (-419 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| (-419 |#2|) (-360)))) (-2420 (((-1288 $) (-1288 $)) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 |#2|)) NIL) (($ (-419 (-576))) NIL (-2759 (|has| (-419 |#2|) (-1059 (-419 (-576)))) (|has| (-419 |#2|) (-374)))) (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3390 (($ $) NIL (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-146)))) (-2857 ((|#3| $) NIL)) (-3154 (((-783)) NIL T CONST)) (-3067 (((-112)) 42)) (-4191 (((-112) |#1|) 54) (((-112) |#2|) 138)) (-2399 (((-112) $ $) NIL)) (-2675 (((-1288 $)) NIL)) (-1505 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2598 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3573 (((-112)) NIL)) (-2721 (($) 17 T CONST)) (-2731 (($) 27 T CONST)) (-2020 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2759 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2759 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2759 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197)) NIL (-2759 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-783)) NIL (-2759 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-2759 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| (-419 |#2|) (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 |#2|)) NIL) (($ (-419 |#2|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) NIL (|has| (-419 |#2|) (-374))))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-353 |#1| |#2| |#3|) (-10 -7 (-15 -2735 ((-1293) (-783))))) (-374) (-1264 |#1|) (-1264 (-419 |#2|)) |#3|) (T -40)) +((-2735 (*1 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-4 *5 (-1264 *4)) (-5 *2 (-1293)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1264 (-419 *5))) (-14 *7 *6)))) +(-13 (-353 |#1| |#2| |#3|) (-10 -7 (-15 -2735 ((-1293) (-783))))) +((-2222 ((|#2| |#2|) 47)) (-3610 ((|#2| |#2|) 139 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1059 (-576))))))) (-3794 ((|#2| |#2|) 100 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1059 (-576))))))) (-2226 ((|#2| |#2|) 101 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1059 (-576))))))) (-1924 ((|#2| (-115) |#2| (-783)) 135 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1059 (-576))))))) (-3300 (((-1193 |#2|) |#2|) 44)) (-3403 ((|#2| |#2| (-656 (-624 |#2|))) 18) ((|#2| |#2| (-656 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-41 |#1| |#2|) (-10 -7 (-15 -2222 (|#2| |#2|)) (-15 -3403 (|#2| |#2|)) (-15 -3403 (|#2| |#2| |#2|)) (-15 -3403 (|#2| |#2| (-656 |#2|))) (-15 -3403 (|#2| |#2| (-656 (-624 |#2|)))) (-15 -3300 ((-1193 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1059 (-576)))) (IF (|has| |#2| (-442 |#1|)) (PROGN (-15 -2226 (|#2| |#2|)) (-15 -3794 (|#2| |#2|)) (-15 -3610 (|#2| |#2|)) (-15 -1924 (|#2| (-115) |#2| (-783)))) |%noBranch|) |%noBranch|)) (-568) (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 |#1| (-624 $)) $)) (-15 -1581 ((-1146 |#1| (-624 $)) $)) (-15 -3569 ($ (-1146 |#1| (-624 $))))))) (T -41)) +((-1924 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1059 (-576)))) (-4 *5 (-568)) (-5 *1 (-41 *5 *2)) (-4 *2 (-442 *5)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *5 (-624 $)) $)) (-15 -1581 ((-1146 *5 (-624 $)) $)) (-15 -3569 ($ (-1146 *5 (-624 $))))))))) (-3610 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) (-15 -1581 ((-1146 *3 (-624 $)) $)) (-15 -3569 ($ (-1146 *3 (-624 $))))))))) (-3794 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) (-15 -1581 ((-1146 *3 (-624 $)) $)) (-15 -3569 ($ (-1146 *3 (-624 $))))))))) (-2226 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) (-15 -1581 ((-1146 *3 (-624 $)) $)) (-15 -3569 ($ (-1146 *3 (-624 $))))))))) (-3300 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-1193 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *4 (-624 $)) $)) (-15 -1581 ((-1146 *4 (-624 $)) $)) (-15 -3569 ($ (-1146 *4 (-624 $))))))))) (-3403 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-624 *2))) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *4 (-624 $)) $)) (-15 -1581 ((-1146 *4 (-624 $)) $)) (-15 -3569 ($ (-1146 *4 (-624 $))))))) (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) (-3403 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *4 (-624 $)) $)) (-15 -1581 ((-1146 *4 (-624 $)) $)) (-15 -3569 ($ (-1146 *4 (-624 $))))))) (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) (-3403 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) (-15 -1581 ((-1146 *3 (-624 $)) $)) (-15 -3569 ($ (-1146 *3 (-624 $))))))))) (-3403 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) (-15 -1581 ((-1146 *3 (-624 $)) $)) (-15 -3569 ($ (-1146 *3 (-624 $))))))))) (-2222 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) (-15 -1581 ((-1146 *3 (-624 $)) $)) (-15 -3569 ($ (-1146 *3 (-624 $)))))))))) +(-10 -7 (-15 -2222 (|#2| |#2|)) (-15 -3403 (|#2| |#2|)) (-15 -3403 (|#2| |#2| |#2|)) (-15 -3403 (|#2| |#2| (-656 |#2|))) (-15 -3403 (|#2| |#2| (-656 (-624 |#2|)))) (-15 -3300 ((-1193 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1059 (-576)))) (IF (|has| |#2| (-442 |#1|)) (PROGN (-15 -2226 (|#2| |#2|)) (-15 -3794 (|#2| |#2|)) (-15 -3610 (|#2| |#2|)) (-15 -1924 (|#2| (-115) |#2| (-783)))) |%noBranch|) |%noBranch|)) ((-1828 (((-430 (-1193 |#3|)) (-1193 |#3|) (-656 (-48))) 23) (((-430 |#3|) |#3| (-656 (-48))) 19))) (((-42 |#1| |#2| |#3|) (-10 -7 (-15 -1828 ((-430 |#3|) |#3| (-656 (-48)))) (-15 -1828 ((-430 (-1193 |#3|)) (-1193 |#3|) (-656 (-48))))) (-861) (-805) (-968 (-48) |#2| |#1|)) (T -42)) ((-1828 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-4 *5 (-861)) (-4 *6 (-805)) (-4 *7 (-968 (-48) *6 *5)) (-5 *2 (-430 (-1193 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1193 *7)))) (-1828 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-4 *5 (-861)) (-4 *6 (-805)) (-5 *2 (-430 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-968 (-48) *6 *5))))) (-10 -7 (-15 -1828 ((-430 |#3|) |#3| (-656 (-48)))) (-15 -1828 ((-430 (-1193 |#3|)) (-1193 |#3|) (-656 (-48))))) -((-3303 (((-783) |#2|) 70)) (-3200 (((-783) |#2|) 74)) (-2346 (((-656 |#2|)) 37)) (-2226 (((-783) |#2|) 73)) (-2688 (((-783) |#2|) 69)) (-3718 (((-783) |#2|) 72)) (-4097 (((-656 (-701 |#1|))) 65)) (-3970 (((-656 |#2|)) 60)) (-3664 (((-656 |#2|) |#2|) 48)) (-3899 (((-656 |#2|)) 62)) (-4361 (((-656 |#2|)) 61)) (-4318 (((-656 (-701 |#1|))) 53)) (-2276 (((-656 |#2|)) 59)) (-3081 (((-656 |#2|) |#2|) 47)) (-2480 (((-656 |#2|)) 55)) (-3839 (((-656 (-701 |#1|))) 66)) (-3249 (((-656 |#2|)) 64)) (-1593 (((-1288 |#2|) (-1288 |#2|)) 99 (|has| |#1| (-317))))) -(((-43 |#1| |#2|) (-10 -7 (-15 -2226 ((-783) |#2|)) (-15 -3200 ((-783) |#2|)) (-15 -2688 ((-783) |#2|)) (-15 -3303 ((-783) |#2|)) (-15 -3718 ((-783) |#2|)) (-15 -2480 ((-656 |#2|))) (-15 -3081 ((-656 |#2|) |#2|)) (-15 -3664 ((-656 |#2|) |#2|)) (-15 -2276 ((-656 |#2|))) (-15 -3970 ((-656 |#2|))) (-15 -4361 ((-656 |#2|))) (-15 -3899 ((-656 |#2|))) (-15 -3249 ((-656 |#2|))) (-15 -4318 ((-656 (-701 |#1|)))) (-15 -4097 ((-656 (-701 |#1|)))) (-15 -3839 ((-656 (-701 |#1|)))) (-15 -2346 ((-656 |#2|))) (IF (|has| |#1| (-317)) (-15 -1593 ((-1288 |#2|) (-1288 |#2|))) |%noBranch|)) (-568) (-429 |#1|)) (T -43)) -((-1593 (*1 *2 *2) (-12 (-5 *2 (-1288 *4)) (-4 *4 (-429 *3)) (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-43 *3 *4)))) (-2346 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3839 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-4097 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-4318 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3249 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3899 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-4361 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3970 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2276 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3664 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-3081 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-2480 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3718 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-3303 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-2688 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-3200 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-2226 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4))))) -(-10 -7 (-15 -2226 ((-783) |#2|)) (-15 -3200 ((-783) |#2|)) (-15 -2688 ((-783) |#2|)) (-15 -3303 ((-783) |#2|)) (-15 -3718 ((-783) |#2|)) (-15 -2480 ((-656 |#2|))) (-15 -3081 ((-656 |#2|) |#2|)) (-15 -3664 ((-656 |#2|) |#2|)) (-15 -2276 ((-656 |#2|))) (-15 -3970 ((-656 |#2|))) (-15 -4361 ((-656 |#2|))) (-15 -3899 ((-656 |#2|))) (-15 -3249 ((-656 |#2|))) (-15 -4318 ((-656 (-701 |#1|)))) (-15 -4097 ((-656 (-701 |#1|)))) (-15 -3839 ((-656 (-701 |#1|)))) (-15 -2346 ((-656 |#2|))) (IF (|has| |#1| (-317)) (-15 -1593 ((-1288 |#2|) (-1288 |#2|))) |%noBranch|)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2778 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-4367 (((-3 $ "failed") $ $) NIL)) (-3210 (((-1288 (-701 |#1|)) (-1288 $)) NIL) (((-1288 (-701 |#1|))) 24)) (-2385 (((-1288 $)) 52)) (-3886 (($) NIL T CONST)) (-3251 (((-3 (-2 (|:| |particular| $) (|:| -1593 (-656 $))) "failed")) NIL (|has| |#1| (-568)))) (-3260 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-2191 (((-701 |#1|) (-1288 $)) NIL) (((-701 |#1|)) NIL)) (-3331 ((|#1| $) NIL)) (-3352 (((-701 |#1|) $ (-1288 $)) NIL) (((-701 |#1|) $) NIL)) (-2454 (((-3 $ "failed") $) NIL (|has| |#1| (-568)))) (-1979 (((-1193 (-971 |#1|))) NIL (|has| |#1| (-374)))) (-3377 (($ $ (-940)) NIL)) (-1738 ((|#1| $) NIL)) (-3471 (((-1193 |#1|) $) NIL (|has| |#1| (-568)))) (-2267 ((|#1| (-1288 $)) NIL) ((|#1|) NIL)) (-2654 (((-1193 |#1|) $) NIL)) (-2002 (((-112)) 99)) (-4119 (($ (-1288 |#1|) (-1288 $)) NIL) (($ (-1288 |#1|)) NIL)) (-1561 (((-3 $ "failed") $) 14 (|has| |#1| (-568)))) (-3734 (((-940)) 53)) (-1576 (((-112)) NIL)) (-4017 (($ $ (-940)) NIL)) (-2035 (((-112)) NIL)) (-1706 (((-112)) NIL)) (-1758 (((-112)) 101)) (-3590 (((-3 (-2 (|:| |particular| $) (|:| -1593 (-656 $))) "failed")) NIL (|has| |#1| (-568)))) (-1778 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-1670 (((-701 |#1|) (-1288 $)) NIL) (((-701 |#1|)) NIL)) (-2756 ((|#1| $) NIL)) (-2903 (((-701 |#1|) $ (-1288 $)) NIL) (((-701 |#1|) $) NIL)) (-2941 (((-3 $ "failed") $) NIL (|has| |#1| (-568)))) (-3548 (((-1193 (-971 |#1|))) NIL (|has| |#1| (-374)))) (-1783 (($ $ (-940)) NIL)) (-3394 ((|#1| $) NIL)) (-4164 (((-1193 |#1|) $) NIL (|has| |#1| (-568)))) (-3814 ((|#1| (-1288 $)) NIL) ((|#1|) NIL)) (-3145 (((-1193 |#1|) $) NIL)) (-1707 (((-112)) 98)) (-3699 (((-1179) $) NIL)) (-2083 (((-112)) 106)) (-3897 (((-112)) 105)) (-3998 (((-112)) 107)) (-1450 (((-1141) $) NIL)) (-2522 (((-112)) 100)) (-2797 ((|#1| $ (-576)) 55)) (-4152 (((-1288 |#1|) $ (-1288 $)) 48) (((-701 |#1|) (-1288 $) (-1288 $)) NIL) (((-1288 |#1|) $) 28) (((-701 |#1|) (-1288 $)) NIL)) (-4172 (((-1288 |#1|) $) NIL) (($ (-1288 |#1|)) NIL)) (-4034 (((-656 (-971 |#1|)) (-1288 $)) NIL) (((-656 (-971 |#1|))) NIL)) (-2076 (($ $ $) NIL)) (-2195 (((-112)) 95)) (-3570 (((-876) $) 71) (($ (-1288 |#1|)) 22)) (-4055 (((-112) $ $) NIL)) (-1593 (((-1288 $)) 51)) (-4208 (((-656 (-1288 |#1|))) NIL (|has| |#1| (-568)))) (-3790 (($ $ $ $) NIL)) (-1511 (((-112)) 91)) (-3569 (($ (-701 |#1|) $) 18)) (-4064 (($ $ $) NIL)) (-3689 (((-112)) 97)) (-3818 (((-112)) 92)) (-4395 (((-112)) 90)) (-2721 (($) NIL T CONST)) (-2925 (((-112) $ $) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1163 |#2| |#1|) $) 19))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-429 |#1|) (-660 (-1163 |#2| |#1|)) (-10 -8 (-15 -3570 ($ (-1288 |#1|))))) (-374) (-940) (-656 (-1197)) (-1288 (-701 |#1|))) (T -44)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-374)) (-14 *6 (-1288 (-701 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-940)) (-14 *5 (-656 (-1197)))))) -(-13 (-429 |#1|) (-660 (-1163 |#2| |#1|)) (-10 -8 (-15 -3570 ($ (-1288 |#1|))))) -((-3489 (((-112) $ $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3106 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL)) (-2898 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL)) (-4426 (($ $) NIL)) (-4128 (($) NIL) (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-2047 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4466))) (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4466)))) (-2587 (($ $ (-576)) NIL (|has| $ (-6 -4466)))) (-1710 (((-112) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-861)))) (-4298 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-861))))) (-1795 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-861)))) (-1808 (((-112) $ (-783)) NIL)) (-2647 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4466)))) (-4364 (($ $ $) 33 (|has| $ (-6 -4466)))) (-2297 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4466)))) (-1350 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 35 (|has| $ (-6 -4466)))) (-3756 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ (-576) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ (-1255 (-576)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ "last" (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4466))) (($ $ "rest" $) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ "first" (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ "value" (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4466)))) (-1894 (($ $ (-656 $)) NIL (|has| $ (-6 -4466)))) (-2300 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL)) (-1974 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-2883 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL)) (-2197 (((-3 |#2| "failed") |#1| $) 43)) (-3886 (($) NIL T CONST)) (-3990 (($ $) NIL (|has| $ (-6 -4466)))) (-3836 (($ $) NIL)) (-3593 (($ $ (-783)) NIL) (($ $) 29)) (-1703 (($ $) NIL (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121))))) (-1671 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (|has| $ (-6 -4465))) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL) (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (-3946 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-3686 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4465))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4465))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-4335 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ (-576) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4466)))) (-4274 ((|#2| $ |#1|) NIL) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ (-576)) NIL)) (-4419 (((-112) $) NIL)) (-3660 (((-576) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL) (((-576) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121))) (((-576) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ (-576)) NIL (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (-3966 (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 20 (|has| $ (-6 -4465))) (((-656 |#2|) $) NIL (|has| $ (-6 -4465))) (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 20 (|has| $ (-6 -4465)))) (-2387 (((-656 $) $) NIL)) (-3295 (((-112) $ $) NIL (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (-4141 (($ (-783) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL)) (-3870 (((-112) $ (-783)) NIL)) (-2924 ((|#1| $) NIL (|has| |#1| (-861))) (((-576) $) 38 (|has| (-576) (-861)))) (-3125 (($ $ $) NIL (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-861)))) (-2453 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-861)))) (-3391 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-861)))) (-2014 (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-656 |#2|) $) NIL (|has| $ (-6 -4465))) (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121)))) (((-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121))))) (-2137 ((|#1| $) NIL (|has| |#1| (-861))) (((-576) $) 40 (|has| (-576) (-861)))) (-3133 (($ $ $) NIL (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-861)))) (-4323 (($ (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL)) (-1650 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-2353 (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL)) (-3443 (((-112) $) NIL)) (-3699 (((-1179) $) 49 (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3969 (($ $ (-783)) NIL) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL)) (-3203 (((-656 |#1|) $) 22)) (-4008 (((-112) |#1| $) NIL)) (-1597 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL)) (-1901 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL) (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2176 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-4234 (((-656 |#1|) $) NIL) (((-656 (-576)) $) NIL)) (-3354 (((-112) |#1| $) NIL) (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3581 ((|#2| $) NIL (|has| |#1| (-861))) (($ $ (-783)) NIL) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 27)) (-1541 (((-3 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL) (((-3 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL)) (-4046 (($ $ |#2|) NIL (|has| $ (-6 -4466))) (($ $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4466)))) (-3449 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL)) (-3166 (((-112) $) NIL)) (-4320 (((-112) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-656 (-304 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121)))) (((-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121))))) (-2281 (((-656 |#2|) $) NIL) (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 19)) (-3973 (((-112) $) 18)) (-4225 (($) 14)) (-2797 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ (-576) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ (-576)) NIL) (($ $ (-1255 (-576))) NIL) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ "first") NIL) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $ "value") NIL)) (-2789 (((-576) $ $) NIL)) (-2271 (($) 13) (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-2161 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-3466 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-3617 (((-112) $) NIL)) (-2934 (($ $) NIL)) (-3852 (($ $) NIL (|has| $ (-6 -4466)))) (-2687 (((-783) $) NIL)) (-3369 (($ $) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-783) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465))) (((-783) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (((-783) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-3025 (($ $ $ (-576)) NIL (|has| $ (-6 -4466)))) (-1870 (($ $) NIL)) (-4172 (((-548) $) NIL (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-626 (-548))))) (-3582 (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL) (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-2974 (($ $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL) (($ $ $) NIL)) (-1615 (($ $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL) (($ (-656 $)) NIL) (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 31) (($ $ $) NIL)) (-3570 (((-876) $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-2902 (((-656 $) $) NIL)) (-2621 (((-112) $ $) NIL (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (-4055 (((-112) $ $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3943 (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-3977 (((-3 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) "failed") |#1| $) 51)) (-3321 (((-112) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-2992 (((-112) $ $) NIL (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-861)))) (-2964 (((-112) $ $) NIL (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-861)))) (-2925 (((-112) $ $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-2978 (((-112) $ $) NIL (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-861)))) (-2950 (((-112) $ $) NIL (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-861)))) (-3503 (((-783) $) 25 (|has| $ (-6 -4465))))) +((-3846 (((-783) |#2|) 70)) (-4043 (((-783) |#2|) 74)) (-2563 (((-656 |#2|)) 37)) (-3905 (((-783) |#2|) 73)) (-1628 (((-783) |#2|) 69)) (-2257 (((-783) |#2|) 72)) (-1614 (((-656 (-701 |#1|))) 65)) (-2902 (((-656 |#2|)) 60)) (-2996 (((-656 |#2|) |#2|) 48)) (-3537 (((-656 |#2|)) 62)) (-2362 (((-656 |#2|)) 61)) (-3234 (((-656 (-701 |#1|))) 53)) (-3151 (((-656 |#2|)) 59)) (-2105 (((-656 |#2|) |#2|) 47)) (-3364 (((-656 |#2|)) 55)) (-4223 (((-656 (-701 |#1|))) 66)) (-3296 (((-656 |#2|)) 64)) (-2675 (((-1288 |#2|) (-1288 |#2|)) 99 (|has| |#1| (-317))))) +(((-43 |#1| |#2|) (-10 -7 (-15 -3905 ((-783) |#2|)) (-15 -4043 ((-783) |#2|)) (-15 -1628 ((-783) |#2|)) (-15 -3846 ((-783) |#2|)) (-15 -2257 ((-783) |#2|)) (-15 -3364 ((-656 |#2|))) (-15 -2105 ((-656 |#2|) |#2|)) (-15 -2996 ((-656 |#2|) |#2|)) (-15 -3151 ((-656 |#2|))) (-15 -2902 ((-656 |#2|))) (-15 -2362 ((-656 |#2|))) (-15 -3537 ((-656 |#2|))) (-15 -3296 ((-656 |#2|))) (-15 -3234 ((-656 (-701 |#1|)))) (-15 -1614 ((-656 (-701 |#1|)))) (-15 -4223 ((-656 (-701 |#1|)))) (-15 -2563 ((-656 |#2|))) (IF (|has| |#1| (-317)) (-15 -2675 ((-1288 |#2|) (-1288 |#2|))) |%noBranch|)) (-568) (-429 |#1|)) (T -43)) +((-2675 (*1 *2 *2) (-12 (-5 *2 (-1288 *4)) (-4 *4 (-429 *3)) (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-43 *3 *4)))) (-2563 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-4223 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-1614 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3234 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3296 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3537 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2362 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2902 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3151 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2996 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-2105 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-3364 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2257 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-3846 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-1628 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-4043 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-3905 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4))))) +(-10 -7 (-15 -3905 ((-783) |#2|)) (-15 -4043 ((-783) |#2|)) (-15 -1628 ((-783) |#2|)) (-15 -3846 ((-783) |#2|)) (-15 -2257 ((-783) |#2|)) (-15 -3364 ((-656 |#2|))) (-15 -2105 ((-656 |#2|) |#2|)) (-15 -2996 ((-656 |#2|) |#2|)) (-15 -3151 ((-656 |#2|))) (-15 -2902 ((-656 |#2|))) (-15 -2362 ((-656 |#2|))) (-15 -3537 ((-656 |#2|))) (-15 -3296 ((-656 |#2|))) (-15 -3234 ((-656 (-701 |#1|)))) (-15 -1614 ((-656 (-701 |#1|)))) (-15 -4223 ((-656 (-701 |#1|)))) (-15 -2563 ((-656 |#2|))) (IF (|has| |#1| (-317)) (-15 -2675 ((-1288 |#2|) (-1288 |#2|))) |%noBranch|)) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-4346 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-2428 (((-3 $ "failed") $ $) NIL)) (-4142 (((-1288 (-701 |#1|)) (-1288 $)) NIL) (((-1288 (-701 |#1|))) 24)) (-1717 (((-1288 $)) 52)) (-3404 (($) NIL T CONST)) (-3320 (((-3 (-2 (|:| |particular| $) (|:| -2675 (-656 $))) "failed")) NIL (|has| |#1| (-568)))) (-3382 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-3535 (((-701 |#1|) (-1288 $)) NIL) (((-701 |#1|)) NIL)) (-2834 ((|#1| $) NIL)) (-3068 (((-701 |#1|) $ (-1288 $)) NIL) (((-701 |#1|) $) NIL)) (-4339 (((-3 $ "failed") $) NIL (|has| |#1| (-568)))) (-2064 (((-1193 (-971 |#1|))) NIL (|has| |#1| (-374)))) (-2029 (($ $ (-940)) NIL)) (-1641 ((|#1| $) NIL)) (-1735 (((-1193 |#1|) $) NIL (|has| |#1| (-568)))) (-3057 ((|#1| (-1288 $)) NIL) ((|#1|) NIL)) (-2531 (((-1193 |#1|) $) NIL)) (-2306 (((-112)) 99)) (-1819 (($ (-1288 |#1|) (-1288 $)) NIL) (($ (-1288 |#1|)) NIL)) (-3673 (((-3 $ "failed") $) 14 (|has| |#1| (-568)))) (-3733 (((-940)) 53)) (-3810 (((-112)) NIL)) (-3343 (($ $ (-940)) NIL)) (-1413 (((-112)) NIL)) (-2515 (((-112)) NIL)) (-1826 (((-112)) 101)) (-3530 (((-3 (-2 (|:| |particular| $) (|:| -2675 (-656 $))) "failed")) NIL (|has| |#1| (-568)))) (-3995 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-2160 (((-701 |#1|) (-1288 $)) NIL) (((-701 |#1|)) NIL)) (-4185 ((|#1| $) NIL)) (-3070 (((-701 |#1|) $ (-1288 $)) NIL) (((-701 |#1|) $) NIL)) (-3334 (((-3 $ "failed") $) NIL (|has| |#1| (-568)))) (-4369 (((-1193 (-971 |#1|))) NIL (|has| |#1| (-374)))) (-4050 (($ $ (-940)) NIL)) (-2218 ((|#1| $) NIL)) (-4218 (((-1193 |#1|) $) NIL (|has| |#1| (-568)))) (-2004 ((|#1| (-1288 $)) NIL) ((|#1|) NIL)) (-1528 (((-1193 |#1|) $) NIL)) (-2524 (((-112)) 98)) (-2046 (((-1179) $) NIL)) (-1821 (((-112)) 106)) (-3514 (((-112)) 105)) (-3175 (((-112)) 107)) (-1450 (((-1141) $) NIL)) (-3827 (((-112)) 100)) (-2796 ((|#1| $ (-576)) 55)) (-4096 (((-1288 |#1|) $ (-1288 $)) 48) (((-701 |#1|) (-1288 $) (-1288 $)) NIL) (((-1288 |#1|) $) 28) (((-701 |#1|) (-1288 $)) NIL)) (-4171 (((-1288 |#1|) $) NIL) (($ (-1288 |#1|)) NIL)) (-2220 (((-656 (-971 |#1|)) (-1288 $)) NIL) (((-656 (-971 |#1|))) NIL)) (-1758 (($ $ $) NIL)) (-3583 (((-112)) 95)) (-3569 (((-876) $) 71) (($ (-1288 |#1|)) 22)) (-2399 (((-112) $ $) NIL)) (-2675 (((-1288 $)) 51)) (-1484 (((-656 (-1288 |#1|))) NIL (|has| |#1| (-568)))) (-1783 (($ $ $ $) NIL)) (-4354 (((-112)) 91)) (-3568 (($ (-701 |#1|) $) 18)) (-2487 (($ $ $) NIL)) (-3233 (((-112)) 97)) (-4033 (((-112)) 92)) (-2693 (((-112)) 90)) (-2721 (($) NIL T CONST)) (-2924 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1163 |#2| |#1|) $) 19))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-429 |#1|) (-660 (-1163 |#2| |#1|)) (-10 -8 (-15 -3569 ($ (-1288 |#1|))))) (-374) (-940) (-656 (-1197)) (-1288 (-701 |#1|))) (T -44)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-374)) (-14 *6 (-1288 (-701 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-940)) (-14 *5 (-656 (-1197)))))) +(-13 (-429 |#1|) (-660 (-1163 |#2| |#1|)) (-10 -8 (-15 -3569 ($ (-1288 |#1|))))) +((-3488 (((-112) $ $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102)) (|has| |#2| (-102))))) (-3104 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL)) (-2898 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL)) (-4424 (($ $) NIL)) (-4127 (($) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-1512 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4465))) (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-3203 (($ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1390 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-861)))) (-3039 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-861))))) (-1795 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-861)))) (-4264 (((-112) $ (-783)) NIL)) (-2482 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (|has| $ (-6 -4465)))) (-2395 (($ $ $) 33 (|has| $ (-6 -4465)))) (-2089 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (|has| $ (-6 -4465)))) (-1336 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 35 (|has| $ (-6 -4465)))) (-3755 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ (-576) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (|has| $ (-6 -4465))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ (-1255 (-576)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (|has| $ (-6 -4465))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ "last" (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (|has| $ (-6 -4465))) (($ $ "rest" $) NIL (|has| $ (-6 -4465))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ "first" (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (|has| $ (-6 -4465))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ "value" (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (|has| $ (-6 -4465)))) (-3829 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-2123 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL)) (-1974 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2882 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL)) (-2198 (((-3 |#2| "failed") |#1| $) 43)) (-3404 (($) NIL T CONST)) (-3092 (($ $) NIL (|has| $ (-6 -4465)))) (-3835 (($ $) NIL)) (-3592 (($ $ (-783)) NIL) (($ $) 29)) (-2495 (($ $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121))))) (-2172 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL) (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (-3945 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4465))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ (-576) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (|has| $ (-6 -4465)))) (-4272 ((|#2| $ |#1|) NIL) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ (-576)) NIL)) (-1742 (((-112) $) NIL)) (-3659 (((-576) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL) (((-576) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121))) (((-576) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ (-576)) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (-3965 (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 20 (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464))) (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 20 (|has| $ (-6 -4464)))) (-1736 (((-656 $) $) NIL)) (-3768 (((-112) $ $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (-4140 (($ (-783) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL)) (-1368 (((-112) $ (-783)) NIL)) (-3281 ((|#1| $) NIL (|has| |#1| (-861))) (((-576) $) 38 (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-861)))) (-4330 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-861)))) (-2185 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-861)))) (-2425 (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464))) (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121))))) (-4280 ((|#1| $) NIL (|has| |#1| (-861))) (((-576) $) 40 (|has| (-576) (-861)))) (-1441 (($ $ $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-861)))) (-4326 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4465))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465))) (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL)) (-1649 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2353 (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL)) (-1508 (((-112) $) NIL)) (-2046 (((-1179) $) 49 (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3968 (($ $ (-783)) NIL) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL)) (-3200 (((-656 |#1|) $) 22)) (-3259 (((-112) |#1| $) NIL)) (-2722 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL)) (-2597 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL) (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2176 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3669 (((-656 |#1|) $) NIL) (((-656 (-576)) $) NIL)) (-3090 (((-112) |#1| $) NIL) (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3580 ((|#2| $) NIL (|has| |#1| (-861))) (($ $ (-783)) NIL) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 27)) (-3434 (((-3 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) "failed") (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL) (((-3 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) "failed") (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL)) (-2304 (($ $ |#2|) NIL (|has| $ (-6 -4465))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (|has| $ (-6 -4465)))) (-1541 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL)) (-1721 (((-112) $) NIL)) (-3252 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-656 (-304 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121))))) (-3207 (((-656 |#2|) $) NIL) (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 19)) (-2940 (((-112) $) 18)) (-3579 (($) 14)) (-2796 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ (-576) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ (-576)) NIL) (($ $ (-1255 (-576))) NIL) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ "first") NIL) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $ "value") NIL)) (-1335 (((-576) $ $) NIL)) (-3101 (($) 13) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-1352 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-3465 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-3806 (((-112) $) NIL)) (-3262 (($ $) NIL)) (-4347 (($ $) NIL (|has| $ (-6 -4465)))) (-1619 (((-783) $) NIL)) (-3237 (($ $) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (((-783) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2840 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-3631 (($ $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL) (($ $ $) NIL)) (-1615 (($ $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL) (($ (-656 $)) NIL) (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 31) (($ $ $) NIL)) (-3569 (((-876) $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-3059 (((-656 $) $) NIL)) (-2247 (((-112) $ $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (-2399 (((-112) $ $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102)) (|has| |#2| (-102))))) (-3972 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-3976 (((-3 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) "failed") |#1| $) 51)) (-2708 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2990 (((-112) $ $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-861)))) (-2962 (((-112) $ $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-861)))) (-2924 (((-112) $ $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102)) (|has| |#2| (-102))))) (-2978 (((-112) $ $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-861)))) (-2949 (((-112) $ $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-861)))) (-3502 (((-783) $) 25 (|has| $ (-6 -4464))))) (((-45 |#1| |#2|) (-36 |#1| |#2|) (-1121) (-1121)) (T -45)) NIL (-36 |#1| |#2|) -((-2823 (((-112) $) 12)) (-4117 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-419 (-576)) $) 25) (($ $ (-419 (-576))) NIL))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -2823 ((-112) |#1|)) (-15 -4117 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) (-47 |#2| |#3|) (-1070) (-804)) (T -46)) +((-3538 (((-112) $) 12)) (-4116 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-419 (-576)) $) 25) (($ $ (-419 (-576))) NIL))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3538 ((-112) |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) (-47 |#2| |#3|) (-1070) (-804)) (T -46)) NIL -(-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -2823 ((-112) |#1|)) (-15 -4117 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2757 (($ $) 64 (|has| |#1| (-568)))) (-3788 (((-112) $) 66 (|has| |#1| (-568)))) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-2114 (($ $) 72)) (-1561 (((-3 $ "failed") $) 37)) (-4193 (((-112) $) 35)) (-2823 (((-112) $) 74)) (-1945 (($ |#1| |#2|) 73)) (-4117 (($ (-1 |#1| |#1|) $) 75)) (-2081 (($ $) 77)) (-2091 ((|#1| $) 78)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3476 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3634 ((|#2| $) 76)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3177 ((|#1| $ |#2|) 71)) (-4336 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2672 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3057 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3538 ((-112) |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4195 (($ $) 64 (|has| |#1| (-568)))) (-1760 (((-112) $) 66 (|has| |#1| (-568)))) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-2114 (($ $) 72)) (-3673 (((-3 $ "failed") $) 37)) (-1351 (((-112) $) 35)) (-3538 (((-112) $) 74)) (-1944 (($ |#1| |#2|) 73)) (-4116 (($ (-1 |#1| |#1|) $) 75)) (-2081 (($ $) 77)) (-2091 ((|#1| $) 78)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3475 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2683 ((|#2| $) 76)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-1822 ((|#1| $ |#2|) 71)) (-3390 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-1505 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) (((-47 |#1| |#2|) (-141) (-1070) (-804)) (T -47)) -((-2091 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)))) (-2081 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)))) (-3634 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-4117 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)))) (-2823 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-5 *2 (-112)))) (-1945 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)))) (-2114 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)))) (-3177 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)))) (-3057 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)) (-4 *2 (-374))))) -(-13 (-1070) (-111 |t#1| |t#1|) (-10 -8 (-15 -2091 (|t#1| $)) (-15 -2081 ($ $)) (-15 -3634 (|t#2| $)) (-15 -4117 ($ (-1 |t#1| |t#1|) $)) (-15 -2823 ((-112) $)) (-15 -1945 ($ |t#1| |t#2|)) (-15 -2114 ($ $)) (-15 -3177 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-374)) (-15 -3057 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-568)) (-6 (-568)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (-6 (-38 (-419 (-576)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2760 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) -2760 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-3052 (((-656 $) (-1193 $) (-1197)) NIL) (((-656 $) (-1193 $)) NIL) (((-656 $) (-971 $)) NIL)) (-3346 (($ (-1193 $) (-1197)) NIL) (($ (-1193 $)) NIL) (($ (-971 $)) NIL)) (-4308 (((-112) $) 9)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-3988 (((-656 (-624 $)) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3428 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-1839 (($ $) NIL)) (-4016 (((-112) $ $) NIL)) (-3886 (($) NIL T CONST)) (-1796 (((-656 $) (-1193 $) (-1197)) NIL) (((-656 $) (-1193 $)) NIL) (((-656 $) (-971 $)) NIL)) (-2607 (($ (-1193 $) (-1197)) NIL) (($ (-1193 $)) NIL) (($ (-971 $)) NIL)) (-1572 (((-3 (-624 $) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-2860 (((-624 $) $) NIL) (((-576) $) NIL) (((-419 (-576)) $) NIL)) (-3429 (($ $ $) NIL)) (-2204 (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2590 (-701 (-419 (-576)))) (|:| |vec| (-1288 (-419 (-576))))) (-701 $) (-1288 $)) NIL) (((-701 (-419 (-576))) (-701 $)) NIL)) (-3686 (($ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-4249 (((-112) $) NIL)) (-2236 (($ $) NIL) (($ (-656 $)) NIL)) (-3545 (((-656 (-115)) $) NIL)) (-1777 (((-115) (-115)) NIL)) (-4193 (((-112) $) 11)) (-2946 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-1570 (((-1146 (-576) (-624 $)) $) NIL)) (-2121 (($ $ (-576)) NIL)) (-1381 (((-1193 $) (-1193 $) (-624 $)) NIL) (((-1193 $) (-1193 $) (-656 (-624 $))) NIL) (($ $ (-624 $)) NIL) (($ $ (-656 (-624 $))) NIL)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3971 (((-1193 $) (-624 $)) NIL (|has| $ (-1070)))) (-4117 (($ (-1 $ $) (-624 $)) NIL)) (-2608 (((-3 (-624 $) "failed") $) NIL)) (-3913 (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL) (((-2 (|:| -2590 (-701 (-419 (-576)))) (|:| |vec| (-1288 (-419 (-576))))) (-1288 $) $) NIL) (((-701 (-419 (-576))) (-1288 $)) NIL)) (-3458 (($ (-656 $)) NIL) (($ $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1763 (((-656 (-624 $)) $) NIL)) (-1640 (($ (-115) $) NIL) (($ (-115) (-656 $)) NIL)) (-1322 (((-112) $ (-115)) NIL) (((-112) $ (-1197)) NIL)) (-2050 (($ $) NIL)) (-2327 (((-783) $) NIL)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1726 (((-112) $ $) NIL) (((-112) $ (-1197)) NIL)) (-1828 (((-430 $) $) NIL)) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3644 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-3284 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1197) (-1 $ (-656 $))) NIL) (($ $ (-1197) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-1967 (((-783) $) NIL)) (-2797 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-3496 (($ $) NIL) (($ $ $) NIL)) (-2775 (($ $) NIL) (($ $ (-783)) NIL)) (-1581 (((-1146 (-576) (-624 $)) $) NIL)) (-3867 (($ $) NIL (|has| $ (-1070)))) (-4172 (((-390) $) NIL) (((-227) $) NIL) (((-171 (-390)) $) NIL)) (-3570 (((-876) $) NIL) (($ (-624 $)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-1146 (-576) (-624 $))) NIL)) (-3996 (((-783)) NIL T CONST)) (-3681 (($ $) NIL) (($ (-656 $)) NIL)) (-2468 (((-112) (-115)) NIL)) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL)) (-2721 (($) 6 T CONST)) (-2732 (($) 10 T CONST)) (-2020 (($ $) NIL) (($ $ (-783)) NIL)) (-2925 (((-112) $ $) 13)) (-3057 (($ $ $) NIL)) (-3044 (($ $ $) NIL) (($ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-419 (-576))) NIL) (($ $ (-576)) NIL) (($ $ (-783)) NIL) (($ $ (-940)) NIL)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-940) $) NIL))) -(((-48) (-13 (-312) (-27) (-1059 (-576)) (-1059 (-419 (-576))) (-651 (-576)) (-1043) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -3570 ($ (-1146 (-576) (-624 $)))) (-15 -1570 ((-1146 (-576) (-624 $)) $)) (-15 -1581 ((-1146 (-576) (-624 $)) $)) (-15 -3686 ($ $)) (-15 -1381 ((-1193 $) (-1193 $) (-624 $))) (-15 -1381 ((-1193 $) (-1193 $) (-656 (-624 $)))) (-15 -1381 ($ $ (-624 $))) (-15 -1381 ($ $ (-656 (-624 $))))))) (T -48)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-1146 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-1570 (*1 *2 *1) (-12 (-5 *2 (-1146 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-1581 (*1 *2 *1) (-12 (-5 *2 (-1146 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-3686 (*1 *1 *1) (-5 *1 (-48))) (-1381 (*1 *2 *2 *3) (-12 (-5 *2 (-1193 (-48))) (-5 *3 (-624 (-48))) (-5 *1 (-48)))) (-1381 (*1 *2 *2 *3) (-12 (-5 *2 (-1193 (-48))) (-5 *3 (-656 (-624 (-48)))) (-5 *1 (-48)))) (-1381 (*1 *1 *1 *2) (-12 (-5 *2 (-624 (-48))) (-5 *1 (-48)))) (-1381 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-48)))) (-5 *1 (-48))))) -(-13 (-312) (-27) (-1059 (-576)) (-1059 (-419 (-576))) (-651 (-576)) (-1043) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -3570 ($ (-1146 (-576) (-624 $)))) (-15 -1570 ((-1146 (-576) (-624 $)) $)) (-15 -1581 ((-1146 (-576) (-624 $)) $)) (-15 -3686 ($ $)) (-15 -1381 ((-1193 $) (-1193 $) (-624 $))) (-15 -1381 ((-1193 $) (-1193 $) (-656 (-624 $)))) (-15 -1381 ($ $ (-624 $))) (-15 -1381 ($ $ (-656 (-624 $)))))) -((-3489 (((-112) $ $) NIL)) (-2092 (((-656 (-518)) $) 17)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 7)) (-2641 (((-1202) $) 18)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-49) (-13 (-1121) (-10 -8 (-15 -2092 ((-656 (-518)) $)) (-15 -2641 ((-1202) $))))) (T -49)) -((-2092 (*1 *2 *1) (-12 (-5 *2 (-656 (-518))) (-5 *1 (-49)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-1202)) (-5 *1 (-49))))) -(-13 (-1121) (-10 -8 (-15 -2092 ((-656 (-518)) $)) (-15 -2641 ((-1202) $)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 85)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-1579 (((-112) $) 30)) (-1572 (((-3 |#1| "failed") $) 33)) (-2860 ((|#1| $) 34)) (-2114 (($ $) 40)) (-1561 (((-3 $ "failed") $) NIL)) (-4193 (((-112) $) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-2091 ((|#1| $) 31)) (-4434 (($ $) 74)) (-3699 (((-1179) $) NIL)) (-2449 (((-112) $) 43)) (-1450 (((-1141) $) NIL)) (-4129 (($ (-783)) 72)) (-4104 (($ (-656 (-576))) 73)) (-3634 (((-783) $) 44)) (-3570 (((-876) $) 91) (($ (-576)) 69) (($ |#1|) 67)) (-3177 ((|#1| $ $) 28)) (-3996 (((-783)) 71 T CONST)) (-4055 (((-112) $ $) NIL)) (-2721 (($) 45 T CONST)) (-2732 (($) 17 T CONST)) (-2925 (((-112) $ $) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) 64)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 65) (($ |#1| $) 58))) -(((-50 |#1| |#2|) (-13 (-632 |#1|) (-1059 |#1|) (-10 -8 (-15 -2091 (|#1| $)) (-15 -4434 ($ $)) (-15 -2114 ($ $)) (-15 -3177 (|#1| $ $)) (-15 -4129 ($ (-783))) (-15 -4104 ($ (-656 (-576)))) (-15 -2449 ((-112) $)) (-15 -1579 ((-112) $)) (-15 -3634 ((-783) $)) (-15 -4117 ($ (-1 |#1| |#1|) $)))) (-1070) (-656 (-1197))) (T -50)) -((-2091 (*1 *2 *1) (-12 (-4 *2 (-1070)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1197))))) (-4434 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1070)) (-14 *3 (-656 (-1197))))) (-2114 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1070)) (-14 *3 (-656 (-1197))))) (-3177 (*1 *2 *1 *1) (-12 (-4 *2 (-1070)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1197))))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) (-14 *4 (-656 (-1197))))) (-4104 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) (-14 *4 (-656 (-1197))))) (-2449 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) (-14 *4 (-656 (-1197))))) (-1579 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) (-14 *4 (-656 (-1197))))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) (-14 *4 (-656 (-1197))))) (-4117 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-50 *3 *4)) (-14 *4 (-656 (-1197)))))) -(-13 (-632 |#1|) (-1059 |#1|) (-10 -8 (-15 -2091 (|#1| $)) (-15 -4434 ($ $)) (-15 -2114 ($ $)) (-15 -3177 (|#1| $ $)) (-15 -4129 ($ (-783))) (-15 -4104 ($ (-656 (-576)))) (-15 -2449 ((-112) $)) (-15 -1579 ((-112) $)) (-15 -3634 ((-783) $)) (-15 -4117 ($ (-1 |#1| |#1|) $)))) -((-1579 (((-112) (-52)) 18)) (-1572 (((-3 |#1| "failed") (-52)) 20)) (-2860 ((|#1| (-52)) 21)) (-3570 (((-52) |#1|) 14))) -(((-51 |#1|) (-10 -7 (-15 -3570 ((-52) |#1|)) (-15 -1572 ((-3 |#1| "failed") (-52))) (-15 -1579 ((-112) (-52))) (-15 -2860 (|#1| (-52)))) (-1238)) (T -51)) -((-2860 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1238)))) (-1579 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1238)))) (-1572 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1238)))) (-3570 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1238))))) -(-10 -7 (-15 -3570 ((-52) |#1|)) (-15 -1572 ((-3 |#1| "failed") (-52))) (-15 -1579 ((-112) (-52))) (-15 -2860 (|#1| (-52)))) -((-3489 (((-112) $ $) NIL)) (-4024 (((-786) $) 8)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-4428 (((-1125) $) 10)) (-3570 (((-876) $) 15)) (-4055 (((-112) $ $) NIL)) (-3482 (($ (-1125) (-786)) 16)) (-2925 (((-112) $ $) 12))) -(((-52) (-13 (-1121) (-10 -8 (-15 -3482 ($ (-1125) (-786))) (-15 -4428 ((-1125) $)) (-15 -4024 ((-786) $))))) (T -52)) -((-3482 (*1 *1 *2 *3) (-12 (-5 *2 (-1125)) (-5 *3 (-786)) (-5 *1 (-52)))) (-4428 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-52)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-52))))) -(-13 (-1121) (-10 -8 (-15 -3482 ($ (-1125) (-786))) (-15 -4428 ((-1125) $)) (-15 -4024 ((-786) $)))) -((-3569 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3569 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1070) (-660 |#1|) (-866 |#1|)) (T -53)) -((-3569 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-660 *5)) (-4 *5 (-1070)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-866 *5))))) -(-10 -7 (-15 -3569 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-1461 ((|#3| |#3| (-656 (-1197))) 44)) (-3336 ((|#3| (-656 (-1097 |#1| |#2| |#3|)) |#3| (-940)) 32) ((|#3| (-656 (-1097 |#1| |#2| |#3|)) |#3|) 31))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -3336 (|#3| (-656 (-1097 |#1| |#2| |#3|)) |#3|)) (-15 -3336 (|#3| (-656 (-1097 |#1| |#2| |#3|)) |#3| (-940))) (-15 -1461 (|#3| |#3| (-656 (-1197))))) (-1121) (-13 (-1070) (-901 |#1|) (-626 (-907 |#1|))) (-13 (-442 |#2|) (-901 |#1|) (-626 (-907 |#1|)))) (T -54)) -((-1461 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-1197))) (-4 *4 (-1121)) (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))))) (-3336 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-656 (-1097 *5 *6 *2))) (-5 *4 (-940)) (-4 *5 (-1121)) (-4 *6 (-13 (-1070) (-901 *5) (-626 (-907 *5)))) (-4 *2 (-13 (-442 *6) (-901 *5) (-626 (-907 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-3336 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-1097 *4 *5 *2))) (-4 *4 (-1121)) (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -3336 (|#3| (-656 (-1097 |#1| |#2| |#3|)) |#3|)) (-15 -3336 (|#3| (-656 (-1097 |#1| |#2| |#3|)) |#3| (-940))) (-15 -1461 (|#3| |#3| (-656 (-1197))))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 14)) (-1572 (((-3 (-783) "failed") $) 34)) (-2860 (((-783) $) NIL)) (-4193 (((-112) $) 16)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) 18)) (-3570 (((-876) $) 23) (($ (-783)) 29)) (-4055 (((-112) $ $) NIL)) (-2866 (($) 11 T CONST)) (-2925 (((-112) $ $) 20))) -(((-55) (-13 (-1121) (-1059 (-783)) (-10 -8 (-15 -2866 ($) -1480) (-15 -4308 ((-112) $)) (-15 -4193 ((-112) $))))) (T -55)) -((-2866 (*1 *1) (-5 *1 (-55))) (-4308 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) -(-13 (-1121) (-1059 (-783)) (-10 -8 (-15 -2866 ($) -1480) (-15 -4308 ((-112) $)) (-15 -4193 ((-112) $)))) -((-1808 (((-112) $ (-783)) 27)) (-1631 (($ $ (-576) |#3|) 66)) (-4436 (($ $ (-576) |#4|) 70)) (-4093 ((|#3| $ (-576)) 79)) (-3966 (((-656 |#2|) $) 47)) (-3870 (((-112) $ (-783)) 31)) (-1612 (((-112) |#2| $) 74)) (-4323 (($ (-1 |#2| |#2|) $) 55)) (-4117 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-1330 (((-112) $ (-783)) 29)) (-4046 (($ $ |#2|) 52)) (-4320 (((-112) (-1 (-112) |#2|) $) 21)) (-2797 ((|#2| $ (-576) (-576)) NIL) ((|#2| $ (-576) (-576) |#2|) 35)) (-1460 (((-783) (-1 (-112) |#2|) $) 41) (((-783) |#2| $) 76)) (-1870 (($ $) 51)) (-2129 ((|#4| $ (-576)) 82)) (-3570 (((-876) $) 88)) (-3321 (((-112) (-1 (-112) |#2|) $) 20)) (-2925 (((-112) $ $) 73)) (-3503 (((-783) $) 32))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2925 ((-112) |#1| |#1|)) (-15 -3570 ((-876) |#1|)) (-15 -4117 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4117 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4323 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4436 (|#1| |#1| (-576) |#4|)) (-15 -1631 (|#1| |#1| (-576) |#3|)) (-15 -3966 ((-656 |#2|) |#1|)) (-15 -2129 (|#4| |#1| (-576))) (-15 -4093 (|#3| |#1| (-576))) (-15 -2797 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2797 (|#2| |#1| (-576) (-576))) (-15 -4046 (|#1| |#1| |#2|)) (-15 -1612 ((-112) |#2| |#1|)) (-15 -1460 ((-783) |#2| |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -4320 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3321 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4117 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3503 ((-783) |#1|)) (-15 -1808 ((-112) |#1| (-783))) (-15 -3870 ((-112) |#1| (-783))) (-15 -1330 ((-112) |#1| (-783))) (-15 -1870 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1238) (-384 |#2|) (-384 |#2|)) (T -56)) -NIL -(-10 -8 (-15 -2925 ((-112) |#1| |#1|)) (-15 -3570 ((-876) |#1|)) (-15 -4117 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4117 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4323 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4436 (|#1| |#1| (-576) |#4|)) (-15 -1631 (|#1| |#1| (-576) |#3|)) (-15 -3966 ((-656 |#2|) |#1|)) (-15 -2129 (|#4| |#1| (-576))) (-15 -4093 (|#3| |#1| (-576))) (-15 -2797 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2797 (|#2| |#1| (-576) (-576))) (-15 -4046 (|#1| |#1| |#2|)) (-15 -1612 ((-112) |#2| |#1|)) (-15 -1460 ((-783) |#2| |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -4320 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3321 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4117 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3503 ((-783) |#1|)) (-15 -1808 ((-112) |#1| (-783))) (-15 -3870 ((-112) |#1| (-783))) (-15 -1330 ((-112) |#1| (-783))) (-15 -1870 (|#1| |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1808 (((-112) $ (-783)) 8)) (-3756 ((|#1| $ (-576) (-576) |#1|) 45)) (-1631 (($ $ (-576) |#2|) 43)) (-4436 (($ $ (-576) |#3|) 42)) (-3886 (($) 7 T CONST)) (-4093 ((|#2| $ (-576)) 47)) (-4335 ((|#1| $ (-576) (-576) |#1|) 44)) (-4274 ((|#1| $ (-576) (-576)) 49)) (-3966 (((-656 |#1|) $) 31)) (-1689 (((-783) $) 52)) (-4141 (($ (-783) (-783) |#1|) 58)) (-1699 (((-783) $) 51)) (-3870 (((-112) $ (-783)) 9)) (-4267 (((-576) $) 56)) (-1952 (((-576) $) 54)) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-3900 (((-576) $) 55)) (-2569 (((-576) $) 53)) (-4323 (($ (-1 |#1| |#1|) $) 35)) (-4117 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-1330 (((-112) $ (-783)) 10)) (-3699 (((-1179) $) 23 (|has| |#1| (-1121)))) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-4046 (($ $ |#1|) 57)) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-2797 ((|#1| $ (-576) (-576)) 50) ((|#1| $ (-576) (-576) |#1|) 48)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 13)) (-2129 ((|#3| $ (-576)) 46)) (-3570 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-2091 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)))) (-2081 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)))) (-2683 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-5 *2 (-112)))) (-1944 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)))) (-2114 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)))) (-1822 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)))) (-3056 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)) (-4 *2 (-374))))) +(-13 (-1070) (-111 |t#1| |t#1|) (-10 -8 (-15 -2091 (|t#1| $)) (-15 -2081 ($ $)) (-15 -2683 (|t#2| $)) (-15 -4116 ($ (-1 |t#1| |t#1|) $)) (-15 -3538 ((-112) $)) (-15 -1944 ($ |t#1| |t#2|)) (-15 -2114 ($ $)) (-15 -1822 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-374)) (-15 -3056 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-568)) (-6 (-568)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (-6 (-38 (-419 (-576)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2759 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) -2759 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-3119 (((-656 $) (-1193 $) (-1197)) NIL) (((-656 $) (-1193 $)) NIL) (((-656 $) (-971 $)) NIL)) (-2992 (($ (-1193 $) (-1197)) NIL) (($ (-1193 $)) NIL) (($ (-971 $)) NIL)) (-3135 (((-112) $) 9)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-3987 (((-656 (-624 $)) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3427 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-1840 (($ $) NIL)) (-3330 (((-112) $ $) NIL)) (-3404 (($) NIL T CONST)) (-4166 (((-656 $) (-1193 $) (-1197)) NIL) (((-656 $) (-1193 $)) NIL) (((-656 $) (-971 $)) NIL)) (-2108 (($ (-1193 $) (-1197)) NIL) (($ (-1193 $)) NIL) (($ (-971 $)) NIL)) (-1572 (((-3 (-624 $) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-2859 (((-624 $) $) NIL) (((-576) $) NIL) (((-419 (-576)) $) NIL)) (-3428 (($ $ $) NIL)) (-3674 (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3232 (-701 (-419 (-576)))) (|:| |vec| (-1288 (-419 (-576))))) (-701 $) (-1288 $)) NIL) (((-701 (-419 (-576))) (-701 $)) NIL)) (-3685 (($ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3833 (((-112) $) NIL)) (-2687 (($ $) NIL) (($ (-656 $)) NIL)) (-4348 (((-656 (-115)) $) NIL)) (-1776 (((-115) (-115)) NIL)) (-1351 (((-112) $) 11)) (-3376 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-1570 (((-1146 (-576) (-624 $)) $) NIL)) (-4131 (($ $ (-576)) NIL)) (-2738 (((-1193 $) (-1193 $) (-624 $)) NIL) (((-1193 $) (-1193 $) (-656 (-624 $))) NIL) (($ $ (-624 $)) NIL) (($ $ (-656 (-624 $))) NIL)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2913 (((-1193 $) (-624 $)) NIL (|has| $ (-1070)))) (-4116 (($ (-1 $ $) (-624 $)) NIL)) (-2119 (((-3 (-624 $) "failed") $) NIL)) (-3676 (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL) (((-2 (|:| -3232 (-701 (-419 (-576)))) (|:| |vec| (-1288 (-419 (-576))))) (-1288 $) $) NIL) (((-701 (-419 (-576))) (-1288 $)) NIL)) (-3457 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1763 (((-656 (-624 $)) $) NIL)) (-1640 (($ (-115) $) NIL) (($ (-115) (-656 $)) NIL)) (-2808 (((-112) $ (-115)) NIL) (((-112) $ (-1197)) NIL)) (-2050 (($ $) NIL)) (-2327 (((-783) $) NIL)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1523 (((-112) $ $) NIL) (((-112) $ (-1197)) NIL)) (-1828 (((-430 $) $) NIL)) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2768 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-3282 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1197) (-1 $ (-656 $))) NIL) (($ $ (-1197) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-1979 (((-783) $) NIL)) (-2796 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-1954 (($ $) NIL) (($ $ $) NIL)) (-2774 (($ $) NIL) (($ $ (-783)) NIL)) (-1581 (((-1146 (-576) (-624 $)) $) NIL)) (-1346 (($ $) NIL (|has| $ (-1070)))) (-4171 (((-390) $) NIL) (((-227) $) NIL) (((-171 (-390)) $) NIL)) (-3569 (((-876) $) NIL) (($ (-624 $)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-1146 (-576) (-624 $))) NIL)) (-3154 (((-783)) NIL T CONST)) (-3680 (($ $) NIL) (($ (-656 $)) NIL)) (-1349 (((-112) (-115)) NIL)) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL)) (-2721 (($) 6 T CONST)) (-2731 (($) 10 T CONST)) (-2020 (($ $) NIL) (($ $ (-783)) NIL)) (-2924 (((-112) $ $) 13)) (-3056 (($ $ $) NIL)) (-3043 (($ $ $) NIL) (($ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-419 (-576))) NIL) (($ $ (-576)) NIL) (($ $ (-783)) NIL) (($ $ (-940)) NIL)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-940) $) NIL))) +(((-48) (-13 (-312) (-27) (-1059 (-576)) (-1059 (-419 (-576))) (-651 (-576)) (-1043) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -3569 ($ (-1146 (-576) (-624 $)))) (-15 -1570 ((-1146 (-576) (-624 $)) $)) (-15 -1581 ((-1146 (-576) (-624 $)) $)) (-15 -3685 ($ $)) (-15 -2738 ((-1193 $) (-1193 $) (-624 $))) (-15 -2738 ((-1193 $) (-1193 $) (-656 (-624 $)))) (-15 -2738 ($ $ (-624 $))) (-15 -2738 ($ $ (-656 (-624 $))))))) (T -48)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1146 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-1570 (*1 *2 *1) (-12 (-5 *2 (-1146 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-1581 (*1 *2 *1) (-12 (-5 *2 (-1146 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-3685 (*1 *1 *1) (-5 *1 (-48))) (-2738 (*1 *2 *2 *3) (-12 (-5 *2 (-1193 (-48))) (-5 *3 (-624 (-48))) (-5 *1 (-48)))) (-2738 (*1 *2 *2 *3) (-12 (-5 *2 (-1193 (-48))) (-5 *3 (-656 (-624 (-48)))) (-5 *1 (-48)))) (-2738 (*1 *1 *1 *2) (-12 (-5 *2 (-624 (-48))) (-5 *1 (-48)))) (-2738 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-48)))) (-5 *1 (-48))))) +(-13 (-312) (-27) (-1059 (-576)) (-1059 (-419 (-576))) (-651 (-576)) (-1043) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -3569 ($ (-1146 (-576) (-624 $)))) (-15 -1570 ((-1146 (-576) (-624 $)) $)) (-15 -1581 ((-1146 (-576) (-624 $)) $)) (-15 -3685 ($ $)) (-15 -2738 ((-1193 $) (-1193 $) (-624 $))) (-15 -2738 ((-1193 $) (-1193 $) (-656 (-624 $)))) (-15 -2738 ($ $ (-624 $))) (-15 -2738 ($ $ (-656 (-624 $)))))) +((-3488 (((-112) $ $) NIL)) (-2092 (((-656 (-518)) $) 17)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 7)) (-2640 (((-1202) $) 18)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-49) (-13 (-1121) (-10 -8 (-15 -2092 ((-656 (-518)) $)) (-15 -2640 ((-1202) $))))) (T -49)) +((-2092 (*1 *2 *1) (-12 (-5 *2 (-656 (-518))) (-5 *1 (-49)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-1202)) (-5 *1 (-49))))) +(-13 (-1121) (-10 -8 (-15 -2092 ((-656 (-518)) $)) (-15 -2640 ((-1202) $)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 85)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-3847 (((-112) $) 30)) (-1572 (((-3 |#1| "failed") $) 33)) (-2859 ((|#1| $) 34)) (-2114 (($ $) 40)) (-3673 (((-3 $ "failed") $) NIL)) (-1351 (((-112) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2091 ((|#1| $) 31)) (-1869 (($ $) 74)) (-2046 (((-1179) $) NIL)) (-4284 (((-112) $) 43)) (-1450 (((-1141) $) NIL)) (-4128 (($ (-783)) 72)) (-4103 (($ (-656 (-576))) 73)) (-2683 (((-783) $) 44)) (-3569 (((-876) $) 91) (($ (-576)) 69) (($ |#1|) 67)) (-1822 ((|#1| $ $) 28)) (-3154 (((-783)) 71 T CONST)) (-2399 (((-112) $ $) NIL)) (-2721 (($) 45 T CONST)) (-2731 (($) 17 T CONST)) (-2924 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 64)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 65) (($ |#1| $) 58))) +(((-50 |#1| |#2|) (-13 (-632 |#1|) (-1059 |#1|) (-10 -8 (-15 -2091 (|#1| $)) (-15 -1869 ($ $)) (-15 -2114 ($ $)) (-15 -1822 (|#1| $ $)) (-15 -4128 ($ (-783))) (-15 -4103 ($ (-656 (-576)))) (-15 -4284 ((-112) $)) (-15 -3847 ((-112) $)) (-15 -2683 ((-783) $)) (-15 -4116 ($ (-1 |#1| |#1|) $)))) (-1070) (-656 (-1197))) (T -50)) +((-2091 (*1 *2 *1) (-12 (-4 *2 (-1070)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1197))))) (-1869 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1070)) (-14 *3 (-656 (-1197))))) (-2114 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1070)) (-14 *3 (-656 (-1197))))) (-1822 (*1 *2 *1 *1) (-12 (-4 *2 (-1070)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1197))))) (-4128 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) (-14 *4 (-656 (-1197))))) (-4103 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) (-14 *4 (-656 (-1197))))) (-4284 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) (-14 *4 (-656 (-1197))))) (-3847 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) (-14 *4 (-656 (-1197))))) (-2683 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) (-14 *4 (-656 (-1197))))) (-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-50 *3 *4)) (-14 *4 (-656 (-1197)))))) +(-13 (-632 |#1|) (-1059 |#1|) (-10 -8 (-15 -2091 (|#1| $)) (-15 -1869 ($ $)) (-15 -2114 ($ $)) (-15 -1822 (|#1| $ $)) (-15 -4128 ($ (-783))) (-15 -4103 ($ (-656 (-576)))) (-15 -4284 ((-112) $)) (-15 -3847 ((-112) $)) (-15 -2683 ((-783) $)) (-15 -4116 ($ (-1 |#1| |#1|) $)))) +((-3847 (((-112) (-52)) 18)) (-1572 (((-3 |#1| "failed") (-52)) 20)) (-2859 ((|#1| (-52)) 21)) (-3569 (((-52) |#1|) 14))) +(((-51 |#1|) (-10 -7 (-15 -3569 ((-52) |#1|)) (-15 -1572 ((-3 |#1| "failed") (-52))) (-15 -3847 ((-112) (-52))) (-15 -2859 (|#1| (-52)))) (-1238)) (T -51)) +((-2859 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1238)))) (-3847 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1238)))) (-1572 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1238)))) (-3569 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1238))))) +(-10 -7 (-15 -3569 ((-52) |#1|)) (-15 -1572 ((-3 |#1| "failed") (-52))) (-15 -3847 ((-112) (-52))) (-15 -2859 (|#1| (-52)))) +((-3488 (((-112) $ $) NIL)) (-4023 (((-786) $) 8)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-4427 (((-1125) $) 10)) (-3569 (((-876) $) 15)) (-2399 (((-112) $ $) NIL)) (-3481 (($ (-1125) (-786)) 16)) (-2924 (((-112) $ $) 12))) +(((-52) (-13 (-1121) (-10 -8 (-15 -3481 ($ (-1125) (-786))) (-15 -4427 ((-1125) $)) (-15 -4023 ((-786) $))))) (T -52)) +((-3481 (*1 *1 *2 *3) (-12 (-5 *2 (-1125)) (-5 *3 (-786)) (-5 *1 (-52)))) (-4427 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-52)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-52))))) +(-13 (-1121) (-10 -8 (-15 -3481 ($ (-1125) (-786))) (-15 -4427 ((-1125) $)) (-15 -4023 ((-786) $)))) +((-3568 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3568 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1070) (-660 |#1|) (-866 |#1|)) (T -53)) +((-3568 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-660 *5)) (-4 *5 (-1070)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-866 *5))))) +(-10 -7 (-15 -3568 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-2488 ((|#3| |#3| (-656 (-1197))) 44)) (-2886 ((|#3| (-656 (-1097 |#1| |#2| |#3|)) |#3| (-940)) 32) ((|#3| (-656 (-1097 |#1| |#2| |#3|)) |#3|) 31))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -2886 (|#3| (-656 (-1097 |#1| |#2| |#3|)) |#3|)) (-15 -2886 (|#3| (-656 (-1097 |#1| |#2| |#3|)) |#3| (-940))) (-15 -2488 (|#3| |#3| (-656 (-1197))))) (-1121) (-13 (-1070) (-901 |#1|) (-626 (-907 |#1|))) (-13 (-442 |#2|) (-901 |#1|) (-626 (-907 |#1|)))) (T -54)) +((-2488 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-1197))) (-4 *4 (-1121)) (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))))) (-2886 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-656 (-1097 *5 *6 *2))) (-5 *4 (-940)) (-4 *5 (-1121)) (-4 *6 (-13 (-1070) (-901 *5) (-626 (-907 *5)))) (-4 *2 (-13 (-442 *6) (-901 *5) (-626 (-907 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-2886 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-1097 *4 *5 *2))) (-4 *4 (-1121)) (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -2886 (|#3| (-656 (-1097 |#1| |#2| |#3|)) |#3|)) (-15 -2886 (|#3| (-656 (-1097 |#1| |#2| |#3|)) |#3| (-940))) (-15 -2488 (|#3| |#3| (-656 (-1197))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 14)) (-1572 (((-3 (-783) "failed") $) 34)) (-2859 (((-783) $) NIL)) (-1351 (((-112) $) 16)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) 18)) (-3569 (((-876) $) 23) (($ (-783)) 29)) (-2399 (((-112) $ $) NIL)) (-3971 (($) 11 T CONST)) (-2924 (((-112) $ $) 20))) +(((-55) (-13 (-1121) (-1059 (-783)) (-10 -8 (-15 -3971 ($) -1480) (-15 -3135 ((-112) $)) (-15 -1351 ((-112) $))))) (T -55)) +((-3971 (*1 *1) (-5 *1 (-55))) (-3135 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-1351 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) +(-13 (-1121) (-1059 (-783)) (-10 -8 (-15 -3971 ($) -1480) (-15 -3135 ((-112) $)) (-15 -1351 ((-112) $)))) +((-4264 (((-112) $ (-783)) 27)) (-3100 (($ $ (-576) |#3|) 66)) (-1891 (($ $ (-576) |#4|) 70)) (-1575 ((|#3| $ (-576)) 79)) (-3965 (((-656 |#2|) $) 47)) (-1368 (((-112) $ (-783)) 31)) (-2885 (((-112) |#2| $) 74)) (-4326 (($ (-1 |#2| |#2|) $) 55)) (-4116 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-2883 (((-112) $ (-783)) 29)) (-2304 (($ $ |#2|) 52)) (-3252 (((-112) (-1 (-112) |#2|) $) 21)) (-2796 ((|#2| $ (-576) (-576)) NIL) ((|#2| $ (-576) (-576) |#2|) 35)) (-1460 (((-783) (-1 (-112) |#2|) $) 41) (((-783) |#2| $) 76)) (-1870 (($ $) 51)) (-4203 ((|#4| $ (-576)) 82)) (-3569 (((-876) $) 88)) (-2708 (((-112) (-1 (-112) |#2|) $) 20)) (-2924 (((-112) $ $) 73)) (-3502 (((-783) $) 32))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2924 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4116 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4326 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1891 (|#1| |#1| (-576) |#4|)) (-15 -3100 (|#1| |#1| (-576) |#3|)) (-15 -3965 ((-656 |#2|) |#1|)) (-15 -4203 (|#4| |#1| (-576))) (-15 -1575 (|#3| |#1| (-576))) (-15 -2796 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2796 (|#2| |#1| (-576) (-576))) (-15 -2304 (|#1| |#1| |#2|)) (-15 -2885 ((-112) |#2| |#1|)) (-15 -1460 ((-783) |#2| |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3252 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2708 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3502 ((-783) |#1|)) (-15 -4264 ((-112) |#1| (-783))) (-15 -1368 ((-112) |#1| (-783))) (-15 -2883 ((-112) |#1| (-783))) (-15 -1870 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1238) (-384 |#2|) (-384 |#2|)) (T -56)) +NIL +(-10 -8 (-15 -2924 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4116 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4326 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1891 (|#1| |#1| (-576) |#4|)) (-15 -3100 (|#1| |#1| (-576) |#3|)) (-15 -3965 ((-656 |#2|) |#1|)) (-15 -4203 (|#4| |#1| (-576))) (-15 -1575 (|#3| |#1| (-576))) (-15 -2796 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2796 (|#2| |#1| (-576) (-576))) (-15 -2304 (|#1| |#1| |#2|)) (-15 -2885 ((-112) |#2| |#1|)) (-15 -1460 ((-783) |#2| |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3252 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2708 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3502 ((-783) |#1|)) (-15 -4264 ((-112) |#1| (-783))) (-15 -1368 ((-112) |#1| (-783))) (-15 -2883 ((-112) |#1| (-783))) (-15 -1870 (|#1| |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4264 (((-112) $ (-783)) 8)) (-3755 ((|#1| $ (-576) (-576) |#1|) 45)) (-3100 (($ $ (-576) |#2|) 43)) (-1891 (($ $ (-576) |#3|) 42)) (-3404 (($) 7 T CONST)) (-1575 ((|#2| $ (-576)) 47)) (-4332 ((|#1| $ (-576) (-576) |#1|) 44)) (-4272 ((|#1| $ (-576) (-576)) 49)) (-3965 (((-656 |#1|) $) 31)) (-1689 (((-783) $) 52)) (-4140 (($ (-783) (-783) |#1|) 58)) (-1699 (((-783) $) 51)) (-1368 (((-112) $ (-783)) 9)) (-4017 (((-576) $) 56)) (-3144 (((-576) $) 54)) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3550 (((-576) $) 55)) (-3037 (((-576) $) 53)) (-4326 (($ (-1 |#1| |#1|) $) 35)) (-4116 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2883 (((-112) $ (-783)) 10)) (-2046 (((-1179) $) 23 (|has| |#1| (-1121)))) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-2304 (($ $ |#1|) 57)) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-2796 ((|#1| $ (-576) (-576)) 50) ((|#1| $ (-576) (-576) |#1|) 48)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-4203 ((|#3| $ (-576)) 46)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-57 |#1| |#2| |#3|) (-141) (-1238) (-384 |t#1|) (-384 |t#1|)) (T -57)) -((-4117 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4141 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-783)) (-4 *3 (-1238)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4046 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1238)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-4267 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-3900 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-2569 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-1689 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-783)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-783)))) (-2797 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-1238)))) (-4274 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-1238)))) (-2797 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1238)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-4093 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1238)) (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) (-2129 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1238)) (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) (-3966 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-656 *3)))) (-3756 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1238)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-4335 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1238)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-1631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1238)) (-4 *3 (-384 *4)) (-4 *5 (-384 *4)))) (-4436 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1238)) (-4 *5 (-384 *4)) (-4 *3 (-384 *4)))) (-4323 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4117 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4117 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(-13 (-501 |t#1|) (-10 -8 (-6 -4466) (-6 -4465) (-15 -4141 ($ (-783) (-783) |t#1|)) (-15 -4046 ($ $ |t#1|)) (-15 -4267 ((-576) $)) (-15 -3900 ((-576) $)) (-15 -1952 ((-576) $)) (-15 -2569 ((-576) $)) (-15 -1689 ((-783) $)) (-15 -1699 ((-783) $)) (-15 -2797 (|t#1| $ (-576) (-576))) (-15 -4274 (|t#1| $ (-576) (-576))) (-15 -2797 (|t#1| $ (-576) (-576) |t#1|)) (-15 -4093 (|t#2| $ (-576))) (-15 -2129 (|t#3| $ (-576))) (-15 -3966 ((-656 |t#1|) $)) (-15 -3756 (|t#1| $ (-576) (-576) |t#1|)) (-15 -4335 (|t#1| $ (-576) (-576) |t#1|)) (-15 -1631 ($ $ (-576) |t#2|)) (-15 -4436 ($ $ (-576) |t#3|)) (-15 -4117 ($ (-1 |t#1| |t#1|) $)) (-15 -4323 ($ (-1 |t#1| |t#1|) $)) (-15 -4117 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4117 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-102) -2760 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2760 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-1950 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-3686 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-4117 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) -(((-58 |#1| |#2|) (-10 -7 (-15 -1950 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3686 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4117 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1238) (-1238)) (T -58)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-3686 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-58 *5 *2)))) (-1950 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1238)) (-4 *5 (-1238)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) -(-10 -7 (-15 -1950 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3686 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4117 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2047 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4466)))) (-1710 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-4298 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4466))) (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-861))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-1808 (((-112) $ (-783)) NIL)) (-3756 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4466))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4466)))) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3886 (($) NIL T CONST)) (-3990 (($ $) NIL (|has| $ (-6 -4466)))) (-3836 (($ $) NIL)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3946 (($ |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4335 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4466)))) (-4274 ((|#1| $ (-576)) NIL)) (-3660 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-3966 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1774 (($ (-656 |#1|)) 11) (($ (-783) |#1|) 14)) (-4141 (($ (-783) |#1|) 13)) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-576) $) NIL (|has| (-576) (-861)))) (-3125 (($ $ $) NIL (|has| |#1| (-861)))) (-3391 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2137 (((-576) $) NIL (|has| (-576) (-861)))) (-3133 (($ $ $) NIL (|has| |#1| (-861)))) (-4323 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2176 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-4234 (((-656 (-576)) $) NIL)) (-3354 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3581 ((|#1| $) NIL (|has| (-576) (-861)))) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4046 (($ $ |#1|) NIL (|has| $ (-6 -4466)))) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2281 (((-656 |#1|) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-3466 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3025 (($ $ $ (-576)) NIL (|has| $ (-6 -4466)))) (-1870 (($ $) NIL)) (-4172 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) 10)) (-1615 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3570 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2992 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2950 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1774 ($ (-656 |#1|))) (-15 -1774 ($ (-783) |#1|)))) (-1238)) (T -59)) -((-1774 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-59 *3)))) (-1774 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-59 *3)) (-4 *3 (-1238))))) -(-13 (-19 |#1|) (-10 -8 (-15 -1774 ($ (-656 |#1|))) (-15 -1774 ($ (-783) |#1|)))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1808 (((-112) $ (-783)) NIL)) (-3756 ((|#1| $ (-576) (-576) |#1|) NIL)) (-1631 (($ $ (-576) (-59 |#1|)) NIL)) (-4436 (($ $ (-576) (-59 |#1|)) NIL)) (-3886 (($) NIL T CONST)) (-4093 (((-59 |#1|) $ (-576)) NIL)) (-4335 ((|#1| $ (-576) (-576) |#1|) NIL)) (-4274 ((|#1| $ (-576) (-576)) NIL)) (-3966 (((-656 |#1|) $) NIL)) (-1689 (((-783) $) NIL)) (-4141 (($ (-783) (-783) |#1|) NIL)) (-1699 (((-783) $) NIL)) (-3870 (((-112) $ (-783)) NIL)) (-4267 (((-576) $) NIL)) (-1952 (((-576) $) NIL)) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3900 (((-576) $) NIL)) (-2569 (((-576) $) NIL)) (-4323 (($ (-1 |#1| |#1|) $) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4046 (($ $ |#1|) NIL)) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-2129 (((-59 |#1|) $ (-576)) NIL)) (-3570 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4466))) (-1238)) (T -60)) -NIL -(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4466))) -((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 74) (((-3 $ "failed") (-1288 (-326 (-576)))) 63) (((-3 $ "failed") (-1288 (-971 (-390)))) 94) (((-3 $ "failed") (-1288 (-971 (-576)))) 84) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 52) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 39)) (-2860 (($ (-1288 (-326 (-390)))) 70) (($ (-1288 (-326 (-576)))) 59) (($ (-1288 (-971 (-390)))) 90) (($ (-1288 (-971 (-576)))) 80) (($ (-1288 (-419 (-971 (-390))))) 48) (($ (-1288 (-419 (-971 (-576))))) 32)) (-2623 (((-1293) $) 124)) (-3570 (((-876) $) 118) (($ (-656 (-340))) 103) (($ (-340)) 97) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 101) (($ (-1288 (-350 (-3582 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3582) (-711)))) 31))) -(((-61 |#1|) (-13 (-453) (-10 -8 (-15 -3570 ($ (-1288 (-350 (-3582 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3582) (-711))))))) (-1197)) (T -61)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3582 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3582) (-711)))) (-5 *1 (-61 *3)) (-14 *3 (-1197))))) -(-13 (-453) (-10 -8 (-15 -3570 ($ (-1288 (-350 (-3582 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3582) (-711))))))) -((-2623 (((-1293) $) 54) (((-1293)) 55)) (-3570 (((-876) $) 51))) -(((-62 |#1|) (-13 (-407) (-10 -7 (-15 -2623 ((-1293))))) (-1197)) (T -62)) -((-2623 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-62 *3)) (-14 *3 (-1197))))) -(-13 (-407) (-10 -7 (-15 -2623 ((-1293))))) -((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 150) (((-3 $ "failed") (-1288 (-326 (-576)))) 140) (((-3 $ "failed") (-1288 (-971 (-390)))) 170) (((-3 $ "failed") (-1288 (-971 (-576)))) 160) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 129) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 117)) (-2860 (($ (-1288 (-326 (-390)))) 146) (($ (-1288 (-326 (-576)))) 136) (($ (-1288 (-971 (-390)))) 166) (($ (-1288 (-971 (-576)))) 156) (($ (-1288 (-419 (-971 (-390))))) 125) (($ (-1288 (-419 (-971 (-576))))) 110)) (-2623 (((-1293) $) 103)) (-3570 (((-876) $) 97) (($ (-656 (-340))) 30) (($ (-340)) 35) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 33) (($ (-1288 (-350 (-3582) (-3582 (QUOTE XC)) (-711)))) 95))) -(((-63 |#1|) (-13 (-453) (-10 -8 (-15 -3570 ($ (-1288 (-350 (-3582) (-3582 (QUOTE XC)) (-711))))))) (-1197)) (T -63)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3582) (-3582 (QUOTE XC)) (-711)))) (-5 *1 (-63 *3)) (-14 *3 (-1197))))) -(-13 (-453) (-10 -8 (-15 -3570 ($ (-1288 (-350 (-3582) (-3582 (QUOTE XC)) (-711))))))) -((-1572 (((-3 $ "failed") (-326 (-390))) 41) (((-3 $ "failed") (-326 (-576))) 46) (((-3 $ "failed") (-971 (-390))) 50) (((-3 $ "failed") (-971 (-576))) 54) (((-3 $ "failed") (-419 (-971 (-390)))) 36) (((-3 $ "failed") (-419 (-971 (-576)))) 29)) (-2860 (($ (-326 (-390))) 39) (($ (-326 (-576))) 44) (($ (-971 (-390))) 48) (($ (-971 (-576))) 52) (($ (-419 (-971 (-390)))) 34) (($ (-419 (-971 (-576)))) 26)) (-2623 (((-1293) $) 76)) (-3570 (((-876) $) 69) (($ (-656 (-340))) 61) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 64) (($ (-350 (-3582 (QUOTE X)) (-3582) (-711))) 25))) -(((-64 |#1|) (-13 (-408) (-10 -8 (-15 -3570 ($ (-350 (-3582 (QUOTE X)) (-3582) (-711)))))) (-1197)) (T -64)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-350 (-3582 (QUOTE X)) (-3582) (-711))) (-5 *1 (-64 *3)) (-14 *3 (-1197))))) -(-13 (-408) (-10 -8 (-15 -3570 ($ (-350 (-3582 (QUOTE X)) (-3582) (-711)))))) -((-1572 (((-3 $ "failed") (-701 (-326 (-390)))) 111) (((-3 $ "failed") (-701 (-326 (-576)))) 99) (((-3 $ "failed") (-701 (-971 (-390)))) 133) (((-3 $ "failed") (-701 (-971 (-576)))) 122) (((-3 $ "failed") (-701 (-419 (-971 (-390))))) 87) (((-3 $ "failed") (-701 (-419 (-971 (-576))))) 73)) (-2860 (($ (-701 (-326 (-390)))) 107) (($ (-701 (-326 (-576)))) 95) (($ (-701 (-971 (-390)))) 129) (($ (-701 (-971 (-576)))) 118) (($ (-701 (-419 (-971 (-390))))) 83) (($ (-701 (-419 (-971 (-576))))) 66)) (-2623 (((-1293) $) 141)) (-3570 (((-876) $) 135) (($ (-656 (-340))) 29) (($ (-340)) 34) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 32) (($ (-701 (-350 (-3582) (-3582 (QUOTE X) (QUOTE HESS)) (-711)))) 56))) -(((-65 |#1|) (-13 (-395) (-628 (-701 (-350 (-3582) (-3582 (QUOTE X) (QUOTE HESS)) (-711))))) (-1197)) (T -65)) -NIL -(-13 (-395) (-628 (-701 (-350 (-3582) (-3582 (QUOTE X) (QUOTE HESS)) (-711))))) -((-1572 (((-3 $ "failed") (-326 (-390))) 60) (((-3 $ "failed") (-326 (-576))) 65) (((-3 $ "failed") (-971 (-390))) 69) (((-3 $ "failed") (-971 (-576))) 73) (((-3 $ "failed") (-419 (-971 (-390)))) 55) (((-3 $ "failed") (-419 (-971 (-576)))) 48)) (-2860 (($ (-326 (-390))) 58) (($ (-326 (-576))) 63) (($ (-971 (-390))) 67) (($ (-971 (-576))) 71) (($ (-419 (-971 (-390)))) 53) (($ (-419 (-971 (-576)))) 45)) (-2623 (((-1293) $) 82)) (-3570 (((-876) $) 76) (($ (-656 (-340))) 29) (($ (-340)) 34) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 32) (($ (-350 (-3582) (-3582 (QUOTE XC)) (-711))) 40))) -(((-66 |#1|) (-13 (-408) (-10 -8 (-15 -3570 ($ (-350 (-3582) (-3582 (QUOTE XC)) (-711)))))) (-1197)) (T -66)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-350 (-3582) (-3582 (QUOTE XC)) (-711))) (-5 *1 (-66 *3)) (-14 *3 (-1197))))) -(-13 (-408) (-10 -8 (-15 -3570 ($ (-350 (-3582) (-3582 (QUOTE XC)) (-711)))))) -((-2623 (((-1293) $) 65)) (-3570 (((-876) $) 59) (($ (-701 (-711))) 51) (($ (-656 (-340))) 50) (($ (-340)) 57) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 55))) +((-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4140 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-783)) (-4 *3 (-1238)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2304 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1238)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-4017 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-3550 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-3144 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-3037 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-1689 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-783)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-783)))) (-2796 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-1238)))) (-4272 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-1238)))) (-2796 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1238)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-1575 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1238)) (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) (-4203 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1238)) (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) (-3965 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-656 *3)))) (-3755 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1238)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-4332 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1238)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-3100 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1238)) (-4 *3 (-384 *4)) (-4 *5 (-384 *4)))) (-1891 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1238)) (-4 *5 (-384 *4)) (-4 *3 (-384 *4)))) (-4326 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4116 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4116 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) +(-13 (-501 |t#1|) (-10 -8 (-6 -4465) (-6 -4464) (-15 -4140 ($ (-783) (-783) |t#1|)) (-15 -2304 ($ $ |t#1|)) (-15 -4017 ((-576) $)) (-15 -3550 ((-576) $)) (-15 -3144 ((-576) $)) (-15 -3037 ((-576) $)) (-15 -1689 ((-783) $)) (-15 -1699 ((-783) $)) (-15 -2796 (|t#1| $ (-576) (-576))) (-15 -4272 (|t#1| $ (-576) (-576))) (-15 -2796 (|t#1| $ (-576) (-576) |t#1|)) (-15 -1575 (|t#2| $ (-576))) (-15 -4203 (|t#3| $ (-576))) (-15 -3965 ((-656 |t#1|) $)) (-15 -3755 (|t#1| $ (-576) (-576) |t#1|)) (-15 -4332 (|t#1| $ (-576) (-576) |t#1|)) (-15 -3100 ($ $ (-576) |t#2|)) (-15 -1891 ($ $ (-576) |t#3|)) (-15 -4116 ($ (-1 |t#1| |t#1|) $)) (-15 -4326 ($ (-1 |t#1| |t#1|) $)) (-15 -4116 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4116 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-102) -2759 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2759 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-3120 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-3685 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-4116 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) +(((-58 |#1| |#2|) (-10 -7 (-15 -3120 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3685 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4116 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1238) (-1238)) (T -58)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-3685 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-58 *5 *2)))) (-3120 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1238)) (-4 *5 (-1238)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) +(-10 -7 (-15 -3120 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3685 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4116 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1512 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-1390 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-3039 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-4264 (((-112) $ (-783)) NIL)) (-3755 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3404 (($) NIL T CONST)) (-3092 (($ $) NIL (|has| $ (-6 -4465)))) (-3835 (($ $) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3945 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) NIL)) (-3659 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3961 (($ (-656 |#1|)) 11) (($ (-783) |#1|) 14)) (-4140 (($ (-783) |#1|) 13)) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-2185 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4280 (((-576) $) NIL (|has| (-576) (-861)))) (-1441 (($ $ $) NIL (|has| |#1| (-861)))) (-4326 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2176 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3669 (((-656 (-576)) $) NIL)) (-3090 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3580 ((|#1| $) NIL (|has| (-576) (-861)))) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2304 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3207 (((-656 |#1|) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-3465 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2840 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 10)) (-1615 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2924 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2949 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3961 ($ (-656 |#1|))) (-15 -3961 ($ (-783) |#1|)))) (-1238)) (T -59)) +((-3961 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-59 *3)))) (-3961 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-59 *3)) (-4 *3 (-1238))))) +(-13 (-19 |#1|) (-10 -8 (-15 -3961 ($ (-656 |#1|))) (-15 -3961 ($ (-783) |#1|)))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4264 (((-112) $ (-783)) NIL)) (-3755 ((|#1| $ (-576) (-576) |#1|) NIL)) (-3100 (($ $ (-576) (-59 |#1|)) NIL)) (-1891 (($ $ (-576) (-59 |#1|)) NIL)) (-3404 (($) NIL T CONST)) (-1575 (((-59 |#1|) $ (-576)) NIL)) (-4332 ((|#1| $ (-576) (-576) |#1|) NIL)) (-4272 ((|#1| $ (-576) (-576)) NIL)) (-3965 (((-656 |#1|) $) NIL)) (-1689 (((-783) $) NIL)) (-4140 (($ (-783) (-783) |#1|) NIL)) (-1699 (((-783) $) NIL)) (-1368 (((-112) $ (-783)) NIL)) (-4017 (((-576) $) NIL)) (-3144 (((-576) $) NIL)) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3550 (((-576) $) NIL)) (-3037 (((-576) $) NIL)) (-4326 (($ (-1 |#1| |#1|) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-2304 (($ $ |#1|) NIL)) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-4203 (((-59 |#1|) $ (-576)) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4465))) (-1238)) (T -60)) +NIL +(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4465))) +((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 74) (((-3 $ "failed") (-1288 (-326 (-576)))) 63) (((-3 $ "failed") (-1288 (-971 (-390)))) 94) (((-3 $ "failed") (-1288 (-971 (-576)))) 84) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 52) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 39)) (-2859 (($ (-1288 (-326 (-390)))) 70) (($ (-1288 (-326 (-576)))) 59) (($ (-1288 (-971 (-390)))) 90) (($ (-1288 (-971 (-576)))) 80) (($ (-1288 (-419 (-971 (-390))))) 48) (($ (-1288 (-419 (-971 (-576))))) 32)) (-2622 (((-1293) $) 124)) (-3569 (((-876) $) 118) (($ (-656 (-340))) 103) (($ (-340)) 97) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 101) (($ (-1288 (-350 (-3581 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3581) (-711)))) 31))) +(((-61 |#1|) (-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3581) (-711))))))) (-1197)) (T -61)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3581 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3581) (-711)))) (-5 *1 (-61 *3)) (-14 *3 (-1197))))) +(-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3581) (-711))))))) +((-2622 (((-1293) $) 54) (((-1293)) 55)) (-3569 (((-876) $) 51))) +(((-62 |#1|) (-13 (-407) (-10 -7 (-15 -2622 ((-1293))))) (-1197)) (T -62)) +((-2622 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-62 *3)) (-14 *3 (-1197))))) +(-13 (-407) (-10 -7 (-15 -2622 ((-1293))))) +((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 150) (((-3 $ "failed") (-1288 (-326 (-576)))) 140) (((-3 $ "failed") (-1288 (-971 (-390)))) 170) (((-3 $ "failed") (-1288 (-971 (-576)))) 160) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 129) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 117)) (-2859 (($ (-1288 (-326 (-390)))) 146) (($ (-1288 (-326 (-576)))) 136) (($ (-1288 (-971 (-390)))) 166) (($ (-1288 (-971 (-576)))) 156) (($ (-1288 (-419 (-971 (-390))))) 125) (($ (-1288 (-419 (-971 (-576))))) 110)) (-2622 (((-1293) $) 103)) (-3569 (((-876) $) 97) (($ (-656 (-340))) 30) (($ (-340)) 35) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 33) (($ (-1288 (-350 (-3581) (-3581 (QUOTE XC)) (-711)))) 95))) +(((-63 |#1|) (-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581) (-3581 (QUOTE XC)) (-711))))))) (-1197)) (T -63)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3581) (-3581 (QUOTE XC)) (-711)))) (-5 *1 (-63 *3)) (-14 *3 (-1197))))) +(-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581) (-3581 (QUOTE XC)) (-711))))))) +((-1572 (((-3 $ "failed") (-326 (-390))) 41) (((-3 $ "failed") (-326 (-576))) 46) (((-3 $ "failed") (-971 (-390))) 50) (((-3 $ "failed") (-971 (-576))) 54) (((-3 $ "failed") (-419 (-971 (-390)))) 36) (((-3 $ "failed") (-419 (-971 (-576)))) 29)) (-2859 (($ (-326 (-390))) 39) (($ (-326 (-576))) 44) (($ (-971 (-390))) 48) (($ (-971 (-576))) 52) (($ (-419 (-971 (-390)))) 34) (($ (-419 (-971 (-576)))) 26)) (-2622 (((-1293) $) 76)) (-3569 (((-876) $) 69) (($ (-656 (-340))) 61) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 64) (($ (-350 (-3581 (QUOTE X)) (-3581) (-711))) 25))) +(((-64 |#1|) (-13 (-408) (-10 -8 (-15 -3569 ($ (-350 (-3581 (QUOTE X)) (-3581) (-711)))))) (-1197)) (T -64)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-350 (-3581 (QUOTE X)) (-3581) (-711))) (-5 *1 (-64 *3)) (-14 *3 (-1197))))) +(-13 (-408) (-10 -8 (-15 -3569 ($ (-350 (-3581 (QUOTE X)) (-3581) (-711)))))) +((-1572 (((-3 $ "failed") (-701 (-326 (-390)))) 111) (((-3 $ "failed") (-701 (-326 (-576)))) 99) (((-3 $ "failed") (-701 (-971 (-390)))) 133) (((-3 $ "failed") (-701 (-971 (-576)))) 122) (((-3 $ "failed") (-701 (-419 (-971 (-390))))) 87) (((-3 $ "failed") (-701 (-419 (-971 (-576))))) 73)) (-2859 (($ (-701 (-326 (-390)))) 107) (($ (-701 (-326 (-576)))) 95) (($ (-701 (-971 (-390)))) 129) (($ (-701 (-971 (-576)))) 118) (($ (-701 (-419 (-971 (-390))))) 83) (($ (-701 (-419 (-971 (-576))))) 66)) (-2622 (((-1293) $) 141)) (-3569 (((-876) $) 135) (($ (-656 (-340))) 29) (($ (-340)) 34) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 32) (($ (-701 (-350 (-3581) (-3581 (QUOTE X) (QUOTE HESS)) (-711)))) 56))) +(((-65 |#1|) (-13 (-395) (-628 (-701 (-350 (-3581) (-3581 (QUOTE X) (QUOTE HESS)) (-711))))) (-1197)) (T -65)) +NIL +(-13 (-395) (-628 (-701 (-350 (-3581) (-3581 (QUOTE X) (QUOTE HESS)) (-711))))) +((-1572 (((-3 $ "failed") (-326 (-390))) 60) (((-3 $ "failed") (-326 (-576))) 65) (((-3 $ "failed") (-971 (-390))) 69) (((-3 $ "failed") (-971 (-576))) 73) (((-3 $ "failed") (-419 (-971 (-390)))) 55) (((-3 $ "failed") (-419 (-971 (-576)))) 48)) (-2859 (($ (-326 (-390))) 58) (($ (-326 (-576))) 63) (($ (-971 (-390))) 67) (($ (-971 (-576))) 71) (($ (-419 (-971 (-390)))) 53) (($ (-419 (-971 (-576)))) 45)) (-2622 (((-1293) $) 82)) (-3569 (((-876) $) 76) (($ (-656 (-340))) 29) (($ (-340)) 34) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 32) (($ (-350 (-3581) (-3581 (QUOTE XC)) (-711))) 40))) +(((-66 |#1|) (-13 (-408) (-10 -8 (-15 -3569 ($ (-350 (-3581) (-3581 (QUOTE XC)) (-711)))))) (-1197)) (T -66)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-350 (-3581) (-3581 (QUOTE XC)) (-711))) (-5 *1 (-66 *3)) (-14 *3 (-1197))))) +(-13 (-408) (-10 -8 (-15 -3569 ($ (-350 (-3581) (-3581 (QUOTE XC)) (-711)))))) +((-2622 (((-1293) $) 65)) (-3569 (((-876) $) 59) (($ (-701 (-711))) 51) (($ (-656 (-340))) 50) (($ (-340)) 57) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 55))) (((-67 |#1|) (-394) (-1197)) (T -67)) NIL (-394) -((-2623 (((-1293) $) 66)) (-3570 (((-876) $) 60) (($ (-701 (-711))) 52) (($ (-656 (-340))) 51) (($ (-340)) 54) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 57))) +((-2622 (((-1293) $) 66)) (-3569 (((-876) $) 60) (($ (-701 (-711))) 52) (($ (-656 (-340))) 51) (($ (-340)) 54) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 57))) (((-68 |#1|) (-394) (-1197)) (T -68)) NIL (-394) -((-2623 (((-1293) $) NIL) (((-1293)) 33)) (-3570 (((-876) $) NIL))) -(((-69 |#1|) (-13 (-407) (-10 -7 (-15 -2623 ((-1293))))) (-1197)) (T -69)) -((-2623 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-69 *3)) (-14 *3 (-1197))))) -(-13 (-407) (-10 -7 (-15 -2623 ((-1293))))) -((-2623 (((-1293) $) 75)) (-3570 (((-876) $) 69) (($ (-701 (-711))) 61) (($ (-656 (-340))) 63) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 60))) +((-2622 (((-1293) $) NIL) (((-1293)) 33)) (-3569 (((-876) $) NIL))) +(((-69 |#1|) (-13 (-407) (-10 -7 (-15 -2622 ((-1293))))) (-1197)) (T -69)) +((-2622 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-69 *3)) (-14 *3 (-1197))))) +(-13 (-407) (-10 -7 (-15 -2622 ((-1293))))) +((-2622 (((-1293) $) 75)) (-3569 (((-876) $) 69) (($ (-701 (-711))) 61) (($ (-656 (-340))) 63) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 60))) (((-70 |#1|) (-394) (-1197)) (T -70)) NIL (-394) -((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 109) (((-3 $ "failed") (-1288 (-326 (-576)))) 98) (((-3 $ "failed") (-1288 (-971 (-390)))) 129) (((-3 $ "failed") (-1288 (-971 (-576)))) 119) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 87) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 74)) (-2860 (($ (-1288 (-326 (-390)))) 105) (($ (-1288 (-326 (-576)))) 94) (($ (-1288 (-971 (-390)))) 125) (($ (-1288 (-971 (-576)))) 115) (($ (-1288 (-419 (-971 (-390))))) 83) (($ (-1288 (-419 (-971 (-576))))) 67)) (-2623 (((-1293) $) 142)) (-3570 (((-876) $) 136) (($ (-656 (-340))) 131) (($ (-340)) 134) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 59) (($ (-1288 (-350 (-3582 (QUOTE X)) (-3582 (QUOTE -2495)) (-711)))) 60))) -(((-71 |#1|) (-13 (-453) (-10 -8 (-15 -3570 ($ (-1288 (-350 (-3582 (QUOTE X)) (-3582 (QUOTE -2495)) (-711))))))) (-1197)) (T -71)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3582 (QUOTE X)) (-3582 (QUOTE -2495)) (-711)))) (-5 *1 (-71 *3)) (-14 *3 (-1197))))) -(-13 (-453) (-10 -8 (-15 -3570 ($ (-1288 (-350 (-3582 (QUOTE X)) (-3582 (QUOTE -2495)) (-711))))))) -((-2623 (((-1293) $) 33) (((-1293)) 32)) (-3570 (((-876) $) 36))) -(((-72 |#1|) (-13 (-407) (-10 -7 (-15 -2623 ((-1293))))) (-1197)) (T -72)) -((-2623 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-72 *3)) (-14 *3 (-1197))))) -(-13 (-407) (-10 -7 (-15 -2623 ((-1293))))) -((-2623 (((-1293) $) 65)) (-3570 (((-876) $) 59) (($ (-701 (-711))) 51) (($ (-656 (-340))) 53) (($ (-340)) 56) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 50))) +((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 109) (((-3 $ "failed") (-1288 (-326 (-576)))) 98) (((-3 $ "failed") (-1288 (-971 (-390)))) 129) (((-3 $ "failed") (-1288 (-971 (-576)))) 119) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 87) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 74)) (-2859 (($ (-1288 (-326 (-390)))) 105) (($ (-1288 (-326 (-576)))) 94) (($ (-1288 (-971 (-390)))) 125) (($ (-1288 (-971 (-576)))) 115) (($ (-1288 (-419 (-971 (-390))))) 83) (($ (-1288 (-419 (-971 (-576))))) 67)) (-2622 (((-1293) $) 142)) (-3569 (((-876) $) 136) (($ (-656 (-340))) 131) (($ (-340)) 134) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 59) (($ (-1288 (-350 (-3581 (QUOTE X)) (-3581 (QUOTE -2494)) (-711)))) 60))) +(((-71 |#1|) (-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE X)) (-3581 (QUOTE -2494)) (-711))))))) (-1197)) (T -71)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3581 (QUOTE X)) (-3581 (QUOTE -2494)) (-711)))) (-5 *1 (-71 *3)) (-14 *3 (-1197))))) +(-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE X)) (-3581 (QUOTE -2494)) (-711))))))) +((-2622 (((-1293) $) 33) (((-1293)) 32)) (-3569 (((-876) $) 36))) +(((-72 |#1|) (-13 (-407) (-10 -7 (-15 -2622 ((-1293))))) (-1197)) (T -72)) +((-2622 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-72 *3)) (-14 *3 (-1197))))) +(-13 (-407) (-10 -7 (-15 -2622 ((-1293))))) +((-2622 (((-1293) $) 65)) (-3569 (((-876) $) 59) (($ (-701 (-711))) 51) (($ (-656 (-340))) 53) (($ (-340)) 56) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 50))) (((-73 |#1|) (-394) (-1197)) (T -73)) NIL (-394) -((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 127) (((-3 $ "failed") (-1288 (-326 (-576)))) 117) (((-3 $ "failed") (-1288 (-971 (-390)))) 147) (((-3 $ "failed") (-1288 (-971 (-576)))) 137) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 107) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 95)) (-2860 (($ (-1288 (-326 (-390)))) 123) (($ (-1288 (-326 (-576)))) 113) (($ (-1288 (-971 (-390)))) 143) (($ (-1288 (-971 (-576)))) 133) (($ (-1288 (-419 (-971 (-390))))) 103) (($ (-1288 (-419 (-971 (-576))))) 88)) (-2623 (((-1293) $) 80)) (-3570 (((-876) $) 28) (($ (-656 (-340))) 70) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 73) (($ (-1288 (-350 (-3582) (-3582 (QUOTE X)) (-711)))) 67))) -(((-74 |#1|) (-13 (-453) (-10 -8 (-15 -3570 ($ (-1288 (-350 (-3582) (-3582 (QUOTE X)) (-711))))))) (-1197)) (T -74)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3582) (-3582 (QUOTE X)) (-711)))) (-5 *1 (-74 *3)) (-14 *3 (-1197))))) -(-13 (-453) (-10 -8 (-15 -3570 ($ (-1288 (-350 (-3582) (-3582 (QUOTE X)) (-711))))))) -((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 132) (((-3 $ "failed") (-1288 (-326 (-576)))) 121) (((-3 $ "failed") (-1288 (-971 (-390)))) 152) (((-3 $ "failed") (-1288 (-971 (-576)))) 142) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 110) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 97)) (-2860 (($ (-1288 (-326 (-390)))) 128) (($ (-1288 (-326 (-576)))) 117) (($ (-1288 (-971 (-390)))) 148) (($ (-1288 (-971 (-576)))) 138) (($ (-1288 (-419 (-971 (-390))))) 106) (($ (-1288 (-419 (-971 (-576))))) 90)) (-2623 (((-1293) $) 82)) (-3570 (((-876) $) 74) (($ (-656 (-340))) NIL) (($ (-340)) NIL) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) NIL) (($ (-1288 (-350 (-3582 (QUOTE X) (QUOTE EPS)) (-3582 (QUOTE -2495)) (-711)))) 69))) -(((-75 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -3570 ($ (-1288 (-350 (-3582 (QUOTE X) (QUOTE EPS)) (-3582 (QUOTE -2495)) (-711))))))) (-1197) (-1197) (-1197)) (T -75)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3582 (QUOTE X) (QUOTE EPS)) (-3582 (QUOTE -2495)) (-711)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1197)) (-14 *4 (-1197)) (-14 *5 (-1197))))) -(-13 (-453) (-10 -8 (-15 -3570 ($ (-1288 (-350 (-3582 (QUOTE X) (QUOTE EPS)) (-3582 (QUOTE -2495)) (-711))))))) -((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 138) (((-3 $ "failed") (-1288 (-326 (-576)))) 127) (((-3 $ "failed") (-1288 (-971 (-390)))) 158) (((-3 $ "failed") (-1288 (-971 (-576)))) 148) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 116) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 103)) (-2860 (($ (-1288 (-326 (-390)))) 134) (($ (-1288 (-326 (-576)))) 123) (($ (-1288 (-971 (-390)))) 154) (($ (-1288 (-971 (-576)))) 144) (($ (-1288 (-419 (-971 (-390))))) 112) (($ (-1288 (-419 (-971 (-576))))) 96)) (-2623 (((-1293) $) 88)) (-3570 (((-876) $) 80) (($ (-656 (-340))) NIL) (($ (-340)) NIL) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) NIL) (($ (-1288 (-350 (-3582 (QUOTE EPS)) (-3582 (QUOTE YA) (QUOTE YB)) (-711)))) 75))) -(((-76 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -3570 ($ (-1288 (-350 (-3582 (QUOTE EPS)) (-3582 (QUOTE YA) (QUOTE YB)) (-711))))))) (-1197) (-1197) (-1197)) (T -76)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3582 (QUOTE EPS)) (-3582 (QUOTE YA) (QUOTE YB)) (-711)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1197)) (-14 *4 (-1197)) (-14 *5 (-1197))))) -(-13 (-453) (-10 -8 (-15 -3570 ($ (-1288 (-350 (-3582 (QUOTE EPS)) (-3582 (QUOTE YA) (QUOTE YB)) (-711))))))) -((-1572 (((-3 $ "failed") (-326 (-390))) 83) (((-3 $ "failed") (-326 (-576))) 88) (((-3 $ "failed") (-971 (-390))) 92) (((-3 $ "failed") (-971 (-576))) 96) (((-3 $ "failed") (-419 (-971 (-390)))) 78) (((-3 $ "failed") (-419 (-971 (-576)))) 71)) (-2860 (($ (-326 (-390))) 81) (($ (-326 (-576))) 86) (($ (-971 (-390))) 90) (($ (-971 (-576))) 94) (($ (-419 (-971 (-390)))) 76) (($ (-419 (-971 (-576)))) 68)) (-2623 (((-1293) $) 63)) (-3570 (((-876) $) 51) (($ (-656 (-340))) 47) (($ (-340)) 57) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 55) (($ (-350 (-3582) (-3582 (QUOTE X)) (-711))) 48))) -(((-77 |#1|) (-13 (-408) (-10 -8 (-15 -3570 ($ (-350 (-3582) (-3582 (QUOTE X)) (-711)))))) (-1197)) (T -77)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-350 (-3582) (-3582 (QUOTE X)) (-711))) (-5 *1 (-77 *3)) (-14 *3 (-1197))))) -(-13 (-408) (-10 -8 (-15 -3570 ($ (-350 (-3582) (-3582 (QUOTE X)) (-711)))))) -((-1572 (((-3 $ "failed") (-326 (-390))) 47) (((-3 $ "failed") (-326 (-576))) 52) (((-3 $ "failed") (-971 (-390))) 56) (((-3 $ "failed") (-971 (-576))) 60) (((-3 $ "failed") (-419 (-971 (-390)))) 42) (((-3 $ "failed") (-419 (-971 (-576)))) 35)) (-2860 (($ (-326 (-390))) 45) (($ (-326 (-576))) 50) (($ (-971 (-390))) 54) (($ (-971 (-576))) 58) (($ (-419 (-971 (-390)))) 40) (($ (-419 (-971 (-576)))) 32)) (-2623 (((-1293) $) 81)) (-3570 (((-876) $) 75) (($ (-656 (-340))) 67) (($ (-340)) 72) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 70) (($ (-350 (-3582) (-3582 (QUOTE X)) (-711))) 31))) -(((-78 |#1|) (-13 (-408) (-10 -8 (-15 -3570 ($ (-350 (-3582) (-3582 (QUOTE X)) (-711)))))) (-1197)) (T -78)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-350 (-3582) (-3582 (QUOTE X)) (-711))) (-5 *1 (-78 *3)) (-14 *3 (-1197))))) -(-13 (-408) (-10 -8 (-15 -3570 ($ (-350 (-3582) (-3582 (QUOTE X)) (-711)))))) -((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 90) (((-3 $ "failed") (-1288 (-326 (-576)))) 79) (((-3 $ "failed") (-1288 (-971 (-390)))) 110) (((-3 $ "failed") (-1288 (-971 (-576)))) 100) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 68) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 55)) (-2860 (($ (-1288 (-326 (-390)))) 86) (($ (-1288 (-326 (-576)))) 75) (($ (-1288 (-971 (-390)))) 106) (($ (-1288 (-971 (-576)))) 96) (($ (-1288 (-419 (-971 (-390))))) 64) (($ (-1288 (-419 (-971 (-576))))) 48)) (-2623 (((-1293) $) 126)) (-3570 (((-876) $) 120) (($ (-656 (-340))) 113) (($ (-340)) 38) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 116) (($ (-1288 (-350 (-3582) (-3582 (QUOTE XC)) (-711)))) 39))) -(((-79 |#1|) (-13 (-453) (-10 -8 (-15 -3570 ($ (-1288 (-350 (-3582) (-3582 (QUOTE XC)) (-711))))))) (-1197)) (T -79)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3582) (-3582 (QUOTE XC)) (-711)))) (-5 *1 (-79 *3)) (-14 *3 (-1197))))) -(-13 (-453) (-10 -8 (-15 -3570 ($ (-1288 (-350 (-3582) (-3582 (QUOTE XC)) (-711))))))) -((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 151) (((-3 $ "failed") (-1288 (-326 (-576)))) 141) (((-3 $ "failed") (-1288 (-971 (-390)))) 171) (((-3 $ "failed") (-1288 (-971 (-576)))) 161) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 131) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 119)) (-2860 (($ (-1288 (-326 (-390)))) 147) (($ (-1288 (-326 (-576)))) 137) (($ (-1288 (-971 (-390)))) 167) (($ (-1288 (-971 (-576)))) 157) (($ (-1288 (-419 (-971 (-390))))) 127) (($ (-1288 (-419 (-971 (-576))))) 112)) (-2623 (((-1293) $) 105)) (-3570 (((-876) $) 99) (($ (-656 (-340))) 90) (($ (-340)) 97) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 95) (($ (-1288 (-350 (-3582) (-3582 (QUOTE X)) (-711)))) 91))) -(((-80 |#1|) (-13 (-453) (-10 -8 (-15 -3570 ($ (-1288 (-350 (-3582) (-3582 (QUOTE X)) (-711))))))) (-1197)) (T -80)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3582) (-3582 (QUOTE X)) (-711)))) (-5 *1 (-80 *3)) (-14 *3 (-1197))))) -(-13 (-453) (-10 -8 (-15 -3570 ($ (-1288 (-350 (-3582) (-3582 (QUOTE X)) (-711))))))) -((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 79) (((-3 $ "failed") (-1288 (-326 (-576)))) 68) (((-3 $ "failed") (-1288 (-971 (-390)))) 99) (((-3 $ "failed") (-1288 (-971 (-576)))) 89) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 57) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 44)) (-2860 (($ (-1288 (-326 (-390)))) 75) (($ (-1288 (-326 (-576)))) 64) (($ (-1288 (-971 (-390)))) 95) (($ (-1288 (-971 (-576)))) 85) (($ (-1288 (-419 (-971 (-390))))) 53) (($ (-1288 (-419 (-971 (-576))))) 37)) (-2623 (((-1293) $) 125)) (-3570 (((-876) $) 119) (($ (-656 (-340))) 110) (($ (-340)) 116) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 114) (($ (-1288 (-350 (-3582) (-3582 (QUOTE X)) (-711)))) 36))) -(((-81 |#1|) (-13 (-453) (-628 (-1288 (-350 (-3582) (-3582 (QUOTE X)) (-711))))) (-1197)) (T -81)) -NIL -(-13 (-453) (-628 (-1288 (-350 (-3582) (-3582 (QUOTE X)) (-711))))) -((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 98) (((-3 $ "failed") (-1288 (-326 (-576)))) 87) (((-3 $ "failed") (-1288 (-971 (-390)))) 118) (((-3 $ "failed") (-1288 (-971 (-576)))) 108) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 76) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 63)) (-2860 (($ (-1288 (-326 (-390)))) 94) (($ (-1288 (-326 (-576)))) 83) (($ (-1288 (-971 (-390)))) 114) (($ (-1288 (-971 (-576)))) 104) (($ (-1288 (-419 (-971 (-390))))) 72) (($ (-1288 (-419 (-971 (-576))))) 56)) (-2623 (((-1293) $) 48)) (-3570 (((-876) $) 42) (($ (-656 (-340))) 32) (($ (-340)) 35) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 38) (($ (-1288 (-350 (-3582 (QUOTE X) (QUOTE -2495)) (-3582) (-711)))) 33))) -(((-82 |#1|) (-13 (-453) (-10 -8 (-15 -3570 ($ (-1288 (-350 (-3582 (QUOTE X) (QUOTE -2495)) (-3582) (-711))))))) (-1197)) (T -82)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3582 (QUOTE X) (QUOTE -2495)) (-3582) (-711)))) (-5 *1 (-82 *3)) (-14 *3 (-1197))))) -(-13 (-453) (-10 -8 (-15 -3570 ($ (-1288 (-350 (-3582 (QUOTE X) (QUOTE -2495)) (-3582) (-711))))))) -((-1572 (((-3 $ "failed") (-701 (-326 (-390)))) 118) (((-3 $ "failed") (-701 (-326 (-576)))) 107) (((-3 $ "failed") (-701 (-971 (-390)))) 140) (((-3 $ "failed") (-701 (-971 (-576)))) 129) (((-3 $ "failed") (-701 (-419 (-971 (-390))))) 96) (((-3 $ "failed") (-701 (-419 (-971 (-576))))) 83)) (-2860 (($ (-701 (-326 (-390)))) 114) (($ (-701 (-326 (-576)))) 103) (($ (-701 (-971 (-390)))) 136) (($ (-701 (-971 (-576)))) 125) (($ (-701 (-419 (-971 (-390))))) 92) (($ (-701 (-419 (-971 (-576))))) 76)) (-2623 (((-1293) $) 66)) (-3570 (((-876) $) 53) (($ (-656 (-340))) 60) (($ (-340)) 49) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 58) (($ (-701 (-350 (-3582 (QUOTE X) (QUOTE -2495)) (-3582) (-711)))) 50))) -(((-83 |#1|) (-13 (-395) (-10 -8 (-15 -3570 ($ (-701 (-350 (-3582 (QUOTE X) (QUOTE -2495)) (-3582) (-711))))))) (-1197)) (T -83)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-3582 (QUOTE X) (QUOTE -2495)) (-3582) (-711)))) (-5 *1 (-83 *3)) (-14 *3 (-1197))))) -(-13 (-395) (-10 -8 (-15 -3570 ($ (-701 (-350 (-3582 (QUOTE X) (QUOTE -2495)) (-3582) (-711))))))) -((-1572 (((-3 $ "failed") (-701 (-326 (-390)))) 113) (((-3 $ "failed") (-701 (-326 (-576)))) 101) (((-3 $ "failed") (-701 (-971 (-390)))) 135) (((-3 $ "failed") (-701 (-971 (-576)))) 124) (((-3 $ "failed") (-701 (-419 (-971 (-390))))) 89) (((-3 $ "failed") (-701 (-419 (-971 (-576))))) 75)) (-2860 (($ (-701 (-326 (-390)))) 109) (($ (-701 (-326 (-576)))) 97) (($ (-701 (-971 (-390)))) 131) (($ (-701 (-971 (-576)))) 120) (($ (-701 (-419 (-971 (-390))))) 85) (($ (-701 (-419 (-971 (-576))))) 68)) (-2623 (((-1293) $) 60)) (-3570 (((-876) $) 54) (($ (-656 (-340))) 48) (($ (-340)) 51) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 45) (($ (-701 (-350 (-3582 (QUOTE X)) (-3582) (-711)))) 46))) -(((-84 |#1|) (-13 (-395) (-10 -8 (-15 -3570 ($ (-701 (-350 (-3582 (QUOTE X)) (-3582) (-711))))))) (-1197)) (T -84)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-3582 (QUOTE X)) (-3582) (-711)))) (-5 *1 (-84 *3)) (-14 *3 (-1197))))) -(-13 (-395) (-10 -8 (-15 -3570 ($ (-701 (-350 (-3582 (QUOTE X)) (-3582) (-711))))))) -((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 105) (((-3 $ "failed") (-1288 (-326 (-576)))) 94) (((-3 $ "failed") (-1288 (-971 (-390)))) 125) (((-3 $ "failed") (-1288 (-971 (-576)))) 115) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 83) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 70)) (-2860 (($ (-1288 (-326 (-390)))) 101) (($ (-1288 (-326 (-576)))) 90) (($ (-1288 (-971 (-390)))) 121) (($ (-1288 (-971 (-576)))) 111) (($ (-1288 (-419 (-971 (-390))))) 79) (($ (-1288 (-419 (-971 (-576))))) 63)) (-2623 (((-1293) $) 47)) (-3570 (((-876) $) 41) (($ (-656 (-340))) 50) (($ (-340)) 37) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 53) (($ (-1288 (-350 (-3582 (QUOTE X)) (-3582) (-711)))) 38))) -(((-85 |#1|) (-13 (-453) (-10 -8 (-15 -3570 ($ (-1288 (-350 (-3582 (QUOTE X)) (-3582) (-711))))))) (-1197)) (T -85)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3582 (QUOTE X)) (-3582) (-711)))) (-5 *1 (-85 *3)) (-14 *3 (-1197))))) -(-13 (-453) (-10 -8 (-15 -3570 ($ (-1288 (-350 (-3582 (QUOTE X)) (-3582) (-711))))))) -((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 80) (((-3 $ "failed") (-1288 (-326 (-576)))) 69) (((-3 $ "failed") (-1288 (-971 (-390)))) 100) (((-3 $ "failed") (-1288 (-971 (-576)))) 90) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 58) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 45)) (-2860 (($ (-1288 (-326 (-390)))) 76) (($ (-1288 (-326 (-576)))) 65) (($ (-1288 (-971 (-390)))) 96) (($ (-1288 (-971 (-576)))) 86) (($ (-1288 (-419 (-971 (-390))))) 54) (($ (-1288 (-419 (-971 (-576))))) 38)) (-2623 (((-1293) $) 126)) (-3570 (((-876) $) 120) (($ (-656 (-340))) 111) (($ (-340)) 117) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 115) (($ (-1288 (-350 (-3582 (QUOTE X)) (-3582 (QUOTE -2495)) (-711)))) 37))) -(((-86 |#1|) (-13 (-453) (-10 -8 (-15 -3570 ($ (-1288 (-350 (-3582 (QUOTE X)) (-3582 (QUOTE -2495)) (-711))))))) (-1197)) (T -86)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3582 (QUOTE X)) (-3582 (QUOTE -2495)) (-711)))) (-5 *1 (-86 *3)) (-14 *3 (-1197))))) -(-13 (-453) (-10 -8 (-15 -3570 ($ (-1288 (-350 (-3582 (QUOTE X)) (-3582 (QUOTE -2495)) (-711))))))) -((-1572 (((-3 $ "failed") (-701 (-326 (-390)))) 117) (((-3 $ "failed") (-701 (-326 (-576)))) 105) (((-3 $ "failed") (-701 (-971 (-390)))) 139) (((-3 $ "failed") (-701 (-971 (-576)))) 128) (((-3 $ "failed") (-701 (-419 (-971 (-390))))) 93) (((-3 $ "failed") (-701 (-419 (-971 (-576))))) 79)) (-2860 (($ (-701 (-326 (-390)))) 113) (($ (-701 (-326 (-576)))) 101) (($ (-701 (-971 (-390)))) 135) (($ (-701 (-971 (-576)))) 124) (($ (-701 (-419 (-971 (-390))))) 89) (($ (-701 (-419 (-971 (-576))))) 72)) (-2623 (((-1293) $) 63)) (-3570 (((-876) $) 57) (($ (-656 (-340))) 47) (($ (-340)) 54) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 52) (($ (-701 (-350 (-3582 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3582) (-711)))) 48))) -(((-87 |#1|) (-13 (-395) (-10 -8 (-15 -3570 ($ (-701 (-350 (-3582 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3582) (-711))))))) (-1197)) (T -87)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-3582 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3582) (-711)))) (-5 *1 (-87 *3)) (-14 *3 (-1197))))) -(-13 (-395) (-10 -8 (-15 -3570 ($ (-701 (-350 (-3582 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3582) (-711))))))) -((-2623 (((-1293) $) 45)) (-3570 (((-876) $) 39) (($ (-1288 (-711))) 100) (($ (-656 (-340))) 31) (($ (-340)) 36) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 34))) +((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 127) (((-3 $ "failed") (-1288 (-326 (-576)))) 117) (((-3 $ "failed") (-1288 (-971 (-390)))) 147) (((-3 $ "failed") (-1288 (-971 (-576)))) 137) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 107) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 95)) (-2859 (($ (-1288 (-326 (-390)))) 123) (($ (-1288 (-326 (-576)))) 113) (($ (-1288 (-971 (-390)))) 143) (($ (-1288 (-971 (-576)))) 133) (($ (-1288 (-419 (-971 (-390))))) 103) (($ (-1288 (-419 (-971 (-576))))) 88)) (-2622 (((-1293) $) 80)) (-3569 (((-876) $) 28) (($ (-656 (-340))) 70) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 73) (($ (-1288 (-350 (-3581) (-3581 (QUOTE X)) (-711)))) 67))) +(((-74 |#1|) (-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581) (-3581 (QUOTE X)) (-711))))))) (-1197)) (T -74)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3581) (-3581 (QUOTE X)) (-711)))) (-5 *1 (-74 *3)) (-14 *3 (-1197))))) +(-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581) (-3581 (QUOTE X)) (-711))))))) +((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 132) (((-3 $ "failed") (-1288 (-326 (-576)))) 121) (((-3 $ "failed") (-1288 (-971 (-390)))) 152) (((-3 $ "failed") (-1288 (-971 (-576)))) 142) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 110) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 97)) (-2859 (($ (-1288 (-326 (-390)))) 128) (($ (-1288 (-326 (-576)))) 117) (($ (-1288 (-971 (-390)))) 148) (($ (-1288 (-971 (-576)))) 138) (($ (-1288 (-419 (-971 (-390))))) 106) (($ (-1288 (-419 (-971 (-576))))) 90)) (-2622 (((-1293) $) 82)) (-3569 (((-876) $) 74) (($ (-656 (-340))) NIL) (($ (-340)) NIL) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) NIL) (($ (-1288 (-350 (-3581 (QUOTE X) (QUOTE EPS)) (-3581 (QUOTE -2494)) (-711)))) 69))) +(((-75 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE X) (QUOTE EPS)) (-3581 (QUOTE -2494)) (-711))))))) (-1197) (-1197) (-1197)) (T -75)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3581 (QUOTE X) (QUOTE EPS)) (-3581 (QUOTE -2494)) (-711)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1197)) (-14 *4 (-1197)) (-14 *5 (-1197))))) +(-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE X) (QUOTE EPS)) (-3581 (QUOTE -2494)) (-711))))))) +((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 138) (((-3 $ "failed") (-1288 (-326 (-576)))) 127) (((-3 $ "failed") (-1288 (-971 (-390)))) 158) (((-3 $ "failed") (-1288 (-971 (-576)))) 148) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 116) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 103)) (-2859 (($ (-1288 (-326 (-390)))) 134) (($ (-1288 (-326 (-576)))) 123) (($ (-1288 (-971 (-390)))) 154) (($ (-1288 (-971 (-576)))) 144) (($ (-1288 (-419 (-971 (-390))))) 112) (($ (-1288 (-419 (-971 (-576))))) 96)) (-2622 (((-1293) $) 88)) (-3569 (((-876) $) 80) (($ (-656 (-340))) NIL) (($ (-340)) NIL) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) NIL) (($ (-1288 (-350 (-3581 (QUOTE EPS)) (-3581 (QUOTE YA) (QUOTE YB)) (-711)))) 75))) +(((-76 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE EPS)) (-3581 (QUOTE YA) (QUOTE YB)) (-711))))))) (-1197) (-1197) (-1197)) (T -76)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3581 (QUOTE EPS)) (-3581 (QUOTE YA) (QUOTE YB)) (-711)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1197)) (-14 *4 (-1197)) (-14 *5 (-1197))))) +(-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE EPS)) (-3581 (QUOTE YA) (QUOTE YB)) (-711))))))) +((-1572 (((-3 $ "failed") (-326 (-390))) 83) (((-3 $ "failed") (-326 (-576))) 88) (((-3 $ "failed") (-971 (-390))) 92) (((-3 $ "failed") (-971 (-576))) 96) (((-3 $ "failed") (-419 (-971 (-390)))) 78) (((-3 $ "failed") (-419 (-971 (-576)))) 71)) (-2859 (($ (-326 (-390))) 81) (($ (-326 (-576))) 86) (($ (-971 (-390))) 90) (($ (-971 (-576))) 94) (($ (-419 (-971 (-390)))) 76) (($ (-419 (-971 (-576)))) 68)) (-2622 (((-1293) $) 63)) (-3569 (((-876) $) 51) (($ (-656 (-340))) 47) (($ (-340)) 57) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 55) (($ (-350 (-3581) (-3581 (QUOTE X)) (-711))) 48))) +(((-77 |#1|) (-13 (-408) (-10 -8 (-15 -3569 ($ (-350 (-3581) (-3581 (QUOTE X)) (-711)))))) (-1197)) (T -77)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-350 (-3581) (-3581 (QUOTE X)) (-711))) (-5 *1 (-77 *3)) (-14 *3 (-1197))))) +(-13 (-408) (-10 -8 (-15 -3569 ($ (-350 (-3581) (-3581 (QUOTE X)) (-711)))))) +((-1572 (((-3 $ "failed") (-326 (-390))) 47) (((-3 $ "failed") (-326 (-576))) 52) (((-3 $ "failed") (-971 (-390))) 56) (((-3 $ "failed") (-971 (-576))) 60) (((-3 $ "failed") (-419 (-971 (-390)))) 42) (((-3 $ "failed") (-419 (-971 (-576)))) 35)) (-2859 (($ (-326 (-390))) 45) (($ (-326 (-576))) 50) (($ (-971 (-390))) 54) (($ (-971 (-576))) 58) (($ (-419 (-971 (-390)))) 40) (($ (-419 (-971 (-576)))) 32)) (-2622 (((-1293) $) 81)) (-3569 (((-876) $) 75) (($ (-656 (-340))) 67) (($ (-340)) 72) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 70) (($ (-350 (-3581) (-3581 (QUOTE X)) (-711))) 31))) +(((-78 |#1|) (-13 (-408) (-10 -8 (-15 -3569 ($ (-350 (-3581) (-3581 (QUOTE X)) (-711)))))) (-1197)) (T -78)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-350 (-3581) (-3581 (QUOTE X)) (-711))) (-5 *1 (-78 *3)) (-14 *3 (-1197))))) +(-13 (-408) (-10 -8 (-15 -3569 ($ (-350 (-3581) (-3581 (QUOTE X)) (-711)))))) +((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 90) (((-3 $ "failed") (-1288 (-326 (-576)))) 79) (((-3 $ "failed") (-1288 (-971 (-390)))) 110) (((-3 $ "failed") (-1288 (-971 (-576)))) 100) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 68) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 55)) (-2859 (($ (-1288 (-326 (-390)))) 86) (($ (-1288 (-326 (-576)))) 75) (($ (-1288 (-971 (-390)))) 106) (($ (-1288 (-971 (-576)))) 96) (($ (-1288 (-419 (-971 (-390))))) 64) (($ (-1288 (-419 (-971 (-576))))) 48)) (-2622 (((-1293) $) 126)) (-3569 (((-876) $) 120) (($ (-656 (-340))) 113) (($ (-340)) 38) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 116) (($ (-1288 (-350 (-3581) (-3581 (QUOTE XC)) (-711)))) 39))) +(((-79 |#1|) (-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581) (-3581 (QUOTE XC)) (-711))))))) (-1197)) (T -79)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3581) (-3581 (QUOTE XC)) (-711)))) (-5 *1 (-79 *3)) (-14 *3 (-1197))))) +(-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581) (-3581 (QUOTE XC)) (-711))))))) +((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 151) (((-3 $ "failed") (-1288 (-326 (-576)))) 141) (((-3 $ "failed") (-1288 (-971 (-390)))) 171) (((-3 $ "failed") (-1288 (-971 (-576)))) 161) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 131) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 119)) (-2859 (($ (-1288 (-326 (-390)))) 147) (($ (-1288 (-326 (-576)))) 137) (($ (-1288 (-971 (-390)))) 167) (($ (-1288 (-971 (-576)))) 157) (($ (-1288 (-419 (-971 (-390))))) 127) (($ (-1288 (-419 (-971 (-576))))) 112)) (-2622 (((-1293) $) 105)) (-3569 (((-876) $) 99) (($ (-656 (-340))) 90) (($ (-340)) 97) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 95) (($ (-1288 (-350 (-3581) (-3581 (QUOTE X)) (-711)))) 91))) +(((-80 |#1|) (-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581) (-3581 (QUOTE X)) (-711))))))) (-1197)) (T -80)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3581) (-3581 (QUOTE X)) (-711)))) (-5 *1 (-80 *3)) (-14 *3 (-1197))))) +(-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581) (-3581 (QUOTE X)) (-711))))))) +((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 79) (((-3 $ "failed") (-1288 (-326 (-576)))) 68) (((-3 $ "failed") (-1288 (-971 (-390)))) 99) (((-3 $ "failed") (-1288 (-971 (-576)))) 89) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 57) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 44)) (-2859 (($ (-1288 (-326 (-390)))) 75) (($ (-1288 (-326 (-576)))) 64) (($ (-1288 (-971 (-390)))) 95) (($ (-1288 (-971 (-576)))) 85) (($ (-1288 (-419 (-971 (-390))))) 53) (($ (-1288 (-419 (-971 (-576))))) 37)) (-2622 (((-1293) $) 125)) (-3569 (((-876) $) 119) (($ (-656 (-340))) 110) (($ (-340)) 116) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 114) (($ (-1288 (-350 (-3581) (-3581 (QUOTE X)) (-711)))) 36))) +(((-81 |#1|) (-13 (-453) (-628 (-1288 (-350 (-3581) (-3581 (QUOTE X)) (-711))))) (-1197)) (T -81)) +NIL +(-13 (-453) (-628 (-1288 (-350 (-3581) (-3581 (QUOTE X)) (-711))))) +((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 98) (((-3 $ "failed") (-1288 (-326 (-576)))) 87) (((-3 $ "failed") (-1288 (-971 (-390)))) 118) (((-3 $ "failed") (-1288 (-971 (-576)))) 108) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 76) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 63)) (-2859 (($ (-1288 (-326 (-390)))) 94) (($ (-1288 (-326 (-576)))) 83) (($ (-1288 (-971 (-390)))) 114) (($ (-1288 (-971 (-576)))) 104) (($ (-1288 (-419 (-971 (-390))))) 72) (($ (-1288 (-419 (-971 (-576))))) 56)) (-2622 (((-1293) $) 48)) (-3569 (((-876) $) 42) (($ (-656 (-340))) 32) (($ (-340)) 35) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 38) (($ (-1288 (-350 (-3581 (QUOTE X) (QUOTE -2494)) (-3581) (-711)))) 33))) +(((-82 |#1|) (-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE X) (QUOTE -2494)) (-3581) (-711))))))) (-1197)) (T -82)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3581 (QUOTE X) (QUOTE -2494)) (-3581) (-711)))) (-5 *1 (-82 *3)) (-14 *3 (-1197))))) +(-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE X) (QUOTE -2494)) (-3581) (-711))))))) +((-1572 (((-3 $ "failed") (-701 (-326 (-390)))) 118) (((-3 $ "failed") (-701 (-326 (-576)))) 107) (((-3 $ "failed") (-701 (-971 (-390)))) 140) (((-3 $ "failed") (-701 (-971 (-576)))) 129) (((-3 $ "failed") (-701 (-419 (-971 (-390))))) 96) (((-3 $ "failed") (-701 (-419 (-971 (-576))))) 83)) (-2859 (($ (-701 (-326 (-390)))) 114) (($ (-701 (-326 (-576)))) 103) (($ (-701 (-971 (-390)))) 136) (($ (-701 (-971 (-576)))) 125) (($ (-701 (-419 (-971 (-390))))) 92) (($ (-701 (-419 (-971 (-576))))) 76)) (-2622 (((-1293) $) 66)) (-3569 (((-876) $) 53) (($ (-656 (-340))) 60) (($ (-340)) 49) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 58) (($ (-701 (-350 (-3581 (QUOTE X) (QUOTE -2494)) (-3581) (-711)))) 50))) +(((-83 |#1|) (-13 (-395) (-10 -8 (-15 -3569 ($ (-701 (-350 (-3581 (QUOTE X) (QUOTE -2494)) (-3581) (-711))))))) (-1197)) (T -83)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-3581 (QUOTE X) (QUOTE -2494)) (-3581) (-711)))) (-5 *1 (-83 *3)) (-14 *3 (-1197))))) +(-13 (-395) (-10 -8 (-15 -3569 ($ (-701 (-350 (-3581 (QUOTE X) (QUOTE -2494)) (-3581) (-711))))))) +((-1572 (((-3 $ "failed") (-701 (-326 (-390)))) 113) (((-3 $ "failed") (-701 (-326 (-576)))) 101) (((-3 $ "failed") (-701 (-971 (-390)))) 135) (((-3 $ "failed") (-701 (-971 (-576)))) 124) (((-3 $ "failed") (-701 (-419 (-971 (-390))))) 89) (((-3 $ "failed") (-701 (-419 (-971 (-576))))) 75)) (-2859 (($ (-701 (-326 (-390)))) 109) (($ (-701 (-326 (-576)))) 97) (($ (-701 (-971 (-390)))) 131) (($ (-701 (-971 (-576)))) 120) (($ (-701 (-419 (-971 (-390))))) 85) (($ (-701 (-419 (-971 (-576))))) 68)) (-2622 (((-1293) $) 60)) (-3569 (((-876) $) 54) (($ (-656 (-340))) 48) (($ (-340)) 51) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 45) (($ (-701 (-350 (-3581 (QUOTE X)) (-3581) (-711)))) 46))) +(((-84 |#1|) (-13 (-395) (-10 -8 (-15 -3569 ($ (-701 (-350 (-3581 (QUOTE X)) (-3581) (-711))))))) (-1197)) (T -84)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-3581 (QUOTE X)) (-3581) (-711)))) (-5 *1 (-84 *3)) (-14 *3 (-1197))))) +(-13 (-395) (-10 -8 (-15 -3569 ($ (-701 (-350 (-3581 (QUOTE X)) (-3581) (-711))))))) +((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 105) (((-3 $ "failed") (-1288 (-326 (-576)))) 94) (((-3 $ "failed") (-1288 (-971 (-390)))) 125) (((-3 $ "failed") (-1288 (-971 (-576)))) 115) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 83) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 70)) (-2859 (($ (-1288 (-326 (-390)))) 101) (($ (-1288 (-326 (-576)))) 90) (($ (-1288 (-971 (-390)))) 121) (($ (-1288 (-971 (-576)))) 111) (($ (-1288 (-419 (-971 (-390))))) 79) (($ (-1288 (-419 (-971 (-576))))) 63)) (-2622 (((-1293) $) 47)) (-3569 (((-876) $) 41) (($ (-656 (-340))) 50) (($ (-340)) 37) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 53) (($ (-1288 (-350 (-3581 (QUOTE X)) (-3581) (-711)))) 38))) +(((-85 |#1|) (-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE X)) (-3581) (-711))))))) (-1197)) (T -85)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3581 (QUOTE X)) (-3581) (-711)))) (-5 *1 (-85 *3)) (-14 *3 (-1197))))) +(-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE X)) (-3581) (-711))))))) +((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 80) (((-3 $ "failed") (-1288 (-326 (-576)))) 69) (((-3 $ "failed") (-1288 (-971 (-390)))) 100) (((-3 $ "failed") (-1288 (-971 (-576)))) 90) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 58) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 45)) (-2859 (($ (-1288 (-326 (-390)))) 76) (($ (-1288 (-326 (-576)))) 65) (($ (-1288 (-971 (-390)))) 96) (($ (-1288 (-971 (-576)))) 86) (($ (-1288 (-419 (-971 (-390))))) 54) (($ (-1288 (-419 (-971 (-576))))) 38)) (-2622 (((-1293) $) 126)) (-3569 (((-876) $) 120) (($ (-656 (-340))) 111) (($ (-340)) 117) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 115) (($ (-1288 (-350 (-3581 (QUOTE X)) (-3581 (QUOTE -2494)) (-711)))) 37))) +(((-86 |#1|) (-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE X)) (-3581 (QUOTE -2494)) (-711))))))) (-1197)) (T -86)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-3581 (QUOTE X)) (-3581 (QUOTE -2494)) (-711)))) (-5 *1 (-86 *3)) (-14 *3 (-1197))))) +(-13 (-453) (-10 -8 (-15 -3569 ($ (-1288 (-350 (-3581 (QUOTE X)) (-3581 (QUOTE -2494)) (-711))))))) +((-1572 (((-3 $ "failed") (-701 (-326 (-390)))) 117) (((-3 $ "failed") (-701 (-326 (-576)))) 105) (((-3 $ "failed") (-701 (-971 (-390)))) 139) (((-3 $ "failed") (-701 (-971 (-576)))) 128) (((-3 $ "failed") (-701 (-419 (-971 (-390))))) 93) (((-3 $ "failed") (-701 (-419 (-971 (-576))))) 79)) (-2859 (($ (-701 (-326 (-390)))) 113) (($ (-701 (-326 (-576)))) 101) (($ (-701 (-971 (-390)))) 135) (($ (-701 (-971 (-576)))) 124) (($ (-701 (-419 (-971 (-390))))) 89) (($ (-701 (-419 (-971 (-576))))) 72)) (-2622 (((-1293) $) 63)) (-3569 (((-876) $) 57) (($ (-656 (-340))) 47) (($ (-340)) 54) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 52) (($ (-701 (-350 (-3581 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3581) (-711)))) 48))) +(((-87 |#1|) (-13 (-395) (-10 -8 (-15 -3569 ($ (-701 (-350 (-3581 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3581) (-711))))))) (-1197)) (T -87)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-3581 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3581) (-711)))) (-5 *1 (-87 *3)) (-14 *3 (-1197))))) +(-13 (-395) (-10 -8 (-15 -3569 ($ (-701 (-350 (-3581 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3581) (-711))))))) +((-2622 (((-1293) $) 45)) (-3569 (((-876) $) 39) (($ (-1288 (-711))) 100) (($ (-656 (-340))) 31) (($ (-340)) 36) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 34))) (((-88 |#1|) (-452) (-1197)) (T -88)) NIL (-452) -((-1572 (((-3 $ "failed") (-326 (-390))) 48) (((-3 $ "failed") (-326 (-576))) 53) (((-3 $ "failed") (-971 (-390))) 57) (((-3 $ "failed") (-971 (-576))) 61) (((-3 $ "failed") (-419 (-971 (-390)))) 43) (((-3 $ "failed") (-419 (-971 (-576)))) 36)) (-2860 (($ (-326 (-390))) 46) (($ (-326 (-576))) 51) (($ (-971 (-390))) 55) (($ (-971 (-576))) 59) (($ (-419 (-971 (-390)))) 41) (($ (-419 (-971 (-576)))) 33)) (-2623 (((-1293) $) 91)) (-3570 (((-876) $) 85) (($ (-656 (-340))) 79) (($ (-340)) 82) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 77) (($ (-350 (-3582 (QUOTE X)) (-3582 (QUOTE -2495)) (-711))) 32))) -(((-89 |#1|) (-13 (-408) (-10 -8 (-15 -3570 ($ (-350 (-3582 (QUOTE X)) (-3582 (QUOTE -2495)) (-711)))))) (-1197)) (T -89)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-350 (-3582 (QUOTE X)) (-3582 (QUOTE -2495)) (-711))) (-5 *1 (-89 *3)) (-14 *3 (-1197))))) -(-13 (-408) (-10 -8 (-15 -3570 ($ (-350 (-3582 (QUOTE X)) (-3582 (QUOTE -2495)) (-711)))))) -((-2273 (((-1288 (-701 |#1|)) (-701 |#1|)) 61)) (-3999 (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 (-656 (-940))))) |#2| (-940)) 49)) (-2907 (((-2 (|:| |minor| (-656 (-940))) (|:| -4027 |#2|) (|:| |minors| (-656 (-656 (-940)))) (|:| |ops| (-656 |#2|))) |#2| (-940)) 72 (|has| |#1| (-374))))) -(((-90 |#1| |#2|) (-10 -7 (-15 -3999 ((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 (-656 (-940))))) |#2| (-940))) (-15 -2273 ((-1288 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-374)) (-15 -2907 ((-2 (|:| |minor| (-656 (-940))) (|:| -4027 |#2|) (|:| |minors| (-656 (-656 (-940)))) (|:| |ops| (-656 |#2|))) |#2| (-940))) |%noBranch|)) (-568) (-668 |#1|)) (T -90)) -((-2907 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |minor| (-656 (-940))) (|:| -4027 *3) (|:| |minors| (-656 (-656 (-940)))) (|:| |ops| (-656 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-940)) (-4 *3 (-668 *5)))) (-2273 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-1288 (-701 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-701 *4)) (-4 *5 (-668 *4)))) (-3999 (*1 *2 *3 *4) (-12 (-4 *5 (-568)) (-5 *2 (-2 (|:| -2590 (-701 *5)) (|:| |vec| (-1288 (-656 (-940)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-940)) (-4 *3 (-668 *5))))) -(-10 -7 (-15 -3999 ((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 (-656 (-940))))) |#2| (-940))) (-15 -2273 ((-1288 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-374)) (-15 -2907 ((-2 (|:| |minor| (-656 (-940))) (|:| -4027 |#2|) (|:| |minors| (-656 (-656 (-940)))) (|:| |ops| (-656 |#2|))) |#2| (-940))) |%noBranch|)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1419 ((|#1| $) 40)) (-1808 (((-112) $ (-783)) NIL)) (-3886 (($) NIL T CONST)) (-3659 ((|#1| |#1| $) 35)) (-3469 ((|#1| $) 33)) (-3966 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) NIL)) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-4323 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1597 ((|#1| $) NIL)) (-1901 (($ |#1| $) 36)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3449 ((|#1| $) 34)) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) 18)) (-4225 (($) 45)) (-1888 (((-783) $) 31)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1870 (($ $) 17)) (-3570 (((-876) $) 30 (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3943 (($ (-656 |#1|)) NIL)) (-2147 (($ (-656 |#1|)) 42)) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 15 (|has| |#1| (-102)))) (-3503 (((-783) $) 12 (|has| $ (-6 -4465))))) -(((-91 |#1|) (-13 (-1142 |#1|) (-10 -8 (-15 -2147 ($ (-656 |#1|))))) (-1121)) (T -91)) -((-2147 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-91 *3))))) -(-13 (-1142 |#1|) (-10 -8 (-15 -2147 ($ (-656 |#1|))))) -((-3570 (((-876) $) 13) (($ (-1202)) 9) (((-1202) $) 8))) -(((-92 |#1|) (-10 -8 (-15 -3570 ((-1202) |#1|)) (-15 -3570 (|#1| (-1202))) (-15 -3570 ((-876) |#1|))) (-93)) (T -92)) -NIL -(-10 -8 (-15 -3570 ((-1202) |#1|)) (-15 -3570 (|#1| (-1202))) (-15 -3570 ((-876) |#1|))) -((-3489 (((-112) $ $) 7)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12) (($ (-1202)) 17) (((-1202) $) 16)) (-4055 (((-112) $ $) 6)) (-2925 (((-112) $ $) 8))) +((-1572 (((-3 $ "failed") (-326 (-390))) 48) (((-3 $ "failed") (-326 (-576))) 53) (((-3 $ "failed") (-971 (-390))) 57) (((-3 $ "failed") (-971 (-576))) 61) (((-3 $ "failed") (-419 (-971 (-390)))) 43) (((-3 $ "failed") (-419 (-971 (-576)))) 36)) (-2859 (($ (-326 (-390))) 46) (($ (-326 (-576))) 51) (($ (-971 (-390))) 55) (($ (-971 (-576))) 59) (($ (-419 (-971 (-390)))) 41) (($ (-419 (-971 (-576)))) 33)) (-2622 (((-1293) $) 91)) (-3569 (((-876) $) 85) (($ (-656 (-340))) 79) (($ (-340)) 82) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 77) (($ (-350 (-3581 (QUOTE X)) (-3581 (QUOTE -2494)) (-711))) 32))) +(((-89 |#1|) (-13 (-408) (-10 -8 (-15 -3569 ($ (-350 (-3581 (QUOTE X)) (-3581 (QUOTE -2494)) (-711)))))) (-1197)) (T -89)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-350 (-3581 (QUOTE X)) (-3581 (QUOTE -2494)) (-711))) (-5 *1 (-89 *3)) (-14 *3 (-1197))))) +(-13 (-408) (-10 -8 (-15 -3569 ($ (-350 (-3581 (QUOTE X)) (-3581 (QUOTE -2494)) (-711)))))) +((-3126 (((-1288 (-701 |#1|)) (-701 |#1|)) 61)) (-3182 (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 (-656 (-940))))) |#2| (-940)) 49)) (-3116 (((-2 (|:| |minor| (-656 (-940))) (|:| -4026 |#2|) (|:| |minors| (-656 (-656 (-940)))) (|:| |ops| (-656 |#2|))) |#2| (-940)) 72 (|has| |#1| (-374))))) +(((-90 |#1| |#2|) (-10 -7 (-15 -3182 ((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 (-656 (-940))))) |#2| (-940))) (-15 -3126 ((-1288 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-374)) (-15 -3116 ((-2 (|:| |minor| (-656 (-940))) (|:| -4026 |#2|) (|:| |minors| (-656 (-656 (-940)))) (|:| |ops| (-656 |#2|))) |#2| (-940))) |%noBranch|)) (-568) (-668 |#1|)) (T -90)) +((-3116 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |minor| (-656 (-940))) (|:| -4026 *3) (|:| |minors| (-656 (-656 (-940)))) (|:| |ops| (-656 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-940)) (-4 *3 (-668 *5)))) (-3126 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-1288 (-701 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-701 *4)) (-4 *5 (-668 *4)))) (-3182 (*1 *2 *3 *4) (-12 (-4 *5 (-568)) (-5 *2 (-2 (|:| -3232 (-701 *5)) (|:| |vec| (-1288 (-656 (-940)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-940)) (-4 *3 (-668 *5))))) +(-10 -7 (-15 -3182 ((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 (-656 (-940))))) |#2| (-940))) (-15 -3126 ((-1288 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-374)) (-15 -3116 ((-2 (|:| |minor| (-656 (-940))) (|:| -4026 |#2|) (|:| |minors| (-656 (-656 (-940)))) (|:| |ops| (-656 |#2|))) |#2| (-940))) |%noBranch|)) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1419 ((|#1| $) 40)) (-4264 (((-112) $ (-783)) NIL)) (-3404 (($) NIL T CONST)) (-2944 ((|#1| |#1| $) 35)) (-1718 ((|#1| $) 33)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) NIL)) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4326 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2722 ((|#1| $) NIL)) (-2597 (($ |#1| $) 36)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-1541 ((|#1| $) 34)) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) 18)) (-3579 (($) 45)) (-1887 (((-783) $) 31)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) 17)) (-3569 (((-876) $) 30 (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3972 (($ (-656 |#1|)) NIL)) (-4355 (($ (-656 |#1|)) 42)) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 15 (|has| |#1| (-102)))) (-3502 (((-783) $) 12 (|has| $ (-6 -4464))))) +(((-91 |#1|) (-13 (-1142 |#1|) (-10 -8 (-15 -4355 ($ (-656 |#1|))))) (-1121)) (T -91)) +((-4355 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-91 *3))))) +(-13 (-1142 |#1|) (-10 -8 (-15 -4355 ($ (-656 |#1|))))) +((-3569 (((-876) $) 13) (($ (-1202)) 9) (((-1202) $) 8))) +(((-92 |#1|) (-10 -8 (-15 -3569 ((-1202) |#1|)) (-15 -3569 (|#1| (-1202))) (-15 -3569 ((-876) |#1|))) (-93)) (T -92)) +NIL +(-10 -8 (-15 -3569 ((-1202) |#1|)) (-15 -3569 (|#1| (-1202))) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ (-1202)) 17) (((-1202) $) 16)) (-2399 (((-112) $ $) 6)) (-2924 (((-112) $ $) 8))) (((-93) (-141)) (T -93)) NIL (-13 (-1121) (-502 (-1202))) (((-102) . T) ((-628 #0=(-1202)) . T) ((-625 (-876)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1121) . T) ((-1238) . T)) -((-3983 (($ $) 10)) (-3995 (($ $) 12))) -(((-94 |#1|) (-10 -8 (-15 -3995 (|#1| |#1|)) (-15 -3983 (|#1| |#1|))) (-95)) (T -94)) +((-3982 (($ $) 10)) (-3994 (($ $) 12))) +(((-94 |#1|) (-10 -8 (-15 -3994 (|#1| |#1|)) (-15 -3982 (|#1| |#1|))) (-95)) (T -94)) NIL -(-10 -8 (-15 -3995 (|#1| |#1|)) (-15 -3983 (|#1| |#1|))) -((-3961 (($ $) 11)) (-3938 (($ $) 10)) (-3983 (($ $) 9)) (-3995 (($ $) 8)) (-3974 (($ $) 7)) (-3951 (($ $) 6))) +(-10 -8 (-15 -3994 (|#1| |#1|)) (-15 -3982 (|#1| |#1|))) +((-3960 (($ $) 11)) (-3937 (($ $) 10)) (-3982 (($ $) 9)) (-3994 (($ $) 8)) (-3973 (($ $) 7)) (-3950 (($ $) 6))) (((-95) (-141)) (T -95)) -((-3961 (*1 *1 *1) (-4 *1 (-95))) (-3938 (*1 *1 *1) (-4 *1 (-95))) (-3983 (*1 *1 *1) (-4 *1 (-95))) (-3995 (*1 *1 *1) (-4 *1 (-95))) (-3974 (*1 *1 *1) (-4 *1 (-95))) (-3951 (*1 *1 *1) (-4 *1 (-95)))) -(-13 (-10 -8 (-15 -3951 ($ $)) (-15 -3974 ($ $)) (-15 -3995 ($ $)) (-15 -3983 ($ $)) (-15 -3938 ($ $)) (-15 -3961 ($ $)))) -((-3489 (((-112) $ $) NIL)) (-2629 (((-1156) $) 9)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 15) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-96) (-13 (-1104) (-10 -8 (-15 -2629 ((-1156) $))))) (T -96)) -((-2629 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-96))))) -(-13 (-1104) (-10 -8 (-15 -2629 ((-1156) $)))) -((-3489 (((-112) $ $) NIL)) (-2218 (((-390) (-1179) (-390)) 46) (((-390) (-1179) (-1179) (-390)) 44)) (-2434 (((-390) (-390)) 35)) (-4081 (((-1293)) 37)) (-3699 (((-1179) $) NIL)) (-2248 (((-390) (-1179) (-1179)) 50) (((-390) (-1179)) 52)) (-1450 (((-1141) $) NIL)) (-3976 (((-390) (-1179) (-1179)) 51)) (-3194 (((-390) (-1179) (-1179)) 53) (((-390) (-1179)) 54)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-97) (-13 (-1121) (-10 -7 (-15 -2248 ((-390) (-1179) (-1179))) (-15 -2248 ((-390) (-1179))) (-15 -3194 ((-390) (-1179) (-1179))) (-15 -3194 ((-390) (-1179))) (-15 -3976 ((-390) (-1179) (-1179))) (-15 -4081 ((-1293))) (-15 -2434 ((-390) (-390))) (-15 -2218 ((-390) (-1179) (-390))) (-15 -2218 ((-390) (-1179) (-1179) (-390))) (-6 -4465)))) (T -97)) -((-2248 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) (-2248 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) (-3194 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) (-3194 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) (-3976 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) (-4081 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-97)))) (-2434 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-97)))) (-2218 (*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1179)) (-5 *1 (-97)))) (-2218 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1179)) (-5 *1 (-97))))) -(-13 (-1121) (-10 -7 (-15 -2248 ((-390) (-1179) (-1179))) (-15 -2248 ((-390) (-1179))) (-15 -3194 ((-390) (-1179) (-1179))) (-15 -3194 ((-390) (-1179))) (-15 -3976 ((-390) (-1179) (-1179))) (-15 -4081 ((-1293))) (-15 -2434 ((-390) (-390))) (-15 -2218 ((-390) (-1179) (-390))) (-15 -2218 ((-390) (-1179) (-1179) (-390))) (-6 -4465))) +((-3960 (*1 *1 *1) (-4 *1 (-95))) (-3937 (*1 *1 *1) (-4 *1 (-95))) (-3982 (*1 *1 *1) (-4 *1 (-95))) (-3994 (*1 *1 *1) (-4 *1 (-95))) (-3973 (*1 *1 *1) (-4 *1 (-95))) (-3950 (*1 *1 *1) (-4 *1 (-95)))) +(-13 (-10 -8 (-15 -3950 ($ $)) (-15 -3973 ($ $)) (-15 -3994 ($ $)) (-15 -3982 ($ $)) (-15 -3937 ($ $)) (-15 -3960 ($ $)))) +((-3488 (((-112) $ $) NIL)) (-2628 (((-1156) $) 9)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 15) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-96) (-13 (-1104) (-10 -8 (-15 -2628 ((-1156) $))))) (T -96)) +((-2628 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-96))))) +(-13 (-1104) (-10 -8 (-15 -2628 ((-1156) $)))) +((-3488 (((-112) $ $) NIL)) (-3812 (((-390) (-1179) (-390)) 46) (((-390) (-1179) (-1179) (-390)) 44)) (-4157 (((-390) (-390)) 35)) (-2647 (((-1293)) 37)) (-2046 (((-1179) $) NIL)) (-2823 (((-390) (-1179) (-1179)) 50) (((-390) (-1179)) 52)) (-1450 (((-1141) $) NIL)) (-2966 (((-390) (-1179) (-1179)) 51)) (-3978 (((-390) (-1179) (-1179)) 53) (((-390) (-1179)) 54)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-97) (-13 (-1121) (-10 -7 (-15 -2823 ((-390) (-1179) (-1179))) (-15 -2823 ((-390) (-1179))) (-15 -3978 ((-390) (-1179) (-1179))) (-15 -3978 ((-390) (-1179))) (-15 -2966 ((-390) (-1179) (-1179))) (-15 -2647 ((-1293))) (-15 -4157 ((-390) (-390))) (-15 -3812 ((-390) (-1179) (-390))) (-15 -3812 ((-390) (-1179) (-1179) (-390))) (-6 -4464)))) (T -97)) +((-2823 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) (-2823 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) (-3978 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) (-3978 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) (-2966 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) (-2647 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-97)))) (-4157 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-97)))) (-3812 (*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1179)) (-5 *1 (-97)))) (-3812 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1179)) (-5 *1 (-97))))) +(-13 (-1121) (-10 -7 (-15 -2823 ((-390) (-1179) (-1179))) (-15 -2823 ((-390) (-1179))) (-15 -3978 ((-390) (-1179) (-1179))) (-15 -3978 ((-390) (-1179))) (-15 -2966 ((-390) (-1179) (-1179))) (-15 -2647 ((-1293))) (-15 -4157 ((-390) (-390))) (-15 -3812 ((-390) (-1179) (-390))) (-15 -3812 ((-390) (-1179) (-1179) (-390))) (-6 -4464))) NIL (((-98) (-141)) (T -98)) NIL -(-13 (-10 -7 (-6 -4465) (-6 (-4467 "*")) (-6 -4466) (-6 -4462) (-6 -4460) (-6 -4459) (-6 -4458) (-6 -4463) (-6 -4457) (-6 -4456) (-6 -4455) (-6 -4454) (-6 -4453) (-6 -4461) (-6 -4464) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4452))) -((-3489 (((-112) $ $) NIL)) (-3886 (($) NIL T CONST)) (-1561 (((-3 $ "failed") $) NIL)) (-4193 (((-112) $) NIL)) (-4232 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-576))) 24)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) 16)) (-1450 (((-1141) $) NIL)) (-2797 ((|#1| $ |#1|) 13)) (-2314 (($ $ $) NIL)) (-2076 (($ $ $) NIL)) (-3570 (((-876) $) 22)) (-4055 (((-112) $ $) NIL)) (-2732 (($) 8 T CONST)) (-2925 (((-112) $ $) 10)) (-3057 (($ $ $) NIL)) (** (($ $ (-940)) 32) (($ $ (-783)) NIL) (($ $ (-576)) 18)) (* (($ $ $) 33))) -(((-99 |#1|) (-13 (-485) (-296 |#1| |#1|) (-10 -8 (-15 -4232 ($ (-1 |#1| |#1|))) (-15 -4232 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4232 ($ (-1 |#1| |#1| (-576)))))) (-1070)) (T -99)) -((-4232 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-99 *3)))) (-4232 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-99 *3)))) (-4232 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-576))) (-4 *3 (-1070)) (-5 *1 (-99 *3))))) -(-13 (-485) (-296 |#1| |#1|) (-10 -8 (-15 -4232 ($ (-1 |#1| |#1|))) (-15 -4232 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4232 ($ (-1 |#1| |#1| (-576)))))) -((-3083 (((-430 |#2|) |#2| (-656 |#2|)) 10) (((-430 |#2|) |#2| |#2|) 11))) -(((-100 |#1| |#2|) (-10 -7 (-15 -3083 ((-430 |#2|) |#2| |#2|)) (-15 -3083 ((-430 |#2|) |#2| (-656 |#2|)))) (-13 (-464) (-148)) (-1264 |#1|)) (T -100)) -((-3083 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-13 (-464) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-100 *5 *3)))) (-3083 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-464) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1264 *4))))) -(-10 -7 (-15 -3083 ((-430 |#2|) |#2| |#2|)) (-15 -3083 ((-430 |#2|) |#2| (-656 |#2|)))) -((-3489 (((-112) $ $) 13)) (-4055 (((-112) $ $) 14)) (-2925 (((-112) $ $) 11))) -(((-101 |#1|) (-10 -8 (-15 -4055 ((-112) |#1| |#1|)) (-15 -3489 ((-112) |#1| |#1|)) (-15 -2925 ((-112) |#1| |#1|))) (-102)) (T -101)) -NIL -(-10 -8 (-15 -4055 ((-112) |#1| |#1|)) (-15 -3489 ((-112) |#1| |#1|)) (-15 -2925 ((-112) |#1| |#1|))) -((-3489 (((-112) $ $) 7)) (-4055 (((-112) $ $) 6)) (-2925 (((-112) $ $) 8))) +(-13 (-10 -7 (-6 -4464) (-6 (-4466 "*")) (-6 -4465) (-6 -4461) (-6 -4459) (-6 -4458) (-6 -4457) (-6 -4462) (-6 -4456) (-6 -4455) (-6 -4454) (-6 -4453) (-6 -4452) (-6 -4460) (-6 -4463) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4451))) +((-3488 (((-112) $ $) NIL)) (-3404 (($) NIL T CONST)) (-3673 (((-3 $ "failed") $) NIL)) (-1351 (((-112) $) NIL)) (-3647 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-576))) 24)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) 16)) (-1450 (((-1141) $) NIL)) (-2796 ((|#1| $ |#1|) 13)) (-2272 (($ $ $) NIL)) (-1758 (($ $ $) NIL)) (-3569 (((-876) $) 22)) (-2399 (((-112) $ $) NIL)) (-2731 (($) 8 T CONST)) (-2924 (((-112) $ $) 10)) (-3056 (($ $ $) NIL)) (** (($ $ (-940)) 32) (($ $ (-783)) NIL) (($ $ (-576)) 18)) (* (($ $ $) 33))) +(((-99 |#1|) (-13 (-485) (-296 |#1| |#1|) (-10 -8 (-15 -3647 ($ (-1 |#1| |#1|))) (-15 -3647 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3647 ($ (-1 |#1| |#1| (-576)))))) (-1070)) (T -99)) +((-3647 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-99 *3)))) (-3647 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-99 *3)))) (-3647 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-576))) (-4 *3 (-1070)) (-5 *1 (-99 *3))))) +(-13 (-485) (-296 |#1| |#1|) (-10 -8 (-15 -3647 ($ (-1 |#1| |#1|))) (-15 -3647 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3647 ($ (-1 |#1| |#1| (-576)))))) +((-2128 (((-430 |#2|) |#2| (-656 |#2|)) 10) (((-430 |#2|) |#2| |#2|) 11))) +(((-100 |#1| |#2|) (-10 -7 (-15 -2128 ((-430 |#2|) |#2| |#2|)) (-15 -2128 ((-430 |#2|) |#2| (-656 |#2|)))) (-13 (-464) (-148)) (-1264 |#1|)) (T -100)) +((-2128 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-13 (-464) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-100 *5 *3)))) (-2128 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-464) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1264 *4))))) +(-10 -7 (-15 -2128 ((-430 |#2|) |#2| |#2|)) (-15 -2128 ((-430 |#2|) |#2| (-656 |#2|)))) +((-3488 (((-112) $ $) 13)) (-2399 (((-112) $ $) 14)) (-2924 (((-112) $ $) 11))) +(((-101 |#1|) (-10 -8 (-15 -2399 ((-112) |#1| |#1|)) (-15 -3488 ((-112) |#1| |#1|)) (-15 -2924 ((-112) |#1| |#1|))) (-102)) (T -101)) +NIL +(-10 -8 (-15 -2399 ((-112) |#1| |#1|)) (-15 -3488 ((-112) |#1| |#1|)) (-15 -2924 ((-112) |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-2399 (((-112) $ $) 6)) (-2924 (((-112) $ $) 8))) (((-102) (-141)) (T -102)) -((-2925 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-3489 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-4055 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) -(-13 (-1238) (-10 -8 (-15 -2925 ((-112) $ $)) (-15 -3489 ((-112) $ $)) (-15 -4055 ((-112) $ $)))) +((-2924 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-3488 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2399 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) +(-13 (-1238) (-10 -8 (-15 -2924 ((-112) $ $)) (-15 -3488 ((-112) $ $)) (-15 -2399 ((-112) $ $)))) (((-1238) . T)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3106 ((|#1| $) NIL)) (-1808 (((-112) $ (-783)) NIL)) (-2647 ((|#1| $ |#1|) 24 (|has| $ (-6 -4466)))) (-4121 (($ $ $) NIL (|has| $ (-6 -4466)))) (-3523 (($ $ $) NIL (|has| $ (-6 -4466)))) (-2075 (($ $ (-656 |#1|)) 30)) (-3756 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4466))) (($ $ "left" $) NIL (|has| $ (-6 -4466))) (($ $ "right" $) NIL (|has| $ (-6 -4466)))) (-1894 (($ $ (-656 $)) NIL (|has| $ (-6 -4466)))) (-3886 (($) NIL T CONST)) (-4250 (($ $) 12)) (-3966 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-2387 (((-656 $) $) NIL)) (-3295 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2205 (($ $ |#1| $) 32)) (-3870 (((-112) $ (-783)) NIL)) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1943 ((|#1| $ (-1 |#1| |#1| |#1|)) 40) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45)) (-4195 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46) (($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|)) 49)) (-4323 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-4240 (($ $) 11)) (-2353 (((-656 |#1|) $) NIL)) (-3443 (((-112) $) 13)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) 9)) (-4225 (($) 31)) (-2797 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2789 (((-576) $ $) NIL)) (-3617 (((-112) $) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3570 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2902 (((-656 $) $) NIL)) (-2621 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3365 (($ (-783) |#1|) 33)) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4465) (-6 -4466) (-15 -3365 ($ (-783) |#1|)) (-15 -2075 ($ $ (-656 |#1|))) (-15 -1943 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1943 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4195 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4195 ($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|))))) (-1121)) (T -103)) -((-3365 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-103 *3)) (-4 *3 (-1121)))) (-2075 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-103 *3)))) (-1943 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1121)))) (-1943 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-103 *3)))) (-4195 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1121)) (-5 *1 (-103 *2)))) (-4195 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-656 *2) *2 *2 *2)) (-4 *2 (-1121)) (-5 *1 (-103 *2))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4465) (-6 -4466) (-15 -3365 ($ (-783) |#1|)) (-15 -2075 ($ $ (-656 |#1|))) (-15 -1943 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1943 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4195 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4195 ($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|))))) -((-4269 ((|#3| |#2| |#2|) 34)) (-3928 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4467 "*"))))) (-3912 ((|#3| |#2| |#2|) 36)) (-1672 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4467 "*")))))) -(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4269 (|#3| |#2| |#2|)) (-15 -3912 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4467 "*"))) (PROGN (-15 -3928 (|#1| |#2| |#2|)) (-15 -1672 (|#1| |#2|))) |%noBranch|)) (-1070) (-1264 |#1|) (-699 |#1| |#4| |#5|) (-384 |#1|) (-384 |#1|)) (T -104)) -((-1672 (*1 *2 *3) (-12 (|has| *2 (-6 (-4467 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) (-4 *2 (-1070)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1264 *2)) (-4 *4 (-699 *2 *5 *6)))) (-3928 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4467 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) (-4 *2 (-1070)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1264 *2)) (-4 *4 (-699 *2 *5 *6)))) (-3912 (*1 *2 *3 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-699 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1264 *4)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)))) (-4269 (*1 *2 *3 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-699 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1264 *4)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4))))) -(-10 -7 (-15 -4269 (|#3| |#2| |#2|)) (-15 -3912 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4467 "*"))) (PROGN (-15 -3928 (|#1| |#2| |#2|)) (-15 -1672 (|#1| |#2|))) |%noBranch|)) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4207 (((-656 (-1197))) 37)) (-2958 (((-2 (|:| |zeros| (-1178 (-227))) (|:| |ones| (-1178 (-227))) (|:| |singularities| (-1178 (-227)))) (-1197)) 39)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-105) (-13 (-1121) (-10 -7 (-15 -4207 ((-656 (-1197)))) (-15 -2958 ((-2 (|:| |zeros| (-1178 (-227))) (|:| |ones| (-1178 (-227))) (|:| |singularities| (-1178 (-227)))) (-1197))) (-6 -4465)))) (T -105)) -((-4207 (*1 *2) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-105)))) (-2958 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-2 (|:| |zeros| (-1178 (-227))) (|:| |ones| (-1178 (-227))) (|:| |singularities| (-1178 (-227))))) (-5 *1 (-105))))) -(-13 (-1121) (-10 -7 (-15 -4207 ((-656 (-1197)))) (-15 -2958 ((-2 (|:| |zeros| (-1178 (-227))) (|:| |ones| (-1178 (-227))) (|:| |singularities| (-1178 (-227)))) (-1197))) (-6 -4465))) -((-3943 (($ (-656 |#2|)) 11))) -(((-106 |#1| |#2|) (-10 -8 (-15 -3943 (|#1| (-656 |#2|)))) (-107 |#2|) (-1238)) (T -106)) -NIL -(-10 -8 (-15 -3943 (|#1| (-656 |#2|)))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1808 (((-112) $ (-783)) 8)) (-3886 (($) 7 T CONST)) (-3966 (((-656 |#1|) $) 31 (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) 9)) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-4323 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 36)) (-1330 (((-112) $ (-783)) 10)) (-3699 (((-1179) $) 23 (|has| |#1| (-1121)))) (-1597 ((|#1| $) 40)) (-1901 (($ |#1| $) 41)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3449 ((|#1| $) 42)) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 13)) (-3570 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3943 (($ (-656 |#1|)) 43)) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3104 ((|#1| $) NIL)) (-4264 (((-112) $ (-783)) NIL)) (-2482 ((|#1| $ |#1|) 24 (|has| $ (-6 -4465)))) (-1841 (($ $ $) NIL (|has| $ (-6 -4465)))) (-4158 (($ $ $) NIL (|has| $ (-6 -4465)))) (-1748 (($ $ (-656 |#1|)) 30)) (-3755 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465))) (($ $ "left" $) NIL (|has| $ (-6 -4465))) (($ $ "right" $) NIL (|has| $ (-6 -4465)))) (-3829 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-3404 (($) NIL T CONST)) (-4249 (($ $) 12)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1736 (((-656 $) $) NIL)) (-3768 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2205 (($ $ |#1| $) 32)) (-1368 (((-112) $ (-783)) NIL)) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3049 ((|#1| $ (-1 |#1| |#1| |#1|)) 40) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45)) (-1372 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46) (($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|)) 49)) (-4326 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-4239 (($ $) 11)) (-2353 (((-656 |#1|) $) NIL)) (-1508 (((-112) $) 13)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) 9)) (-3579 (($) 31)) (-2796 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1335 (((-576) $ $) NIL)) (-3806 (((-112) $) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-3059 (((-656 $) $) NIL)) (-2247 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3206 (($ (-783) |#1|) 33)) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4464) (-6 -4465) (-15 -3206 ($ (-783) |#1|)) (-15 -1748 ($ $ (-656 |#1|))) (-15 -3049 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3049 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1372 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1372 ($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|))))) (-1121)) (T -103)) +((-3206 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-103 *3)) (-4 *3 (-1121)))) (-1748 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-103 *3)))) (-3049 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1121)))) (-3049 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-103 *3)))) (-1372 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1121)) (-5 *1 (-103 *2)))) (-1372 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-656 *2) *2 *2 *2)) (-4 *2 (-1121)) (-5 *1 (-103 *2))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4464) (-6 -4465) (-15 -3206 ($ (-783) |#1|)) (-15 -1748 ($ $ (-656 |#1|))) (-15 -3049 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3049 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1372 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1372 ($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|))))) +((-4041 ((|#3| |#2| |#2|) 34)) (-3838 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4466 "*"))))) (-3663 ((|#3| |#2| |#2|) 36)) (-2183 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4466 "*")))))) +(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4041 (|#3| |#2| |#2|)) (-15 -3663 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4466 "*"))) (PROGN (-15 -3838 (|#1| |#2| |#2|)) (-15 -2183 (|#1| |#2|))) |%noBranch|)) (-1070) (-1264 |#1|) (-699 |#1| |#4| |#5|) (-384 |#1|) (-384 |#1|)) (T -104)) +((-2183 (*1 *2 *3) (-12 (|has| *2 (-6 (-4466 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) (-4 *2 (-1070)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1264 *2)) (-4 *4 (-699 *2 *5 *6)))) (-3838 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4466 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) (-4 *2 (-1070)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1264 *2)) (-4 *4 (-699 *2 *5 *6)))) (-3663 (*1 *2 *3 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-699 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1264 *4)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)))) (-4041 (*1 *2 *3 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-699 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1264 *4)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4))))) +(-10 -7 (-15 -4041 (|#3| |#2| |#2|)) (-15 -3663 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4466 "*"))) (PROGN (-15 -3838 (|#1| |#2| |#2|)) (-15 -2183 (|#1| |#2|))) |%noBranch|)) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-1475 (((-656 (-1197))) 37)) (-3489 (((-2 (|:| |zeros| (-1178 (-227))) (|:| |ones| (-1178 (-227))) (|:| |singularities| (-1178 (-227)))) (-1197)) 39)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-105) (-13 (-1121) (-10 -7 (-15 -1475 ((-656 (-1197)))) (-15 -3489 ((-2 (|:| |zeros| (-1178 (-227))) (|:| |ones| (-1178 (-227))) (|:| |singularities| (-1178 (-227)))) (-1197))) (-6 -4464)))) (T -105)) +((-1475 (*1 *2) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-105)))) (-3489 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-2 (|:| |zeros| (-1178 (-227))) (|:| |ones| (-1178 (-227))) (|:| |singularities| (-1178 (-227))))) (-5 *1 (-105))))) +(-13 (-1121) (-10 -7 (-15 -1475 ((-656 (-1197)))) (-15 -3489 ((-2 (|:| |zeros| (-1178 (-227))) (|:| |ones| (-1178 (-227))) (|:| |singularities| (-1178 (-227)))) (-1197))) (-6 -4464))) +((-3972 (($ (-656 |#2|)) 11))) +(((-106 |#1| |#2|) (-10 -8 (-15 -3972 (|#1| (-656 |#2|)))) (-107 |#2|) (-1238)) (T -106)) +NIL +(-10 -8 (-15 -3972 (|#1| (-656 |#2|)))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4264 (((-112) $ (-783)) 8)) (-3404 (($) 7 T CONST)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) 9)) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4326 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-2883 (((-112) $ (-783)) 10)) (-2046 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2722 ((|#1| $) 40)) (-2597 (($ |#1| $) 41)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-1541 ((|#1| $) 42)) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3972 (($ (-656 |#1|)) 43)) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-107 |#1|) (-141) (-1238)) (T -107)) -((-3943 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-4 *1 (-107 *3)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238)))) (-1901 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238)))) (-1597 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238))))) -(-13 (-501 |t#1|) (-10 -8 (-6 -4466) (-15 -3943 ($ (-656 |t#1|))) (-15 -3449 (|t#1| $)) (-15 -1901 ($ |t#1| $)) (-15 -1597 (|t#1| $)))) -(((-34) . T) ((-102) -2760 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2760 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2575 (((-576) $) NIL (|has| (-576) (-317)))) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3601 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-4016 (((-112) $ $) NIL)) (-3308 (((-576) $) NIL (|has| (-576) (-832)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| (-576) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1059 (-576))))) (-2860 (((-576) $) NIL) (((-1197) $) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-576) (-1059 (-576)))) (((-576) $) NIL (|has| (-576) (-1059 (-576))))) (-3429 (($ $ $) NIL)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-576) (-557)))) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-4249 (((-112) $) NIL)) (-2087 (((-112) $) NIL (|has| (-576) (-832)))) (-1840 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-576) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-576) (-901 (-390))))) (-4193 (((-112) $) NIL)) (-2171 (($ $) NIL)) (-1570 (((-576) $) NIL)) (-2240 (((-3 $ "failed") $) NIL (|has| (-576) (-1173)))) (-1634 (((-112) $) NIL (|has| (-576) (-832)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3125 (($ $ $) NIL (|has| (-576) (-861)))) (-3133 (($ $ $) NIL (|has| (-576) (-861)))) (-4117 (($ (-1 (-576) (-576)) $) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3540 (($) NIL (|has| (-576) (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2393 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-2443 (((-576) $) NIL (|has| (-576) (-557)))) (-4100 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-1828 (((-430 $) $) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3284 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1197)) (-656 (-576))) NIL (|has| (-576) (-526 (-1197) (-576)))) (($ $ (-1197) (-576)) NIL (|has| (-576) (-526 (-1197) (-576))))) (-1967 (((-783) $) NIL)) (-2797 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-2775 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-2143 (($ $) NIL)) (-1581 (((-576) $) NIL)) (-4172 (((-907 (-576)) $) NIL (|has| (-576) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-576) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1043))) (((-227) $) NIL (|has| (-576) (-1043)))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-928))))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1197)) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL) (((-1025 2) $) 10)) (-4336 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| $ (-146)) (|has| (-576) (-928))) (|has| (-576) (-146))))) (-3996 (((-783)) NIL T CONST)) (-4118 (((-576) $) NIL (|has| (-576) (-557)))) (-3445 (($ (-419 (-576))) 9)) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL)) (-2122 (($ $) NIL (|has| (-576) (-832)))) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2020 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-2992 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2964 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2950 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3057 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) -(((-108) (-13 (-1013 (-576)) (-625 (-419 (-576))) (-625 (-1025 2)) (-10 -8 (-15 -2393 ((-419 (-576)) $)) (-15 -3445 ($ (-419 (-576))))))) (T -108)) -((-2393 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) (-3445 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108))))) -(-13 (-1013 (-576)) (-625 (-419 (-576))) (-625 (-1025 2)) (-10 -8 (-15 -2393 ((-419 (-576)) $)) (-15 -3445 ($ (-419 (-576)))))) -((-1864 (((-656 (-984)) $) 13)) (-2629 (((-518) $) 9)) (-3570 (((-876) $) 20)) (-1951 (($ (-518) (-656 (-984))) 15))) -(((-109) (-13 (-625 (-876)) (-10 -8 (-15 -2629 ((-518) $)) (-15 -1864 ((-656 (-984)) $)) (-15 -1951 ($ (-518) (-656 (-984))))))) (T -109)) -((-2629 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) (-1864 (*1 *2 *1) (-12 (-5 *2 (-656 (-984))) (-5 *1 (-109)))) (-1951 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-984))) (-5 *1 (-109))))) -(-13 (-625 (-876)) (-10 -8 (-15 -2629 ((-518) $)) (-15 -1864 ((-656 (-984)) $)) (-15 -1951 ($ (-518) (-656 (-984)))))) -((-3489 (((-112) $ $) NIL)) (-3517 (($ $) NIL)) (-2695 (($ $ $) NIL)) (-2047 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4466)))) (-1710 (((-112) $) NIL (|has| (-112) (-861))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-4298 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-112) (-861)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4466)))) (-1795 (($ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1808 (((-112) $ (-783)) NIL)) (-3756 (((-112) $ (-1255 (-576)) (-112)) NIL (|has| $ (-6 -4466))) (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4466)))) (-1974 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4465)))) (-3886 (($) NIL T CONST)) (-3990 (($ $) NIL (|has| $ (-6 -4466)))) (-3836 (($ $) NIL)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-112) (-1121))))) (-3946 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4465))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-112) (-1121))))) (-3686 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4465)) (|has| (-112) (-1121))))) (-4335 (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4466)))) (-4274 (((-112) $ (-576)) NIL)) (-3660 (((-576) (-112) $ (-576)) NIL (|has| (-112) (-1121))) (((-576) (-112) $) NIL (|has| (-112) (-1121))) (((-576) (-1 (-112) (-112)) $) NIL)) (-3966 (((-656 (-112)) $) NIL (|has| $ (-6 -4465)))) (-2686 (($ $ $) NIL)) (-2663 (($ $) NIL)) (-3073 (($ $ $) NIL)) (-4141 (($ (-783) (-112)) 10)) (-1912 (($ $ $) NIL)) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-576) $) NIL (|has| (-576) (-861)))) (-3125 (($ $ $) NIL)) (-3391 (($ $ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2014 (((-656 (-112)) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-112) (-1121))))) (-2137 (((-576) $) NIL (|has| (-576) (-861)))) (-3133 (($ $ $) NIL)) (-4323 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL)) (-2176 (($ $ $ (-576)) NIL) (($ (-112) $ (-576)) NIL)) (-4234 (((-656 (-576)) $) NIL)) (-3354 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL)) (-3581 (((-112) $) NIL (|has| (-576) (-861)))) (-1541 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-4046 (($ $ (-112)) NIL (|has| $ (-6 -4466)))) (-4320 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-112)) (-656 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-304 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-656 (-304 (-112)))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-112) (-1121))))) (-2281 (((-656 (-112)) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 (($ $ (-1255 (-576))) NIL) (((-112) $ (-576)) NIL) (((-112) $ (-576) (-112)) NIL)) (-3466 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-1460 (((-783) (-112) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-112) (-1121)))) (((-783) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4465)))) (-3025 (($ $ $ (-576)) NIL (|has| $ (-6 -4466)))) (-1870 (($ $) NIL)) (-4172 (((-548) $) NIL (|has| (-112) (-626 (-548))))) (-3582 (($ (-656 (-112))) NIL)) (-1615 (($ (-656 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3570 (((-876) $) NIL)) (-3029 (($ (-783) (-112)) 11)) (-4055 (((-112) $ $) NIL)) (-3321 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4465)))) (-2675 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) NIL)) (-3552 (($ $ $) NIL)) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-110) (-13 (-124) (-10 -8 (-15 -3029 ($ (-783) (-112)))))) (T -110)) -((-3029 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-112)) (-5 *1 (-110))))) -(-13 (-124) (-10 -8 (-15 -3029 ($ (-783) (-112))))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) +((-3972 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-4 *1 (-107 *3)))) (-1541 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238)))) (-2597 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238)))) (-2722 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238))))) +(-13 (-501 |t#1|) (-10 -8 (-6 -4465) (-15 -3972 ($ (-656 |t#1|))) (-15 -1541 (|t#1| $)) (-15 -2597 ($ |t#1| $)) (-15 -2722 (|t#1| $)))) +(((-34) . T) ((-102) -2759 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2759 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-3110 (((-576) $) NIL (|has| (-576) (-317)))) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3646 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-3330 (((-112) $ $) NIL)) (-3906 (((-576) $) NIL (|has| (-576) (-832)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| (-576) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1059 (-576))))) (-2859 (((-576) $) NIL) (((-1197) $) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-576) (-1059 (-576)))) (((-576) $) NIL (|has| (-576) (-1059 (-576))))) (-3428 (($ $ $) NIL)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-576) (-557)))) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3833 (((-112) $) NIL)) (-1866 (((-112) $) NIL (|has| (-576) (-832)))) (-3325 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-576) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-576) (-901 (-390))))) (-1351 (((-112) $) NIL)) (-3328 (($ $) NIL)) (-1570 (((-576) $) NIL)) (-2734 (((-3 $ "failed") $) NIL (|has| (-576) (-1173)))) (-3137 (((-112) $) NIL (|has| (-576) (-832)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3124 (($ $ $) NIL (|has| (-576) (-861)))) (-1441 (($ $ $) NIL (|has| (-576) (-861)))) (-4116 (($ (-1 (-576) (-576)) $) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3539 (($) NIL (|has| (-576) (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1788 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-4236 (((-576) $) NIL (|has| (-576) (-557)))) (-1644 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-1828 (((-430 $) $) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3282 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1197)) (-656 (-576))) NIL (|has| (-576) (-526 (-1197) (-576)))) (($ $ (-1197) (-576)) NIL (|has| (-576) (-526 (-1197) (-576))))) (-1979 (((-783) $) NIL)) (-2796 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-2774 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-4325 (($ $) NIL)) (-1581 (((-576) $) NIL)) (-4171 (((-907 (-576)) $) NIL (|has| (-576) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-576) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1043))) (((-227) $) NIL (|has| (-576) (-1043)))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1197)) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL) (((-1025 2) $) 10)) (-3390 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| $ (-146)) (|has| (-576) (-928))) (|has| (-576) (-146))))) (-3154 (((-783)) NIL T CONST)) (-1810 (((-576) $) NIL (|has| (-576) (-557)))) (-1525 (($ (-419 (-576))) 9)) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL)) (-4143 (($ $) NIL (|has| (-576) (-832)))) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2020 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-2990 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2962 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2949 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3056 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) +(((-108) (-13 (-1013 (-576)) (-625 (-419 (-576))) (-625 (-1025 2)) (-10 -8 (-15 -1788 ((-419 (-576)) $)) (-15 -1525 ($ (-419 (-576))))))) (T -108)) +((-1788 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) (-1525 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108))))) +(-13 (-1013 (-576)) (-625 (-419 (-576))) (-625 (-1025 2)) (-10 -8 (-15 -1788 ((-419 (-576)) $)) (-15 -1525 ($ (-419 (-576)))))) +((-1864 (((-656 (-984)) $) 13)) (-2628 (((-518) $) 9)) (-3569 (((-876) $) 20)) (-3130 (($ (-518) (-656 (-984))) 15))) +(((-109) (-13 (-625 (-876)) (-10 -8 (-15 -2628 ((-518) $)) (-15 -1864 ((-656 (-984)) $)) (-15 -3130 ($ (-518) (-656 (-984))))))) (T -109)) +((-2628 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) (-1864 (*1 *2 *1) (-12 (-5 *2 (-656 (-984))) (-5 *1 (-109)))) (-3130 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-984))) (-5 *1 (-109))))) +(-13 (-625 (-876)) (-10 -8 (-15 -2628 ((-518) $)) (-15 -1864 ((-656 (-984)) $)) (-15 -3130 ($ (-518) (-656 (-984)))))) +((-3488 (((-112) $ $) NIL)) (-3516 (($ $) NIL)) (-2694 (($ $ $) NIL)) (-1512 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-1390 (((-112) $) NIL (|has| (-112) (-861))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3039 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-112) (-861)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4465)))) (-1795 (($ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-4264 (((-112) $ (-783)) NIL)) (-3755 (((-112) $ (-1255 (-576)) (-112)) NIL (|has| $ (-6 -4465))) (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-3404 (($) NIL T CONST)) (-3092 (($ $) NIL (|has| $ (-6 -4465)))) (-3835 (($ $) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-3945 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-3685 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-4332 (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4465)))) (-4272 (((-112) $ (-576)) NIL)) (-3659 (((-576) (-112) $ (-576)) NIL (|has| (-112) (-1121))) (((-576) (-112) $) NIL (|has| (-112) (-1121))) (((-576) (-1 (-112) (-112)) $) NIL)) (-3965 (((-656 (-112)) $) NIL (|has| $ (-6 -4464)))) (-2685 (($ $ $) NIL)) (-2663 (($ $) NIL)) (-2035 (($ $ $) NIL)) (-4140 (($ (-783) (-112)) 10)) (-2700 (($ $ $) NIL)) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL)) (-2185 (($ $ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2425 (((-656 (-112)) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-4280 (((-576) $) NIL (|has| (-576) (-861)))) (-1441 (($ $ $) NIL)) (-4326 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL)) (-2176 (($ $ $ (-576)) NIL) (($ (-112) $ (-576)) NIL)) (-3669 (((-656 (-576)) $) NIL)) (-3090 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL)) (-3580 (((-112) $) NIL (|has| (-576) (-861)))) (-3434 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2304 (($ $ (-112)) NIL (|has| $ (-6 -4465)))) (-3252 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-112)) (-656 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-304 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-656 (-304 (-112)))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-3207 (((-656 (-112)) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 (($ $ (-1255 (-576))) NIL) (((-112) $ (-576)) NIL) (((-112) $ (-576) (-112)) NIL)) (-3465 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-1460 (((-783) (-112) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121)))) (((-783) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-2840 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-112) (-626 (-548))))) (-3581 (($ (-656 (-112))) NIL)) (-1615 (($ (-656 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3569 (((-876) $) NIL)) (-2892 (($ (-783) (-112)) 11)) (-2399 (((-112) $ $) NIL)) (-2708 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-2674 (($ $ $) NIL)) (-3562 (($ $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) NIL)) (-3551 (($ $ $) NIL)) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-110) (-13 (-124) (-10 -8 (-15 -2892 ($ (-783) (-112)))))) (T -110)) +((-2892 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-112)) (-5 *1 (-110))))) +(-13 (-124) (-10 -8 (-15 -2892 ($ (-783) (-112))))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) (((-111 |#1| |#2|) (-141) (-1070) (-1070)) (T -111)) NIL -(-13 (-660 |t#1|) (-1077 |t#2|) (-10 -7 (-6 -4460) (-6 -4459))) +(-13 (-660 |t#1|) (-1077 |t#2|) (-10 -7 (-6 -4459) (-6 -4458))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-1072 |#2|) . T) ((-1077 |#2|) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-3517 (($ $) 10)) (-2695 (($ $ $) 15)) (-2142 (($) 7 T CONST)) (-3940 (($ $) 6)) (-2098 (((-783)) 24)) (-1836 (($) 32)) (-2686 (($ $ $) 13)) (-2663 (($ $) 9)) (-3073 (($ $ $) 16)) (-1912 (($ $ $) 17)) (-3125 (($ $ $) NIL) (($) NIL T CONST)) (-3133 (($ $ $) NIL) (($) NIL T CONST)) (-4401 (((-940) $) 30)) (-3699 (((-1179) $) NIL)) (-3224 (($ (-940)) 28)) (-3602 (($ $ $) 20)) (-1450 (((-1141) $) NIL)) (-3513 (($) 8 T CONST)) (-3001 (($ $ $) 21)) (-4172 (((-548) $) 34)) (-3570 (((-876) $) 36)) (-4055 (((-112) $ $) NIL)) (-2675 (($ $ $) 11)) (-3563 (($ $ $) 14)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 19)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) 22)) (-3552 (($ $ $) 12))) -(((-112) (-13 (-856) (-673) (-988) (-626 (-548)) (-10 -8 (-15 -2695 ($ $ $)) (-15 -1912 ($ $ $)) (-15 -3073 ($ $ $)) (-15 -3940 ($ $))))) (T -112)) -((-2695 (*1 *1 *1 *1) (-5 *1 (-112))) (-1912 (*1 *1 *1 *1) (-5 *1 (-112))) (-3073 (*1 *1 *1 *1) (-5 *1 (-112))) (-3940 (*1 *1 *1) (-5 *1 (-112)))) -(-13 (-856) (-673) (-988) (-626 (-548)) (-10 -8 (-15 -2695 ($ $ $)) (-15 -1912 ($ $ $)) (-15 -3073 ($ $ $)) (-15 -3940 ($ $)))) -((-2686 (($ $ $) 6)) (-2663 (($ $) 8)) (-2675 (($ $ $) 7))) +((-3488 (((-112) $ $) NIL)) (-3516 (($ $) 10)) (-2694 (($ $ $) 15)) (-2142 (($) 7 T CONST)) (-3939 (($ $) 6)) (-2098 (((-783)) 24)) (-1836 (($) 32)) (-2685 (($ $ $) 13)) (-2663 (($ $) 9)) (-2035 (($ $ $) 16)) (-2700 (($ $ $) 17)) (-3124 (($ $ $) NIL) (($) NIL T CONST)) (-1441 (($ $ $) NIL) (($) NIL T CONST)) (-1558 (((-940) $) 30)) (-2046 (((-1179) $) NIL)) (-3223 (($ (-940)) 28)) (-3656 (($ $ $) 20)) (-1450 (((-1141) $) NIL)) (-3511 (($) 8 T CONST)) (-2588 (($ $ $) 21)) (-4171 (((-548) $) 34)) (-3569 (((-876) $) 36)) (-2399 (((-112) $ $) NIL)) (-2674 (($ $ $) 11)) (-3562 (($ $ $) 14)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 19)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) 22)) (-3551 (($ $ $) 12))) +(((-112) (-13 (-856) (-673) (-988) (-626 (-548)) (-10 -8 (-15 -2694 ($ $ $)) (-15 -2700 ($ $ $)) (-15 -2035 ($ $ $)) (-15 -3939 ($ $))))) (T -112)) +((-2694 (*1 *1 *1 *1) (-5 *1 (-112))) (-2700 (*1 *1 *1 *1) (-5 *1 (-112))) (-2035 (*1 *1 *1 *1) (-5 *1 (-112))) (-3939 (*1 *1 *1) (-5 *1 (-112)))) +(-13 (-856) (-673) (-988) (-626 (-548)) (-10 -8 (-15 -2694 ($ $ $)) (-15 -2700 ($ $ $)) (-15 -2035 ($ $ $)) (-15 -3939 ($ $)))) +((-2685 (($ $ $) 6)) (-2663 (($ $) 8)) (-2674 (($ $ $) 7))) (((-113) (-141)) (T -113)) -((-2663 (*1 *1 *1) (-4 *1 (-113))) (-2675 (*1 *1 *1 *1) (-4 *1 (-113))) (-2686 (*1 *1 *1 *1) (-4 *1 (-113)))) -(-13 (-1238) (-10 -8 (-15 -2663 ($ $)) (-15 -2675 ($ $ $)) (-15 -2686 ($ $ $)))) +((-2663 (*1 *1 *1) (-4 *1 (-113))) (-2674 (*1 *1 *1 *1) (-4 *1 (-113))) (-2685 (*1 *1 *1 *1) (-4 *1 (-113)))) +(-13 (-1238) (-10 -8 (-15 -2663 ($ $)) (-15 -2674 ($ $ $)) (-15 -2685 ($ $ $)))) (((-1238) . T)) -((-2533 (((-3 (-1 |#1| (-656 |#1|)) "failed") (-115)) 23) (((-115) (-115) (-1 |#1| |#1|)) 13) (((-115) (-115) (-1 |#1| (-656 |#1|))) 11) (((-3 |#1| "failed") (-115) (-656 |#1|)) 25)) (-3945 (((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115)) 29) (((-115) (-115) (-1 |#1| |#1|)) 33) (((-115) (-115) (-656 (-1 |#1| (-656 |#1|)))) 30)) (-3107 (((-115) |#1|) 63)) (-2920 (((-3 |#1| "failed") (-115)) 58))) -(((-114 |#1|) (-10 -7 (-15 -2533 ((-3 |#1| "failed") (-115) (-656 |#1|))) (-15 -2533 ((-115) (-115) (-1 |#1| (-656 |#1|)))) (-15 -2533 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2533 ((-3 (-1 |#1| (-656 |#1|)) "failed") (-115))) (-15 -3945 ((-115) (-115) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3945 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3945 ((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115))) (-15 -3107 ((-115) |#1|)) (-15 -2920 ((-3 |#1| "failed") (-115)))) (-1121)) (T -114)) -((-2920 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1121)))) (-3107 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1121)))) (-3945 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-1 *4 (-656 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1121)))) (-3945 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1121)) (-5 *1 (-114 *4)))) (-3945 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 (-1 *4 (-656 *4)))) (-4 *4 (-1121)) (-5 *1 (-114 *4)))) (-2533 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-656 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1121)))) (-2533 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1121)) (-5 *1 (-114 *4)))) (-2533 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-656 *4))) (-4 *4 (-1121)) (-5 *1 (-114 *4)))) (-2533 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-656 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1121))))) -(-10 -7 (-15 -2533 ((-3 |#1| "failed") (-115) (-656 |#1|))) (-15 -2533 ((-115) (-115) (-1 |#1| (-656 |#1|)))) (-15 -2533 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2533 ((-3 (-1 |#1| (-656 |#1|)) "failed") (-115))) (-15 -3945 ((-115) (-115) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3945 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3945 ((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115))) (-15 -3107 ((-115) |#1|)) (-15 -2920 ((-3 |#1| "failed") (-115)))) -((-3489 (((-112) $ $) NIL)) (-1920 (((-783) $) 91) (($ $ (-783)) 37)) (-3584 (((-112) $) 41)) (-2987 (($ $ (-1179) (-786)) 58) (($ $ (-518) (-786)) 33)) (-1499 (($ $ (-45 (-1179) (-786))) 16)) (-3562 (((-3 (-786) "failed") $ (-1179)) 27) (((-703 (-786)) $ (-518)) 32)) (-1864 (((-45 (-1179) (-786)) $) 15)) (-1777 (($ (-1197)) 20) (($ (-1197) (-783)) 23) (($ (-1197) (-55)) 24)) (-2423 (((-112) $) 39)) (-3115 (((-112) $) 43)) (-2629 (((-1197) $) 8)) (-3125 (($ $ $) NIL)) (-3133 (($ $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1322 (((-112) $ (-1197)) 11)) (-2022 (($ $ (-1 (-548) (-656 (-548)))) 64) (((-3 (-1 (-548) (-656 (-548))) "failed") $) 71)) (-1450 (((-1141) $) NIL)) (-3892 (((-112) $ (-518)) 36)) (-4214 (($ $ (-1 (-112) $ $)) 45)) (-1977 (((-3 (-1 (-876) (-656 (-876))) "failed") $) 69) (($ $ (-1 (-876) (-656 (-876)))) 51) (($ $ (-1 (-876) (-876))) 53)) (-3762 (($ $ (-1179)) 55) (($ $ (-518)) 56)) (-1870 (($ $) 77)) (-3906 (($ $ (-1 (-112) $ $)) 46)) (-3570 (((-876) $) 60)) (-4055 (((-112) $ $) NIL)) (-2712 (($ $ (-518)) 34)) (-4045 (((-55) $) 72)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 89)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) 103))) -(((-115) (-13 (-861) (-847 (-1197)) (-10 -8 (-15 -1864 ((-45 (-1179) (-786)) $)) (-15 -1870 ($ $)) (-15 -1777 ($ (-1197))) (-15 -1777 ($ (-1197) (-783))) (-15 -1777 ($ (-1197) (-55))) (-15 -2423 ((-112) $)) (-15 -3584 ((-112) $)) (-15 -3115 ((-112) $)) (-15 -1920 ((-783) $)) (-15 -1920 ($ $ (-783))) (-15 -4214 ($ $ (-1 (-112) $ $))) (-15 -3906 ($ $ (-1 (-112) $ $))) (-15 -1977 ((-3 (-1 (-876) (-656 (-876))) "failed") $)) (-15 -1977 ($ $ (-1 (-876) (-656 (-876))))) (-15 -1977 ($ $ (-1 (-876) (-876)))) (-15 -2022 ($ $ (-1 (-548) (-656 (-548))))) (-15 -2022 ((-3 (-1 (-548) (-656 (-548))) "failed") $)) (-15 -3892 ((-112) $ (-518))) (-15 -2712 ($ $ (-518))) (-15 -3762 ($ $ (-1179))) (-15 -3762 ($ $ (-518))) (-15 -3562 ((-3 (-786) "failed") $ (-1179))) (-15 -3562 ((-703 (-786)) $ (-518))) (-15 -2987 ($ $ (-1179) (-786))) (-15 -2987 ($ $ (-518) (-786))) (-15 -1499 ($ $ (-45 (-1179) (-786))))))) (T -115)) -((-1864 (*1 *2 *1) (-12 (-5 *2 (-45 (-1179) (-786))) (-5 *1 (-115)))) (-1870 (*1 *1 *1) (-5 *1 (-115))) (-1777 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-115)))) (-1777 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-783)) (-5 *1 (-115)))) (-1777 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-55)) (-5 *1 (-115)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-3115 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-1920 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) (-1920 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) (-4214 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-3906 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-1977 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-876) (-656 (-876)))) (-5 *1 (-115)))) (-1977 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-876) (-656 (-876)))) (-5 *1 (-115)))) (-1977 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-876) (-876))) (-5 *1 (-115)))) (-2022 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) (-2022 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) (-3892 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-112)) (-5 *1 (-115)))) (-2712 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-3762 (*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-115)))) (-3762 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-3562 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1179)) (-5 *2 (-786)) (-5 *1 (-115)))) (-3562 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-786))) (-5 *1 (-115)))) (-2987 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-786)) (-5 *1 (-115)))) (-2987 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-786)) (-5 *1 (-115)))) (-1499 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1179) (-786))) (-5 *1 (-115))))) -(-13 (-861) (-847 (-1197)) (-10 -8 (-15 -1864 ((-45 (-1179) (-786)) $)) (-15 -1870 ($ $)) (-15 -1777 ($ (-1197))) (-15 -1777 ($ (-1197) (-783))) (-15 -1777 ($ (-1197) (-55))) (-15 -2423 ((-112) $)) (-15 -3584 ((-112) $)) (-15 -3115 ((-112) $)) (-15 -1920 ((-783) $)) (-15 -1920 ($ $ (-783))) (-15 -4214 ($ $ (-1 (-112) $ $))) (-15 -3906 ($ $ (-1 (-112) $ $))) (-15 -1977 ((-3 (-1 (-876) (-656 (-876))) "failed") $)) (-15 -1977 ($ $ (-1 (-876) (-656 (-876))))) (-15 -1977 ($ $ (-1 (-876) (-876)))) (-15 -2022 ($ $ (-1 (-548) (-656 (-548))))) (-15 -2022 ((-3 (-1 (-548) (-656 (-548))) "failed") $)) (-15 -3892 ((-112) $ (-518))) (-15 -2712 ($ $ (-518))) (-15 -3762 ($ $ (-1179))) (-15 -3762 ($ $ (-518))) (-15 -3562 ((-3 (-786) "failed") $ (-1179))) (-15 -3562 ((-703 (-786)) $ (-518))) (-15 -2987 ($ $ (-1179) (-786))) (-15 -2987 ($ $ (-518) (-786))) (-15 -1499 ($ $ (-45 (-1179) (-786)))))) -((-2808 (((-576) |#2|) 41))) -(((-116 |#1| |#2|) (-10 -7 (-15 -2808 ((-576) |#2|))) (-13 (-374) (-1059 (-419 (-576)))) (-1264 |#1|)) (T -116)) -((-2808 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-1059 (-419 *2)))) (-5 *2 (-576)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1264 *4))))) -(-10 -7 (-15 -2808 ((-576) |#2|))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-1839 (($ $ (-576)) NIL)) (-4016 (((-112) $ $) NIL)) (-3886 (($) NIL T CONST)) (-4260 (($ (-1193 (-576)) (-576)) NIL)) (-3429 (($ $ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-2462 (($ $) NIL)) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-3917 (((-783) $) NIL)) (-4193 (((-112) $) NIL)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1633 (((-576)) NIL)) (-4325 (((-576) $) NIL)) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1749 (($ $ (-576)) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1967 (((-783) $) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-4326 (((-1178 (-576)) $) NIL)) (-3126 (($ $) NIL)) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL)) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL)) (-4166 (((-576) $ (-576)) NIL)) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2925 (((-112) $ $) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) +((-3941 (((-3 (-1 |#1| (-656 |#1|)) "failed") (-115)) 23) (((-115) (-115) (-1 |#1| |#1|)) 13) (((-115) (-115) (-1 |#1| (-656 |#1|))) 11) (((-3 |#1| "failed") (-115) (-656 |#1|)) 25)) (-3992 (((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115)) 29) (((-115) (-115) (-1 |#1| |#1|)) 33) (((-115) (-115) (-656 (-1 |#1| (-656 |#1|)))) 30)) (-2378 (((-115) |#1|) 63)) (-3238 (((-3 |#1| "failed") (-115)) 58))) +(((-114 |#1|) (-10 -7 (-15 -3941 ((-3 |#1| "failed") (-115) (-656 |#1|))) (-15 -3941 ((-115) (-115) (-1 |#1| (-656 |#1|)))) (-15 -3941 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3941 ((-3 (-1 |#1| (-656 |#1|)) "failed") (-115))) (-15 -3992 ((-115) (-115) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3992 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3992 ((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115))) (-15 -2378 ((-115) |#1|)) (-15 -3238 ((-3 |#1| "failed") (-115)))) (-1121)) (T -114)) +((-3238 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1121)))) (-2378 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1121)))) (-3992 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-1 *4 (-656 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1121)))) (-3992 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1121)) (-5 *1 (-114 *4)))) (-3992 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 (-1 *4 (-656 *4)))) (-4 *4 (-1121)) (-5 *1 (-114 *4)))) (-3941 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-656 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1121)))) (-3941 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1121)) (-5 *1 (-114 *4)))) (-3941 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-656 *4))) (-4 *4 (-1121)) (-5 *1 (-114 *4)))) (-3941 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-656 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1121))))) +(-10 -7 (-15 -3941 ((-3 |#1| "failed") (-115) (-656 |#1|))) (-15 -3941 ((-115) (-115) (-1 |#1| (-656 |#1|)))) (-15 -3941 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3941 ((-3 (-1 |#1| (-656 |#1|)) "failed") (-115))) (-15 -3992 ((-115) (-115) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3992 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3992 ((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115))) (-15 -2378 ((-115) |#1|)) (-15 -3238 ((-3 |#1| "failed") (-115)))) +((-3488 (((-112) $ $) NIL)) (-2791 (((-783) $) 91) (($ $ (-783)) 37)) (-3454 (((-112) $) 41)) (-3750 (($ $ (-1179) (-786)) 58) (($ $ (-518) (-786)) 33)) (-4230 (($ $ (-45 (-1179) (-786))) 16)) (-1380 (((-3 (-786) "failed") $ (-1179)) 27) (((-703 (-786)) $ (-518)) 32)) (-1864 (((-45 (-1179) (-786)) $) 15)) (-1776 (($ (-1197)) 20) (($ (-1197) (-783)) 23) (($ (-1197) (-55)) 24)) (-4051 (((-112) $) 39)) (-2444 (((-112) $) 43)) (-2628 (((-1197) $) 8)) (-3124 (($ $ $) NIL)) (-1441 (($ $ $) NIL)) (-2046 (((-1179) $) NIL)) (-2808 (((-112) $ (-1197)) 11)) (-2023 (($ $ (-1 (-548) (-656 (-548)))) 64) (((-3 (-1 (-548) (-656 (-548))) "failed") $) 71)) (-1450 (((-1141) $) NIL)) (-3461 (((-112) $ (-518)) 36)) (-3456 (($ $ (-1 (-112) $ $)) 45)) (-1977 (((-3 (-1 (-876) (-656 (-876))) "failed") $) 69) (($ $ (-1 (-876) (-656 (-876)))) 51) (($ $ (-1 (-876) (-876))) 53)) (-1504 (($ $ (-1179)) 55) (($ $ (-518)) 56)) (-1870 (($ $) 77)) (-3608 (($ $ (-1 (-112) $ $)) 46)) (-3569 (((-876) $) 60)) (-2399 (((-112) $ $) NIL)) (-2711 (($ $ (-518)) 34)) (-2294 (((-55) $) 72)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 89)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) 103))) +(((-115) (-13 (-861) (-847 (-1197)) (-10 -8 (-15 -1864 ((-45 (-1179) (-786)) $)) (-15 -1870 ($ $)) (-15 -1776 ($ (-1197))) (-15 -1776 ($ (-1197) (-783))) (-15 -1776 ($ (-1197) (-55))) (-15 -4051 ((-112) $)) (-15 -3454 ((-112) $)) (-15 -2444 ((-112) $)) (-15 -2791 ((-783) $)) (-15 -2791 ($ $ (-783))) (-15 -3456 ($ $ (-1 (-112) $ $))) (-15 -3608 ($ $ (-1 (-112) $ $))) (-15 -1977 ((-3 (-1 (-876) (-656 (-876))) "failed") $)) (-15 -1977 ($ $ (-1 (-876) (-656 (-876))))) (-15 -1977 ($ $ (-1 (-876) (-876)))) (-15 -2023 ($ $ (-1 (-548) (-656 (-548))))) (-15 -2023 ((-3 (-1 (-548) (-656 (-548))) "failed") $)) (-15 -3461 ((-112) $ (-518))) (-15 -2711 ($ $ (-518))) (-15 -1504 ($ $ (-1179))) (-15 -1504 ($ $ (-518))) (-15 -1380 ((-3 (-786) "failed") $ (-1179))) (-15 -1380 ((-703 (-786)) $ (-518))) (-15 -3750 ($ $ (-1179) (-786))) (-15 -3750 ($ $ (-518) (-786))) (-15 -4230 ($ $ (-45 (-1179) (-786))))))) (T -115)) +((-1864 (*1 *2 *1) (-12 (-5 *2 (-45 (-1179) (-786))) (-5 *1 (-115)))) (-1870 (*1 *1 *1) (-5 *1 (-115))) (-1776 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-115)))) (-1776 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-783)) (-5 *1 (-115)))) (-1776 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-55)) (-5 *1 (-115)))) (-4051 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-3454 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2444 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2791 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) (-2791 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-3608 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-1977 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-876) (-656 (-876)))) (-5 *1 (-115)))) (-1977 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-876) (-656 (-876)))) (-5 *1 (-115)))) (-1977 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-876) (-876))) (-5 *1 (-115)))) (-2023 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) (-2023 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) (-3461 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-112)) (-5 *1 (-115)))) (-2711 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-1504 (*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-115)))) (-1504 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-1380 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1179)) (-5 *2 (-786)) (-5 *1 (-115)))) (-1380 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-786))) (-5 *1 (-115)))) (-3750 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-786)) (-5 *1 (-115)))) (-3750 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-786)) (-5 *1 (-115)))) (-4230 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1179) (-786))) (-5 *1 (-115))))) +(-13 (-861) (-847 (-1197)) (-10 -8 (-15 -1864 ((-45 (-1179) (-786)) $)) (-15 -1870 ($ $)) (-15 -1776 ($ (-1197))) (-15 -1776 ($ (-1197) (-783))) (-15 -1776 ($ (-1197) (-55))) (-15 -4051 ((-112) $)) (-15 -3454 ((-112) $)) (-15 -2444 ((-112) $)) (-15 -2791 ((-783) $)) (-15 -2791 ($ $ (-783))) (-15 -3456 ($ $ (-1 (-112) $ $))) (-15 -3608 ($ $ (-1 (-112) $ $))) (-15 -1977 ((-3 (-1 (-876) (-656 (-876))) "failed") $)) (-15 -1977 ($ $ (-1 (-876) (-656 (-876))))) (-15 -1977 ($ $ (-1 (-876) (-876)))) (-15 -2023 ($ $ (-1 (-548) (-656 (-548))))) (-15 -2023 ((-3 (-1 (-548) (-656 (-548))) "failed") $)) (-15 -3461 ((-112) $ (-518))) (-15 -2711 ($ $ (-518))) (-15 -1504 ($ $ (-1179))) (-15 -1504 ($ $ (-518))) (-15 -1380 ((-3 (-786) "failed") $ (-1179))) (-15 -1380 ((-703 (-786)) $ (-518))) (-15 -3750 ($ $ (-1179) (-786))) (-15 -3750 ($ $ (-518) (-786))) (-15 -4230 ($ $ (-45 (-1179) (-786)))))) +((-3384 (((-576) |#2|) 41))) +(((-116 |#1| |#2|) (-10 -7 (-15 -3384 ((-576) |#2|))) (-13 (-374) (-1059 (-419 (-576)))) (-1264 |#1|)) (T -116)) +((-3384 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-1059 (-419 *2)))) (-5 *2 (-576)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1264 *4))))) +(-10 -7 (-15 -3384 ((-576) |#2|))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-1840 (($ $ (-576)) NIL)) (-3330 (((-112) $ $) NIL)) (-3404 (($) NIL T CONST)) (-3943 (($ (-1193 (-576)) (-576)) NIL)) (-3428 (($ $ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-4416 (($ $) NIL)) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3726 (((-783) $) NIL)) (-1351 (((-112) $) NIL)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3125 (((-576)) NIL)) (-3287 (((-576) $) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1743 (($ $ (-576)) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1979 (((-783) $) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-3295 (((-1178 (-576)) $) NIL)) (-2539 (($ $) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL)) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL)) (-4165 (((-576) $ (-576)) NIL)) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2924 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) (((-117 |#1|) (-883 |#1|) (-576)) (T -117)) NIL (-883 |#1|) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2575 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-317)))) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3601 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-117 |#1|) (-928)))) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-117 |#1|) (-928)))) (-4016 (((-112) $ $) NIL)) (-3308 (((-576) $) NIL (|has| (-117 |#1|) (-832)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-117 |#1|) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| (-117 |#1|) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-117 |#1|) (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-117 |#1|) (-1059 (-576))))) (-2860 (((-117 |#1|) $) NIL) (((-1197) $) NIL (|has| (-117 |#1|) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-117 |#1|) (-1059 (-576)))) (((-576) $) NIL (|has| (-117 |#1|) (-1059 (-576))))) (-2257 (($ $) NIL) (($ (-576) $) NIL)) (-3429 (($ $ $) NIL)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-117 |#1|))) (|:| |vec| (-1288 (-117 |#1|)))) (-701 $) (-1288 $)) NIL) (((-701 (-117 |#1|)) (-701 $)) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-117 |#1|) (-557)))) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-4249 (((-112) $) NIL)) (-2087 (((-112) $) NIL (|has| (-117 |#1|) (-832)))) (-1840 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-117 |#1|) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-117 |#1|) (-901 (-390))))) (-4193 (((-112) $) NIL)) (-2171 (($ $) NIL)) (-1570 (((-117 |#1|) $) NIL)) (-2240 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1173)))) (-1634 (((-112) $) NIL (|has| (-117 |#1|) (-832)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3125 (($ $ $) NIL (|has| (-117 |#1|) (-861)))) (-3133 (($ $ $) NIL (|has| (-117 |#1|) (-861)))) (-4117 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-117 |#1|))) (|:| |vec| (-1288 (-117 |#1|)))) (-1288 $) $) NIL) (((-701 (-117 |#1|)) (-1288 $)) NIL)) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3540 (($) NIL (|has| (-117 |#1|) (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2393 (($ $) NIL (|has| (-117 |#1|) (-317)))) (-2443 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-557)))) (-4100 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-117 |#1|) (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-117 |#1|) (-928)))) (-1828 (((-430 $) $) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3284 (($ $ (-656 (-117 |#1|)) (-656 (-117 |#1|))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-304 (-117 |#1|))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-656 (-304 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-656 (-1197)) (-656 (-117 |#1|))) NIL (|has| (-117 |#1|) (-526 (-1197) (-117 |#1|)))) (($ $ (-1197) (-117 |#1|)) NIL (|has| (-117 |#1|) (-526 (-1197) (-117 |#1|))))) (-1967 (((-783) $) NIL)) (-2797 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-296 (-117 |#1|) (-117 |#1|))))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-2775 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-117 |#1|) (-237)))) (-2143 (($ $) NIL)) (-1581 (((-117 |#1|) $) NIL)) (-4172 (((-907 (-576)) $) NIL (|has| (-117 |#1|) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-117 |#1|) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-117 |#1|) (-626 (-548)))) (((-390) $) NIL (|has| (-117 |#1|) (-1043))) (((-227) $) NIL (|has| (-117 |#1|) (-1043)))) (-3091 (((-176 (-419 (-576))) $) NIL)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-928))))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-117 |#1|)) NIL) (($ (-1197)) NIL (|has| (-117 |#1|) (-1059 (-1197))))) (-4336 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-928))) (|has| (-117 |#1|) (-146))))) (-3996 (((-783)) NIL T CONST)) (-4118 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-557)))) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL)) (-4166 (((-419 (-576)) $ (-576)) NIL)) (-2122 (($ $) NIL (|has| (-117 |#1|) (-832)))) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2020 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-117 |#1|) (-237)))) (-2992 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-2964 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-2950 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-3057 (($ $ $) NIL) (($ (-117 |#1|) (-117 |#1|)) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-117 |#1|) $) NIL) (($ $ (-117 |#1|)) NIL))) -(((-118 |#1|) (-13 (-1013 (-117 |#1|)) (-10 -8 (-15 -4166 ((-419 (-576)) $ (-576))) (-15 -3091 ((-176 (-419 (-576))) $)) (-15 -2257 ($ $)) (-15 -2257 ($ (-576) $)))) (-576)) (T -118)) -((-4166 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-576)))) (-3091 (*1 *2 *1) (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-118 *3)) (-14 *3 (-576)))) (-2257 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-576)))) (-2257 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-118 *3)) (-14 *3 *2)))) -(-13 (-1013 (-117 |#1|)) (-10 -8 (-15 -4166 ((-419 (-576)) $ (-576))) (-15 -3091 ((-176 (-419 (-576))) $)) (-15 -2257 ($ $)) (-15 -2257 ($ (-576) $)))) -((-3756 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-2387 (((-656 $) $) 31)) (-3295 (((-112) $ $) 36)) (-1612 (((-112) |#2| $) 40)) (-2353 (((-656 |#2|) $) 25)) (-3443 (((-112) $) 18)) (-2797 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3617 (((-112) $) 57)) (-3570 (((-876) $) 47)) (-2902 (((-656 $) $) 32)) (-2925 (((-112) $ $) 38)) (-3503 (((-783) $) 50))) -(((-119 |#1| |#2|) (-10 -8 (-15 -2925 ((-112) |#1| |#1|)) (-15 -3570 ((-876) |#1|)) (-15 -3756 (|#1| |#1| "right" |#1|)) (-15 -3756 (|#1| |#1| "left" |#1|)) (-15 -2797 (|#1| |#1| "right")) (-15 -2797 (|#1| |#1| "left")) (-15 -3756 (|#2| |#1| "value" |#2|)) (-15 -3295 ((-112) |#1| |#1|)) (-15 -2353 ((-656 |#2|) |#1|)) (-15 -3617 ((-112) |#1|)) (-15 -2797 (|#2| |#1| "value")) (-15 -3443 ((-112) |#1|)) (-15 -2387 ((-656 |#1|) |#1|)) (-15 -2902 ((-656 |#1|) |#1|)) (-15 -1612 ((-112) |#2| |#1|)) (-15 -3503 ((-783) |#1|))) (-120 |#2|) (-1238)) (T -119)) -NIL -(-10 -8 (-15 -2925 ((-112) |#1| |#1|)) (-15 -3570 ((-876) |#1|)) (-15 -3756 (|#1| |#1| "right" |#1|)) (-15 -3756 (|#1| |#1| "left" |#1|)) (-15 -2797 (|#1| |#1| "right")) (-15 -2797 (|#1| |#1| "left")) (-15 -3756 (|#2| |#1| "value" |#2|)) (-15 -3295 ((-112) |#1| |#1|)) (-15 -2353 ((-656 |#2|) |#1|)) (-15 -3617 ((-112) |#1|)) (-15 -2797 (|#2| |#1| "value")) (-15 -3443 ((-112) |#1|)) (-15 -2387 ((-656 |#1|) |#1|)) (-15 -2902 ((-656 |#1|) |#1|)) (-15 -1612 ((-112) |#2| |#1|)) (-15 -3503 ((-783) |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3106 ((|#1| $) 49)) (-1808 (((-112) $ (-783)) 8)) (-2647 ((|#1| $ |#1|) 40 (|has| $ (-6 -4466)))) (-4121 (($ $ $) 53 (|has| $ (-6 -4466)))) (-3523 (($ $ $) 55 (|has| $ (-6 -4466)))) (-3756 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4466))) (($ $ "left" $) 56 (|has| $ (-6 -4466))) (($ $ "right" $) 54 (|has| $ (-6 -4466)))) (-1894 (($ $ (-656 $)) 42 (|has| $ (-6 -4466)))) (-3886 (($) 7 T CONST)) (-4250 (($ $) 58)) (-3966 (((-656 |#1|) $) 31 (|has| $ (-6 -4465)))) (-2387 (((-656 $) $) 51)) (-3295 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-3870 (((-112) $ (-783)) 9)) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-4323 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 36)) (-1330 (((-112) $ (-783)) 10)) (-4240 (($ $) 60)) (-2353 (((-656 |#1|) $) 46)) (-3443 (((-112) $) 50)) (-3699 (((-1179) $) 23 (|has| |#1| (-1121)))) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-2797 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-2789 (((-576) $ $) 45)) (-3617 (((-112) $) 47)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 13)) (-3570 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2902 (((-656 $) $) 52)) (-2621 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-4055 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-3110 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-317)))) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3646 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-117 |#1|) (-928)))) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-117 |#1|) (-928)))) (-3330 (((-112) $ $) NIL)) (-3906 (((-576) $) NIL (|has| (-117 |#1|) (-832)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-117 |#1|) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| (-117 |#1|) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-117 |#1|) (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-117 |#1|) (-1059 (-576))))) (-2859 (((-117 |#1|) $) NIL) (((-1197) $) NIL (|has| (-117 |#1|) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-117 |#1|) (-1059 (-576)))) (((-576) $) NIL (|has| (-117 |#1|) (-1059 (-576))))) (-2926 (($ $) NIL) (($ (-576) $) NIL)) (-3428 (($ $ $) NIL)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-117 |#1|))) (|:| |vec| (-1288 (-117 |#1|)))) (-701 $) (-1288 $)) NIL) (((-701 (-117 |#1|)) (-701 $)) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-117 |#1|) (-557)))) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3833 (((-112) $) NIL)) (-1866 (((-112) $) NIL (|has| (-117 |#1|) (-832)))) (-3325 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-117 |#1|) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-117 |#1|) (-901 (-390))))) (-1351 (((-112) $) NIL)) (-3328 (($ $) NIL)) (-1570 (((-117 |#1|) $) NIL)) (-2734 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1173)))) (-3137 (((-112) $) NIL (|has| (-117 |#1|) (-832)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3124 (($ $ $) NIL (|has| (-117 |#1|) (-861)))) (-1441 (($ $ $) NIL (|has| (-117 |#1|) (-861)))) (-4116 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-117 |#1|))) (|:| |vec| (-1288 (-117 |#1|)))) (-1288 $) $) NIL) (((-701 (-117 |#1|)) (-1288 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3539 (($) NIL (|has| (-117 |#1|) (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1788 (($ $) NIL (|has| (-117 |#1|) (-317)))) (-4236 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-557)))) (-1644 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-117 |#1|) (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-117 |#1|) (-928)))) (-1828 (((-430 $) $) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3282 (($ $ (-656 (-117 |#1|)) (-656 (-117 |#1|))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-304 (-117 |#1|))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-656 (-304 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-656 (-1197)) (-656 (-117 |#1|))) NIL (|has| (-117 |#1|) (-526 (-1197) (-117 |#1|)))) (($ $ (-1197) (-117 |#1|)) NIL (|has| (-117 |#1|) (-526 (-1197) (-117 |#1|))))) (-1979 (((-783) $) NIL)) (-2796 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-296 (-117 |#1|) (-117 |#1|))))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-2774 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-117 |#1|) (-237)))) (-4325 (($ $) NIL)) (-1581 (((-117 |#1|) $) NIL)) (-4171 (((-907 (-576)) $) NIL (|has| (-117 |#1|) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-117 |#1|) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-117 |#1|) (-626 (-548)))) (((-390) $) NIL (|has| (-117 |#1|) (-1043))) (((-227) $) NIL (|has| (-117 |#1|) (-1043)))) (-2223 (((-176 (-419 (-576))) $) NIL)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-117 |#1|)) NIL) (($ (-1197)) NIL (|has| (-117 |#1|) (-1059 (-1197))))) (-3390 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-928))) (|has| (-117 |#1|) (-146))))) (-3154 (((-783)) NIL T CONST)) (-1810 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-557)))) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL)) (-4165 (((-419 (-576)) $ (-576)) NIL)) (-4143 (($ $) NIL (|has| (-117 |#1|) (-832)))) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2020 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-117 |#1|) (-237)))) (-2990 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-2962 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-2949 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-3056 (($ $ $) NIL) (($ (-117 |#1|) (-117 |#1|)) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-117 |#1|) $) NIL) (($ $ (-117 |#1|)) NIL))) +(((-118 |#1|) (-13 (-1013 (-117 |#1|)) (-10 -8 (-15 -4165 ((-419 (-576)) $ (-576))) (-15 -2223 ((-176 (-419 (-576))) $)) (-15 -2926 ($ $)) (-15 -2926 ($ (-576) $)))) (-576)) (T -118)) +((-4165 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-576)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-118 *3)) (-14 *3 (-576)))) (-2926 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-576)))) (-2926 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-118 *3)) (-14 *3 *2)))) +(-13 (-1013 (-117 |#1|)) (-10 -8 (-15 -4165 ((-419 (-576)) $ (-576))) (-15 -2223 ((-176 (-419 (-576))) $)) (-15 -2926 ($ $)) (-15 -2926 ($ (-576) $)))) +((-3755 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-1736 (((-656 $) $) 31)) (-3768 (((-112) $ $) 36)) (-2885 (((-112) |#2| $) 40)) (-2353 (((-656 |#2|) $) 25)) (-1508 (((-112) $) 18)) (-2796 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3806 (((-112) $) 57)) (-3569 (((-876) $) 47)) (-3059 (((-656 $) $) 32)) (-2924 (((-112) $ $) 38)) (-3502 (((-783) $) 50))) +(((-119 |#1| |#2|) (-10 -8 (-15 -2924 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -3755 (|#1| |#1| "right" |#1|)) (-15 -3755 (|#1| |#1| "left" |#1|)) (-15 -2796 (|#1| |#1| "right")) (-15 -2796 (|#1| |#1| "left")) (-15 -3755 (|#2| |#1| "value" |#2|)) (-15 -3768 ((-112) |#1| |#1|)) (-15 -2353 ((-656 |#2|) |#1|)) (-15 -3806 ((-112) |#1|)) (-15 -2796 (|#2| |#1| "value")) (-15 -1508 ((-112) |#1|)) (-15 -1736 ((-656 |#1|) |#1|)) (-15 -3059 ((-656 |#1|) |#1|)) (-15 -2885 ((-112) |#2| |#1|)) (-15 -3502 ((-783) |#1|))) (-120 |#2|) (-1238)) (T -119)) +NIL +(-10 -8 (-15 -2924 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -3755 (|#1| |#1| "right" |#1|)) (-15 -3755 (|#1| |#1| "left" |#1|)) (-15 -2796 (|#1| |#1| "right")) (-15 -2796 (|#1| |#1| "left")) (-15 -3755 (|#2| |#1| "value" |#2|)) (-15 -3768 ((-112) |#1| |#1|)) (-15 -2353 ((-656 |#2|) |#1|)) (-15 -3806 ((-112) |#1|)) (-15 -2796 (|#2| |#1| "value")) (-15 -1508 ((-112) |#1|)) (-15 -1736 ((-656 |#1|) |#1|)) (-15 -3059 ((-656 |#1|) |#1|)) (-15 -2885 ((-112) |#2| |#1|)) (-15 -3502 ((-783) |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3104 ((|#1| $) 49)) (-4264 (((-112) $ (-783)) 8)) (-2482 ((|#1| $ |#1|) 40 (|has| $ (-6 -4465)))) (-1841 (($ $ $) 53 (|has| $ (-6 -4465)))) (-4158 (($ $ $) 55 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4465))) (($ $ "left" $) 56 (|has| $ (-6 -4465))) (($ $ "right" $) 54 (|has| $ (-6 -4465)))) (-3829 (($ $ (-656 $)) 42 (|has| $ (-6 -4465)))) (-3404 (($) 7 T CONST)) (-4249 (($ $) 58)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-1736 (((-656 $) $) 51)) (-3768 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-1368 (((-112) $ (-783)) 9)) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4326 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-2883 (((-112) $ (-783)) 10)) (-4239 (($ $) 60)) (-2353 (((-656 |#1|) $) 46)) (-1508 (((-112) $) 50)) (-2046 (((-1179) $) 23 (|has| |#1| (-1121)))) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-2796 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-1335 (((-576) $ $) 45)) (-3806 (((-112) $) 47)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-3059 (((-656 $) $) 52)) (-2247 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-2399 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-120 |#1|) (-141) (-1238)) (T -120)) -((-4240 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1238)))) (-2797 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1238)))) (-4250 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1238)))) (-2797 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1238)))) (-3756 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4466)) (-4 *1 (-120 *3)) (-4 *3 (-1238)))) (-3523 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-120 *2)) (-4 *2 (-1238)))) (-3756 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4466)) (-4 *1 (-120 *3)) (-4 *3 (-1238)))) (-4121 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-120 *2)) (-4 *2 (-1238))))) -(-13 (-1031 |t#1|) (-10 -8 (-15 -4240 ($ $)) (-15 -2797 ($ $ "left")) (-15 -4250 ($ $)) (-15 -2797 ($ $ "right")) (IF (|has| $ (-6 -4466)) (PROGN (-15 -3756 ($ $ "left" $)) (-15 -3523 ($ $ $)) (-15 -3756 ($ $ "right" $)) (-15 -4121 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) -2760 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2760 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1031 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-4290 (((-112) |#1|) 29)) (-4389 (((-783) (-783)) 28) (((-783)) 27)) (-3609 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) -(((-121 |#1|) (-10 -7 (-15 -3609 ((-112) |#1|)) (-15 -3609 ((-112) |#1| (-112))) (-15 -4389 ((-783))) (-15 -4389 ((-783) (-783))) (-15 -4290 ((-112) |#1|))) (-1264 (-576))) (T -121)) -((-4290 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576))))) (-4389 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576))))) (-4389 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576))))) (-3609 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576))))) (-3609 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576)))))) -(-10 -7 (-15 -3609 ((-112) |#1|)) (-15 -3609 ((-112) |#1| (-112))) (-15 -4389 ((-783))) (-15 -4389 ((-783) (-783))) (-15 -4290 ((-112) |#1|))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3106 ((|#1| $) 18)) (-2488 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-1808 (((-112) $ (-783)) NIL)) (-2647 ((|#1| $ |#1|) NIL (|has| $ (-6 -4466)))) (-4121 (($ $ $) 21 (|has| $ (-6 -4466)))) (-3523 (($ $ $) 23 (|has| $ (-6 -4466)))) (-3756 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4466))) (($ $ "left" $) NIL (|has| $ (-6 -4466))) (($ $ "right" $) NIL (|has| $ (-6 -4466)))) (-1894 (($ $ (-656 $)) NIL (|has| $ (-6 -4466)))) (-3886 (($) NIL T CONST)) (-4250 (($ $) 20)) (-3966 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-2387 (((-656 $) $) NIL)) (-3295 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2205 (($ $ |#1| $) 27)) (-3870 (((-112) $ (-783)) NIL)) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-4323 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-4240 (($ $) 22)) (-2353 (((-656 |#1|) $) NIL)) (-3443 (((-112) $) NIL)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3568 (($ |#1| $) 28)) (-1901 (($ |#1| $) 15)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) 17)) (-4225 (($) 11)) (-2797 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2789 (((-576) $ $) NIL)) (-3617 (((-112) $) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3570 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2902 (((-656 $) $) NIL)) (-2621 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2411 (($ (-656 |#1|)) 16)) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4466) (-6 -4465) (-15 -2411 ($ (-656 |#1|))) (-15 -1901 ($ |#1| $)) (-15 -3568 ($ |#1| $)) (-15 -2488 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-861)) (T -122)) -((-2411 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-122 *3)))) (-1901 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861)))) (-3568 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861)))) (-2488 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-861))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4466) (-6 -4465) (-15 -2411 ($ (-656 |#1|))) (-15 -1901 ($ |#1| $)) (-15 -3568 ($ |#1| $)) (-15 -2488 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-3517 (($ $) 13)) (-2663 (($ $) 11)) (-3073 (($ $ $) 23)) (-1912 (($ $ $) 21)) (-3563 (($ $ $) 19)) (-3552 (($ $ $) 17))) -(((-123 |#1|) (-10 -8 (-15 -3073 (|#1| |#1| |#1|)) (-15 -1912 (|#1| |#1| |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -3552 (|#1| |#1| |#1|)) (-15 -3563 (|#1| |#1| |#1|)) (-15 -2663 (|#1| |#1|))) (-124)) (T -123)) -NIL -(-10 -8 (-15 -3073 (|#1| |#1| |#1|)) (-15 -1912 (|#1| |#1| |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -3552 (|#1| |#1| |#1|)) (-15 -3563 (|#1| |#1| |#1|)) (-15 -2663 (|#1| |#1|))) -((-3489 (((-112) $ $) 7)) (-3517 (($ $) 104)) (-2695 (($ $ $) 29)) (-2047 (((-1293) $ (-576) (-576)) 67 (|has| $ (-6 -4466)))) (-1710 (((-112) $) 99 (|has| (-112) (-861))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-4298 (($ $) 103 (-12 (|has| (-112) (-861)) (|has| $ (-6 -4466)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4466)))) (-1795 (($ $) 98 (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-1808 (((-112) $ (-783)) 38)) (-3756 (((-112) $ (-1255 (-576)) (-112)) 89 (|has| $ (-6 -4466))) (((-112) $ (-576) (-112)) 55 (|has| $ (-6 -4466)))) (-1974 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4465)))) (-3886 (($) 39 T CONST)) (-3990 (($ $) 101 (|has| $ (-6 -4466)))) (-3836 (($ $) 91)) (-1415 (($ $) 69 (-12 (|has| (-112) (-1121)) (|has| $ (-6 -4465))))) (-3946 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4465))) (($ (-112) $) 70 (-12 (|has| (-112) (-1121)) (|has| $ (-6 -4465))))) (-3686 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4465))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4465))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1121)) (|has| $ (-6 -4465))))) (-4335 (((-112) $ (-576) (-112)) 54 (|has| $ (-6 -4466)))) (-4274 (((-112) $ (-576)) 56)) (-3660 (((-576) (-112) $ (-576)) 96 (|has| (-112) (-1121))) (((-576) (-112) $) 95 (|has| (-112) (-1121))) (((-576) (-1 (-112) (-112)) $) 94)) (-3966 (((-656 (-112)) $) 46 (|has| $ (-6 -4465)))) (-2686 (($ $ $) 109)) (-2663 (($ $) 107)) (-3073 (($ $ $) 30)) (-4141 (($ (-783) (-112)) 79)) (-1912 (($ $ $) 31)) (-3870 (((-112) $ (-783)) 37)) (-2924 (((-576) $) 64 (|has| (-576) (-861)))) (-3125 (($ $ $) 20)) (-3391 (($ $ $) 97 (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-2014 (((-656 (-112)) $) 47 (|has| $ (-6 -4465)))) (-1612 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1121)) (|has| $ (-6 -4465))))) (-2137 (((-576) $) 63 (|has| (-576) (-861)))) (-3133 (($ $ $) 19)) (-4323 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4466)))) (-4117 (($ (-1 (-112) (-112) (-112)) $ $) 84) (($ (-1 (-112) (-112)) $) 41)) (-1330 (((-112) $ (-783)) 36)) (-3699 (((-1179) $) 10)) (-2176 (($ $ $ (-576)) 88) (($ (-112) $ (-576)) 87)) (-4234 (((-656 (-576)) $) 61)) (-3354 (((-112) (-576) $) 60)) (-1450 (((-1141) $) 11)) (-3581 (((-112) $) 65 (|has| (-576) (-861)))) (-1541 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-4046 (($ $ (-112)) 66 (|has| $ (-6 -4466)))) (-4320 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-112)) (-656 (-112))) 53 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-304 (-112))) 51 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-656 (-304 (-112)))) 50 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121))))) (-4040 (((-112) $ $) 32)) (-3845 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4465)) (|has| (-112) (-1121))))) (-2281 (((-656 (-112)) $) 59)) (-3973 (((-112) $) 35)) (-4225 (($) 34)) (-2797 (($ $ (-1255 (-576))) 78) (((-112) $ (-576)) 58) (((-112) $ (-576) (-112)) 57)) (-3466 (($ $ (-1255 (-576))) 86) (($ $ (-576)) 85)) (-1460 (((-783) (-112) $) 48 (-12 (|has| (-112) (-1121)) (|has| $ (-6 -4465)))) (((-783) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4465)))) (-3025 (($ $ $ (-576)) 100 (|has| $ (-6 -4466)))) (-1870 (($ $) 33)) (-4172 (((-548) $) 68 (|has| (-112) (-626 (-548))))) (-3582 (($ (-656 (-112))) 77)) (-1615 (($ (-656 $)) 83) (($ $ $) 82) (($ (-112) $) 81) (($ $ (-112)) 80)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-3321 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4465)))) (-2675 (($ $ $) 108)) (-3563 (($ $ $) 106)) (-2992 (((-112) $ $) 18)) (-2964 (((-112) $ $) 16)) (-2925 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2950 (((-112) $ $) 15)) (-3552 (($ $ $) 105)) (-3503 (((-783) $) 40 (|has| $ (-6 -4465))))) +((-4239 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1238)))) (-2796 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1238)))) (-4249 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1238)))) (-2796 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1238)))) (-3755 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4465)) (-4 *1 (-120 *3)) (-4 *3 (-1238)))) (-4158 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-120 *2)) (-4 *2 (-1238)))) (-3755 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4465)) (-4 *1 (-120 *3)) (-4 *3 (-1238)))) (-1841 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-120 *2)) (-4 *2 (-1238))))) +(-13 (-1031 |t#1|) (-10 -8 (-15 -4239 ($ $)) (-15 -2796 ($ $ "left")) (-15 -4249 ($ $)) (-15 -2796 ($ $ "right")) (IF (|has| $ (-6 -4465)) (PROGN (-15 -3755 ($ $ "left" $)) (-15 -4158 ($ $ $)) (-15 -3755 ($ $ "right" $)) (-15 -1841 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) -2759 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2759 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1031 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-2959 (((-112) |#1|) 29)) (-2632 (((-783) (-783)) 28) (((-783)) 27)) (-3719 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) +(((-121 |#1|) (-10 -7 (-15 -3719 ((-112) |#1|)) (-15 -3719 ((-112) |#1| (-112))) (-15 -2632 ((-783))) (-15 -2632 ((-783) (-783))) (-15 -2959 ((-112) |#1|))) (-1264 (-576))) (T -121)) +((-2959 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576))))) (-2632 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576))))) (-2632 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576))))) (-3719 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576))))) (-3719 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576)))))) +(-10 -7 (-15 -3719 ((-112) |#1|)) (-15 -3719 ((-112) |#1| (-112))) (-15 -2632 ((-783))) (-15 -2632 ((-783) (-783))) (-15 -2959 ((-112) |#1|))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3104 ((|#1| $) 18)) (-3455 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-4264 (((-112) $ (-783)) NIL)) (-2482 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-1841 (($ $ $) 21 (|has| $ (-6 -4465)))) (-4158 (($ $ $) 23 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465))) (($ $ "left" $) NIL (|has| $ (-6 -4465))) (($ $ "right" $) NIL (|has| $ (-6 -4465)))) (-3829 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-3404 (($) NIL T CONST)) (-4249 (($ $) 20)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1736 (((-656 $) $) NIL)) (-3768 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2205 (($ $ |#1| $) 27)) (-1368 (((-112) $ (-783)) NIL)) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4326 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-4239 (($ $) 22)) (-2353 (((-656 |#1|) $) NIL)) (-1508 (((-112) $) NIL)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1430 (($ |#1| $) 28)) (-2597 (($ |#1| $) 15)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) 17)) (-3579 (($) 11)) (-2796 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1335 (((-576) $ $) NIL)) (-3806 (((-112) $) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-3059 (((-656 $) $) NIL)) (-2247 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-1967 (($ (-656 |#1|)) 16)) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4465) (-6 -4464) (-15 -1967 ($ (-656 |#1|))) (-15 -2597 ($ |#1| $)) (-15 -1430 ($ |#1| $)) (-15 -3455 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-861)) (T -122)) +((-1967 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-122 *3)))) (-2597 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861)))) (-1430 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861)))) (-3455 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-861))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4465) (-6 -4464) (-15 -1967 ($ (-656 |#1|))) (-15 -2597 ($ |#1| $)) (-15 -1430 ($ |#1| $)) (-15 -3455 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-3516 (($ $) 13)) (-2663 (($ $) 11)) (-2035 (($ $ $) 23)) (-2700 (($ $ $) 21)) (-3562 (($ $ $) 19)) (-3551 (($ $ $) 17))) +(((-123 |#1|) (-10 -8 (-15 -2035 (|#1| |#1| |#1|)) (-15 -2700 (|#1| |#1| |#1|)) (-15 -3516 (|#1| |#1|)) (-15 -3551 (|#1| |#1| |#1|)) (-15 -3562 (|#1| |#1| |#1|)) (-15 -2663 (|#1| |#1|))) (-124)) (T -123)) +NIL +(-10 -8 (-15 -2035 (|#1| |#1| |#1|)) (-15 -2700 (|#1| |#1| |#1|)) (-15 -3516 (|#1| |#1|)) (-15 -3551 (|#1| |#1| |#1|)) (-15 -3562 (|#1| |#1| |#1|)) (-15 -2663 (|#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-3516 (($ $) 104)) (-2694 (($ $ $) 29)) (-1512 (((-1293) $ (-576) (-576)) 67 (|has| $ (-6 -4465)))) (-1390 (((-112) $) 99 (|has| (-112) (-861))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-3039 (($ $) 103 (-12 (|has| (-112) (-861)) (|has| $ (-6 -4465)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4465)))) (-1795 (($ $) 98 (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-4264 (((-112) $ (-783)) 38)) (-3755 (((-112) $ (-1255 (-576)) (-112)) 89 (|has| $ (-6 -4465))) (((-112) $ (-576) (-112)) 55 (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4464)))) (-3404 (($) 39 T CONST)) (-3092 (($ $) 101 (|has| $ (-6 -4465)))) (-3835 (($ $) 91)) (-2034 (($ $) 69 (-12 (|has| (-112) (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4464))) (($ (-112) $) 70 (-12 (|has| (-112) (-1121)) (|has| $ (-6 -4464))))) (-3685 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1121)) (|has| $ (-6 -4464))))) (-4332 (((-112) $ (-576) (-112)) 54 (|has| $ (-6 -4465)))) (-4272 (((-112) $ (-576)) 56)) (-3659 (((-576) (-112) $ (-576)) 96 (|has| (-112) (-1121))) (((-576) (-112) $) 95 (|has| (-112) (-1121))) (((-576) (-1 (-112) (-112)) $) 94)) (-3965 (((-656 (-112)) $) 46 (|has| $ (-6 -4464)))) (-2685 (($ $ $) 109)) (-2663 (($ $) 107)) (-2035 (($ $ $) 30)) (-4140 (($ (-783) (-112)) 79)) (-2700 (($ $ $) 31)) (-1368 (((-112) $ (-783)) 37)) (-3281 (((-576) $) 64 (|has| (-576) (-861)))) (-3124 (($ $ $) 20)) (-2185 (($ $ $) 97 (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-2425 (((-656 (-112)) $) 47 (|has| $ (-6 -4464)))) (-2885 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1121)) (|has| $ (-6 -4464))))) (-4280 (((-576) $) 63 (|has| (-576) (-861)))) (-1441 (($ $ $) 19)) (-4326 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-112) (-112) (-112)) $ $) 84) (($ (-1 (-112) (-112)) $) 41)) (-2883 (((-112) $ (-783)) 36)) (-2046 (((-1179) $) 10)) (-2176 (($ $ $ (-576)) 88) (($ (-112) $ (-576)) 87)) (-3669 (((-656 (-576)) $) 61)) (-3090 (((-112) (-576) $) 60)) (-1450 (((-1141) $) 11)) (-3580 (((-112) $) 65 (|has| (-576) (-861)))) (-3434 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-2304 (($ $ (-112)) 66 (|has| $ (-6 -4465)))) (-3252 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-112)) (-656 (-112))) 53 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-304 (-112))) 51 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-656 (-304 (-112)))) 50 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121))))) (-2252 (((-112) $ $) 32)) (-4282 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-3207 (((-656 (-112)) $) 59)) (-2940 (((-112) $) 35)) (-3579 (($) 34)) (-2796 (($ $ (-1255 (-576))) 78) (((-112) $ (-576)) 58) (((-112) $ (-576) (-112)) 57)) (-3465 (($ $ (-1255 (-576))) 86) (($ $ (-576)) 85)) (-1460 (((-783) (-112) $) 48 (-12 (|has| (-112) (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4464)))) (-2840 (($ $ $ (-576)) 100 (|has| $ (-6 -4465)))) (-1870 (($ $) 33)) (-4171 (((-548) $) 68 (|has| (-112) (-626 (-548))))) (-3581 (($ (-656 (-112))) 77)) (-1615 (($ (-656 $)) 83) (($ $ $) 82) (($ (-112) $) 81) (($ $ (-112)) 80)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2708 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4464)))) (-2674 (($ $ $) 108)) (-3562 (($ $ $) 106)) (-2990 (((-112) $ $) 18)) (-2962 (((-112) $ $) 16)) (-2924 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2949 (((-112) $ $) 15)) (-3551 (($ $ $) 105)) (-3502 (((-783) $) 40 (|has| $ (-6 -4464))))) (((-124) (-141)) (T -124)) -((-1912 (*1 *1 *1 *1) (-4 *1 (-124))) (-3073 (*1 *1 *1 *1) (-4 *1 (-124))) (-2695 (*1 *1 *1 *1) (-4 *1 (-124)))) -(-13 (-861) (-113) (-673) (-19 (-112)) (-10 -8 (-15 -1912 ($ $ $)) (-15 -3073 ($ $ $)) (-15 -2695 ($ $ $)))) +((-2700 (*1 *1 *1 *1) (-4 *1 (-124))) (-2035 (*1 *1 *1 *1) (-4 *1 (-124))) (-2694 (*1 *1 *1 *1) (-4 *1 (-124)))) +(-13 (-861) (-113) (-673) (-19 (-112)) (-10 -8 (-15 -2700 ($ $ $)) (-15 -2035 ($ $ $)) (-15 -2694 ($ $ $)))) (((-34) . T) ((-102) . T) ((-113) . T) ((-625 (-876)) . T) ((-152 #0=(-112)) . T) ((-626 (-548)) |has| (-112) (-626 (-548))) ((-296 #1=(-576) #0#) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #1# #0#) . T) ((-319 #0#) -12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121))) ((-384 #0#) . T) ((-501 #0#) . T) ((-616 #1# #0#) . T) ((-526 #0# #0#) -12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121))) ((-663 #0#) . T) ((-673) . T) ((-19 #0#) . T) ((-861) . T) ((-864) . T) ((-1121) . T) ((-1238) . T)) -((-4323 (($ (-1 |#2| |#2|) $) 22)) (-1870 (($ $) 16)) (-3503 (((-783) $) 25))) -(((-125 |#1| |#2|) (-10 -8 (-15 -4323 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3503 ((-783) |#1|)) (-15 -1870 (|#1| |#1|))) (-126 |#2|) (-1121)) (T -125)) +((-4326 (($ (-1 |#2| |#2|) $) 22)) (-1870 (($ $) 16)) (-3502 (((-783) $) 25))) +(((-125 |#1| |#2|) (-10 -8 (-15 -4326 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3502 ((-783) |#1|)) (-15 -1870 (|#1| |#1|))) (-126 |#2|) (-1121)) (T -125)) NIL -(-10 -8 (-15 -4323 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3503 ((-783) |#1|)) (-15 -1870 (|#1| |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3106 ((|#1| $) 49)) (-1808 (((-112) $ (-783)) 8)) (-2647 ((|#1| $ |#1|) 40 (|has| $ (-6 -4466)))) (-4121 (($ $ $) 53 (|has| $ (-6 -4466)))) (-3523 (($ $ $) 55 (|has| $ (-6 -4466)))) (-3756 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4466))) (($ $ "left" $) 56 (|has| $ (-6 -4466))) (($ $ "right" $) 54 (|has| $ (-6 -4466)))) (-1894 (($ $ (-656 $)) 42 (|has| $ (-6 -4466)))) (-3886 (($) 7 T CONST)) (-4250 (($ $) 58)) (-3966 (((-656 |#1|) $) 31 (|has| $ (-6 -4465)))) (-2387 (((-656 $) $) 51)) (-3295 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-2205 (($ $ |#1| $) 61)) (-3870 (((-112) $ (-783)) 9)) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-4323 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 36)) (-1330 (((-112) $ (-783)) 10)) (-4240 (($ $) 60)) (-2353 (((-656 |#1|) $) 46)) (-3443 (((-112) $) 50)) (-3699 (((-1179) $) 23 (|has| |#1| (-1121)))) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-2797 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-2789 (((-576) $ $) 45)) (-3617 (((-112) $) 47)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 13)) (-3570 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2902 (((-656 $) $) 52)) (-2621 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-4055 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +(-10 -8 (-15 -4326 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3502 ((-783) |#1|)) (-15 -1870 (|#1| |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3104 ((|#1| $) 49)) (-4264 (((-112) $ (-783)) 8)) (-2482 ((|#1| $ |#1|) 40 (|has| $ (-6 -4465)))) (-1841 (($ $ $) 53 (|has| $ (-6 -4465)))) (-4158 (($ $ $) 55 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4465))) (($ $ "left" $) 56 (|has| $ (-6 -4465))) (($ $ "right" $) 54 (|has| $ (-6 -4465)))) (-3829 (($ $ (-656 $)) 42 (|has| $ (-6 -4465)))) (-3404 (($) 7 T CONST)) (-4249 (($ $) 58)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-1736 (((-656 $) $) 51)) (-3768 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-2205 (($ $ |#1| $) 61)) (-1368 (((-112) $ (-783)) 9)) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4326 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-2883 (((-112) $ (-783)) 10)) (-4239 (($ $) 60)) (-2353 (((-656 |#1|) $) 46)) (-1508 (((-112) $) 50)) (-2046 (((-1179) $) 23 (|has| |#1| (-1121)))) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-2796 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-1335 (((-576) $ $) 45)) (-3806 (((-112) $) 47)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-3059 (((-656 $) $) 52)) (-2247 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-2399 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-126 |#1|) (-141) (-1121)) (T -126)) ((-2205 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1121))))) -(-13 (-120 |t#1|) (-10 -8 (-6 -4466) (-6 -4465) (-15 -2205 ($ $ |t#1| $)))) -(((-34) . T) ((-102) -2760 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-120 |#1|) . T) ((-625 (-876)) -2760 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1031 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3106 ((|#1| $) 18)) (-1808 (((-112) $ (-783)) NIL)) (-2647 ((|#1| $ |#1|) 22 (|has| $ (-6 -4466)))) (-4121 (($ $ $) 23 (|has| $ (-6 -4466)))) (-3523 (($ $ $) 21 (|has| $ (-6 -4466)))) (-3756 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4466))) (($ $ "left" $) NIL (|has| $ (-6 -4466))) (($ $ "right" $) NIL (|has| $ (-6 -4466)))) (-1894 (($ $ (-656 $)) NIL (|has| $ (-6 -4466)))) (-3886 (($) NIL T CONST)) (-4250 (($ $) 24)) (-3966 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-2387 (((-656 $) $) NIL)) (-3295 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2205 (($ $ |#1| $) NIL)) (-3870 (((-112) $ (-783)) NIL)) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-4323 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-4240 (($ $) NIL)) (-2353 (((-656 |#1|) $) NIL)) (-3443 (((-112) $) NIL)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1901 (($ |#1| $) 15)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) 17)) (-4225 (($) 11)) (-2797 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2789 (((-576) $ $) NIL)) (-3617 (((-112) $) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1870 (($ $) 20)) (-3570 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2902 (((-656 $) $) NIL)) (-2621 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-3042 (($ (-656 |#1|)) 16)) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4466) (-15 -3042 ($ (-656 |#1|))) (-15 -1901 ($ |#1| $)))) (-861)) (T -127)) -((-3042 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-127 *3)))) (-1901 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-861))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4466) (-15 -3042 ($ (-656 |#1|))) (-15 -1901 ($ |#1| $)))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3106 ((|#1| $) 30)) (-1808 (((-112) $ (-783)) NIL)) (-2647 ((|#1| $ |#1|) 32 (|has| $ (-6 -4466)))) (-4121 (($ $ $) 36 (|has| $ (-6 -4466)))) (-3523 (($ $ $) 34 (|has| $ (-6 -4466)))) (-3756 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4466))) (($ $ "left" $) NIL (|has| $ (-6 -4466))) (($ $ "right" $) NIL (|has| $ (-6 -4466)))) (-1894 (($ $ (-656 $)) NIL (|has| $ (-6 -4466)))) (-3886 (($) NIL T CONST)) (-4250 (($ $) 23)) (-3966 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-2387 (((-656 $) $) NIL)) (-3295 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2205 (($ $ |#1| $) 16)) (-3870 (((-112) $ (-783)) NIL)) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-4323 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-4240 (($ $) 22)) (-2353 (((-656 |#1|) $) NIL)) (-3443 (((-112) $) 25)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) 20)) (-4225 (($) 11)) (-2797 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2789 (((-576) $ $) NIL)) (-3617 (((-112) $) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3570 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2902 (((-656 $) $) NIL)) (-2621 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-1826 (($ |#1|) 18) (($ $ |#1| $) 17)) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 10 (|has| |#1| (-102)))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -1826 ($ |#1|)) (-15 -1826 ($ $ |#1| $)))) (-1121)) (T -128)) -((-1826 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1121)))) (-1826 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1121))))) -(-13 (-126 |#1|) (-10 -8 (-15 -1826 ($ |#1|)) (-15 -1826 ($ $ |#1| $)))) -((-3489 (((-112) $ $) NIL (|has| (-130) (-102)))) (-2047 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4466)))) (-1710 (((-112) (-1 (-112) (-130) (-130)) $) NIL) (((-112) $) NIL (|has| (-130) (-861)))) (-4298 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4466))) (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-130) (-861))))) (-1795 (($ (-1 (-112) (-130) (-130)) $) NIL) (($ $) NIL (|has| (-130) (-861)))) (-1808 (((-112) $ (-783)) NIL)) (-3756 (((-130) $ (-576) (-130)) 26 (|has| $ (-6 -4466))) (((-130) $ (-1255 (-576)) (-130)) NIL (|has| $ (-6 -4466)))) (-3213 (((-783) $ (-783)) 34)) (-1974 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4465)))) (-3886 (($) NIL T CONST)) (-3990 (($ $) NIL (|has| $ (-6 -4466)))) (-3836 (($ $) NIL)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-130) (-1121))))) (-3946 (($ (-130) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-130) (-1121)))) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4465)))) (-3686 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4465)) (|has| (-130) (-1121)))) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4465))) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4465)))) (-4335 (((-130) $ (-576) (-130)) 25 (|has| $ (-6 -4466)))) (-4274 (((-130) $ (-576)) 20)) (-3660 (((-576) (-1 (-112) (-130)) $) NIL) (((-576) (-130) $) NIL (|has| (-130) (-1121))) (((-576) (-130) $ (-576)) NIL (|has| (-130) (-1121)))) (-3966 (((-656 (-130)) $) NIL (|has| $ (-6 -4465)))) (-4141 (($ (-783) (-130)) 14)) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-576) $) 27 (|has| (-576) (-861)))) (-3125 (($ $ $) NIL (|has| (-130) (-861)))) (-3391 (($ (-1 (-112) (-130) (-130)) $ $) NIL) (($ $ $) NIL (|has| (-130) (-861)))) (-2014 (((-656 (-130)) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-130) (-1121))))) (-2137 (((-576) $) 30 (|has| (-576) (-861)))) (-3133 (($ $ $) NIL (|has| (-130) (-861)))) (-4323 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 (-130) (-130)) $) NIL) (($ (-1 (-130) (-130) (-130)) $ $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL (|has| (-130) (-1121)))) (-2176 (($ (-130) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-4234 (((-656 (-576)) $) NIL)) (-3354 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| (-130) (-1121)))) (-3581 (((-130) $) NIL (|has| (-576) (-861)))) (-1541 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL)) (-4046 (($ $ (-130)) NIL (|has| $ (-6 -4466)))) (-4320 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 (-130)))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1121)))) (($ $ (-304 (-130))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1121)))) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1121)))) (($ $ (-656 (-130)) (-656 (-130))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-130) (-1121))))) (-2281 (((-656 (-130)) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) 12)) (-2797 (((-130) $ (-576) (-130)) NIL) (((-130) $ (-576)) 23) (($ $ (-1255 (-576))) NIL)) (-3466 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1460 (((-783) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4465))) (((-783) (-130) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-130) (-1121))))) (-3025 (($ $ $ (-576)) NIL (|has| $ (-6 -4466)))) (-1870 (($ $) NIL)) (-4172 (((-548) $) NIL (|has| (-130) (-626 (-548))))) (-3582 (($ (-656 (-130))) 46)) (-1615 (($ $ (-130)) NIL) (($ (-130) $) NIL) (($ $ $) 47) (($ (-656 $)) NIL)) (-3570 (((-977 (-130)) $) 35) (((-1179) $) 43) (((-876) $) NIL (|has| (-130) (-625 (-876))))) (-3085 (((-783) $) 18)) (-1475 (($ (-783)) 8)) (-4055 (((-112) $ $) NIL (|has| (-130) (-102)))) (-3321 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4465)))) (-2992 (((-112) $ $) NIL (|has| (-130) (-861)))) (-2964 (((-112) $ $) NIL (|has| (-130) (-861)))) (-2925 (((-112) $ $) 32 (|has| (-130) (-102)))) (-2978 (((-112) $ $) NIL (|has| (-130) (-861)))) (-2950 (((-112) $ $) NIL (|has| (-130) (-861)))) (-3503 (((-783) $) 15 (|has| $ (-6 -4465))))) -(((-129) (-13 (-19 (-130)) (-625 (-977 (-130))) (-625 (-1179)) (-10 -8 (-15 -1475 ($ (-783))) (-15 -3085 ((-783) $)) (-15 -3213 ((-783) $ (-783))) (-6 -4465)))) (T -129)) -((-1475 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129)))) (-3085 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-129)))) (-3213 (*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) -(-13 (-19 (-130)) (-625 (-977 (-130))) (-625 (-1179)) (-10 -8 (-15 -1475 ($ (-783))) (-15 -3085 ((-783) $)) (-15 -3213 ((-783) $ (-783))) (-6 -4465))) -((-3489 (((-112) $ $) NIL)) (-2098 (((-783)) 26)) (-3886 (($) NIL T CONST)) (-1836 (($) 35)) (-3125 (($ $ $) NIL) (($) 24 T CONST)) (-3133 (($ $ $) NIL) (($) 25 T CONST)) (-4401 (((-940) $) 33)) (-3699 (((-1179) $) NIL)) (-3224 (($ (-940)) 31)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL) (($ (-145)) 15) (((-145) $) 17)) (-3809 (($ (-783)) 8)) (-2356 (($ $ $) 37)) (-2343 (($ $ $) 36)) (-4055 (((-112) $ $) NIL)) (-2992 (((-112) $ $) 22)) (-2964 (((-112) $ $) 20)) (-2925 (((-112) $ $) 18)) (-2978 (((-112) $ $) 21)) (-2950 (((-112) $ $) 19))) -(((-130) (-13 (-856) (-502 (-145)) (-10 -8 (-15 -3809 ($ (-783))) (-15 -2343 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -3886 ($) -1480)))) (T -130)) -((-3809 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-130)))) (-2343 (*1 *1 *1 *1) (-5 *1 (-130))) (-2356 (*1 *1 *1 *1) (-5 *1 (-130))) (-3886 (*1 *1) (-5 *1 (-130)))) -(-13 (-856) (-502 (-145)) (-10 -8 (-15 -3809 ($ (-783))) (-15 -2343 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -3886 ($) -1480))) +(-13 (-120 |t#1|) (-10 -8 (-6 -4465) (-6 -4464) (-15 -2205 ($ $ |t#1| $)))) +(((-34) . T) ((-102) -2759 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-120 |#1|) . T) ((-625 (-876)) -2759 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1031 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3104 ((|#1| $) 18)) (-4264 (((-112) $ (-783)) NIL)) (-2482 ((|#1| $ |#1|) 22 (|has| $ (-6 -4465)))) (-1841 (($ $ $) 23 (|has| $ (-6 -4465)))) (-4158 (($ $ $) 21 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465))) (($ $ "left" $) NIL (|has| $ (-6 -4465))) (($ $ "right" $) NIL (|has| $ (-6 -4465)))) (-3829 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-3404 (($) NIL T CONST)) (-4249 (($ $) 24)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1736 (((-656 $) $) NIL)) (-3768 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2205 (($ $ |#1| $) NIL)) (-1368 (((-112) $ (-783)) NIL)) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4326 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-4239 (($ $) NIL)) (-2353 (((-656 |#1|) $) NIL)) (-1508 (((-112) $) NIL)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2597 (($ |#1| $) 15)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) 17)) (-3579 (($) 11)) (-2796 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1335 (((-576) $ $) NIL)) (-3806 (((-112) $) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) 20)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-3059 (((-656 $) $) NIL)) (-2247 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-3035 (($ (-656 |#1|)) 16)) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4465) (-15 -3035 ($ (-656 |#1|))) (-15 -2597 ($ |#1| $)))) (-861)) (T -127)) +((-3035 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-127 *3)))) (-2597 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-861))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4465) (-15 -3035 ($ (-656 |#1|))) (-15 -2597 ($ |#1| $)))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3104 ((|#1| $) 30)) (-4264 (((-112) $ (-783)) NIL)) (-2482 ((|#1| $ |#1|) 32 (|has| $ (-6 -4465)))) (-1841 (($ $ $) 36 (|has| $ (-6 -4465)))) (-4158 (($ $ $) 34 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465))) (($ $ "left" $) NIL (|has| $ (-6 -4465))) (($ $ "right" $) NIL (|has| $ (-6 -4465)))) (-3829 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-3404 (($) NIL T CONST)) (-4249 (($ $) 23)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1736 (((-656 $) $) NIL)) (-3768 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2205 (($ $ |#1| $) 16)) (-1368 (((-112) $ (-783)) NIL)) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4326 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-4239 (($ $) 22)) (-2353 (((-656 |#1|) $) NIL)) (-1508 (((-112) $) 25)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) 20)) (-3579 (($) 11)) (-2796 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1335 (((-576) $ $) NIL)) (-3806 (((-112) $) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-3059 (((-656 $) $) NIL)) (-2247 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-4438 (($ |#1|) 18) (($ $ |#1| $) 17)) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 10 (|has| |#1| (-102)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -4438 ($ |#1|)) (-15 -4438 ($ $ |#1| $)))) (-1121)) (T -128)) +((-4438 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1121)))) (-4438 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1121))))) +(-13 (-126 |#1|) (-10 -8 (-15 -4438 ($ |#1|)) (-15 -4438 ($ $ |#1| $)))) +((-3488 (((-112) $ $) NIL (|has| (-130) (-102)))) (-1512 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-1390 (((-112) (-1 (-112) (-130) (-130)) $) NIL) (((-112) $) NIL (|has| (-130) (-861)))) (-3039 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-130) (-861))))) (-1795 (($ (-1 (-112) (-130) (-130)) $) NIL) (($ $) NIL (|has| (-130) (-861)))) (-4264 (((-112) $ (-783)) NIL)) (-3755 (((-130) $ (-576) (-130)) 26 (|has| $ (-6 -4465))) (((-130) $ (-1255 (-576)) (-130)) NIL (|has| $ (-6 -4465)))) (-4173 (((-783) $ (-783)) 34)) (-1974 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4464)))) (-3404 (($) NIL T CONST)) (-3092 (($ $) NIL (|has| $ (-6 -4465)))) (-3835 (($ $) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-130) (-1121))))) (-3945 (($ (-130) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-130) (-1121)))) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4464)) (|has| (-130) (-1121)))) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4464))) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4464)))) (-4332 (((-130) $ (-576) (-130)) 25 (|has| $ (-6 -4465)))) (-4272 (((-130) $ (-576)) 20)) (-3659 (((-576) (-1 (-112) (-130)) $) NIL) (((-576) (-130) $) NIL (|has| (-130) (-1121))) (((-576) (-130) $ (-576)) NIL (|has| (-130) (-1121)))) (-3965 (((-656 (-130)) $) NIL (|has| $ (-6 -4464)))) (-4140 (($ (-783) (-130)) 14)) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-576) $) 27 (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| (-130) (-861)))) (-2185 (($ (-1 (-112) (-130) (-130)) $ $) NIL) (($ $ $) NIL (|has| (-130) (-861)))) (-2425 (((-656 (-130)) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-130) (-1121))))) (-4280 (((-576) $) 30 (|has| (-576) (-861)))) (-1441 (($ $ $) NIL (|has| (-130) (-861)))) (-4326 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-130) (-130)) $) NIL) (($ (-1 (-130) (-130) (-130)) $ $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL (|has| (-130) (-1121)))) (-2176 (($ (-130) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3669 (((-656 (-576)) $) NIL)) (-3090 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| (-130) (-1121)))) (-3580 (((-130) $) NIL (|has| (-576) (-861)))) (-3434 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL)) (-2304 (($ $ (-130)) NIL (|has| $ (-6 -4465)))) (-3252 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 (-130)))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1121)))) (($ $ (-304 (-130))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1121)))) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1121)))) (($ $ (-656 (-130)) (-656 (-130))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-130) (-1121))))) (-3207 (((-656 (-130)) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) 12)) (-2796 (((-130) $ (-576) (-130)) NIL) (((-130) $ (-576)) 23) (($ $ (-1255 (-576))) NIL)) (-3465 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1460 (((-783) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4464))) (((-783) (-130) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-130) (-1121))))) (-2840 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-130) (-626 (-548))))) (-3581 (($ (-656 (-130))) 46)) (-1615 (($ $ (-130)) NIL) (($ (-130) $) NIL) (($ $ $) 47) (($ (-656 $)) NIL)) (-3569 (((-977 (-130)) $) 35) (((-1179) $) 43) (((-876) $) NIL (|has| (-130) (-625 (-876))))) (-2152 (((-783) $) 18)) (-3999 (($ (-783)) 8)) (-2399 (((-112) $ $) NIL (|has| (-130) (-102)))) (-2708 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4464)))) (-2990 (((-112) $ $) NIL (|has| (-130) (-861)))) (-2962 (((-112) $ $) NIL (|has| (-130) (-861)))) (-2924 (((-112) $ $) 32 (|has| (-130) (-102)))) (-2978 (((-112) $ $) NIL (|has| (-130) (-861)))) (-2949 (((-112) $ $) NIL (|has| (-130) (-861)))) (-3502 (((-783) $) 15 (|has| $ (-6 -4464))))) +(((-129) (-13 (-19 (-130)) (-625 (-977 (-130))) (-625 (-1179)) (-10 -8 (-15 -3999 ($ (-783))) (-15 -2152 ((-783) $)) (-15 -4173 ((-783) $ (-783))) (-6 -4464)))) (T -129)) +((-3999 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129)))) (-2152 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-129)))) (-4173 (*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) +(-13 (-19 (-130)) (-625 (-977 (-130))) (-625 (-1179)) (-10 -8 (-15 -3999 ($ (-783))) (-15 -2152 ((-783) $)) (-15 -4173 ((-783) $ (-783))) (-6 -4464))) +((-3488 (((-112) $ $) NIL)) (-2098 (((-783)) 26)) (-3404 (($) NIL T CONST)) (-1836 (($) 35)) (-3124 (($ $ $) NIL) (($) 24 T CONST)) (-1441 (($ $ $) NIL) (($) 25 T CONST)) (-1558 (((-940) $) 33)) (-2046 (((-1179) $) NIL)) (-3223 (($ (-940)) 31)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL) (($ (-145)) 15) (((-145) $) 17)) (-3808 (($ (-783)) 8)) (-2357 (($ $ $) 37)) (-2343 (($ $ $) 36)) (-2399 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 22)) (-2962 (((-112) $ $) 20)) (-2924 (((-112) $ $) 18)) (-2978 (((-112) $ $) 21)) (-2949 (((-112) $ $) 19))) +(((-130) (-13 (-856) (-502 (-145)) (-10 -8 (-15 -3808 ($ (-783))) (-15 -2343 ($ $ $)) (-15 -2357 ($ $ $)) (-15 -3404 ($) -1480)))) (T -130)) +((-3808 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-130)))) (-2343 (*1 *1 *1 *1) (-5 *1 (-130))) (-2357 (*1 *1 *1 *1) (-5 *1 (-130))) (-3404 (*1 *1) (-5 *1 (-130)))) +(-13 (-856) (-502 (-145)) (-10 -8 (-15 -3808 ($ (-783))) (-15 -2343 ($ $ $)) (-15 -2357 ($ $ $)) (-15 -3404 ($) -1480))) ((|NonNegativeInteger|) (|%ilt| |#1| 256)) -((-3489 (((-112) $ $) NIL)) (-1821 (($) 6 T CONST)) (-4333 (($) 7 T CONST)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 14)) (-1391 (($) 8 T CONST)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 10))) -(((-131) (-13 (-1121) (-10 -8 (-15 -4333 ($) -1480) (-15 -1391 ($) -1480) (-15 -1821 ($) -1480)))) (T -131)) -((-4333 (*1 *1) (-5 *1 (-131))) (-1391 (*1 *1) (-5 *1 (-131))) (-1821 (*1 *1) (-5 *1 (-131)))) -(-13 (-1121) (-10 -8 (-15 -4333 ($) -1480) (-15 -1391 ($) -1480) (-15 -1821 ($) -1480))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2925 (((-112) $ $) 8)) (-3030 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16))) +((-3488 (((-112) $ $) NIL)) (-4388 (($) 6 T CONST)) (-3370 (($) 7 T CONST)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 14)) (-1553 (($) 8 T CONST)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 10))) +(((-131) (-13 (-1121) (-10 -8 (-15 -3370 ($) -1480) (-15 -1553 ($) -1480) (-15 -4388 ($) -1480)))) (T -131)) +((-3370 (*1 *1) (-5 *1 (-131))) (-1553 (*1 *1) (-5 *1 (-131))) (-4388 (*1 *1) (-5 *1 (-131)))) +(-13 (-1121) (-10 -8 (-15 -3370 ($) -1480) (-15 -1553 ($) -1480) (-15 -4388 ($) -1480))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2924 (((-112) $ $) 8)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16))) (((-132) (-141)) (T -132)) -((-4367 (*1 *1 *1 *1) (|partial| -4 *1 (-132)))) -(-13 (-23) (-10 -8 (-15 -4367 ((-3 $ "failed") $ $)))) +((-2428 (*1 *1 *1 *1) (|partial| -4 *1 (-132)))) +(-13 (-23) (-10 -8 (-15 -2428 ((-3 $ "failed") $ $)))) (((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) 7)) (-2610 (((-1293) $ (-783)) 14)) (-3660 (((-783) $) 15)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2925 (((-112) $ $) 8))) +((-3488 (((-112) $ $) 7)) (-2143 (((-1293) $ (-783)) 14)) (-3659 (((-783) $) 15)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2924 (((-112) $ $) 8))) (((-133) (-141)) (T -133)) -((-3660 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-783)))) (-2610 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-783)) (-5 *2 (-1293))))) -(-13 (-1121) (-10 -8 (-15 -3660 ((-783) $)) (-15 -2610 ((-1293) $ (-783))))) +((-3659 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-783)))) (-2143 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-783)) (-5 *2 (-1293))))) +(-13 (-1121) (-10 -8 (-15 -3659 ((-783) $)) (-15 -2143 ((-1293) $ (-783))))) (((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 16) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2641 (((-656 (-1156)) $) 10)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-134) (-13 (-1104) (-10 -8 (-15 -2641 ((-656 (-1156)) $))))) (T -134)) -((-2641 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-134))))) -(-13 (-1104) (-10 -8 (-15 -2641 ((-656 (-1156)) $)))) -((-3489 (((-112) $ $) 49)) (-4308 (((-112) $) NIL)) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-783) "failed") $) 58)) (-2860 (((-783) $) 56)) (-1561 (((-3 $ "failed") $) NIL)) (-4193 (((-112) $) NIL)) (-3125 (($ $ $) NIL)) (-3133 (($ $ $) 37)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2877 (((-112)) 59)) (-3414 (((-112) (-112)) 61)) (-2681 (((-112) $) 30)) (-2747 (((-112) $) 55)) (-3570 (((-876) $) 28) (($ (-783)) 20)) (-4055 (((-112) $ $) NIL)) (-2721 (($) 18 T CONST)) (-2732 (($) 19 T CONST)) (-3959 (($ (-783)) 21)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) 40)) (-2925 (((-112) $ $) 32)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) 35)) (-3044 (((-3 $ "failed") $ $) 42)) (-3030 (($ $ $) 38)) (** (($ $ (-783)) NIL) (($ $ (-940)) NIL) (($ $ $) 54)) (* (($ (-783) $) 48) (($ (-940) $) NIL) (($ $ $) 45))) -(((-135) (-13 (-861) (-23) (-738) (-1059 (-783)) (-10 -8 (-6 (-4467 "*")) (-15 -3044 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3959 ($ (-783))) (-15 -2681 ((-112) $)) (-15 -2747 ((-112) $)) (-15 -2877 ((-112))) (-15 -3414 ((-112) (-112)))))) (T -135)) -((-3044 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-3959 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-135)))) (-2681 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2747 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2877 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3414 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(-13 (-861) (-23) (-738) (-1059 (-783)) (-10 -8 (-6 (-4467 "*")) (-15 -3044 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3959 ($ (-783))) (-15 -2681 ((-112) $)) (-15 -2747 ((-112) $)) (-15 -2877 ((-112))) (-15 -3414 ((-112) (-112))))) -((-3546 (((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|)) 14)) (-4117 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18))) -(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3546 ((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|))) (-15 -4117 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-576) (-783) (-174) (-174)) (T -136)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-3546 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))) -(-10 -7 (-15 -3546 ((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|))) (-15 -4117 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) -((-3489 (((-112) $ $) NIL)) (-2349 (($ (-656 |#3|)) 61)) (-3244 (($ $) 123) (($ $ (-576) (-576)) 122)) (-3886 (($) 20)) (-1572 (((-3 |#3| "failed") $) 83)) (-2860 ((|#3| $) NIL)) (-2828 (($ $ (-656 (-576))) 124)) (-3528 (((-656 |#3|) $) 56)) (-3734 (((-783) $) 66)) (-1940 (($ $ $) 117)) (-4397 (($) 65)) (-3699 (((-1179) $) NIL)) (-3735 (($) 19)) (-1450 (((-1141) $) NIL)) (-2797 ((|#3| $ (-576)) 69) ((|#3| $) 68) ((|#3| $ (-576) (-576)) 70) ((|#3| $ (-576) (-576) (-576)) 71) ((|#3| $ (-576) (-576) (-576) (-576)) 72) ((|#3| $ (-656 (-576))) 73)) (-3634 (((-783) $) 67)) (-4226 (($ $ (-576) $ (-576)) 118) (($ $ (-576) (-576)) 120)) (-3570 (((-876) $) 91) (($ |#3|) 92) (($ (-245 |#2| |#3|)) 99) (($ (-1163 |#2| |#3|)) 102) (($ (-656 |#3|)) 74) (($ (-656 $)) 80)) (-4055 (((-112) $ $) NIL)) (-2721 (($) 93 T CONST)) (-2732 (($) 94 T CONST)) (-2925 (((-112) $ $) 104)) (-3044 (($ $) 110) (($ $ $) 108)) (-3030 (($ $ $) 106)) (* (($ |#3| $) 115) (($ $ |#3|) 116) (($ $ (-576)) 113) (($ (-576) $) 112) (($ $ $) 119))) -(((-137 |#1| |#2| |#3|) (-13 (-477 |#3| (-783)) (-482 (-576) (-783)) (-296 (-576) |#3|) (-10 -8 (-15 -3570 ($ (-245 |#2| |#3|))) (-15 -3570 ($ (-1163 |#2| |#3|))) (-15 -3570 ($ (-656 |#3|))) (-15 -3570 ($ (-656 $))) (-15 -3734 ((-783) $)) (-15 -2797 (|#3| $)) (-15 -2797 (|#3| $ (-576) (-576))) (-15 -2797 (|#3| $ (-576) (-576) (-576))) (-15 -2797 (|#3| $ (-576) (-576) (-576) (-576))) (-15 -2797 (|#3| $ (-656 (-576)))) (-15 -1940 ($ $ $)) (-15 * ($ $ $)) (-15 -4226 ($ $ (-576) $ (-576))) (-15 -4226 ($ $ (-576) (-576))) (-15 -3244 ($ $)) (-15 -3244 ($ $ (-576) (-576))) (-15 -2828 ($ $ (-656 (-576)))) (-15 -3735 ($)) (-15 -4397 ($)) (-15 -3528 ((-656 |#3|) $)) (-15 -2349 ($ (-656 |#3|))) (-15 -3886 ($)))) (-576) (-783) (-174)) (T -137)) -((-1940 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-245 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-1163 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-656 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-3734 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 *2) (-4 *5 (-174)))) (-2797 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-576)) (-14 *4 (-783)))) (-2797 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-2797 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-2797 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-2797 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-576))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-576)) (-14 *5 (-783)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-4226 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-4226 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-3244 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-3244 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-2828 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-3735 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-4397 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-656 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-2349 (*1 *1 *2) (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)))) (-3886 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174))))) -(-13 (-477 |#3| (-783)) (-482 (-576) (-783)) (-296 (-576) |#3|) (-10 -8 (-15 -3570 ($ (-245 |#2| |#3|))) (-15 -3570 ($ (-1163 |#2| |#3|))) (-15 -3570 ($ (-656 |#3|))) (-15 -3570 ($ (-656 $))) (-15 -3734 ((-783) $)) (-15 -2797 (|#3| $)) (-15 -2797 (|#3| $ (-576) (-576))) (-15 -2797 (|#3| $ (-576) (-576) (-576))) (-15 -2797 (|#3| $ (-576) (-576) (-576) (-576))) (-15 -2797 (|#3| $ (-656 (-576)))) (-15 -1940 ($ $ $)) (-15 * ($ $ $)) (-15 -4226 ($ $ (-576) $ (-576))) (-15 -4226 ($ $ (-576) (-576))) (-15 -3244 ($ $)) (-15 -3244 ($ $ (-576) (-576))) (-15 -2828 ($ $ (-656 (-576)))) (-15 -3735 ($)) (-15 -4397 ($)) (-15 -3528 ((-656 |#3|) $)) (-15 -2349 ($ (-656 |#3|))) (-15 -3886 ($)))) -((-3489 (((-112) $ $) NIL)) (-1669 (((-1156) $) 11)) (-1657 (((-1156) $) 9)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 17) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 16) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2640 (((-656 (-1156)) $) 10)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-134) (-13 (-1104) (-10 -8 (-15 -2640 ((-656 (-1156)) $))))) (T -134)) +((-2640 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-134))))) +(-13 (-1104) (-10 -8 (-15 -2640 ((-656 (-1156)) $)))) +((-3488 (((-112) $ $) 49)) (-3135 (((-112) $) NIL)) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-783) "failed") $) 58)) (-2859 (((-783) $) 56)) (-3673 (((-3 $ "failed") $) NIL)) (-1351 (((-112) $) NIL)) (-3124 (($ $ $) NIL)) (-1441 (($ $ $) 37)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2784 (((-112)) 59)) (-2419 (((-112) (-112)) 61)) (-1568 (((-112) $) 30)) (-4100 (((-112) $) 55)) (-3569 (((-876) $) 28) (($ (-783)) 20)) (-2399 (((-112) $ $) NIL)) (-2721 (($) 18 T CONST)) (-2731 (($) 19 T CONST)) (-2812 (($ (-783)) 21)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) 40)) (-2924 (((-112) $ $) 32)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) 35)) (-3043 (((-3 $ "failed") $ $) 42)) (-3029 (($ $ $) 38)) (** (($ $ (-783)) NIL) (($ $ (-940)) NIL) (($ $ $) 54)) (* (($ (-783) $) 48) (($ (-940) $) NIL) (($ $ $) 45))) +(((-135) (-13 (-861) (-23) (-738) (-1059 (-783)) (-10 -8 (-6 (-4466 "*")) (-15 -3043 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2812 ($ (-783))) (-15 -1568 ((-112) $)) (-15 -4100 ((-112) $)) (-15 -2784 ((-112))) (-15 -2419 ((-112) (-112)))))) (T -135)) +((-3043 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-2812 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-135)))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2784 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2419 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(-13 (-861) (-23) (-738) (-1059 (-783)) (-10 -8 (-6 (-4466 "*")) (-15 -3043 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2812 ($ (-783))) (-15 -1568 ((-112) $)) (-15 -4100 ((-112) $)) (-15 -2784 ((-112))) (-15 -2419 ((-112) (-112))))) +((-3544 (((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|)) 14)) (-4116 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18))) +(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3544 ((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|))) (-15 -4116 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-576) (-783) (-174) (-174)) (T -136)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-3544 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))) +(-10 -7 (-15 -3544 ((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|))) (-15 -4116 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) +((-3488 (((-112) $ $) NIL)) (-2593 (($ (-656 |#3|)) 61)) (-1354 (($ $) 123) (($ $ (-576) (-576)) 122)) (-3404 (($) 20)) (-1572 (((-3 |#3| "failed") $) 83)) (-2859 ((|#3| $) NIL)) (-3596 (($ $ (-656 (-576))) 124)) (-3527 (((-656 |#3|) $) 56)) (-3733 (((-783) $) 66)) (-3023 (($ $ $) 117)) (-2706 (($) 65)) (-2046 (((-1179) $) NIL)) (-2422 (($) 19)) (-1450 (((-1141) $) NIL)) (-2796 ((|#3| $ (-576)) 69) ((|#3| $) 68) ((|#3| $ (-576) (-576)) 70) ((|#3| $ (-576) (-576) (-576)) 71) ((|#3| $ (-576) (-576) (-576) (-576)) 72) ((|#3| $ (-656 (-576))) 73)) (-2683 (((-783) $) 67)) (-3591 (($ $ (-576) $ (-576)) 118) (($ $ (-576) (-576)) 120)) (-3569 (((-876) $) 91) (($ |#3|) 92) (($ (-245 |#2| |#3|)) 99) (($ (-1163 |#2| |#3|)) 102) (($ (-656 |#3|)) 74) (($ (-656 $)) 80)) (-2399 (((-112) $ $) NIL)) (-2721 (($) 93 T CONST)) (-2731 (($) 94 T CONST)) (-2924 (((-112) $ $) 104)) (-3043 (($ $) 110) (($ $ $) 108)) (-3029 (($ $ $) 106)) (* (($ |#3| $) 115) (($ $ |#3|) 116) (($ $ (-576)) 113) (($ (-576) $) 112) (($ $ $) 119))) +(((-137 |#1| |#2| |#3|) (-13 (-477 |#3| (-783)) (-482 (-576) (-783)) (-296 (-576) |#3|) (-10 -8 (-15 -3569 ($ (-245 |#2| |#3|))) (-15 -3569 ($ (-1163 |#2| |#3|))) (-15 -3569 ($ (-656 |#3|))) (-15 -3569 ($ (-656 $))) (-15 -3733 ((-783) $)) (-15 -2796 (|#3| $)) (-15 -2796 (|#3| $ (-576) (-576))) (-15 -2796 (|#3| $ (-576) (-576) (-576))) (-15 -2796 (|#3| $ (-576) (-576) (-576) (-576))) (-15 -2796 (|#3| $ (-656 (-576)))) (-15 -3023 ($ $ $)) (-15 * ($ $ $)) (-15 -3591 ($ $ (-576) $ (-576))) (-15 -3591 ($ $ (-576) (-576))) (-15 -1354 ($ $)) (-15 -1354 ($ $ (-576) (-576))) (-15 -3596 ($ $ (-656 (-576)))) (-15 -2422 ($)) (-15 -2706 ($)) (-15 -3527 ((-656 |#3|) $)) (-15 -2593 ($ (-656 |#3|))) (-15 -3404 ($)))) (-576) (-783) (-174)) (T -137)) +((-3023 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-245 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-1163 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 *2) (-4 *5 (-174)))) (-2796 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-576)) (-14 *4 (-783)))) (-2796 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-2796 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-2796 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-2796 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-576))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-576)) (-14 *5 (-783)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-3591 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-3591 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-1354 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-1354 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-3596 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-2422 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-2706 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-656 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-2593 (*1 *1 *2) (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)))) (-3404 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174))))) +(-13 (-477 |#3| (-783)) (-482 (-576) (-783)) (-296 (-576) |#3|) (-10 -8 (-15 -3569 ($ (-245 |#2| |#3|))) (-15 -3569 ($ (-1163 |#2| |#3|))) (-15 -3569 ($ (-656 |#3|))) (-15 -3569 ($ (-656 $))) (-15 -3733 ((-783) $)) (-15 -2796 (|#3| $)) (-15 -2796 (|#3| $ (-576) (-576))) (-15 -2796 (|#3| $ (-576) (-576) (-576))) (-15 -2796 (|#3| $ (-576) (-576) (-576) (-576))) (-15 -2796 (|#3| $ (-656 (-576)))) (-15 -3023 ($ $ $)) (-15 * ($ $ $)) (-15 -3591 ($ $ (-576) $ (-576))) (-15 -3591 ($ $ (-576) (-576))) (-15 -1354 ($ $)) (-15 -1354 ($ $ (-576) (-576))) (-15 -3596 ($ $ (-656 (-576)))) (-15 -2422 ($)) (-15 -2706 ($)) (-15 -3527 ((-656 |#3|) $)) (-15 -2593 ($ (-656 |#3|))) (-15 -3404 ($)))) +((-3488 (((-112) $ $) NIL)) (-1669 (((-1156) $) 11)) (-1657 (((-1156) $) 9)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 17) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) (((-138) (-13 (-1104) (-10 -8 (-15 -1657 ((-1156) $)) (-15 -1669 ((-1156) $))))) (T -138)) ((-1657 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-138)))) (-1669 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-138))))) (-13 (-1104) (-10 -8 (-15 -1657 ((-1156) $)) (-15 -1669 ((-1156) $)))) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1747 (((-188) $) 10)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 20) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2641 (((-656 (-1156)) $) 13)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-139) (-13 (-1104) (-10 -8 (-15 -1747 ((-188) $)) (-15 -2641 ((-656 (-1156)) $))))) (T -139)) -((-1747 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-139))))) -(-13 (-1104) (-10 -8 (-15 -1747 ((-188) $)) (-15 -2641 ((-656 (-1156)) $)))) -((-3489 (((-112) $ $) NIL)) (-3297 (((-656 (-879)) $) NIL)) (-2629 (((-518) $) NIL)) (-3699 (((-1179) $) NIL)) (-1747 (((-188) $) NIL)) (-1322 (((-112) $ (-518)) NIL)) (-1450 (((-1141) $) NIL)) (-1944 (((-656 (-112)) $) NIL)) (-3570 (((-876) $) NIL) (((-189) $) 6)) (-4055 (((-112) $ $) NIL)) (-4045 (((-55) $) NIL)) (-2925 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1747 (((-188) $) 10)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 20) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2640 (((-656 (-1156)) $) 13)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-139) (-13 (-1104) (-10 -8 (-15 -1747 ((-188) $)) (-15 -2640 ((-656 (-1156)) $))))) (T -139)) +((-1747 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-139))))) +(-13 (-1104) (-10 -8 (-15 -1747 ((-188) $)) (-15 -2640 ((-656 (-1156)) $)))) +((-3488 (((-112) $ $) NIL)) (-3298 (((-656 (-879)) $) NIL)) (-2628 (((-518) $) NIL)) (-2046 (((-1179) $) NIL)) (-1747 (((-188) $) NIL)) (-2808 (((-112) $ (-518)) NIL)) (-1450 (((-1141) $) NIL)) (-3061 (((-656 (-112)) $) NIL)) (-3569 (((-876) $) NIL) (((-189) $) 6)) (-2399 (((-112) $ $) NIL)) (-2294 (((-55) $) NIL)) (-2924 (((-112) $ $) NIL))) (((-140) (-13 (-187) (-625 (-189)))) (T -140)) NIL (-13 (-187) (-625 (-189))) -((-3804 (((-656 (-185 (-140))) $) 13)) (-2630 (((-656 (-185 (-140))) $) 14)) (-2811 (((-656 (-850)) $) 10)) (-2566 (((-140) $) 7)) (-3570 (((-876) $) 16))) -(((-141) (-13 (-625 (-876)) (-10 -8 (-15 -2566 ((-140) $)) (-15 -2811 ((-656 (-850)) $)) (-15 -3804 ((-656 (-185 (-140))) $)) (-15 -2630 ((-656 (-185 (-140))) $))))) (T -141)) -((-2566 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-2811 (*1 *2 *1) (-12 (-5 *2 (-656 (-850))) (-5 *1 (-141)))) (-3804 (*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141)))) (-2630 (*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141))))) -(-13 (-625 (-876)) (-10 -8 (-15 -2566 ((-140) $)) (-15 -2811 ((-656 (-850)) $)) (-15 -3804 ((-656 (-185 (-140))) $)) (-15 -2630 ((-656 (-185 (-140))) $)))) -((-3489 (((-112) $ $) NIL)) (-3343 (($) 17 T CONST)) (-4358 (($) NIL (|has| (-145) (-379)))) (-1820 (($ $ $) 19) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-3319 (($ $ $) NIL)) (-1928 (((-112) $ $) NIL)) (-1808 (((-112) $ (-783)) NIL)) (-2098 (((-783)) NIL (|has| (-145) (-379)))) (-2071 (($) NIL) (($ (-656 (-145))) NIL)) (-2300 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4465)))) (-3886 (($) NIL T CONST)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-145) (-1121))))) (-1671 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4465))) (($ (-145) $) 60 (|has| $ (-6 -4465)))) (-3946 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4465))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-145) (-1121))))) (-3686 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4465))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4465))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4465)) (|has| (-145) (-1121))))) (-1836 (($) NIL (|has| (-145) (-379)))) (-3966 (((-656 (-145)) $) 69 (|has| $ (-6 -4465)))) (-4248 (((-112) $ $) NIL)) (-3870 (((-112) $ (-783)) NIL)) (-3125 (((-145) $) NIL (|has| (-145) (-861)))) (-2014 (((-656 (-145)) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4465)) (|has| (-145) (-1121))))) (-3133 (((-145) $) NIL (|has| (-145) (-861)))) (-4323 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4466)))) (-4117 (($ (-1 (-145) (-145)) $) 64)) (-4056 (($) 18 T CONST)) (-4401 (((-940) $) NIL (|has| (-145) (-379)))) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL)) (-3285 (($ $ $) 30)) (-1597 (((-145) $) 61)) (-1901 (($ (-145) $) 59)) (-3224 (($ (-940)) NIL (|has| (-145) (-379)))) (-4198 (($) 16 T CONST)) (-1450 (((-1141) $) NIL)) (-1541 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-3449 (((-145) $) 62)) (-4320 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) 57)) (-3785 (($) 15 T CONST)) (-3204 (($ $ $) 32) (($ $ (-145)) NIL)) (-2271 (($ (-656 (-145))) NIL) (($) NIL)) (-1460 (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-145) (-1121)))) (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4172 (((-1179) $) 37) (((-548) $) NIL (|has| (-145) (-626 (-548)))) (((-656 (-145)) $) 35)) (-3582 (($ (-656 (-145))) NIL)) (-4022 (($ $) 33 (|has| (-145) (-379)))) (-3570 (((-876) $) 53)) (-2754 (($ (-1179)) 14) (($ (-656 (-145))) 50)) (-1717 (((-783) $) NIL)) (-1893 (($) 58) (($ (-656 (-145))) NIL)) (-4055 (((-112) $ $) NIL)) (-3943 (($ (-656 (-145))) NIL)) (-3321 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4465)))) (-2692 (($) 21 T CONST)) (-2048 (($) 20 T CONST)) (-2925 (((-112) $ $) 24)) (-3503 (((-783) $) 56 (|has| $ (-6 -4465))))) -(((-142) (-13 (-1121) (-626 (-1179)) (-437 (-145)) (-626 (-656 (-145))) (-10 -8 (-15 -2754 ($ (-1179))) (-15 -2754 ($ (-656 (-145)))) (-15 -3785 ($) -1480) (-15 -4198 ($) -1480) (-15 -3343 ($) -1480) (-15 -4056 ($) -1480) (-15 -2048 ($) -1480) (-15 -2692 ($) -1480)))) (T -142)) -((-2754 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-142)))) (-2754 (*1 *1 *2) (-12 (-5 *2 (-656 (-145))) (-5 *1 (-142)))) (-3785 (*1 *1) (-5 *1 (-142))) (-4198 (*1 *1) (-5 *1 (-142))) (-3343 (*1 *1) (-5 *1 (-142))) (-4056 (*1 *1) (-5 *1 (-142))) (-2048 (*1 *1) (-5 *1 (-142))) (-2692 (*1 *1) (-5 *1 (-142)))) -(-13 (-1121) (-626 (-1179)) (-437 (-145)) (-626 (-656 (-145))) (-10 -8 (-15 -2754 ($ (-1179))) (-15 -2754 ($ (-656 (-145)))) (-15 -3785 ($) -1480) (-15 -4198 ($) -1480) (-15 -3343 ($) -1480) (-15 -4056 ($) -1480) (-15 -2048 ($) -1480) (-15 -2692 ($) -1480))) -((-2435 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4173 ((|#1| |#3|) 9)) (-2206 ((|#3| |#3|) 15))) -(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -4173 (|#1| |#3|)) (-15 -2206 (|#3| |#3|)) (-15 -2435 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-568) (-1013 |#1|) (-384 |#2|)) (T -143)) -((-2435 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-384 *5)))) (-2206 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *4 (-1013 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-384 *4)))) (-4173 (*1 *2 *3) (-12 (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-384 *4))))) -(-10 -7 (-15 -4173 (|#1| |#3|)) (-15 -2206 (|#3| |#3|)) (-15 -2435 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-1432 (($ $ $) 8)) (-1803 (($ $) 7)) (-2979 (($ $ $) 6))) +((-1927 (((-656 (-185 (-140))) $) 13)) (-2629 (((-656 (-185 (-140))) $) 14)) (-3415 (((-656 (-850)) $) 10)) (-2565 (((-140) $) 7)) (-3569 (((-876) $) 16))) +(((-141) (-13 (-625 (-876)) (-10 -8 (-15 -2565 ((-140) $)) (-15 -3415 ((-656 (-850)) $)) (-15 -1927 ((-656 (-185 (-140))) $)) (-15 -2629 ((-656 (-185 (-140))) $))))) (T -141)) +((-2565 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-656 (-850))) (-5 *1 (-141)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141)))) (-2629 (*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141))))) +(-13 (-625 (-876)) (-10 -8 (-15 -2565 ((-140) $)) (-15 -3415 ((-656 (-850)) $)) (-15 -1927 ((-656 (-185 (-140))) $)) (-15 -2629 ((-656 (-185 (-140))) $)))) +((-3488 (((-112) $ $) NIL)) (-2951 (($) 17 T CONST)) (-2322 (($) NIL (|has| (-145) (-379)))) (-1820 (($ $ $) 19) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-2688 (($ $ $) NIL)) (-2866 (((-112) $ $) NIL)) (-4264 (((-112) $ (-783)) NIL)) (-2098 (((-783)) NIL (|has| (-145) (-379)))) (-2071 (($) NIL) (($ (-656 (-145))) NIL)) (-2123 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-1974 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-3404 (($) NIL T CONST)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-2172 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464))) (($ (-145) $) 60 (|has| $ (-6 -4464)))) (-3945 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-3685 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4464))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4464))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-1836 (($) NIL (|has| (-145) (-379)))) (-3965 (((-656 (-145)) $) 69 (|has| $ (-6 -4464)))) (-3820 (((-112) $ $) NIL)) (-1368 (((-112) $ (-783)) NIL)) (-3124 (((-145) $) NIL (|has| (-145) (-861)))) (-2425 (((-656 (-145)) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-1441 (((-145) $) NIL (|has| (-145) (-861)))) (-4326 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-145) (-145)) $) 64)) (-2409 (($) 18 T CONST)) (-1558 (((-940) $) NIL (|has| (-145) (-379)))) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL)) (-3651 (($ $ $) 30)) (-2722 (((-145) $) 61)) (-2597 (($ (-145) $) 59)) (-3223 (($ (-940)) NIL (|has| (-145) (-379)))) (-1394 (($) 16 T CONST)) (-1450 (((-1141) $) NIL)) (-3434 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-1541 (((-145) $) 62)) (-3252 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) 57)) (-1731 (($) 15 T CONST)) (-4079 (($ $ $) 32) (($ $ (-145)) NIL)) (-3101 (($ (-656 (-145))) NIL) (($) NIL)) (-1460 (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121)))) (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-1179) $) 37) (((-548) $) NIL (|has| (-145) (-626 (-548)))) (((-656 (-145)) $) 35)) (-3581 (($ (-656 (-145))) NIL)) (-2111 (($ $) 33 (|has| (-145) (-379)))) (-3569 (((-876) $) 53)) (-4163 (($ (-1179)) 14) (($ (-656 (-145))) 50)) (-1445 (((-783) $) NIL)) (-1895 (($) 58) (($ (-656 (-145))) NIL)) (-2399 (((-112) $ $) NIL)) (-3972 (($ (-656 (-145))) NIL)) (-2708 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-1672 (($) 21 T CONST)) (-1519 (($) 20 T CONST)) (-2924 (((-112) $ $) 24)) (-3502 (((-783) $) 56 (|has| $ (-6 -4464))))) +(((-142) (-13 (-1121) (-626 (-1179)) (-437 (-145)) (-626 (-656 (-145))) (-10 -8 (-15 -4163 ($ (-1179))) (-15 -4163 ($ (-656 (-145)))) (-15 -1731 ($) -1480) (-15 -1394 ($) -1480) (-15 -2951 ($) -1480) (-15 -2409 ($) -1480) (-15 -1519 ($) -1480) (-15 -1672 ($) -1480)))) (T -142)) +((-4163 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-142)))) (-4163 (*1 *1 *2) (-12 (-5 *2 (-656 (-145))) (-5 *1 (-142)))) (-1731 (*1 *1) (-5 *1 (-142))) (-1394 (*1 *1) (-5 *1 (-142))) (-2951 (*1 *1) (-5 *1 (-142))) (-2409 (*1 *1) (-5 *1 (-142))) (-1519 (*1 *1) (-5 *1 (-142))) (-1672 (*1 *1) (-5 *1 (-142)))) +(-13 (-1121) (-626 (-1179)) (-437 (-145)) (-626 (-656 (-145))) (-10 -8 (-15 -4163 ($ (-1179))) (-15 -4163 ($ (-656 (-145)))) (-15 -1731 ($) -1480) (-15 -1394 ($) -1480) (-15 -2951 ($) -1480) (-15 -2409 ($) -1480) (-15 -1519 ($) -1480) (-15 -1672 ($) -1480))) +((-4169 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4277 ((|#1| |#3|) 9)) (-3689 ((|#3| |#3|) 15))) +(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -4277 (|#1| |#3|)) (-15 -3689 (|#3| |#3|)) (-15 -4169 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-568) (-1013 |#1|) (-384 |#2|)) (T -143)) +((-4169 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-384 *5)))) (-3689 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *4 (-1013 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-384 *4)))) (-4277 (*1 *2 *3) (-12 (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-384 *4))))) +(-10 -7 (-15 -4277 (|#1| |#3|)) (-15 -3689 (|#3| |#3|)) (-15 -4169 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-2199 (($ $ $) 8)) (-4225 (($ $) 7)) (-3679 (($ $ $) 6))) (((-144) (-141)) (T -144)) -((-1432 (*1 *1 *1 *1) (-4 *1 (-144))) (-1803 (*1 *1 *1) (-4 *1 (-144))) (-2979 (*1 *1 *1 *1) (-4 *1 (-144)))) -(-13 (-10 -8 (-15 -2979 ($ $ $)) (-15 -1803 ($ $)) (-15 -1432 ($ $ $)))) -((-3489 (((-112) $ $) NIL)) (-1891 (((-112) $) 39)) (-3343 (($ $) 55)) (-4138 (($) 26 T CONST)) (-2098 (((-783)) 13)) (-1836 (($) 25)) (-3691 (($) 27 T CONST)) (-4032 (((-783) $) 21)) (-3125 (($ $ $) NIL) (($) NIL T CONST)) (-3133 (($ $ $) NIL) (($) NIL T CONST)) (-4095 (((-112) $) 41)) (-4056 (($ $) 56)) (-4401 (((-940) $) 23)) (-3699 (((-1179) $) 49)) (-3224 (($ (-940)) 20)) (-4285 (((-112) $) 37)) (-1450 (((-1141) $) NIL)) (-3768 (($) 28 T CONST)) (-1664 (((-112) $) 35)) (-3570 (((-876) $) 30)) (-2962 (($ (-783)) 19) (($ (-1179)) 54)) (-4055 (((-112) $ $) NIL)) (-1720 (((-112) $) 45)) (-2148 (((-112) $) 43)) (-2992 (((-112) $ $) 11)) (-2964 (((-112) $ $) 9)) (-2925 (((-112) $ $) 7)) (-2978 (((-112) $ $) 10)) (-2950 (((-112) $ $) 8))) -(((-145) (-13 (-856) (-10 -8 (-15 -4032 ((-783) $)) (-15 -2962 ($ (-783))) (-15 -2962 ($ (-1179))) (-15 -4138 ($) -1480) (-15 -3691 ($) -1480) (-15 -3768 ($) -1480) (-15 -3343 ($ $)) (-15 -4056 ($ $)) (-15 -1664 ((-112) $)) (-15 -4285 ((-112) $)) (-15 -2148 ((-112) $)) (-15 -1891 ((-112) $)) (-15 -4095 ((-112) $)) (-15 -1720 ((-112) $))))) (T -145)) -((-4032 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-145)))) (-2962 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-145)))) (-2962 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-145)))) (-4138 (*1 *1) (-5 *1 (-145))) (-3691 (*1 *1) (-5 *1 (-145))) (-3768 (*1 *1) (-5 *1 (-145))) (-3343 (*1 *1 *1) (-5 *1 (-145))) (-4056 (*1 *1 *1) (-5 *1 (-145))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4285 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2148 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1891 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4095 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1720 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(-13 (-856) (-10 -8 (-15 -4032 ((-783) $)) (-15 -2962 ($ (-783))) (-15 -2962 ($ (-1179))) (-15 -4138 ($) -1480) (-15 -3691 ($) -1480) (-15 -3768 ($) -1480) (-15 -3343 ($ $)) (-15 -4056 ($ $)) (-15 -1664 ((-112) $)) (-15 -4285 ((-112) $)) (-15 -2148 ((-112) $)) (-15 -1891 ((-112) $)) (-15 -4095 ((-112) $)) (-15 -1720 ((-112) $)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-1561 (((-3 $ "failed") $) 37)) (-4193 (((-112) $) 35)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12) (($ (-576)) 33)) (-4336 (((-3 $ "failed") $) 39)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-2199 (*1 *1 *1 *1) (-4 *1 (-144))) (-4225 (*1 *1 *1) (-4 *1 (-144))) (-3679 (*1 *1 *1 *1) (-4 *1 (-144)))) +(-13 (-10 -8 (-15 -3679 ($ $ $)) (-15 -4225 ($ $)) (-15 -2199 ($ $ $)))) +((-3488 (((-112) $ $) NIL)) (-3803 (((-112) $) 39)) (-2951 (($ $) 55)) (-1986 (($) 26 T CONST)) (-2098 (((-783)) 13)) (-1836 (($) 25)) (-3250 (($) 27 T CONST)) (-2197 (((-783) $) 21)) (-3124 (($ $ $) NIL) (($) NIL T CONST)) (-1441 (($ $ $) NIL) (($) NIL T CONST)) (-1594 (((-112) $) 41)) (-2409 (($ $) 56)) (-1558 (((-940) $) 23)) (-2046 (((-1179) $) 49)) (-3223 (($ (-940)) 20)) (-2908 (((-112) $) 37)) (-1450 (((-1141) $) NIL)) (-1556 (($) 28 T CONST)) (-2109 (((-112) $) 35)) (-3569 (((-876) $) 30)) (-2961 (($ (-783)) 19) (($ (-1179)) 54)) (-2399 (((-112) $ $) NIL)) (-1472 (((-112) $) 45)) (-4364 (((-112) $) 43)) (-2990 (((-112) $ $) 11)) (-2962 (((-112) $ $) 9)) (-2924 (((-112) $ $) 7)) (-2978 (((-112) $ $) 10)) (-2949 (((-112) $ $) 8))) +(((-145) (-13 (-856) (-10 -8 (-15 -2197 ((-783) $)) (-15 -2961 ($ (-783))) (-15 -2961 ($ (-1179))) (-15 -1986 ($) -1480) (-15 -3250 ($) -1480) (-15 -1556 ($) -1480) (-15 -2951 ($ $)) (-15 -2409 ($ $)) (-15 -2109 ((-112) $)) (-15 -2908 ((-112) $)) (-15 -4364 ((-112) $)) (-15 -3803 ((-112) $)) (-15 -1594 ((-112) $)) (-15 -1472 ((-112) $))))) (T -145)) +((-2197 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-145)))) (-2961 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-145)))) (-2961 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-145)))) (-1986 (*1 *1) (-5 *1 (-145))) (-3250 (*1 *1) (-5 *1 (-145))) (-1556 (*1 *1) (-5 *1 (-145))) (-2951 (*1 *1 *1) (-5 *1 (-145))) (-2409 (*1 *1 *1) (-5 *1 (-145))) (-2109 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2908 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4364 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3803 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1594 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1472 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(-13 (-856) (-10 -8 (-15 -2197 ((-783) $)) (-15 -2961 ($ (-783))) (-15 -2961 ($ (-1179))) (-15 -1986 ($) -1480) (-15 -3250 ($) -1480) (-15 -1556 ($) -1480) (-15 -2951 ($ $)) (-15 -2409 ($ $)) (-15 -2109 ((-112) $)) (-15 -2908 ((-112) $)) (-15 -4364 ((-112) $)) (-15 -3803 ((-112) $)) (-15 -1594 ((-112) $)) (-15 -1472 ((-112) $)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-3673 (((-3 $ "failed") $) 37)) (-1351 (((-112) $) 35)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ (-576)) 33)) (-3390 (((-3 $ "failed") $) 39)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-146) (-141)) (T -146)) -((-4336 (*1 *1 *1) (|partial| -4 *1 (-146)))) -(-13 (-1070) (-10 -8 (-15 -4336 ((-3 $ "failed") $)))) +((-3390 (*1 *1 *1) (|partial| -4 *1 (-146)))) +(-13 (-1070) (-10 -8 (-15 -3390 ((-3 $ "failed") $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-4281 ((|#1| (-701 |#1|) |#1|) 19))) -(((-147 |#1|) (-10 -7 (-15 -4281 (|#1| (-701 |#1|) |#1|))) (-174)) (T -147)) -((-4281 (*1 *2 *3 *2) (-12 (-5 *3 (-701 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))) -(-10 -7 (-15 -4281 (|#1| (-701 |#1|) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-1561 (((-3 $ "failed") $) 37)) (-4193 (((-112) $) 35)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12) (($ (-576)) 33)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-2857 ((|#1| (-701 |#1|) |#1|) 19))) +(((-147 |#1|) (-10 -7 (-15 -2857 (|#1| (-701 |#1|) |#1|))) (-174)) (T -147)) +((-2857 (*1 *2 *3 *2) (-12 (-5 *3 (-701 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))) +(-10 -7 (-15 -2857 (|#1| (-701 |#1|) |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-3673 (((-3 $ "failed") $) 37)) (-1351 (((-112) $) 35)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ (-576)) 33)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-148) (-141)) (T -148)) NIL (-13 (-1070)) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-3813 (((-2 (|:| -3422 (-783)) (|:| -1714 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783)) 76)) (-1451 (((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|) 56)) (-1719 (((-2 (|:| -1714 (-419 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-3237 ((|#1| |#3| |#3|) 44)) (-3284 ((|#3| |#3| (-419 |#2|) (-419 |#2|)) 20)) (-3847 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|) 53))) -(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -1719 ((-2 (|:| -1714 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1451 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|)) (-15 -3813 ((-2 (|:| -3422 (-783)) (|:| -1714 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783))) (-15 -3237 (|#1| |#3| |#3|)) (-15 -3284 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -3847 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|))) (-1242) (-1264 |#1|) (-1264 (-419 |#2|))) (T -149)) -((-3847 (*1 *2 *3 *3) (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) (|:| |c2| (-419 *5)) (|:| |deg| (-783)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1264 (-419 *5))))) (-3284 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1264 *3)))) (-3237 (*1 *2 *3 *3) (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1242)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1264 (-419 *4))))) (-3813 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *6)) (-4 *5 (-1242)) (-4 *6 (-1264 *5)) (-5 *2 (-2 (|:| -3422 (-783)) (|:| -1714 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-783)) (-4 *7 (-1264 *3)))) (-1451 (*1 *2 *3) (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-783)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1264 (-419 *5))))) (-1719 (*1 *2 *3) (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| -1714 (-419 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1264 (-419 *5)))))) -(-10 -7 (-15 -1719 ((-2 (|:| -1714 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1451 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|)) (-15 -3813 ((-2 (|:| -3422 (-783)) (|:| -1714 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783))) (-15 -3237 (|#1| |#3| |#3|)) (-15 -3284 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -3847 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|))) -((-1963 (((-3 (-656 (-1193 |#2|)) "failed") (-656 (-1193 |#2|)) (-1193 |#2|)) 35))) -(((-150 |#1| |#2|) (-10 -7 (-15 -1963 ((-3 (-656 (-1193 |#2|)) "failed") (-656 (-1193 |#2|)) (-1193 |#2|)))) (-557) (-167 |#1|)) (T -150)) -((-1963 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1193 *5))) (-5 *3 (-1193 *5)) (-4 *5 (-167 *4)) (-4 *4 (-557)) (-5 *1 (-150 *4 *5))))) -(-10 -7 (-15 -1963 ((-3 (-656 (-1193 |#2|)) "failed") (-656 (-1193 |#2|)) (-1193 |#2|)))) -((-1974 (($ (-1 (-112) |#2|) $) 37)) (-1415 (($ $) 44)) (-3946 (($ (-1 (-112) |#2|) $) 35) (($ |#2| $) 40)) (-3686 ((|#2| (-1 |#2| |#2| |#2|) $) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42)) (-1541 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27)) (-4320 (((-112) (-1 (-112) |#2|) $) 24)) (-1460 (((-783) (-1 (-112) |#2|) $) 18) (((-783) |#2| $) NIL)) (-3321 (((-112) (-1 (-112) |#2|) $) 21)) (-3503 (((-783) $) 12))) -(((-151 |#1| |#2|) (-10 -8 (-15 -1415 (|#1| |#1|)) (-15 -3946 (|#1| |#2| |#1|)) (-15 -3686 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1974 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3946 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3686 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3686 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1541 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1460 ((-783) |#2| |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -4320 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3321 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3503 ((-783) |#1|))) (-152 |#2|) (-1238)) (T -151)) -NIL -(-10 -8 (-15 -1415 (|#1| |#1|)) (-15 -3946 (|#1| |#2| |#1|)) (-15 -3686 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1974 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3946 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3686 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3686 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1541 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1460 ((-783) |#2| |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -4320 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3321 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3503 ((-783) |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1808 (((-112) $ (-783)) 8)) (-1974 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4465)))) (-3886 (($) 7 T CONST)) (-1415 (($ $) 42 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-3946 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4465))) (($ |#1| $) 43 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-3966 (((-656 |#1|) $) 31 (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) 9)) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-4323 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 36)) (-1330 (((-112) $ (-783)) 10)) (-3699 (((-1179) $) 23 (|has| |#1| (-1121)))) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 13)) (-4172 (((-548) $) 41 (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) 50)) (-3570 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-1997 (((-2 (|:| -2508 (-783)) (|:| -1715 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783)) 76)) (-2390 (((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|) 56)) (-1466 (((-2 (|:| -1715 (-419 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-4403 ((|#1| |#3| |#3|) 44)) (-3282 ((|#3| |#3| (-419 |#2|) (-419 |#2|)) 20)) (-4301 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|) 53))) +(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -1466 ((-2 (|:| -1715 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2390 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|)) (-15 -1997 ((-2 (|:| -2508 (-783)) (|:| -1715 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783))) (-15 -4403 (|#1| |#3| |#3|)) (-15 -3282 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -4301 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|))) (-1242) (-1264 |#1|) (-1264 (-419 |#2|))) (T -149)) +((-4301 (*1 *2 *3 *3) (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) (|:| |c2| (-419 *5)) (|:| |deg| (-783)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1264 (-419 *5))))) (-3282 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1264 *3)))) (-4403 (*1 *2 *3 *3) (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1242)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1264 (-419 *4))))) (-1997 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *6)) (-4 *5 (-1242)) (-4 *6 (-1264 *5)) (-5 *2 (-2 (|:| -2508 (-783)) (|:| -1715 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-783)) (-4 *7 (-1264 *3)))) (-2390 (*1 *2 *3) (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-783)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1264 (-419 *5))))) (-1466 (*1 *2 *3) (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| -1715 (-419 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1264 (-419 *5)))))) +(-10 -7 (-15 -1466 ((-2 (|:| -1715 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2390 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|)) (-15 -1997 ((-2 (|:| -2508 (-783)) (|:| -1715 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783))) (-15 -4403 (|#1| |#3| |#3|)) (-15 -3282 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -4301 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|))) +((-3220 (((-3 (-656 (-1193 |#2|)) "failed") (-656 (-1193 |#2|)) (-1193 |#2|)) 35))) +(((-150 |#1| |#2|) (-10 -7 (-15 -3220 ((-3 (-656 (-1193 |#2|)) "failed") (-656 (-1193 |#2|)) (-1193 |#2|)))) (-557) (-167 |#1|)) (T -150)) +((-3220 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1193 *5))) (-5 *3 (-1193 *5)) (-4 *5 (-167 *4)) (-4 *4 (-557)) (-5 *1 (-150 *4 *5))))) +(-10 -7 (-15 -3220 ((-3 (-656 (-1193 |#2|)) "failed") (-656 (-1193 |#2|)) (-1193 |#2|)))) +((-1974 (($ (-1 (-112) |#2|) $) 37)) (-2034 (($ $) 44)) (-3945 (($ (-1 (-112) |#2|) $) 35) (($ |#2| $) 40)) (-3685 ((|#2| (-1 |#2| |#2| |#2|) $) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42)) (-3434 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27)) (-3252 (((-112) (-1 (-112) |#2|) $) 24)) (-1460 (((-783) (-1 (-112) |#2|) $) 18) (((-783) |#2| $) NIL)) (-2708 (((-112) (-1 (-112) |#2|) $) 21)) (-3502 (((-783) $) 12))) +(((-151 |#1| |#2|) (-10 -8 (-15 -2034 (|#1| |#1|)) (-15 -3945 (|#1| |#2| |#1|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1974 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3945 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3434 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1460 ((-783) |#2| |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3252 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2708 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3502 ((-783) |#1|))) (-152 |#2|) (-1238)) (T -151)) +NIL +(-10 -8 (-15 -2034 (|#1| |#1|)) (-15 -3945 (|#1| |#2| |#1|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1974 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3945 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3434 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1460 ((-783) |#2| |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3252 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2708 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3502 ((-783) |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4264 (((-112) $ (-783)) 8)) (-1974 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4464)))) (-3404 (($) 7 T CONST)) (-2034 (($ $) 42 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4464))) (($ |#1| $) 43 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) 9)) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4326 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-2883 (((-112) $ (-783)) 10)) (-2046 (((-1179) $) 23 (|has| |#1| (-1121)))) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-4171 (((-548) $) 41 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 50)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-152 |#1|) (-141) (-1238)) (T -152)) -((-3582 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-4 *1 (-152 *3)))) (-1541 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1238)))) (-3686 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4465)) (-4 *1 (-152 *2)) (-4 *2 (-1238)))) (-3686 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4465)) (-4 *1 (-152 *2)) (-4 *2 (-1238)))) (-3946 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4465)) (-4 *1 (-152 *3)) (-4 *3 (-1238)))) (-1974 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4465)) (-4 *1 (-152 *3)) (-4 *3 (-1238)))) (-3686 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1121)) (|has| *1 (-6 -4465)) (-4 *1 (-152 *2)) (-4 *2 (-1238)))) (-3946 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-152 *2)) (-4 *2 (-1238)) (-4 *2 (-1121)))) (-1415 (*1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-152 *2)) (-4 *2 (-1238)) (-4 *2 (-1121))))) -(-13 (-501 |t#1|) (-10 -8 (-15 -3582 ($ (-656 |t#1|))) (-15 -1541 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4465)) (PROGN (-15 -3686 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3686 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3946 ($ (-1 (-112) |t#1|) $)) (-15 -1974 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1121)) (PROGN (-15 -3686 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3946 ($ |t#1| $)) (-15 -1415 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) -(((-34) . T) ((-102) -2760 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2760 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-1561 (((-3 $ "failed") $) 111)) (-4193 (((-112) $) NIL)) (-1945 (($ |#2| (-656 (-940))) 71)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1389 (($ (-940)) 57)) (-2003 (((-135)) 23)) (-3570 (((-876) $) 86) (($ (-576)) 53) (($ |#2|) 54)) (-3177 ((|#2| $ (-656 (-940))) 74)) (-3996 (((-783)) 20 T CONST)) (-4055 (((-112) $ $) NIL)) (-2721 (($) 47 T CONST)) (-2732 (($) 51 T CONST)) (-2925 (((-112) $ $) 33)) (-3057 (($ $ |#2|) NIL)) (-3044 (($ $) 42) (($ $ $) 40)) (-3030 (($ $ $) 38)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 44) (($ $ $) 63) (($ |#2| $) 46) (($ $ |#2|) NIL))) -(((-153 |#1| |#2| |#3|) (-13 (-1070) (-38 |#2|) (-1295 |#2|) (-10 -8 (-15 -1389 ($ (-940))) (-15 -1945 ($ |#2| (-656 (-940)))) (-15 -3177 (|#2| $ (-656 (-940)))) (-15 -1561 ((-3 $ "failed") $)))) (-940) (-374) (-1014 |#1| |#2|)) (T -153)) -((-1561 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-940)) (-4 *3 (-374)) (-14 *4 (-1014 *2 *3)))) (-1389 (*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-374)) (-14 *5 (-1014 *3 *4)))) (-1945 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-940)) (-4 *2 (-374)) (-14 *5 (-1014 *4 *2)))) (-3177 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-940))) (-4 *2 (-374)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-940)) (-14 *5 (-1014 *4 *2))))) -(-13 (-1070) (-38 |#2|) (-1295 |#2|) (-10 -8 (-15 -1389 ($ (-940))) (-15 -1945 ($ |#2| (-656 (-940)))) (-15 -3177 (|#2| $ (-656 (-940)))) (-15 -1561 ((-3 $ "failed") $)))) -((-3424 (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-656 (-962 (-227)))) (-227) (-227) (-227) (-227)) 59)) (-2211 (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946) (-419 (-576)) (-419 (-576))) 95) (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946)) 96)) (-4098 (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-656 (-962 (-227))))) 99) (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-962 (-227)))) 98) (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946) (-419 (-576)) (-419 (-576))) 90) (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946)) 91))) -(((-154) (-10 -7 (-15 -4098 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946))) (-15 -4098 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946) (-419 (-576)) (-419 (-576)))) (-15 -2211 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946))) (-15 -2211 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946) (-419 (-576)) (-419 (-576)))) (-15 -3424 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-656 (-962 (-227)))) (-227) (-227) (-227) (-227))) (-15 -4098 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-962 (-227))))) (-15 -4098 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-656 (-962 (-227)))))))) (T -154)) -((-4098 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) (-5 *1 (-154)) (-5 *3 (-656 (-656 (-962 (-227))))))) (-4098 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) (-5 *1 (-154)) (-5 *3 (-656 (-962 (-227)))))) (-3424 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-227)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 *4)))) (|:| |xValues| (-1115 *4)) (|:| |yValues| (-1115 *4)))) (-5 *1 (-154)) (-5 *3 (-656 (-656 (-962 *4)))))) (-2211 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-946)) (-5 *4 (-419 (-576))) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) (-5 *1 (-154)))) (-2211 (*1 *2 *3) (-12 (-5 *3 (-946)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) (-5 *1 (-154)))) (-4098 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-946)) (-5 *4 (-419 (-576))) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) (-5 *1 (-154)))) (-4098 (*1 *2 *3) (-12 (-5 *3 (-946)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) (-5 *1 (-154))))) -(-10 -7 (-15 -4098 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946))) (-15 -4098 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946) (-419 (-576)) (-419 (-576)))) (-15 -2211 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946))) (-15 -2211 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946) (-419 (-576)) (-419 (-576)))) (-15 -3424 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-656 (-962 (-227)))) (-227) (-227) (-227) (-227))) (-15 -4098 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-962 (-227))))) (-15 -4098 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-656 (-962 (-227))))))) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-3067 (((-656 (-1156)) $) 20)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 27) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2641 (((-1156) $) 9)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-155) (-13 (-1104) (-10 -8 (-15 -3067 ((-656 (-1156)) $)) (-15 -2641 ((-1156) $))))) (T -155)) -((-3067 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-155)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-155))))) -(-13 (-1104) (-10 -8 (-15 -3067 ((-656 (-1156)) $)) (-15 -2641 ((-1156) $)))) -((-3451 (((-656 (-171 |#2|)) |#1| |#2|) 50))) -(((-156 |#1| |#2|) (-10 -7 (-15 -3451 ((-656 (-171 |#2|)) |#1| |#2|))) (-1264 (-171 (-576))) (-13 (-374) (-860))) (T -156)) -((-3451 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1264 (-171 (-576)))) (-4 *4 (-13 (-374) (-860)))))) -(-10 -7 (-15 -3451 ((-656 (-171 |#2|)) |#1| |#2|))) -((-3489 (((-112) $ $) NIL)) (-1669 (((-1237) $) 12)) (-1657 (((-1156) $) 9)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 19) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) +((-3581 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-4 *1 (-152 *3)))) (-3434 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1238)))) (-3685 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) (-4 *2 (-1238)))) (-3685 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) (-4 *2 (-1238)))) (-3945 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *3)) (-4 *3 (-1238)))) (-1974 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *3)) (-4 *3 (-1238)))) (-3685 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1121)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) (-4 *2 (-1238)))) (-3945 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) (-4 *2 (-1238)) (-4 *2 (-1121)))) (-2034 (*1 *1 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) (-4 *2 (-1238)) (-4 *2 (-1121))))) +(-13 (-501 |t#1|) (-10 -8 (-15 -3581 ($ (-656 |t#1|))) (-15 -3434 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4464)) (PROGN (-15 -3685 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3685 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3945 ($ (-1 (-112) |t#1|) $)) (-15 -1974 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1121)) (PROGN (-15 -3685 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3945 ($ |t#1| $)) (-15 -2034 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) +(((-34) . T) ((-102) -2759 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2759 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-3673 (((-3 $ "failed") $) 111)) (-1351 (((-112) $) NIL)) (-1944 (($ |#2| (-656 (-940))) 71)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1389 (($ (-940)) 57)) (-2319 (((-135)) 23)) (-3569 (((-876) $) 86) (($ (-576)) 53) (($ |#2|) 54)) (-1822 ((|#2| $ (-656 (-940))) 74)) (-3154 (((-783)) 20 T CONST)) (-2399 (((-112) $ $) NIL)) (-2721 (($) 47 T CONST)) (-2731 (($) 51 T CONST)) (-2924 (((-112) $ $) 33)) (-3056 (($ $ |#2|) NIL)) (-3043 (($ $) 42) (($ $ $) 40)) (-3029 (($ $ $) 38)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 44) (($ $ $) 63) (($ |#2| $) 46) (($ $ |#2|) NIL))) +(((-153 |#1| |#2| |#3|) (-13 (-1070) (-38 |#2|) (-1295 |#2|) (-10 -8 (-15 -1389 ($ (-940))) (-15 -1944 ($ |#2| (-656 (-940)))) (-15 -1822 (|#2| $ (-656 (-940)))) (-15 -3673 ((-3 $ "failed") $)))) (-940) (-374) (-1014 |#1| |#2|)) (T -153)) +((-3673 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-940)) (-4 *3 (-374)) (-14 *4 (-1014 *2 *3)))) (-1389 (*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-374)) (-14 *5 (-1014 *3 *4)))) (-1944 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-940)) (-4 *2 (-374)) (-14 *5 (-1014 *4 *2)))) (-1822 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-940))) (-4 *2 (-374)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-940)) (-14 *5 (-1014 *4 *2))))) +(-13 (-1070) (-38 |#2|) (-1295 |#2|) (-10 -8 (-15 -1389 ($ (-940))) (-15 -1944 ($ |#2| (-656 (-940)))) (-15 -1822 (|#2| $ (-656 (-940)))) (-15 -3673 ((-3 $ "failed") $)))) +((-2525 (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-656 (-962 (-227)))) (-227) (-227) (-227) (-227)) 59)) (-3735 (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946) (-419 (-576)) (-419 (-576))) 95) (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946)) 96)) (-1625 (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-656 (-962 (-227))))) 99) (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-962 (-227)))) 98) (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946) (-419 (-576)) (-419 (-576))) 90) (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946)) 91))) +(((-154) (-10 -7 (-15 -1625 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946))) (-15 -1625 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946) (-419 (-576)) (-419 (-576)))) (-15 -3735 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946))) (-15 -3735 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946) (-419 (-576)) (-419 (-576)))) (-15 -2525 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-656 (-962 (-227)))) (-227) (-227) (-227) (-227))) (-15 -1625 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-962 (-227))))) (-15 -1625 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-656 (-962 (-227)))))))) (T -154)) +((-1625 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) (-5 *1 (-154)) (-5 *3 (-656 (-656 (-962 (-227))))))) (-1625 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) (-5 *1 (-154)) (-5 *3 (-656 (-962 (-227)))))) (-2525 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-227)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 *4)))) (|:| |xValues| (-1115 *4)) (|:| |yValues| (-1115 *4)))) (-5 *1 (-154)) (-5 *3 (-656 (-656 (-962 *4)))))) (-3735 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-946)) (-5 *4 (-419 (-576))) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) (-5 *1 (-154)))) (-3735 (*1 *2 *3) (-12 (-5 *3 (-946)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) (-5 *1 (-154)))) (-1625 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-946)) (-5 *4 (-419 (-576))) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) (-5 *1 (-154)))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-946)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) (-5 *1 (-154))))) +(-10 -7 (-15 -1625 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946))) (-15 -1625 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946) (-419 (-576)) (-419 (-576)))) (-15 -3735 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946))) (-15 -3735 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946) (-419 (-576)) (-419 (-576)))) (-15 -2525 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-656 (-962 (-227)))) (-227) (-227) (-227) (-227))) (-15 -1625 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-962 (-227))))) (-15 -1625 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-656 (-962 (-227))))))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-3066 (((-656 (-1156)) $) 20)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 27) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2640 (((-1156) $) 9)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-155) (-13 (-1104) (-10 -8 (-15 -3066 ((-656 (-1156)) $)) (-15 -2640 ((-1156) $))))) (T -155)) +((-3066 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-155)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-155))))) +(-13 (-1104) (-10 -8 (-15 -3066 ((-656 (-1156)) $)) (-15 -2640 ((-1156) $)))) +((-1560 (((-656 (-171 |#2|)) |#1| |#2|) 50))) +(((-156 |#1| |#2|) (-10 -7 (-15 -1560 ((-656 (-171 |#2|)) |#1| |#2|))) (-1264 (-171 (-576))) (-13 (-374) (-860))) (T -156)) +((-1560 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1264 (-171 (-576)))) (-4 *4 (-13 (-374) (-860)))))) +(-10 -7 (-15 -1560 ((-656 (-171 |#2|)) |#1| |#2|))) +((-3488 (((-112) $ $) NIL)) (-1669 (((-1237) $) 12)) (-1657 (((-1156) $) 9)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 19) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) (((-157) (-13 (-1104) (-10 -8 (-15 -1657 ((-1156) $)) (-15 -1669 ((-1237) $))))) (T -157)) ((-1657 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-157)))) (-1669 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-157))))) (-13 (-1104) (-10 -8 (-15 -1657 ((-1156) $)) (-15 -1669 ((-1237) $)))) -((-3489 (((-112) $ $) NIL)) (-1489 (($) 41)) (-1620 (($) 40)) (-2755 (((-940)) 46)) (-3699 (((-1179) $) NIL)) (-3381 (((-576) $) 44)) (-1450 (((-1141) $) NIL)) (-4170 (($) 42)) (-1687 (($ (-576)) 47)) (-3570 (((-876) $) 53)) (-3792 (($) 43)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 38)) (-3030 (($ $ $) 35)) (* (($ (-940) $) 45) (($ (-227) $) 11))) -(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-940) $)) (-15 * ($ (-227) $)) (-15 -3030 ($ $ $)) (-15 -1620 ($)) (-15 -1489 ($)) (-15 -4170 ($)) (-15 -3792 ($)) (-15 -3381 ((-576) $)) (-15 -2755 ((-940))) (-15 -1687 ($ (-576)))))) (T -158)) -((-3030 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) (-1620 (*1 *1) (-5 *1 (-158))) (-1489 (*1 *1) (-5 *1 (-158))) (-4170 (*1 *1) (-5 *1 (-158))) (-3792 (*1 *1) (-5 *1 (-158))) (-3381 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) (-2755 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-158)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-158))))) -(-13 (-25) (-10 -8 (-15 * ($ (-940) $)) (-15 * ($ (-227) $)) (-15 -3030 ($ $ $)) (-15 -1620 ($)) (-15 -1489 ($)) (-15 -4170 ($)) (-15 -3792 ($)) (-15 -3381 ((-576) $)) (-15 -2755 ((-940))) (-15 -1687 ($ (-576))))) -((-3597 ((|#2| |#2| (-1113 |#2|)) 98) ((|#2| |#2| (-1197)) 75)) (-1940 ((|#2| |#2| (-1113 |#2|)) 97) ((|#2| |#2| (-1197)) 74)) (-1432 ((|#2| |#2| |#2|) 25)) (-1777 (((-115) (-115)) 111)) (-2573 ((|#2| (-656 |#2|)) 130)) (-3426 ((|#2| (-656 |#2|)) 151)) (-2511 ((|#2| (-656 |#2|)) 138)) (-1639 ((|#2| |#2|) 136)) (-2513 ((|#2| (-656 |#2|)) 124)) (-4380 ((|#2| (-656 |#2|)) 125)) (-2490 ((|#2| (-656 |#2|)) 149)) (-2275 ((|#2| |#2| (-1197)) 63) ((|#2| |#2|) 62)) (-1803 ((|#2| |#2|) 21)) (-2979 ((|#2| |#2| |#2|) 24)) (-2468 (((-112) (-115)) 55)) (** ((|#2| |#2| |#2|) 46))) -(((-159 |#1| |#2|) (-10 -7 (-15 -2468 ((-112) (-115))) (-15 -1777 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -2979 (|#2| |#2| |#2|)) (-15 -1432 (|#2| |#2| |#2|)) (-15 -1803 (|#2| |#2|)) (-15 -2275 (|#2| |#2|)) (-15 -2275 (|#2| |#2| (-1197))) (-15 -3597 (|#2| |#2| (-1197))) (-15 -3597 (|#2| |#2| (-1113 |#2|))) (-15 -1940 (|#2| |#2| (-1197))) (-15 -1940 (|#2| |#2| (-1113 |#2|))) (-15 -1639 (|#2| |#2|)) (-15 -2490 (|#2| (-656 |#2|))) (-15 -2511 (|#2| (-656 |#2|))) (-15 -3426 (|#2| (-656 |#2|))) (-15 -2513 (|#2| (-656 |#2|))) (-15 -4380 (|#2| (-656 |#2|))) (-15 -2573 (|#2| (-656 |#2|)))) (-568) (-442 |#1|)) (T -159)) -((-2573 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-4380 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2513 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-3426 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2490 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-1639 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-1940 (*1 *2 *2 *3) (-12 (-5 *3 (-1113 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)))) (-1940 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-3597 (*1 *2 *2 *3) (-12 (-5 *3 (-1113 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)))) (-3597 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-2275 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-2275 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-1803 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-1432 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-2979 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-1777 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-159 *3 *4)) (-4 *4 (-442 *3)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-442 *4))))) -(-10 -7 (-15 -2468 ((-112) (-115))) (-15 -1777 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -2979 (|#2| |#2| |#2|)) (-15 -1432 (|#2| |#2| |#2|)) (-15 -1803 (|#2| |#2|)) (-15 -2275 (|#2| |#2|)) (-15 -2275 (|#2| |#2| (-1197))) (-15 -3597 (|#2| |#2| (-1197))) (-15 -3597 (|#2| |#2| (-1113 |#2|))) (-15 -1940 (|#2| |#2| (-1197))) (-15 -1940 (|#2| |#2| (-1113 |#2|))) (-15 -1639 (|#2| |#2|)) (-15 -2490 (|#2| (-656 |#2|))) (-15 -2511 (|#2| (-656 |#2|))) (-15 -3426 (|#2| (-656 |#2|))) (-15 -2513 (|#2| (-656 |#2|))) (-15 -4380 (|#2| (-656 |#2|))) (-15 -2573 (|#2| (-656 |#2|)))) -((-3871 ((|#1| |#1| |#1|) 64)) (-1623 ((|#1| |#1| |#1|) 61)) (-1432 ((|#1| |#1| |#1|) 55)) (-3514 ((|#1| |#1|) 42)) (-2581 ((|#1| |#1| (-656 |#1|)) 53)) (-1803 ((|#1| |#1|) 46)) (-2979 ((|#1| |#1| |#1|) 49))) -(((-160 |#1|) (-10 -7 (-15 -2979 (|#1| |#1| |#1|)) (-15 -1803 (|#1| |#1|)) (-15 -2581 (|#1| |#1| (-656 |#1|))) (-15 -3514 (|#1| |#1|)) (-15 -1432 (|#1| |#1| |#1|)) (-15 -1623 (|#1| |#1| |#1|)) (-15 -3871 (|#1| |#1| |#1|))) (-557)) (T -160)) -((-3871 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-1623 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-1432 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-3514 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-2581 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-557)) (-5 *1 (-160 *2)))) (-1803 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-2979 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) -(-10 -7 (-15 -2979 (|#1| |#1| |#1|)) (-15 -1803 (|#1| |#1|)) (-15 -2581 (|#1| |#1| (-656 |#1|))) (-15 -3514 (|#1| |#1|)) (-15 -1432 (|#1| |#1| |#1|)) (-15 -1623 (|#1| |#1| |#1|)) (-15 -3871 (|#1| |#1| |#1|))) -((-3597 (($ $ (-1197)) 12) (($ $ (-1113 $)) 11)) (-1940 (($ $ (-1197)) 10) (($ $ (-1113 $)) 9)) (-1432 (($ $ $) 8)) (-2275 (($ $) 14) (($ $ (-1197)) 13)) (-1803 (($ $) 7)) (-2979 (($ $ $) 6))) +((-3488 (((-112) $ $) NIL)) (-4141 (($) 41)) (-2963 (($) 40)) (-4175 (((-940)) 46)) (-2046 (((-1179) $) NIL)) (-2068 (((-576) $) 44)) (-1450 (((-1141) $) NIL)) (-4258 (($) 42)) (-2349 (($ (-576)) 47)) (-3569 (((-876) $) 53)) (-1804 (($) 43)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 38)) (-3029 (($ $ $) 35)) (* (($ (-940) $) 45) (($ (-227) $) 11))) +(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-940) $)) (-15 * ($ (-227) $)) (-15 -3029 ($ $ $)) (-15 -2963 ($)) (-15 -4141 ($)) (-15 -4258 ($)) (-15 -1804 ($)) (-15 -2068 ((-576) $)) (-15 -4175 ((-940))) (-15 -2349 ($ (-576)))))) (T -158)) +((-3029 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) (-2963 (*1 *1) (-5 *1 (-158))) (-4141 (*1 *1) (-5 *1 (-158))) (-4258 (*1 *1) (-5 *1 (-158))) (-1804 (*1 *1) (-5 *1 (-158))) (-2068 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) (-4175 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-158)))) (-2349 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-158))))) +(-13 (-25) (-10 -8 (-15 * ($ (-940) $)) (-15 * ($ (-227) $)) (-15 -3029 ($ $ $)) (-15 -2963 ($)) (-15 -4141 ($)) (-15 -4258 ($)) (-15 -1804 ($)) (-15 -2068 ((-576) $)) (-15 -4175 ((-940))) (-15 -2349 ($ (-576))))) +((-3598 ((|#2| |#2| (-1113 |#2|)) 98) ((|#2| |#2| (-1197)) 75)) (-3023 ((|#2| |#2| (-1113 |#2|)) 97) ((|#2| |#2| (-1197)) 74)) (-2199 ((|#2| |#2| |#2|) 25)) (-1776 (((-115) (-115)) 111)) (-3086 ((|#2| (-656 |#2|)) 130)) (-2543 ((|#2| (-656 |#2|)) 151)) (-3707 ((|#2| (-656 |#2|)) 138)) (-3193 ((|#2| |#2|) 136)) (-3730 ((|#2| (-656 |#2|)) 124)) (-2551 ((|#2| (-656 |#2|)) 125)) (-3478 ((|#2| (-656 |#2|)) 149)) (-3139 ((|#2| |#2| (-1197)) 63) ((|#2| |#2|) 62)) (-4225 ((|#2| |#2|) 21)) (-3679 ((|#2| |#2| |#2|) 24)) (-1349 (((-112) (-115)) 55)) (** ((|#2| |#2| |#2|) 46))) +(((-159 |#1| |#2|) (-10 -7 (-15 -1349 ((-112) (-115))) (-15 -1776 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3679 (|#2| |#2| |#2|)) (-15 -2199 (|#2| |#2| |#2|)) (-15 -4225 (|#2| |#2|)) (-15 -3139 (|#2| |#2|)) (-15 -3139 (|#2| |#2| (-1197))) (-15 -3598 (|#2| |#2| (-1197))) (-15 -3598 (|#2| |#2| (-1113 |#2|))) (-15 -3023 (|#2| |#2| (-1197))) (-15 -3023 (|#2| |#2| (-1113 |#2|))) (-15 -3193 (|#2| |#2|)) (-15 -3478 (|#2| (-656 |#2|))) (-15 -3707 (|#2| (-656 |#2|))) (-15 -2543 (|#2| (-656 |#2|))) (-15 -3730 (|#2| (-656 |#2|))) (-15 -2551 (|#2| (-656 |#2|))) (-15 -3086 (|#2| (-656 |#2|)))) (-568) (-442 |#1|)) (T -159)) +((-3086 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2551 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-3730 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2543 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-3707 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-3478 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-3193 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-3023 (*1 *2 *2 *3) (-12 (-5 *3 (-1113 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)))) (-3023 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-3598 (*1 *2 *2 *3) (-12 (-5 *3 (-1113 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)))) (-3598 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-3139 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-3139 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-4225 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-2199 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-3679 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-1776 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-159 *3 *4)) (-4 *4 (-442 *3)))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-442 *4))))) +(-10 -7 (-15 -1349 ((-112) (-115))) (-15 -1776 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3679 (|#2| |#2| |#2|)) (-15 -2199 (|#2| |#2| |#2|)) (-15 -4225 (|#2| |#2|)) (-15 -3139 (|#2| |#2|)) (-15 -3139 (|#2| |#2| (-1197))) (-15 -3598 (|#2| |#2| (-1197))) (-15 -3598 (|#2| |#2| (-1113 |#2|))) (-15 -3023 (|#2| |#2| (-1197))) (-15 -3023 (|#2| |#2| (-1113 |#2|))) (-15 -3193 (|#2| |#2|)) (-15 -3478 (|#2| (-656 |#2|))) (-15 -3707 (|#2| (-656 |#2|))) (-15 -2543 (|#2| (-656 |#2|))) (-15 -3730 (|#2| (-656 |#2|))) (-15 -2551 (|#2| (-656 |#2|))) (-15 -3086 (|#2| (-656 |#2|)))) +((-1374 ((|#1| |#1| |#1|) 64)) (-3004 ((|#1| |#1| |#1|) 61)) (-2199 ((|#1| |#1| |#1|) 55)) (-4084 ((|#1| |#1|) 42)) (-3157 ((|#1| |#1| (-656 |#1|)) 53)) (-4225 ((|#1| |#1|) 46)) (-3679 ((|#1| |#1| |#1|) 49))) +(((-160 |#1|) (-10 -7 (-15 -3679 (|#1| |#1| |#1|)) (-15 -4225 (|#1| |#1|)) (-15 -3157 (|#1| |#1| (-656 |#1|))) (-15 -4084 (|#1| |#1|)) (-15 -2199 (|#1| |#1| |#1|)) (-15 -3004 (|#1| |#1| |#1|)) (-15 -1374 (|#1| |#1| |#1|))) (-557)) (T -160)) +((-1374 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-3004 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-2199 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-4084 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-3157 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-557)) (-5 *1 (-160 *2)))) (-4225 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-3679 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) +(-10 -7 (-15 -3679 (|#1| |#1| |#1|)) (-15 -4225 (|#1| |#1|)) (-15 -3157 (|#1| |#1| (-656 |#1|))) (-15 -4084 (|#1| |#1|)) (-15 -2199 (|#1| |#1| |#1|)) (-15 -3004 (|#1| |#1| |#1|)) (-15 -1374 (|#1| |#1| |#1|))) +((-3598 (($ $ (-1197)) 12) (($ $ (-1113 $)) 11)) (-3023 (($ $ (-1197)) 10) (($ $ (-1113 $)) 9)) (-2199 (($ $ $) 8)) (-3139 (($ $) 14) (($ $ (-1197)) 13)) (-4225 (($ $) 7)) (-3679 (($ $ $) 6))) (((-161) (-141)) (T -161)) -((-2275 (*1 *1 *1) (-4 *1 (-161))) (-2275 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1197)))) (-3597 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1197)))) (-3597 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-161)))) (-1940 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1197)))) (-1940 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-161))))) -(-13 (-144) (-10 -8 (-15 -2275 ($ $)) (-15 -2275 ($ $ (-1197))) (-15 -3597 ($ $ (-1197))) (-15 -3597 ($ $ (-1113 $))) (-15 -1940 ($ $ (-1197))) (-15 -1940 ($ $ (-1113 $))))) +((-3139 (*1 *1 *1) (-4 *1 (-161))) (-3139 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1197)))) (-3598 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1197)))) (-3598 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-161)))) (-3023 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1197)))) (-3023 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-161))))) +(-13 (-144) (-10 -8 (-15 -3139 ($ $)) (-15 -3139 ($ $ (-1197))) (-15 -3598 ($ $ (-1197))) (-15 -3598 ($ $ (-1113 $))) (-15 -3023 ($ $ (-1197))) (-15 -3023 ($ $ (-1113 $))))) (((-144) . T)) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 16) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2641 (((-656 (-1156)) $) 10)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-162) (-13 (-1104) (-10 -8 (-15 -2641 ((-656 (-1156)) $))))) (T -162)) -((-2641 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-162))))) -(-13 (-1104) (-10 -8 (-15 -2641 ((-656 (-1156)) $)))) -((-3489 (((-112) $ $) NIL)) (-2776 (($ (-576)) 14) (($ $ $) 15)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 18)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 9))) -(((-163) (-13 (-1121) (-10 -8 (-15 -2776 ($ (-576))) (-15 -2776 ($ $ $))))) (T -163)) -((-2776 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-163)))) (-2776 (*1 *1 *1 *1) (-5 *1 (-163)))) -(-13 (-1121) (-10 -8 (-15 -2776 ($ (-576))) (-15 -2776 ($ $ $)))) -((-1777 (((-115) (-1197)) 102))) -(((-164) (-10 -7 (-15 -1777 ((-115) (-1197))))) (T -164)) -((-1777 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-115)) (-5 *1 (-164))))) -(-10 -7 (-15 -1777 ((-115) (-1197)))) -((-3853 ((|#3| |#3|) 19))) -(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -3853 (|#3| |#3|))) (-1070) (-1264 |#1|) (-1264 |#2|)) (T -165)) -((-3853 (*1 *2 *2) (-12 (-4 *3 (-1070)) (-4 *4 (-1264 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1264 *4))))) -(-10 -7 (-15 -3853 (|#3| |#3|))) -((-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 223)) (-2210 ((|#2| $) 102)) (-4025 (($ $) 256)) (-3901 (($ $) 250)) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 47)) (-4006 (($ $) 254)) (-3877 (($ $) 248)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-2860 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 144)) (-3429 (($ $ $) 229)) (-2204 (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) 160) (((-701 |#2|) (-701 $)) 154)) (-3686 (($ (-1193 |#2|)) 125) (((-3 $ "failed") (-419 (-1193 |#2|))) NIL)) (-1561 (((-3 $ "failed") $) 214)) (-3104 (((-3 (-419 (-576)) "failed") $) 204)) (-2545 (((-112) $) 199)) (-2568 (((-419 (-576)) $) 202)) (-3734 (((-940)) 96)) (-3441 (($ $ $) 231)) (-1430 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-1600 (($) 245)) (-1840 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 193) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 198)) (-1381 ((|#2| $) 100)) (-2731 (((-1193 |#2|) $) 127)) (-4117 (($ (-1 |#2| |#2|) $) 108)) (-3745 (($ $) 247)) (-3672 (((-1193 |#2|) $) 126)) (-2050 (($ $) 207)) (-2429 (($) 103)) (-4100 (((-430 (-1193 $)) (-1193 $)) 95)) (-1811 (((-430 (-1193 $)) (-1193 $)) 64)) (-3476 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-4104 (($ $) 246)) (-1967 (((-783) $) 226)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 236)) (-4352 ((|#2| (-1288 $)) NIL) ((|#2|) 98)) (-2775 (($ $ (-1 |#2| |#2|)) 119) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-3867 (((-1193 |#2|)) 120)) (-4014 (($ $) 255)) (-3889 (($ $) 249)) (-4152 (((-1288 |#2|) $ (-1288 $)) 136) (((-701 |#2|) (-1288 $) (-1288 $)) NIL) (((-1288 |#2|) $) 116) (((-701 |#2|) (-1288 $)) NIL)) (-4172 (((-1288 |#2|) $) NIL) (($ (-1288 |#2|)) NIL) (((-1193 |#2|) $) NIL) (($ (-1193 |#2|)) NIL) (((-907 (-576)) $) 184) (((-907 (-390)) $) 188) (((-171 (-390)) $) 172) (((-171 (-227)) $) 167) (((-548) $) 180)) (-2314 (($ $) 104)) (-3570 (((-876) $) 143) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-419 (-576))) NIL) (($ $) NIL)) (-4281 (((-1193 |#2|) $) 32)) (-3996 (((-783)) 106)) (-4055 (((-112) $ $) 13)) (-2791 (($ $) 259)) (-3961 (($ $) 253)) (-4071 (($ $) 257)) (-3938 (($ $) 251)) (-1737 ((|#2| $) 242)) (-4083 (($ $) 258)) (-3951 (($ $) 252)) (-2122 (($ $) 162)) (-2925 (((-112) $ $) 110)) (-3044 (($ $) 112) (($ $ $) NIL)) (-3030 (($ $ $) 111)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-419 (-576))) 276) (($ $ $) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL))) -(((-166 |#1| |#2|) (-10 -8 (-15 -2775 (|#1| |#1|)) (-15 -2775 (|#1| |#1| (-783))) (-15 -2775 (|#1| |#1| (-1197))) (-15 -2775 (|#1| |#1| (-656 (-1197)))) (-15 -2775 (|#1| |#1| (-1197) (-783))) (-15 -2775 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -3570 (|#1| |#1|)) (-15 -3476 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2246 ((-2 (|:| -2778 |#1|) (|:| -4452 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1967 ((-783) |#1|)) (-15 -3274 ((-2 (|:| -2715 |#1|) (|:| -3624 |#1|)) |#1| |#1|)) (-15 -3441 (|#1| |#1| |#1|)) (-15 -3429 (|#1| |#1| |#1|)) (-15 -2050 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3570 (|#1| (-419 (-576)))) (-15 -4172 ((-548) |#1|)) (-15 -4172 ((-171 (-227)) |#1|)) (-15 -4172 ((-171 (-390)) |#1|)) (-15 -3901 (|#1| |#1|)) (-15 -3877 (|#1| |#1|)) (-15 -3889 (|#1| |#1|)) (-15 -3951 (|#1| |#1|)) (-15 -3938 (|#1| |#1|)) (-15 -3961 (|#1| |#1|)) (-15 -4014 (|#1| |#1|)) (-15 -4006 (|#1| |#1|)) (-15 -4025 (|#1| |#1|)) (-15 -4083 (|#1| |#1|)) (-15 -4071 (|#1| |#1|)) (-15 -2791 (|#1| |#1|)) (-15 -3745 (|#1| |#1|)) (-15 -4104 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1600 (|#1|)) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -1811 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -4100 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -1963 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -3104 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2568 ((-419 (-576)) |#1|)) (-15 -2545 ((-112) |#1|)) (-15 -1430 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1737 (|#2| |#1|)) (-15 -2122 (|#1| |#1|)) (-15 -3476 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2314 (|#1| |#1|)) (-15 -2429 (|#1|)) (-15 -4172 ((-907 (-390)) |#1|)) (-15 -4172 ((-907 (-576)) |#1|)) (-15 -1840 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -1840 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -4117 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3686 ((-3 |#1| "failed") (-419 (-1193 |#2|)))) (-15 -3672 ((-1193 |#2|) |#1|)) (-15 -4172 (|#1| (-1193 |#2|))) (-15 -3686 (|#1| (-1193 |#2|))) (-15 -3867 ((-1193 |#2|))) (-15 -2204 ((-701 |#2|) (-701 |#1|))) (-15 -2204 ((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -2204 ((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -2204 ((-701 (-576)) (-701 |#1|))) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2860 (|#2| |#1|)) (-15 -2860 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2860 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -4172 ((-1193 |#2|) |#1|)) (-15 -4352 (|#2|)) (-15 -4172 (|#1| (-1288 |#2|))) (-15 -4172 ((-1288 |#2|) |#1|)) (-15 -4152 ((-701 |#2|) (-1288 |#1|))) (-15 -4152 ((-1288 |#2|) |#1|)) (-15 -2731 ((-1193 |#2|) |#1|)) (-15 -4281 ((-1193 |#2|) |#1|)) (-15 -4352 (|#2| (-1288 |#1|))) (-15 -4152 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4152 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -1381 (|#2| |#1|)) (-15 -2210 (|#2| |#1|)) (-15 -3734 ((-940))) (-15 -3570 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3996 ((-783))) (-15 -3570 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 -1561 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-940))) (-15 -3044 (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -3030 (|#1| |#1| |#1|)) (-15 -3570 ((-876) |#1|)) (-15 -4055 ((-112) |#1| |#1|)) (-15 -2925 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166)) -((-3996 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-3734 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-940)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-4352 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-3867 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1193 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4))))) -(-10 -8 (-15 -2775 (|#1| |#1|)) (-15 -2775 (|#1| |#1| (-783))) (-15 -2775 (|#1| |#1| (-1197))) (-15 -2775 (|#1| |#1| (-656 (-1197)))) (-15 -2775 (|#1| |#1| (-1197) (-783))) (-15 -2775 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -3570 (|#1| |#1|)) (-15 -3476 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2246 ((-2 (|:| -2778 |#1|) (|:| -4452 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1967 ((-783) |#1|)) (-15 -3274 ((-2 (|:| -2715 |#1|) (|:| -3624 |#1|)) |#1| |#1|)) (-15 -3441 (|#1| |#1| |#1|)) (-15 -3429 (|#1| |#1| |#1|)) (-15 -2050 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3570 (|#1| (-419 (-576)))) (-15 -4172 ((-548) |#1|)) (-15 -4172 ((-171 (-227)) |#1|)) (-15 -4172 ((-171 (-390)) |#1|)) (-15 -3901 (|#1| |#1|)) (-15 -3877 (|#1| |#1|)) (-15 -3889 (|#1| |#1|)) (-15 -3951 (|#1| |#1|)) (-15 -3938 (|#1| |#1|)) (-15 -3961 (|#1| |#1|)) (-15 -4014 (|#1| |#1|)) (-15 -4006 (|#1| |#1|)) (-15 -4025 (|#1| |#1|)) (-15 -4083 (|#1| |#1|)) (-15 -4071 (|#1| |#1|)) (-15 -2791 (|#1| |#1|)) (-15 -3745 (|#1| |#1|)) (-15 -4104 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1600 (|#1|)) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -1811 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -4100 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -1963 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -3104 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2568 ((-419 (-576)) |#1|)) (-15 -2545 ((-112) |#1|)) (-15 -1430 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1737 (|#2| |#1|)) (-15 -2122 (|#1| |#1|)) (-15 -3476 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2314 (|#1| |#1|)) (-15 -2429 (|#1|)) (-15 -4172 ((-907 (-390)) |#1|)) (-15 -4172 ((-907 (-576)) |#1|)) (-15 -1840 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -1840 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -4117 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3686 ((-3 |#1| "failed") (-419 (-1193 |#2|)))) (-15 -3672 ((-1193 |#2|) |#1|)) (-15 -4172 (|#1| (-1193 |#2|))) (-15 -3686 (|#1| (-1193 |#2|))) (-15 -3867 ((-1193 |#2|))) (-15 -2204 ((-701 |#2|) (-701 |#1|))) (-15 -2204 ((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -2204 ((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -2204 ((-701 (-576)) (-701 |#1|))) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2860 (|#2| |#1|)) (-15 -2860 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2860 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -4172 ((-1193 |#2|) |#1|)) (-15 -4352 (|#2|)) (-15 -4172 (|#1| (-1288 |#2|))) (-15 -4172 ((-1288 |#2|) |#1|)) (-15 -4152 ((-701 |#2|) (-1288 |#1|))) (-15 -4152 ((-1288 |#2|) |#1|)) (-15 -2731 ((-1193 |#2|) |#1|)) (-15 -4281 ((-1193 |#2|) |#1|)) (-15 -4352 (|#2| (-1288 |#1|))) (-15 -4152 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4152 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -1381 (|#2| |#1|)) (-15 -2210 (|#2| |#1|)) (-15 -3734 ((-940))) (-15 -3570 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3996 ((-783))) (-15 -3570 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 -1561 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-940))) (-15 -3044 (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -3030 (|#1| |#1| |#1|)) (-15 -3570 ((-876) |#1|)) (-15 -4055 ((-112) |#1| |#1|)) (-15 -2925 ((-112) |#1| |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 105 (-2760 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-2757 (($ $) 106 (-2760 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-3788 (((-112) $) 108 (-2760 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-4101 (((-701 |#1|) (-1288 $)) 53) (((-701 |#1|)) 68)) (-2210 ((|#1| $) 59)) (-4025 (($ $) 236 (|has| |#1| (-1223)))) (-3901 (($ $) 219 (|has| |#1| (-1223)))) (-4183 (((-1210 (-940) (-783)) (-576)) 158 (|has| |#1| (-360)))) (-4367 (((-3 $ "failed") $ $) 20)) (-3601 (((-430 (-1193 $)) (-1193 $)) 250 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-2487 (($ $) 125 (-2760 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-3921 (((-430 $) $) 126 (-2760 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-1839 (($ $) 249 (-12 (|has| |#1| (-1023)) (|has| |#1| (-1223))))) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 253 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-4016 (((-112) $ $) 116 (|has| |#1| (-317)))) (-2098 (((-783)) 99 (|has| |#1| (-379)))) (-4006 (($ $) 235 (|has| |#1| (-1223)))) (-3877 (($ $) 220 (|has| |#1| (-1223)))) (-4050 (($ $) 234 (|has| |#1| (-1223)))) (-3920 (($ $) 221 (|has| |#1| (-1223)))) (-3886 (($) 18 T CONST)) (-1572 (((-3 (-576) "failed") $) 185 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 183 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 180)) (-2860 (((-576) $) 184 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 182 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 181)) (-4119 (($ (-1288 |#1|) (-1288 $)) 55) (($ (-1288 |#1|)) 71)) (-2554 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-360)))) (-3429 (($ $ $) 120 (|has| |#1| (-317)))) (-1420 (((-701 |#1|) $ (-1288 $)) 60) (((-701 |#1|) $) 66)) (-2204 (((-701 (-576)) (-701 $)) 177 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 176 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 175) (((-701 |#1|) (-701 $)) 174)) (-3686 (($ (-1193 |#1|)) 169) (((-3 $ "failed") (-419 (-1193 |#1|))) 166 (|has| |#1| (-374)))) (-1561 (((-3 $ "failed") $) 37)) (-1850 ((|#1| $) 261)) (-3104 (((-3 (-419 (-576)) "failed") $) 254 (|has| |#1| (-557)))) (-2545 (((-112) $) 256 (|has| |#1| (-557)))) (-2568 (((-419 (-576)) $) 255 (|has| |#1| (-557)))) (-3734 (((-940)) 61)) (-1836 (($) 102 (|has| |#1| (-379)))) (-3441 (($ $ $) 119 (|has| |#1| (-317)))) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) 114 (|has| |#1| (-317)))) (-2005 (($) 160 (|has| |#1| (-360)))) (-4090 (((-112) $) 161 (|has| |#1| (-360)))) (-2910 (($ $ (-783)) 152 (|has| |#1| (-360))) (($ $) 151 (|has| |#1| (-360)))) (-4249 (((-112) $) 127 (-2760 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-1430 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 257 (-12 (|has| |#1| (-1081)) (|has| |#1| (-1223))))) (-1600 (($) 246 (|has| |#1| (-1223)))) (-1840 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 269 (|has| |#1| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 268 (|has| |#1| (-901 (-390))))) (-3917 (((-940) $) 163 (|has| |#1| (-360))) (((-845 (-940)) $) 149 (|has| |#1| (-360)))) (-4193 (((-112) $) 35)) (-2121 (($ $ (-576)) 248 (-12 (|has| |#1| (-1023)) (|has| |#1| (-1223))))) (-1381 ((|#1| $) 58)) (-2240 (((-3 $ "failed") $) 153 (|has| |#1| (-360)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) 123 (|has| |#1| (-317)))) (-2731 (((-1193 |#1|) $) 51 (|has| |#1| (-374)))) (-4117 (($ (-1 |#1| |#1|) $) 270)) (-4401 (((-940) $) 101 (|has| |#1| (-379)))) (-3745 (($ $) 243 (|has| |#1| (-1223)))) (-3672 (((-1193 |#1|) $) 167)) (-3913 (((-701 (-576)) (-1288 $)) 179 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 178 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 173) (((-701 |#1|) (-1288 $)) 172)) (-3458 (($ (-656 $)) 112 (-2760 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (($ $ $) 111 (-2760 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-3699 (((-1179) $) 10)) (-2050 (($ $) 128 (|has| |#1| (-374)))) (-3540 (($) 154 (|has| |#1| (-360)) CONST)) (-3224 (($ (-940)) 100 (|has| |#1| (-379)))) (-2429 (($) 265)) (-1860 ((|#1| $) 262)) (-1450 (((-1141) $) 11)) (-4129 (($) 171)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 113 (-2760 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-3498 (($ (-656 $)) 110 (-2760 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (($ $ $) 109 (-2760 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-2406 (((-656 (-2 (|:| -1828 (-576)) (|:| -3422 (-576))))) 157 (|has| |#1| (-360)))) (-4100 (((-430 (-1193 $)) (-1193 $)) 252 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-1811 (((-430 (-1193 $)) (-1193 $)) 251 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-1828 (((-430 $) $) 124 (-2760 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 121 (|has| |#1| (-317)))) (-3476 (((-3 $ "failed") $ |#1|) 260 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 104 (-2760 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) 115 (|has| |#1| (-317)))) (-4104 (($ $) 244 (|has| |#1| (-1223)))) (-3284 (($ $ (-656 |#1|) (-656 |#1|)) 276 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 275 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 274 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 273 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 272 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) 271 (|has| |#1| (-526 (-1197) |#1|)))) (-1967 (((-783) $) 117 (|has| |#1| (-317)))) (-2797 (($ $ |#1|) 277 (|has| |#1| (-296 |#1| |#1|)))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 118 (|has| |#1| (-317)))) (-4352 ((|#1| (-1288 $)) 54) ((|#1|) 67)) (-3793 (((-783) $) 162 (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) 150 (|has| |#1| (-360)))) (-2775 (($ $ (-1 |#1| |#1|)) 136) (($ $ (-1 |#1| |#1|) (-783)) 135) (($ $ (-656 (-1197)) (-656 (-783))) 141 (-2760 (-2675 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2675 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197) (-783)) 140 (-2760 (-2675 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2675 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-656 (-1197))) 139 (-2760 (-2675 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2675 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197)) 137 (-2760 (-2675 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2675 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-783)) 147 (-2760 (-2675 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2675 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2675 (|has| |#1| (-237)) (|has| |#1| (-374))))) (($ $) 145 (-2760 (-2675 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2675 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2675 (|has| |#1| (-237)) (|has| |#1| (-374)))))) (-2433 (((-701 |#1|) (-1288 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-374)))) (-3867 (((-1193 |#1|)) 170)) (-4061 (($ $) 233 (|has| |#1| (-1223)))) (-3930 (($ $) 222 (|has| |#1| (-1223)))) (-1535 (($) 159 (|has| |#1| (-360)))) (-4037 (($ $) 232 (|has| |#1| (-1223)))) (-3910 (($ $) 223 (|has| |#1| (-1223)))) (-4014 (($ $) 231 (|has| |#1| (-1223)))) (-3889 (($ $) 224 (|has| |#1| (-1223)))) (-4152 (((-1288 |#1|) $ (-1288 $)) 57) (((-701 |#1|) (-1288 $) (-1288 $)) 56) (((-1288 |#1|) $) 73) (((-701 |#1|) (-1288 $)) 72)) (-4172 (((-1288 |#1|) $) 70) (($ (-1288 |#1|)) 69) (((-1193 |#1|) $) 186) (($ (-1193 |#1|)) 168) (((-907 (-576)) $) 267 (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) 266 (|has| |#1| (-626 (-907 (-390))))) (((-171 (-390)) $) 218 (|has| |#1| (-1043))) (((-171 (-227)) $) 217 (|has| |#1| (-1043))) (((-548) $) 216 (|has| |#1| (-626 (-548))))) (-2314 (($ $) 264)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) 156 (-2760 (-2675 (|has| $ (-146)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))) (|has| |#1| (-360))))) (-4178 (($ |#1| |#1|) 263)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 98 (-2760 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) 103 (-2760 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-4336 (($ $) 155 (|has| |#1| (-360))) (((-3 $ "failed") $) 50 (-2760 (-2675 (|has| $ (-146)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))) (|has| |#1| (-146))))) (-4281 (((-1193 |#1|) $) 52)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-1593 (((-1288 $)) 74)) (-2791 (($ $) 242 (|has| |#1| (-1223)))) (-3961 (($ $) 230 (|has| |#1| (-1223)))) (-2672 (((-112) $ $) 107 (-2760 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-4071 (($ $) 241 (|has| |#1| (-1223)))) (-3938 (($ $) 229 (|has| |#1| (-1223)))) (-2815 (($ $) 240 (|has| |#1| (-1223)))) (-3983 (($ $) 228 (|has| |#1| (-1223)))) (-1737 ((|#1| $) 258 (|has| |#1| (-1223)))) (-4388 (($ $) 239 (|has| |#1| (-1223)))) (-3995 (($ $) 227 (|has| |#1| (-1223)))) (-2803 (($ $) 238 (|has| |#1| (-1223)))) (-3974 (($ $) 226 (|has| |#1| (-1223)))) (-4083 (($ $) 237 (|has| |#1| (-1223)))) (-3951 (($ $) 225 (|has| |#1| (-1223)))) (-2122 (($ $) 259 (|has| |#1| (-1081)))) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2020 (($ $ (-1 |#1| |#1|)) 134) (($ $ (-1 |#1| |#1|) (-783)) 133) (($ $ (-656 (-1197)) (-656 (-783))) 144 (-2760 (-2675 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2675 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197) (-783)) 143 (-2760 (-2675 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2675 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-656 (-1197))) 142 (-2760 (-2675 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2675 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197)) 138 (-2760 (-2675 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2675 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-783)) 148 (-2760 (-2675 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2675 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2675 (|has| |#1| (-237)) (|has| |#1| (-374))))) (($ $) 146 (-2760 (-2675 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2675 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2675 (|has| |#1| (-237)) (|has| |#1| (-374)))))) (-2925 (((-112) $ $) 8)) (-3057 (($ $ $) 132 (|has| |#1| (-374)))) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-419 (-576))) 247 (-12 (|has| |#1| (-1023)) (|has| |#1| (-1223)))) (($ $ $) 245 (|has| |#1| (-1223))) (($ $ (-576)) 129 (|has| |#1| (-374)))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-419 (-576)) $) 131 (|has| |#1| (-374))) (($ $ (-419 (-576))) 130 (|has| |#1| (-374))))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 16) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2640 (((-656 (-1156)) $) 10)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-162) (-13 (-1104) (-10 -8 (-15 -2640 ((-656 (-1156)) $))))) (T -162)) +((-2640 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-162))))) +(-13 (-1104) (-10 -8 (-15 -2640 ((-656 (-1156)) $)))) +((-3488 (((-112) $ $) NIL)) (-4322 (($ (-576)) 14) (($ $ $) 15)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 18)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 9))) +(((-163) (-13 (-1121) (-10 -8 (-15 -4322 ($ (-576))) (-15 -4322 ($ $ $))))) (T -163)) +((-4322 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-163)))) (-4322 (*1 *1 *1 *1) (-5 *1 (-163)))) +(-13 (-1121) (-10 -8 (-15 -4322 ($ (-576))) (-15 -4322 ($ $ $)))) +((-1776 (((-115) (-1197)) 102))) +(((-164) (-10 -7 (-15 -1776 ((-115) (-1197))))) (T -164)) +((-1776 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-115)) (-5 *1 (-164))))) +(-10 -7 (-15 -1776 ((-115) (-1197)))) +((-4357 ((|#3| |#3|) 19))) +(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -4357 (|#3| |#3|))) (-1070) (-1264 |#1|) (-1264 |#2|)) (T -165)) +((-4357 (*1 *2 *2) (-12 (-4 *3 (-1070)) (-4 *4 (-1264 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1264 *4))))) +(-10 -7 (-15 -4357 (|#3| |#3|))) +((-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 223)) (-2210 ((|#2| $) 102)) (-4024 (($ $) 256)) (-3900 (($ $) 250)) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 47)) (-4005 (($ $) 254)) (-3876 (($ $) 248)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-2859 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 144)) (-3428 (($ $ $) 229)) (-3674 (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) 160) (((-701 |#2|) (-701 $)) 154)) (-3685 (($ (-1193 |#2|)) 125) (((-3 $ "failed") (-419 (-1193 |#2|))) NIL)) (-3673 (((-3 $ "failed") $) 214)) (-2358 (((-3 (-419 (-576)) "failed") $) 204)) (-2769 (((-112) $) 199)) (-3025 (((-419 (-576)) $) 202)) (-3733 (((-940)) 96)) (-3440 (($ $ $) 231)) (-2177 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-1600 (($) 245)) (-3325 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 193) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 198)) (-2738 ((|#2| $) 100)) (-1989 (((-1193 |#2|) $) 127)) (-4116 (($ (-1 |#2| |#2|) $) 108)) (-3744 (($ $) 247)) (-3671 (((-1193 |#2|) $) 126)) (-2050 (($ $) 207)) (-4104 (($) 103)) (-1644 (((-430 (-1193 $)) (-1193 $)) 95)) (-4296 (((-430 (-1193 $)) (-1193 $)) 64)) (-3475 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-4103 (($ $) 246)) (-1979 (((-783) $) 226)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 236)) (-2269 ((|#2| (-1288 $)) NIL) ((|#2|) 98)) (-2774 (($ $ (-1 |#2| |#2|)) 119) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-1346 (((-1193 |#2|)) 120)) (-4013 (($ $) 255)) (-3888 (($ $) 249)) (-4096 (((-1288 |#2|) $ (-1288 $)) 136) (((-701 |#2|) (-1288 $) (-1288 $)) NIL) (((-1288 |#2|) $) 116) (((-701 |#2|) (-1288 $)) NIL)) (-4171 (((-1288 |#2|) $) NIL) (($ (-1288 |#2|)) NIL) (((-1193 |#2|) $) NIL) (($ (-1193 |#2|)) NIL) (((-907 (-576)) $) 184) (((-907 (-390)) $) 188) (((-171 (-390)) $) 172) (((-171 (-227)) $) 167) (((-548) $) 180)) (-2272 (($ $) 104)) (-3569 (((-876) $) 143) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-419 (-576))) NIL) (($ $) NIL)) (-2857 (((-1193 |#2|) $) 32)) (-3154 (((-783)) 106)) (-2399 (((-112) $ $) 13)) (-2790 (($ $) 259)) (-3960 (($ $) 253)) (-4070 (($ $) 257)) (-3937 (($ $) 251)) (-1631 ((|#2| $) 242)) (-4082 (($ $) 258)) (-3950 (($ $) 252)) (-4143 (($ $) 162)) (-2924 (((-112) $ $) 110)) (-3043 (($ $) 112) (($ $ $) NIL)) (-3029 (($ $ $) 111)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-419 (-576))) 276) (($ $ $) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL))) +(((-166 |#1| |#2|) (-10 -8 (-15 -2774 (|#1| |#1|)) (-15 -2774 (|#1| |#1| (-783))) (-15 -2774 (|#1| |#1| (-1197))) (-15 -2774 (|#1| |#1| (-656 (-1197)))) (-15 -2774 (|#1| |#1| (-1197) (-783))) (-15 -2774 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -3569 (|#1| |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2798 ((-2 (|:| -4346 |#1|) (|:| -4451 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1979 ((-783) |#1|)) (-15 -3536 ((-2 (|:| -1855 |#1|) (|:| -3891 |#1|)) |#1| |#1|)) (-15 -3440 (|#1| |#1| |#1|)) (-15 -3428 (|#1| |#1| |#1|)) (-15 -2050 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -4171 ((-548) |#1|)) (-15 -4171 ((-171 (-227)) |#1|)) (-15 -4171 ((-171 (-390)) |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -3876 (|#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -3950 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -4013 (|#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -4024 (|#1| |#1|)) (-15 -4082 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -2790 (|#1| |#1|)) (-15 -3744 (|#1| |#1|)) (-15 -4103 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1600 (|#1|)) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -4296 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -1644 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -3220 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -2358 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3025 ((-419 (-576)) |#1|)) (-15 -2769 ((-112) |#1|)) (-15 -2177 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1631 (|#2| |#1|)) (-15 -4143 (|#1| |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2272 (|#1| |#1|)) (-15 -4104 (|#1|)) (-15 -4171 ((-907 (-390)) |#1|)) (-15 -4171 ((-907 (-576)) |#1|)) (-15 -3325 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -3325 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3685 ((-3 |#1| "failed") (-419 (-1193 |#2|)))) (-15 -3671 ((-1193 |#2|) |#1|)) (-15 -4171 (|#1| (-1193 |#2|))) (-15 -3685 (|#1| (-1193 |#2|))) (-15 -1346 ((-1193 |#2|))) (-15 -3674 ((-701 |#2|) (-701 |#1|))) (-15 -3674 ((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -3674 ((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -3674 ((-701 (-576)) (-701 |#1|))) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -4171 ((-1193 |#2|) |#1|)) (-15 -2269 (|#2|)) (-15 -4171 (|#1| (-1288 |#2|))) (-15 -4171 ((-1288 |#2|) |#1|)) (-15 -4096 ((-701 |#2|) (-1288 |#1|))) (-15 -4096 ((-1288 |#2|) |#1|)) (-15 -1989 ((-1193 |#2|) |#1|)) (-15 -2857 ((-1193 |#2|) |#1|)) (-15 -2269 (|#2| (-1288 |#1|))) (-15 -4096 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4096 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -2738 (|#2| |#1|)) (-15 -2210 (|#2| |#1|)) (-15 -3733 ((-940))) (-15 -3569 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3154 ((-783))) (-15 -3569 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 -3673 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-940))) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -3029 (|#1| |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -2399 ((-112) |#1| |#1|)) (-15 -2924 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166)) +((-3154 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-3733 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-940)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-2269 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-1346 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1193 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4))))) +(-10 -8 (-15 -2774 (|#1| |#1|)) (-15 -2774 (|#1| |#1| (-783))) (-15 -2774 (|#1| |#1| (-1197))) (-15 -2774 (|#1| |#1| (-656 (-1197)))) (-15 -2774 (|#1| |#1| (-1197) (-783))) (-15 -2774 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -3569 (|#1| |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2798 ((-2 (|:| -4346 |#1|) (|:| -4451 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1979 ((-783) |#1|)) (-15 -3536 ((-2 (|:| -1855 |#1|) (|:| -3891 |#1|)) |#1| |#1|)) (-15 -3440 (|#1| |#1| |#1|)) (-15 -3428 (|#1| |#1| |#1|)) (-15 -2050 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -4171 ((-548) |#1|)) (-15 -4171 ((-171 (-227)) |#1|)) (-15 -4171 ((-171 (-390)) |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -3876 (|#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -3950 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -4013 (|#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -4024 (|#1| |#1|)) (-15 -4082 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -2790 (|#1| |#1|)) (-15 -3744 (|#1| |#1|)) (-15 -4103 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1600 (|#1|)) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -4296 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -1644 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -3220 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -2358 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3025 ((-419 (-576)) |#1|)) (-15 -2769 ((-112) |#1|)) (-15 -2177 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1631 (|#2| |#1|)) (-15 -4143 (|#1| |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2272 (|#1| |#1|)) (-15 -4104 (|#1|)) (-15 -4171 ((-907 (-390)) |#1|)) (-15 -4171 ((-907 (-576)) |#1|)) (-15 -3325 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -3325 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3685 ((-3 |#1| "failed") (-419 (-1193 |#2|)))) (-15 -3671 ((-1193 |#2|) |#1|)) (-15 -4171 (|#1| (-1193 |#2|))) (-15 -3685 (|#1| (-1193 |#2|))) (-15 -1346 ((-1193 |#2|))) (-15 -3674 ((-701 |#2|) (-701 |#1|))) (-15 -3674 ((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -3674 ((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -3674 ((-701 (-576)) (-701 |#1|))) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -4171 ((-1193 |#2|) |#1|)) (-15 -2269 (|#2|)) (-15 -4171 (|#1| (-1288 |#2|))) (-15 -4171 ((-1288 |#2|) |#1|)) (-15 -4096 ((-701 |#2|) (-1288 |#1|))) (-15 -4096 ((-1288 |#2|) |#1|)) (-15 -1989 ((-1193 |#2|) |#1|)) (-15 -2857 ((-1193 |#2|) |#1|)) (-15 -2269 (|#2| (-1288 |#1|))) (-15 -4096 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4096 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -2738 (|#2| |#1|)) (-15 -2210 (|#2| |#1|)) (-15 -3733 ((-940))) (-15 -3569 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3154 ((-783))) (-15 -3569 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 -3673 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-940))) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -3029 (|#1| |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -2399 ((-112) |#1| |#1|)) (-15 -2924 ((-112) |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 105 (-2759 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-4195 (($ $) 106 (-2759 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-1760 (((-112) $) 108 (-2759 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-1656 (((-701 |#1|) (-1288 $)) 53) (((-701 |#1|)) 68)) (-2210 ((|#1| $) 59)) (-4024 (($ $) 236 (|has| |#1| (-1223)))) (-3900 (($ $) 219 (|has| |#1| (-1223)))) (-4371 (((-1210 (-940) (-783)) (-576)) 158 (|has| |#1| (-360)))) (-2428 (((-3 $ "failed") $ $) 20)) (-3646 (((-430 (-1193 $)) (-1193 $)) 250 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-3444 (($ $) 125 (-2759 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-3760 (((-430 $) $) 126 (-2759 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-1840 (($ $) 249 (-12 (|has| |#1| (-1023)) (|has| |#1| (-1223))))) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 253 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-3330 (((-112) $ $) 116 (|has| |#1| (-317)))) (-2098 (((-783)) 99 (|has| |#1| (-379)))) (-4005 (($ $) 235 (|has| |#1| (-1223)))) (-3876 (($ $) 220 (|has| |#1| (-1223)))) (-4049 (($ $) 234 (|has| |#1| (-1223)))) (-3919 (($ $) 221 (|has| |#1| (-1223)))) (-3404 (($) 18 T CONST)) (-1572 (((-3 (-576) "failed") $) 185 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 183 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 180)) (-2859 (((-576) $) 184 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 182 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 181)) (-1819 (($ (-1288 |#1|) (-1288 $)) 55) (($ (-1288 |#1|)) 71)) (-2868 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-360)))) (-3428 (($ $ $) 120 (|has| |#1| (-317)))) (-2072 (((-701 |#1|) $ (-1288 $)) 60) (((-701 |#1|) $) 66)) (-3674 (((-701 (-576)) (-701 $)) 177 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 176 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 175) (((-701 |#1|) (-701 $)) 174)) (-3685 (($ (-1193 |#1|)) 169) (((-3 $ "failed") (-419 (-1193 |#1|))) 166 (|has| |#1| (-374)))) (-3673 (((-3 $ "failed") $) 37)) (-1850 ((|#1| $) 261)) (-2358 (((-3 (-419 (-576)) "failed") $) 254 (|has| |#1| (-557)))) (-2769 (((-112) $) 256 (|has| |#1| (-557)))) (-3025 (((-419 (-576)) $) 255 (|has| |#1| (-557)))) (-3733 (((-940)) 61)) (-1836 (($) 102 (|has| |#1| (-379)))) (-3440 (($ $ $) 119 (|has| |#1| (-317)))) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) 114 (|has| |#1| (-317)))) (-2345 (($) 160 (|has| |#1| (-360)))) (-1543 (((-112) $) 161 (|has| |#1| (-360)))) (-3153 (($ $ (-783)) 152 (|has| |#1| (-360))) (($ $) 151 (|has| |#1| (-360)))) (-3833 (((-112) $) 127 (-2759 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-2177 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 257 (-12 (|has| |#1| (-1081)) (|has| |#1| (-1223))))) (-1600 (($) 246 (|has| |#1| (-1223)))) (-3325 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 269 (|has| |#1| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 268 (|has| |#1| (-901 (-390))))) (-3726 (((-940) $) 163 (|has| |#1| (-360))) (((-845 (-940)) $) 149 (|has| |#1| (-360)))) (-1351 (((-112) $) 35)) (-4131 (($ $ (-576)) 248 (-12 (|has| |#1| (-1023)) (|has| |#1| (-1223))))) (-2738 ((|#1| $) 58)) (-2734 (((-3 $ "failed") $) 153 (|has| |#1| (-360)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) 123 (|has| |#1| (-317)))) (-1989 (((-1193 |#1|) $) 51 (|has| |#1| (-374)))) (-4116 (($ (-1 |#1| |#1|) $) 270)) (-1558 (((-940) $) 101 (|has| |#1| (-379)))) (-3744 (($ $) 243 (|has| |#1| (-1223)))) (-3671 (((-1193 |#1|) $) 167)) (-3676 (((-701 (-576)) (-1288 $)) 179 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 178 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 173) (((-701 |#1|) (-1288 $)) 172)) (-3457 (($ (-656 $)) 112 (-2759 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (($ $ $) 111 (-2759 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-2046 (((-1179) $) 10)) (-2050 (($ $) 128 (|has| |#1| (-374)))) (-3539 (($) 154 (|has| |#1| (-360)) CONST)) (-3223 (($ (-940)) 100 (|has| |#1| (-379)))) (-4104 (($) 265)) (-1860 ((|#1| $) 262)) (-1450 (((-1141) $) 11)) (-4128 (($) 171)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 113 (-2759 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-3497 (($ (-656 $)) 110 (-2759 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (($ $ $) 109 (-2759 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-1913 (((-656 (-2 (|:| -1828 (-576)) (|:| -2508 (-576))))) 157 (|has| |#1| (-360)))) (-1644 (((-430 (-1193 $)) (-1193 $)) 252 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-4296 (((-430 (-1193 $)) (-1193 $)) 251 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-1828 (((-430 $) $) 124 (-2759 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 121 (|has| |#1| (-317)))) (-3475 (((-3 $ "failed") $ |#1|) 260 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 104 (-2759 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) 115 (|has| |#1| (-317)))) (-4103 (($ $) 244 (|has| |#1| (-1223)))) (-3282 (($ $ (-656 |#1|) (-656 |#1|)) 276 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 275 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 274 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 273 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 272 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) 271 (|has| |#1| (-526 (-1197) |#1|)))) (-1979 (((-783) $) 117 (|has| |#1| (-317)))) (-2796 (($ $ |#1|) 277 (|has| |#1| (-296 |#1| |#1|)))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 118 (|has| |#1| (-317)))) (-2269 ((|#1| (-1288 $)) 54) ((|#1|) 67)) (-1813 (((-783) $) 162 (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) 150 (|has| |#1| (-360)))) (-2774 (($ $ (-1 |#1| |#1|)) 136) (($ $ (-1 |#1| |#1|) (-783)) 135) (($ $ (-656 (-1197)) (-656 (-783))) 141 (-2759 (-2674 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2674 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197) (-783)) 140 (-2759 (-2674 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2674 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-656 (-1197))) 139 (-2759 (-2674 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2674 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197)) 137 (-2759 (-2674 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2674 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-783)) 147 (-2759 (-2674 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2674 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2674 (|has| |#1| (-237)) (|has| |#1| (-374))))) (($ $) 145 (-2759 (-2674 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2674 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2674 (|has| |#1| (-237)) (|has| |#1| (-374)))))) (-4149 (((-701 |#1|) (-1288 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-374)))) (-1346 (((-1193 |#1|)) 170)) (-4060 (($ $) 233 (|has| |#1| (-1223)))) (-3929 (($ $) 222 (|has| |#1| (-1223)))) (-3371 (($) 159 (|has| |#1| (-360)))) (-4036 (($ $) 232 (|has| |#1| (-1223)))) (-3909 (($ $) 223 (|has| |#1| (-1223)))) (-4013 (($ $) 231 (|has| |#1| (-1223)))) (-3888 (($ $) 224 (|has| |#1| (-1223)))) (-4096 (((-1288 |#1|) $ (-1288 $)) 57) (((-701 |#1|) (-1288 $) (-1288 $)) 56) (((-1288 |#1|) $) 73) (((-701 |#1|) (-1288 $)) 72)) (-4171 (((-1288 |#1|) $) 70) (($ (-1288 |#1|)) 69) (((-1193 |#1|) $) 186) (($ (-1193 |#1|)) 168) (((-907 (-576)) $) 267 (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) 266 (|has| |#1| (-626 (-907 (-390))))) (((-171 (-390)) $) 218 (|has| |#1| (-1043))) (((-171 (-227)) $) 217 (|has| |#1| (-1043))) (((-548) $) 216 (|has| |#1| (-626 (-548))))) (-2272 (($ $) 264)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) 156 (-2759 (-2674 (|has| $ (-146)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))) (|has| |#1| (-360))))) (-4177 (($ |#1| |#1|) 263)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 98 (-2759 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) 103 (-2759 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-3390 (($ $) 155 (|has| |#1| (-360))) (((-3 $ "failed") $) 50 (-2759 (-2674 (|has| $ (-146)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))) (|has| |#1| (-146))))) (-2857 (((-1193 |#1|) $) 52)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-2675 (((-1288 $)) 74)) (-2790 (($ $) 242 (|has| |#1| (-1223)))) (-3960 (($ $) 230 (|has| |#1| (-1223)))) (-1505 (((-112) $ $) 107 (-2759 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-4070 (($ $) 241 (|has| |#1| (-1223)))) (-3937 (($ $) 229 (|has| |#1| (-1223)))) (-2814 (($ $) 240 (|has| |#1| (-1223)))) (-3982 (($ $) 228 (|has| |#1| (-1223)))) (-1631 ((|#1| $) 258 (|has| |#1| (-1223)))) (-4387 (($ $) 239 (|has| |#1| (-1223)))) (-3994 (($ $) 227 (|has| |#1| (-1223)))) (-2802 (($ $) 238 (|has| |#1| (-1223)))) (-3973 (($ $) 226 (|has| |#1| (-1223)))) (-4082 (($ $) 237 (|has| |#1| (-1223)))) (-3950 (($ $) 225 (|has| |#1| (-1223)))) (-4143 (($ $) 259 (|has| |#1| (-1081)))) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2020 (($ $ (-1 |#1| |#1|)) 134) (($ $ (-1 |#1| |#1|) (-783)) 133) (($ $ (-656 (-1197)) (-656 (-783))) 144 (-2759 (-2674 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2674 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197) (-783)) 143 (-2759 (-2674 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2674 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-656 (-1197))) 142 (-2759 (-2674 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2674 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197)) 138 (-2759 (-2674 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2674 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-783)) 148 (-2759 (-2674 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2674 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2674 (|has| |#1| (-237)) (|has| |#1| (-374))))) (($ $) 146 (-2759 (-2674 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2674 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2674 (|has| |#1| (-237)) (|has| |#1| (-374)))))) (-2924 (((-112) $ $) 8)) (-3056 (($ $ $) 132 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-419 (-576))) 247 (-12 (|has| |#1| (-1023)) (|has| |#1| (-1223)))) (($ $ $) 245 (|has| |#1| (-1223))) (($ $ (-576)) 129 (|has| |#1| (-374)))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-419 (-576)) $) 131 (|has| |#1| (-374))) (($ $ (-419 (-576))) 130 (|has| |#1| (-374))))) (((-167 |#1|) (-141) (-174)) (T -167)) -((-1381 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2429 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2314 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4178 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1860 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1850 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3476 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-2122 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1081)))) (-1737 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1223)))) (-1430 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1081)) (-4 *3 (-1223)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2545 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-2568 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-3104 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576)))))) -(-13 (-736 |t#1| (-1193 |t#1|)) (-423 |t#1|) (-232 |t#1|) (-349 |t#1|) (-412 |t#1|) (-899 |t#1|) (-388 |t#1|) (-174) (-10 -8 (-6 -4178) (-15 -2429 ($)) (-15 -2314 ($ $)) (-15 -4178 ($ |t#1| |t#1|)) (-15 -1860 (|t#1| $)) (-15 -1850 (|t#1| $)) (-15 -1381 (|t#1| $)) (IF (|has| |t#1| (-568)) (PROGN (-6 (-568)) (-15 -3476 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-317)) (-6 (-317)) |%noBranch|) (IF (|has| |t#1| (-6 -4464)) (-6 -4464) |%noBranch|) (IF (|has| |t#1| (-6 -4461)) (-6 -4461) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1043)) (PROGN (-6 (-626 (-171 (-227)))) (-6 (-626 (-171 (-390))))) |%noBranch|) (IF (|has| |t#1| (-1081)) (-15 -2122 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1223)) (PROGN (-6 (-1223)) (-15 -1737 (|t#1| $)) (IF (|has| |t#1| (-1023)) (-6 (-1023)) |%noBranch|) (IF (|has| |t#1| (-1081)) (-15 -1430 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -2545 ((-112) $)) (-15 -2568 ((-419 (-576)) $)) (-15 -3104 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-928)) (IF (|has| |t#1| (-317)) (-6 (-928)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-38 |#1|) . T) ((-38 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-35) |has| |#1| (-1223)) ((-95) |has| |#1| (-1223)) ((-102) . T) ((-111 #0# #0#) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2760 (|has| |#1| (-360)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) -2760 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-360)) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-625 (-876)) . T) ((-174) . T) ((-626 (-171 (-227))) |has| |#1| (-1043)) ((-626 (-171 (-390))) |has| |#1| (-1043)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-907 (-390))) |has| |#1| (-626 (-907 (-390)))) ((-626 (-907 (-576))) |has| |#1| (-626 (-907 (-576)))) ((-626 #1=(-1193 |#1|)) . T) ((-234 $) -2760 (|has| |#1| (-360)) (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) -2760 (|has| |#1| (-360)) (|has| |#1| (-238))) ((-237) -2760 (|has| |#1| (-360)) (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-294) |has| |#1| (-1223)) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) -2760 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-317) -2760 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-374) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-414) |has| |#1| (-360)) ((-379) -2760 (|has| |#1| (-379)) (|has| |#1| (-360))) ((-360) |has| |#1| (-360)) ((-381 |#1| #1#) . T) ((-421 |#1| #1#) . T) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-464) -2760 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-505) |has| |#1| (-1223)) ((-526 (-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-568) -2760 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-658 #0#) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-660 #2=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-652 |#1|) . T) ((-652 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-651 #2#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-729 |#1|) . T) ((-729 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-736 |#1| #1#) . T) ((-738) . T) ((-911 $ #3=(-1197)) -2760 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-917 (-1197)) |has| |#1| (-917 (-1197))) ((-919 #3#) -2760 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-901 (-390)) |has| |#1| (-901 (-390))) ((-901 (-576)) |has| |#1| (-901 (-576))) ((-899 |#1|) . T) ((-928) -12 (|has| |#1| (-317)) (|has| |#1| (-928))) ((-939) -2760 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-1023) -12 (|has| |#1| (-1023)) (|has| |#1| (-1223))) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1072 #0#) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1077 #0#) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1077 |#1|) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) |has| |#1| (-360)) ((-1223) |has| |#1| (-1223)) ((-1226) |has| |#1| (-1223)) ((-1238) . T) ((-1242) -2760 (|has| |#1| (-360)) (|has| |#1| (-374)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) +((-2738 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4104 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2272 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4177 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1860 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1850 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3475 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-4143 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1081)))) (-1631 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1223)))) (-2177 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1081)) (-4 *3 (-1223)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2769 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-2358 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576)))))) +(-13 (-736 |t#1| (-1193 |t#1|)) (-423 |t#1|) (-232 |t#1|) (-349 |t#1|) (-412 |t#1|) (-899 |t#1|) (-388 |t#1|) (-174) (-10 -8 (-6 -4177) (-15 -4104 ($)) (-15 -2272 ($ $)) (-15 -4177 ($ |t#1| |t#1|)) (-15 -1860 (|t#1| $)) (-15 -1850 (|t#1| $)) (-15 -2738 (|t#1| $)) (IF (|has| |t#1| (-568)) (PROGN (-6 (-568)) (-15 -3475 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-317)) (-6 (-317)) |%noBranch|) (IF (|has| |t#1| (-6 -4463)) (-6 -4463) |%noBranch|) (IF (|has| |t#1| (-6 -4460)) (-6 -4460) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1043)) (PROGN (-6 (-626 (-171 (-227)))) (-6 (-626 (-171 (-390))))) |%noBranch|) (IF (|has| |t#1| (-1081)) (-15 -4143 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1223)) (PROGN (-6 (-1223)) (-15 -1631 (|t#1| $)) (IF (|has| |t#1| (-1023)) (-6 (-1023)) |%noBranch|) (IF (|has| |t#1| (-1081)) (-15 -2177 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -2769 ((-112) $)) (-15 -3025 ((-419 (-576)) $)) (-15 -2358 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-928)) (IF (|has| |t#1| (-317)) (-6 (-928)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-38 |#1|) . T) ((-38 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-35) |has| |#1| (-1223)) ((-95) |has| |#1| (-1223)) ((-102) . T) ((-111 #0# #0#) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2759 (|has| |#1| (-360)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) -2759 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-360)) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-625 (-876)) . T) ((-174) . T) ((-626 (-171 (-227))) |has| |#1| (-1043)) ((-626 (-171 (-390))) |has| |#1| (-1043)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-907 (-390))) |has| |#1| (-626 (-907 (-390)))) ((-626 (-907 (-576))) |has| |#1| (-626 (-907 (-576)))) ((-626 #1=(-1193 |#1|)) . T) ((-234 $) -2759 (|has| |#1| (-360)) (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) -2759 (|has| |#1| (-360)) (|has| |#1| (-238))) ((-237) -2759 (|has| |#1| (-360)) (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-294) |has| |#1| (-1223)) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) -2759 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-317) -2759 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-374) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-414) |has| |#1| (-360)) ((-379) -2759 (|has| |#1| (-379)) (|has| |#1| (-360))) ((-360) |has| |#1| (-360)) ((-381 |#1| #1#) . T) ((-421 |#1| #1#) . T) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-464) -2759 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-505) |has| |#1| (-1223)) ((-526 (-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-568) -2759 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-658 #0#) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-660 #2=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-652 |#1|) . T) ((-652 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-651 #2#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-729 |#1|) . T) ((-729 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-736 |#1| #1#) . T) ((-738) . T) ((-911 $ #3=(-1197)) -2759 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-917 (-1197)) |has| |#1| (-917 (-1197))) ((-919 #3#) -2759 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-901 (-390)) |has| |#1| (-901 (-390))) ((-901 (-576)) |has| |#1| (-901 (-576))) ((-899 |#1|) . T) ((-928) -12 (|has| |#1| (-317)) (|has| |#1| (-928))) ((-939) -2759 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-1023) -12 (|has| |#1| (-1023)) (|has| |#1| (-1223))) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1072 #0#) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1077 #0#) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1077 |#1|) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) |has| |#1| (-360)) ((-1223) |has| |#1| (-1223)) ((-1226) |has| |#1| (-1223)) ((-1238) . T) ((-1242) -2759 (|has| |#1| (-360)) (|has| |#1| (-374)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) ((-1828 (((-430 |#2|) |#2|) 67))) (((-168 |#1| |#2|) (-10 -7 (-15 -1828 ((-430 |#2|) |#2|))) (-317) (-1264 (-171 |#1|))) (T -168)) ((-1828 (*1 *2 *3) (-12 (-4 *4 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1264 (-171 *4)))))) (-10 -7 (-15 -1828 ((-430 |#2|) |#2|))) -((-2376 (((-1156) (-1156) (-301)) 8)) (-1534 (((-656 (-703 (-290))) (-1179)) 81)) (-3817 (((-703 (-290)) (-1156)) 76))) -(((-169) (-13 (-1238) (-10 -7 (-15 -2376 ((-1156) (-1156) (-301))) (-15 -3817 ((-703 (-290)) (-1156))) (-15 -1534 ((-656 (-703 (-290))) (-1179)))))) (T -169)) -((-2376 (*1 *2 *2 *3) (-12 (-5 *2 (-1156)) (-5 *3 (-301)) (-5 *1 (-169)))) (-3817 (*1 *2 *3) (-12 (-5 *3 (-1156)) (-5 *2 (-703 (-290))) (-5 *1 (-169)))) (-1534 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-656 (-703 (-290)))) (-5 *1 (-169))))) -(-13 (-1238) (-10 -7 (-15 -2376 ((-1156) (-1156) (-301))) (-15 -3817 ((-703 (-290)) (-1156))) (-15 -1534 ((-656 (-703 (-290))) (-1179))))) -((-4117 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14))) -(((-170 |#1| |#2|) (-10 -7 (-15 -4117 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6))))) -(-10 -7 (-15 -4117 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 34)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (-2760 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-568))))) (-2757 (($ $) NIL (-2760 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-568))))) (-3788 (((-112) $) NIL (-2760 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-568))))) (-4101 (((-701 |#1|) (-1288 $)) NIL) (((-701 |#1|)) NIL)) (-2210 ((|#1| $) NIL)) (-4025 (($ $) NIL (|has| |#1| (-1223)))) (-3901 (($ $) NIL (|has| |#1| (-1223)))) (-4183 (((-1210 (-940) (-783)) (-576)) NIL (|has| |#1| (-360)))) (-4367 (((-3 $ "failed") $ $) NIL)) (-3601 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-2487 (($ $) NIL (-2760 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-3921 (((-430 $) $) NIL (-2760 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-1839 (($ $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1223))))) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-4016 (((-112) $ $) NIL (|has| |#1| (-317)))) (-2098 (((-783)) NIL (|has| |#1| (-379)))) (-4006 (($ $) NIL (|has| |#1| (-1223)))) (-3877 (($ $) NIL (|has| |#1| (-1223)))) (-4050 (($ $) NIL (|has| |#1| (-1223)))) (-3920 (($ $) NIL (|has| |#1| (-1223)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2860 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-4119 (($ (-1288 |#1|) (-1288 $)) NIL) (($ (-1288 |#1|)) NIL)) (-2554 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-3429 (($ $ $) NIL (|has| |#1| (-317)))) (-1420 (((-701 |#1|) $ (-1288 $)) NIL) (((-701 |#1|) $) NIL)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3686 (($ (-1193 |#1|)) NIL) (((-3 $ "failed") (-419 (-1193 |#1|))) NIL (|has| |#1| (-374)))) (-1561 (((-3 $ "failed") $) NIL)) (-1850 ((|#1| $) 13)) (-3104 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-2545 (((-112) $) NIL (|has| |#1| (-557)))) (-2568 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-3734 (((-940)) NIL)) (-1836 (($) NIL (|has| |#1| (-379)))) (-3441 (($ $ $) NIL (|has| |#1| (-317)))) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL (|has| |#1| (-317)))) (-2005 (($) NIL (|has| |#1| (-360)))) (-4090 (((-112) $) NIL (|has| |#1| (-360)))) (-2910 (($ $ (-783)) NIL (|has| |#1| (-360))) (($ $) NIL (|has| |#1| (-360)))) (-4249 (((-112) $) NIL (-2760 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-1430 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1081)) (|has| |#1| (-1223))))) (-1600 (($) NIL (|has| |#1| (-1223)))) (-1840 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| |#1| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| |#1| (-901 (-390))))) (-3917 (((-940) $) NIL (|has| |#1| (-360))) (((-845 (-940)) $) NIL (|has| |#1| (-360)))) (-4193 (((-112) $) 36)) (-2121 (($ $ (-576)) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1223))))) (-1381 ((|#1| $) 47)) (-2240 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-317)))) (-2731 (((-1193 |#1|) $) NIL (|has| |#1| (-374)))) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-4401 (((-940) $) NIL (|has| |#1| (-379)))) (-3745 (($ $) NIL (|has| |#1| (-1223)))) (-3672 (((-1193 |#1|) $) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-3458 (($ (-656 $)) NIL (|has| |#1| (-317))) (($ $ $) NIL (|has| |#1| (-317)))) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL (|has| |#1| (-374)))) (-3540 (($) NIL (|has| |#1| (-360)) CONST)) (-3224 (($ (-940)) NIL (|has| |#1| (-379)))) (-2429 (($) NIL)) (-1860 ((|#1| $) 15)) (-1450 (((-1141) $) NIL)) (-4129 (($) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-317)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-317))) (($ $ $) NIL (|has| |#1| (-317)))) (-2406 (((-656 (-2 (|:| -1828 (-576)) (|:| -3422 (-576))))) NIL (|has| |#1| (-360)))) (-4100 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-1811 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-1828 (((-430 $) $) NIL (-2760 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| |#1| (-317)))) (-3476 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 48 (-2760 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-568))))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-317)))) (-4104 (($ $) NIL (|has| |#1| (-1223)))) (-3284 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-526 (-1197) |#1|)))) (-1967 (((-783) $) NIL (|has| |#1| (-317)))) (-2797 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#1| (-317)))) (-4352 ((|#1| (-1288 $)) NIL) ((|#1|) NIL)) (-3793 (((-783) $) NIL (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) NIL (|has| |#1| (-360)))) (-2775 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2760 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197) (-783)) NIL (-2760 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-656 (-1197))) NIL (-2760 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197)) NIL (-2760 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-783)) NIL (-2760 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237)))) (($ $) NIL (-2760 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237))))) (-2433 (((-701 |#1|) (-1288 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-3867 (((-1193 |#1|)) NIL)) (-4061 (($ $) NIL (|has| |#1| (-1223)))) (-3930 (($ $) NIL (|has| |#1| (-1223)))) (-1535 (($) NIL (|has| |#1| (-360)))) (-4037 (($ $) NIL (|has| |#1| (-1223)))) (-3910 (($ $) NIL (|has| |#1| (-1223)))) (-4014 (($ $) NIL (|has| |#1| (-1223)))) (-3889 (($ $) NIL (|has| |#1| (-1223)))) (-4152 (((-1288 |#1|) $ (-1288 $)) NIL) (((-701 |#1|) (-1288 $) (-1288 $)) NIL) (((-1288 |#1|) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-4172 (((-1288 |#1|) $) NIL) (($ (-1288 |#1|)) NIL) (((-1193 |#1|) $) NIL) (($ (-1193 |#1|)) NIL) (((-907 (-576)) $) NIL (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| |#1| (-626 (-907 (-390))))) (((-171 (-390)) $) NIL (|has| |#1| (-1043))) (((-171 (-227)) $) NIL (|has| |#1| (-1043))) (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2314 (($ $) 46)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (-2760 (-12 (|has| $ (-146)) (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-360))))) (-4178 (($ |#1| |#1|) 38)) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) 37) (($ (-419 (-576))) NIL (-2760 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (-2760 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-568))))) (-4336 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (-2760 (-12 (|has| $ (-146)) (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-4281 (((-1193 |#1|) $) NIL)) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-1593 (((-1288 $)) NIL)) (-2791 (($ $) NIL (|has| |#1| (-1223)))) (-3961 (($ $) NIL (|has| |#1| (-1223)))) (-2672 (((-112) $ $) NIL (-2760 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-568))))) (-4071 (($ $) NIL (|has| |#1| (-1223)))) (-3938 (($ $) NIL (|has| |#1| (-1223)))) (-2815 (($ $) NIL (|has| |#1| (-1223)))) (-3983 (($ $) NIL (|has| |#1| (-1223)))) (-1737 ((|#1| $) NIL (|has| |#1| (-1223)))) (-4388 (($ $) NIL (|has| |#1| (-1223)))) (-3995 (($ $) NIL (|has| |#1| (-1223)))) (-2803 (($ $) NIL (|has| |#1| (-1223)))) (-3974 (($ $) NIL (|has| |#1| (-1223)))) (-4083 (($ $) NIL (|has| |#1| (-1223)))) (-3951 (($ $) NIL (|has| |#1| (-1223)))) (-2122 (($ $) NIL (|has| |#1| (-1081)))) (-2721 (($) 28 T CONST)) (-2732 (($) 30 T CONST)) (-1636 (((-1179) $) 23 (|has| |#1| (-840))) (((-1179) $ (-112)) 25 (|has| |#1| (-840))) (((-1293) (-834) $) 26 (|has| |#1| (-840))) (((-1293) (-834) $ (-112)) 27 (|has| |#1| (-840)))) (-2020 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2760 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197) (-783)) NIL (-2760 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-656 (-1197))) NIL (-2760 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197)) NIL (-2760 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-783)) NIL (-2760 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237)))) (($ $) NIL (-2760 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237))))) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ $) NIL (|has| |#1| (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) 40)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-419 (-576))) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1223)))) (($ $ $) NIL (|has| |#1| (-1223))) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))))) +((-2376 (((-1156) (-1156) (-301)) 8)) (-3361 (((-656 (-703 (-290))) (-1179)) 81)) (-4021 (((-703 (-290)) (-1156)) 76))) +(((-169) (-13 (-1238) (-10 -7 (-15 -2376 ((-1156) (-1156) (-301))) (-15 -4021 ((-703 (-290)) (-1156))) (-15 -3361 ((-656 (-703 (-290))) (-1179)))))) (T -169)) +((-2376 (*1 *2 *2 *3) (-12 (-5 *2 (-1156)) (-5 *3 (-301)) (-5 *1 (-169)))) (-4021 (*1 *2 *3) (-12 (-5 *3 (-1156)) (-5 *2 (-703 (-290))) (-5 *1 (-169)))) (-3361 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-656 (-703 (-290)))) (-5 *1 (-169))))) +(-13 (-1238) (-10 -7 (-15 -2376 ((-1156) (-1156) (-301))) (-15 -4021 ((-703 (-290)) (-1156))) (-15 -3361 ((-656 (-703 (-290))) (-1179))))) +((-4116 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14))) +(((-170 |#1| |#2|) (-10 -7 (-15 -4116 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6))))) +(-10 -7 (-15 -4116 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 34)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (-2759 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-568))))) (-4195 (($ $) NIL (-2759 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-568))))) (-1760 (((-112) $) NIL (-2759 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-568))))) (-1656 (((-701 |#1|) (-1288 $)) NIL) (((-701 |#1|)) NIL)) (-2210 ((|#1| $) NIL)) (-4024 (($ $) NIL (|has| |#1| (-1223)))) (-3900 (($ $) NIL (|has| |#1| (-1223)))) (-4371 (((-1210 (-940) (-783)) (-576)) NIL (|has| |#1| (-360)))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3646 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-3444 (($ $) NIL (-2759 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-3760 (((-430 $) $) NIL (-2759 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-1840 (($ $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1223))))) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-3330 (((-112) $ $) NIL (|has| |#1| (-317)))) (-2098 (((-783)) NIL (|has| |#1| (-379)))) (-4005 (($ $) NIL (|has| |#1| (-1223)))) (-3876 (($ $) NIL (|has| |#1| (-1223)))) (-4049 (($ $) NIL (|has| |#1| (-1223)))) (-3919 (($ $) NIL (|has| |#1| (-1223)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2859 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-1819 (($ (-1288 |#1|) (-1288 $)) NIL) (($ (-1288 |#1|)) NIL)) (-2868 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-3428 (($ $ $) NIL (|has| |#1| (-317)))) (-2072 (((-701 |#1|) $ (-1288 $)) NIL) (((-701 |#1|) $) NIL)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3685 (($ (-1193 |#1|)) NIL) (((-3 $ "failed") (-419 (-1193 |#1|))) NIL (|has| |#1| (-374)))) (-3673 (((-3 $ "failed") $) NIL)) (-1850 ((|#1| $) 13)) (-2358 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-2769 (((-112) $) NIL (|has| |#1| (-557)))) (-3025 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-3733 (((-940)) NIL)) (-1836 (($) NIL (|has| |#1| (-379)))) (-3440 (($ $ $) NIL (|has| |#1| (-317)))) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-317)))) (-2345 (($) NIL (|has| |#1| (-360)))) (-1543 (((-112) $) NIL (|has| |#1| (-360)))) (-3153 (($ $ (-783)) NIL (|has| |#1| (-360))) (($ $) NIL (|has| |#1| (-360)))) (-3833 (((-112) $) NIL (-2759 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-2177 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1081)) (|has| |#1| (-1223))))) (-1600 (($) NIL (|has| |#1| (-1223)))) (-3325 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| |#1| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| |#1| (-901 (-390))))) (-3726 (((-940) $) NIL (|has| |#1| (-360))) (((-845 (-940)) $) NIL (|has| |#1| (-360)))) (-1351 (((-112) $) 36)) (-4131 (($ $ (-576)) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1223))))) (-2738 ((|#1| $) 47)) (-2734 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-317)))) (-1989 (((-1193 |#1|) $) NIL (|has| |#1| (-374)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-1558 (((-940) $) NIL (|has| |#1| (-379)))) (-3744 (($ $) NIL (|has| |#1| (-1223)))) (-3671 (((-1193 |#1|) $) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-317))) (($ $ $) NIL (|has| |#1| (-317)))) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL (|has| |#1| (-374)))) (-3539 (($) NIL (|has| |#1| (-360)) CONST)) (-3223 (($ (-940)) NIL (|has| |#1| (-379)))) (-4104 (($) NIL)) (-1860 ((|#1| $) 15)) (-1450 (((-1141) $) NIL)) (-4128 (($) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-317)))) (-3497 (($ (-656 $)) NIL (|has| |#1| (-317))) (($ $ $) NIL (|has| |#1| (-317)))) (-1913 (((-656 (-2 (|:| -1828 (-576)) (|:| -2508 (-576))))) NIL (|has| |#1| (-360)))) (-1644 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-4296 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-1828 (((-430 $) $) NIL (-2759 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-317)))) (-3475 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 48 (-2759 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-568))))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-317)))) (-4103 (($ $) NIL (|has| |#1| (-1223)))) (-3282 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-526 (-1197) |#1|)))) (-1979 (((-783) $) NIL (|has| |#1| (-317)))) (-2796 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#1| (-317)))) (-2269 ((|#1| (-1288 $)) NIL) ((|#1|) NIL)) (-1813 (((-783) $) NIL (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) NIL (|has| |#1| (-360)))) (-2774 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2759 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197) (-783)) NIL (-2759 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-656 (-1197))) NIL (-2759 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197)) NIL (-2759 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-783)) NIL (-2759 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237)))) (($ $) NIL (-2759 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237))))) (-4149 (((-701 |#1|) (-1288 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-1346 (((-1193 |#1|)) NIL)) (-4060 (($ $) NIL (|has| |#1| (-1223)))) (-3929 (($ $) NIL (|has| |#1| (-1223)))) (-3371 (($) NIL (|has| |#1| (-360)))) (-4036 (($ $) NIL (|has| |#1| (-1223)))) (-3909 (($ $) NIL (|has| |#1| (-1223)))) (-4013 (($ $) NIL (|has| |#1| (-1223)))) (-3888 (($ $) NIL (|has| |#1| (-1223)))) (-4096 (((-1288 |#1|) $ (-1288 $)) NIL) (((-701 |#1|) (-1288 $) (-1288 $)) NIL) (((-1288 |#1|) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-4171 (((-1288 |#1|) $) NIL) (($ (-1288 |#1|)) NIL) (((-1193 |#1|) $) NIL) (($ (-1193 |#1|)) NIL) (((-907 (-576)) $) NIL (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| |#1| (-626 (-907 (-390))))) (((-171 (-390)) $) NIL (|has| |#1| (-1043))) (((-171 (-227)) $) NIL (|has| |#1| (-1043))) (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2272 (($ $) 46)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (-2759 (-12 (|has| $ (-146)) (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-360))))) (-4177 (($ |#1| |#1|) 38)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) 37) (($ (-419 (-576))) NIL (-2759 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (-2759 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-568))))) (-3390 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (-2759 (-12 (|has| $ (-146)) (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-2857 (((-1193 |#1|) $) NIL)) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-2675 (((-1288 $)) NIL)) (-2790 (($ $) NIL (|has| |#1| (-1223)))) (-3960 (($ $) NIL (|has| |#1| (-1223)))) (-1505 (((-112) $ $) NIL (-2759 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-568))))) (-4070 (($ $) NIL (|has| |#1| (-1223)))) (-3937 (($ $) NIL (|has| |#1| (-1223)))) (-2814 (($ $) NIL (|has| |#1| (-1223)))) (-3982 (($ $) NIL (|has| |#1| (-1223)))) (-1631 ((|#1| $) NIL (|has| |#1| (-1223)))) (-4387 (($ $) NIL (|has| |#1| (-1223)))) (-3994 (($ $) NIL (|has| |#1| (-1223)))) (-2802 (($ $) NIL (|has| |#1| (-1223)))) (-3973 (($ $) NIL (|has| |#1| (-1223)))) (-4082 (($ $) NIL (|has| |#1| (-1223)))) (-3950 (($ $) NIL (|has| |#1| (-1223)))) (-4143 (($ $) NIL (|has| |#1| (-1081)))) (-2721 (($) 28 T CONST)) (-2731 (($) 30 T CONST)) (-3160 (((-1179) $) 23 (|has| |#1| (-840))) (((-1179) $ (-112)) 25 (|has| |#1| (-840))) (((-1293) (-834) $) 26 (|has| |#1| (-840))) (((-1293) (-834) $ (-112)) 27 (|has| |#1| (-840)))) (-2020 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2759 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197) (-783)) NIL (-2759 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-656 (-1197))) NIL (-2759 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197)) NIL (-2759 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-783)) NIL (-2759 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237)))) (($ $) NIL (-2759 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237))))) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 40)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-419 (-576))) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1223)))) (($ $ $) NIL (|has| |#1| (-1223))) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))))) (((-171 |#1|) (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) (-174)) (T -171)) NIL (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) -((-4172 (((-907 |#1|) |#3|) 22))) -(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -4172 ((-907 |#1|) |#3|))) (-1121) (-13 (-626 (-907 |#1|)) (-174)) (-167 |#2|)) (T -172)) -((-4172 (*1 *2 *3) (-12 (-4 *5 (-13 (-626 *2) (-174))) (-5 *2 (-907 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1121)) (-4 *3 (-167 *5))))) -(-10 -7 (-15 -4172 ((-907 |#1|) |#3|))) -((-3489 (((-112) $ $) NIL)) (-2051 (((-112) $) 9)) (-3468 (((-112) $ (-112)) 11)) (-4141 (($) 13)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1870 (($ $) 14)) (-3570 (((-876) $) 18)) (-1652 (((-112) $) 8)) (-1958 (((-112) $ (-112)) 10)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-173) (-13 (-1121) (-10 -8 (-15 -4141 ($)) (-15 -1652 ((-112) $)) (-15 -2051 ((-112) $)) (-15 -1958 ((-112) $ (-112))) (-15 -3468 ((-112) $ (-112))) (-15 -1870 ($ $))))) (T -173)) -((-4141 (*1 *1) (-5 *1 (-173))) (-1652 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1958 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3468 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1870 (*1 *1 *1) (-5 *1 (-173)))) -(-13 (-1121) (-10 -8 (-15 -4141 ($)) (-15 -1652 ((-112) $)) (-15 -2051 ((-112) $)) (-15 -1958 ((-112) $ (-112))) (-15 -3468 ((-112) $ (-112))) (-15 -1870 ($ $)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-1561 (((-3 $ "failed") $) 37)) (-4193 (((-112) $) 35)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12) (($ (-576)) 33)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-4171 (((-907 |#1|) |#3|) 22))) +(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -4171 ((-907 |#1|) |#3|))) (-1121) (-13 (-626 (-907 |#1|)) (-174)) (-167 |#2|)) (T -172)) +((-4171 (*1 *2 *3) (-12 (-4 *5 (-13 (-626 *2) (-174))) (-5 *2 (-907 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1121)) (-4 *3 (-167 *5))))) +(-10 -7 (-15 -4171 ((-907 |#1|) |#3|))) +((-3488 (((-112) $ $) NIL)) (-1535 (((-112) $) 9)) (-1707 (((-112) $ (-112)) 11)) (-4140 (($) 13)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1870 (($ $) 14)) (-3569 (((-876) $) 18)) (-2006 (((-112) $) 8)) (-1958 (((-112) $ (-112)) 10)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-173) (-13 (-1121) (-10 -8 (-15 -4140 ($)) (-15 -2006 ((-112) $)) (-15 -1535 ((-112) $)) (-15 -1958 ((-112) $ (-112))) (-15 -1707 ((-112) $ (-112))) (-15 -1870 ($ $))))) (T -173)) +((-4140 (*1 *1) (-5 *1 (-173))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1535 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1958 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1707 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1870 (*1 *1 *1) (-5 *1 (-173)))) +(-13 (-1121) (-10 -8 (-15 -4140 ($)) (-15 -2006 ((-112) $)) (-15 -1535 ((-112) $)) (-15 -1958 ((-112) $ (-112))) (-15 -1707 ((-112) $ (-112))) (-15 -1870 ($ $)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-3673 (((-3 $ "failed") $) 37)) (-1351 (((-112) $) 35)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ (-576)) 33)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-174) (-141)) (T -174)) NIL -(-13 (-1070) (-111 $ $) (-10 -7 (-6 (-4467 "*")))) +(-13 (-1070) (-111 $ $) (-10 -7 (-6 (-4466 "*")))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-3423 (($ $) 6))) +((-2516 (($ $) 6))) (((-175) (-141)) (T -175)) -((-3423 (*1 *1 *1) (-4 *1 (-175)))) -(-13 (-10 -8 (-15 -3423 ($ $)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2575 ((|#1| $) 81)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-4016 (((-112) $ $) NIL)) (-3886 (($) NIL T CONST)) (-3429 (($ $ $) NIL)) (-1523 (($ $) 21)) (-1869 (($ |#1| (-1178 |#1|)) 50)) (-1561 (((-3 $ "failed") $) 123)) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-4249 (((-112) $) NIL)) (-4302 (((-1178 |#1|) $) 88)) (-3835 (((-1178 |#1|) $) 85)) (-3076 (((-1178 |#1|) $) 86)) (-4193 (((-112) $) NIL)) (-2107 (((-1178 |#1|) $) 94)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3458 (($ (-656 $)) NIL) (($ $ $) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1828 (((-430 $) $) NIL)) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL)) (-1749 (($ $ (-576)) 97)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1967 (((-783) $) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-1632 (((-1178 |#1|) $) 95)) (-2189 (((-1178 (-419 |#1|)) $) 14)) (-3091 (($ (-419 |#1|)) 17) (($ |#1| (-1178 |#1|) (-1178 |#1|)) 40)) (-3126 (($ $) 99)) (-3570 (((-876) $) 139) (($ (-576)) 53) (($ |#1|) 54) (($ (-419 |#1|)) 38) (($ (-419 (-576))) NIL) (($ $) NIL)) (-3996 (((-783)) 69 T CONST)) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL)) (-2848 (((-1178 (-419 |#1|)) $) 20)) (-2721 (($) 27 T CONST)) (-2732 (($) 30 T CONST)) (-2925 (((-112) $ $) 37)) (-3057 (($ $ $) 121)) (-3044 (($ $) 112) (($ $ $) 109)) (-3030 (($ $ $) 107)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-419 |#1|) $) 117) (($ $ (-419 |#1|)) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL))) -(((-176 |#1|) (-13 (-38 |#1|) (-38 (-419 |#1|)) (-374) (-10 -8 (-15 -3091 ($ (-419 |#1|))) (-15 -3091 ($ |#1| (-1178 |#1|) (-1178 |#1|))) (-15 -1869 ($ |#1| (-1178 |#1|))) (-15 -3835 ((-1178 |#1|) $)) (-15 -3076 ((-1178 |#1|) $)) (-15 -4302 ((-1178 |#1|) $)) (-15 -2575 (|#1| $)) (-15 -1523 ($ $)) (-15 -2848 ((-1178 (-419 |#1|)) $)) (-15 -2189 ((-1178 (-419 |#1|)) $)) (-15 -2107 ((-1178 |#1|) $)) (-15 -1632 ((-1178 |#1|) $)) (-15 -1749 ($ $ (-576))) (-15 -3126 ($ $)))) (-317)) (T -176)) -((-3091 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-317)) (-5 *1 (-176 *3)))) (-3091 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1178 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) (-1869 (*1 *1 *2 *3) (-12 (-5 *3 (-1178 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-4302 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2575 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) (-1523 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-1178 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-1178 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2107 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-1632 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-1749 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3126 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317))))) -(-13 (-38 |#1|) (-38 (-419 |#1|)) (-374) (-10 -8 (-15 -3091 ($ (-419 |#1|))) (-15 -3091 ($ |#1| (-1178 |#1|) (-1178 |#1|))) (-15 -1869 ($ |#1| (-1178 |#1|))) (-15 -3835 ((-1178 |#1|) $)) (-15 -3076 ((-1178 |#1|) $)) (-15 -4302 ((-1178 |#1|) $)) (-15 -2575 (|#1| $)) (-15 -1523 ($ $)) (-15 -2848 ((-1178 (-419 |#1|)) $)) (-15 -2189 ((-1178 (-419 |#1|)) $)) (-15 -2107 ((-1178 |#1|) $)) (-15 -1632 ((-1178 |#1|) $)) (-15 -1749 ($ $ (-576))) (-15 -3126 ($ $)))) -((-2701 (($ (-109) $) 15)) (-2409 (((-703 (-109)) (-518) $) 14)) (-3570 (((-876) $) 18)) (-2577 (((-656 (-109)) $) 8))) -(((-177) (-13 (-625 (-876)) (-10 -8 (-15 -2577 ((-656 (-109)) $)) (-15 -2701 ($ (-109) $)) (-15 -2409 ((-703 (-109)) (-518) $))))) (T -177)) -((-2577 (*1 *2 *1) (-12 (-5 *2 (-656 (-109))) (-5 *1 (-177)))) (-2701 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-2409 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-177))))) -(-13 (-625 (-876)) (-10 -8 (-15 -2577 ((-656 (-109)) $)) (-15 -2701 ($ (-109) $)) (-15 -2409 ((-703 (-109)) (-518) $)))) -((-1754 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 38)) (-4229 (((-962 |#1|) (-962 |#1|)) 22)) (-2780 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 34)) (-3510 (((-962 |#1|) (-962 |#1|)) 20)) (-1971 (((-962 |#1|) (-962 |#1|)) 28)) (-1813 (((-962 |#1|) (-962 |#1|)) 27)) (-1700 (((-962 |#1|) (-962 |#1|)) 26)) (-4131 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 35)) (-3464 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 33)) (-3334 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 32)) (-1413 (((-962 |#1|) (-962 |#1|)) 21)) (-1919 (((-1 (-962 |#1|) (-962 |#1|)) |#1| |#1|) 41)) (-1692 (((-962 |#1|) (-962 |#1|)) 8)) (-2486 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 37)) (-3795 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 36))) -(((-178 |#1|) (-10 -7 (-15 -1692 ((-962 |#1|) (-962 |#1|))) (-15 -3510 ((-962 |#1|) (-962 |#1|))) (-15 -1413 ((-962 |#1|) (-962 |#1|))) (-15 -4229 ((-962 |#1|) (-962 |#1|))) (-15 -1700 ((-962 |#1|) (-962 |#1|))) (-15 -1813 ((-962 |#1|) (-962 |#1|))) (-15 -1971 ((-962 |#1|) (-962 |#1|))) (-15 -3334 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -3464 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -2780 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -4131 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -3795 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -2486 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -1754 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -1919 ((-1 (-962 |#1|) (-962 |#1|)) |#1| |#1|))) (-13 (-374) (-1223) (-1023))) (T -178)) -((-1919 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-1754 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-2486 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-3795 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-4131 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-2780 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-3464 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-3334 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-1971 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3)))) (-1813 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3)))) (-1700 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3)))) (-4229 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3)))) (-1413 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3)))) (-3510 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3)))) (-1692 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3))))) -(-10 -7 (-15 -1692 ((-962 |#1|) (-962 |#1|))) (-15 -3510 ((-962 |#1|) (-962 |#1|))) (-15 -1413 ((-962 |#1|) (-962 |#1|))) (-15 -4229 ((-962 |#1|) (-962 |#1|))) (-15 -1700 ((-962 |#1|) (-962 |#1|))) (-15 -1813 ((-962 |#1|) (-962 |#1|))) (-15 -1971 ((-962 |#1|) (-962 |#1|))) (-15 -3334 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -3464 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -2780 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -4131 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -3795 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -2486 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -1754 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -1919 ((-1 (-962 |#1|) (-962 |#1|)) |#1| |#1|))) -((-4281 ((|#2| |#3|) 28))) -(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -4281 (|#2| |#3|))) (-174) (-1264 |#1|) (-736 |#1| |#2|)) (T -179)) -((-4281 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1264 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-736 *4 *2))))) -(-10 -7 (-15 -4281 (|#2| |#3|))) -((-1840 (((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)) 44 (|has| (-971 |#2|) (-901 |#1|))))) -(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-971 |#2|) (-901 |#1|)) (-15 -1840 ((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|))) |%noBranch|)) (-1121) (-13 (-901 |#1|) (-174)) (-167 |#2|)) (T -180)) -((-1840 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 *3)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-4 *3 (-167 *6)) (-4 (-971 *6) (-901 *5)) (-4 *6 (-13 (-901 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))) -(-10 -7 (IF (|has| (-971 |#2|) (-901 |#1|)) (-15 -1840 ((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|))) |%noBranch|)) -((-2388 (((-656 |#1|) (-656 |#1|) |#1|) 41)) (-1837 (((-656 |#1|) |#1| (-656 |#1|)) 20)) (-3372 (((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|)) 36) ((|#1| (-656 |#1|) (-656 |#1|)) 32))) -(((-181 |#1|) (-10 -7 (-15 -1837 ((-656 |#1|) |#1| (-656 |#1|))) (-15 -3372 (|#1| (-656 |#1|) (-656 |#1|))) (-15 -3372 ((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|))) (-15 -2388 ((-656 |#1|) (-656 |#1|) |#1|))) (-317)) (T -181)) -((-2388 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3)))) (-3372 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-656 *4))) (-5 *2 (-656 *4)) (-4 *4 (-317)) (-5 *1 (-181 *4)))) (-3372 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-181 *2)) (-4 *2 (-317)))) (-1837 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) -(-10 -7 (-15 -1837 ((-656 |#1|) |#1| (-656 |#1|))) (-15 -3372 (|#1| (-656 |#1|) (-656 |#1|))) (-15 -3372 ((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|))) (-15 -2388 ((-656 |#1|) (-656 |#1|) |#1|))) -((-3489 (((-112) $ $) NIL)) (-2984 (((-1237) $) 13)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3123 (((-1156) $) 10)) (-3570 (((-876) $) 20) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-182) (-13 (-1104) (-10 -8 (-15 -3123 ((-1156) $)) (-15 -2984 ((-1237) $))))) (T -182)) -((-3123 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-182)))) (-2984 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-182))))) -(-13 (-1104) (-10 -8 (-15 -3123 ((-1156) $)) (-15 -2984 ((-1237) $)))) -((-3806 (((-2 (|:| |start| |#2|) (|:| -2761 (-430 |#2|))) |#2|) 66)) (-2928 ((|#1| |#1|) 58)) (-3397 (((-171 |#1|) |#2|) 93)) (-3724 ((|#1| |#2|) 136) ((|#1| |#2| |#1|) 90)) (-3262 ((|#2| |#2|) 91)) (-1466 (((-430 |#2|) |#2| |#1|) 118) (((-430 |#2|) |#2| |#1| (-112)) 88)) (-1381 ((|#1| |#2|) 117)) (-3427 ((|#2| |#2|) 130)) (-1828 (((-430 |#2|) |#2|) 153) (((-430 |#2|) |#2| |#1|) 33) (((-430 |#2|) |#2| |#1| (-112)) 152)) (-3393 (((-656 (-2 (|:| -2761 (-656 |#2|)) (|:| -3314 |#1|))) |#2| |#2|) 151) (((-656 (-2 (|:| -2761 (-656 |#2|)) (|:| -3314 |#1|))) |#2| |#2| (-112)) 81)) (-3451 (((-656 (-171 |#1|)) |#2| |#1|) 42) (((-656 (-171 |#1|)) |#2|) 43))) -(((-183 |#1| |#2|) (-10 -7 (-15 -3451 ((-656 (-171 |#1|)) |#2|)) (-15 -3451 ((-656 (-171 |#1|)) |#2| |#1|)) (-15 -3393 ((-656 (-2 (|:| -2761 (-656 |#2|)) (|:| -3314 |#1|))) |#2| |#2| (-112))) (-15 -3393 ((-656 (-2 (|:| -2761 (-656 |#2|)) (|:| -3314 |#1|))) |#2| |#2|)) (-15 -1828 ((-430 |#2|) |#2| |#1| (-112))) (-15 -1828 ((-430 |#2|) |#2| |#1|)) (-15 -1828 ((-430 |#2|) |#2|)) (-15 -3427 (|#2| |#2|)) (-15 -1381 (|#1| |#2|)) (-15 -1466 ((-430 |#2|) |#2| |#1| (-112))) (-15 -1466 ((-430 |#2|) |#2| |#1|)) (-15 -3262 (|#2| |#2|)) (-15 -3724 (|#1| |#2| |#1|)) (-15 -3724 (|#1| |#2|)) (-15 -3397 ((-171 |#1|) |#2|)) (-15 -2928 (|#1| |#1|)) (-15 -3806 ((-2 (|:| |start| |#2|) (|:| -2761 (-430 |#2|))) |#2|))) (-13 (-374) (-860)) (-1264 (-171 |#1|))) (T -183)) -((-3806 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-2 (|:| |start| *3) (|:| -2761 (-430 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-2928 (*1 *2 *2) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1264 (-171 *2))))) (-3397 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-374) (-860))) (-4 *3 (-1264 *2)))) (-3724 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1264 (-171 *2))))) (-3724 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1264 (-171 *2))))) (-3262 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1264 (-171 *3))))) (-1466 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-1466 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-1381 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1264 (-171 *2))))) (-3427 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1264 (-171 *3))))) (-1828 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-1828 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-1828 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-3393 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-2 (|:| -2761 (-656 *3)) (|:| -3314 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-3393 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-374) (-860))) (-5 *2 (-656 (-2 (|:| -2761 (-656 *3)) (|:| -3314 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1264 (-171 *5))))) (-3451 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-3451 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4)))))) -(-10 -7 (-15 -3451 ((-656 (-171 |#1|)) |#2|)) (-15 -3451 ((-656 (-171 |#1|)) |#2| |#1|)) (-15 -3393 ((-656 (-2 (|:| -2761 (-656 |#2|)) (|:| -3314 |#1|))) |#2| |#2| (-112))) (-15 -3393 ((-656 (-2 (|:| -2761 (-656 |#2|)) (|:| -3314 |#1|))) |#2| |#2|)) (-15 -1828 ((-430 |#2|) |#2| |#1| (-112))) (-15 -1828 ((-430 |#2|) |#2| |#1|)) (-15 -1828 ((-430 |#2|) |#2|)) (-15 -3427 (|#2| |#2|)) (-15 -1381 (|#1| |#2|)) (-15 -1466 ((-430 |#2|) |#2| |#1| (-112))) (-15 -1466 ((-430 |#2|) |#2| |#1|)) (-15 -3262 (|#2| |#2|)) (-15 -3724 (|#1| |#2| |#1|)) (-15 -3724 (|#1| |#2|)) (-15 -3397 ((-171 |#1|) |#2|)) (-15 -2928 (|#1| |#1|)) (-15 -3806 ((-2 (|:| |start| |#2|) (|:| -2761 (-430 |#2|))) |#2|))) -((-1384 (((-3 |#2| "failed") |#2|) 16)) (-1380 (((-783) |#2|) 18)) (-3286 ((|#2| |#2| |#2|) 20))) -(((-184 |#1| |#2|) (-10 -7 (-15 -1384 ((-3 |#2| "failed") |#2|)) (-15 -1380 ((-783) |#2|)) (-15 -3286 (|#2| |#2| |#2|))) (-1238) (-686 |#1|)) (T -184)) -((-3286 (*1 *2 *2 *2) (-12 (-4 *3 (-1238)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3)))) (-1380 (*1 *2 *3) (-12 (-4 *4 (-1238)) (-5 *2 (-783)) (-5 *1 (-184 *4 *3)) (-4 *3 (-686 *4)))) (-1384 (*1 *2 *2) (|partial| -12 (-4 *3 (-1238)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3))))) -(-10 -7 (-15 -1384 ((-3 |#2| "failed") |#2|)) (-15 -1380 ((-783) |#2|)) (-15 -3286 (|#2| |#2| |#2|))) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2566 ((|#1| $) 7)) (-3570 (((-876) $) 14)) (-4055 (((-112) $ $) NIL)) (-1927 (((-656 (-1202)) $) 10)) (-2925 (((-112) $ $) 12))) -(((-185 |#1|) (-13 (-1121) (-10 -8 (-15 -2566 (|#1| $)) (-15 -1927 ((-656 (-1202)) $)))) (-187)) (T -185)) -((-2566 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) -(-13 (-1121) (-10 -8 (-15 -2566 (|#1| $)) (-15 -1927 ((-656 (-1202)) $)))) -((-3297 (((-656 (-879)) $) 16)) (-1747 (((-188) $) 8)) (-1944 (((-656 (-112)) $) 13)) (-4045 (((-55) $) 10))) -(((-186 |#1|) (-10 -8 (-15 -3297 ((-656 (-879)) |#1|)) (-15 -1944 ((-656 (-112)) |#1|)) (-15 -1747 ((-188) |#1|)) (-15 -4045 ((-55) |#1|))) (-187)) (T -186)) -NIL -(-10 -8 (-15 -3297 ((-656 (-879)) |#1|)) (-15 -1944 ((-656 (-112)) |#1|)) (-15 -1747 ((-188) |#1|)) (-15 -4045 ((-55) |#1|))) -((-3489 (((-112) $ $) 7)) (-3297 (((-656 (-879)) $) 19)) (-2629 (((-518) $) 16)) (-3699 (((-1179) $) 10)) (-1747 (((-188) $) 21)) (-1322 (((-112) $ (-518)) 14)) (-1450 (((-1141) $) 11)) (-1944 (((-656 (-112)) $) 20)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-4045 (((-55) $) 15)) (-2925 (((-112) $ $) 8))) +((-2516 (*1 *1 *1) (-4 *1 (-175)))) +(-13 (-10 -8 (-15 -2516 ($ $)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-3110 ((|#1| $) 81)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3330 (((-112) $ $) NIL)) (-3404 (($) NIL T CONST)) (-3428 (($ $ $) NIL)) (-3245 (($ $) 21)) (-3599 (($ |#1| (-1178 |#1|)) 50)) (-3673 (((-3 $ "failed") $) 123)) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3833 (((-112) $) NIL)) (-3077 (((-1178 |#1|) $) 88)) (-4194 (((-1178 |#1|) $) 85)) (-2063 (((-1178 |#1|) $) 86)) (-1351 (((-112) $) NIL)) (-4011 (((-1178 |#1|) $) 94)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3457 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1828 (((-430 $) $) NIL)) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL)) (-1743 (($ $ (-576)) 97)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1979 (((-783) $) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-3113 (((-1178 |#1|) $) 95)) (-3509 (((-1178 (-419 |#1|)) $) 14)) (-2223 (($ (-419 |#1|)) 17) (($ |#1| (-1178 |#1|) (-1178 |#1|)) 40)) (-2539 (($ $) 99)) (-3569 (((-876) $) 139) (($ (-576)) 53) (($ |#1|) 54) (($ (-419 |#1|)) 38) (($ (-419 (-576))) NIL) (($ $) NIL)) (-3154 (((-783)) 69 T CONST)) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL)) (-3801 (((-1178 (-419 |#1|)) $) 20)) (-2721 (($) 27 T CONST)) (-2731 (($) 30 T CONST)) (-2924 (((-112) $ $) 37)) (-3056 (($ $ $) 121)) (-3043 (($ $) 112) (($ $ $) 109)) (-3029 (($ $ $) 107)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-419 |#1|) $) 117) (($ $ (-419 |#1|)) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL))) +(((-176 |#1|) (-13 (-38 |#1|) (-38 (-419 |#1|)) (-374) (-10 -8 (-15 -2223 ($ (-419 |#1|))) (-15 -2223 ($ |#1| (-1178 |#1|) (-1178 |#1|))) (-15 -3599 ($ |#1| (-1178 |#1|))) (-15 -4194 ((-1178 |#1|) $)) (-15 -2063 ((-1178 |#1|) $)) (-15 -3077 ((-1178 |#1|) $)) (-15 -3110 (|#1| $)) (-15 -3245 ($ $)) (-15 -3801 ((-1178 (-419 |#1|)) $)) (-15 -3509 ((-1178 (-419 |#1|)) $)) (-15 -4011 ((-1178 |#1|) $)) (-15 -3113 ((-1178 |#1|) $)) (-15 -1743 ($ $ (-576))) (-15 -2539 ($ $)))) (-317)) (T -176)) +((-2223 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-317)) (-5 *1 (-176 *3)))) (-2223 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1178 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) (-3599 (*1 *1 *2 *3) (-12 (-5 *3 (-1178 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) (-4194 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2063 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3110 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) (-3245 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) (-3801 (*1 *2 *1) (-12 (-5 *2 (-1178 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-1178 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-4011 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3113 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-1743 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2539 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317))))) +(-13 (-38 |#1|) (-38 (-419 |#1|)) (-374) (-10 -8 (-15 -2223 ($ (-419 |#1|))) (-15 -2223 ($ |#1| (-1178 |#1|) (-1178 |#1|))) (-15 -3599 ($ |#1| (-1178 |#1|))) (-15 -4194 ((-1178 |#1|) $)) (-15 -2063 ((-1178 |#1|) $)) (-15 -3077 ((-1178 |#1|) $)) (-15 -3110 (|#1| $)) (-15 -3245 ($ $)) (-15 -3801 ((-1178 (-419 |#1|)) $)) (-15 -3509 ((-1178 (-419 |#1|)) $)) (-15 -4011 ((-1178 |#1|) $)) (-15 -3113 ((-1178 |#1|) $)) (-15 -1743 ($ $ (-576))) (-15 -2539 ($ $)))) +((-1750 (($ (-109) $) 15)) (-1945 (((-703 (-109)) (-518) $) 14)) (-3569 (((-876) $) 18)) (-2576 (((-656 (-109)) $) 8))) +(((-177) (-13 (-625 (-876)) (-10 -8 (-15 -2576 ((-656 (-109)) $)) (-15 -1750 ($ (-109) $)) (-15 -1945 ((-703 (-109)) (-518) $))))) (T -177)) +((-2576 (*1 *2 *1) (-12 (-5 *2 (-656 (-109))) (-5 *1 (-177)))) (-1750 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-1945 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-177))))) +(-13 (-625 (-876)) (-10 -8 (-15 -2576 ((-656 (-109)) $)) (-15 -1750 ($ (-109) $)) (-15 -1945 ((-703 (-109)) (-518) $)))) +((-1796 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 38)) (-3624 (((-962 |#1|) (-962 |#1|)) 22)) (-4366 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 34)) (-4052 (((-962 |#1|) (-962 |#1|)) 20)) (-2002 (((-962 |#1|) (-962 |#1|)) 28)) (-4317 (((-962 |#1|) (-962 |#1|)) 27)) (-2462 (((-962 |#1|) (-962 |#1|)) 26)) (-1926 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 35)) (-1685 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 33)) (-2861 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 32)) (-3698 (((-962 |#1|) (-962 |#1|)) 21)) (-2779 (((-1 (-962 |#1|) (-962 |#1|)) |#1| |#1|) 41)) (-2385 (((-962 |#1|) (-962 |#1|)) 8)) (-3431 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 37)) (-1833 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 36))) +(((-178 |#1|) (-10 -7 (-15 -2385 ((-962 |#1|) (-962 |#1|))) (-15 -4052 ((-962 |#1|) (-962 |#1|))) (-15 -3698 ((-962 |#1|) (-962 |#1|))) (-15 -3624 ((-962 |#1|) (-962 |#1|))) (-15 -2462 ((-962 |#1|) (-962 |#1|))) (-15 -4317 ((-962 |#1|) (-962 |#1|))) (-15 -2002 ((-962 |#1|) (-962 |#1|))) (-15 -2861 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -1685 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -4366 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -1926 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -1833 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -3431 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -1796 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -2779 ((-1 (-962 |#1|) (-962 |#1|)) |#1| |#1|))) (-13 (-374) (-1223) (-1023))) (T -178)) +((-2779 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-1796 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-3431 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-1833 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-1926 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-4366 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-1685 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-2861 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-2002 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3)))) (-4317 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3)))) (-2462 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3)))) (-3624 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3)))) (-3698 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3)))) (-4052 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3)))) (-2385 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3))))) +(-10 -7 (-15 -2385 ((-962 |#1|) (-962 |#1|))) (-15 -4052 ((-962 |#1|) (-962 |#1|))) (-15 -3698 ((-962 |#1|) (-962 |#1|))) (-15 -3624 ((-962 |#1|) (-962 |#1|))) (-15 -2462 ((-962 |#1|) (-962 |#1|))) (-15 -4317 ((-962 |#1|) (-962 |#1|))) (-15 -2002 ((-962 |#1|) (-962 |#1|))) (-15 -2861 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -1685 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -4366 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -1926 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -1833 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -3431 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -1796 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -2779 ((-1 (-962 |#1|) (-962 |#1|)) |#1| |#1|))) +((-2857 ((|#2| |#3|) 28))) +(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -2857 (|#2| |#3|))) (-174) (-1264 |#1|) (-736 |#1| |#2|)) (T -179)) +((-2857 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1264 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-736 *4 *2))))) +(-10 -7 (-15 -2857 (|#2| |#3|))) +((-3325 (((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)) 44 (|has| (-971 |#2|) (-901 |#1|))))) +(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-971 |#2|) (-901 |#1|)) (-15 -3325 ((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|))) |%noBranch|)) (-1121) (-13 (-901 |#1|) (-174)) (-167 |#2|)) (T -180)) +((-3325 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 *3)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-4 *3 (-167 *6)) (-4 (-971 *6) (-901 *5)) (-4 *6 (-13 (-901 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))) +(-10 -7 (IF (|has| (-971 |#2|) (-901 |#1|)) (-15 -3325 ((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|))) |%noBranch|)) +((-1744 (((-656 |#1|) (-656 |#1|) |#1|) 41)) (-3302 (((-656 |#1|) |#1| (-656 |#1|)) 20)) (-3258 (((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|)) 36) ((|#1| (-656 |#1|) (-656 |#1|)) 32))) +(((-181 |#1|) (-10 -7 (-15 -3302 ((-656 |#1|) |#1| (-656 |#1|))) (-15 -3258 (|#1| (-656 |#1|) (-656 |#1|))) (-15 -3258 ((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|))) (-15 -1744 ((-656 |#1|) (-656 |#1|) |#1|))) (-317)) (T -181)) +((-1744 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3)))) (-3258 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-656 *4))) (-5 *2 (-656 *4)) (-4 *4 (-317)) (-5 *1 (-181 *4)))) (-3258 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-181 *2)) (-4 *2 (-317)))) (-3302 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) +(-10 -7 (-15 -3302 ((-656 |#1|) |#1| (-656 |#1|))) (-15 -3258 (|#1| (-656 |#1|) (-656 |#1|))) (-15 -3258 ((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|))) (-15 -1744 ((-656 |#1|) (-656 |#1|) |#1|))) +((-3488 (((-112) $ $) NIL)) (-2983 (((-1237) $) 13)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3121 (((-1156) $) 10)) (-3569 (((-876) $) 20) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-182) (-13 (-1104) (-10 -8 (-15 -3121 ((-1156) $)) (-15 -2983 ((-1237) $))))) (T -182)) +((-3121 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-182)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-182))))) +(-13 (-1104) (-10 -8 (-15 -3121 ((-1156) $)) (-15 -2983 ((-1237) $)))) +((-1949 (((-2 (|:| |start| |#2|) (|:| -4213 (-430 |#2|))) |#2|) 66)) (-3310 ((|#1| |#1|) 58)) (-2250 (((-171 |#1|) |#2|) 93)) (-2316 ((|#1| |#2|) 136) ((|#1| |#2| |#1|) 90)) (-3401 ((|#2| |#2|) 91)) (-3904 (((-430 |#2|) |#2| |#1|) 118) (((-430 |#2|) |#2| |#1| (-112)) 88)) (-2738 ((|#1| |#2|) 117)) (-2553 ((|#2| |#2|) 130)) (-1828 (((-430 |#2|) |#2|) 153) (((-430 |#2|) |#2| |#1|) 33) (((-430 |#2|) |#2| |#1| (-112)) 152)) (-2207 (((-656 (-2 (|:| -4213 (-656 |#2|)) (|:| -3313 |#1|))) |#2| |#2|) 151) (((-656 (-2 (|:| -4213 (-656 |#2|)) (|:| -3313 |#1|))) |#2| |#2| (-112)) 81)) (-1560 (((-656 (-171 |#1|)) |#2| |#1|) 42) (((-656 (-171 |#1|)) |#2|) 43))) +(((-183 |#1| |#2|) (-10 -7 (-15 -1560 ((-656 (-171 |#1|)) |#2|)) (-15 -1560 ((-656 (-171 |#1|)) |#2| |#1|)) (-15 -2207 ((-656 (-2 (|:| -4213 (-656 |#2|)) (|:| -3313 |#1|))) |#2| |#2| (-112))) (-15 -2207 ((-656 (-2 (|:| -4213 (-656 |#2|)) (|:| -3313 |#1|))) |#2| |#2|)) (-15 -1828 ((-430 |#2|) |#2| |#1| (-112))) (-15 -1828 ((-430 |#2|) |#2| |#1|)) (-15 -1828 ((-430 |#2|) |#2|)) (-15 -2553 (|#2| |#2|)) (-15 -2738 (|#1| |#2|)) (-15 -3904 ((-430 |#2|) |#2| |#1| (-112))) (-15 -3904 ((-430 |#2|) |#2| |#1|)) (-15 -3401 (|#2| |#2|)) (-15 -2316 (|#1| |#2| |#1|)) (-15 -2316 (|#1| |#2|)) (-15 -2250 ((-171 |#1|) |#2|)) (-15 -3310 (|#1| |#1|)) (-15 -1949 ((-2 (|:| |start| |#2|) (|:| -4213 (-430 |#2|))) |#2|))) (-13 (-374) (-860)) (-1264 (-171 |#1|))) (T -183)) +((-1949 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-2 (|:| |start| *3) (|:| -4213 (-430 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-3310 (*1 *2 *2) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1264 (-171 *2))))) (-2250 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-374) (-860))) (-4 *3 (-1264 *2)))) (-2316 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1264 (-171 *2))))) (-2316 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1264 (-171 *2))))) (-3401 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1264 (-171 *3))))) (-3904 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-3904 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-2738 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1264 (-171 *2))))) (-2553 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1264 (-171 *3))))) (-1828 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-1828 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-1828 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-2207 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-2 (|:| -4213 (-656 *3)) (|:| -3313 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-2207 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-374) (-860))) (-5 *2 (-656 (-2 (|:| -4213 (-656 *3)) (|:| -3313 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1264 (-171 *5))))) (-1560 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-1560 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4)))))) +(-10 -7 (-15 -1560 ((-656 (-171 |#1|)) |#2|)) (-15 -1560 ((-656 (-171 |#1|)) |#2| |#1|)) (-15 -2207 ((-656 (-2 (|:| -4213 (-656 |#2|)) (|:| -3313 |#1|))) |#2| |#2| (-112))) (-15 -2207 ((-656 (-2 (|:| -4213 (-656 |#2|)) (|:| -3313 |#1|))) |#2| |#2|)) (-15 -1828 ((-430 |#2|) |#2| |#1| (-112))) (-15 -1828 ((-430 |#2|) |#2| |#1|)) (-15 -1828 ((-430 |#2|) |#2|)) (-15 -2553 (|#2| |#2|)) (-15 -2738 (|#1| |#2|)) (-15 -3904 ((-430 |#2|) |#2| |#1| (-112))) (-15 -3904 ((-430 |#2|) |#2| |#1|)) (-15 -3401 (|#2| |#2|)) (-15 -2316 (|#1| |#2| |#1|)) (-15 -2316 (|#1| |#2|)) (-15 -2250 ((-171 |#1|) |#2|)) (-15 -3310 (|#1| |#1|)) (-15 -1949 ((-2 (|:| |start| |#2|) (|:| -4213 (-430 |#2|))) |#2|))) +((-3832 (((-3 |#2| "failed") |#2|) 16)) (-4135 (((-783) |#2|) 18)) (-3661 ((|#2| |#2| |#2|) 20))) +(((-184 |#1| |#2|) (-10 -7 (-15 -3832 ((-3 |#2| "failed") |#2|)) (-15 -4135 ((-783) |#2|)) (-15 -3661 (|#2| |#2| |#2|))) (-1238) (-686 |#1|)) (T -184)) +((-3661 (*1 *2 *2 *2) (-12 (-4 *3 (-1238)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3)))) (-4135 (*1 *2 *3) (-12 (-4 *4 (-1238)) (-5 *2 (-783)) (-5 *1 (-184 *4 *3)) (-4 *3 (-686 *4)))) (-3832 (*1 *2 *2) (|partial| -12 (-4 *3 (-1238)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3))))) +(-10 -7 (-15 -3832 ((-3 |#2| "failed") |#2|)) (-15 -4135 ((-783) |#2|)) (-15 -3661 (|#2| |#2| |#2|))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2565 ((|#1| $) 7)) (-3569 (((-876) $) 14)) (-2399 (((-112) $ $) NIL)) (-1930 (((-656 (-1202)) $) 10)) (-2924 (((-112) $ $) 12))) +(((-185 |#1|) (-13 (-1121) (-10 -8 (-15 -2565 (|#1| $)) (-15 -1930 ((-656 (-1202)) $)))) (-187)) (T -185)) +((-2565 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-1930 (*1 *2 *1) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) +(-13 (-1121) (-10 -8 (-15 -2565 (|#1| $)) (-15 -1930 ((-656 (-1202)) $)))) +((-3298 (((-656 (-879)) $) 16)) (-1747 (((-188) $) 8)) (-3061 (((-656 (-112)) $) 13)) (-2294 (((-55) $) 10))) +(((-186 |#1|) (-10 -8 (-15 -3298 ((-656 (-879)) |#1|)) (-15 -3061 ((-656 (-112)) |#1|)) (-15 -1747 ((-188) |#1|)) (-15 -2294 ((-55) |#1|))) (-187)) (T -186)) +NIL +(-10 -8 (-15 -3298 ((-656 (-879)) |#1|)) (-15 -3061 ((-656 (-112)) |#1|)) (-15 -1747 ((-188) |#1|)) (-15 -2294 ((-55) |#1|))) +((-3488 (((-112) $ $) 7)) (-3298 (((-656 (-879)) $) 19)) (-2628 (((-518) $) 16)) (-2046 (((-1179) $) 10)) (-1747 (((-188) $) 21)) (-2808 (((-112) $ (-518)) 14)) (-1450 (((-1141) $) 11)) (-3061 (((-656 (-112)) $) 20)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2294 (((-55) $) 15)) (-2924 (((-112) $ $) 8))) (((-187) (-141)) (T -187)) -((-1747 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-1944 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-112))))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-879)))))) -(-13 (-847 (-518)) (-10 -8 (-15 -1747 ((-188) $)) (-15 -1944 ((-656 (-112)) $)) (-15 -3297 ((-656 (-879)) $)))) +((-1747 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-3061 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-112))))) (-3298 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-879)))))) +(-13 (-847 (-518)) (-10 -8 (-15 -1747 ((-188) $)) (-15 -3061 ((-656 (-112)) $)) (-15 -3298 ((-656 (-879)) $)))) (((-102) . T) ((-625 (-876)) . T) ((-847 (-518)) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-8 (($) 7 T CONST)) (-3570 (((-876) $) 12)) (-9 (($) 6 T CONST)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 10))) +((-3488 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-8 (($) 7 T CONST)) (-3569 (((-876) $) 12)) (-9 (($) 6 T CONST)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 10))) (((-188) (-13 (-1121) (-10 -8 (-15 -9 ($) -1480) (-15 -8 ($) -1480) (-15 -7 ($) -1480)))) (T -188)) ((-9 (*1 *1) (-5 *1 (-188))) (-8 (*1 *1) (-5 *1 (-188))) (-7 (*1 *1) (-5 *1 (-188)))) (-13 (-1121) (-10 -8 (-15 -9 ($) -1480) (-15 -8 ($) -1480) (-15 -7 ($) -1480))) -((-3489 (((-112) $ $) NIL)) (-3297 (((-656 (-879)) $) NIL)) (-2629 (((-518) $) 8)) (-3699 (((-1179) $) NIL)) (-1747 (((-188) $) 10)) (-1322 (((-112) $ (-518)) NIL)) (-1450 (((-1141) $) NIL)) (-4143 (((-703 $) (-518)) 17)) (-1944 (((-656 (-112)) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-4045 (((-55) $) 12)) (-2925 (((-112) $ $) NIL))) -(((-189) (-13 (-187) (-10 -8 (-15 -4143 ((-703 $) (-518)))))) (T -189)) -((-4143 (*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-189))) (-5 *1 (-189))))) -(-13 (-187) (-10 -8 (-15 -4143 ((-703 $) (-518))))) -((-3876 ((|#2| |#2|) 28)) (-3159 (((-112) |#2|) 19)) (-1850 (((-326 |#1|) |#2|) 12)) (-1860 (((-326 |#1|) |#2|) 14)) (-2475 ((|#2| |#2| (-1197)) 69) ((|#2| |#2|) 70)) (-1986 (((-171 (-326 |#1|)) |#2|) 10)) (-1530 ((|#2| |#2| (-1197)) 66) ((|#2| |#2|) 60))) -(((-190 |#1| |#2|) (-10 -7 (-15 -2475 (|#2| |#2|)) (-15 -2475 (|#2| |#2| (-1197))) (-15 -1530 (|#2| |#2|)) (-15 -1530 (|#2| |#2| (-1197))) (-15 -1850 ((-326 |#1|) |#2|)) (-15 -1860 ((-326 |#1|) |#2|)) (-15 -3159 ((-112) |#2|)) (-15 -3876 (|#2| |#2|)) (-15 -1986 ((-171 (-326 |#1|)) |#2|))) (-13 (-568) (-1059 (-576))) (-13 (-27) (-1223) (-442 (-171 |#1|)))) (T -190)) -((-1986 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-171 (-326 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) (-3876 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *3)))))) (-3159 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) (-1860 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) (-1850 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) (-1530 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *4)))))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *3)))))) (-2475 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *4)))))) (-2475 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *3))))))) -(-10 -7 (-15 -2475 (|#2| |#2|)) (-15 -2475 (|#2| |#2| (-1197))) (-15 -1530 (|#2| |#2|)) (-15 -1530 (|#2| |#2| (-1197))) (-15 -1850 ((-326 |#1|) |#2|)) (-15 -1860 ((-326 |#1|) |#2|)) (-15 -3159 ((-112) |#2|)) (-15 -3876 (|#2| |#2|)) (-15 -1986 ((-171 (-326 |#1|)) |#2|))) -((-2892 (((-1288 (-701 (-971 |#1|))) (-1288 (-701 |#1|))) 26)) (-3570 (((-1288 (-701 (-419 (-971 |#1|)))) (-1288 (-701 |#1|))) 37))) -(((-191 |#1|) (-10 -7 (-15 -2892 ((-1288 (-701 (-971 |#1|))) (-1288 (-701 |#1|)))) (-15 -3570 ((-1288 (-701 (-419 (-971 |#1|)))) (-1288 (-701 |#1|))))) (-174)) (T -191)) -((-3570 (*1 *2 *3) (-12 (-5 *3 (-1288 (-701 *4))) (-4 *4 (-174)) (-5 *2 (-1288 (-701 (-419 (-971 *4))))) (-5 *1 (-191 *4)))) (-2892 (*1 *2 *3) (-12 (-5 *3 (-1288 (-701 *4))) (-4 *4 (-174)) (-5 *2 (-1288 (-701 (-971 *4)))) (-5 *1 (-191 *4))))) -(-10 -7 (-15 -2892 ((-1288 (-701 (-971 |#1|))) (-1288 (-701 |#1|)))) (-15 -3570 ((-1288 (-701 (-419 (-971 |#1|)))) (-1288 (-701 |#1|))))) -((-2440 (((-1199 (-419 (-576))) (-1199 (-419 (-576))) (-1199 (-419 (-576)))) 93)) (-3265 (((-1199 (-419 (-576))) (-656 (-576)) (-656 (-576))) 107)) (-4252 (((-1199 (-419 (-576))) (-940)) 54)) (-1906 (((-1199 (-419 (-576))) (-940)) 79)) (-3284 (((-419 (-576)) (-1199 (-419 (-576)))) 89)) (-3038 (((-1199 (-419 (-576))) (-940)) 37)) (-2058 (((-1199 (-419 (-576))) (-940)) 66)) (-1630 (((-1199 (-419 (-576))) (-940)) 61)) (-1494 (((-1199 (-419 (-576))) (-1199 (-419 (-576))) (-1199 (-419 (-576)))) 87)) (-3126 (((-1199 (-419 (-576))) (-940)) 29)) (-3536 (((-419 (-576)) (-1199 (-419 (-576))) (-1199 (-419 (-576)))) 91)) (-2960 (((-1199 (-419 (-576))) (-940)) 35)) (-2845 (((-1199 (-419 (-576))) (-656 (-940))) 100))) -(((-192) (-10 -7 (-15 -3126 ((-1199 (-419 (-576))) (-940))) (-15 -4252 ((-1199 (-419 (-576))) (-940))) (-15 -3038 ((-1199 (-419 (-576))) (-940))) (-15 -2960 ((-1199 (-419 (-576))) (-940))) (-15 -1630 ((-1199 (-419 (-576))) (-940))) (-15 -2058 ((-1199 (-419 (-576))) (-940))) (-15 -1906 ((-1199 (-419 (-576))) (-940))) (-15 -3536 ((-419 (-576)) (-1199 (-419 (-576))) (-1199 (-419 (-576))))) (-15 -1494 ((-1199 (-419 (-576))) (-1199 (-419 (-576))) (-1199 (-419 (-576))))) (-15 -3284 ((-419 (-576)) (-1199 (-419 (-576))))) (-15 -2440 ((-1199 (-419 (-576))) (-1199 (-419 (-576))) (-1199 (-419 (-576))))) (-15 -2845 ((-1199 (-419 (-576))) (-656 (-940)))) (-15 -3265 ((-1199 (-419 (-576))) (-656 (-576)) (-656 (-576)))))) (T -192)) -((-3265 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-2440 (*1 *2 *2 *2) (-12 (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-3284 (*1 *2 *3) (-12 (-5 *3 (-1199 (-419 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-192)))) (-1494 (*1 *2 *2 *2) (-12 (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-3536 (*1 *2 *3 *3) (-12 (-5 *3 (-1199 (-419 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-192)))) (-1906 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-2058 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-1630 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-2960 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-3038 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-4252 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-3126 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) -(-10 -7 (-15 -3126 ((-1199 (-419 (-576))) (-940))) (-15 -4252 ((-1199 (-419 (-576))) (-940))) (-15 -3038 ((-1199 (-419 (-576))) (-940))) (-15 -2960 ((-1199 (-419 (-576))) (-940))) (-15 -1630 ((-1199 (-419 (-576))) (-940))) (-15 -2058 ((-1199 (-419 (-576))) (-940))) (-15 -1906 ((-1199 (-419 (-576))) (-940))) (-15 -3536 ((-419 (-576)) (-1199 (-419 (-576))) (-1199 (-419 (-576))))) (-15 -1494 ((-1199 (-419 (-576))) (-1199 (-419 (-576))) (-1199 (-419 (-576))))) (-15 -3284 ((-419 (-576)) (-1199 (-419 (-576))))) (-15 -2440 ((-1199 (-419 (-576))) (-1199 (-419 (-576))) (-1199 (-419 (-576))))) (-15 -2845 ((-1199 (-419 (-576))) (-656 (-940)))) (-15 -3265 ((-1199 (-419 (-576))) (-656 (-576)) (-656 (-576))))) -((-4237 (((-430 (-1193 (-576))) (-576)) 38)) (-1731 (((-656 (-1193 (-576))) (-576)) 33)) (-1849 (((-1193 (-576)) (-576)) 28))) -(((-193) (-10 -7 (-15 -1731 ((-656 (-1193 (-576))) (-576))) (-15 -1849 ((-1193 (-576)) (-576))) (-15 -4237 ((-430 (-1193 (-576))) (-576))))) (T -193)) -((-4237 (*1 *2 *3) (-12 (-5 *2 (-430 (-1193 (-576)))) (-5 *1 (-193)) (-5 *3 (-576)))) (-1849 (*1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-193)) (-5 *3 (-576)))) (-1731 (*1 *2 *3) (-12 (-5 *2 (-656 (-1193 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) -(-10 -7 (-15 -1731 ((-656 (-1193 (-576))) (-576))) (-15 -1849 ((-1193 (-576)) (-576))) (-15 -4237 ((-430 (-1193 (-576))) (-576)))) -((-3783 (((-1178 (-227)) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 132)) (-4313 (((-656 (-1179)) (-1178 (-227))) NIL)) (-1524 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-3144 (((-656 (-227)) (-326 (-227)) (-1197) (-1115 (-855 (-227)))) NIL)) (-3653 (((-656 (-1179)) (-656 (-227))) NIL)) (-2868 (((-227) (-1115 (-855 (-227)))) 31)) (-4073 (((-227) (-1115 (-855 (-227)))) 32)) (-2344 (((-390) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 126)) (-2539 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 67)) (-4312 (((-1179) (-227)) NIL)) (-2595 (((-1179) (-656 (-1179))) 27)) (-2458 (((-1056) (-1197) (-1197) (-1056)) 13))) -(((-194) (-10 -7 (-15 -1524 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2539 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2868 ((-227) (-1115 (-855 (-227))))) (-15 -4073 ((-227) (-1115 (-855 (-227))))) (-15 -2344 ((-390) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3144 ((-656 (-227)) (-326 (-227)) (-1197) (-1115 (-855 (-227))))) (-15 -3783 ((-1178 (-227)) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4312 ((-1179) (-227))) (-15 -3653 ((-656 (-1179)) (-656 (-227)))) (-15 -4313 ((-656 (-1179)) (-1178 (-227)))) (-15 -2595 ((-1179) (-656 (-1179)))) (-15 -2458 ((-1056) (-1197) (-1197) (-1056))))) (T -194)) -((-2458 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-1197)) (-5 *1 (-194)))) (-2595 (*1 *2 *3) (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1179)) (-5 *1 (-194)))) (-4313 (*1 *2 *3) (-12 (-5 *3 (-1178 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-194)))) (-3653 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-194)))) (-4312 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1179)) (-5 *1 (-194)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-194)))) (-3144 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1197)) (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-194)))) (-2344 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-194)))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-2868 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-2539 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-1524 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194))))) -(-10 -7 (-15 -1524 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2539 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2868 ((-227) (-1115 (-855 (-227))))) (-15 -4073 ((-227) (-1115 (-855 (-227))))) (-15 -2344 ((-390) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3144 ((-656 (-227)) (-326 (-227)) (-1197) (-1115 (-855 (-227))))) (-15 -3783 ((-1178 (-227)) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4312 ((-1179) (-227))) (-15 -3653 ((-656 (-1179)) (-656 (-227)))) (-15 -4313 ((-656 (-1179)) (-1178 (-227)))) (-15 -2595 ((-1179) (-656 (-1179)))) (-15 -2458 ((-1056) (-1197) (-1197) (-1056)))) -((-3489 (((-112) $ $) NIL)) (-2162 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 61) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 33) (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-3298 (((-656 (-879)) $) NIL)) (-2628 (((-518) $) 8)) (-2046 (((-1179) $) NIL)) (-1747 (((-188) $) 10)) (-2808 (((-112) $ (-518)) NIL)) (-1450 (((-1141) $) NIL)) (-2022 (((-703 $) (-518)) 17)) (-3061 (((-656 (-112)) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2294 (((-55) $) 12)) (-2924 (((-112) $ $) NIL))) +(((-189) (-13 (-187) (-10 -8 (-15 -2022 ((-703 $) (-518)))))) (T -189)) +((-2022 (*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-189))) (-5 *1 (-189))))) +(-13 (-187) (-10 -8 (-15 -2022 ((-703 $) (-518))))) +((-1426 ((|#2| |#2|) 28)) (-1659 (((-112) |#2|) 19)) (-1850 (((-326 |#1|) |#2|) 12)) (-1860 (((-326 |#1|) |#2|) 14)) (-1421 ((|#2| |#2| (-1197)) 69) ((|#2| |#2|) 70)) (-2141 (((-171 (-326 |#1|)) |#2|) 10)) (-3319 ((|#2| |#2| (-1197)) 66) ((|#2| |#2|) 60))) +(((-190 |#1| |#2|) (-10 -7 (-15 -1421 (|#2| |#2|)) (-15 -1421 (|#2| |#2| (-1197))) (-15 -3319 (|#2| |#2|)) (-15 -3319 (|#2| |#2| (-1197))) (-15 -1850 ((-326 |#1|) |#2|)) (-15 -1860 ((-326 |#1|) |#2|)) (-15 -1659 ((-112) |#2|)) (-15 -1426 (|#2| |#2|)) (-15 -2141 ((-171 (-326 |#1|)) |#2|))) (-13 (-568) (-1059 (-576))) (-13 (-27) (-1223) (-442 (-171 |#1|)))) (T -190)) +((-2141 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-171 (-326 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) (-1426 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *3)))))) (-1659 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) (-1860 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) (-1850 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) (-3319 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *4)))))) (-3319 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *3)))))) (-1421 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *4)))))) (-1421 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *3))))))) +(-10 -7 (-15 -1421 (|#2| |#2|)) (-15 -1421 (|#2| |#2| (-1197))) (-15 -3319 (|#2| |#2|)) (-15 -3319 (|#2| |#2| (-1197))) (-15 -1850 ((-326 |#1|) |#2|)) (-15 -1860 ((-326 |#1|) |#2|)) (-15 -1659 ((-112) |#2|)) (-15 -1426 (|#2| |#2|)) (-15 -2141 ((-171 (-326 |#1|)) |#2|))) +((-2936 (((-1288 (-701 (-971 |#1|))) (-1288 (-701 |#1|))) 26)) (-3569 (((-1288 (-701 (-419 (-971 |#1|)))) (-1288 (-701 |#1|))) 37))) +(((-191 |#1|) (-10 -7 (-15 -2936 ((-1288 (-701 (-971 |#1|))) (-1288 (-701 |#1|)))) (-15 -3569 ((-1288 (-701 (-419 (-971 |#1|)))) (-1288 (-701 |#1|))))) (-174)) (T -191)) +((-3569 (*1 *2 *3) (-12 (-5 *3 (-1288 (-701 *4))) (-4 *4 (-174)) (-5 *2 (-1288 (-701 (-419 (-971 *4))))) (-5 *1 (-191 *4)))) (-2936 (*1 *2 *3) (-12 (-5 *3 (-1288 (-701 *4))) (-4 *4 (-174)) (-5 *2 (-1288 (-701 (-971 *4)))) (-5 *1 (-191 *4))))) +(-10 -7 (-15 -2936 ((-1288 (-701 (-971 |#1|))) (-1288 (-701 |#1|)))) (-15 -3569 ((-1288 (-701 (-419 (-971 |#1|)))) (-1288 (-701 |#1|))))) +((-4207 (((-1199 (-419 (-576))) (-1199 (-419 (-576))) (-1199 (-419 (-576)))) 93)) (-3423 (((-1199 (-419 (-576))) (-656 (-576)) (-656 (-576))) 107)) (-3857 (((-1199 (-419 (-576))) (-940)) 54)) (-2639 (((-1199 (-419 (-576))) (-940)) 79)) (-3282 (((-419 (-576)) (-1199 (-419 (-576)))) 89)) (-2984 (((-1199 (-419 (-576))) (-940)) 37)) (-1605 (((-1199 (-419 (-576))) (-940)) 66)) (-3089 (((-1199 (-419 (-576))) (-940)) 61)) (-4182 (((-1199 (-419 (-576))) (-1199 (-419 (-576))) (-1199 (-419 (-576)))) 87)) (-2539 (((-1199 (-419 (-576))) (-940)) 29)) (-4265 (((-419 (-576)) (-1199 (-419 (-576))) (-1199 (-419 (-576)))) 91)) (-3517 (((-1199 (-419 (-576))) (-940)) 35)) (-3770 (((-1199 (-419 (-576))) (-656 (-940))) 100))) +(((-192) (-10 -7 (-15 -2539 ((-1199 (-419 (-576))) (-940))) (-15 -3857 ((-1199 (-419 (-576))) (-940))) (-15 -2984 ((-1199 (-419 (-576))) (-940))) (-15 -3517 ((-1199 (-419 (-576))) (-940))) (-15 -3089 ((-1199 (-419 (-576))) (-940))) (-15 -1605 ((-1199 (-419 (-576))) (-940))) (-15 -2639 ((-1199 (-419 (-576))) (-940))) (-15 -4265 ((-419 (-576)) (-1199 (-419 (-576))) (-1199 (-419 (-576))))) (-15 -4182 ((-1199 (-419 (-576))) (-1199 (-419 (-576))) (-1199 (-419 (-576))))) (-15 -3282 ((-419 (-576)) (-1199 (-419 (-576))))) (-15 -4207 ((-1199 (-419 (-576))) (-1199 (-419 (-576))) (-1199 (-419 (-576))))) (-15 -3770 ((-1199 (-419 (-576))) (-656 (-940)))) (-15 -3423 ((-1199 (-419 (-576))) (-656 (-576)) (-656 (-576)))))) (T -192)) +((-3423 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-3770 (*1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-4207 (*1 *2 *2 *2) (-12 (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-3282 (*1 *2 *3) (-12 (-5 *3 (-1199 (-419 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-192)))) (-4182 (*1 *2 *2 *2) (-12 (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-4265 (*1 *2 *3 *3) (-12 (-5 *3 (-1199 (-419 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-192)))) (-2639 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-1605 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-3517 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-2984 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-3857 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-2539 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) +(-10 -7 (-15 -2539 ((-1199 (-419 (-576))) (-940))) (-15 -3857 ((-1199 (-419 (-576))) (-940))) (-15 -2984 ((-1199 (-419 (-576))) (-940))) (-15 -3517 ((-1199 (-419 (-576))) (-940))) (-15 -3089 ((-1199 (-419 (-576))) (-940))) (-15 -1605 ((-1199 (-419 (-576))) (-940))) (-15 -2639 ((-1199 (-419 (-576))) (-940))) (-15 -4265 ((-419 (-576)) (-1199 (-419 (-576))) (-1199 (-419 (-576))))) (-15 -4182 ((-1199 (-419 (-576))) (-1199 (-419 (-576))) (-1199 (-419 (-576))))) (-15 -3282 ((-419 (-576)) (-1199 (-419 (-576))))) (-15 -4207 ((-1199 (-419 (-576))) (-1199 (-419 (-576))) (-1199 (-419 (-576))))) (-15 -3770 ((-1199 (-419 (-576))) (-656 (-940)))) (-15 -3423 ((-1199 (-419 (-576))) (-656 (-576)) (-656 (-576))))) +((-3709 (((-430 (-1193 (-576))) (-576)) 38)) (-1571 (((-656 (-1193 (-576))) (-576)) 33)) (-3408 (((-1193 (-576)) (-576)) 28))) +(((-193) (-10 -7 (-15 -1571 ((-656 (-1193 (-576))) (-576))) (-15 -3408 ((-1193 (-576)) (-576))) (-15 -3709 ((-430 (-1193 (-576))) (-576))))) (T -193)) +((-3709 (*1 *2 *3) (-12 (-5 *2 (-430 (-1193 (-576)))) (-5 *1 (-193)) (-5 *3 (-576)))) (-3408 (*1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-193)) (-5 *3 (-576)))) (-1571 (*1 *2 *3) (-12 (-5 *2 (-656 (-1193 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) +(-10 -7 (-15 -1571 ((-656 (-1193 (-576))) (-576))) (-15 -3408 ((-1193 (-576)) (-576))) (-15 -3709 ((-430 (-1193 (-576))) (-576)))) +((-1713 (((-1178 (-227)) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 132)) (-3192 (((-656 (-1179)) (-1178 (-227))) NIL)) (-3254 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-1520 (((-656 (-227)) (-326 (-227)) (-1197) (-1115 (-855 (-227)))) NIL)) (-2867 (((-656 (-1179)) (-656 (-227))) NIL)) (-3993 (((-227) (-1115 (-855 (-227)))) 31)) (-2566 (((-227) (-1115 (-855 (-227)))) 32)) (-2544 (((-390) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 126)) (-2691 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 67)) (-3181 (((-1179) (-227)) NIL)) (-3285 (((-1179) (-656 (-1179))) 27)) (-4379 (((-1056) (-1197) (-1197) (-1056)) 13))) +(((-194) (-10 -7 (-15 -3254 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2691 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3993 ((-227) (-1115 (-855 (-227))))) (-15 -2566 ((-227) (-1115 (-855 (-227))))) (-15 -2544 ((-390) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1520 ((-656 (-227)) (-326 (-227)) (-1197) (-1115 (-855 (-227))))) (-15 -1713 ((-1178 (-227)) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3181 ((-1179) (-227))) (-15 -2867 ((-656 (-1179)) (-656 (-227)))) (-15 -3192 ((-656 (-1179)) (-1178 (-227)))) (-15 -3285 ((-1179) (-656 (-1179)))) (-15 -4379 ((-1056) (-1197) (-1197) (-1056))))) (T -194)) +((-4379 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-1197)) (-5 *1 (-194)))) (-3285 (*1 *2 *3) (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1179)) (-5 *1 (-194)))) (-3192 (*1 *2 *3) (-12 (-5 *3 (-1178 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-194)))) (-2867 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-194)))) (-3181 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1179)) (-5 *1 (-194)))) (-1713 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-194)))) (-1520 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1197)) (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-194)))) (-2544 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-194)))) (-2566 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-3993 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-2691 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-3254 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194))))) +(-10 -7 (-15 -3254 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2691 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3993 ((-227) (-1115 (-855 (-227))))) (-15 -2566 ((-227) (-1115 (-855 (-227))))) (-15 -2544 ((-390) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1520 ((-656 (-227)) (-326 (-227)) (-1197) (-1115 (-855 (-227))))) (-15 -1713 ((-1178 (-227)) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3181 ((-1179) (-227))) (-15 -2867 ((-656 (-1179)) (-656 (-227)))) (-15 -3192 ((-656 (-1179)) (-1178 (-227)))) (-15 -3285 ((-1179) (-656 (-1179)))) (-15 -4379 ((-1056) (-1197) (-1197) (-1056)))) +((-3488 (((-112) $ $) NIL)) (-1365 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 61) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 33) (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) (((-195) (-799)) (T -195)) NIL (-799) -((-3489 (((-112) $ $) NIL)) (-2162 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 66) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-1365 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 66) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) (((-196) (-799)) (T -196)) NIL (-799) -((-3489 (((-112) $ $) NIL)) (-2162 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 81) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 46) (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-1365 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 81) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 46) (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) (((-197) (-799)) (T -197)) NIL (-799) -((-3489 (((-112) $ $) NIL)) (-2162 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 63) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 36) (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-1365 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 63) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 36) (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) (((-198) (-799)) (T -198)) NIL (-799) -((-3489 (((-112) $ $) NIL)) (-2162 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 76) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40) (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-1365 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 76) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40) (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) (((-199) (-799)) (T -199)) NIL (-799) -((-3489 (((-112) $ $) NIL)) (-2162 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 93) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49) (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-1365 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 93) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49) (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) (((-200) (-799)) (T -200)) NIL (-799) -((-3489 (((-112) $ $) NIL)) (-2162 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 90) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 51) (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-1365 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 90) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 51) (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) (((-201) (-799)) (T -201)) NIL (-799) -((-3489 (((-112) $ $) NIL)) (-2162 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 78) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-1365 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 78) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) (((-202) (-799)) (T -202)) NIL (-799) -((-3489 (((-112) $ $) NIL)) (-2162 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 76)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 35)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-1365 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 76)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 35)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) (((-203) (-799)) (T -203)) NIL (-799) -((-3489 (((-112) $ $) NIL)) (-2162 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 77)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-1365 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 77)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) (((-204) (-799)) (T -204)) NIL (-799) -((-3489 (((-112) $ $) NIL)) (-2162 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 105) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 86) (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-1365 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 105) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 86) (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) (((-205) (-799)) (T -205)) NIL (-799) -((-2055 (((-3 (-2 (|:| -1757 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-3837 (((-576) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 59)) (-3440 (((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 90))) -(((-206) (-10 -7 (-15 -2055 ((-3 (-2 (|:| -1757 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3440 ((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3837 ((-576) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -206)) -((-3837 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-576)) (-5 *1 (-206)))) (-3440 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-206)))) (-2055 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -1757 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) -(-10 -7 (-15 -2055 ((-3 (-2 (|:| -1757 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3440 ((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3837 ((-576) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-1679 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49)) (-1592 (((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 157)) (-2364 (((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227)))) 112)) (-1897 (((-390) (-701 (-326 (-227)))) 140)) (-3418 (((-701 (-326 (-227))) (-1288 (-326 (-227))) (-656 (-1197))) 136)) (-2072 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 37)) (-2832 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 53)) (-3284 (((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1197)) (-1288 (-326 (-227)))) 125)) (-2893 (((-390) (-390) (-656 (-390))) 133) (((-390) (-390) (-390)) 128)) (-2085 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 45))) -(((-207) (-10 -7 (-15 -2893 ((-390) (-390) (-390))) (-15 -2893 ((-390) (-390) (-656 (-390)))) (-15 -1897 ((-390) (-701 (-326 (-227))))) (-15 -3418 ((-701 (-326 (-227))) (-1288 (-326 (-227))) (-656 (-1197)))) (-15 -3284 ((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1197)) (-1288 (-326 (-227))))) (-15 -2364 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227))))) (-15 -1592 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1679 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2832 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2085 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2072 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -207)) -((-2072 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2085 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2832 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-1679 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-1592 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) (-5 *1 (-207)))) (-2364 (*1 *2 *3) (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) (-5 *1 (-207)))) (-3284 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-701 (-326 (-227)))) (-5 *3 (-656 (-1197))) (-5 *4 (-1288 (-326 (-227)))) (-5 *1 (-207)))) (-3418 (*1 *2 *3 *4) (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *4 (-656 (-1197))) (-5 *2 (-701 (-326 (-227)))) (-5 *1 (-207)))) (-1897 (*1 *2 *3) (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2893 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-390))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2893 (*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-207))))) -(-10 -7 (-15 -2893 ((-390) (-390) (-390))) (-15 -2893 ((-390) (-390) (-656 (-390)))) (-15 -1897 ((-390) (-701 (-326 (-227))))) (-15 -3418 ((-701 (-326 (-227))) (-1288 (-326 (-227))) (-656 (-1197)))) (-15 -3284 ((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1197)) (-1288 (-326 (-227))))) (-15 -2364 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227))))) (-15 -1592 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1679 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2832 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2085 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2072 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-3489 (((-112) $ $) NIL)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2446 (((-1056) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 75)) (-2925 (((-112) $ $) NIL))) +((-1576 (((-3 (-2 (|:| -1757 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-4204 (((-576) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 59)) (-1490 (((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 90))) +(((-206) (-10 -7 (-15 -1576 ((-3 (-2 (|:| -1757 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1490 ((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4204 ((-576) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -206)) +((-4204 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-576)) (-5 *1 (-206)))) (-1490 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-206)))) (-1576 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -1757 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) +(-10 -7 (-15 -1576 ((-3 (-2 (|:| -1757 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1490 ((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4204 ((-576) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-2260 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49)) (-2664 (((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 157)) (-1524 (((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227)))) 112)) (-3864 (((-390) (-701 (-326 (-227)))) 140)) (-2463 (((-701 (-326 (-227))) (-1288 (-326 (-227))) (-656 (-1197))) 136)) (-1720 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 37)) (-3639 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 53)) (-3282 (((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1197)) (-1288 (-326 (-227)))) 125)) (-2952 (((-390) (-390) (-656 (-390))) 133) (((-390) (-390) (-390)) 128)) (-1842 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 45))) +(((-207) (-10 -7 (-15 -2952 ((-390) (-390) (-390))) (-15 -2952 ((-390) (-390) (-656 (-390)))) (-15 -3864 ((-390) (-701 (-326 (-227))))) (-15 -2463 ((-701 (-326 (-227))) (-1288 (-326 (-227))) (-656 (-1197)))) (-15 -3282 ((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1197)) (-1288 (-326 (-227))))) (-15 -1524 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227))))) (-15 -2664 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2260 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3639 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1842 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1720 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -207)) +((-1720 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-1842 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-3639 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2260 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2664 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) (-5 *1 (-207)))) (-1524 (*1 *2 *3) (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) (-5 *1 (-207)))) (-3282 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-701 (-326 (-227)))) (-5 *3 (-656 (-1197))) (-5 *4 (-1288 (-326 (-227)))) (-5 *1 (-207)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *4 (-656 (-1197))) (-5 *2 (-701 (-326 (-227)))) (-5 *1 (-207)))) (-3864 (*1 *2 *3) (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2952 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-390))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2952 (*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-207))))) +(-10 -7 (-15 -2952 ((-390) (-390) (-390))) (-15 -2952 ((-390) (-390) (-656 (-390)))) (-15 -3864 ((-390) (-701 (-326 (-227))))) (-15 -2463 ((-701 (-326 (-227))) (-1288 (-326 (-227))) (-656 (-1197)))) (-15 -3282 ((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1197)) (-1288 (-326 (-227))))) (-15 -1524 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227))))) (-15 -2664 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2260 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3639 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1842 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1720 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-3488 (((-112) $ $) NIL)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-4256 (((-1056) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 75)) (-2924 (((-112) $ $) NIL))) (((-208) (-812)) (T -208)) NIL (-812) -((-3489 (((-112) $ $) NIL)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2446 (((-1056) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 73)) (-2925 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-4256 (((-1056) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 73)) (-2924 (((-112) $ $) NIL))) (((-209) (-812)) (T -209)) NIL (-812) -((-3489 (((-112) $ $) NIL)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2446 (((-1056) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 76)) (-2925 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-4256 (((-1056) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 76)) (-2924 (((-112) $ $) NIL))) (((-210) (-812)) (T -210)) NIL (-812) -((-3489 (((-112) $ $) NIL)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 48)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2446 (((-1056) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 88)) (-2925 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 48)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-4256 (((-1056) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 88)) (-2924 (((-112) $ $) NIL))) (((-211) (-812)) (T -211)) NIL (-812) -((-3447 (((-656 (-1197)) (-1197) (-783)) 26)) (-4089 (((-326 (-227)) (-326 (-227))) 35)) (-3006 (((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 87)) (-3623 (((-112) (-227) (-227) (-656 (-326 (-227)))) 47))) -(((-212) (-10 -7 (-15 -3447 ((-656 (-1197)) (-1197) (-783))) (-15 -4089 ((-326 (-227)) (-326 (-227)))) (-15 -3623 ((-112) (-227) (-227) (-656 (-326 (-227))))) (-15 -3006 ((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))))))) (T -212)) -((-3006 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-3623 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-656 (-326 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-212)))) (-4089 (*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-212)))) (-3447 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-656 (-1197))) (-5 *1 (-212)) (-5 *3 (-1197))))) -(-10 -7 (-15 -3447 ((-656 (-1197)) (-1197) (-783))) (-15 -4089 ((-326 (-227)) (-326 (-227)))) (-15 -3623 ((-112) (-227) (-227) (-656 (-326 (-227))))) (-15 -3006 ((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))))) -((-3489 (((-112) $ $) NIL)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 28)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-3277 (((-1056) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 70)) (-2925 (((-112) $ $) NIL))) +((-3446 (((-656 (-1197)) (-1197) (-783)) 26)) (-1534 (((-326 (-227)) (-326 (-227))) 35)) (-2626 (((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 87)) (-3877 (((-112) (-227) (-227) (-656 (-326 (-227)))) 47))) +(((-212) (-10 -7 (-15 -3446 ((-656 (-1197)) (-1197) (-783))) (-15 -1534 ((-326 (-227)) (-326 (-227)))) (-15 -3877 ((-112) (-227) (-227) (-656 (-326 (-227))))) (-15 -2626 ((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))))))) (T -212)) +((-2626 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-3877 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-656 (-326 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-212)))) (-1534 (*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-212)))) (-3446 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-656 (-1197))) (-5 *1 (-212)) (-5 *3 (-1197))))) +(-10 -7 (-15 -3446 ((-656 (-1197)) (-1197) (-783))) (-15 -1534 ((-326 (-227)) (-326 (-227)))) (-15 -3877 ((-112) (-227) (-227) (-656 (-326 (-227))))) (-15 -2626 ((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))))) +((-3488 (((-112) $ $) NIL)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 28)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-3571 (((-1056) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 70)) (-2924 (((-112) $ $) NIL))) (((-213) (-912)) (T -213)) NIL (-912) -((-3489 (((-112) $ $) NIL)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 24)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-3277 (((-1056) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) NIL)) (-2925 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 24)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-3571 (((-1056) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) NIL)) (-2924 (((-112) $ $) NIL))) (((-214) (-912)) (T -214)) NIL (-912) -((-3489 (((-112) $ $) NIL)) (-4279 ((|#2| $ (-783) |#2|) 11)) (-4274 ((|#2| $ (-783)) 10)) (-4141 (($) 8)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 23)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 13))) -(((-215 |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -4141 ($)) (-15 -4274 (|#2| $ (-783))) (-15 -4279 (|#2| $ (-783) |#2|)))) (-940) (-1121)) (T -215)) -((-4141 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1121)))) (-4274 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *2 (-1121)) (-5 *1 (-215 *4 *2)) (-14 *4 (-940)))) (-4279 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-215 *4 *2)) (-14 *4 (-940)) (-4 *2 (-1121))))) -(-13 (-1121) (-10 -8 (-15 -4141 ($)) (-15 -4274 (|#2| $ (-783))) (-15 -4279 (|#2| $ (-783) |#2|)))) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3420 (((-1293) $) 37) (((-1293) $ (-940) (-940)) 41)) (-2797 (($ $ (-1010)) 19) (((-250 (-1179)) $ (-1197)) 15)) (-1977 (((-1293) $) 35)) (-3570 (((-876) $) 32) (($ (-656 |#1|)) 8)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-3044 (($ $ $) 27)) (-3030 (($ $ $) 22))) -(((-216 |#1|) (-13 (-1121) (-628 (-656 |#1|)) (-10 -8 (-15 -2797 ($ $ (-1010))) (-15 -2797 ((-250 (-1179)) $ (-1197))) (-15 -3030 ($ $ $)) (-15 -3044 ($ $ $)) (-15 -1977 ((-1293) $)) (-15 -3420 ((-1293) $)) (-15 -3420 ((-1293) $ (-940) (-940))))) (-13 (-861) (-10 -8 (-15 -2797 ((-1179) $ (-1197))) (-15 -1977 ((-1293) $)) (-15 -3420 ((-1293) $))))) (T -216)) -((-2797 (*1 *1 *1 *2) (-12 (-5 *2 (-1010)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-861) (-10 -8 (-15 -2797 ((-1179) $ (-1197))) (-15 -1977 ((-1293) $)) (-15 -3420 ((-1293) $))))))) (-2797 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-250 (-1179))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-861) (-10 -8 (-15 -2797 ((-1179) $ *3)) (-15 -1977 ((-1293) $)) (-15 -3420 ((-1293) $))))))) (-3030 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-861) (-10 -8 (-15 -2797 ((-1179) $ (-1197))) (-15 -1977 ((-1293) $)) (-15 -3420 ((-1293) $))))))) (-3044 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-861) (-10 -8 (-15 -2797 ((-1179) $ (-1197))) (-15 -1977 ((-1293) $)) (-15 -3420 ((-1293) $))))))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-861) (-10 -8 (-15 -2797 ((-1179) $ (-1197))) (-15 -1977 (*2 $)) (-15 -3420 (*2 $))))))) (-3420 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-861) (-10 -8 (-15 -2797 ((-1179) $ (-1197))) (-15 -1977 (*2 $)) (-15 -3420 (*2 $))))))) (-3420 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1293)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-861) (-10 -8 (-15 -2797 ((-1179) $ (-1197))) (-15 -1977 (*2 $)) (-15 -3420 (*2 $)))))))) -(-13 (-1121) (-628 (-656 |#1|)) (-10 -8 (-15 -2797 ($ $ (-1010))) (-15 -2797 ((-250 (-1179)) $ (-1197))) (-15 -3030 ($ $ $)) (-15 -3044 ($ $ $)) (-15 -1977 ((-1293) $)) (-15 -3420 ((-1293) $)) (-15 -3420 ((-1293) $ (-940) (-940))))) -((-4042 ((|#2| |#4| (-1 |#2| |#2|)) 49))) -(((-217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4042 (|#2| |#4| (-1 |#2| |#2|)))) (-374) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -217)) -((-4042 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-374)) (-4 *6 (-1264 (-419 *2))) (-4 *2 (-1264 *5)) (-5 *1 (-217 *5 *2 *6 *3)) (-4 *3 (-353 *5 *2 *6))))) -(-10 -7 (-15 -4042 (|#2| |#4| (-1 |#2| |#2|)))) -((-2594 ((|#2| |#2| (-783) |#2|) 55)) (-1476 ((|#2| |#2| (-783) |#2|) 51)) (-2439 (((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -2812 |#2|)))) 79)) (-1527 (((-656 (-2 (|:| |deg| (-783)) (|:| -2812 |#2|))) |#2|) 73)) (-4421 (((-112) |#2|) 71)) (-4391 (((-430 |#2|) |#2|) 91)) (-1828 (((-430 |#2|) |#2|) 90)) (-3518 ((|#2| |#2| (-783) |#2|) 49)) (-2824 (((-2 (|:| |cont| |#1|) (|:| -2761 (-656 (-2 (|:| |irr| |#2|) (|:| -2567 (-576)))))) |#2| (-112)) 85))) -(((-218 |#1| |#2|) (-10 -7 (-15 -1828 ((-430 |#2|) |#2|)) (-15 -4391 ((-430 |#2|) |#2|)) (-15 -2824 ((-2 (|:| |cont| |#1|) (|:| -2761 (-656 (-2 (|:| |irr| |#2|) (|:| -2567 (-576)))))) |#2| (-112))) (-15 -1527 ((-656 (-2 (|:| |deg| (-783)) (|:| -2812 |#2|))) |#2|)) (-15 -2439 ((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -2812 |#2|))))) (-15 -3518 (|#2| |#2| (-783) |#2|)) (-15 -1476 (|#2| |#2| (-783) |#2|)) (-15 -2594 (|#2| |#2| (-783) |#2|)) (-15 -4421 ((-112) |#2|))) (-360) (-1264 |#1|)) (T -218)) -((-4421 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1264 *4)))) (-2594 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1264 *4)))) (-1476 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1264 *4)))) (-3518 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1264 *4)))) (-2439 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |deg| (-783)) (|:| -2812 *5)))) (-4 *5 (-1264 *4)) (-4 *4 (-360)) (-5 *2 (-656 *5)) (-5 *1 (-218 *4 *5)))) (-1527 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -2812 *3)))) (-5 *1 (-218 *4 *3)) (-4 *3 (-1264 *4)))) (-2824 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-360)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2761 (-656 (-2 (|:| |irr| *3) (|:| -2567 (-576))))))) (-5 *1 (-218 *5 *3)) (-4 *3 (-1264 *5)))) (-4391 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1264 *4)))) (-1828 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1264 *4))))) -(-10 -7 (-15 -1828 ((-430 |#2|) |#2|)) (-15 -4391 ((-430 |#2|) |#2|)) (-15 -2824 ((-2 (|:| |cont| |#1|) (|:| -2761 (-656 (-2 (|:| |irr| |#2|) (|:| -2567 (-576)))))) |#2| (-112))) (-15 -1527 ((-656 (-2 (|:| |deg| (-783)) (|:| -2812 |#2|))) |#2|)) (-15 -2439 ((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -2812 |#2|))))) (-15 -3518 (|#2| |#2| (-783) |#2|)) (-15 -1476 (|#2| |#2| (-783) |#2|)) (-15 -2594 (|#2| |#2| (-783) |#2|)) (-15 -4421 ((-112) |#2|))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2575 (((-576) $) NIL (|has| (-576) (-317)))) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3601 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-4016 (((-112) $ $) NIL)) (-3308 (((-576) $) NIL (|has| (-576) (-832)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| (-576) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1059 (-576))))) (-2860 (((-576) $) NIL) (((-1197) $) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-576) (-1059 (-576)))) (((-576) $) NIL (|has| (-576) (-1059 (-576))))) (-3429 (($ $ $) NIL)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-576) (-557)))) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-4249 (((-112) $) NIL)) (-2087 (((-112) $) NIL (|has| (-576) (-832)))) (-1840 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-576) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-576) (-901 (-390))))) (-4193 (((-112) $) NIL)) (-2171 (($ $) NIL)) (-1570 (((-576) $) NIL)) (-2240 (((-3 $ "failed") $) NIL (|has| (-576) (-1173)))) (-1634 (((-112) $) NIL (|has| (-576) (-832)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3125 (($ $ $) NIL (|has| (-576) (-861)))) (-3133 (($ $ $) NIL (|has| (-576) (-861)))) (-4117 (($ (-1 (-576) (-576)) $) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3540 (($) NIL (|has| (-576) (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2393 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-2443 (((-576) $) NIL (|has| (-576) (-557)))) (-4100 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-1828 (((-430 $) $) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3284 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1197)) (-656 (-576))) NIL (|has| (-576) (-526 (-1197) (-576)))) (($ $ (-1197) (-576)) NIL (|has| (-576) (-526 (-1197) (-576))))) (-1967 (((-783) $) NIL)) (-2797 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-2775 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-2143 (($ $) NIL)) (-1581 (((-576) $) NIL)) (-2080 (($ (-419 (-576))) 9)) (-4172 (((-907 (-576)) $) NIL (|has| (-576) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-576) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1043))) (((-227) $) NIL (|has| (-576) (-1043)))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-928))))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1197)) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL) (((-1025 10) $) 10)) (-4336 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| $ (-146)) (|has| (-576) (-928))) (|has| (-576) (-146))))) (-3996 (((-783)) NIL T CONST)) (-4118 (((-576) $) NIL (|has| (-576) (-557)))) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL)) (-2122 (($ $) NIL (|has| (-576) (-832)))) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2020 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-2992 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2964 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2950 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3057 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) -(((-219) (-13 (-1013 (-576)) (-625 (-419 (-576))) (-625 (-1025 10)) (-10 -8 (-15 -2393 ((-419 (-576)) $)) (-15 -2080 ($ (-419 (-576))))))) (T -219)) -((-2393 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219)))) (-2080 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219))))) -(-13 (-1013 (-576)) (-625 (-419 (-576))) (-625 (-1025 10)) (-10 -8 (-15 -2393 ((-419 (-576)) $)) (-15 -2080 ($ (-419 (-576)))))) -((-3489 (((-112) $ $) NIL)) (-2705 (((-1139) $) 13)) (-3699 (((-1179) $) NIL)) (-3811 (((-495) $) 10)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 23) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2641 (((-1156) $) 15)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-220) (-13 (-1104) (-10 -8 (-15 -3811 ((-495) $)) (-15 -2705 ((-1139) $)) (-15 -2641 ((-1156) $))))) (T -220)) -((-3811 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-220)))) (-2705 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-220)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-220))))) -(-13 (-1104) (-10 -8 (-15 -3811 ((-495) $)) (-15 -2705 ((-1139) $)) (-15 -2641 ((-1156) $)))) -((-1491 (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1113 (-855 |#2|)) (-1179)) 29) (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1113 (-855 |#2|))) 25)) (-1598 (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1197) (-855 |#2|) (-855 |#2|) (-112)) 17))) -(((-221 |#1| |#2|) (-10 -7 (-15 -1491 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1113 (-855 |#2|)))) (-15 -1491 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1113 (-855 |#2|)) (-1179))) (-15 -1598 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1197) (-855 |#2|) (-855 |#2|) (-112)))) (-13 (-317) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-978) (-29 |#1|))) (T -221)) -((-1598 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1197)) (-5 *6 (-112)) (-4 *7 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-4 *3 (-13 (-1223) (-978) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *7 *3)) (-5 *5 (-855 *3)))) (-1491 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1113 (-855 *3))) (-5 *5 (-1179)) (-4 *3 (-13 (-1223) (-978) (-29 *6))) (-4 *6 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6 *3)))) (-1491 (*1 *2 *3 *4) (-12 (-5 *4 (-1113 (-855 *3))) (-4 *3 (-13 (-1223) (-978) (-29 *5))) (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5 *3))))) -(-10 -7 (-15 -1491 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1113 (-855 |#2|)))) (-15 -1491 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1113 (-855 |#2|)) (-1179))) (-15 -1598 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1197) (-855 |#2|) (-855 |#2|) (-112)))) -((-1491 (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-419 (-971 |#1|)))) (-1179)) 49) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-419 (-971 |#1|))))) 46) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-326 |#1|))) (-1179)) 50) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-326 |#1|)))) 22))) -(((-222 |#1|) (-10 -7 (-15 -1491 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-326 |#1|))))) (-15 -1491 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-326 |#1|))) (-1179))) (-15 -1491 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-419 (-971 |#1|)))))) (-15 -1491 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-419 (-971 |#1|)))) (-1179)))) (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (T -222)) -((-1491 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1113 (-855 (-419 (-971 *6))))) (-5 *5 (-1179)) (-5 *3 (-419 (-971 *6))) (-4 *6 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-1491 (*1 *2 *3 *4) (-12 (-5 *4 (-1113 (-855 (-419 (-971 *5))))) (-5 *3 (-419 (-971 *5))) (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) (-1491 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-419 (-971 *6))) (-5 *4 (-1113 (-855 (-326 *6)))) (-5 *5 (-1179)) (-4 *6 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-1491 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1113 (-855 (-326 *5)))) (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5))))) -(-10 -7 (-15 -1491 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-326 |#1|))))) (-15 -1491 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-326 |#1|))) (-1179))) (-15 -1491 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-419 (-971 |#1|)))))) (-15 -1491 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-419 (-971 |#1|)))) (-1179)))) -((-3686 (((-2 (|:| -3307 (-1193 |#1|)) (|:| |deg| (-940))) (-1193 |#1|)) 26)) (-1942 (((-656 (-326 |#2|)) (-326 |#2|) (-940)) 51))) -(((-223 |#1| |#2|) (-10 -7 (-15 -3686 ((-2 (|:| -3307 (-1193 |#1|)) (|:| |deg| (-940))) (-1193 |#1|))) (-15 -1942 ((-656 (-326 |#2|)) (-326 |#2|) (-940)))) (-1070) (-568)) (T -223)) -((-1942 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-4 *6 (-568)) (-5 *2 (-656 (-326 *6))) (-5 *1 (-223 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1070)))) (-3686 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-5 *2 (-2 (|:| -3307 (-1193 *4)) (|:| |deg| (-940)))) (-5 *1 (-223 *4 *5)) (-5 *3 (-1193 *4)) (-4 *5 (-568))))) -(-10 -7 (-15 -3686 ((-2 (|:| -3307 (-1193 |#1|)) (|:| |deg| (-940))) (-1193 |#1|))) (-15 -1942 ((-656 (-326 |#2|)) (-326 |#2|) (-940)))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2576 ((|#1| $) NIL)) (-1419 ((|#1| $) 30)) (-1808 (((-112) $ (-783)) NIL)) (-3886 (($) NIL T CONST)) (-2496 (($ $) NIL)) (-3990 (($ $) 39)) (-3659 ((|#1| |#1| $) NIL)) (-3469 ((|#1| $) NIL)) (-3966 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) NIL)) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-4323 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-2437 (((-783) $) NIL)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1597 ((|#1| $) NIL)) (-1567 ((|#1| |#1| $) 35)) (-1954 ((|#1| |#1| $) 37)) (-1901 (($ |#1| $) NIL)) (-2327 (((-783) $) 33)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3883 ((|#1| $) NIL)) (-3844 ((|#1| $) 31)) (-2313 ((|#1| $) 29)) (-3449 ((|#1| $) NIL)) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3206 ((|#1| |#1| $) NIL)) (-3973 (((-112) $) 9)) (-4225 (($) NIL)) (-3692 ((|#1| $) NIL)) (-2997 (($) NIL) (($ (-656 |#1|)) 16)) (-1888 (((-783) $) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3570 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2322 ((|#1| $) 13)) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3943 (($ (-656 |#1|)) NIL)) (-1741 ((|#1| $) NIL)) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-224 |#1|) (-13 (-261 |#1|) (-10 -8 (-15 -2997 ($ (-656 |#1|))))) (-1121)) (T -224)) -((-2997 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-224 *3))))) -(-13 (-261 |#1|) (-10 -8 (-15 -2997 ($ (-656 |#1|))))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2528 (($ (-326 |#1|)) 24)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-1579 (((-112) $) NIL)) (-1572 (((-3 (-326 |#1|) "failed") $) NIL)) (-2860 (((-326 |#1|) $) NIL)) (-2114 (($ $) 32)) (-1561 (((-3 $ "failed") $) NIL)) (-4193 (((-112) $) NIL)) (-4117 (($ (-1 (-326 |#1|) (-326 |#1|)) $) NIL)) (-2091 (((-326 |#1|) $) NIL)) (-4434 (($ $) 31)) (-3699 (((-1179) $) NIL)) (-2449 (((-112) $) NIL)) (-1450 (((-1141) $) NIL)) (-4129 (($ (-783)) NIL)) (-2520 (($ $) 33)) (-3634 (((-576) $) NIL)) (-3570 (((-876) $) 65) (($ (-576)) NIL) (($ (-326 |#1|)) NIL)) (-3177 (((-326 |#1|) $ $) NIL)) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-2721 (($) 26 T CONST)) (-2732 (($) NIL T CONST)) (-2925 (((-112) $ $) 29)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) 20)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 25) (($ (-326 |#1|) $) 19))) -(((-225 |#1| |#2|) (-13 (-632 (-326 |#1|)) (-1059 (-326 |#1|)) (-10 -8 (-15 -2091 ((-326 |#1|) $)) (-15 -4434 ($ $)) (-15 -2114 ($ $)) (-15 -3177 ((-326 |#1|) $ $)) (-15 -4129 ($ (-783))) (-15 -2449 ((-112) $)) (-15 -1579 ((-112) $)) (-15 -3634 ((-576) $)) (-15 -4117 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -2528 ($ (-326 |#1|))) (-15 -2520 ($ $)))) (-13 (-1070) (-861)) (-656 (-1197))) (T -225)) -((-2091 (*1 *2 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) (-4434 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1070) (-861))) (-14 *3 (-656 (-1197))))) (-2114 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1070) (-861))) (-14 *3 (-656 (-1197))))) (-3177 (*1 *2 *1 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) (-2449 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) (-1579 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) (-4117 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1070) (-861))) (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1197))))) (-2528 (*1 *1 *2) (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1070) (-861))) (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1197))))) (-2520 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1070) (-861))) (-14 *3 (-656 (-1197)))))) -(-13 (-632 (-326 |#1|)) (-1059 (-326 |#1|)) (-10 -8 (-15 -2091 ((-326 |#1|) $)) (-15 -4434 ($ $)) (-15 -2114 ($ $)) (-15 -3177 ((-326 |#1|) $ $)) (-15 -4129 ($ (-783))) (-15 -2449 ((-112) $)) (-15 -1579 ((-112) $)) (-15 -3634 ((-576) $)) (-15 -4117 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -2528 ($ (-326 |#1|))) (-15 -2520 ($ $)))) -((-4133 (((-112) (-1179)) 26)) (-2286 (((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112)) 35)) (-2026 (((-3 (-112) "failed") (-1193 |#2|) (-855 |#2|) (-855 |#2|) (-112)) 84) (((-3 (-112) "failed") (-971 |#1|) (-1197) (-855 |#2|) (-855 |#2|) (-112)) 85))) -(((-226 |#1| |#2|) (-10 -7 (-15 -4133 ((-112) (-1179))) (-15 -2286 ((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112))) (-15 -2026 ((-3 (-112) "failed") (-971 |#1|) (-1197) (-855 |#2|) (-855 |#2|) (-112))) (-15 -2026 ((-3 (-112) "failed") (-1193 |#2|) (-855 |#2|) (-855 |#2|) (-112)))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-29 |#1|))) (T -226)) -((-2026 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1193 *6)) (-5 *4 (-855 *6)) (-4 *6 (-13 (-1223) (-29 *5))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-226 *5 *6)))) (-2026 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-971 *6)) (-5 *4 (-1197)) (-5 *5 (-855 *7)) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-4 *7 (-13 (-1223) (-29 *6))) (-5 *1 (-226 *6 *7)))) (-2286 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-855 *4)) (-5 *3 (-624 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1223) (-29 *6))) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-226 *6 *4)))) (-4133 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1223) (-29 *4)))))) -(-10 -7 (-15 -4133 ((-112) (-1179))) (-15 -2286 ((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112))) (-15 -2026 ((-3 (-112) "failed") (-971 |#1|) (-1197) (-855 |#2|) (-855 |#2|) (-112))) (-15 -2026 ((-3 (-112) "failed") (-1193 |#2|) (-855 |#2|) (-855 |#2|) (-112)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 98)) (-2575 (((-576) $) 33)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-2326 (($ $) NIL)) (-4025 (($ $) 87)) (-3901 (($ $) 75)) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-1839 (($ $) 66)) (-4016 (((-112) $ $) NIL)) (-4006 (($ $) 85)) (-3877 (($ $) 73)) (-3308 (((-576) $) 127)) (-4050 (($ $) 90)) (-3920 (($ $) 77)) (-3886 (($) NIL T CONST)) (-4300 (($ $) NIL)) (-1572 (((-3 (-576) "failed") $) 126) (((-3 (-419 (-576)) "failed") $) 123)) (-2860 (((-576) $) 124) (((-419 (-576)) $) 121)) (-3429 (($ $ $) NIL)) (-1561 (((-3 $ "failed") $) 103)) (-2909 (((-419 (-576)) $ (-783)) 117) (((-419 (-576)) $ (-783) (-783)) 116)) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-4249 (((-112) $) NIL)) (-3340 (((-940)) 28) (((-940) (-940)) NIL (|has| $ (-6 -4456)))) (-2087 (((-112) $) NIL)) (-1600 (($) 46)) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL)) (-3917 (((-576) $) 40)) (-4193 (((-112) $) 99)) (-2121 (($ $ (-576)) NIL)) (-1381 (($ $) NIL)) (-1634 (((-112) $) 97)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3125 (($ $ $) 63) (($) 36 (-12 (-2663 (|has| $ (-6 -4448))) (-2663 (|has| $ (-6 -4456)))))) (-3133 (($ $ $) 62) (($) 35 (-12 (-2663 (|has| $ (-6 -4448))) (-2663 (|has| $ (-6 -4456)))))) (-1492 (((-576) $) 26)) (-4171 (($ $) 31)) (-2330 (($ $) 67)) (-3745 (($ $) 72)) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3373 (((-940) (-576)) NIL (|has| $ (-6 -4456)))) (-1450 (((-1141) $) 101)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2393 (($ $) NIL)) (-2443 (($ $) NIL)) (-3045 (($ (-576) (-576)) NIL) (($ (-576) (-576) (-940)) 110)) (-1828 (((-430 $) $) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3422 (((-576) $) 27)) (-1418 (($) 45)) (-4104 (($ $) 71)) (-1967 (((-783) $) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-4326 (((-940)) NIL) (((-940) (-940)) NIL (|has| $ (-6 -4456)))) (-2775 (($ $) 104) (($ $ (-783)) NIL)) (-1351 (((-940) (-576)) NIL (|has| $ (-6 -4456)))) (-4061 (($ $) 88)) (-3930 (($ $) 78)) (-4037 (($ $) 89)) (-3910 (($ $) 76)) (-4014 (($ $) 86)) (-3889 (($ $) 74)) (-4172 (((-390) $) 113) (((-227) $) 14) (((-907 (-390)) $) NIL) (((-548) $) 52)) (-3570 (((-876) $) 49) (($ (-576)) 152) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-576)) 152) (($ (-419 (-576))) NIL)) (-3996 (((-783)) NIL T CONST)) (-4118 (($ $) NIL)) (-3029 (((-940)) 34) (((-940) (-940)) NIL (|has| $ (-6 -4456)))) (-4055 (((-112) $ $) NIL)) (-3516 (((-940)) 24)) (-2791 (($ $) 93)) (-3961 (($ $) 81) (($ $ $) 119)) (-2672 (((-112) $ $) NIL)) (-4071 (($ $) 91)) (-3938 (($ $) 79)) (-2815 (($ $) 96)) (-3983 (($ $) 84)) (-4388 (($ $) 94)) (-3995 (($ $) 82)) (-2803 (($ $) 95)) (-3974 (($ $) 83)) (-4083 (($ $) 92)) (-3951 (($ $) 80)) (-2122 (($ $) 118)) (-2721 (($) 42 T CONST)) (-2732 (($) 43 T CONST)) (-1636 (((-1179) $) 18) (((-1179) $ (-112)) 20) (((-1293) (-834) $) 21) (((-1293) (-834) $ (-112)) 22)) (-3625 (($ $) 107)) (-2020 (($ $) NIL) (($ $ (-783)) NIL)) (-4000 (($ $ $) 109)) (-2992 (((-112) $ $) 56)) (-2964 (((-112) $ $) 54)) (-2925 (((-112) $ $) 64)) (-2978 (((-112) $ $) 55)) (-2950 (((-112) $ $) 53)) (-3057 (($ $ $) 44) (($ $ (-576)) 65)) (-3044 (($ $) 57) (($ $ $) 59)) (-3030 (($ $ $) 58)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 68) (($ $ (-419 (-576))) 151) (($ $ $) 69)) (* (($ (-940) $) 32) (($ (-783) $) NIL) (($ (-576) $) 61) (($ $ $) 60) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-227) (-13 (-416) (-238) (-840) (-1223) (-626 (-548)) (-10 -8 (-15 -3057 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -1418 ($)) (-15 -4171 ($ $)) (-15 -2330 ($ $)) (-15 -3961 ($ $ $)) (-15 -3625 ($ $)) (-15 -4000 ($ $ $)) (-15 -2909 ((-419 (-576)) $ (-783))) (-15 -2909 ((-419 (-576)) $ (-783) (-783)))))) (T -227)) -((** (*1 *1 *1 *1) (-5 *1 (-227))) (-3057 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-227)))) (-1418 (*1 *1) (-5 *1 (-227))) (-4171 (*1 *1 *1) (-5 *1 (-227))) (-2330 (*1 *1 *1) (-5 *1 (-227))) (-3961 (*1 *1 *1 *1) (-5 *1 (-227))) (-3625 (*1 *1 *1) (-5 *1 (-227))) (-4000 (*1 *1 *1 *1) (-5 *1 (-227))) (-2909 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) (-2909 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227))))) -(-13 (-416) (-238) (-840) (-1223) (-626 (-548)) (-10 -8 (-15 -3057 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -1418 ($)) (-15 -4171 ($ $)) (-15 -2330 ($ $)) (-15 -3961 ($ $ $)) (-15 -3625 ($ $)) (-15 -4000 ($ $ $)) (-15 -2909 ((-419 (-576)) $ (-783))) (-15 -2909 ((-419 (-576)) $ (-783) (-783))))) -((-3667 (((-171 (-227)) (-783) (-171 (-227))) 11) (((-227) (-783) (-227)) 12)) (-2796 (((-171 (-227)) (-171 (-227))) 13) (((-227) (-227)) 14)) (-3050 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 19) (((-227) (-227) (-227)) 22)) (-1854 (((-171 (-227)) (-171 (-227))) 27) (((-227) (-227)) 26)) (-2221 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 57) (((-227) (-227) (-227)) 49)) (-1918 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 62) (((-227) (-227) (-227)) 60)) (-3775 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 15) (((-227) (-227) (-227)) 16)) (-2089 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 17) (((-227) (-227) (-227)) 18)) (-4386 (((-171 (-227)) (-171 (-227))) 74) (((-227) (-227)) 73)) (-2097 (((-227) (-227)) 68) (((-171 (-227)) (-171 (-227))) 72)) (-3625 (((-171 (-227)) (-171 (-227))) 8) (((-227) (-227)) 9)) (-4000 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 35) (((-227) (-227) (-227)) 31))) -(((-228) (-10 -7 (-15 -3625 ((-227) (-227))) (-15 -3625 ((-171 (-227)) (-171 (-227)))) (-15 -4000 ((-227) (-227) (-227))) (-15 -4000 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2796 ((-227) (-227))) (-15 -2796 ((-171 (-227)) (-171 (-227)))) (-15 -1854 ((-227) (-227))) (-15 -1854 ((-171 (-227)) (-171 (-227)))) (-15 -3667 ((-227) (-783) (-227))) (-15 -3667 ((-171 (-227)) (-783) (-171 (-227)))) (-15 -3775 ((-227) (-227) (-227))) (-15 -3775 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2221 ((-227) (-227) (-227))) (-15 -2221 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2089 ((-227) (-227) (-227))) (-15 -2089 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1918 ((-227) (-227) (-227))) (-15 -1918 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2097 ((-171 (-227)) (-171 (-227)))) (-15 -2097 ((-227) (-227))) (-15 -4386 ((-227) (-227))) (-15 -4386 ((-171 (-227)) (-171 (-227)))) (-15 -3050 ((-227) (-227) (-227))) (-15 -3050 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))) (T -228)) -((-3050 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3050 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4386 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4386 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2097 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2097 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1918 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1918 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2089 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2089 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2221 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2221 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3775 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3775 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3667 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-227))) (-5 *3 (-783)) (-5 *1 (-228)))) (-3667 (*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-783)) (-5 *1 (-228)))) (-1854 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1854 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2796 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2796 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4000 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4000 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3625 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3625 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))) -(-10 -7 (-15 -3625 ((-227) (-227))) (-15 -3625 ((-171 (-227)) (-171 (-227)))) (-15 -4000 ((-227) (-227) (-227))) (-15 -4000 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2796 ((-227) (-227))) (-15 -2796 ((-171 (-227)) (-171 (-227)))) (-15 -1854 ((-227) (-227))) (-15 -1854 ((-171 (-227)) (-171 (-227)))) (-15 -3667 ((-227) (-783) (-227))) (-15 -3667 ((-171 (-227)) (-783) (-171 (-227)))) (-15 -3775 ((-227) (-227) (-227))) (-15 -3775 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2221 ((-227) (-227) (-227))) (-15 -2221 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2089 ((-227) (-227) (-227))) (-15 -2089 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1918 ((-227) (-227) (-227))) (-15 -1918 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2097 ((-171 (-227)) (-171 (-227)))) (-15 -2097 ((-227) (-227))) (-15 -4386 ((-227) (-227))) (-15 -4386 ((-171 (-227)) (-171 (-227)))) (-15 -3050 ((-227) (-227) (-227))) (-15 -3050 ((-171 (-227)) (-171 (-227)) (-171 (-227))))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3832 (($ (-783) (-783)) NIL)) (-3430 (($ $ $) NIL)) (-3244 (($ (-1288 |#1|)) NIL) (($ $) NIL)) (-1877 (($ |#1| |#1| |#1|) 33)) (-2283 (((-112) $) NIL)) (-2873 (($ $ (-576) (-576)) NIL)) (-4112 (($ $ (-576) (-576)) NIL)) (-1644 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-3395 (($ $) NIL)) (-3240 (((-112) $) NIL)) (-1808 (((-112) $ (-783)) NIL)) (-2515 (($ $ (-576) (-576) $) NIL)) (-3756 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-1631 (($ $ (-576) (-1288 |#1|)) NIL)) (-4436 (($ $ (-576) (-1288 |#1|)) NIL)) (-2131 (($ |#1| |#1| |#1|) 32)) (-1787 (($ (-783) |#1|) NIL)) (-3886 (($) NIL T CONST)) (-2030 (($ $) NIL (|has| |#1| (-317)))) (-4093 (((-1288 |#1|) $ (-576)) NIL)) (-1810 (($ |#1|) 31)) (-1487 (($ |#1|) 30)) (-3344 (($ |#1|) 29)) (-3734 (((-783) $) NIL (|has| |#1| (-568)))) (-4335 ((|#1| $ (-576) (-576) |#1|) NIL)) (-4274 ((|#1| $ (-576) (-576)) NIL)) (-3966 (((-656 |#1|) $) NIL)) (-1394 (((-783) $) NIL (|has| |#1| (-568)))) (-2196 (((-656 (-1288 |#1|)) $) NIL (|has| |#1| (-568)))) (-1689 (((-783) $) NIL)) (-4141 (($ (-783) (-783) |#1|) NIL)) (-1699 (((-783) $) NIL)) (-3870 (((-112) $ (-783)) NIL)) (-2471 ((|#1| $) NIL (|has| |#1| (-6 (-4467 "*"))))) (-4267 (((-576) $) NIL)) (-1952 (((-576) $) NIL)) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3900 (((-576) $) NIL)) (-2569 (((-576) $) NIL)) (-2467 (($ (-656 (-656 |#1|))) 11) (($ (-783) (-783) (-1 |#1| (-576) (-576))) NIL)) (-4323 (($ (-1 |#1| |#1|) $) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1907 (((-656 (-656 |#1|)) $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2807 (((-3 $ "failed") $) NIL (|has| |#1| (-374)))) (-1590 (($) 12)) (-2948 (($ $ $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4046 (($ $ |#1|) NIL)) (-3476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-2784 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL)) (-4002 (((-112) $) NIL)) (-4223 ((|#1| $) NIL (|has| |#1| (-6 (-4467 "*"))))) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-2129 (((-1288 |#1|) $ (-576)) NIL)) (-3570 (($ (-1288 |#1|)) NIL) (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3830 (((-112) $) NIL)) (-2925 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3057 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3044 (($ $ $) NIL) (($ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-1288 |#1|) $ (-1288 |#1|)) 15) (((-1288 |#1|) (-1288 |#1|) $) NIL) (((-962 |#1|) $ (-962 |#1|)) 21)) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-229 |#1|) (-13 (-699 |#1| (-1288 |#1|) (-1288 |#1|)) (-10 -8 (-15 * ((-962 |#1|) $ (-962 |#1|))) (-15 -1590 ($)) (-15 -3344 ($ |#1|)) (-15 -1487 ($ |#1|)) (-15 -1810 ($ |#1|)) (-15 -2131 ($ |#1| |#1| |#1|)) (-15 -1877 ($ |#1| |#1| |#1|)))) (-13 (-374) (-1223))) (T -229)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223))) (-5 *1 (-229 *3)))) (-1590 (*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223))))) (-3344 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223))))) (-1487 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223))))) (-1810 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223))))) (-2131 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223))))) (-1877 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223)))))) -(-13 (-699 |#1| (-1288 |#1|) (-1288 |#1|)) (-10 -8 (-15 * ((-962 |#1|) $ (-962 |#1|))) (-15 -1590 ($)) (-15 -3344 ($ |#1|)) (-15 -1487 ($ |#1|)) (-15 -1810 ($ |#1|)) (-15 -2131 ($ |#1| |#1| |#1|)) (-15 -1877 ($ |#1| |#1| |#1|)))) -((-2300 (($ (-1 (-112) |#2|) $) 16)) (-1671 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 28)) (-2271 (($) NIL) (($ (-656 |#2|)) 11)) (-2925 (((-112) $ $) 26))) -(((-230 |#1| |#2|) (-10 -8 (-15 -2925 ((-112) |#1| |#1|)) (-15 -2300 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1671 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1671 (|#1| |#2| |#1|)) (-15 -2271 (|#1| (-656 |#2|))) (-15 -2271 (|#1|))) (-231 |#2|) (-1121)) (T -230)) -NIL -(-10 -8 (-15 -2925 ((-112) |#1| |#1|)) (-15 -2300 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1671 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1671 (|#1| |#2| |#1|)) (-15 -2271 (|#1| (-656 |#2|))) (-15 -2271 (|#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1808 (((-112) $ (-783)) 8)) (-2300 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4465)))) (-3886 (($) 7 T CONST)) (-1415 (($ $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1671 (($ |#1| $) 48 (|has| $ (-6 -4465))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4465)))) (-3946 (($ |#1| $) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4465)))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4465)))) (-3966 (((-656 |#1|) $) 31 (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) 9)) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-4323 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 36)) (-1330 (((-112) $ (-783)) 10)) (-3699 (((-1179) $) 23 (|has| |#1| (-1121)))) (-1597 ((|#1| $) 40)) (-1901 (($ |#1| $) 41)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3449 ((|#1| $) 42)) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-2271 (($) 50) (($ (-656 |#1|)) 49)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 13)) (-4172 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) 51)) (-3570 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3943 (($ (-656 |#1|)) 43)) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) NIL)) (-4278 ((|#2| $ (-783) |#2|) 11)) (-4272 ((|#2| $ (-783)) 10)) (-4140 (($) 8)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 23)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 13))) +(((-215 |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -4140 ($)) (-15 -4272 (|#2| $ (-783))) (-15 -4278 (|#2| $ (-783) |#2|)))) (-940) (-1121)) (T -215)) +((-4140 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1121)))) (-4272 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *2 (-1121)) (-5 *1 (-215 *4 *2)) (-14 *4 (-940)))) (-4278 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-215 *4 *2)) (-14 *4 (-940)) (-4 *2 (-1121))))) +(-13 (-1121) (-10 -8 (-15 -4140 ($)) (-15 -4272 (|#2| $ (-783))) (-15 -4278 (|#2| $ (-783) |#2|)))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2486 (((-1293) $) 37) (((-1293) $ (-940) (-940)) 41)) (-2796 (($ $ (-1010)) 19) (((-250 (-1179)) $ (-1197)) 15)) (-1977 (((-1293) $) 35)) (-3569 (((-876) $) 32) (($ (-656 |#1|)) 8)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL)) (-3043 (($ $ $) 27)) (-3029 (($ $ $) 22))) +(((-216 |#1|) (-13 (-1121) (-628 (-656 |#1|)) (-10 -8 (-15 -2796 ($ $ (-1010))) (-15 -2796 ((-250 (-1179)) $ (-1197))) (-15 -3029 ($ $ $)) (-15 -3043 ($ $ $)) (-15 -1977 ((-1293) $)) (-15 -2486 ((-1293) $)) (-15 -2486 ((-1293) $ (-940) (-940))))) (-13 (-861) (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1977 ((-1293) $)) (-15 -2486 ((-1293) $))))) (T -216)) +((-2796 (*1 *1 *1 *2) (-12 (-5 *2 (-1010)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-861) (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1977 ((-1293) $)) (-15 -2486 ((-1293) $))))))) (-2796 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-250 (-1179))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-861) (-10 -8 (-15 -2796 ((-1179) $ *3)) (-15 -1977 ((-1293) $)) (-15 -2486 ((-1293) $))))))) (-3029 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-861) (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1977 ((-1293) $)) (-15 -2486 ((-1293) $))))))) (-3043 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-861) (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1977 ((-1293) $)) (-15 -2486 ((-1293) $))))))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-861) (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1977 (*2 $)) (-15 -2486 (*2 $))))))) (-2486 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-861) (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1977 (*2 $)) (-15 -2486 (*2 $))))))) (-2486 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1293)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-861) (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1977 (*2 $)) (-15 -2486 (*2 $)))))))) +(-13 (-1121) (-628 (-656 |#1|)) (-10 -8 (-15 -2796 ($ $ (-1010))) (-15 -2796 ((-250 (-1179)) $ (-1197))) (-15 -3029 ($ $ $)) (-15 -3043 ($ $ $)) (-15 -1977 ((-1293) $)) (-15 -2486 ((-1293) $)) (-15 -2486 ((-1293) $ (-940) (-940))))) +((-2273 ((|#2| |#4| (-1 |#2| |#2|)) 49))) +(((-217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2273 (|#2| |#4| (-1 |#2| |#2|)))) (-374) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -217)) +((-2273 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-374)) (-4 *6 (-1264 (-419 *2))) (-4 *2 (-1264 *5)) (-5 *1 (-217 *5 *2 *6 *3)) (-4 *3 (-353 *5 *2 *6))))) +(-10 -7 (-15 -2273 (|#2| |#4| (-1 |#2| |#2|)))) +((-3274 ((|#2| |#2| (-783) |#2|) 55)) (-4010 ((|#2| |#2| (-783) |#2|) 51)) (-4198 (((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -3425 |#2|)))) 79)) (-3288 (((-656 (-2 (|:| |deg| (-783)) (|:| -3425 |#2|))) |#2|) 73)) (-1752 (((-112) |#2|) 71)) (-2652 (((-430 |#2|) |#2|) 91)) (-1828 (((-430 |#2|) |#2|) 90)) (-4105 ((|#2| |#2| (-783) |#2|) 49)) (-3549 (((-2 (|:| |cont| |#1|) (|:| -4213 (-656 (-2 (|:| |irr| |#2|) (|:| -3012 (-576)))))) |#2| (-112)) 85))) +(((-218 |#1| |#2|) (-10 -7 (-15 -1828 ((-430 |#2|) |#2|)) (-15 -2652 ((-430 |#2|) |#2|)) (-15 -3549 ((-2 (|:| |cont| |#1|) (|:| -4213 (-656 (-2 (|:| |irr| |#2|) (|:| -3012 (-576)))))) |#2| (-112))) (-15 -3288 ((-656 (-2 (|:| |deg| (-783)) (|:| -3425 |#2|))) |#2|)) (-15 -4198 ((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -3425 |#2|))))) (-15 -4105 (|#2| |#2| (-783) |#2|)) (-15 -4010 (|#2| |#2| (-783) |#2|)) (-15 -3274 (|#2| |#2| (-783) |#2|)) (-15 -1752 ((-112) |#2|))) (-360) (-1264 |#1|)) (T -218)) +((-1752 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1264 *4)))) (-3274 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1264 *4)))) (-4010 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1264 *4)))) (-4105 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1264 *4)))) (-4198 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |deg| (-783)) (|:| -3425 *5)))) (-4 *5 (-1264 *4)) (-4 *4 (-360)) (-5 *2 (-656 *5)) (-5 *1 (-218 *4 *5)))) (-3288 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -3425 *3)))) (-5 *1 (-218 *4 *3)) (-4 *3 (-1264 *4)))) (-3549 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-360)) (-5 *2 (-2 (|:| |cont| *5) (|:| -4213 (-656 (-2 (|:| |irr| *3) (|:| -3012 (-576))))))) (-5 *1 (-218 *5 *3)) (-4 *3 (-1264 *5)))) (-2652 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1264 *4)))) (-1828 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1264 *4))))) +(-10 -7 (-15 -1828 ((-430 |#2|) |#2|)) (-15 -2652 ((-430 |#2|) |#2|)) (-15 -3549 ((-2 (|:| |cont| |#1|) (|:| -4213 (-656 (-2 (|:| |irr| |#2|) (|:| -3012 (-576)))))) |#2| (-112))) (-15 -3288 ((-656 (-2 (|:| |deg| (-783)) (|:| -3425 |#2|))) |#2|)) (-15 -4198 ((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -3425 |#2|))))) (-15 -4105 (|#2| |#2| (-783) |#2|)) (-15 -4010 (|#2| |#2| (-783) |#2|)) (-15 -3274 (|#2| |#2| (-783) |#2|)) (-15 -1752 ((-112) |#2|))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-3110 (((-576) $) NIL (|has| (-576) (-317)))) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3646 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-3330 (((-112) $ $) NIL)) (-3906 (((-576) $) NIL (|has| (-576) (-832)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| (-576) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1059 (-576))))) (-2859 (((-576) $) NIL) (((-1197) $) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-576) (-1059 (-576)))) (((-576) $) NIL (|has| (-576) (-1059 (-576))))) (-3428 (($ $ $) NIL)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-576) (-557)))) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3833 (((-112) $) NIL)) (-1866 (((-112) $) NIL (|has| (-576) (-832)))) (-3325 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-576) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-576) (-901 (-390))))) (-1351 (((-112) $) NIL)) (-3328 (($ $) NIL)) (-1570 (((-576) $) NIL)) (-2734 (((-3 $ "failed") $) NIL (|has| (-576) (-1173)))) (-3137 (((-112) $) NIL (|has| (-576) (-832)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3124 (($ $ $) NIL (|has| (-576) (-861)))) (-1441 (($ $ $) NIL (|has| (-576) (-861)))) (-4116 (($ (-1 (-576) (-576)) $) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3539 (($) NIL (|has| (-576) (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1788 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-4236 (((-576) $) NIL (|has| (-576) (-557)))) (-1644 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-1828 (((-430 $) $) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3282 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1197)) (-656 (-576))) NIL (|has| (-576) (-526 (-1197) (-576)))) (($ $ (-1197) (-576)) NIL (|has| (-576) (-526 (-1197) (-576))))) (-1979 (((-783) $) NIL)) (-2796 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-2774 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-4325 (($ $) NIL)) (-1581 (((-576) $) NIL)) (-1801 (($ (-419 (-576))) 9)) (-4171 (((-907 (-576)) $) NIL (|has| (-576) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-576) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1043))) (((-227) $) NIL (|has| (-576) (-1043)))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1197)) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL) (((-1025 10) $) 10)) (-3390 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| $ (-146)) (|has| (-576) (-928))) (|has| (-576) (-146))))) (-3154 (((-783)) NIL T CONST)) (-1810 (((-576) $) NIL (|has| (-576) (-557)))) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL)) (-4143 (($ $) NIL (|has| (-576) (-832)))) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2020 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-2990 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2962 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2949 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3056 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) +(((-219) (-13 (-1013 (-576)) (-625 (-419 (-576))) (-625 (-1025 10)) (-10 -8 (-15 -1788 ((-419 (-576)) $)) (-15 -1801 ($ (-419 (-576))))))) (T -219)) +((-1788 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219)))) (-1801 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219))))) +(-13 (-1013 (-576)) (-625 (-419 (-576))) (-625 (-1025 10)) (-10 -8 (-15 -1788 ((-419 (-576)) $)) (-15 -1801 ($ (-419 (-576)))))) +((-3488 (((-112) $ $) NIL)) (-2704 (((-1139) $) 13)) (-2046 (((-1179) $) NIL)) (-1982 (((-495) $) 10)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 23) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2640 (((-1156) $) 15)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-220) (-13 (-1104) (-10 -8 (-15 -1982 ((-495) $)) (-15 -2704 ((-1139) $)) (-15 -2640 ((-1156) $))))) (T -220)) +((-1982 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-220)))) (-2704 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-220)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-220))))) +(-13 (-1104) (-10 -8 (-15 -1982 ((-495) $)) (-15 -2704 ((-1139) $)) (-15 -2640 ((-1156) $)))) +((-4160 (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1113 (-855 |#2|)) (-1179)) 29) (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1113 (-855 |#2|))) 25)) (-2732 (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1197) (-855 |#2|) (-855 |#2|) (-112)) 17))) +(((-221 |#1| |#2|) (-10 -7 (-15 -4160 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1113 (-855 |#2|)))) (-15 -4160 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1113 (-855 |#2|)) (-1179))) (-15 -2732 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1197) (-855 |#2|) (-855 |#2|) (-112)))) (-13 (-317) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-978) (-29 |#1|))) (T -221)) +((-2732 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1197)) (-5 *6 (-112)) (-4 *7 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-4 *3 (-13 (-1223) (-978) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *7 *3)) (-5 *5 (-855 *3)))) (-4160 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1113 (-855 *3))) (-5 *5 (-1179)) (-4 *3 (-13 (-1223) (-978) (-29 *6))) (-4 *6 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6 *3)))) (-4160 (*1 *2 *3 *4) (-12 (-5 *4 (-1113 (-855 *3))) (-4 *3 (-13 (-1223) (-978) (-29 *5))) (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5 *3))))) +(-10 -7 (-15 -4160 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1113 (-855 |#2|)))) (-15 -4160 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1113 (-855 |#2|)) (-1179))) (-15 -2732 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1197) (-855 |#2|) (-855 |#2|) (-112)))) +((-4160 (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-419 (-971 |#1|)))) (-1179)) 49) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-419 (-971 |#1|))))) 46) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-326 |#1|))) (-1179)) 50) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-326 |#1|)))) 22))) +(((-222 |#1|) (-10 -7 (-15 -4160 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-326 |#1|))))) (-15 -4160 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-326 |#1|))) (-1179))) (-15 -4160 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-419 (-971 |#1|)))))) (-15 -4160 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-419 (-971 |#1|)))) (-1179)))) (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (T -222)) +((-4160 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1113 (-855 (-419 (-971 *6))))) (-5 *5 (-1179)) (-5 *3 (-419 (-971 *6))) (-4 *6 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-4160 (*1 *2 *3 *4) (-12 (-5 *4 (-1113 (-855 (-419 (-971 *5))))) (-5 *3 (-419 (-971 *5))) (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) (-4160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-419 (-971 *6))) (-5 *4 (-1113 (-855 (-326 *6)))) (-5 *5 (-1179)) (-4 *6 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-4160 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1113 (-855 (-326 *5)))) (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5))))) +(-10 -7 (-15 -4160 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-326 |#1|))))) (-15 -4160 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-326 |#1|))) (-1179))) (-15 -4160 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-419 (-971 |#1|)))))) (-15 -4160 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-419 (-971 |#1|)))) (-1179)))) +((-3685 (((-2 (|:| -3896 (-1193 |#1|)) (|:| |deg| (-940))) (-1193 |#1|)) 26)) (-1942 (((-656 (-326 |#2|)) (-326 |#2|) (-940)) 51))) +(((-223 |#1| |#2|) (-10 -7 (-15 -3685 ((-2 (|:| -3896 (-1193 |#1|)) (|:| |deg| (-940))) (-1193 |#1|))) (-15 -1942 ((-656 (-326 |#2|)) (-326 |#2|) (-940)))) (-1070) (-568)) (T -223)) +((-1942 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-4 *6 (-568)) (-5 *2 (-656 (-326 *6))) (-5 *1 (-223 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1070)))) (-3685 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-5 *2 (-2 (|:| -3896 (-1193 *4)) (|:| |deg| (-940)))) (-5 *1 (-223 *4 *5)) (-5 *3 (-1193 *4)) (-4 *5 (-568))))) +(-10 -7 (-15 -3685 ((-2 (|:| -3896 (-1193 |#1|)) (|:| |deg| (-940))) (-1193 |#1|))) (-15 -1942 ((-656 (-326 |#2|)) (-326 |#2|) (-940)))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3118 ((|#1| $) NIL)) (-1419 ((|#1| $) 30)) (-4264 (((-112) $ (-783)) NIL)) (-3404 (($) NIL T CONST)) (-3542 (($ $) NIL)) (-3092 (($ $) 39)) (-2944 ((|#1| |#1| $) NIL)) (-1718 ((|#1| $) NIL)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) NIL)) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4326 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2435 (((-783) $) NIL)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2722 ((|#1| $) NIL)) (-3734 ((|#1| |#1| $) 35)) (-3155 ((|#1| |#1| $) 37)) (-2597 (($ |#1| $) NIL)) (-2327 (((-783) $) 33)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3374 ((|#1| $) NIL)) (-4268 ((|#1| $) 31)) (-2261 ((|#1| $) 29)) (-1541 ((|#1| $) NIL)) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-4098 ((|#1| |#1| $) NIL)) (-2940 (((-112) $) 9)) (-3579 (($) NIL)) (-3265 ((|#1| $) NIL)) (-3852 (($) NIL) (($ (-656 |#1|)) 16)) (-1887 (((-783) $) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2364 ((|#1| $) 13)) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3972 (($ (-656 |#1|)) NIL)) (-1675 ((|#1| $) NIL)) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-224 |#1|) (-13 (-261 |#1|) (-10 -8 (-15 -3852 ($ (-656 |#1|))))) (-1121)) (T -224)) +((-3852 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-224 *3))))) +(-13 (-261 |#1|) (-10 -8 (-15 -3852 ($ (-656 |#1|))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-3901 (($ (-326 |#1|)) 24)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-3847 (((-112) $) NIL)) (-1572 (((-3 (-326 |#1|) "failed") $) NIL)) (-2859 (((-326 |#1|) $) NIL)) (-2114 (($ $) 32)) (-3673 (((-3 $ "failed") $) NIL)) (-1351 (((-112) $) NIL)) (-4116 (($ (-1 (-326 |#1|) (-326 |#1|)) $) NIL)) (-2091 (((-326 |#1|) $) NIL)) (-1869 (($ $) 31)) (-2046 (((-1179) $) NIL)) (-4284 (((-112) $) NIL)) (-1450 (((-1141) $) NIL)) (-4128 (($ (-783)) NIL)) (-3805 (($ $) 33)) (-2683 (((-576) $) NIL)) (-3569 (((-876) $) 65) (($ (-576)) NIL) (($ (-326 |#1|)) NIL)) (-1822 (((-326 |#1|) $ $) NIL)) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-2721 (($) 26 T CONST)) (-2731 (($) NIL T CONST)) (-2924 (((-112) $ $) 29)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 20)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 25) (($ (-326 |#1|) $) 19))) +(((-225 |#1| |#2|) (-13 (-632 (-326 |#1|)) (-1059 (-326 |#1|)) (-10 -8 (-15 -2091 ((-326 |#1|) $)) (-15 -1869 ($ $)) (-15 -2114 ($ $)) (-15 -1822 ((-326 |#1|) $ $)) (-15 -4128 ($ (-783))) (-15 -4284 ((-112) $)) (-15 -3847 ((-112) $)) (-15 -2683 ((-576) $)) (-15 -4116 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -3901 ($ (-326 |#1|))) (-15 -3805 ($ $)))) (-13 (-1070) (-861)) (-656 (-1197))) (T -225)) +((-2091 (*1 *2 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) (-1869 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1070) (-861))) (-14 *3 (-656 (-1197))))) (-2114 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1070) (-861))) (-14 *3 (-656 (-1197))))) (-1822 (*1 *2 *1 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) (-4128 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) (-4284 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) (-3847 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) (-2683 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) (-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1070) (-861))) (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1197))))) (-3901 (*1 *1 *2) (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1070) (-861))) (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1197))))) (-3805 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1070) (-861))) (-14 *3 (-656 (-1197)))))) +(-13 (-632 (-326 |#1|)) (-1059 (-326 |#1|)) (-10 -8 (-15 -2091 ((-326 |#1|) $)) (-15 -1869 ($ $)) (-15 -2114 ($ $)) (-15 -1822 ((-326 |#1|) $ $)) (-15 -4128 ($ (-783))) (-15 -4284 ((-112) $)) (-15 -3847 ((-112) $)) (-15 -2683 ((-576) $)) (-15 -4116 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -3901 ($ (-326 |#1|))) (-15 -3805 ($ $)))) +((-1946 (((-112) (-1179)) 26)) (-3257 (((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112)) 35)) (-2510 (((-3 (-112) "failed") (-1193 |#2|) (-855 |#2|) (-855 |#2|) (-112)) 84) (((-3 (-112) "failed") (-971 |#1|) (-1197) (-855 |#2|) (-855 |#2|) (-112)) 85))) +(((-226 |#1| |#2|) (-10 -7 (-15 -1946 ((-112) (-1179))) (-15 -3257 ((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112))) (-15 -2510 ((-3 (-112) "failed") (-971 |#1|) (-1197) (-855 |#2|) (-855 |#2|) (-112))) (-15 -2510 ((-3 (-112) "failed") (-1193 |#2|) (-855 |#2|) (-855 |#2|) (-112)))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-29 |#1|))) (T -226)) +((-2510 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1193 *6)) (-5 *4 (-855 *6)) (-4 *6 (-13 (-1223) (-29 *5))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-226 *5 *6)))) (-2510 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-971 *6)) (-5 *4 (-1197)) (-5 *5 (-855 *7)) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-4 *7 (-13 (-1223) (-29 *6))) (-5 *1 (-226 *6 *7)))) (-3257 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-855 *4)) (-5 *3 (-624 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1223) (-29 *6))) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-226 *6 *4)))) (-1946 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1223) (-29 *4)))))) +(-10 -7 (-15 -1946 ((-112) (-1179))) (-15 -3257 ((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112))) (-15 -2510 ((-3 (-112) "failed") (-971 |#1|) (-1197) (-855 |#2|) (-855 |#2|) (-112))) (-15 -2510 ((-3 (-112) "failed") (-1193 |#2|) (-855 |#2|) (-855 |#2|) (-112)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 98)) (-3110 (((-576) $) 33)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-2408 (($ $) NIL)) (-4024 (($ $) 87)) (-3900 (($ $) 75)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-1840 (($ $) 66)) (-3330 (((-112) $ $) NIL)) (-4005 (($ $) 85)) (-3876 (($ $) 73)) (-3906 (((-576) $) 127)) (-4049 (($ $) 90)) (-3919 (($ $) 77)) (-3404 (($) NIL T CONST)) (-3065 (($ $) NIL)) (-1572 (((-3 (-576) "failed") $) 126) (((-3 (-419 (-576)) "failed") $) 123)) (-2859 (((-576) $) 124) (((-419 (-576)) $) 121)) (-3428 (($ $ $) NIL)) (-3673 (((-3 $ "failed") $) 103)) (-3141 (((-419 (-576)) $ (-783)) 117) (((-419 (-576)) $ (-783) (-783)) 116)) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3833 (((-112) $) NIL)) (-3337 (((-940)) 28) (((-940) (-940)) NIL (|has| $ (-6 -4455)))) (-1866 (((-112) $) NIL)) (-1600 (($) 46)) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL)) (-3726 (((-576) $) 40)) (-1351 (((-112) $) 99)) (-4131 (($ $ (-576)) NIL)) (-2738 (($ $) NIL)) (-3137 (((-112) $) 97)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3124 (($ $ $) 63) (($) 36 (-12 (-2663 (|has| $ (-6 -4447))) (-2663 (|has| $ (-6 -4455)))))) (-1441 (($ $ $) 62) (($) 35 (-12 (-2663 (|has| $ (-6 -4447))) (-2663 (|has| $ (-6 -4455)))))) (-1492 (((-576) $) 26)) (-4267 (($ $) 31)) (-2330 (($ $) 67)) (-3744 (($ $) 72)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3268 (((-940) (-576)) NIL (|has| $ (-6 -4455)))) (-1450 (((-1141) $) 101)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1788 (($ $) NIL)) (-4236 (($ $) NIL)) (-3044 (($ (-576) (-576)) NIL) (($ (-576) (-576) (-940)) 110)) (-1828 (((-430 $) $) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2508 (((-576) $) 27)) (-2062 (($) 45)) (-4103 (($ $) 71)) (-1979 (((-783) $) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-3295 (((-940)) NIL) (((-940) (-940)) NIL (|has| $ (-6 -4455)))) (-2774 (($ $) 104) (($ $ (-783)) NIL)) (-1342 (((-940) (-576)) NIL (|has| $ (-6 -4455)))) (-4060 (($ $) 88)) (-3929 (($ $) 78)) (-4036 (($ $) 89)) (-3909 (($ $) 76)) (-4013 (($ $) 86)) (-3888 (($ $) 74)) (-4171 (((-390) $) 113) (((-227) $) 14) (((-907 (-390)) $) NIL) (((-548) $) 52)) (-3569 (((-876) $) 49) (($ (-576)) 152) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-576)) 152) (($ (-419 (-576))) NIL)) (-3154 (((-783)) NIL T CONST)) (-1810 (($ $) NIL)) (-2892 (((-940)) 34) (((-940) (-940)) NIL (|has| $ (-6 -4455)))) (-2399 (((-112) $ $) NIL)) (-3515 (((-940)) 24)) (-2790 (($ $) 93)) (-3960 (($ $) 81) (($ $ $) 119)) (-1505 (((-112) $ $) NIL)) (-4070 (($ $) 91)) (-3937 (($ $) 79)) (-2814 (($ $) 96)) (-3982 (($ $) 84)) (-4387 (($ $) 94)) (-3994 (($ $) 82)) (-2802 (($ $) 95)) (-3973 (($ $) 83)) (-4082 (($ $) 92)) (-3950 (($ $) 80)) (-4143 (($ $) 118)) (-2721 (($) 42 T CONST)) (-2731 (($) 43 T CONST)) (-3160 (((-1179) $) 18) (((-1179) $ (-112)) 20) (((-1293) (-834) $) 21) (((-1293) (-834) $ (-112)) 22)) (-3902 (($ $) 107)) (-2020 (($ $) NIL) (($ $ (-783)) NIL)) (-3198 (($ $ $) 109)) (-2990 (((-112) $ $) 56)) (-2962 (((-112) $ $) 54)) (-2924 (((-112) $ $) 64)) (-2978 (((-112) $ $) 55)) (-2949 (((-112) $ $) 53)) (-3056 (($ $ $) 44) (($ $ (-576)) 65)) (-3043 (($ $) 57) (($ $ $) 59)) (-3029 (($ $ $) 58)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 68) (($ $ (-419 (-576))) 151) (($ $ $) 69)) (* (($ (-940) $) 32) (($ (-783) $) NIL) (($ (-576) $) 61) (($ $ $) 60) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +(((-227) (-13 (-416) (-238) (-840) (-1223) (-626 (-548)) (-10 -8 (-15 -3056 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -2062 ($)) (-15 -4267 ($ $)) (-15 -2330 ($ $)) (-15 -3960 ($ $ $)) (-15 -3902 ($ $)) (-15 -3198 ($ $ $)) (-15 -3141 ((-419 (-576)) $ (-783))) (-15 -3141 ((-419 (-576)) $ (-783) (-783)))))) (T -227)) +((** (*1 *1 *1 *1) (-5 *1 (-227))) (-3056 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-227)))) (-2062 (*1 *1) (-5 *1 (-227))) (-4267 (*1 *1 *1) (-5 *1 (-227))) (-2330 (*1 *1 *1) (-5 *1 (-227))) (-3960 (*1 *1 *1 *1) (-5 *1 (-227))) (-3902 (*1 *1 *1) (-5 *1 (-227))) (-3198 (*1 *1 *1 *1) (-5 *1 (-227))) (-3141 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) (-3141 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227))))) +(-13 (-416) (-238) (-840) (-1223) (-626 (-548)) (-10 -8 (-15 -3056 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -2062 ($)) (-15 -4267 ($ $)) (-15 -2330 ($ $)) (-15 -3960 ($ $ $)) (-15 -3902 ($ $)) (-15 -3198 ($ $ $)) (-15 -3141 ((-419 (-576)) $ (-783))) (-15 -3141 ((-419 (-576)) $ (-783) (-783))))) +((-3038 (((-171 (-227)) (-783) (-171 (-227))) 11) (((-227) (-783) (-227)) 12)) (-1384 (((-171 (-227)) (-171 (-227))) 13) (((-227) (-227)) 14)) (-3094 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 19) (((-227) (-227) (-227)) 22)) (-3452 (((-171 (-227)) (-171 (-227))) 27) (((-227) (-227)) 26)) (-3849 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 57) (((-227) (-227) (-227)) 49)) (-2767 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 62) (((-227) (-227) (-227)) 60)) (-1629 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 15) (((-227) (-227) (-227)) 16)) (-1888 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 17) (((-227) (-227) (-227)) 18)) (-2612 (((-171 (-227)) (-171 (-227))) 74) (((-227) (-227)) 73)) (-1948 (((-227) (-227)) 68) (((-171 (-227)) (-171 (-227))) 72)) (-3902 (((-171 (-227)) (-171 (-227))) 8) (((-227) (-227)) 9)) (-3198 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 35) (((-227) (-227) (-227)) 31))) +(((-228) (-10 -7 (-15 -3902 ((-227) (-227))) (-15 -3902 ((-171 (-227)) (-171 (-227)))) (-15 -3198 ((-227) (-227) (-227))) (-15 -3198 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1384 ((-227) (-227))) (-15 -1384 ((-171 (-227)) (-171 (-227)))) (-15 -3452 ((-227) (-227))) (-15 -3452 ((-171 (-227)) (-171 (-227)))) (-15 -3038 ((-227) (-783) (-227))) (-15 -3038 ((-171 (-227)) (-783) (-171 (-227)))) (-15 -1629 ((-227) (-227) (-227))) (-15 -1629 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3849 ((-227) (-227) (-227))) (-15 -3849 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1888 ((-227) (-227) (-227))) (-15 -1888 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2767 ((-227) (-227) (-227))) (-15 -2767 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1948 ((-171 (-227)) (-171 (-227)))) (-15 -1948 ((-227) (-227))) (-15 -2612 ((-227) (-227))) (-15 -2612 ((-171 (-227)) (-171 (-227)))) (-15 -3094 ((-227) (-227) (-227))) (-15 -3094 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))) (T -228)) +((-3094 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3094 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2612 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2612 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1948 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1948 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2767 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2767 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1888 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1888 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3849 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3849 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1629 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1629 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3038 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-227))) (-5 *3 (-783)) (-5 *1 (-228)))) (-3038 (*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-783)) (-5 *1 (-228)))) (-3452 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3452 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1384 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1384 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3198 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3198 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3902 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3902 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))) +(-10 -7 (-15 -3902 ((-227) (-227))) (-15 -3902 ((-171 (-227)) (-171 (-227)))) (-15 -3198 ((-227) (-227) (-227))) (-15 -3198 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1384 ((-227) (-227))) (-15 -1384 ((-171 (-227)) (-171 (-227)))) (-15 -3452 ((-227) (-227))) (-15 -3452 ((-171 (-227)) (-171 (-227)))) (-15 -3038 ((-227) (-783) (-227))) (-15 -3038 ((-171 (-227)) (-783) (-171 (-227)))) (-15 -1629 ((-227) (-227) (-227))) (-15 -1629 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3849 ((-227) (-227) (-227))) (-15 -3849 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1888 ((-227) (-227) (-227))) (-15 -1888 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2767 ((-227) (-227) (-227))) (-15 -2767 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1948 ((-171 (-227)) (-171 (-227)))) (-15 -1948 ((-227) (-227))) (-15 -2612 ((-227) (-227))) (-15 -2612 ((-171 (-227)) (-171 (-227)))) (-15 -3094 ((-227) (-227) (-227))) (-15 -3094 ((-171 (-227)) (-171 (-227)) (-171 (-227))))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3831 (($ (-783) (-783)) NIL)) (-2564 (($ $ $) NIL)) (-1354 (($ (-1288 |#1|)) NIL) (($ $) NIL)) (-1878 (($ |#1| |#1| |#1|) 33)) (-3226 (((-112) $) NIL)) (-2736 (($ $ (-576) (-576)) NIL)) (-1756 (($ $ (-576) (-576)) NIL)) (-1965 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-2228 (($ $) NIL)) (-4434 (((-112) $) NIL)) (-4264 (((-112) $ (-783)) NIL)) (-3752 (($ $ (-576) (-576) $) NIL)) (-3755 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-3100 (($ $ (-576) (-1288 |#1|)) NIL)) (-1891 (($ $ (-576) (-1288 |#1|)) NIL)) (-4222 (($ |#1| |#1| |#1|) 32)) (-4083 (($ (-783) |#1|) NIL)) (-3404 (($) NIL T CONST)) (-2548 (($ $) NIL (|has| |#1| (-317)))) (-1575 (((-1288 |#1|) $ (-576)) NIL)) (-4285 (($ |#1|) 31)) (-4117 (($ |#1|) 30)) (-2964 (($ |#1|) 29)) (-3733 (((-783) $) NIL (|has| |#1| (-568)))) (-4332 ((|#1| $ (-576) (-576) |#1|) NIL)) (-4272 ((|#1| $ (-576) (-576)) NIL)) (-3965 (((-656 |#1|) $) NIL)) (-1768 (((-783) $) NIL (|has| |#1| (-568)))) (-3595 (((-656 (-1288 |#1|)) $) NIL (|has| |#1| (-568)))) (-1689 (((-783) $) NIL)) (-4140 (($ (-783) (-783) |#1|) NIL)) (-1699 (((-783) $) NIL)) (-1368 (((-112) $ (-783)) NIL)) (-1381 ((|#1| $) NIL (|has| |#1| (-6 (-4466 "*"))))) (-4017 (((-576) $) NIL)) (-3144 (((-576) $) NIL)) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3550 (((-576) $) NIL)) (-3037 (((-576) $) NIL)) (-2466 (($ (-656 (-656 |#1|))) 11) (($ (-783) (-783) (-1 |#1| (-576) (-576))) NIL)) (-4326 (($ (-1 |#1| |#1|) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2650 (((-656 (-656 |#1|)) $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3375 (((-3 $ "failed") $) NIL (|has| |#1| (-374)))) (-2644 (($) 12)) (-3397 (($ $ $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-2304 (($ $ |#1|) NIL)) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-4406 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL)) (-3218 (((-112) $) NIL)) (-3556 ((|#1| $) NIL (|has| |#1| (-6 (-4466 "*"))))) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-4203 (((-1288 |#1|) $ (-576)) NIL)) (-3569 (($ (-1288 |#1|)) NIL) (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-4155 (((-112) $) NIL)) (-2924 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $ $) NIL) (($ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-1288 |#1|) $ (-1288 |#1|)) 15) (((-1288 |#1|) (-1288 |#1|) $) NIL) (((-962 |#1|) $ (-962 |#1|)) 21)) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-229 |#1|) (-13 (-699 |#1| (-1288 |#1|) (-1288 |#1|)) (-10 -8 (-15 * ((-962 |#1|) $ (-962 |#1|))) (-15 -2644 ($)) (-15 -2964 ($ |#1|)) (-15 -4117 ($ |#1|)) (-15 -4285 ($ |#1|)) (-15 -4222 ($ |#1| |#1| |#1|)) (-15 -1878 ($ |#1| |#1| |#1|)))) (-13 (-374) (-1223))) (T -229)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223))) (-5 *1 (-229 *3)))) (-2644 (*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223))))) (-2964 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223))))) (-4117 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223))))) (-4285 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223))))) (-4222 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223))))) (-1878 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223)))))) +(-13 (-699 |#1| (-1288 |#1|) (-1288 |#1|)) (-10 -8 (-15 * ((-962 |#1|) $ (-962 |#1|))) (-15 -2644 ($)) (-15 -2964 ($ |#1|)) (-15 -4117 ($ |#1|)) (-15 -4285 ($ |#1|)) (-15 -4222 ($ |#1| |#1| |#1|)) (-15 -1878 ($ |#1| |#1| |#1|)))) +((-2123 (($ (-1 (-112) |#2|) $) 16)) (-2172 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 28)) (-3101 (($) NIL) (($ (-656 |#2|)) 11)) (-2924 (((-112) $ $) 26))) +(((-230 |#1| |#2|) (-10 -8 (-15 -2924 ((-112) |#1| |#1|)) (-15 -2123 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2172 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2172 (|#1| |#2| |#1|)) (-15 -3101 (|#1| (-656 |#2|))) (-15 -3101 (|#1|))) (-231 |#2|) (-1121)) (T -230)) +NIL +(-10 -8 (-15 -2924 ((-112) |#1| |#1|)) (-15 -2123 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2172 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2172 (|#1| |#2| |#1|)) (-15 -3101 (|#1| (-656 |#2|))) (-15 -3101 (|#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4264 (((-112) $ (-783)) 8)) (-2123 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4464)))) (-1974 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4464)))) (-3404 (($) 7 T CONST)) (-2034 (($ $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2172 (($ |#1| $) 48 (|has| $ (-6 -4464))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4464)))) (-3945 (($ |#1| $) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4464)))) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) 9)) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4326 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-2883 (((-112) $ (-783)) 10)) (-2046 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2722 ((|#1| $) 40)) (-2597 (($ |#1| $) 41)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1541 ((|#1| $) 42)) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-3101 (($) 50) (($ (-656 |#1|)) 49)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-4171 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 51)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3972 (($ (-656 |#1|)) 43)) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-231 |#1|) (-141) (-1121)) (T -231)) NIL (-13 (-240 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2760 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2760 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-1561 (((-3 $ "failed") $) 37)) (-4193 (((-112) $) 35)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2775 (($ $ (-1 |#1| |#1|) (-783)) 57) (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1197)) 55 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 53 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 52 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 51 (|has| |#1| (-919 (-1197)))) (($ $) 47 (|has| |#1| (-237))) (($ $ (-783)) 45 (|has| |#1| (-237)))) (-3570 (((-876) $) 12) (($ (-576)) 33)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2020 (($ $ (-1 |#1| |#1|) (-783)) 59) (($ $ (-1 |#1| |#1|)) 58) (($ $ (-1197)) 54 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 50 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 49 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 48 (|has| |#1| (-919 (-1197)))) (($ $) 46 (|has| |#1| (-237))) (($ $ (-783)) 44 (|has| |#1| (-237)))) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2759 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2759 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-3673 (((-3 $ "failed") $) 37)) (-1351 (((-112) $) 35)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2774 (($ $ (-1 |#1| |#1|) (-783)) 57) (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1197)) 55 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 53 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 52 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 51 (|has| |#1| (-919 (-1197)))) (($ $) 47 (|has| |#1| (-237))) (($ $ (-783)) 45 (|has| |#1| (-237)))) (-3569 (((-876) $) 12) (($ (-576)) 33)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2020 (($ $ (-1 |#1| |#1|) (-783)) 59) (($ $ (-1 |#1| |#1|)) 58) (($ $ (-1197)) 54 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 50 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 49 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 48 (|has| |#1| (-919 (-1197)))) (($ $) 46 (|has| |#1| (-237))) (($ $ (-783)) 44 (|has| |#1| (-237)))) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-232 |#1|) (-141) (-1070)) (T -232)) NIL (-13 (-1070) (-272 |t#1|) (-10 -7 (IF (|has| |t#1| (-238)) (-6 (-238)) |%noBranch|) (IF (|has| |t#1| (-917 (-1197))) (-6 (-917 (-1197))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-234 $) -2760 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-238) |has| |#1| (-238)) ((-237) -2760 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-911 $ #0=(-1197)) -2760 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-917 (-1197)) |has| |#1| (-917 (-1197))) ((-919 #0#) -2760 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-234 $) -2759 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-238) |has| |#1| (-238)) ((-237) -2759 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-911 $ #0=(-1197)) -2759 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-917 (-1197)) |has| |#1| (-917 (-1197))) ((-919 #0#) -2759 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) ((-2020 ((|#2| $) 9))) (((-233 |#1| |#2|) (-10 -8 (-15 -2020 (|#2| |#1|))) (-234 |#2|) (-1238)) (T -233)) NIL (-10 -8 (-15 -2020 (|#2| |#1|))) -((-2775 ((|#1| $) 7)) (-2020 ((|#1| $) 6))) +((-2774 ((|#1| $) 7)) (-2020 ((|#1| $) 6))) (((-234 |#1|) (-141) (-1238)) (T -234)) -((-2775 (*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1238)))) (-2020 (*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1238))))) -(-13 (-1238) (-10 -8 (-15 -2775 (|t#1| $)) (-15 -2020 (|t#1| $)))) +((-2774 (*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1238)))) (-2020 (*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1238))))) +(-13 (-1238) (-10 -8 (-15 -2774 (|t#1| $)) (-15 -2020 (|t#1| $)))) (((-1238) . T)) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2775 (($ $ (-783)) 37) (($ $) 35)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2020 (($ $ (-783)) 38) (($ $) 36)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2774 (($ $ (-783)) 37) (($ $) 35)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2020 (($ $ (-783)) 38) (($ $) 36)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) (((-235 |#1|) (-141) (-1070)) (T -235)) NIL (-13 (-111 |t#1| |t#1|) (-237) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-729 |t#1|)) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-234 $) . T) ((-237) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-2775 (($ $) NIL) (($ $ (-783)) 9)) (-2020 (($ $) NIL) (($ $ (-783)) 11))) -(((-236 |#1|) (-10 -8 (-15 -2020 (|#1| |#1| (-783))) (-15 -2775 (|#1| |#1| (-783))) (-15 -2020 (|#1| |#1|)) (-15 -2775 (|#1| |#1|))) (-237)) (T -236)) +((-2774 (($ $) NIL) (($ $ (-783)) 9)) (-2020 (($ $) NIL) (($ $ (-783)) 11))) +(((-236 |#1|) (-10 -8 (-15 -2020 (|#1| |#1| (-783))) (-15 -2774 (|#1| |#1| (-783))) (-15 -2020 (|#1| |#1|)) (-15 -2774 (|#1| |#1|))) (-237)) (T -236)) NIL -(-10 -8 (-15 -2020 (|#1| |#1| (-783))) (-15 -2775 (|#1| |#1| (-783))) (-15 -2020 (|#1| |#1|)) (-15 -2775 (|#1| |#1|))) -((-2775 (($ $) 7) (($ $ (-783)) 10)) (-2020 (($ $) 6) (($ $ (-783)) 9))) +(-10 -8 (-15 -2020 (|#1| |#1| (-783))) (-15 -2774 (|#1| |#1| (-783))) (-15 -2020 (|#1| |#1|)) (-15 -2774 (|#1| |#1|))) +((-2774 (($ $) 7) (($ $ (-783)) 10)) (-2020 (($ $) 6) (($ $ (-783)) 9))) (((-237) (-141)) (T -237)) -((-2775 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783)))) (-2020 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783))))) -(-13 (-234 $) (-10 -8 (-15 -2775 ($ $ (-783))) (-15 -2020 ($ $ (-783))))) +((-2774 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783)))) (-2020 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783))))) +(-13 (-234 $) (-10 -8 (-15 -2774 ($ $ (-783))) (-15 -2020 ($ $ (-783))))) (((-234 $) . T) ((-1238) . T)) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-1561 (((-3 $ "failed") $) 37)) (-4193 (((-112) $) 35)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2775 (($ $ (-783)) 42) (($ $) 40)) (-3570 (((-876) $) 12) (($ (-576)) 33)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2020 (($ $ (-783)) 43) (($ $) 41)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-3673 (((-3 $ "failed") $) 37)) (-1351 (((-112) $) 35)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2774 (($ $ (-783)) 42) (($ $) 40)) (-3569 (((-876) $) 12) (($ (-576)) 33)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2020 (($ $ (-783)) 43) (($ $) 41)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-238) (-141)) (T -238)) NIL (-13 (-1070) (-237)) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-234 $) . T) ((-237) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-2271 (($) 12) (($ (-656 |#2|)) NIL)) (-1870 (($ $) 14)) (-3582 (($ (-656 |#2|)) 10)) (-3570 (((-876) $) 21))) -(((-239 |#1| |#2|) (-10 -8 (-15 -3570 ((-876) |#1|)) (-15 -2271 (|#1| (-656 |#2|))) (-15 -2271 (|#1|)) (-15 -3582 (|#1| (-656 |#2|))) (-15 -1870 (|#1| |#1|))) (-240 |#2|) (-1121)) (T -239)) +((-3101 (($) 12) (($ (-656 |#2|)) NIL)) (-1870 (($ $) 14)) (-3581 (($ (-656 |#2|)) 10)) (-3569 (((-876) $) 21))) +(((-239 |#1| |#2|) (-10 -8 (-15 -3569 ((-876) |#1|)) (-15 -3101 (|#1| (-656 |#2|))) (-15 -3101 (|#1|)) (-15 -3581 (|#1| (-656 |#2|))) (-15 -1870 (|#1| |#1|))) (-240 |#2|) (-1121)) (T -239)) NIL -(-10 -8 (-15 -3570 ((-876) |#1|)) (-15 -2271 (|#1| (-656 |#2|))) (-15 -2271 (|#1|)) (-15 -3582 (|#1| (-656 |#2|))) (-15 -1870 (|#1| |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1808 (((-112) $ (-783)) 8)) (-2300 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4465)))) (-3886 (($) 7 T CONST)) (-1415 (($ $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1671 (($ |#1| $) 48 (|has| $ (-6 -4465))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4465)))) (-3946 (($ |#1| $) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4465)))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4465)))) (-3966 (((-656 |#1|) $) 31 (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) 9)) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-4323 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 36)) (-1330 (((-112) $ (-783)) 10)) (-3699 (((-1179) $) 23 (|has| |#1| (-1121)))) (-1597 ((|#1| $) 40)) (-1901 (($ |#1| $) 41)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3449 ((|#1| $) 42)) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-2271 (($) 50) (($ (-656 |#1|)) 49)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 13)) (-4172 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) 51)) (-3570 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3943 (($ (-656 |#1|)) 43)) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +(-10 -8 (-15 -3569 ((-876) |#1|)) (-15 -3101 (|#1| (-656 |#2|))) (-15 -3101 (|#1|)) (-15 -3581 (|#1| (-656 |#2|))) (-15 -1870 (|#1| |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4264 (((-112) $ (-783)) 8)) (-2123 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4464)))) (-1974 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4464)))) (-3404 (($) 7 T CONST)) (-2034 (($ $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2172 (($ |#1| $) 48 (|has| $ (-6 -4464))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4464)))) (-3945 (($ |#1| $) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4464)))) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) 9)) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4326 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-2883 (((-112) $ (-783)) 10)) (-2046 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2722 ((|#1| $) 40)) (-2597 (($ |#1| $) 41)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1541 ((|#1| $) 42)) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-3101 (($) 50) (($ (-656 |#1|)) 49)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-4171 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 51)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3972 (($ (-656 |#1|)) 43)) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-240 |#1|) (-141) (-1121)) (T -240)) -((-2271 (*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1121)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-240 *3)))) (-1671 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-240 *2)) (-4 *2 (-1121)))) (-1671 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4465)) (-4 *1 (-240 *3)) (-4 *3 (-1121)))) (-2300 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4465)) (-4 *1 (-240 *3)) (-4 *3 (-1121))))) -(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -2271 ($)) (-15 -2271 ($ (-656 |t#1|))) (IF (|has| $ (-6 -4465)) (PROGN (-15 -1671 ($ |t#1| $)) (-15 -1671 ($ (-1 (-112) |t#1|) $)) (-15 -2300 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2760 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2760 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-1902 (((-2 (|:| |varOrder| (-656 (-1197))) (|:| |inhom| (-3 (-656 (-1288 (-783))) "failed")) (|:| |hom| (-656 (-1288 (-783))))) (-304 (-971 (-576)))) 42))) -(((-241) (-10 -7 (-15 -1902 ((-2 (|:| |varOrder| (-656 (-1197))) (|:| |inhom| (-3 (-656 (-1288 (-783))) "failed")) (|:| |hom| (-656 (-1288 (-783))))) (-304 (-971 (-576))))))) (T -241)) -((-1902 (*1 *2 *3) (-12 (-5 *3 (-304 (-971 (-576)))) (-5 *2 (-2 (|:| |varOrder| (-656 (-1197))) (|:| |inhom| (-3 (-656 (-1288 (-783))) "failed")) (|:| |hom| (-656 (-1288 (-783)))))) (-5 *1 (-241))))) -(-10 -7 (-15 -1902 ((-2 (|:| |varOrder| (-656 (-1197))) (|:| |inhom| (-3 (-656 (-1288 (-783))) "failed")) (|:| |hom| (-656 (-1288 (-783))))) (-304 (-971 (-576)))))) -((-2098 (((-783)) 56)) (-2204 (((-2 (|:| -2590 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 $) (-1288 $)) 53) (((-701 |#3|) (-701 $)) 44) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-2003 (((-135)) 62)) (-2775 (($ $ (-1 |#3| |#3|)) 18) (($ $ (-1 |#3| |#3|) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-3570 (((-1288 |#3|) $) NIL) (($ |#3|) NIL) (((-876) $) NIL) (($ (-576)) 12) (($ (-419 (-576))) NIL)) (-3996 (((-783)) 15)) (-3057 (($ $ |#3|) 59))) -(((-242 |#1| |#2| |#3|) (-10 -8 (-15 -3570 (|#1| (-419 (-576)))) (-15 -3570 (|#1| (-576))) (-15 -2775 (|#1| |#1|)) (-15 -2775 (|#1| |#1| (-783))) (-15 -2775 (|#1| |#1| (-1197))) (-15 -2775 (|#1| |#1| (-656 (-1197)))) (-15 -2775 (|#1| |#1| (-1197) (-783))) (-15 -2775 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -3570 ((-876) |#1|)) (-15 -3996 ((-783))) (-15 -2204 ((-701 (-576)) (-701 |#1|))) (-15 -2204 ((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -3570 (|#1| |#3|)) (-15 -2775 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -2775 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2204 ((-701 |#3|) (-701 |#1|))) (-15 -2204 ((-2 (|:| -2590 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 |#1|) (-1288 |#1|))) (-15 -2098 ((-783))) (-15 -3057 (|#1| |#1| |#3|)) (-15 -2003 ((-135))) (-15 -3570 ((-1288 |#3|) |#1|))) (-243 |#2| |#3|) (-783) (-1238)) (T -242)) -((-2003 (*1 *2) (-12 (-14 *4 (-783)) (-4 *5 (-1238)) (-5 *2 (-135)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-2098 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1238)) (-5 *2 (-783)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-3996 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1238)) (-5 *2 (-783)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5))))) -(-10 -8 (-15 -3570 (|#1| (-419 (-576)))) (-15 -3570 (|#1| (-576))) (-15 -2775 (|#1| |#1|)) (-15 -2775 (|#1| |#1| (-783))) (-15 -2775 (|#1| |#1| (-1197))) (-15 -2775 (|#1| |#1| (-656 (-1197)))) (-15 -2775 (|#1| |#1| (-1197) (-783))) (-15 -2775 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -3570 ((-876) |#1|)) (-15 -3996 ((-783))) (-15 -2204 ((-701 (-576)) (-701 |#1|))) (-15 -2204 ((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -3570 (|#1| |#3|)) (-15 -2775 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -2775 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2204 ((-701 |#3|) (-701 |#1|))) (-15 -2204 ((-2 (|:| -2590 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 |#1|) (-1288 |#1|))) (-15 -2098 ((-783))) (-15 -3057 (|#1| |#1| |#3|)) (-15 -2003 ((-135))) (-15 -3570 ((-1288 |#3|) |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#2| (-102)))) (-4308 (((-112) $) 76 (|has| |#2| (-23)))) (-2052 (($ (-940)) 129 (|has| |#2| (-1070)))) (-2047 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4466)))) (-2324 (($ $ $) 125 (|has| |#2| (-805)))) (-4367 (((-3 $ "failed") $ $) 78 (|has| |#2| (-132)))) (-1808 (((-112) $ (-783)) 8)) (-2098 (((-783)) 115 (|has| |#2| (-379)))) (-3756 ((|#2| $ (-576) |#2|) 53 (|has| $ (-6 -4466)))) (-3886 (($) 7 T CONST)) (-1572 (((-3 (-576) "failed") $) 71 (-2675 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-3 (-419 (-576)) "failed") $) 68 (-2675 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (((-3 |#2| "failed") $) 65 (|has| |#2| (-1121)))) (-2860 (((-576) $) 70 (-2675 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-419 (-576)) $) 67 (-2675 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) ((|#2| $) 66 (|has| |#2| (-1121)))) (-2204 (((-701 (-576)) (-701 $)) 112 (-2675 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 111 (-2675 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) 110 (|has| |#2| (-1070))) (((-701 |#2|) (-701 $)) 109 (|has| |#2| (-1070)))) (-1561 (((-3 $ "failed") $) 86 (|has| |#2| (-1070)))) (-1836 (($) 118 (|has| |#2| (-379)))) (-4335 ((|#2| $ (-576) |#2|) 54 (|has| $ (-6 -4466)))) (-4274 ((|#2| $ (-576)) 52)) (-3966 (((-656 |#2|) $) 31 (|has| $ (-6 -4465)))) (-4193 (((-112) $) 88 (|has| |#2| (-1070)))) (-3870 (((-112) $ (-783)) 9)) (-2924 (((-576) $) 44 (|has| (-576) (-861)))) (-3125 (($ $ $) 119 (|has| |#2| (-861)))) (-2014 (((-656 |#2|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4465))))) (-2137 (((-576) $) 45 (|has| (-576) (-861)))) (-3133 (($ $ $) 120 (|has| |#2| (-861)))) (-4323 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#2| |#2|) $) 36)) (-4401 (((-940) $) 117 (|has| |#2| (-379)))) (-1330 (((-112) $ (-783)) 10)) (-3913 (((-701 (-576)) (-1288 $)) 114 (-2675 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 113 (-2675 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) 108 (|has| |#2| (-1070))) (((-701 |#2|) (-1288 $)) 107 (|has| |#2| (-1070)))) (-3699 (((-1179) $) 23 (|has| |#2| (-1121)))) (-4234 (((-656 (-576)) $) 47)) (-3354 (((-112) (-576) $) 48)) (-3224 (($ (-940)) 116 (|has| |#2| (-379)))) (-1450 (((-1141) $) 22 (|has| |#2| (-1121)))) (-3581 ((|#2| $) 43 (|has| (-576) (-861)))) (-4046 (($ $ |#2|) 42 (|has| $ (-6 -4466)))) (-4320 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#2|))) 27 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) 26 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) 24 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-4040 (((-112) $ $) 14)) (-3845 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-2281 (((-656 |#2|) $) 49)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-2797 ((|#2| $ (-576) |#2|) 51) ((|#2| $ (-576)) 50)) (-2118 ((|#2| $ $) 128 (|has| |#2| (-1070)))) (-1872 (($ (-1288 |#2|)) 130)) (-2003 (((-135)) 127 (|has| |#2| (-374)))) (-2775 (($ $ (-783)) 105 (-2675 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) 103 (-2675 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) 99 (-2675 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) 98 (-2675 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) 97 (-2675 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) 95 (-2675 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) 94 (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) 93 (|has| |#2| (-1070)))) (-1460 (((-783) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4465))) (((-783) |#2| $) 29 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 13)) (-3570 (((-1288 |#2|) $) 131) (($ (-576)) 72 (-2760 (-2675 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070)))) (($ (-419 (-576))) 69 (-2675 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (($ |#2|) 64 (|has| |#2| (-1121))) (((-876) $) 18 (|has| |#2| (-625 (-876))))) (-3996 (((-783)) 90 (|has| |#2| (-1070)) CONST)) (-4055 (((-112) $ $) 21 (|has| |#2| (-102)))) (-3321 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4465)))) (-2721 (($) 75 (|has| |#2| (-23)) CONST)) (-2732 (($) 89 (|has| |#2| (-1070)) CONST)) (-2020 (($ $ (-783)) 106 (-2675 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) 104 (-2675 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) 102 (-2675 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) 101 (-2675 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) 100 (-2675 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) 96 (-2675 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) 91 (|has| |#2| (-1070)))) (-2992 (((-112) $ $) 121 (|has| |#2| (-861)))) (-2964 (((-112) $ $) 123 (|has| |#2| (-861)))) (-2925 (((-112) $ $) 19 (|has| |#2| (-102)))) (-2978 (((-112) $ $) 122 (|has| |#2| (-861)))) (-2950 (((-112) $ $) 124 (|has| |#2| (-861)))) (-3057 (($ $ |#2|) 126 (|has| |#2| (-374)))) (-3044 (($ $ $) 81 (|has| |#2| (-21))) (($ $) 80 (|has| |#2| (-21)))) (-3030 (($ $ $) 73 (|has| |#2| (-25)))) (** (($ $ (-783)) 87 (|has| |#2| (-1070))) (($ $ (-940)) 84 (|has| |#2| (-1070)))) (* (($ $ $) 85 (|has| |#2| (-1070))) (($ $ |#2|) 83 (|has| |#2| (-738))) (($ |#2| $) 82 (|has| |#2| (-738))) (($ (-576) $) 79 (|has| |#2| (-21))) (($ (-783) $) 77 (|has| |#2| (-23))) (($ (-940) $) 74 (|has| |#2| (-25)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-3101 (*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1121)))) (-3101 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-240 *3)))) (-2172 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-240 *2)) (-4 *2 (-1121)))) (-2172 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4464)) (-4 *1 (-240 *3)) (-4 *3 (-1121)))) (-2123 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4464)) (-4 *1 (-240 *3)) (-4 *3 (-1121))))) +(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -3101 ($)) (-15 -3101 ($ (-656 |t#1|))) (IF (|has| $ (-6 -4464)) (PROGN (-15 -2172 ($ |t#1| $)) (-15 -2172 ($ (-1 (-112) |t#1|) $)) (-15 -2123 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2759 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2759 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-2607 (((-2 (|:| |varOrder| (-656 (-1197))) (|:| |inhom| (-3 (-656 (-1288 (-783))) "failed")) (|:| |hom| (-656 (-1288 (-783))))) (-304 (-971 (-576)))) 42))) +(((-241) (-10 -7 (-15 -2607 ((-2 (|:| |varOrder| (-656 (-1197))) (|:| |inhom| (-3 (-656 (-1288 (-783))) "failed")) (|:| |hom| (-656 (-1288 (-783))))) (-304 (-971 (-576))))))) (T -241)) +((-2607 (*1 *2 *3) (-12 (-5 *3 (-304 (-971 (-576)))) (-5 *2 (-2 (|:| |varOrder| (-656 (-1197))) (|:| |inhom| (-3 (-656 (-1288 (-783))) "failed")) (|:| |hom| (-656 (-1288 (-783)))))) (-5 *1 (-241))))) +(-10 -7 (-15 -2607 ((-2 (|:| |varOrder| (-656 (-1197))) (|:| |inhom| (-3 (-656 (-1288 (-783))) "failed")) (|:| |hom| (-656 (-1288 (-783))))) (-304 (-971 (-576)))))) +((-2098 (((-783)) 56)) (-3674 (((-2 (|:| -3232 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 $) (-1288 $)) 53) (((-701 |#3|) (-701 $)) 44) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-2319 (((-135)) 62)) (-2774 (($ $ (-1 |#3| |#3|)) 18) (($ $ (-1 |#3| |#3|) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-3569 (((-1288 |#3|) $) NIL) (($ |#3|) NIL) (((-876) $) NIL) (($ (-576)) 12) (($ (-419 (-576))) NIL)) (-3154 (((-783)) 15)) (-3056 (($ $ |#3|) 59))) +(((-242 |#1| |#2| |#3|) (-10 -8 (-15 -3569 (|#1| (-419 (-576)))) (-15 -3569 (|#1| (-576))) (-15 -2774 (|#1| |#1|)) (-15 -2774 (|#1| |#1| (-783))) (-15 -2774 (|#1| |#1| (-1197))) (-15 -2774 (|#1| |#1| (-656 (-1197)))) (-15 -2774 (|#1| |#1| (-1197) (-783))) (-15 -2774 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -3569 ((-876) |#1|)) (-15 -3154 ((-783))) (-15 -3674 ((-701 (-576)) (-701 |#1|))) (-15 -3674 ((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -3569 (|#1| |#3|)) (-15 -2774 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -2774 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3674 ((-701 |#3|) (-701 |#1|))) (-15 -3674 ((-2 (|:| -3232 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 |#1|) (-1288 |#1|))) (-15 -2098 ((-783))) (-15 -3056 (|#1| |#1| |#3|)) (-15 -2319 ((-135))) (-15 -3569 ((-1288 |#3|) |#1|))) (-243 |#2| |#3|) (-783) (-1238)) (T -242)) +((-2319 (*1 *2) (-12 (-14 *4 (-783)) (-4 *5 (-1238)) (-5 *2 (-135)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-2098 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1238)) (-5 *2 (-783)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-3154 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1238)) (-5 *2 (-783)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5))))) +(-10 -8 (-15 -3569 (|#1| (-419 (-576)))) (-15 -3569 (|#1| (-576))) (-15 -2774 (|#1| |#1|)) (-15 -2774 (|#1| |#1| (-783))) (-15 -2774 (|#1| |#1| (-1197))) (-15 -2774 (|#1| |#1| (-656 (-1197)))) (-15 -2774 (|#1| |#1| (-1197) (-783))) (-15 -2774 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -3569 ((-876) |#1|)) (-15 -3154 ((-783))) (-15 -3674 ((-701 (-576)) (-701 |#1|))) (-15 -3674 ((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -3569 (|#1| |#3|)) (-15 -2774 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -2774 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3674 ((-701 |#3|) (-701 |#1|))) (-15 -3674 ((-2 (|:| -3232 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 |#1|) (-1288 |#1|))) (-15 -2098 ((-783))) (-15 -3056 (|#1| |#1| |#3|)) (-15 -2319 ((-135))) (-15 -3569 ((-1288 |#3|) |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#2| (-102)))) (-3135 (((-112) $) 76 (|has| |#2| (-23)))) (-1545 (($ (-940)) 129 (|has| |#2| (-1070)))) (-1512 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4465)))) (-2386 (($ $ $) 125 (|has| |#2| (-805)))) (-2428 (((-3 $ "failed") $ $) 78 (|has| |#2| (-132)))) (-4264 (((-112) $ (-783)) 8)) (-2098 (((-783)) 115 (|has| |#2| (-379)))) (-3755 ((|#2| $ (-576) |#2|) 53 (|has| $ (-6 -4465)))) (-3404 (($) 7 T CONST)) (-1572 (((-3 (-576) "failed") $) 71 (-2674 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-3 (-419 (-576)) "failed") $) 68 (-2674 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (((-3 |#2| "failed") $) 65 (|has| |#2| (-1121)))) (-2859 (((-576) $) 70 (-2674 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-419 (-576)) $) 67 (-2674 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) ((|#2| $) 66 (|has| |#2| (-1121)))) (-3674 (((-701 (-576)) (-701 $)) 112 (-2674 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 111 (-2674 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) 110 (|has| |#2| (-1070))) (((-701 |#2|) (-701 $)) 109 (|has| |#2| (-1070)))) (-3673 (((-3 $ "failed") $) 86 (|has| |#2| (-1070)))) (-1836 (($) 118 (|has| |#2| (-379)))) (-4332 ((|#2| $ (-576) |#2|) 54 (|has| $ (-6 -4465)))) (-4272 ((|#2| $ (-576)) 52)) (-3965 (((-656 |#2|) $) 31 (|has| $ (-6 -4464)))) (-1351 (((-112) $) 88 (|has| |#2| (-1070)))) (-1368 (((-112) $ (-783)) 9)) (-3281 (((-576) $) 44 (|has| (-576) (-861)))) (-3124 (($ $ $) 119 (|has| |#2| (-861)))) (-2425 (((-656 |#2|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464))))) (-4280 (((-576) $) 45 (|has| (-576) (-861)))) (-1441 (($ $ $) 120 (|has| |#2| (-861)))) (-4326 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#2| |#2|) $) 36)) (-1558 (((-940) $) 117 (|has| |#2| (-379)))) (-2883 (((-112) $ (-783)) 10)) (-3676 (((-701 (-576)) (-1288 $)) 114 (-2674 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 113 (-2674 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) 108 (|has| |#2| (-1070))) (((-701 |#2|) (-1288 $)) 107 (|has| |#2| (-1070)))) (-2046 (((-1179) $) 23 (|has| |#2| (-1121)))) (-3669 (((-656 (-576)) $) 47)) (-3090 (((-112) (-576) $) 48)) (-3223 (($ (-940)) 116 (|has| |#2| (-379)))) (-1450 (((-1141) $) 22 (|has| |#2| (-1121)))) (-3580 ((|#2| $) 43 (|has| (-576) (-861)))) (-2304 (($ $ |#2|) 42 (|has| $ (-6 -4465)))) (-3252 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#2|))) 27 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) 26 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) 24 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-2252 (((-112) $ $) 14)) (-4282 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-3207 (((-656 |#2|) $) 49)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-2796 ((|#2| $ (-576) |#2|) 51) ((|#2| $ (-576)) 50)) (-4099 ((|#2| $ $) 128 (|has| |#2| (-1070)))) (-1871 (($ (-1288 |#2|)) 130)) (-2319 (((-135)) 127 (|has| |#2| (-374)))) (-2774 (($ $ (-783)) 105 (-2674 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) 103 (-2674 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) 99 (-2674 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) 98 (-2674 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) 97 (-2674 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) 95 (-2674 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) 94 (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) 93 (|has| |#2| (-1070)))) (-1460 (((-783) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4464))) (((-783) |#2| $) 29 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-3569 (((-1288 |#2|) $) 131) (($ (-576)) 72 (-2759 (-2674 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070)))) (($ (-419 (-576))) 69 (-2674 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (($ |#2|) 64 (|has| |#2| (-1121))) (((-876) $) 18 (|has| |#2| (-625 (-876))))) (-3154 (((-783)) 90 (|has| |#2| (-1070)) CONST)) (-2399 (((-112) $ $) 21 (|has| |#2| (-102)))) (-2708 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4464)))) (-2721 (($) 75 (|has| |#2| (-23)) CONST)) (-2731 (($) 89 (|has| |#2| (-1070)) CONST)) (-2020 (($ $ (-783)) 106 (-2674 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) 104 (-2674 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) 102 (-2674 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) 101 (-2674 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) 100 (-2674 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) 96 (-2674 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) 91 (|has| |#2| (-1070)))) (-2990 (((-112) $ $) 121 (|has| |#2| (-861)))) (-2962 (((-112) $ $) 123 (|has| |#2| (-861)))) (-2924 (((-112) $ $) 19 (|has| |#2| (-102)))) (-2978 (((-112) $ $) 122 (|has| |#2| (-861)))) (-2949 (((-112) $ $) 124 (|has| |#2| (-861)))) (-3056 (($ $ |#2|) 126 (|has| |#2| (-374)))) (-3043 (($ $ $) 81 (|has| |#2| (-21))) (($ $) 80 (|has| |#2| (-21)))) (-3029 (($ $ $) 73 (|has| |#2| (-25)))) (** (($ $ (-783)) 87 (|has| |#2| (-1070))) (($ $ (-940)) 84 (|has| |#2| (-1070)))) (* (($ $ $) 85 (|has| |#2| (-1070))) (($ $ |#2|) 83 (|has| |#2| (-738))) (($ |#2| $) 82 (|has| |#2| (-738))) (($ (-576) $) 79 (|has| |#2| (-21))) (($ (-783) $) 77 (|has| |#2| (-23))) (($ (-940) $) 74 (|has| |#2| (-25)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-243 |#1| |#2|) (-141) (-783) (-1238)) (T -243)) -((-1872 (*1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-4 *4 (-1238)) (-4 *1 (-243 *3 *4)))) (-2052 (*1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1070)) (-4 *4 (-1238)))) (-2118 (*1 *2 *1 *1) (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1238)) (-4 *2 (-1070))))) -(-13 (-616 (-576) |t#2|) (-625 (-1288 |t#2|)) (-10 -8 (-6 -4465) (-15 -1872 ($ (-1288 |t#2|))) (IF (|has| |t#2| (-1121)) (-6 (-423 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1070)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-232 |t#2|)) (-6 (-388 |t#2|)) (-15 -2052 ($ (-940))) (-15 -2118 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-738)) (-6 (-652 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#2| (-174)) (-6 (-729 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4462)) (-6 -4462) |%noBranch|) (IF (|has| |t#2| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#2| (-805)) (-6 (-805)) |%noBranch|) (IF (|has| |t#2| (-374)) (-6 (-1295 |t#2|)) |%noBranch|))) -(((-21) -2760 (|has| |#2| (-1070)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-23) -2760 (|has| |#2| (-1070)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -2760 (|has| |#2| (-1070)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-102) -2760 (|has| |#2| (-1121)) (|has| |#2| (-1070)) (|has| |#2| (-861)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-111 |#2| |#2|) -2760 (|has| |#2| (-1070)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-132) -2760 (|has| |#2| (-1070)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-21))) ((-628 #0=(-419 (-576))) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121))) ((-628 (-576)) -2760 (|has| |#2| (-1070)) (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) ((-628 |#2|) |has| |#2| (-1121)) ((-625 (-876)) -2760 (|has| |#2| (-1121)) (|has| |#2| (-1070)) (|has| |#2| (-861)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-625 (-876))) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-625 (-1288 |#2|)) . T) ((-234 $) -2760 (-12 (|has| |#2| (-237)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1070)))) ((-232 |#2|) |has| |#2| (-1070)) ((-238) -12 (|has| |#2| (-238)) (|has| |#2| (-1070))) ((-237) -2760 (-12 (|has| |#2| (-237)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1070)))) ((-272 |#2|) |has| |#2| (-1070)) ((-296 #1=(-576) |#2|) . T) ((-298 #1# |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-379) |has| |#2| (-379)) ((-388 |#2|) |has| |#2| (-1070)) ((-423 |#2|) |has| |#2| (-1121)) ((-501 |#2|) . T) ((-616 #1# |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-658 (-576)) -2760 (|has| |#2| (-1070)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-658 |#2|) -2760 (|has| |#2| (-1070)) (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-658 $) |has| |#2| (-1070)) ((-660 #2=(-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070))) ((-660 |#2|) -2760 (|has| |#2| (-1070)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-660 $) |has| |#2| (-1070)) ((-652 |#2|) -2760 (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-651 #2#) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070))) ((-651 |#2|) |has| |#2| (-1070)) ((-729 |#2|) -2760 (|has| |#2| (-374)) (|has| |#2| (-174))) ((-738) |has| |#2| (-1070)) ((-804) |has| |#2| (-805)) ((-805) |has| |#2| (-805)) ((-806) |has| |#2| (-805)) ((-807) |has| |#2| (-805)) ((-861) -2760 (|has| |#2| (-861)) (|has| |#2| (-805))) ((-864) -2760 (|has| |#2| (-861)) (|has| |#2| (-805))) ((-911 $ #3=(-1197)) -2760 (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070)))) ((-917 (-1197)) -12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) ((-919 #3#) -2760 (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070)))) ((-1059 #0#) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121))) ((-1059 (-576)) -12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) ((-1059 |#2|) |has| |#2| (-1121)) ((-1072 |#2|) -2760 (|has| |#2| (-1070)) (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-1077 |#2|) -2760 (|has| |#2| (-1070)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-1070) |has| |#2| (-1070)) ((-1079) |has| |#2| (-1070)) ((-1133) |has| |#2| (-1070)) ((-1121) -2760 (|has| |#2| (-1121)) (|has| |#2| (-1070)) (|has| |#2| (-861)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1238) . T) ((-1295 |#2|) |has| |#2| (-374))) -((-1950 (((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 21)) (-3686 ((|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 23)) (-4117 (((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)) 18))) -(((-244 |#1| |#2| |#3|) (-10 -7 (-15 -1950 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -3686 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -4117 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)))) (-783) (-1238) (-1238)) (T -244)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-5 *2 (-245 *5 *7)) (-5 *1 (-244 *5 *6 *7)))) (-3686 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783)) (-4 *6 (-1238)) (-4 *2 (-1238)) (-5 *1 (-244 *5 *6 *2)))) (-1950 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-783)) (-4 *7 (-1238)) (-4 *5 (-1238)) (-5 *2 (-245 *6 *5)) (-5 *1 (-244 *6 *7 *5))))) -(-10 -7 (-15 -1950 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -3686 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -4117 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)))) -((-3489 (((-112) $ $) NIL (|has| |#2| (-102)))) (-4308 (((-112) $) NIL (|has| |#2| (-23)))) (-2052 (($ (-940)) 62 (|has| |#2| (-1070)))) (-2047 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4466)))) (-2324 (($ $ $) 68 (|has| |#2| (-805)))) (-4367 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)))) (-1808 (((-112) $ (-783)) NIL)) (-2098 (((-783)) NIL (|has| |#2| (-379)))) (-3756 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4466)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1121)))) (-2860 (((-576) $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) ((|#2| $) 28 (|has| |#2| (-1121)))) (-2204 (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL (|has| |#2| (-1070))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1070)))) (-1561 (((-3 $ "failed") $) 58 (|has| |#2| (-1070)))) (-1836 (($) NIL (|has| |#2| (-379)))) (-4335 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4466)))) (-4274 ((|#2| $ (-576)) 56)) (-3966 (((-656 |#2|) $) 14 (|has| $ (-6 -4465)))) (-4193 (((-112) $) NIL (|has| |#2| (-1070)))) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-576) $) 19 (|has| (-576) (-861)))) (-3125 (($ $ $) NIL (|has| |#2| (-861)))) (-2014 (((-656 |#2|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-2137 (((-576) $) NIL (|has| (-576) (-861)))) (-3133 (($ $ $) NIL (|has| |#2| (-861)))) (-4323 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#2| |#2|) $) NIL)) (-4401 (((-940) $) NIL (|has| |#2| (-379)))) (-1330 (((-112) $ (-783)) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL (|has| |#2| (-1070))) (((-701 |#2|) (-1288 $)) NIL (|has| |#2| (-1070)))) (-3699 (((-1179) $) NIL (|has| |#2| (-1121)))) (-4234 (((-656 (-576)) $) NIL)) (-3354 (((-112) (-576) $) NIL)) (-3224 (($ (-940)) NIL (|has| |#2| (-379)))) (-1450 (((-1141) $) NIL (|has| |#2| (-1121)))) (-3581 ((|#2| $) NIL (|has| (-576) (-861)))) (-4046 (($ $ |#2|) NIL (|has| $ (-6 -4466)))) (-4320 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-2281 (((-656 |#2|) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) 20)) (-2118 ((|#2| $ $) NIL (|has| |#2| (-1070)))) (-1872 (($ (-1288 |#2|)) 17)) (-2003 (((-135)) NIL (|has| |#2| (-374)))) (-2775 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1070)))) (-1460 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-1870 (($ $) NIL)) (-3570 (((-1288 |#2|) $) 9) (($ (-576)) NIL (-2760 (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (($ |#2|) 12 (|has| |#2| (-1121))) (((-876) $) NIL (|has| |#2| (-625 (-876))))) (-3996 (((-783)) NIL (|has| |#2| (-1070)) CONST)) (-4055 (((-112) $ $) NIL (|has| |#2| (-102)))) (-3321 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465)))) (-2721 (($) 36 (|has| |#2| (-23)) CONST)) (-2732 (($) 40 (|has| |#2| (-1070)) CONST)) (-2020 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1070)))) (-2992 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2964 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2925 (((-112) $ $) 27 (|has| |#2| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2950 (((-112) $ $) 66 (|has| |#2| (-861)))) (-3057 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3044 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-3030 (($ $ $) 34 (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1070))) (($ $ (-940)) NIL (|has| |#2| (-1070)))) (* (($ $ $) 46 (|has| |#2| (-1070))) (($ $ |#2|) 44 (|has| |#2| (-738))) (($ |#2| $) 45 (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-940) $) NIL (|has| |#2| (-25)))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) +((-1871 (*1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-4 *4 (-1238)) (-4 *1 (-243 *3 *4)))) (-1545 (*1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1070)) (-4 *4 (-1238)))) (-4099 (*1 *2 *1 *1) (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1238)) (-4 *2 (-1070))))) +(-13 (-616 (-576) |t#2|) (-625 (-1288 |t#2|)) (-10 -8 (-6 -4464) (-15 -1871 ($ (-1288 |t#2|))) (IF (|has| |t#2| (-1121)) (-6 (-423 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1070)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-232 |t#2|)) (-6 (-388 |t#2|)) (-15 -1545 ($ (-940))) (-15 -4099 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-738)) (-6 (-652 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#2| (-174)) (-6 (-729 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4461)) (-6 -4461) |%noBranch|) (IF (|has| |t#2| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#2| (-805)) (-6 (-805)) |%noBranch|) (IF (|has| |t#2| (-374)) (-6 (-1295 |t#2|)) |%noBranch|))) +(((-21) -2759 (|has| |#2| (-1070)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-23) -2759 (|has| |#2| (-1070)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -2759 (|has| |#2| (-1070)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-102) -2759 (|has| |#2| (-1121)) (|has| |#2| (-1070)) (|has| |#2| (-861)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-111 |#2| |#2|) -2759 (|has| |#2| (-1070)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-132) -2759 (|has| |#2| (-1070)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-21))) ((-628 #0=(-419 (-576))) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121))) ((-628 (-576)) -2759 (|has| |#2| (-1070)) (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) ((-628 |#2|) |has| |#2| (-1121)) ((-625 (-876)) -2759 (|has| |#2| (-1121)) (|has| |#2| (-1070)) (|has| |#2| (-861)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-625 (-876))) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-625 (-1288 |#2|)) . T) ((-234 $) -2759 (-12 (|has| |#2| (-237)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1070)))) ((-232 |#2|) |has| |#2| (-1070)) ((-238) -12 (|has| |#2| (-238)) (|has| |#2| (-1070))) ((-237) -2759 (-12 (|has| |#2| (-237)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1070)))) ((-272 |#2|) |has| |#2| (-1070)) ((-296 #1=(-576) |#2|) . T) ((-298 #1# |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-379) |has| |#2| (-379)) ((-388 |#2|) |has| |#2| (-1070)) ((-423 |#2|) |has| |#2| (-1121)) ((-501 |#2|) . T) ((-616 #1# |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-658 (-576)) -2759 (|has| |#2| (-1070)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-658 |#2|) -2759 (|has| |#2| (-1070)) (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-658 $) |has| |#2| (-1070)) ((-660 #2=(-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070))) ((-660 |#2|) -2759 (|has| |#2| (-1070)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-660 $) |has| |#2| (-1070)) ((-652 |#2|) -2759 (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-651 #2#) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070))) ((-651 |#2|) |has| |#2| (-1070)) ((-729 |#2|) -2759 (|has| |#2| (-374)) (|has| |#2| (-174))) ((-738) |has| |#2| (-1070)) ((-804) |has| |#2| (-805)) ((-805) |has| |#2| (-805)) ((-806) |has| |#2| (-805)) ((-807) |has| |#2| (-805)) ((-861) -2759 (|has| |#2| (-861)) (|has| |#2| (-805))) ((-864) -2759 (|has| |#2| (-861)) (|has| |#2| (-805))) ((-911 $ #3=(-1197)) -2759 (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070)))) ((-917 (-1197)) -12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) ((-919 #3#) -2759 (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070)))) ((-1059 #0#) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121))) ((-1059 (-576)) -12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) ((-1059 |#2|) |has| |#2| (-1121)) ((-1072 |#2|) -2759 (|has| |#2| (-1070)) (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-1077 |#2|) -2759 (|has| |#2| (-1070)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-1070) |has| |#2| (-1070)) ((-1079) |has| |#2| (-1070)) ((-1133) |has| |#2| (-1070)) ((-1121) -2759 (|has| |#2| (-1121)) (|has| |#2| (-1070)) (|has| |#2| (-861)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1238) . T) ((-1295 |#2|) |has| |#2| (-374))) +((-3120 (((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 21)) (-3685 ((|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 23)) (-4116 (((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)) 18))) +(((-244 |#1| |#2| |#3|) (-10 -7 (-15 -3120 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -3685 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -4116 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)))) (-783) (-1238) (-1238)) (T -244)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-5 *2 (-245 *5 *7)) (-5 *1 (-244 *5 *6 *7)))) (-3685 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783)) (-4 *6 (-1238)) (-4 *2 (-1238)) (-5 *1 (-244 *5 *6 *2)))) (-3120 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-783)) (-4 *7 (-1238)) (-4 *5 (-1238)) (-5 *2 (-245 *6 *5)) (-5 *1 (-244 *6 *7 *5))))) +(-10 -7 (-15 -3120 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -3685 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -4116 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)))) +((-3488 (((-112) $ $) NIL (|has| |#2| (-102)))) (-3135 (((-112) $) NIL (|has| |#2| (-23)))) (-1545 (($ (-940)) 62 (|has| |#2| (-1070)))) (-1512 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2386 (($ $ $) 68 (|has| |#2| (-805)))) (-2428 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)))) (-4264 (((-112) $ (-783)) NIL)) (-2098 (((-783)) NIL (|has| |#2| (-379)))) (-3755 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4465)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1121)))) (-2859 (((-576) $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) ((|#2| $) 28 (|has| |#2| (-1121)))) (-3674 (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL (|has| |#2| (-1070))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1070)))) (-3673 (((-3 $ "failed") $) 58 (|has| |#2| (-1070)))) (-1836 (($) NIL (|has| |#2| (-379)))) (-4332 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#2| $ (-576)) 56)) (-3965 (((-656 |#2|) $) 14 (|has| $ (-6 -4464)))) (-1351 (((-112) $) NIL (|has| |#2| (-1070)))) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-576) $) 19 (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#2| (-861)))) (-2425 (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-4280 (((-576) $) NIL (|has| (-576) (-861)))) (-1441 (($ $ $) NIL (|has| |#2| (-861)))) (-4326 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#2| |#2|) $) NIL)) (-1558 (((-940) $) NIL (|has| |#2| (-379)))) (-2883 (((-112) $ (-783)) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL (|has| |#2| (-1070))) (((-701 |#2|) (-1288 $)) NIL (|has| |#2| (-1070)))) (-2046 (((-1179) $) NIL (|has| |#2| (-1121)))) (-3669 (((-656 (-576)) $) NIL)) (-3090 (((-112) (-576) $) NIL)) (-3223 (($ (-940)) NIL (|has| |#2| (-379)))) (-1450 (((-1141) $) NIL (|has| |#2| (-1121)))) (-3580 ((|#2| $) NIL (|has| (-576) (-861)))) (-2304 (($ $ |#2|) NIL (|has| $ (-6 -4465)))) (-3252 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-3207 (((-656 |#2|) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) 20)) (-4099 ((|#2| $ $) NIL (|has| |#2| (-1070)))) (-1871 (($ (-1288 |#2|)) 17)) (-2319 (((-135)) NIL (|has| |#2| (-374)))) (-2774 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1070)))) (-1460 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1870 (($ $) NIL)) (-3569 (((-1288 |#2|) $) 9) (($ (-576)) NIL (-2759 (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (($ |#2|) 12 (|has| |#2| (-1121))) (((-876) $) NIL (|has| |#2| (-625 (-876))))) (-3154 (((-783)) NIL (|has| |#2| (-1070)) CONST)) (-2399 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2708 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2721 (($) 36 (|has| |#2| (-23)) CONST)) (-2731 (($) 40 (|has| |#2| (-1070)) CONST)) (-2020 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1070)))) (-2990 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2924 (((-112) $ $) 27 (|has| |#2| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2949 (((-112) $ $) 66 (|has| |#2| (-861)))) (-3056 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3043 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-3029 (($ $ $) 34 (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1070))) (($ $ (-940)) NIL (|has| |#2| (-1070)))) (* (($ $ $) 46 (|has| |#2| (-1070))) (($ $ |#2|) 44 (|has| |#2| (-738))) (($ |#2| $) 45 (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-940) $) NIL (|has| |#2| (-25)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) (((-245 |#1| |#2|) (-243 |#1| |#2|) (-783) (-1238)) (T -245)) NIL (-243 |#1| |#2|) -((-2506 (((-576) (-656 (-1179))) 36) (((-576) (-1179)) 29)) (-1340 (((-1293) (-656 (-1179))) 40) (((-1293) (-1179)) 39)) (-3500 (((-1179)) 16)) (-3719 (((-1179) (-576) (-1179)) 23)) (-2396 (((-656 (-1179)) (-656 (-1179)) (-576) (-1179)) 37) (((-1179) (-1179) (-576) (-1179)) 35)) (-3263 (((-656 (-1179)) (-656 (-1179))) 15) (((-656 (-1179)) (-1179)) 11))) -(((-246) (-10 -7 (-15 -3263 ((-656 (-1179)) (-1179))) (-15 -3263 ((-656 (-1179)) (-656 (-1179)))) (-15 -3500 ((-1179))) (-15 -3719 ((-1179) (-576) (-1179))) (-15 -2396 ((-1179) (-1179) (-576) (-1179))) (-15 -2396 ((-656 (-1179)) (-656 (-1179)) (-576) (-1179))) (-15 -1340 ((-1293) (-1179))) (-15 -1340 ((-1293) (-656 (-1179)))) (-15 -2506 ((-576) (-1179))) (-15 -2506 ((-576) (-656 (-1179)))))) (T -246)) -((-2506 (*1 *2 *3) (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-576)) (-5 *1 (-246)))) (-2506 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-576)) (-5 *1 (-246)))) (-1340 (*1 *2 *3) (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1293)) (-5 *1 (-246)))) (-1340 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-246)))) (-2396 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-656 (-1179))) (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *1 (-246)))) (-2396 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-576)) (-5 *1 (-246)))) (-3719 (*1 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-576)) (-5 *1 (-246)))) (-3500 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-246)))) (-3263 (*1 *2 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-246)))) (-3263 (*1 *2 *3) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-246)) (-5 *3 (-1179))))) -(-10 -7 (-15 -3263 ((-656 (-1179)) (-1179))) (-15 -3263 ((-656 (-1179)) (-656 (-1179)))) (-15 -3500 ((-1179))) (-15 -3719 ((-1179) (-576) (-1179))) (-15 -2396 ((-1179) (-1179) (-576) (-1179))) (-15 -2396 ((-656 (-1179)) (-656 (-1179)) (-576) (-1179))) (-15 -1340 ((-1293) (-1179))) (-15 -1340 ((-1293) (-656 (-1179)))) (-15 -2506 ((-576) (-1179))) (-15 -2506 ((-576) (-656 (-1179))))) +((-3645 (((-576) (-656 (-1179))) 36) (((-576) (-1179)) 29)) (-1340 (((-1293) (-656 (-1179))) 40) (((-1293) (-1179)) 39)) (-1984 (((-1179)) 16)) (-2267 (((-1179) (-576) (-1179)) 23)) (-2396 (((-656 (-1179)) (-656 (-1179)) (-576) (-1179)) 37) (((-1179) (-1179) (-576) (-1179)) 35)) (-3261 (((-656 (-1179)) (-656 (-1179))) 15) (((-656 (-1179)) (-1179)) 11))) +(((-246) (-10 -7 (-15 -3261 ((-656 (-1179)) (-1179))) (-15 -3261 ((-656 (-1179)) (-656 (-1179)))) (-15 -1984 ((-1179))) (-15 -2267 ((-1179) (-576) (-1179))) (-15 -2396 ((-1179) (-1179) (-576) (-1179))) (-15 -2396 ((-656 (-1179)) (-656 (-1179)) (-576) (-1179))) (-15 -1340 ((-1293) (-1179))) (-15 -1340 ((-1293) (-656 (-1179)))) (-15 -3645 ((-576) (-1179))) (-15 -3645 ((-576) (-656 (-1179)))))) (T -246)) +((-3645 (*1 *2 *3) (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-576)) (-5 *1 (-246)))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-576)) (-5 *1 (-246)))) (-1340 (*1 *2 *3) (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1293)) (-5 *1 (-246)))) (-1340 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-246)))) (-2396 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-656 (-1179))) (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *1 (-246)))) (-2396 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-576)) (-5 *1 (-246)))) (-2267 (*1 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-576)) (-5 *1 (-246)))) (-1984 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-246)))) (-3261 (*1 *2 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-246)))) (-3261 (*1 *2 *3) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-246)) (-5 *3 (-1179))))) +(-10 -7 (-15 -3261 ((-656 (-1179)) (-1179))) (-15 -3261 ((-656 (-1179)) (-656 (-1179)))) (-15 -1984 ((-1179))) (-15 -2267 ((-1179) (-576) (-1179))) (-15 -2396 ((-1179) (-1179) (-576) (-1179))) (-15 -2396 ((-656 (-1179)) (-656 (-1179)) (-576) (-1179))) (-15 -1340 ((-1293) (-1179))) (-15 -1340 ((-1293) (-656 (-1179)))) (-15 -3645 ((-576) (-1179))) (-15 -3645 ((-576) (-656 (-1179))))) ((** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 20)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-419 (-576)) $) 27) (($ $ (-419 (-576))) NIL))) (((-247 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-940))) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) (-248)) (T -247)) NIL (-10 -8 (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-940))) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-1561 (((-3 $ "failed") $) 37)) (-4193 (((-112) $) 35)) (-3699 (((-1179) $) 10)) (-2050 (($ $) 47)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 51)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 48)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-419 (-576)) $) 50) (($ $ (-419 (-576))) 49))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-3673 (((-3 $ "failed") $) 37)) (-1351 (((-112) $) 35)) (-2046 (((-1179) $) 10)) (-2050 (($ $) 47)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 51)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 48)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-419 (-576)) $) 50) (($ $ (-419 (-576))) 49))) (((-248) (-141)) (T -248)) ((** (*1 *1 *1 *2) (-12 (-4 *1 (-248)) (-5 *2 (-576)))) (-2050 (*1 *1 *1) (-4 *1 (-248)))) (-13 (-300) (-38 (-419 (-576))) (-10 -8 (-15 ** ($ $ (-576))) (-15 -2050 ($ $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-300) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-729 #0#) . T) ((-738) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3106 ((|#1| $) 49)) (-4426 (($ $) 58)) (-1808 (((-112) $ (-783)) 8)) (-2647 ((|#1| $ |#1|) 40 (|has| $ (-6 -4466)))) (-1858 (($ $ $) 54 (|has| $ (-6 -4466)))) (-3843 (($ $ $) 53 (|has| $ (-6 -4466)))) (-3756 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4466)))) (-1894 (($ $ (-656 $)) 42 (|has| $ (-6 -4466)))) (-3886 (($) 7 T CONST)) (-3642 (($ $) 57)) (-3966 (((-656 |#1|) $) 31 (|has| $ (-6 -4465)))) (-2387 (((-656 $) $) 51)) (-3295 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-4296 (($ $) 56)) (-3870 (((-112) $ (-783)) 9)) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-4323 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 36)) (-1330 (((-112) $ (-783)) 10)) (-2353 (((-656 |#1|) $) 46)) (-3443 (((-112) $) 50)) (-3699 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3969 ((|#1| $) 60)) (-3811 (($ $) 59)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-2797 ((|#1| $ "value") 48)) (-2789 (((-576) $ $) 45)) (-3617 (((-112) $) 47)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 13)) (-2974 (($ $ $) 55 (|has| $ (-6 -4466)))) (-3570 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2902 (((-656 $) $) 52)) (-2621 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-4055 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3104 ((|#1| $) 49)) (-4424 (($ $) 58)) (-4264 (((-112) $ (-783)) 8)) (-2482 ((|#1| $ |#1|) 40 (|has| $ (-6 -4465)))) (-3503 (($ $ $) 54 (|has| $ (-6 -4465)))) (-4262 (($ $ $) 53 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4465)))) (-3829 (($ $ (-656 $)) 42 (|has| $ (-6 -4465)))) (-3404 (($) 7 T CONST)) (-3641 (($ $) 57)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-1736 (((-656 $) $) 51)) (-3768 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-4295 (($ $) 56)) (-1368 (((-112) $ (-783)) 9)) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4326 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-2883 (((-112) $ (-783)) 10)) (-2353 (((-656 |#1|) $) 46)) (-1508 (((-112) $) 50)) (-2046 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3968 ((|#1| $) 60)) (-1982 (($ $) 59)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-2796 ((|#1| $ "value") 48)) (-1335 (((-576) $ $) 45)) (-3806 (((-112) $) 47)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-3631 (($ $ $) 55 (|has| $ (-6 -4465)))) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-3059 (((-656 $) $) 52)) (-2247 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-2399 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-249 |#1|) (-141) (-1238)) (T -249)) -((-3969 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-3811 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-4426 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-3642 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-4296 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-2974 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-1858 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-3843 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-249 *2)) (-4 *2 (-1238))))) -(-13 (-1031 |t#1|) (-10 -8 (-15 -3969 (|t#1| $)) (-15 -3811 ($ $)) (-15 -4426 ($ $)) (-15 -3642 ($ $)) (-15 -4296 ($ $)) (IF (|has| $ (-6 -4466)) (PROGN (-15 -2974 ($ $ $)) (-15 -1858 ($ $ $)) (-15 -3843 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) -2760 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2760 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1031 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3106 ((|#1| $) NIL)) (-2898 ((|#1| $) NIL)) (-4426 (($ $) NIL)) (-2047 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4466)))) (-2587 (($ $ (-576)) NIL (|has| $ (-6 -4466)))) (-1710 (((-112) $) NIL (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-4298 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-861)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-1795 (($ $) 10 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1808 (((-112) $ (-783)) NIL)) (-2647 ((|#1| $ |#1|) NIL (|has| $ (-6 -4466)))) (-4364 (($ $ $) NIL (|has| $ (-6 -4466)))) (-2297 ((|#1| $ |#1|) NIL (|has| $ (-6 -4466)))) (-1350 ((|#1| $ |#1|) NIL (|has| $ (-6 -4466)))) (-3756 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4466))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4466))) (($ $ "rest" $) NIL (|has| $ (-6 -4466))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4466))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4466))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4466)))) (-1894 (($ $ (-656 $)) NIL (|has| $ (-6 -4466)))) (-2300 (($ (-1 (-112) |#1|) $) NIL)) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2883 ((|#1| $) NIL)) (-3886 (($) NIL T CONST)) (-3990 (($ $) NIL (|has| $ (-6 -4466)))) (-3836 (($ $) NIL)) (-3593 (($ $) NIL) (($ $ (-783)) NIL)) (-1703 (($ $) NIL (|has| |#1| (-1121)))) (-1415 (($ $) 7 (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1671 (($ |#1| $) NIL (|has| |#1| (-1121))) (($ (-1 (-112) |#1|) $) NIL)) (-3946 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-4335 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4466)))) (-4274 ((|#1| $ (-576)) NIL)) (-4419 (((-112) $) NIL)) (-3660 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121))) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) (-1 (-112) |#1|) $) NIL)) (-3966 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-2387 (((-656 $) $) NIL)) (-3295 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-4141 (($ (-783) |#1|) NIL)) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-576) $) NIL (|has| (-576) (-861)))) (-3125 (($ $ $) NIL (|has| |#1| (-861)))) (-2453 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3391 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2137 (((-576) $) NIL (|has| (-576) (-861)))) (-3133 (($ $ $) NIL (|has| |#1| (-861)))) (-4323 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1650 (($ |#1|) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-2353 (((-656 |#1|) $) NIL)) (-3443 (((-112) $) NIL)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3969 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-1901 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2176 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-4234 (((-656 (-576)) $) NIL)) (-3354 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3581 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4046 (($ $ |#1|) NIL (|has| $ (-6 -4466)))) (-3166 (((-112) $) NIL)) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2281 (((-656 |#1|) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1255 (-576))) NIL) ((|#1| $ (-576)) NIL) ((|#1| $ (-576) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-783) $ "count") 16)) (-2789 (((-576) $ $) NIL)) (-2161 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-3466 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-3671 (($ (-656 |#1|)) 22)) (-3617 (((-112) $) NIL)) (-2934 (($ $) NIL)) (-3852 (($ $) NIL (|has| $ (-6 -4466)))) (-2687 (((-783) $) NIL)) (-3369 (($ $) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3025 (($ $ $ (-576)) NIL (|has| $ (-6 -4466)))) (-1870 (($ $) NIL)) (-4172 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) NIL)) (-2974 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1615 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-3570 (($ (-656 |#1|)) 17) (((-656 |#1|) $) 18) (((-876) $) 21 (|has| |#1| (-625 (-876))))) (-2902 (((-656 $) $) NIL)) (-2621 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2992 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2950 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3503 (((-783) $) 14 (|has| $ (-6 -4465))))) -(((-250 |#1|) (-13 (-678 |#1|) (-502 (-656 |#1|)) (-10 -8 (-15 -3671 ($ (-656 |#1|))) (-15 -2797 ($ $ "unique")) (-15 -2797 ($ $ "sort")) (-15 -2797 ((-783) $ "count")))) (-861)) (T -250)) -((-3671 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-250 *3)))) (-2797 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-250 *3)) (-4 *3 (-861)))) (-2797 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-250 *3)) (-4 *3 (-861)))) (-2797 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-783)) (-5 *1 (-250 *4)) (-4 *4 (-861))))) -(-13 (-678 |#1|) (-502 (-656 |#1|)) (-10 -8 (-15 -3671 ($ (-656 |#1|))) (-15 -2797 ($ $ "unique")) (-15 -2797 ($ $ "sort")) (-15 -2797 ((-783) $ "count")))) -((-2100 (((-3 (-783) "failed") |#1| |#1| (-783)) 40))) -(((-251 |#1|) (-10 -7 (-15 -2100 ((-3 (-783) "failed") |#1| |#1| (-783)))) (-13 (-738) (-379) (-10 -7 (-15 ** (|#1| |#1| (-576)))))) (T -251)) -((-2100 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-783)) (-4 *3 (-13 (-738) (-379) (-10 -7 (-15 ** (*3 *3 (-576)))))) (-5 *1 (-251 *3))))) -(-10 -7 (-15 -2100 ((-3 (-783) "failed") |#1| |#1| (-783)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2775 (($ $) 54 (|has| |#1| (-237))) (($ $ (-783)) 52 (|has| |#1| (-237))) (($ $ (-1197)) 50 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 48 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 47 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 46 (|has| |#1| (-919 (-1197)))) (($ $ (-1 |#1| |#1|) (-783)) 40) (($ $ (-1 |#1| |#1|)) 39)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2020 (($ $) 53 (|has| |#1| (-237))) (($ $ (-783)) 51 (|has| |#1| (-237))) (($ $ (-1197)) 49 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 45 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 44 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 43 (|has| |#1| (-919 (-1197)))) (($ $ (-1 |#1| |#1|) (-783)) 42) (($ $ (-1 |#1| |#1|)) 41)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +((-3968 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-1982 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-4424 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-3641 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-4295 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-3631 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-3503 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-4262 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-249 *2)) (-4 *2 (-1238))))) +(-13 (-1031 |t#1|) (-10 -8 (-15 -3968 (|t#1| $)) (-15 -1982 ($ $)) (-15 -4424 ($ $)) (-15 -3641 ($ $)) (-15 -4295 ($ $)) (IF (|has| $ (-6 -4465)) (PROGN (-15 -3631 ($ $ $)) (-15 -3503 ($ $ $)) (-15 -4262 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) -2759 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2759 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1031 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3104 ((|#1| $) NIL)) (-2898 ((|#1| $) NIL)) (-4424 (($ $) NIL)) (-1512 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-3203 (($ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1390 (((-112) $) NIL (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3039 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-1795 (($ $) 10 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-4264 (((-112) $ (-783)) NIL)) (-2482 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-2395 (($ $ $) NIL (|has| $ (-6 -4465)))) (-2089 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-1336 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4465))) (($ $ "rest" $) NIL (|has| $ (-6 -4465))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-3829 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-2123 (($ (-1 (-112) |#1|) $) NIL)) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2882 ((|#1| $) NIL)) (-3404 (($) NIL T CONST)) (-3092 (($ $) NIL (|has| $ (-6 -4465)))) (-3835 (($ $) NIL)) (-3592 (($ $) NIL) (($ $ (-783)) NIL)) (-2495 (($ $) NIL (|has| |#1| (-1121)))) (-2034 (($ $) 7 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2172 (($ |#1| $) NIL (|has| |#1| (-1121))) (($ (-1 (-112) |#1|) $) NIL)) (-3945 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4332 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) NIL)) (-1742 (((-112) $) NIL)) (-3659 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121))) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) (-1 (-112) |#1|) $) NIL)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1736 (((-656 $) $) NIL)) (-3768 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-4140 (($ (-783) |#1|) NIL)) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-4330 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2185 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4280 (((-576) $) NIL (|has| (-576) (-861)))) (-1441 (($ $ $) NIL (|has| |#1| (-861)))) (-4326 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1649 (($ |#1|) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2353 (((-656 |#1|) $) NIL)) (-1508 (((-112) $) NIL)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3968 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2597 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2176 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3669 (((-656 (-576)) $) NIL)) (-3090 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3580 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2304 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-1721 (((-112) $) NIL)) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3207 (((-656 |#1|) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1255 (-576))) NIL) ((|#1| $ (-576)) NIL) ((|#1| $ (-576) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-783) $ "count") 16)) (-1335 (((-576) $ $) NIL)) (-1352 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-3465 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-3670 (($ (-656 |#1|)) 22)) (-3806 (((-112) $) NIL)) (-3262 (($ $) NIL)) (-4347 (($ $) NIL (|has| $ (-6 -4465)))) (-1619 (((-783) $) NIL)) (-3237 (($ $) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2840 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) NIL)) (-3631 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1615 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-3569 (($ (-656 |#1|)) 17) (((-656 |#1|) $) 18) (((-876) $) 21 (|has| |#1| (-625 (-876))))) (-3059 (((-656 $) $) NIL)) (-2247 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2924 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2949 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3502 (((-783) $) 14 (|has| $ (-6 -4464))))) +(((-250 |#1|) (-13 (-678 |#1|) (-502 (-656 |#1|)) (-10 -8 (-15 -3670 ($ (-656 |#1|))) (-15 -2796 ($ $ "unique")) (-15 -2796 ($ $ "sort")) (-15 -2796 ((-783) $ "count")))) (-861)) (T -250)) +((-3670 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-250 *3)))) (-2796 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-250 *3)) (-4 *3 (-861)))) (-2796 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-250 *3)) (-4 *3 (-861)))) (-2796 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-783)) (-5 *1 (-250 *4)) (-4 *4 (-861))))) +(-13 (-678 |#1|) (-502 (-656 |#1|)) (-10 -8 (-15 -3670 ($ (-656 |#1|))) (-15 -2796 ($ $ "unique")) (-15 -2796 ($ $ "sort")) (-15 -2796 ((-783) $ "count")))) +((-3942 (((-3 (-783) "failed") |#1| |#1| (-783)) 40))) +(((-251 |#1|) (-10 -7 (-15 -3942 ((-3 (-783) "failed") |#1| |#1| (-783)))) (-13 (-738) (-379) (-10 -7 (-15 ** (|#1| |#1| (-576)))))) (T -251)) +((-3942 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-783)) (-4 *3 (-13 (-738) (-379) (-10 -7 (-15 ** (*3 *3 (-576)))))) (-5 *1 (-251 *3))))) +(-10 -7 (-15 -3942 ((-3 (-783) "failed") |#1| |#1| (-783)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2774 (($ $) 54 (|has| |#1| (-237))) (($ $ (-783)) 52 (|has| |#1| (-237))) (($ $ (-1197)) 50 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 48 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 47 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 46 (|has| |#1| (-919 (-1197)))) (($ $ (-1 |#1| |#1|) (-783)) 40) (($ $ (-1 |#1| |#1|)) 39)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2020 (($ $) 53 (|has| |#1| (-237))) (($ $ (-783)) 51 (|has| |#1| (-237))) (($ $ (-1197)) 49 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 45 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 44 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 43 (|has| |#1| (-919 (-1197)))) (($ $ (-1 |#1| |#1|) (-783)) 42) (($ $ (-1 |#1| |#1|)) 41)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) (((-252 |#1|) (-141) (-1070)) (T -252)) NIL (-13 (-111 |t#1| |t#1|) (-272 |t#1|) (-10 -7 (IF (|has| |t#1| (-237)) (-6 (-235 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-919 (-1197))) (-6 (-916 |t#1| (-1197))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-234 $) |has| |#1| (-237)) ((-235 |#1|) |has| |#1| (-237)) ((-237) |has| |#1| (-237)) ((-272 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) -2760 (-12 (|has| |#1| (-174)) (|has| |#1| (-919 (-1197)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-237)))) ((-729 |#1|) -2760 (-12 (|has| |#1| (-174)) (|has| |#1| (-919 (-1197)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-237)))) ((-911 $ #0=(-1197)) |has| |#1| (-919 (-1197))) ((-916 |#1| (-1197)) |has| |#1| (-919 (-1197))) ((-919 #0#) |has| |#1| (-919 (-1197))) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-1969 (((-656 (-878 |#1|)) $) NIL)) (-1798 (((-1193 $) $ (-878 |#1|)) NIL) (((-1193 |#2|) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2757 (($ $) NIL (|has| |#2| (-568)))) (-3788 (((-112) $) NIL (|has| |#2| (-568)))) (-3543 (((-783) $) NIL) (((-783) $ (-656 (-878 |#1|))) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3601 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-2487 (($ $) NIL (|has| |#2| (-464)))) (-3921 (((-430 $) $) NIL (|has| |#2| (-464)))) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-878 |#1|) "failed") $) NIL)) (-2860 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-878 |#1|) $) NIL)) (-3230 (($ $ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-4319 (($ $ (-656 (-576))) NIL)) (-2114 (($ $) NIL)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-3767 (($ $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-2103 (((-656 $) $) NIL)) (-4249 (((-112) $) NIL (|has| |#2| (-928)))) (-2431 (($ $ |#2| (-245 (-3503 |#1|) (-783)) $) NIL)) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-4193 (((-112) $) NIL)) (-2217 (((-783) $) NIL)) (-1955 (($ (-1193 |#2|) (-878 |#1|)) NIL) (($ (-1193 $) (-878 |#1|)) NIL)) (-1608 (((-656 $) $) NIL)) (-2823 (((-112) $) NIL)) (-1945 (($ |#2| (-245 (-3503 |#1|) (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-4130 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $ (-878 |#1|)) NIL)) (-3751 (((-245 (-3503 |#1|) (-783)) $) NIL) (((-783) $ (-878 |#1|)) NIL) (((-656 (-783)) $ (-656 (-878 |#1|))) NIL)) (-2999 (($ (-1 (-245 (-3503 |#1|) (-783)) (-245 (-3503 |#1|) (-783))) $) NIL)) (-4117 (($ (-1 |#2| |#2|) $) NIL)) (-3721 (((-3 (-878 |#1|) "failed") $) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-2081 (($ $) NIL)) (-2091 ((|#2| $) NIL)) (-3458 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-3699 (((-1179) $) NIL)) (-1385 (((-3 (-656 $) "failed") $) NIL)) (-1690 (((-3 (-656 $) "failed") $) NIL)) (-2040 (((-3 (-2 (|:| |var| (-878 |#1|)) (|:| -3422 (-783))) "failed") $) NIL)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) NIL)) (-2070 ((|#2| $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#2| (-464)))) (-3498 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-4100 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#2| (-928)))) (-3476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3284 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-878 |#1|) |#2|) NIL) (($ $ (-656 (-878 |#1|)) (-656 |#2|)) NIL) (($ $ (-878 |#1|) $) NIL) (($ $ (-656 (-878 |#1|)) (-656 $)) NIL)) (-4352 (($ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-2775 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-3634 (((-245 (-3503 |#1|) (-783)) $) NIL) (((-783) $ (-878 |#1|)) NIL) (((-656 (-783)) $ (-656 (-878 |#1|))) NIL)) (-4172 (((-907 (-390)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-878 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-2457 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928))))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-878 |#1|)) NIL) (($ (-419 (-576))) NIL (-2760 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-1618 (((-656 |#2|) $) NIL)) (-3177 ((|#2| $ (-245 (-3503 |#1|) (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-4336 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#2| (-146))))) (-3996 (((-783)) NIL T CONST)) (-2541 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2020 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-253 |#1| |#2|) (-13 (-968 |#2| (-245 (-3503 |#1|) (-783)) (-878 |#1|)) (-10 -8 (-15 -4319 ($ $ (-656 (-576)))))) (-656 (-1197)) (-1070)) (T -253)) -((-4319 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-253 *3 *4)) (-14 *3 (-656 (-1197))) (-4 *4 (-1070))))) -(-13 (-968 |#2| (-245 (-3503 |#1|) (-783)) (-878 |#1|)) (-10 -8 (-15 -4319 ($ $ (-656 (-576)))))) -((-3489 (((-112) $ $) NIL)) (-2584 (((-1293) $) 17)) (-2661 (((-185 (-255)) $) 11)) (-2018 (($ (-185 (-255))) 12)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2566 (((-255) $) 7)) (-3570 (((-876) $) 9)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 15))) -(((-254) (-13 (-1121) (-10 -8 (-15 -2566 ((-255) $)) (-15 -2661 ((-185 (-255)) $)) (-15 -2018 ($ (-185 (-255)))) (-15 -2584 ((-1293) $))))) (T -254)) -((-2566 (*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254)))) (-2661 (*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-2018 (*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-2584 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-254))))) -(-13 (-1121) (-10 -8 (-15 -2566 ((-255) $)) (-15 -2661 ((-185 (-255)) $)) (-15 -2018 ($ (-185 (-255)))) (-15 -2584 ((-1293) $)))) -((-3489 (((-112) $ $) NIL)) (-3297 (((-656 (-879)) $) NIL)) (-2629 (((-518) $) NIL)) (-3699 (((-1179) $) NIL)) (-1747 (((-188) $) NIL)) (-1322 (((-112) $ (-518)) NIL)) (-1450 (((-1141) $) NIL)) (-4393 (((-343) $) 7)) (-1944 (((-656 (-112)) $) NIL)) (-3570 (((-876) $) NIL) (((-189) $) 8)) (-4055 (((-112) $ $) NIL)) (-4045 (((-55) $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-255) (-13 (-187) (-625 (-189)) (-10 -8 (-15 -4393 ((-343) $))))) (T -255)) -((-4393 (*1 *2 *1) (-12 (-5 *2 (-343)) (-5 *1 (-255))))) -(-13 (-187) (-625 (-189)) (-10 -8 (-15 -4393 ((-343) $)))) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2797 (((-1202) $ (-783)) 13)) (-3570 (((-876) $) 20)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 16)) (-3503 (((-783) $) 9))) -(((-256) (-13 (-1121) (-296 (-783) (-1202)) (-10 -8 (-15 -3503 ((-783) $))))) (T -256)) -((-3503 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-256))))) -(-13 (-1121) (-296 (-783) (-1202)) (-10 -8 (-15 -3503 ((-783) $)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2052 (($ (-940)) NIL (|has| |#4| (-1070)))) (-2047 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4466)))) (-2324 (($ $ $) NIL (|has| |#4| (-805)))) (-4367 (((-3 $ "failed") $ $) NIL)) (-1808 (((-112) $ (-783)) NIL)) (-2098 (((-783)) NIL (|has| |#4| (-379)))) (-3756 ((|#4| $ (-576) |#4|) NIL (|has| $ (-6 -4466)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1121))) (((-3 (-576) "failed") $) NIL (-12 (|has| |#4| (-1059 (-576))) (|has| |#4| (-1121)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#4| (-1059 (-419 (-576)))) (|has| |#4| (-1121))))) (-2860 ((|#4| $) NIL (|has| |#4| (-1121))) (((-576) $) NIL (-12 (|has| |#4| (-1059 (-576))) (|has| |#4| (-1121)))) (((-419 (-576)) $) NIL (-12 (|has| |#4| (-1059 (-419 (-576)))) (|has| |#4| (-1121))))) (-2204 (((-2 (|:| -2590 (-701 |#4|)) (|:| |vec| (-1288 |#4|))) (-701 $) (-1288 $)) NIL (|has| |#4| (-1070))) (((-701 |#4|) (-701 $)) NIL (|has| |#4| (-1070))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1070)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1070))))) (-1561 (((-3 $ "failed") $) NIL (|has| |#4| (-1070)))) (-1836 (($) NIL (|has| |#4| (-379)))) (-4335 ((|#4| $ (-576) |#4|) NIL (|has| $ (-6 -4466)))) (-4274 ((|#4| $ (-576)) NIL)) (-3966 (((-656 |#4|) $) NIL (|has| $ (-6 -4465)))) (-4193 (((-112) $) NIL (|has| |#4| (-1070)))) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-576) $) NIL (|has| (-576) (-861)))) (-3125 (($ $ $) NIL (|has| |#4| (-861)))) (-2014 (((-656 |#4|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121))))) (-2137 (((-576) $) NIL (|has| (-576) (-861)))) (-3133 (($ $ $) NIL (|has| |#4| (-861)))) (-4323 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#4| |#4|) $) NIL)) (-4401 (((-940) $) NIL (|has| |#4| (-379)))) (-1330 (((-112) $ (-783)) NIL)) (-3913 (((-2 (|:| -2590 (-701 |#4|)) (|:| |vec| (-1288 |#4|))) (-1288 $) $) NIL (|has| |#4| (-1070))) (((-701 |#4|) (-1288 $)) NIL (|has| |#4| (-1070))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1070)))) (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1070))))) (-3699 (((-1179) $) NIL)) (-4234 (((-656 (-576)) $) NIL)) (-3354 (((-112) (-576) $) NIL)) (-3224 (($ (-940)) NIL (|has| |#4| (-379)))) (-1450 (((-1141) $) NIL)) (-3581 ((|#4| $) NIL (|has| (-576) (-861)))) (-4046 (($ $ |#4|) NIL (|has| $ (-6 -4466)))) (-4320 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121))))) (-2281 (((-656 |#4|) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#4| $ (-576) |#4|) NIL) ((|#4| $ (-576)) 12)) (-2118 ((|#4| $ $) NIL (|has| |#4| (-1070)))) (-1872 (($ (-1288 |#4|)) NIL)) (-2003 (((-135)) NIL (|has| |#4| (-374)))) (-2775 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1070))) (($ $ (-1 |#4| |#4|) (-783)) NIL (|has| |#4| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2760 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-1197) (-783)) NIL (-2760 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-656 (-1197))) NIL (-2760 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-1197)) NIL (-2760 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-783)) NIL (-2760 (-12 (|has| |#4| (-238)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1070))))) (($ $) NIL (-2760 (-12 (|has| |#4| (-238)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1070)))))) (-1460 (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465))) (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121))))) (-1870 (($ $) NIL)) (-3570 (((-1288 |#4|) $) NIL) (($ |#4|) NIL (|has| |#4| (-1121))) (((-876) $) NIL) (($ (-576)) NIL (-2760 (-12 (|has| |#4| (-1059 (-576))) (|has| |#4| (-1121))) (|has| |#4| (-1070)))) (($ (-419 (-576))) NIL (-12 (|has| |#4| (-1059 (-419 (-576)))) (|has| |#4| (-1121))))) (-3996 (((-783)) NIL (|has| |#4| (-1070)) CONST)) (-4055 (((-112) $ $) NIL)) (-3321 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465)))) (-2721 (($) NIL T CONST)) (-2732 (($) NIL (|has| |#4| (-1070)) CONST)) (-2020 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1070))) (($ $ (-1 |#4| |#4|) (-783)) NIL (|has| |#4| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2760 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-1197) (-783)) NIL (-2760 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-656 (-1197))) NIL (-2760 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-1197)) NIL (-2760 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-783)) NIL (-2760 (-12 (|has| |#4| (-238)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1070))))) (($ $) NIL (-2760 (-12 (|has| |#4| (-238)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1070)))))) (-2992 (((-112) $ $) NIL (|has| |#4| (-861)))) (-2964 (((-112) $ $) NIL (|has| |#4| (-861)))) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| |#4| (-861)))) (-2950 (((-112) $ $) NIL (|has| |#4| (-861)))) (-3057 (($ $ |#4|) NIL (|has| |#4| (-374)))) (-3044 (($ $ $) NIL) (($ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-783)) NIL (|has| |#4| (-1070))) (($ $ (-940)) NIL (|has| |#4| (-1070)))) (* (($ |#2| $) 14) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-940) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-738))) (($ |#4| $) NIL (|has| |#4| (-738))) (($ $ $) NIL (|has| |#4| (-1070)))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-234 $) |has| |#1| (-237)) ((-235 |#1|) |has| |#1| (-237)) ((-237) |has| |#1| (-237)) ((-272 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) -2759 (-12 (|has| |#1| (-174)) (|has| |#1| (-919 (-1197)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-237)))) ((-729 |#1|) -2759 (-12 (|has| |#1| (-174)) (|has| |#1| (-919 (-1197)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-237)))) ((-911 $ #0=(-1197)) |has| |#1| (-919 (-1197))) ((-916 |#1| (-1197)) |has| |#1| (-919 (-1197))) ((-919 #0#) |has| |#1| (-919 (-1197))) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-1969 (((-656 (-878 |#1|)) $) NIL)) (-1797 (((-1193 $) $ (-878 |#1|)) NIL) (((-1193 |#2|) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-4195 (($ $) NIL (|has| |#2| (-568)))) (-1760 (((-112) $) NIL (|has| |#2| (-568)))) (-4329 (((-783) $) NIL) (((-783) $ (-656 (-878 |#1|))) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3646 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3444 (($ $) NIL (|has| |#2| (-464)))) (-3760 (((-430 $) $) NIL (|has| |#2| (-464)))) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-878 |#1|) "failed") $) NIL)) (-2859 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-878 |#1|) $) NIL)) (-4334 (($ $ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-3244 (($ $ (-656 (-576))) NIL)) (-2114 (($ $) NIL)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1547 (($ $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-2103 (((-656 $) $) NIL)) (-3833 (((-112) $) NIL (|has| |#2| (-928)))) (-4124 (($ $ |#2| (-245 (-3502 |#1|) (-783)) $) NIL)) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-1351 (((-112) $) NIL)) (-3799 (((-783) $) NIL)) (-1956 (($ (-1193 |#2|) (-878 |#1|)) NIL) (($ (-1193 $) (-878 |#1|)) NIL)) (-2846 (((-656 $) $) NIL)) (-3538 (((-112) $) NIL)) (-1944 (($ |#2| (-245 (-3502 |#1|) (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-1915 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $ (-878 |#1|)) NIL)) (-2578 (((-245 (-3502 |#1|) (-783)) $) NIL) (((-783) $ (-878 |#1|)) NIL) (((-656 (-783)) $ (-656 (-878 |#1|))) NIL)) (-3878 (($ (-1 (-245 (-3502 |#1|) (-783)) (-245 (-3502 |#1|) (-783))) $) NIL)) (-4116 (($ (-1 |#2| |#2|) $) NIL)) (-2289 (((-3 (-878 |#1|) "failed") $) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-2081 (($ $) NIL)) (-2091 ((|#2| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2046 (((-1179) $) NIL)) (-3845 (((-3 (-656 $) "failed") $) NIL)) (-2363 (((-3 (-656 $) "failed") $) NIL)) (-1452 (((-3 (-2 (|:| |var| (-878 |#1|)) (|:| -2508 (-783))) "failed") $) NIL)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) NIL)) (-2070 ((|#2| $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#2| (-464)))) (-3497 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-1644 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#2| (-928)))) (-3475 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3282 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-878 |#1|) |#2|) NIL) (($ $ (-656 (-878 |#1|)) (-656 |#2|)) NIL) (($ $ (-878 |#1|) $) NIL) (($ $ (-656 (-878 |#1|)) (-656 $)) NIL)) (-2269 (($ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-2774 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-2683 (((-245 (-3502 |#1|) (-783)) $) NIL) (((-783) $ (-878 |#1|)) NIL) (((-656 (-783)) $ (-656 (-878 |#1|))) NIL)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-878 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-4370 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-878 |#1|)) NIL) (($ (-419 (-576))) NIL (-2759 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-2937 (((-656 |#2|) $) NIL)) (-1822 ((|#2| $ (-245 (-3502 |#1|) (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-3390 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#2| (-146))))) (-3154 (((-783)) NIL T CONST)) (-2717 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2020 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-253 |#1| |#2|) (-13 (-968 |#2| (-245 (-3502 |#1|) (-783)) (-878 |#1|)) (-10 -8 (-15 -3244 ($ $ (-656 (-576)))))) (-656 (-1197)) (-1070)) (T -253)) +((-3244 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-253 *3 *4)) (-14 *3 (-656 (-1197))) (-4 *4 (-1070))))) +(-13 (-968 |#2| (-245 (-3502 |#1|) (-783)) (-878 |#1|)) (-10 -8 (-15 -3244 ($ $ (-656 (-576)))))) +((-3488 (((-112) $ $) NIL)) (-2583 (((-1293) $) 17)) (-2589 (((-185 (-255)) $) 11)) (-2457 (($ (-185 (-255))) 12)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2565 (((-255) $) 7)) (-3569 (((-876) $) 9)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 15))) +(((-254) (-13 (-1121) (-10 -8 (-15 -2565 ((-255) $)) (-15 -2589 ((-185 (-255)) $)) (-15 -2457 ($ (-185 (-255)))) (-15 -2583 ((-1293) $))))) (T -254)) +((-2565 (*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254)))) (-2589 (*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-2457 (*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-2583 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-254))))) +(-13 (-1121) (-10 -8 (-15 -2565 ((-255) $)) (-15 -2589 ((-185 (-255)) $)) (-15 -2457 ($ (-185 (-255)))) (-15 -2583 ((-1293) $)))) +((-3488 (((-112) $ $) NIL)) (-3298 (((-656 (-879)) $) NIL)) (-2628 (((-518) $) NIL)) (-2046 (((-1179) $) NIL)) (-1747 (((-188) $) NIL)) (-2808 (((-112) $ (-518)) NIL)) (-1450 (((-1141) $) NIL)) (-2673 (((-343) $) 7)) (-3061 (((-656 (-112)) $) NIL)) (-3569 (((-876) $) NIL) (((-189) $) 8)) (-2399 (((-112) $ $) NIL)) (-2294 (((-55) $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-255) (-13 (-187) (-625 (-189)) (-10 -8 (-15 -2673 ((-343) $))))) (T -255)) +((-2673 (*1 *2 *1) (-12 (-5 *2 (-343)) (-5 *1 (-255))))) +(-13 (-187) (-625 (-189)) (-10 -8 (-15 -2673 ((-343) $)))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2796 (((-1202) $ (-783)) 13)) (-3569 (((-876) $) 20)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 16)) (-3502 (((-783) $) 9))) +(((-256) (-13 (-1121) (-296 (-783) (-1202)) (-10 -8 (-15 -3502 ((-783) $))))) (T -256)) +((-3502 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-256))))) +(-13 (-1121) (-296 (-783) (-1202)) (-10 -8 (-15 -3502 ((-783) $)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-1545 (($ (-940)) NIL (|has| |#4| (-1070)))) (-1512 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2386 (($ $ $) NIL (|has| |#4| (-805)))) (-2428 (((-3 $ "failed") $ $) NIL)) (-4264 (((-112) $ (-783)) NIL)) (-2098 (((-783)) NIL (|has| |#4| (-379)))) (-3755 ((|#4| $ (-576) |#4|) NIL (|has| $ (-6 -4465)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1121))) (((-3 (-576) "failed") $) NIL (-12 (|has| |#4| (-1059 (-576))) (|has| |#4| (-1121)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#4| (-1059 (-419 (-576)))) (|has| |#4| (-1121))))) (-2859 ((|#4| $) NIL (|has| |#4| (-1121))) (((-576) $) NIL (-12 (|has| |#4| (-1059 (-576))) (|has| |#4| (-1121)))) (((-419 (-576)) $) NIL (-12 (|has| |#4| (-1059 (-419 (-576)))) (|has| |#4| (-1121))))) (-3674 (((-2 (|:| -3232 (-701 |#4|)) (|:| |vec| (-1288 |#4|))) (-701 $) (-1288 $)) NIL (|has| |#4| (-1070))) (((-701 |#4|) (-701 $)) NIL (|has| |#4| (-1070))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1070)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1070))))) (-3673 (((-3 $ "failed") $) NIL (|has| |#4| (-1070)))) (-1836 (($) NIL (|has| |#4| (-379)))) (-4332 ((|#4| $ (-576) |#4|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#4| $ (-576)) NIL)) (-3965 (((-656 |#4|) $) NIL (|has| $ (-6 -4464)))) (-1351 (((-112) $) NIL (|has| |#4| (-1070)))) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#4| (-861)))) (-2425 (((-656 |#4|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-4280 (((-576) $) NIL (|has| (-576) (-861)))) (-1441 (($ $ $) NIL (|has| |#4| (-861)))) (-4326 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#4| |#4|) $) NIL)) (-1558 (((-940) $) NIL (|has| |#4| (-379)))) (-2883 (((-112) $ (-783)) NIL)) (-3676 (((-2 (|:| -3232 (-701 |#4|)) (|:| |vec| (-1288 |#4|))) (-1288 $) $) NIL (|has| |#4| (-1070))) (((-701 |#4|) (-1288 $)) NIL (|has| |#4| (-1070))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1070)))) (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1070))))) (-2046 (((-1179) $) NIL)) (-3669 (((-656 (-576)) $) NIL)) (-3090 (((-112) (-576) $) NIL)) (-3223 (($ (-940)) NIL (|has| |#4| (-379)))) (-1450 (((-1141) $) NIL)) (-3580 ((|#4| $) NIL (|has| (-576) (-861)))) (-2304 (($ $ |#4|) NIL (|has| $ (-6 -4465)))) (-3252 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-3207 (((-656 |#4|) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#4| $ (-576) |#4|) NIL) ((|#4| $ (-576)) 12)) (-4099 ((|#4| $ $) NIL (|has| |#4| (-1070)))) (-1871 (($ (-1288 |#4|)) NIL)) (-2319 (((-135)) NIL (|has| |#4| (-374)))) (-2774 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1070))) (($ $ (-1 |#4| |#4|) (-783)) NIL (|has| |#4| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2759 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-1197) (-783)) NIL (-2759 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-656 (-1197))) NIL (-2759 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-1197)) NIL (-2759 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-783)) NIL (-2759 (-12 (|has| |#4| (-238)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1070))))) (($ $) NIL (-2759 (-12 (|has| |#4| (-238)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1070)))))) (-1460 (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464))) (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-1870 (($ $) NIL)) (-3569 (((-1288 |#4|) $) NIL) (($ |#4|) NIL (|has| |#4| (-1121))) (((-876) $) NIL) (($ (-576)) NIL (-2759 (-12 (|has| |#4| (-1059 (-576))) (|has| |#4| (-1121))) (|has| |#4| (-1070)))) (($ (-419 (-576))) NIL (-12 (|has| |#4| (-1059 (-419 (-576)))) (|has| |#4| (-1121))))) (-3154 (((-783)) NIL (|has| |#4| (-1070)) CONST)) (-2399 (((-112) $ $) NIL)) (-2708 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-2721 (($) NIL T CONST)) (-2731 (($) NIL (|has| |#4| (-1070)) CONST)) (-2020 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1070))) (($ $ (-1 |#4| |#4|) (-783)) NIL (|has| |#4| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2759 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-1197) (-783)) NIL (-2759 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-656 (-1197))) NIL (-2759 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-1197)) NIL (-2759 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-783)) NIL (-2759 (-12 (|has| |#4| (-238)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1070))))) (($ $) NIL (-2759 (-12 (|has| |#4| (-238)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1070)))))) (-2990 (((-112) $ $) NIL (|has| |#4| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#4| (-861)))) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| |#4| (-861)))) (-2949 (((-112) $ $) NIL (|has| |#4| (-861)))) (-3056 (($ $ |#4|) NIL (|has| |#4| (-374)))) (-3043 (($ $ $) NIL) (($ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-783)) NIL (|has| |#4| (-1070))) (($ $ (-940)) NIL (|has| |#4| (-1070)))) (* (($ |#2| $) 14) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-940) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-738))) (($ |#4| $) NIL (|has| |#4| (-738))) (($ $ $) NIL (|has| |#4| (-1070)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) (((-257 |#1| |#2| |#3| |#4|) (-13 (-243 |#1| |#4|) (-660 |#2|) (-660 |#3|)) (-940) (-1070) (-1144 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-660 |#2|)) (T -257)) NIL (-13 (-243 |#1| |#4|) (-660 |#2|) (-660 |#3|)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2052 (($ (-940)) NIL (|has| |#3| (-1070)))) (-2047 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4466)))) (-2324 (($ $ $) NIL (|has| |#3| (-805)))) (-4367 (((-3 $ "failed") $ $) NIL)) (-1808 (((-112) $ (-783)) NIL)) (-2098 (((-783)) NIL (|has| |#3| (-379)))) (-3756 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4466)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1121))) (((-3 (-576) "failed") $) NIL (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121))))) (-2860 ((|#3| $) NIL (|has| |#3| (-1121))) (((-576) $) NIL (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121)))) (((-419 (-576)) $) NIL (-12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121))))) (-2204 (((-2 (|:| -2590 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 $) (-1288 $)) NIL (|has| |#3| (-1070))) (((-701 |#3|) (-701 $)) NIL (|has| |#3| (-1070))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070))))) (-1561 (((-3 $ "failed") $) NIL (|has| |#3| (-1070)))) (-1836 (($) NIL (|has| |#3| (-379)))) (-4335 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4466)))) (-4274 ((|#3| $ (-576)) NIL)) (-3966 (((-656 |#3|) $) NIL (|has| $ (-6 -4465)))) (-4193 (((-112) $) NIL (|has| |#3| (-1070)))) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-576) $) NIL (|has| (-576) (-861)))) (-3125 (($ $ $) NIL (|has| |#3| (-861)))) (-2014 (((-656 |#3|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#3| (-1121))))) (-2137 (((-576) $) NIL (|has| (-576) (-861)))) (-3133 (($ $ $) NIL (|has| |#3| (-861)))) (-4323 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#3| |#3|) $) NIL)) (-4401 (((-940) $) NIL (|has| |#3| (-379)))) (-1330 (((-112) $ (-783)) NIL)) (-3913 (((-2 (|:| -2590 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-1288 $) $) NIL (|has| |#3| (-1070))) (((-701 |#3|) (-1288 $)) NIL (|has| |#3| (-1070))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070))))) (-3699 (((-1179) $) NIL)) (-4234 (((-656 (-576)) $) NIL)) (-3354 (((-112) (-576) $) NIL)) (-3224 (($ (-940)) NIL (|has| |#3| (-379)))) (-1450 (((-1141) $) NIL)) (-3581 ((|#3| $) NIL (|has| (-576) (-861)))) (-4046 (($ $ |#3|) NIL (|has| $ (-6 -4466)))) (-4320 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#3| (-1121))))) (-2281 (((-656 |#3|) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#3| $ (-576) |#3|) NIL) ((|#3| $ (-576)) 11)) (-2118 ((|#3| $ $) NIL (|has| |#3| (-1070)))) (-1872 (($ (-1288 |#3|)) NIL)) (-2003 (((-135)) NIL (|has| |#3| (-374)))) (-2775 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1070))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2760 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-1197) (-783)) NIL (-2760 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-656 (-1197))) NIL (-2760 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-1197)) NIL (-2760 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-783)) NIL (-2760 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070))))) (($ $) NIL (-2760 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))))) (-1460 (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4465))) (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#3| (-1121))))) (-1870 (($ $) NIL)) (-3570 (((-1288 |#3|) $) NIL) (($ |#3|) NIL (|has| |#3| (-1121))) (((-876) $) NIL) (($ (-576)) NIL (-2760 (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121))) (|has| |#3| (-1070)))) (($ (-419 (-576))) NIL (-12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121))))) (-3996 (((-783)) NIL (|has| |#3| (-1070)) CONST)) (-4055 (((-112) $ $) NIL)) (-3321 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4465)))) (-2721 (($) NIL T CONST)) (-2732 (($) NIL (|has| |#3| (-1070)) CONST)) (-2020 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1070))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2760 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-1197) (-783)) NIL (-2760 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-656 (-1197))) NIL (-2760 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-1197)) NIL (-2760 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-783)) NIL (-2760 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070))))) (($ $) NIL (-2760 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))))) (-2992 (((-112) $ $) NIL (|has| |#3| (-861)))) (-2964 (((-112) $ $) NIL (|has| |#3| (-861)))) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| |#3| (-861)))) (-2950 (((-112) $ $) NIL (|has| |#3| (-861)))) (-3057 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-3044 (($ $ $) NIL) (($ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-783)) NIL (|has| |#3| (-1070))) (($ $ (-940)) NIL (|has| |#3| (-1070)))) (* (($ |#2| $) 13) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-940) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-738))) (($ |#3| $) NIL (|has| |#3| (-738))) (($ $ $) NIL (|has| |#3| (-1070)))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-1545 (($ (-940)) NIL (|has| |#3| (-1070)))) (-1512 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2386 (($ $ $) NIL (|has| |#3| (-805)))) (-2428 (((-3 $ "failed") $ $) NIL)) (-4264 (((-112) $ (-783)) NIL)) (-2098 (((-783)) NIL (|has| |#3| (-379)))) (-3755 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4465)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1121))) (((-3 (-576) "failed") $) NIL (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121))))) (-2859 ((|#3| $) NIL (|has| |#3| (-1121))) (((-576) $) NIL (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121)))) (((-419 (-576)) $) NIL (-12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121))))) (-3674 (((-2 (|:| -3232 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 $) (-1288 $)) NIL (|has| |#3| (-1070))) (((-701 |#3|) (-701 $)) NIL (|has| |#3| (-1070))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070))))) (-3673 (((-3 $ "failed") $) NIL (|has| |#3| (-1070)))) (-1836 (($) NIL (|has| |#3| (-379)))) (-4332 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#3| $ (-576)) NIL)) (-3965 (((-656 |#3|) $) NIL (|has| $ (-6 -4464)))) (-1351 (((-112) $) NIL (|has| |#3| (-1070)))) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#3| (-861)))) (-2425 (((-656 |#3|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#3| (-1121))))) (-4280 (((-576) $) NIL (|has| (-576) (-861)))) (-1441 (($ $ $) NIL (|has| |#3| (-861)))) (-4326 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#3| |#3|) $) NIL)) (-1558 (((-940) $) NIL (|has| |#3| (-379)))) (-2883 (((-112) $ (-783)) NIL)) (-3676 (((-2 (|:| -3232 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-1288 $) $) NIL (|has| |#3| (-1070))) (((-701 |#3|) (-1288 $)) NIL (|has| |#3| (-1070))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070))))) (-2046 (((-1179) $) NIL)) (-3669 (((-656 (-576)) $) NIL)) (-3090 (((-112) (-576) $) NIL)) (-3223 (($ (-940)) NIL (|has| |#3| (-379)))) (-1450 (((-1141) $) NIL)) (-3580 ((|#3| $) NIL (|has| (-576) (-861)))) (-2304 (($ $ |#3|) NIL (|has| $ (-6 -4465)))) (-3252 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#3| (-1121))))) (-3207 (((-656 |#3|) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#3| $ (-576) |#3|) NIL) ((|#3| $ (-576)) 11)) (-4099 ((|#3| $ $) NIL (|has| |#3| (-1070)))) (-1871 (($ (-1288 |#3|)) NIL)) (-2319 (((-135)) NIL (|has| |#3| (-374)))) (-2774 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1070))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2759 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-1197) (-783)) NIL (-2759 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-656 (-1197))) NIL (-2759 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-1197)) NIL (-2759 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-783)) NIL (-2759 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070))))) (($ $) NIL (-2759 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))))) (-1460 (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4464))) (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#3| (-1121))))) (-1870 (($ $) NIL)) (-3569 (((-1288 |#3|) $) NIL) (($ |#3|) NIL (|has| |#3| (-1121))) (((-876) $) NIL) (($ (-576)) NIL (-2759 (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121))) (|has| |#3| (-1070)))) (($ (-419 (-576))) NIL (-12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121))))) (-3154 (((-783)) NIL (|has| |#3| (-1070)) CONST)) (-2399 (((-112) $ $) NIL)) (-2708 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4464)))) (-2721 (($) NIL T CONST)) (-2731 (($) NIL (|has| |#3| (-1070)) CONST)) (-2020 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1070))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2759 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-1197) (-783)) NIL (-2759 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-656 (-1197))) NIL (-2759 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-1197)) NIL (-2759 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-783)) NIL (-2759 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070))))) (($ $) NIL (-2759 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))))) (-2990 (((-112) $ $) NIL (|has| |#3| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#3| (-861)))) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| |#3| (-861)))) (-2949 (((-112) $ $) NIL (|has| |#3| (-861)))) (-3056 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-3043 (($ $ $) NIL) (($ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-783)) NIL (|has| |#3| (-1070))) (($ $ (-940)) NIL (|has| |#3| (-1070)))) (* (($ |#2| $) 13) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-940) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-738))) (($ |#3| $) NIL (|has| |#3| (-738))) (($ $ $) NIL (|has| |#3| (-1070)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) (((-258 |#1| |#2| |#3|) (-13 (-243 |#1| |#3|) (-660 |#2|)) (-783) (-1070) (-660 |#2|)) (T -258)) NIL (-13 (-243 |#1| |#3|) (-660 |#2|)) -((-4433 (((-656 (-783)) $) 56) (((-656 (-783)) $ |#3|) 59)) (-1920 (((-783) $) 58) (((-783) $ |#3|) 61)) (-2104 (($ $) 76)) (-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-3917 (((-783) $ |#3|) 43) (((-783) $) 38)) (-4028 (((-1 $ (-783)) |#3|) 15) (((-1 $ (-783)) $) 88)) (-2759 ((|#4| $) 69)) (-4136 (((-112) $) 67)) (-4286 (($ $) 75)) (-3284 (($ $ (-656 (-304 $))) 111) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-656 |#4|) (-656 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-656 |#4|) (-656 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-656 |#3|) (-656 $)) 103) (($ $ |#3| |#2|) NIL) (($ $ (-656 |#3|) (-656 |#2|)) 97)) (-2775 (($ $ (-656 |#4|) (-656 (-783))) NIL) (($ $ |#4| (-783)) NIL) (($ $ (-656 |#4|)) NIL) (($ $ |#4|) NIL) (($ $ (-1 |#2| |#2|)) 32) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-2570 (((-656 |#3|) $) 86)) (-3634 ((|#5| $) NIL) (((-783) $ |#4|) NIL) (((-656 (-783)) $ (-656 |#4|)) NIL) (((-783) $ |#3|) 49)) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-419 (-576))) NIL) (($ $) NIL))) -(((-259 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2775 (|#1| |#1| (-783))) (-15 -2775 (|#1| |#1|)) (-15 -2775 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2775 (|#1| |#1| (-1197) (-783))) (-15 -2775 (|#1| |#1| (-656 (-1197)))) (-15 -2775 (|#1| |#1| (-1197))) (-15 -3570 (|#1| |#1|)) (-15 -3570 (|#1| (-419 (-576)))) (-15 -3284 (|#1| |#1| (-656 |#3|) (-656 |#2|))) (-15 -3284 (|#1| |#1| |#3| |#2|)) (-15 -3284 (|#1| |#1| (-656 |#3|) (-656 |#1|))) (-15 -3284 (|#1| |#1| |#3| |#1|)) (-15 -4028 ((-1 |#1| (-783)) |#1|)) (-15 -2104 (|#1| |#1|)) (-15 -4286 (|#1| |#1|)) (-15 -2759 (|#4| |#1|)) (-15 -4136 ((-112) |#1|)) (-15 -1920 ((-783) |#1| |#3|)) (-15 -4433 ((-656 (-783)) |#1| |#3|)) (-15 -1920 ((-783) |#1|)) (-15 -4433 ((-656 (-783)) |#1|)) (-15 -3634 ((-783) |#1| |#3|)) (-15 -3917 ((-783) |#1|)) (-15 -3917 ((-783) |#1| |#3|)) (-15 -2570 ((-656 |#3|) |#1|)) (-15 -4028 ((-1 |#1| (-783)) |#3|)) (-15 -3570 (|#1| |#3|)) (-15 -1572 ((-3 |#3| "failed") |#1|)) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3634 ((-656 (-783)) |#1| (-656 |#4|))) (-15 -3634 ((-783) |#1| |#4|)) (-15 -3570 (|#1| |#4|)) (-15 -1572 ((-3 |#4| "failed") |#1|)) (-15 -3284 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -3284 (|#1| |#1| |#4| |#1|)) (-15 -3284 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -3284 (|#1| |#1| |#4| |#2|)) (-15 -3284 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3284 (|#1| |#1| |#1| |#1|)) (-15 -3284 (|#1| |#1| (-304 |#1|))) (-15 -3284 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3634 (|#5| |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -3570 (|#1| |#2|)) (-15 -2775 (|#1| |#1| |#4|)) (-15 -2775 (|#1| |#1| (-656 |#4|))) (-15 -2775 (|#1| |#1| |#4| (-783))) (-15 -2775 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -3570 (|#1| (-576))) (-15 -3570 ((-876) |#1|))) (-260 |#2| |#3| |#4| |#5|) (-1070) (-861) (-275 |#3|) (-805)) (T -259)) +((-1857 (((-656 (-783)) $) 56) (((-656 (-783)) $ |#3|) 59)) (-2791 (((-783) $) 58) (((-783) $ |#3|) 61)) (-3979 (($ $) 76)) (-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-3726 (((-783) $ |#3|) 43) (((-783) $) 38)) (-2150 (((-1 $ (-783)) |#3|) 15) (((-1 $ (-783)) $) 88)) (-2758 ((|#4| $) 69)) (-1970 (((-112) $) 67)) (-4286 (($ $) 75)) (-3282 (($ $ (-656 (-304 $))) 111) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-656 |#4|) (-656 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-656 |#4|) (-656 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-656 |#3|) (-656 $)) 103) (($ $ |#3| |#2|) NIL) (($ $ (-656 |#3|) (-656 |#2|)) 97)) (-2774 (($ $ (-656 |#4|) (-656 (-783))) NIL) (($ $ |#4| (-783)) NIL) (($ $ (-656 |#4|)) NIL) (($ $ |#4|) NIL) (($ $ (-1 |#2| |#2|)) 32) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-3051 (((-656 |#3|) $) 86)) (-2683 ((|#5| $) NIL) (((-783) $ |#4|) NIL) (((-656 (-783)) $ (-656 |#4|)) NIL) (((-783) $ |#3|) 49)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-419 (-576))) NIL) (($ $) NIL))) +(((-259 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2774 (|#1| |#1| (-783))) (-15 -2774 (|#1| |#1|)) (-15 -2774 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2774 (|#1| |#1| (-1197) (-783))) (-15 -2774 (|#1| |#1| (-656 (-1197)))) (-15 -2774 (|#1| |#1| (-1197))) (-15 -3569 (|#1| |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3282 (|#1| |#1| (-656 |#3|) (-656 |#2|))) (-15 -3282 (|#1| |#1| |#3| |#2|)) (-15 -3282 (|#1| |#1| (-656 |#3|) (-656 |#1|))) (-15 -3282 (|#1| |#1| |#3| |#1|)) (-15 -2150 ((-1 |#1| (-783)) |#1|)) (-15 -3979 (|#1| |#1|)) (-15 -4286 (|#1| |#1|)) (-15 -2758 (|#4| |#1|)) (-15 -1970 ((-112) |#1|)) (-15 -2791 ((-783) |#1| |#3|)) (-15 -1857 ((-656 (-783)) |#1| |#3|)) (-15 -2791 ((-783) |#1|)) (-15 -1857 ((-656 (-783)) |#1|)) (-15 -2683 ((-783) |#1| |#3|)) (-15 -3726 ((-783) |#1|)) (-15 -3726 ((-783) |#1| |#3|)) (-15 -3051 ((-656 |#3|) |#1|)) (-15 -2150 ((-1 |#1| (-783)) |#3|)) (-15 -3569 (|#1| |#3|)) (-15 -1572 ((-3 |#3| "failed") |#1|)) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2683 ((-656 (-783)) |#1| (-656 |#4|))) (-15 -2683 ((-783) |#1| |#4|)) (-15 -3569 (|#1| |#4|)) (-15 -1572 ((-3 |#4| "failed") |#1|)) (-15 -3282 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -3282 (|#1| |#1| |#4| |#1|)) (-15 -3282 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -3282 (|#1| |#1| |#4| |#2|)) (-15 -3282 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3282 (|#1| |#1| |#1| |#1|)) (-15 -3282 (|#1| |#1| (-304 |#1|))) (-15 -3282 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2683 (|#5| |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -2774 (|#1| |#1| |#4|)) (-15 -2774 (|#1| |#1| (-656 |#4|))) (-15 -2774 (|#1| |#1| |#4| (-783))) (-15 -2774 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) (-260 |#2| |#3| |#4| |#5|) (-1070) (-861) (-275 |#3|) (-805)) (T -259)) NIL -(-10 -8 (-15 -2775 (|#1| |#1| (-783))) (-15 -2775 (|#1| |#1|)) (-15 -2775 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2775 (|#1| |#1| (-1197) (-783))) (-15 -2775 (|#1| |#1| (-656 (-1197)))) (-15 -2775 (|#1| |#1| (-1197))) (-15 -3570 (|#1| |#1|)) (-15 -3570 (|#1| (-419 (-576)))) (-15 -3284 (|#1| |#1| (-656 |#3|) (-656 |#2|))) (-15 -3284 (|#1| |#1| |#3| |#2|)) (-15 -3284 (|#1| |#1| (-656 |#3|) (-656 |#1|))) (-15 -3284 (|#1| |#1| |#3| |#1|)) (-15 -4028 ((-1 |#1| (-783)) |#1|)) (-15 -2104 (|#1| |#1|)) (-15 -4286 (|#1| |#1|)) (-15 -2759 (|#4| |#1|)) (-15 -4136 ((-112) |#1|)) (-15 -1920 ((-783) |#1| |#3|)) (-15 -4433 ((-656 (-783)) |#1| |#3|)) (-15 -1920 ((-783) |#1|)) (-15 -4433 ((-656 (-783)) |#1|)) (-15 -3634 ((-783) |#1| |#3|)) (-15 -3917 ((-783) |#1|)) (-15 -3917 ((-783) |#1| |#3|)) (-15 -2570 ((-656 |#3|) |#1|)) (-15 -4028 ((-1 |#1| (-783)) |#3|)) (-15 -3570 (|#1| |#3|)) (-15 -1572 ((-3 |#3| "failed") |#1|)) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3634 ((-656 (-783)) |#1| (-656 |#4|))) (-15 -3634 ((-783) |#1| |#4|)) (-15 -3570 (|#1| |#4|)) (-15 -1572 ((-3 |#4| "failed") |#1|)) (-15 -3284 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -3284 (|#1| |#1| |#4| |#1|)) (-15 -3284 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -3284 (|#1| |#1| |#4| |#2|)) (-15 -3284 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3284 (|#1| |#1| |#1| |#1|)) (-15 -3284 (|#1| |#1| (-304 |#1|))) (-15 -3284 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3634 (|#5| |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -3570 (|#1| |#2|)) (-15 -2775 (|#1| |#1| |#4|)) (-15 -2775 (|#1| |#1| (-656 |#4|))) (-15 -2775 (|#1| |#1| |#4| (-783))) (-15 -2775 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -3570 (|#1| (-576))) (-15 -3570 ((-876) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4433 (((-656 (-783)) $) 236) (((-656 (-783)) $ |#2|) 234)) (-1920 (((-783) $) 235) (((-783) $ |#2|) 233)) (-1969 (((-656 |#3|) $) 113)) (-1798 (((-1193 $) $ |#3|) 128) (((-1193 |#1|) $) 127)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-2757 (($ $) 91 (|has| |#1| (-568)))) (-3788 (((-112) $) 93 (|has| |#1| (-568)))) (-3543 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-4367 (((-3 $ "failed") $ $) 20)) (-3601 (((-430 (-1193 $)) (-1193 $)) 103 (|has| |#1| (-928)))) (-2487 (($ $) 101 (|has| |#1| (-464)))) (-3921 (((-430 $) $) 100 (|has| |#1| (-464)))) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 106 (|has| |#1| (-928)))) (-2104 (($ $) 229)) (-3886 (($) 18 T CONST)) (-1572 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1059 (-576)))) (((-3 |#3| "failed") $) 143) (((-3 |#2| "failed") $) 243)) (-2860 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1059 (-576)))) ((|#3| $) 144) ((|#2| $) 244)) (-3230 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-2114 (($ $) 161)) (-2204 (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 137) (((-701 |#1|) (-701 $)) 136)) (-1561 (((-3 $ "failed") $) 37)) (-3767 (($ $) 183 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-2103 (((-656 $) $) 112)) (-4249 (((-112) $) 99 (|has| |#1| (-928)))) (-2431 (($ $ |#1| |#4| $) 179)) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 87 (-12 (|has| |#3| (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 86 (-12 (|has| |#3| (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3917 (((-783) $ |#2|) 239) (((-783) $) 238)) (-4193 (((-112) $) 35)) (-2217 (((-783) $) 176)) (-1955 (($ (-1193 |#1|) |#3|) 120) (($ (-1193 $) |#3|) 119)) (-1608 (((-656 $) $) 129)) (-2823 (((-112) $) 159)) (-1945 (($ |#1| |#4|) 160) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-4130 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $ |#3|) 123)) (-3751 ((|#4| $) 177) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-2999 (($ (-1 |#4| |#4|) $) 178)) (-4117 (($ (-1 |#1| |#1|) $) 158)) (-4028 (((-1 $ (-783)) |#2|) 241) (((-1 $ (-783)) $) 228 (|has| |#1| (-238)))) (-3721 (((-3 |#3| "failed") $) 126)) (-3913 (((-701 (-576)) (-1288 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 140 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 135) (((-701 |#1|) (-1288 $)) 134)) (-2081 (($ $) 156)) (-2091 ((|#1| $) 155)) (-2759 ((|#3| $) 231)) (-3458 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-3699 (((-1179) $) 10)) (-4136 (((-112) $) 232)) (-1385 (((-3 (-656 $) "failed") $) 117)) (-1690 (((-3 (-656 $) "failed") $) 118)) (-2040 (((-3 (-2 (|:| |var| |#3|) (|:| -3422 (-783))) "failed") $) 116)) (-4286 (($ $) 230)) (-1450 (((-1141) $) 11)) (-2060 (((-112) $) 173)) (-2070 ((|#1| $) 174)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 98 (|has| |#1| (-464)))) (-3498 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-4100 (((-430 (-1193 $)) (-1193 $)) 105 (|has| |#1| (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) 104 (|has| |#1| (-928)))) (-1828 (((-430 $) $) 102 (|has| |#1| (-928)))) (-3476 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-3284 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-656 |#3|) (-656 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-656 |#3|) (-656 $)) 145) (($ $ |#2| $) 227 (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 $)) 226 (|has| |#1| (-238))) (($ $ |#2| |#1|) 225 (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 |#1|)) 224 (|has| |#1| (-238)))) (-4352 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2775 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40) (($ $ (-1 |#1| |#1|)) 248) (($ $ (-1 |#1| |#1|) (-783)) 247) (($ $) 223 (|has| |#1| (-237))) (($ $ (-783)) 221 (|has| |#1| (-237))) (($ $ (-1197)) 219 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 217 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 216 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 215 (|has| |#1| (-919 (-1197))))) (-2570 (((-656 |#2|) $) 240)) (-3634 ((|#4| $) 157) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132) (((-783) $ |#2|) 237)) (-4172 (((-907 (-390)) $) 85 (-12 (|has| |#3| (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) 84 (-12 (|has| |#3| (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-2457 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) 107 (-2675 (|has| $ (-146)) (|has| |#1| (-928))))) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ |#3|) 142) (($ |#2|) 242) (($ (-419 (-576))) 81 (-2760 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-1618 (((-656 |#1|) $) 175)) (-3177 ((|#1| $ |#4|) 162) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-4336 (((-3 $ "failed") $) 82 (-2760 (-2675 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3996 (((-783)) 32 T CONST)) (-2541 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-4055 (((-112) $ $) 6)) (-2672 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2020 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41) (($ $ (-1 |#1| |#1|)) 246) (($ $ (-1 |#1| |#1|) (-783)) 245) (($ $) 222 (|has| |#1| (-237))) (($ $ (-783)) 220 (|has| |#1| (-237))) (($ $ (-1197)) 218 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 214 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 213 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 212 (|has| |#1| (-919 (-1197))))) (-2925 (((-112) $ $) 8)) (-3057 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) +(-10 -8 (-15 -2774 (|#1| |#1| (-783))) (-15 -2774 (|#1| |#1|)) (-15 -2774 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2774 (|#1| |#1| (-1197) (-783))) (-15 -2774 (|#1| |#1| (-656 (-1197)))) (-15 -2774 (|#1| |#1| (-1197))) (-15 -3569 (|#1| |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3282 (|#1| |#1| (-656 |#3|) (-656 |#2|))) (-15 -3282 (|#1| |#1| |#3| |#2|)) (-15 -3282 (|#1| |#1| (-656 |#3|) (-656 |#1|))) (-15 -3282 (|#1| |#1| |#3| |#1|)) (-15 -2150 ((-1 |#1| (-783)) |#1|)) (-15 -3979 (|#1| |#1|)) (-15 -4286 (|#1| |#1|)) (-15 -2758 (|#4| |#1|)) (-15 -1970 ((-112) |#1|)) (-15 -2791 ((-783) |#1| |#3|)) (-15 -1857 ((-656 (-783)) |#1| |#3|)) (-15 -2791 ((-783) |#1|)) (-15 -1857 ((-656 (-783)) |#1|)) (-15 -2683 ((-783) |#1| |#3|)) (-15 -3726 ((-783) |#1|)) (-15 -3726 ((-783) |#1| |#3|)) (-15 -3051 ((-656 |#3|) |#1|)) (-15 -2150 ((-1 |#1| (-783)) |#3|)) (-15 -3569 (|#1| |#3|)) (-15 -1572 ((-3 |#3| "failed") |#1|)) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2683 ((-656 (-783)) |#1| (-656 |#4|))) (-15 -2683 ((-783) |#1| |#4|)) (-15 -3569 (|#1| |#4|)) (-15 -1572 ((-3 |#4| "failed") |#1|)) (-15 -3282 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -3282 (|#1| |#1| |#4| |#1|)) (-15 -3282 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -3282 (|#1| |#1| |#4| |#2|)) (-15 -3282 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3282 (|#1| |#1| |#1| |#1|)) (-15 -3282 (|#1| |#1| (-304 |#1|))) (-15 -3282 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2683 (|#5| |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -2774 (|#1| |#1| |#4|)) (-15 -2774 (|#1| |#1| (-656 |#4|))) (-15 -2774 (|#1| |#1| |#4| (-783))) (-15 -2774 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-1857 (((-656 (-783)) $) 236) (((-656 (-783)) $ |#2|) 234)) (-2791 (((-783) $) 235) (((-783) $ |#2|) 233)) (-1969 (((-656 |#3|) $) 113)) (-1797 (((-1193 $) $ |#3|) 128) (((-1193 |#1|) $) 127)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-4195 (($ $) 91 (|has| |#1| (-568)))) (-1760 (((-112) $) 93 (|has| |#1| (-568)))) (-4329 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-2428 (((-3 $ "failed") $ $) 20)) (-3646 (((-430 (-1193 $)) (-1193 $)) 103 (|has| |#1| (-928)))) (-3444 (($ $) 101 (|has| |#1| (-464)))) (-3760 (((-430 $) $) 100 (|has| |#1| (-464)))) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 106 (|has| |#1| (-928)))) (-3979 (($ $) 229)) (-3404 (($) 18 T CONST)) (-1572 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1059 (-576)))) (((-3 |#3| "failed") $) 143) (((-3 |#2| "failed") $) 243)) (-2859 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1059 (-576)))) ((|#3| $) 144) ((|#2| $) 244)) (-4334 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-2114 (($ $) 161)) (-3674 (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 137) (((-701 |#1|) (-701 $)) 136)) (-3673 (((-3 $ "failed") $) 37)) (-1547 (($ $) 183 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-2103 (((-656 $) $) 112)) (-3833 (((-112) $) 99 (|has| |#1| (-928)))) (-4124 (($ $ |#1| |#4| $) 179)) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 87 (-12 (|has| |#3| (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 86 (-12 (|has| |#3| (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3726 (((-783) $ |#2|) 239) (((-783) $) 238)) (-1351 (((-112) $) 35)) (-3799 (((-783) $) 176)) (-1956 (($ (-1193 |#1|) |#3|) 120) (($ (-1193 $) |#3|) 119)) (-2846 (((-656 $) $) 129)) (-3538 (((-112) $) 159)) (-1944 (($ |#1| |#4|) 160) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-1915 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $ |#3|) 123)) (-2578 ((|#4| $) 177) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-3878 (($ (-1 |#4| |#4|) $) 178)) (-4116 (($ (-1 |#1| |#1|) $) 158)) (-2150 (((-1 $ (-783)) |#2|) 241) (((-1 $ (-783)) $) 228 (|has| |#1| (-238)))) (-2289 (((-3 |#3| "failed") $) 126)) (-3676 (((-701 (-576)) (-1288 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 140 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 135) (((-701 |#1|) (-1288 $)) 134)) (-2081 (($ $) 156)) (-2091 ((|#1| $) 155)) (-2758 ((|#3| $) 231)) (-3457 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-2046 (((-1179) $) 10)) (-1970 (((-112) $) 232)) (-3845 (((-3 (-656 $) "failed") $) 117)) (-2363 (((-3 (-656 $) "failed") $) 118)) (-1452 (((-3 (-2 (|:| |var| |#3|) (|:| -2508 (-783))) "failed") $) 116)) (-4286 (($ $) 230)) (-1450 (((-1141) $) 11)) (-2060 (((-112) $) 173)) (-2070 ((|#1| $) 174)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 98 (|has| |#1| (-464)))) (-3497 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-1644 (((-430 (-1193 $)) (-1193 $)) 105 (|has| |#1| (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) 104 (|has| |#1| (-928)))) (-1828 (((-430 $) $) 102 (|has| |#1| (-928)))) (-3475 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-3282 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-656 |#3|) (-656 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-656 |#3|) (-656 $)) 145) (($ $ |#2| $) 227 (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 $)) 226 (|has| |#1| (-238))) (($ $ |#2| |#1|) 225 (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 |#1|)) 224 (|has| |#1| (-238)))) (-2269 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2774 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40) (($ $ (-1 |#1| |#1|)) 248) (($ $ (-1 |#1| |#1|) (-783)) 247) (($ $) 223 (|has| |#1| (-237))) (($ $ (-783)) 221 (|has| |#1| (-237))) (($ $ (-1197)) 219 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 217 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 216 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 215 (|has| |#1| (-919 (-1197))))) (-3051 (((-656 |#2|) $) 240)) (-2683 ((|#4| $) 157) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132) (((-783) $ |#2|) 237)) (-4171 (((-907 (-390)) $) 85 (-12 (|has| |#3| (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) 84 (-12 (|has| |#3| (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-4370 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) 107 (-2674 (|has| $ (-146)) (|has| |#1| (-928))))) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ |#3|) 142) (($ |#2|) 242) (($ (-419 (-576))) 81 (-2759 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-2937 (((-656 |#1|) $) 175)) (-1822 ((|#1| $ |#4|) 162) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-3390 (((-3 $ "failed") $) 82 (-2759 (-2674 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3154 (((-783)) 32 T CONST)) (-2717 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-2399 (((-112) $ $) 6)) (-1505 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2020 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41) (($ $ (-1 |#1| |#1|)) 246) (($ $ (-1 |#1| |#1|) (-783)) 245) (($ $) 222 (|has| |#1| (-237))) (($ $ (-783)) 220 (|has| |#1| (-237))) (($ $ (-1197)) 218 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 214 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 213 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 212 (|has| |#1| (-919 (-1197))))) (-2924 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) (((-260 |#1| |#2| |#3| |#4|) (-141) (-1070) (-861) (-275 |t#2|) (-805)) (T -260)) -((-4028 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *4 *3 *5 *6)))) (-2570 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 *4)))) (-3917 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-3917 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) (-3634 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-4433 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) (-1920 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) (-4433 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) (-1920 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-112)))) (-2759 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-805)) (-4 *2 (-275 *4)))) (-4286 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1070)) (-4 *3 (-861)) (-4 *4 (-275 *3)) (-4 *5 (-805)))) (-2104 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1070)) (-4 *3 (-861)) (-4 *4 (-275 *3)) (-4 *5 (-805)))) (-4028 (*1 *2 *1) (-12 (-4 *3 (-238)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *3 *4 *5 *6))))) -(-13 (-968 |t#1| |t#4| |t#3|) (-232 |t#1|) (-1059 |t#2|) (-10 -8 (-15 -4028 ((-1 $ (-783)) |t#2|)) (-15 -2570 ((-656 |t#2|) $)) (-15 -3917 ((-783) $ |t#2|)) (-15 -3917 ((-783) $)) (-15 -3634 ((-783) $ |t#2|)) (-15 -4433 ((-656 (-783)) $)) (-15 -1920 ((-783) $)) (-15 -4433 ((-656 (-783)) $ |t#2|)) (-15 -1920 ((-783) $ |t#2|)) (-15 -4136 ((-112) $)) (-15 -2759 (|t#3| $)) (-15 -4286 ($ $)) (-15 -2104 ($ $)) (IF (|has| |t#1| (-238)) (PROGN (-6 (-526 |t#2| |t#1|)) (-6 (-526 |t#2| $)) (-6 (-319 $)) (-15 -4028 ((-1 $ (-783)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2760 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#2|) . T) ((-628 |#3|) . T) ((-628 $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-876)) . T) ((-174) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-907 (-390))) -12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#3| (-626 (-907 (-390))))) ((-626 (-907 (-576))) -12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#3| (-626 (-907 (-576))))) ((-234 $) -2760 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -2760 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-300) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#4|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2760 (|has| |#1| (-928)) (|has| |#1| (-464))) ((-526 |#2| |#1|) |has| |#1| (-238)) ((-526 |#2| $) |has| |#1| (-238)) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-911 $ #2=(-1197)) -2760 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-911 $ |#3|) . T) ((-917 (-1197)) |has| |#1| (-917 (-1197))) ((-917 |#3|) . T) ((-919 #2#) -2760 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-919 |#3|) . T) ((-901 (-390)) -12 (|has| |#1| (-901 (-390))) (|has| |#3| (-901 (-390)))) ((-901 (-576)) -12 (|has| |#1| (-901 (-576))) (|has| |#3| (-901 (-576)))) ((-968 |#1| |#4| |#3|) . T) ((-928) |has| |#1| (-928)) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1059 |#2|) . T) ((-1059 |#3|) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) |has| |#1| (-928))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2576 ((|#1| $) 55)) (-1419 ((|#1| $) 45)) (-1808 (((-112) $ (-783)) 8)) (-3886 (($) 7 T CONST)) (-2496 (($ $) 61)) (-3990 (($ $) 49)) (-3659 ((|#1| |#1| $) 47)) (-3469 ((|#1| $) 46)) (-3966 (((-656 |#1|) $) 31 (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) 9)) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-4323 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 36)) (-1330 (((-112) $ (-783)) 10)) (-2437 (((-783) $) 62)) (-3699 (((-1179) $) 23 (|has| |#1| (-1121)))) (-1597 ((|#1| $) 40)) (-1567 ((|#1| |#1| $) 53)) (-1954 ((|#1| |#1| $) 52)) (-1901 (($ |#1| $) 41)) (-2327 (((-783) $) 56)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3883 ((|#1| $) 63)) (-3844 ((|#1| $) 51)) (-2313 ((|#1| $) 50)) (-3449 ((|#1| $) 42)) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3206 ((|#1| |#1| $) 59)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-3692 ((|#1| $) 60)) (-2997 (($) 58) (($ (-656 |#1|)) 57)) (-1888 (((-783) $) 44)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 13)) (-3570 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2322 ((|#1| $) 54)) (-4055 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3943 (($ (-656 |#1|)) 43)) (-1741 ((|#1| $) 64)) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-2150 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *4 *3 *5 *6)))) (-3051 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 *4)))) (-3726 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) (-2683 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-1857 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) (-2791 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) (-1857 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) (-2791 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-1970 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-112)))) (-2758 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-805)) (-4 *2 (-275 *4)))) (-4286 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1070)) (-4 *3 (-861)) (-4 *4 (-275 *3)) (-4 *5 (-805)))) (-3979 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1070)) (-4 *3 (-861)) (-4 *4 (-275 *3)) (-4 *5 (-805)))) (-2150 (*1 *2 *1) (-12 (-4 *3 (-238)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *3 *4 *5 *6))))) +(-13 (-968 |t#1| |t#4| |t#3|) (-232 |t#1|) (-1059 |t#2|) (-10 -8 (-15 -2150 ((-1 $ (-783)) |t#2|)) (-15 -3051 ((-656 |t#2|) $)) (-15 -3726 ((-783) $ |t#2|)) (-15 -3726 ((-783) $)) (-15 -2683 ((-783) $ |t#2|)) (-15 -1857 ((-656 (-783)) $)) (-15 -2791 ((-783) $)) (-15 -1857 ((-656 (-783)) $ |t#2|)) (-15 -2791 ((-783) $ |t#2|)) (-15 -1970 ((-112) $)) (-15 -2758 (|t#3| $)) (-15 -4286 ($ $)) (-15 -3979 ($ $)) (IF (|has| |t#1| (-238)) (PROGN (-6 (-526 |t#2| |t#1|)) (-6 (-526 |t#2| $)) (-6 (-319 $)) (-15 -2150 ((-1 $ (-783)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2759 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#2|) . T) ((-628 |#3|) . T) ((-628 $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-876)) . T) ((-174) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-907 (-390))) -12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#3| (-626 (-907 (-390))))) ((-626 (-907 (-576))) -12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#3| (-626 (-907 (-576))))) ((-234 $) -2759 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -2759 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-300) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#4|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2759 (|has| |#1| (-928)) (|has| |#1| (-464))) ((-526 |#2| |#1|) |has| |#1| (-238)) ((-526 |#2| $) |has| |#1| (-238)) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-911 $ #2=(-1197)) -2759 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-911 $ |#3|) . T) ((-917 (-1197)) |has| |#1| (-917 (-1197))) ((-917 |#3|) . T) ((-919 #2#) -2759 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-919 |#3|) . T) ((-901 (-390)) -12 (|has| |#1| (-901 (-390))) (|has| |#3| (-901 (-390)))) ((-901 (-576)) -12 (|has| |#1| (-901 (-576))) (|has| |#3| (-901 (-576)))) ((-968 |#1| |#4| |#3|) . T) ((-928) |has| |#1| (-928)) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1059 |#2|) . T) ((-1059 |#3|) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) |has| |#1| (-928))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3118 ((|#1| $) 55)) (-1419 ((|#1| $) 45)) (-4264 (((-112) $ (-783)) 8)) (-3404 (($) 7 T CONST)) (-3542 (($ $) 61)) (-3092 (($ $) 49)) (-2944 ((|#1| |#1| $) 47)) (-1718 ((|#1| $) 46)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) 9)) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4326 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-2883 (((-112) $ (-783)) 10)) (-2435 (((-783) $) 62)) (-2046 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2722 ((|#1| $) 40)) (-3734 ((|#1| |#1| $) 53)) (-3155 ((|#1| |#1| $) 52)) (-2597 (($ |#1| $) 41)) (-2327 (((-783) $) 56)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3374 ((|#1| $) 63)) (-4268 ((|#1| $) 51)) (-2261 ((|#1| $) 50)) (-1541 ((|#1| $) 42)) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-4098 ((|#1| |#1| $) 59)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-3265 ((|#1| $) 60)) (-3852 (($) 58) (($ (-656 |#1|)) 57)) (-1887 (((-783) $) 44)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2364 ((|#1| $) 54)) (-2399 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3972 (($ (-656 |#1|)) 43)) (-1675 ((|#1| $) 64)) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-261 |#1|) (-141) (-1238)) (T -261)) -((-2997 (*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-2997 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-4 *1 (-261 *3)))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1238)) (-5 *2 (-783)))) (-2576 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-2322 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-1567 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-1954 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-3844 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-2313 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-3990 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) -(-13 (-1142 |t#1|) (-1016 |t#1|) (-10 -8 (-15 -2997 ($)) (-15 -2997 ($ (-656 |t#1|))) (-15 -2327 ((-783) $)) (-15 -2576 (|t#1| $)) (-15 -2322 (|t#1| $)) (-15 -1567 (|t#1| |t#1| $)) (-15 -1954 (|t#1| |t#1| $)) (-15 -3844 (|t#1| $)) (-15 -2313 (|t#1| $)) (-15 -3990 ($ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2760 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2760 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1016 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1142 |#1|) . T) ((-1238) . T)) -((-3963 (((-1 (-962 (-227)) (-227) (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 153)) (-1704 (((-1154 (-227)) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390))) 173) (((-1154 (-227)) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)) (-656 (-270))) 171) (((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390))) 176) (((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270))) 172) (((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390))) 164) (((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270))) 163) (((-1154 (-227)) (-1 (-962 (-227)) (-227)) (-1115 (-390))) 145) (((-1154 (-227)) (-1 (-962 (-227)) (-227)) (-1115 (-390)) (-656 (-270))) 143) (((-1154 (-227)) (-894 (-1 (-227) (-227))) (-1115 (-390))) 144) (((-1154 (-227)) (-894 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270))) 141)) (-1662 (((-1290) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390))) 175) (((-1290) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)) (-656 (-270))) 174) (((-1290) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390))) 178) (((-1290) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270))) 177) (((-1290) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390))) 166) (((-1290) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270))) 165) (((-1290) (-1 (-962 (-227)) (-227)) (-1115 (-390))) 151) (((-1290) (-1 (-962 (-227)) (-227)) (-1115 (-390)) (-656 (-270))) 150) (((-1290) (-894 (-1 (-227) (-227))) (-1115 (-390))) 149) (((-1290) (-894 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270))) 148) (((-1289) (-892 (-1 (-227) (-227))) (-1115 (-390))) 113) (((-1289) (-892 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270))) 112) (((-1289) (-1 (-227) (-227)) (-1115 (-390))) 107) (((-1289) (-1 (-227) (-227)) (-1115 (-390)) (-656 (-270))) 105))) -(((-262) (-10 -7 (-15 -1662 ((-1289) (-1 (-227) (-227)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1289) (-1 (-227) (-227)) (-1115 (-390)))) (-15 -1662 ((-1289) (-892 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1289) (-892 (-1 (-227) (-227))) (-1115 (-390)))) (-15 -1662 ((-1290) (-894 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-894 (-1 (-227) (-227))) (-1115 (-390)))) (-15 -1662 ((-1290) (-1 (-962 (-227)) (-227)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-1 (-962 (-227)) (-227)) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-894 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-894 (-1 (-227) (-227))) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-1 (-962 (-227)) (-227)) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-1 (-962 (-227)) (-227)) (-1115 (-390)))) (-15 -1662 ((-1290) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -1662 ((-1290) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -1662 ((-1290) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)))) (-15 -3963 ((-1 (-962 (-227)) (-227) (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -262)) -((-3963 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-962 (-227)) (-227) (-227))) (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-897 (-1 (-227) (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-897 (-1 (-227) (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-897 (-1 (-227) (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-897 (-1 (-227) (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-962 (-227)) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-962 (-227)) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4) (-12 (-5 *3 (-894 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-894 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-962 (-227)) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-962 (-227)) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-894 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-894 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262))))) -(-10 -7 (-15 -1662 ((-1289) (-1 (-227) (-227)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1289) (-1 (-227) (-227)) (-1115 (-390)))) (-15 -1662 ((-1289) (-892 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1289) (-892 (-1 (-227) (-227))) (-1115 (-390)))) (-15 -1662 ((-1290) (-894 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-894 (-1 (-227) (-227))) (-1115 (-390)))) (-15 -1662 ((-1290) (-1 (-962 (-227)) (-227)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-1 (-962 (-227)) (-227)) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-894 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-894 (-1 (-227) (-227))) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-1 (-962 (-227)) (-227)) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-1 (-962 (-227)) (-227)) (-1115 (-390)))) (-15 -1662 ((-1290) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -1662 ((-1290) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -1662 ((-1290) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)))) (-15 -3963 ((-1 (-962 (-227)) (-227) (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) +((-3852 (*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-3852 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-4 *1 (-261 *3)))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1238)) (-5 *2 (-783)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-2364 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-3734 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-3155 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-4268 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-2261 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-3092 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) +(-13 (-1142 |t#1|) (-1016 |t#1|) (-10 -8 (-15 -3852 ($)) (-15 -3852 ($ (-656 |t#1|))) (-15 -2327 ((-783) $)) (-15 -3118 (|t#1| $)) (-15 -2364 (|t#1| $)) (-15 -3734 (|t#1| |t#1| $)) (-15 -3155 (|t#1| |t#1| $)) (-15 -4268 (|t#1| $)) (-15 -2261 (|t#1| $)) (-15 -3092 ($ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2759 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2759 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1016 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1142 |#1|) . T) ((-1238) . T)) +((-2849 (((-1 (-962 (-227)) (-227) (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 153)) (-1704 (((-1154 (-227)) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390))) 173) (((-1154 (-227)) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)) (-656 (-270))) 171) (((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390))) 176) (((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270))) 172) (((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390))) 164) (((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270))) 163) (((-1154 (-227)) (-1 (-962 (-227)) (-227)) (-1115 (-390))) 145) (((-1154 (-227)) (-1 (-962 (-227)) (-227)) (-1115 (-390)) (-656 (-270))) 143) (((-1154 (-227)) (-894 (-1 (-227) (-227))) (-1115 (-390))) 144) (((-1154 (-227)) (-894 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270))) 141)) (-1662 (((-1290) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390))) 175) (((-1290) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)) (-656 (-270))) 174) (((-1290) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390))) 178) (((-1290) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270))) 177) (((-1290) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390))) 166) (((-1290) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270))) 165) (((-1290) (-1 (-962 (-227)) (-227)) (-1115 (-390))) 151) (((-1290) (-1 (-962 (-227)) (-227)) (-1115 (-390)) (-656 (-270))) 150) (((-1290) (-894 (-1 (-227) (-227))) (-1115 (-390))) 149) (((-1290) (-894 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270))) 148) (((-1289) (-892 (-1 (-227) (-227))) (-1115 (-390))) 113) (((-1289) (-892 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270))) 112) (((-1289) (-1 (-227) (-227)) (-1115 (-390))) 107) (((-1289) (-1 (-227) (-227)) (-1115 (-390)) (-656 (-270))) 105))) +(((-262) (-10 -7 (-15 -1662 ((-1289) (-1 (-227) (-227)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1289) (-1 (-227) (-227)) (-1115 (-390)))) (-15 -1662 ((-1289) (-892 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1289) (-892 (-1 (-227) (-227))) (-1115 (-390)))) (-15 -1662 ((-1290) (-894 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-894 (-1 (-227) (-227))) (-1115 (-390)))) (-15 -1662 ((-1290) (-1 (-962 (-227)) (-227)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-1 (-962 (-227)) (-227)) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-894 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-894 (-1 (-227) (-227))) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-1 (-962 (-227)) (-227)) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-1 (-962 (-227)) (-227)) (-1115 (-390)))) (-15 -1662 ((-1290) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -1662 ((-1290) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -1662 ((-1290) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)))) (-15 -2849 ((-1 (-962 (-227)) (-227) (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -262)) +((-2849 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-962 (-227)) (-227) (-227))) (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-897 (-1 (-227) (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-897 (-1 (-227) (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-897 (-1 (-227) (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-897 (-1 (-227) (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-962 (-227)) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-962 (-227)) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4) (-12 (-5 *3 (-894 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1704 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-894 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-962 (-227)) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-962 (-227)) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-894 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-894 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262))))) +(-10 -7 (-15 -1662 ((-1289) (-1 (-227) (-227)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1289) (-1 (-227) (-227)) (-1115 (-390)))) (-15 -1662 ((-1289) (-892 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1289) (-892 (-1 (-227) (-227))) (-1115 (-390)))) (-15 -1662 ((-1290) (-894 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-894 (-1 (-227) (-227))) (-1115 (-390)))) (-15 -1662 ((-1290) (-1 (-962 (-227)) (-227)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-1 (-962 (-227)) (-227)) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-894 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-894 (-1 (-227) (-227))) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-1 (-962 (-227)) (-227)) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-1 (-962 (-227)) (-227)) (-1115 (-390)))) (-15 -1662 ((-1290) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -1662 ((-1290) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -1662 ((-1290) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)))) (-15 -1704 ((-1154 (-227)) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)))) (-15 -2849 ((-1 (-962 (-227)) (-227) (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) ((-1662 (((-1289) (-304 |#2|) (-1197) (-1197) (-656 (-270))) 101))) (((-263 |#1| |#2|) (-10 -7 (-15 -1662 ((-1289) (-304 |#2|) (-1197) (-1197) (-656 (-270))))) (-13 (-568) (-861) (-1059 (-576))) (-442 |#1|)) (T -263)) ((-1662 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-1197)) (-5 *5 (-656 (-270))) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-861) (-1059 (-576)))) (-5 *2 (-1289)) (-5 *1 (-263 *6 *7))))) (-10 -7 (-15 -1662 ((-1289) (-304 |#2|) (-1197) (-1197) (-656 (-270))))) -((-1660 (((-576) (-576)) 71)) (-3979 (((-576) (-576)) 72)) (-1341 (((-227) (-227)) 73)) (-2599 (((-1290) (-1 (-171 (-227)) (-171 (-227))) (-1115 (-227)) (-1115 (-227))) 70)) (-2697 (((-1290) (-1 (-171 (-227)) (-171 (-227))) (-1115 (-227)) (-1115 (-227)) (-112)) 68))) -(((-264) (-10 -7 (-15 -2697 ((-1290) (-1 (-171 (-227)) (-171 (-227))) (-1115 (-227)) (-1115 (-227)) (-112))) (-15 -2599 ((-1290) (-1 (-171 (-227)) (-171 (-227))) (-1115 (-227)) (-1115 (-227)))) (-15 -1660 ((-576) (-576))) (-15 -3979 ((-576) (-576))) (-15 -1341 ((-227) (-227))))) (T -264)) -((-1341 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264)))) (-3979 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))) (-1660 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))) (-2599 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1115 (-227))) (-5 *2 (-1290)) (-5 *1 (-264)))) (-2697 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1115 (-227))) (-5 *5 (-112)) (-5 *2 (-1290)) (-5 *1 (-264))))) -(-10 -7 (-15 -2697 ((-1290) (-1 (-171 (-227)) (-171 (-227))) (-1115 (-227)) (-1115 (-227)) (-112))) (-15 -2599 ((-1290) (-1 (-171 (-227)) (-171 (-227))) (-1115 (-227)) (-1115 (-227)))) (-15 -1660 ((-576) (-576))) (-15 -3979 ((-576) (-576))) (-15 -1341 ((-227) (-227)))) -((-3570 (((-1113 (-390)) (-1113 (-326 |#1|))) 16))) -(((-265 |#1|) (-10 -7 (-15 -3570 ((-1113 (-390)) (-1113 (-326 |#1|))))) (-13 (-861) (-568) (-626 (-390)))) (T -265)) -((-3570 (*1 *2 *3) (-12 (-5 *3 (-1113 (-326 *4))) (-4 *4 (-13 (-861) (-568) (-626 (-390)))) (-5 *2 (-1113 (-390))) (-5 *1 (-265 *4))))) -(-10 -7 (-15 -3570 ((-1113 (-390)) (-1113 (-326 |#1|))))) +((-2077 (((-576) (-576)) 71)) (-2994 (((-576) (-576)) 72)) (-3009 (((-227) (-227)) 73)) (-2045 (((-1290) (-1 (-171 (-227)) (-171 (-227))) (-1115 (-227)) (-1115 (-227))) 70)) (-1712 (((-1290) (-1 (-171 (-227)) (-171 (-227))) (-1115 (-227)) (-1115 (-227)) (-112)) 68))) +(((-264) (-10 -7 (-15 -1712 ((-1290) (-1 (-171 (-227)) (-171 (-227))) (-1115 (-227)) (-1115 (-227)) (-112))) (-15 -2045 ((-1290) (-1 (-171 (-227)) (-171 (-227))) (-1115 (-227)) (-1115 (-227)))) (-15 -2077 ((-576) (-576))) (-15 -2994 ((-576) (-576))) (-15 -3009 ((-227) (-227))))) (T -264)) +((-3009 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264)))) (-2994 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))) (-2077 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))) (-2045 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1115 (-227))) (-5 *2 (-1290)) (-5 *1 (-264)))) (-1712 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1115 (-227))) (-5 *5 (-112)) (-5 *2 (-1290)) (-5 *1 (-264))))) +(-10 -7 (-15 -1712 ((-1290) (-1 (-171 (-227)) (-171 (-227))) (-1115 (-227)) (-1115 (-227)) (-112))) (-15 -2045 ((-1290) (-1 (-171 (-227)) (-171 (-227))) (-1115 (-227)) (-1115 (-227)))) (-15 -2077 ((-576) (-576))) (-15 -2994 ((-576) (-576))) (-15 -3009 ((-227) (-227)))) +((-3569 (((-1113 (-390)) (-1113 (-326 |#1|))) 16))) +(((-265 |#1|) (-10 -7 (-15 -3569 ((-1113 (-390)) (-1113 (-326 |#1|))))) (-13 (-861) (-568) (-626 (-390)))) (T -265)) +((-3569 (*1 *2 *3) (-12 (-5 *3 (-1113 (-326 *4))) (-4 *4 (-13 (-861) (-568) (-626 (-390)))) (-5 *2 (-1113 (-390))) (-5 *1 (-265 *4))))) +(-10 -7 (-15 -3569 ((-1113 (-390)) (-1113 (-326 |#1|))))) ((-1704 (((-1154 (-227)) (-897 |#1|) (-1113 (-390)) (-1113 (-390))) 75) (((-1154 (-227)) (-897 |#1|) (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 74) (((-1154 (-227)) |#1| (-1113 (-390)) (-1113 (-390))) 65) (((-1154 (-227)) |#1| (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 64) (((-1154 (-227)) (-894 |#1|) (-1113 (-390))) 56) (((-1154 (-227)) (-894 |#1|) (-1113 (-390)) (-656 (-270))) 55)) (-1662 (((-1290) (-897 |#1|) (-1113 (-390)) (-1113 (-390))) 78) (((-1290) (-897 |#1|) (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 77) (((-1290) |#1| (-1113 (-390)) (-1113 (-390))) 68) (((-1290) |#1| (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 67) (((-1290) (-894 |#1|) (-1113 (-390))) 60) (((-1290) (-894 |#1|) (-1113 (-390)) (-656 (-270))) 59) (((-1289) (-892 |#1|) (-1113 (-390))) 47) (((-1289) (-892 |#1|) (-1113 (-390)) (-656 (-270))) 46) (((-1289) |#1| (-1113 (-390))) 38) (((-1289) |#1| (-1113 (-390)) (-656 (-270))) 36))) (((-266 |#1|) (-10 -7 (-15 -1662 ((-1289) |#1| (-1113 (-390)) (-656 (-270)))) (-15 -1662 ((-1289) |#1| (-1113 (-390)))) (-15 -1662 ((-1289) (-892 |#1|) (-1113 (-390)) (-656 (-270)))) (-15 -1662 ((-1289) (-892 |#1|) (-1113 (-390)))) (-15 -1662 ((-1290) (-894 |#1|) (-1113 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-894 |#1|) (-1113 (-390)))) (-15 -1704 ((-1154 (-227)) (-894 |#1|) (-1113 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-894 |#1|) (-1113 (-390)))) (-15 -1662 ((-1290) |#1| (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) |#1| (-1113 (-390)) (-1113 (-390)))) (-15 -1704 ((-1154 (-227)) |#1| (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) |#1| (-1113 (-390)) (-1113 (-390)))) (-15 -1662 ((-1290) (-897 |#1|) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1662 ((-1290) (-897 |#1|) (-1113 (-390)) (-1113 (-390)))) (-15 -1704 ((-1154 (-227)) (-897 |#1|) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1704 ((-1154 (-227)) (-897 |#1|) (-1113 (-390)) (-1113 (-390))))) (-13 (-626 (-548)) (-1121))) (T -266)) ((-1704 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-897 *5)) (-5 *4 (-1113 (-390))) (-4 *5 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1154 (-227))) (-5 *1 (-266 *5)))) (-1704 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-897 *6)) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1154 (-227))) (-5 *1 (-266 *6)))) (-1662 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-897 *5)) (-5 *4 (-1113 (-390))) (-4 *5 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1290)) (-5 *1 (-266 *5)))) (-1662 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-897 *6)) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1290)) (-5 *1 (-266 *6)))) (-1704 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1113 (-390))) (-5 *2 (-1154 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1121))))) (-1704 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1121))))) (-1662 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1113 (-390))) (-5 *2 (-1290)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1121))))) (-1662 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1121))))) (-1704 (*1 *2 *3 *4) (-12 (-5 *3 (-894 *5)) (-5 *4 (-1113 (-390))) (-4 *5 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1154 (-227))) (-5 *1 (-266 *5)))) (-1704 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-894 *6)) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1154 (-227))) (-5 *1 (-266 *6)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-894 *5)) (-5 *4 (-1113 (-390))) (-4 *5 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1290)) (-5 *1 (-266 *5)))) (-1662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-894 *6)) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1290)) (-5 *1 (-266 *6)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-892 *5)) (-5 *4 (-1113 (-390))) (-4 *5 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1289)) (-5 *1 (-266 *5)))) (-1662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 *6)) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1289)) (-5 *1 (-266 *6)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *4 (-1113 (-390))) (-5 *2 (-1289)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1121))))) (-1662 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1121)))))) @@ -1042,1413 +1042,1413 @@ NIL (((-267) (-10 -7 (-15 -1662 ((-1289) (-656 (-227)) (-656 (-227)))) (-15 -1662 ((-1289) (-656 (-227)) (-656 (-227)) (-656 (-270)))) (-15 -1662 ((-1289) (-656 (-962 (-227))))) (-15 -1662 ((-1289) (-656 (-962 (-227))) (-656 (-270)))) (-15 -1662 ((-1290) (-656 (-227)) (-656 (-227)) (-656 (-227)))) (-15 -1662 ((-1290) (-656 (-227)) (-656 (-227)) (-656 (-227)) (-656 (-270)))))) (T -267)) ((-1662 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-267)))) (-1662 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1290)) (-5 *1 (-267)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-962 (-227)))) (-5 *4 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-267)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-656 (-962 (-227)))) (-5 *2 (-1289)) (-5 *1 (-267)))) (-1662 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-267)))) (-1662 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1289)) (-5 *1 (-267))))) (-10 -7 (-15 -1662 ((-1289) (-656 (-227)) (-656 (-227)))) (-15 -1662 ((-1289) (-656 (-227)) (-656 (-227)) (-656 (-270)))) (-15 -1662 ((-1289) (-656 (-962 (-227))))) (-15 -1662 ((-1289) (-656 (-962 (-227))) (-656 (-270)))) (-15 -1662 ((-1290) (-656 (-227)) (-656 (-227)) (-656 (-227)))) (-15 -1662 ((-1290) (-656 (-227)) (-656 (-227)) (-656 (-227)) (-656 (-270))))) -((-3411 (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2131 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2131 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 25)) (-2698 (((-940) (-656 (-270)) (-940)) 52)) (-3932 (((-940) (-656 (-270)) (-940)) 51)) (-2328 (((-656 (-390)) (-656 (-270)) (-656 (-390))) 68)) (-2028 (((-390) (-656 (-270)) (-390)) 57)) (-2517 (((-940) (-656 (-270)) (-940)) 53)) (-2853 (((-112) (-656 (-270)) (-112)) 27)) (-1357 (((-1179) (-656 (-270)) (-1179)) 19)) (-3196 (((-1179) (-656 (-270)) (-1179)) 26)) (-4138 (((-1154 (-227)) (-656 (-270))) 46)) (-2417 (((-656 (-1115 (-390))) (-656 (-270)) (-656 (-1115 (-390)))) 40)) (-3944 (((-888) (-656 (-270)) (-888)) 32)) (-1390 (((-888) (-656 (-270)) (-888)) 33)) (-3122 (((-1 (-962 (-227)) (-962 (-227))) (-656 (-270)) (-1 (-962 (-227)) (-962 (-227)))) 63)) (-2261 (((-112) (-656 (-270)) (-112)) 14)) (-3571 (((-112) (-656 (-270)) (-112)) 13))) -(((-268) (-10 -7 (-15 -3571 ((-112) (-656 (-270)) (-112))) (-15 -2261 ((-112) (-656 (-270)) (-112))) (-15 -3411 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2131 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2131 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1357 ((-1179) (-656 (-270)) (-1179))) (-15 -3196 ((-1179) (-656 (-270)) (-1179))) (-15 -2853 ((-112) (-656 (-270)) (-112))) (-15 -3944 ((-888) (-656 (-270)) (-888))) (-15 -1390 ((-888) (-656 (-270)) (-888))) (-15 -2417 ((-656 (-1115 (-390))) (-656 (-270)) (-656 (-1115 (-390))))) (-15 -3932 ((-940) (-656 (-270)) (-940))) (-15 -2698 ((-940) (-656 (-270)) (-940))) (-15 -4138 ((-1154 (-227)) (-656 (-270)))) (-15 -2517 ((-940) (-656 (-270)) (-940))) (-15 -2028 ((-390) (-656 (-270)) (-390))) (-15 -3122 ((-1 (-962 (-227)) (-962 (-227))) (-656 (-270)) (-1 (-962 (-227)) (-962 (-227))))) (-15 -2328 ((-656 (-390)) (-656 (-270)) (-656 (-390)))))) (T -268)) -((-2328 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-390))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3122 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-962 (-227)) (-962 (-227)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2028 (*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2517 (*1 *2 *3 *2) (-12 (-5 *2 (-940)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-4138 (*1 *2 *3) (-12 (-5 *3 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-268)))) (-2698 (*1 *2 *3 *2) (-12 (-5 *2 (-940)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3932 (*1 *2 *3 *2) (-12 (-5 *2 (-940)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2417 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-1390 (*1 *2 *3 *2) (-12 (-5 *2 (-888)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3944 (*1 *2 *3 *2) (-12 (-5 *2 (-888)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2853 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3196 (*1 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-1357 (*1 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3411 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2131 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2261 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3571 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) -(-10 -7 (-15 -3571 ((-112) (-656 (-270)) (-112))) (-15 -2261 ((-112) (-656 (-270)) (-112))) (-15 -3411 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2131 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2131 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1357 ((-1179) (-656 (-270)) (-1179))) (-15 -3196 ((-1179) (-656 (-270)) (-1179))) (-15 -2853 ((-112) (-656 (-270)) (-112))) (-15 -3944 ((-888) (-656 (-270)) (-888))) (-15 -1390 ((-888) (-656 (-270)) (-888))) (-15 -2417 ((-656 (-1115 (-390))) (-656 (-270)) (-656 (-1115 (-390))))) (-15 -3932 ((-940) (-656 (-270)) (-940))) (-15 -2698 ((-940) (-656 (-270)) (-940))) (-15 -4138 ((-1154 (-227)) (-656 (-270)))) (-15 -2517 ((-940) (-656 (-270)) (-940))) (-15 -2028 ((-390) (-656 (-270)) (-390))) (-15 -3122 ((-1 (-962 (-227)) (-962 (-227))) (-656 (-270)) (-1 (-962 (-227)) (-962 (-227))))) (-15 -2328 ((-656 (-390)) (-656 (-270)) (-656 (-390))))) -((-2578 (((-3 |#1| "failed") (-656 (-270)) (-1197)) 17))) -(((-269 |#1|) (-10 -7 (-15 -2578 ((-3 |#1| "failed") (-656 (-270)) (-1197)))) (-1238)) (T -269)) -((-2578 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1197)) (-5 *1 (-269 *2)) (-4 *2 (-1238))))) -(-10 -7 (-15 -2578 ((-3 |#1| "failed") (-656 (-270)) (-1197)))) -((-3489 (((-112) $ $) NIL)) (-3411 (($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2131 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 24)) (-2698 (($ (-940)) 81)) (-3932 (($ (-940)) 80)) (-2778 (($ (-656 (-390))) 87)) (-2028 (($ (-390)) 66)) (-2517 (($ (-940)) 82)) (-2853 (($ (-112)) 33)) (-1357 (($ (-1179)) 28)) (-3196 (($ (-1179)) 29)) (-4138 (($ (-1154 (-227))) 76)) (-2417 (($ (-656 (-1115 (-390)))) 72)) (-2951 (($ (-656 (-1115 (-390)))) 68) (($ (-656 (-1115 (-419 (-576))))) 71)) (-3679 (($ (-390)) 38) (($ (-888)) 42)) (-3731 (((-112) (-656 $) (-1197)) 100)) (-2578 (((-3 (-52) "failed") (-656 $) (-1197)) 102)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3796 (($ (-390)) 43) (($ (-888)) 44)) (-4152 (($ (-1 (-962 (-227)) (-962 (-227)))) 65)) (-3122 (($ (-1 (-962 (-227)) (-962 (-227)))) 83)) (-1924 (($ (-1 (-227) (-227))) 48) (($ (-1 (-227) (-227) (-227))) 52) (($ (-1 (-227) (-227) (-227) (-227))) 56)) (-3570 (((-876) $) 93)) (-4098 (($ (-112)) 34) (($ (-656 (-1115 (-390)))) 60)) (-4055 (((-112) $ $) NIL)) (-3571 (($ (-112)) 35)) (-2925 (((-112) $ $) 97))) -(((-270) (-13 (-1121) (-10 -8 (-15 -3571 ($ (-112))) (-15 -4098 ($ (-112))) (-15 -3411 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2131 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1357 ($ (-1179))) (-15 -3196 ($ (-1179))) (-15 -2853 ($ (-112))) (-15 -4098 ($ (-656 (-1115 (-390))))) (-15 -4152 ($ (-1 (-962 (-227)) (-962 (-227))))) (-15 -3679 ($ (-390))) (-15 -3679 ($ (-888))) (-15 -3796 ($ (-390))) (-15 -3796 ($ (-888))) (-15 -1924 ($ (-1 (-227) (-227)))) (-15 -1924 ($ (-1 (-227) (-227) (-227)))) (-15 -1924 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -2028 ($ (-390))) (-15 -2951 ($ (-656 (-1115 (-390))))) (-15 -2951 ($ (-656 (-1115 (-419 (-576)))))) (-15 -2417 ($ (-656 (-1115 (-390))))) (-15 -4138 ($ (-1154 (-227)))) (-15 -3932 ($ (-940))) (-15 -2698 ($ (-940))) (-15 -2517 ($ (-940))) (-15 -3122 ($ (-1 (-962 (-227)) (-962 (-227))))) (-15 -2778 ($ (-656 (-390)))) (-15 -2578 ((-3 (-52) "failed") (-656 $) (-1197))) (-15 -3731 ((-112) (-656 $) (-1197)))))) (T -270)) -((-3571 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-4098 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-3411 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2131 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-270)))) (-1357 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-270)))) (-3196 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-270)))) (-2853 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-4098 (*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-270)))) (-4152 (*1 *1 *2) (-12 (-5 *2 (-1 (-962 (-227)) (-962 (-227)))) (-5 *1 (-270)))) (-3679 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-3679 (*1 *1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-270)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-270)))) (-1924 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270)))) (-1924 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) (-1924 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) (-2028 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-270)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-419 (-576))))) (-5 *1 (-270)))) (-2417 (*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-270)))) (-4138 (*1 *1 *2) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-270)))) (-3932 (*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-270)))) (-2698 (*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-270)))) (-2517 (*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-270)))) (-3122 (*1 *1 *2) (-12 (-5 *2 (-1 (-962 (-227)) (-962 (-227)))) (-5 *1 (-270)))) (-2778 (*1 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-270)))) (-2578 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1197)) (-5 *2 (-52)) (-5 *1 (-270)))) (-3731 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-270))) (-5 *4 (-1197)) (-5 *2 (-112)) (-5 *1 (-270))))) -(-13 (-1121) (-10 -8 (-15 -3571 ($ (-112))) (-15 -4098 ($ (-112))) (-15 -3411 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2131 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1357 ($ (-1179))) (-15 -3196 ($ (-1179))) (-15 -2853 ($ (-112))) (-15 -4098 ($ (-656 (-1115 (-390))))) (-15 -4152 ($ (-1 (-962 (-227)) (-962 (-227))))) (-15 -3679 ($ (-390))) (-15 -3679 ($ (-888))) (-15 -3796 ($ (-390))) (-15 -3796 ($ (-888))) (-15 -1924 ($ (-1 (-227) (-227)))) (-15 -1924 ($ (-1 (-227) (-227) (-227)))) (-15 -1924 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -2028 ($ (-390))) (-15 -2951 ($ (-656 (-1115 (-390))))) (-15 -2951 ($ (-656 (-1115 (-419 (-576)))))) (-15 -2417 ($ (-656 (-1115 (-390))))) (-15 -4138 ($ (-1154 (-227)))) (-15 -3932 ($ (-940))) (-15 -2698 ($ (-940))) (-15 -2517 ($ (-940))) (-15 -3122 ($ (-1 (-962 (-227)) (-962 (-227))))) (-15 -2778 ($ (-656 (-390)))) (-15 -2578 ((-3 (-52) "failed") (-656 $) (-1197))) (-15 -3731 ((-112) (-656 $) (-1197))))) -((-2775 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) 11) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) 19) (($ $ (-783)) NIL) (($ $) 16)) (-2020 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-783)) 14) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL) (($ $ (-783)) NIL) (($ $) NIL))) -(((-271 |#1| |#2|) (-10 -8 (-15 -2775 (|#1| |#1|)) (-15 -2020 (|#1| |#1|)) (-15 -2775 (|#1| |#1| (-783))) (-15 -2020 (|#1| |#1| (-783))) (-15 -2775 (|#1| |#1| (-1197))) (-15 -2020 (|#1| |#1| (-1197))) (-15 -2775 (|#1| |#1| (-656 (-1197)))) (-15 -2775 (|#1| |#1| (-1197) (-783))) (-15 -2775 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2020 (|#1| |#1| (-656 (-1197)))) (-15 -2020 (|#1| |#1| (-1197) (-783))) (-15 -2020 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2020 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2020 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|)))) (-272 |#2|) (-1238)) (T -271)) -NIL -(-10 -8 (-15 -2775 (|#1| |#1|)) (-15 -2020 (|#1| |#1|)) (-15 -2775 (|#1| |#1| (-783))) (-15 -2020 (|#1| |#1| (-783))) (-15 -2775 (|#1| |#1| (-1197))) (-15 -2020 (|#1| |#1| (-1197))) (-15 -2775 (|#1| |#1| (-656 (-1197)))) (-15 -2775 (|#1| |#1| (-1197) (-783))) (-15 -2775 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2020 (|#1| |#1| (-656 (-1197)))) (-15 -2020 (|#1| |#1| (-1197) (-783))) (-15 -2020 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2020 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2020 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|)))) -((-2775 (($ $ (-1 |#1| |#1|)) 23) (($ $ (-1 |#1| |#1|) (-783)) 22) (($ $ (-656 (-1197)) (-656 (-783))) 16 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 15 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 14 (|has| |#1| (-919 (-1197)))) (($ $ (-1197)) 12 (|has| |#1| (-919 (-1197)))) (($ $ (-783)) 10 (|has| |#1| (-237))) (($ $) 8 (|has| |#1| (-237)))) (-2020 (($ $ (-1 |#1| |#1|)) 21) (($ $ (-1 |#1| |#1|) (-783)) 20) (($ $ (-656 (-1197)) (-656 (-783))) 19 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 18 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 17 (|has| |#1| (-919 (-1197)))) (($ $ (-1197)) 13 (|has| |#1| (-919 (-1197)))) (($ $ (-783)) 11 (|has| |#1| (-237))) (($ $) 9 (|has| |#1| (-237))))) +((-2387 (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4222 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4222 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 25)) (-1722 (((-940) (-656 (-270)) (-940)) 52)) (-3874 (((-940) (-656 (-270)) (-940)) 51)) (-2328 (((-656 (-390)) (-656 (-270)) (-656 (-390))) 68)) (-2528 (((-390) (-656 (-270)) (-390)) 57)) (-3774 (((-940) (-656 (-270)) (-940)) 53)) (-3848 (((-112) (-656 (-270)) (-112)) 27)) (-1357 (((-1179) (-656 (-270)) (-1179)) 19)) (-4000 (((-1179) (-656 (-270)) (-1179)) 26)) (-1986 (((-1154 (-227)) (-656 (-270))) 46)) (-3996 (((-656 (-1115 (-390))) (-656 (-270)) (-656 (-1115 (-390)))) 40)) (-3980 (((-888) (-656 (-270)) (-888)) 32)) (-1510 (((-888) (-656 (-270)) (-888)) 33)) (-2519 (((-1 (-962 (-227)) (-962 (-227))) (-656 (-270)) (-1 (-962 (-227)) (-962 (-227)))) 63)) (-2976 (((-112) (-656 (-270)) (-112)) 14)) (-3335 (((-112) (-656 (-270)) (-112)) 13))) +(((-268) (-10 -7 (-15 -3335 ((-112) (-656 (-270)) (-112))) (-15 -2976 ((-112) (-656 (-270)) (-112))) (-15 -2387 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4222 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4222 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1357 ((-1179) (-656 (-270)) (-1179))) (-15 -4000 ((-1179) (-656 (-270)) (-1179))) (-15 -3848 ((-112) (-656 (-270)) (-112))) (-15 -3980 ((-888) (-656 (-270)) (-888))) (-15 -1510 ((-888) (-656 (-270)) (-888))) (-15 -3996 ((-656 (-1115 (-390))) (-656 (-270)) (-656 (-1115 (-390))))) (-15 -3874 ((-940) (-656 (-270)) (-940))) (-15 -1722 ((-940) (-656 (-270)) (-940))) (-15 -1986 ((-1154 (-227)) (-656 (-270)))) (-15 -3774 ((-940) (-656 (-270)) (-940))) (-15 -2528 ((-390) (-656 (-270)) (-390))) (-15 -2519 ((-1 (-962 (-227)) (-962 (-227))) (-656 (-270)) (-1 (-962 (-227)) (-962 (-227))))) (-15 -2328 ((-656 (-390)) (-656 (-270)) (-656 (-390)))))) (T -268)) +((-2328 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-390))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2519 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-962 (-227)) (-962 (-227)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2528 (*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3774 (*1 *2 *3 *2) (-12 (-5 *2 (-940)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-1986 (*1 *2 *3) (-12 (-5 *3 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-268)))) (-1722 (*1 *2 *3 *2) (-12 (-5 *2 (-940)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3874 (*1 *2 *3 *2) (-12 (-5 *2 (-940)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3996 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-1510 (*1 *2 *3 *2) (-12 (-5 *2 (-888)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3980 (*1 *2 *3 *2) (-12 (-5 *2 (-888)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3848 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-4000 (*1 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-1357 (*1 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2387 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4222 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2976 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3335 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) +(-10 -7 (-15 -3335 ((-112) (-656 (-270)) (-112))) (-15 -2976 ((-112) (-656 (-270)) (-112))) (-15 -2387 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4222 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4222 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1357 ((-1179) (-656 (-270)) (-1179))) (-15 -4000 ((-1179) (-656 (-270)) (-1179))) (-15 -3848 ((-112) (-656 (-270)) (-112))) (-15 -3980 ((-888) (-656 (-270)) (-888))) (-15 -1510 ((-888) (-656 (-270)) (-888))) (-15 -3996 ((-656 (-1115 (-390))) (-656 (-270)) (-656 (-1115 (-390))))) (-15 -3874 ((-940) (-656 (-270)) (-940))) (-15 -1722 ((-940) (-656 (-270)) (-940))) (-15 -1986 ((-1154 (-227)) (-656 (-270)))) (-15 -3774 ((-940) (-656 (-270)) (-940))) (-15 -2528 ((-390) (-656 (-270)) (-390))) (-15 -2519 ((-1 (-962 (-227)) (-962 (-227))) (-656 (-270)) (-1 (-962 (-227)) (-962 (-227))))) (-15 -2328 ((-656 (-390)) (-656 (-270)) (-656 (-390))))) +((-2577 (((-3 |#1| "failed") (-656 (-270)) (-1197)) 17))) +(((-269 |#1|) (-10 -7 (-15 -2577 ((-3 |#1| "failed") (-656 (-270)) (-1197)))) (-1238)) (T -269)) +((-2577 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1197)) (-5 *1 (-269 *2)) (-4 *2 (-1238))))) +(-10 -7 (-15 -2577 ((-3 |#1| "failed") (-656 (-270)) (-1197)))) +((-3488 (((-112) $ $) NIL)) (-2387 (($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4222 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 24)) (-1722 (($ (-940)) 81)) (-3874 (($ (-940)) 80)) (-4346 (($ (-656 (-390))) 87)) (-2528 (($ (-390)) 66)) (-3774 (($ (-940)) 82)) (-3848 (($ (-112)) 33)) (-1357 (($ (-1179)) 28)) (-4000 (($ (-1179)) 29)) (-1986 (($ (-1154 (-227))) 76)) (-3996 (($ (-656 (-1115 (-390)))) 72)) (-3417 (($ (-656 (-1115 (-390)))) 68) (($ (-656 (-1115 (-419 (-576))))) 71)) (-3158 (($ (-390)) 38) (($ (-888)) 42)) (-2393 (((-112) (-656 $) (-1197)) 100)) (-2577 (((-3 (-52) "failed") (-656 $) (-1197)) 102)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1844 (($ (-390)) 43) (($ (-888)) 44)) (-4096 (($ (-1 (-962 (-227)) (-962 (-227)))) 65)) (-2519 (($ (-1 (-962 (-227)) (-962 (-227)))) 83)) (-2827 (($ (-1 (-227) (-227))) 48) (($ (-1 (-227) (-227) (-227))) 52) (($ (-1 (-227) (-227) (-227) (-227))) 56)) (-3569 (((-876) $) 93)) (-1625 (($ (-112)) 34) (($ (-656 (-1115 (-390)))) 60)) (-2399 (((-112) $ $) NIL)) (-3335 (($ (-112)) 35)) (-2924 (((-112) $ $) 97))) +(((-270) (-13 (-1121) (-10 -8 (-15 -3335 ($ (-112))) (-15 -1625 ($ (-112))) (-15 -2387 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4222 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1357 ($ (-1179))) (-15 -4000 ($ (-1179))) (-15 -3848 ($ (-112))) (-15 -1625 ($ (-656 (-1115 (-390))))) (-15 -4096 ($ (-1 (-962 (-227)) (-962 (-227))))) (-15 -3158 ($ (-390))) (-15 -3158 ($ (-888))) (-15 -1844 ($ (-390))) (-15 -1844 ($ (-888))) (-15 -2827 ($ (-1 (-227) (-227)))) (-15 -2827 ($ (-1 (-227) (-227) (-227)))) (-15 -2827 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -2528 ($ (-390))) (-15 -3417 ($ (-656 (-1115 (-390))))) (-15 -3417 ($ (-656 (-1115 (-419 (-576)))))) (-15 -3996 ($ (-656 (-1115 (-390))))) (-15 -1986 ($ (-1154 (-227)))) (-15 -3874 ($ (-940))) (-15 -1722 ($ (-940))) (-15 -3774 ($ (-940))) (-15 -2519 ($ (-1 (-962 (-227)) (-962 (-227))))) (-15 -4346 ($ (-656 (-390)))) (-15 -2577 ((-3 (-52) "failed") (-656 $) (-1197))) (-15 -2393 ((-112) (-656 $) (-1197)))))) (T -270)) +((-3335 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-1625 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-2387 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4222 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-270)))) (-1357 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-270)))) (-4000 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-270)))) (-3848 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-1625 (*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-270)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-1 (-962 (-227)) (-962 (-227)))) (-5 *1 (-270)))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-270)))) (-1844 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-1844 (*1 *1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-270)))) (-2827 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270)))) (-2827 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) (-2827 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) (-2528 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-3417 (*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-270)))) (-3417 (*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-419 (-576))))) (-5 *1 (-270)))) (-3996 (*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-270)))) (-1986 (*1 *1 *2) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-270)))) (-3874 (*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-270)))) (-1722 (*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-270)))) (-3774 (*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-270)))) (-2519 (*1 *1 *2) (-12 (-5 *2 (-1 (-962 (-227)) (-962 (-227)))) (-5 *1 (-270)))) (-4346 (*1 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-270)))) (-2577 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1197)) (-5 *2 (-52)) (-5 *1 (-270)))) (-2393 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-270))) (-5 *4 (-1197)) (-5 *2 (-112)) (-5 *1 (-270))))) +(-13 (-1121) (-10 -8 (-15 -3335 ($ (-112))) (-15 -1625 ($ (-112))) (-15 -2387 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4222 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1357 ($ (-1179))) (-15 -4000 ($ (-1179))) (-15 -3848 ($ (-112))) (-15 -1625 ($ (-656 (-1115 (-390))))) (-15 -4096 ($ (-1 (-962 (-227)) (-962 (-227))))) (-15 -3158 ($ (-390))) (-15 -3158 ($ (-888))) (-15 -1844 ($ (-390))) (-15 -1844 ($ (-888))) (-15 -2827 ($ (-1 (-227) (-227)))) (-15 -2827 ($ (-1 (-227) (-227) (-227)))) (-15 -2827 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -2528 ($ (-390))) (-15 -3417 ($ (-656 (-1115 (-390))))) (-15 -3417 ($ (-656 (-1115 (-419 (-576)))))) (-15 -3996 ($ (-656 (-1115 (-390))))) (-15 -1986 ($ (-1154 (-227)))) (-15 -3874 ($ (-940))) (-15 -1722 ($ (-940))) (-15 -3774 ($ (-940))) (-15 -2519 ($ (-1 (-962 (-227)) (-962 (-227))))) (-15 -4346 ($ (-656 (-390)))) (-15 -2577 ((-3 (-52) "failed") (-656 $) (-1197))) (-15 -2393 ((-112) (-656 $) (-1197))))) +((-2774 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) 11) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) 19) (($ $ (-783)) NIL) (($ $) 16)) (-2020 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-783)) 14) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL) (($ $ (-783)) NIL) (($ $) NIL))) +(((-271 |#1| |#2|) (-10 -8 (-15 -2774 (|#1| |#1|)) (-15 -2020 (|#1| |#1|)) (-15 -2774 (|#1| |#1| (-783))) (-15 -2020 (|#1| |#1| (-783))) (-15 -2774 (|#1| |#1| (-1197))) (-15 -2020 (|#1| |#1| (-1197))) (-15 -2774 (|#1| |#1| (-656 (-1197)))) (-15 -2774 (|#1| |#1| (-1197) (-783))) (-15 -2774 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2020 (|#1| |#1| (-656 (-1197)))) (-15 -2020 (|#1| |#1| (-1197) (-783))) (-15 -2020 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2020 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2020 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|)))) (-272 |#2|) (-1238)) (T -271)) +NIL +(-10 -8 (-15 -2774 (|#1| |#1|)) (-15 -2020 (|#1| |#1|)) (-15 -2774 (|#1| |#1| (-783))) (-15 -2020 (|#1| |#1| (-783))) (-15 -2774 (|#1| |#1| (-1197))) (-15 -2020 (|#1| |#1| (-1197))) (-15 -2774 (|#1| |#1| (-656 (-1197)))) (-15 -2774 (|#1| |#1| (-1197) (-783))) (-15 -2774 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2020 (|#1| |#1| (-656 (-1197)))) (-15 -2020 (|#1| |#1| (-1197) (-783))) (-15 -2020 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2020 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2020 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|)))) +((-2774 (($ $ (-1 |#1| |#1|)) 23) (($ $ (-1 |#1| |#1|) (-783)) 22) (($ $ (-656 (-1197)) (-656 (-783))) 16 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 15 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 14 (|has| |#1| (-919 (-1197)))) (($ $ (-1197)) 12 (|has| |#1| (-919 (-1197)))) (($ $ (-783)) 10 (|has| |#1| (-237))) (($ $) 8 (|has| |#1| (-237)))) (-2020 (($ $ (-1 |#1| |#1|)) 21) (($ $ (-1 |#1| |#1|) (-783)) 20) (($ $ (-656 (-1197)) (-656 (-783))) 19 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 18 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 17 (|has| |#1| (-919 (-1197)))) (($ $ (-1197)) 13 (|has| |#1| (-919 (-1197)))) (($ $ (-783)) 11 (|has| |#1| (-237))) (($ $) 9 (|has| |#1| (-237))))) (((-272 |#1|) (-141) (-1238)) (T -272)) -((-2775 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1238)))) (-2775 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) (-4 *4 (-1238)))) (-2020 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1238)))) (-2020 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) (-4 *4 (-1238))))) -(-13 (-1238) (-10 -8 (-15 -2775 ($ $ (-1 |t#1| |t#1|))) (-15 -2775 ($ $ (-1 |t#1| |t#1|) (-783))) (-15 -2020 ($ $ (-1 |t#1| |t#1|))) (-15 -2020 ($ $ (-1 |t#1| |t#1|) (-783))) (IF (|has| |t#1| (-237)) (-6 (-237)) |%noBranch|) (IF (|has| |t#1| (-919 (-1197))) (-6 (-919 (-1197))) |%noBranch|))) +((-2774 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1238)))) (-2774 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) (-4 *4 (-1238)))) (-2020 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1238)))) (-2020 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) (-4 *4 (-1238))))) +(-13 (-1238) (-10 -8 (-15 -2774 ($ $ (-1 |t#1| |t#1|))) (-15 -2774 ($ $ (-1 |t#1| |t#1|) (-783))) (-15 -2020 ($ $ (-1 |t#1| |t#1|))) (-15 -2020 ($ $ (-1 |t#1| |t#1|) (-783))) (IF (|has| |t#1| (-237)) (-6 (-237)) |%noBranch|) (IF (|has| |t#1| (-919 (-1197))) (-6 (-919 (-1197))) |%noBranch|))) (((-234 $) |has| |#1| (-237)) ((-237) |has| |#1| (-237)) ((-911 $ #0=(-1197)) |has| |#1| (-919 (-1197))) ((-919 #0#) |has| |#1| (-919 (-1197))) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-4433 (((-656 (-783)) $) NIL) (((-656 (-783)) $ |#2|) NIL)) (-1920 (((-783) $) NIL) (((-783) $ |#2|) NIL)) (-1969 (((-656 |#3|) $) NIL)) (-1798 (((-1193 $) $ |#3|) NIL) (((-1193 |#1|) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2757 (($ $) NIL (|has| |#1| (-568)))) (-3788 (((-112) $) NIL (|has| |#1| (-568)))) (-3543 (((-783) $) NIL) (((-783) $ (-656 |#3|)) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3601 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2487 (($ $) NIL (|has| |#1| (-464)))) (-3921 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2104 (($ $) NIL)) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1146 |#1| |#2|) "failed") $) 23)) (-2860 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1146 |#1| |#2|) $) NIL)) (-3230 (($ $ $ |#3|) NIL (|has| |#1| (-174)))) (-2114 (($ $) NIL)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-3767 (($ $) NIL (|has| |#1| (-464))) (($ $ |#3|) NIL (|has| |#1| (-464)))) (-2103 (((-656 $) $) NIL)) (-4249 (((-112) $) NIL (|has| |#1| (-928)))) (-2431 (($ $ |#1| (-543 |#3|) $) NIL)) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| |#1| (-901 (-390))) (|has| |#3| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| |#1| (-901 (-576))) (|has| |#3| (-901 (-576)))))) (-3917 (((-783) $ |#2|) NIL) (((-783) $) 10)) (-4193 (((-112) $) NIL)) (-2217 (((-783) $) NIL)) (-1955 (($ (-1193 |#1|) |#3|) NIL) (($ (-1193 $) |#3|) NIL)) (-1608 (((-656 $) $) NIL)) (-2823 (((-112) $) NIL)) (-1945 (($ |#1| (-543 |#3|)) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|) (-656 (-783))) NIL)) (-4130 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $ |#3|) NIL)) (-3751 (((-543 |#3|) $) NIL) (((-783) $ |#3|) NIL) (((-656 (-783)) $ (-656 |#3|)) NIL)) (-2999 (($ (-1 (-543 |#3|) (-543 |#3|)) $) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-4028 (((-1 $ (-783)) |#2|) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-238)))) (-3721 (((-3 |#3| "failed") $) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-2759 ((|#3| $) NIL)) (-3458 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3699 (((-1179) $) NIL)) (-4136 (((-112) $) NIL)) (-1385 (((-3 (-656 $) "failed") $) NIL)) (-1690 (((-3 (-656 $) "failed") $) NIL)) (-2040 (((-3 (-2 (|:| |var| |#3|) (|:| -3422 (-783))) "failed") $) NIL)) (-4286 (($ $) NIL)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) NIL)) (-2070 ((|#1| $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4100 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-928)))) (-3476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3284 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-656 |#3|) (-656 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-656 |#3|) (-656 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 $)) NIL (|has| |#1| (-238))) (($ $ |#2| |#1|) NIL (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 |#1|)) NIL (|has| |#1| (-238)))) (-4352 (($ $ |#3|) NIL (|has| |#1| (-174)))) (-2775 (($ $ (-656 |#3|) (-656 (-783))) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2570 (((-656 |#2|) $) NIL)) (-3634 (((-543 |#3|) $) NIL) (((-783) $ |#3|) NIL) (((-656 (-783)) $ (-656 |#3|)) NIL) (((-783) $ |#2|) NIL)) (-4172 (((-907 (-390)) $) NIL (-12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#3| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#3| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))))) (-2457 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ |#3|) NIL (|has| |#1| (-464)))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1146 |#1| |#2|)) 32) (($ (-419 (-576))) NIL (-2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-1618 (((-656 |#1|) $) NIL)) (-3177 ((|#1| $ (-543 |#3|)) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|) (-656 (-783))) NIL)) (-4336 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3996 (((-783)) NIL T CONST)) (-2541 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2020 (($ $ (-656 |#3|) (-656 (-783))) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-1857 (((-656 (-783)) $) NIL) (((-656 (-783)) $ |#2|) NIL)) (-2791 (((-783) $) NIL) (((-783) $ |#2|) NIL)) (-1969 (((-656 |#3|) $) NIL)) (-1797 (((-1193 $) $ |#3|) NIL) (((-1193 |#1|) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4195 (($ $) NIL (|has| |#1| (-568)))) (-1760 (((-112) $) NIL (|has| |#1| (-568)))) (-4329 (((-783) $) NIL) (((-783) $ (-656 |#3|)) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3646 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3444 (($ $) NIL (|has| |#1| (-464)))) (-3760 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3979 (($ $) NIL)) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1146 |#1| |#2|) "failed") $) 23)) (-2859 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1146 |#1| |#2|) $) NIL)) (-4334 (($ $ $ |#3|) NIL (|has| |#1| (-174)))) (-2114 (($ $) NIL)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1547 (($ $) NIL (|has| |#1| (-464))) (($ $ |#3|) NIL (|has| |#1| (-464)))) (-2103 (((-656 $) $) NIL)) (-3833 (((-112) $) NIL (|has| |#1| (-928)))) (-4124 (($ $ |#1| (-543 |#3|) $) NIL)) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| |#1| (-901 (-390))) (|has| |#3| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| |#1| (-901 (-576))) (|has| |#3| (-901 (-576)))))) (-3726 (((-783) $ |#2|) NIL) (((-783) $) 10)) (-1351 (((-112) $) NIL)) (-3799 (((-783) $) NIL)) (-1956 (($ (-1193 |#1|) |#3|) NIL) (($ (-1193 $) |#3|) NIL)) (-2846 (((-656 $) $) NIL)) (-3538 (((-112) $) NIL)) (-1944 (($ |#1| (-543 |#3|)) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|) (-656 (-783))) NIL)) (-1915 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $ |#3|) NIL)) (-2578 (((-543 |#3|) $) NIL) (((-783) $ |#3|) NIL) (((-656 (-783)) $ (-656 |#3|)) NIL)) (-3878 (($ (-1 (-543 |#3|) (-543 |#3|)) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2150 (((-1 $ (-783)) |#2|) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-238)))) (-2289 (((-3 |#3| "failed") $) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-2758 ((|#3| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2046 (((-1179) $) NIL)) (-1970 (((-112) $) NIL)) (-3845 (((-3 (-656 $) "failed") $) NIL)) (-2363 (((-3 (-656 $) "failed") $) NIL)) (-1452 (((-3 (-2 (|:| |var| |#3|) (|:| -2508 (-783))) "failed") $) NIL)) (-4286 (($ $) NIL)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) NIL)) (-2070 ((|#1| $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3497 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1644 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-928)))) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3282 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-656 |#3|) (-656 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-656 |#3|) (-656 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 $)) NIL (|has| |#1| (-238))) (($ $ |#2| |#1|) NIL (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 |#1|)) NIL (|has| |#1| (-238)))) (-2269 (($ $ |#3|) NIL (|has| |#1| (-174)))) (-2774 (($ $ (-656 |#3|) (-656 (-783))) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-3051 (((-656 |#2|) $) NIL)) (-2683 (((-543 |#3|) $) NIL) (((-783) $ |#3|) NIL) (((-656 (-783)) $ (-656 |#3|)) NIL) (((-783) $ |#2|) NIL)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#3| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#3| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))))) (-4370 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ |#3|) NIL (|has| |#1| (-464)))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1146 |#1| |#2|)) 32) (($ (-419 (-576))) NIL (-2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2937 (((-656 |#1|) $) NIL)) (-1822 ((|#1| $ (-543 |#3|)) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|) (-656 (-783))) NIL)) (-3390 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3154 (((-783)) NIL T CONST)) (-2717 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2020 (($ $ (-656 |#3|) (-656 (-783))) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) (((-273 |#1| |#2| |#3|) (-13 (-260 |#1| |#2| |#3| (-543 |#3|)) (-1059 (-1146 |#1| |#2|))) (-1070) (-861) (-275 |#2|)) (T -273)) NIL (-13 (-260 |#1| |#2| |#3| (-543 |#3|)) (-1059 (-1146 |#1| |#2|))) -((-1920 (((-783) $) 37)) (-1572 (((-3 |#2| "failed") $) 22)) (-2860 ((|#2| $) 33)) (-2775 (($ $ (-783)) 18) (($ $) 14)) (-3570 (((-876) $) 32) (($ |#2|) 11)) (-2925 (((-112) $ $) 26)) (-2950 (((-112) $ $) 36))) -(((-274 |#1| |#2|) (-10 -8 (-15 -1920 ((-783) |#1|)) (-15 -3570 (|#1| |#2|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2860 (|#2| |#1|)) (-15 -2775 (|#1| |#1|)) (-15 -2775 (|#1| |#1| (-783))) (-15 -2950 ((-112) |#1| |#1|)) (-15 -3570 ((-876) |#1|)) (-15 -2925 ((-112) |#1| |#1|))) (-275 |#2|) (-861)) (T -274)) +((-2791 (((-783) $) 37)) (-1572 (((-3 |#2| "failed") $) 22)) (-2859 ((|#2| $) 33)) (-2774 (($ $ (-783)) 18) (($ $) 14)) (-3569 (((-876) $) 32) (($ |#2|) 11)) (-2924 (((-112) $ $) 26)) (-2949 (((-112) $ $) 36))) +(((-274 |#1| |#2|) (-10 -8 (-15 -2791 ((-783) |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -2774 (|#1| |#1|)) (-15 -2774 (|#1| |#1| (-783))) (-15 -2949 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -2924 ((-112) |#1| |#1|))) (-275 |#2|) (-861)) (T -274)) NIL -(-10 -8 (-15 -1920 ((-783) |#1|)) (-15 -3570 (|#1| |#2|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2860 (|#2| |#1|)) (-15 -2775 (|#1| |#1|)) (-15 -2775 (|#1| |#1| (-783))) (-15 -2950 ((-112) |#1| |#1|)) (-15 -3570 ((-876) |#1|)) (-15 -2925 ((-112) |#1| |#1|))) -((-3489 (((-112) $ $) 7)) (-1920 (((-783) $) 23)) (-3055 ((|#1| $) 24)) (-1572 (((-3 |#1| "failed") $) 28)) (-2860 ((|#1| $) 29)) (-3917 (((-783) $) 25)) (-3125 (($ $ $) 20)) (-3133 (($ $ $) 19)) (-4028 (($ |#1| (-783)) 26)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2775 (($ $ (-783)) 32) (($ $) 30)) (-3570 (((-876) $) 12) (($ |#1|) 27)) (-4055 (((-112) $ $) 6)) (-2020 (($ $ (-783)) 33) (($ $) 31)) (-2992 (((-112) $ $) 18)) (-2964 (((-112) $ $) 16)) (-2925 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2950 (((-112) $ $) 15))) +(-10 -8 (-15 -2791 ((-783) |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -2774 (|#1| |#1|)) (-15 -2774 (|#1| |#1| (-783))) (-15 -2949 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -2924 ((-112) |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-2791 (((-783) $) 23)) (-3054 ((|#1| $) 24)) (-1572 (((-3 |#1| "failed") $) 28)) (-2859 ((|#1| $) 29)) (-3726 (((-783) $) 25)) (-3124 (($ $ $) 20)) (-1441 (($ $ $) 19)) (-2150 (($ |#1| (-783)) 26)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2774 (($ $ (-783)) 32) (($ $) 30)) (-3569 (((-876) $) 12) (($ |#1|) 27)) (-2399 (((-112) $ $) 6)) (-2020 (($ $ (-783)) 33) (($ $) 31)) (-2990 (((-112) $ $) 18)) (-2962 (((-112) $ $) 16)) (-2924 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2949 (((-112) $ $) 15))) (((-275 |#1|) (-141) (-861)) (T -275)) -((-3570 (*1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-861)))) (-4028 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-275 *2)) (-4 *2 (-861)))) (-3917 (*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-861)) (-5 *2 (-783)))) (-3055 (*1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-861)))) (-1920 (*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-861)) (-5 *2 (-783))))) -(-13 (-861) (-237) (-1059 |t#1|) (-10 -8 (-15 -4028 ($ |t#1| (-783))) (-15 -3917 ((-783) $)) (-15 -3055 (|t#1| $)) (-15 -1920 ((-783) $)) (-15 -3570 ($ |t#1|)))) +((-3569 (*1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-861)))) (-2150 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-275 *2)) (-4 *2 (-861)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-861)) (-5 *2 (-783)))) (-3054 (*1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-861)))) (-2791 (*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-861)) (-5 *2 (-783))))) +(-13 (-861) (-237) (-1059 |t#1|) (-10 -8 (-15 -2150 ($ |t#1| (-783))) (-15 -3726 ((-783) $)) (-15 -3054 (|t#1| $)) (-15 -2791 ((-783) $)) (-15 -3569 ($ |t#1|)))) (((-102) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-234 $) . T) ((-237) . T) ((-861) . T) ((-864) . T) ((-1059 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-1969 (((-656 (-1197)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) 53)) (-3447 (((-656 (-1197)) (-326 (-227)) (-783)) 94)) (-2821 (((-3 (-326 (-227)) "failed") (-326 (-227))) 63)) (-3479 (((-326 (-227)) (-326 (-227))) 79)) (-2039 (((-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 38)) (-1406 (((-112) (-656 (-326 (-227)))) 104)) (-2665 (((-112) (-326 (-227))) 36)) (-3255 (((-656 (-1179)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))))) 132)) (-2298 (((-656 (-326 (-227))) (-656 (-326 (-227)))) 108)) (-2312 (((-656 (-326 (-227))) (-656 (-326 (-227)))) 106)) (-1654 (((-701 (-227)) (-656 (-326 (-227))) (-783)) 120)) (-3612 (((-112) (-326 (-227))) 31) (((-112) (-656 (-326 (-227)))) 105)) (-1625 (((-656 (-227)) (-656 (-855 (-227))) (-227)) 15)) (-3933 (((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) 126)) (-3915 (((-1056) (-1197) (-1056)) 46))) -(((-276) (-10 -7 (-15 -1625 ((-656 (-227)) (-656 (-855 (-227))) (-227))) (-15 -2039 ((-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2821 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -3479 ((-326 (-227)) (-326 (-227)))) (-15 -1406 ((-112) (-656 (-326 (-227))))) (-15 -3612 ((-112) (-656 (-326 (-227))))) (-15 -3612 ((-112) (-326 (-227)))) (-15 -1654 ((-701 (-227)) (-656 (-326 (-227))) (-783))) (-15 -2312 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -2298 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -2665 ((-112) (-326 (-227)))) (-15 -1969 ((-656 (-1197)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227)))))) (-15 -3447 ((-656 (-1197)) (-326 (-227)) (-783))) (-15 -3915 ((-1056) (-1197) (-1056))) (-15 -3933 ((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227)))))) (-15 -3255 ((-656 (-1179)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227)))))))))) (T -276)) -((-3255 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))))) (-5 *2 (-656 (-1179))) (-5 *1 (-276)))) (-3933 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) (-5 *2 (-390)) (-5 *1 (-276)))) (-3915 (*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-1197)) (-5 *1 (-276)))) (-3447 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-783)) (-5 *2 (-656 (-1197))) (-5 *1 (-276)))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) (-5 *2 (-656 (-1197))) (-5 *1 (-276)))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) (-2298 (*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276)))) (-2312 (*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276)))) (-1654 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) (-5 *1 (-276)))) (-3612 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) (-3612 (*1 *2 *3) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) (-1406 (*1 *2 *3) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) (-3479 (*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))) (-2821 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))) (-2039 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *1 (-276)))) (-1625 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-855 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 *4)) (-5 *1 (-276))))) -(-10 -7 (-15 -1625 ((-656 (-227)) (-656 (-855 (-227))) (-227))) (-15 -2039 ((-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2821 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -3479 ((-326 (-227)) (-326 (-227)))) (-15 -1406 ((-112) (-656 (-326 (-227))))) (-15 -3612 ((-112) (-656 (-326 (-227))))) (-15 -3612 ((-112) (-326 (-227)))) (-15 -1654 ((-701 (-227)) (-656 (-326 (-227))) (-783))) (-15 -2312 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -2298 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -2665 ((-112) (-326 (-227)))) (-15 -1969 ((-656 (-1197)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227)))))) (-15 -3447 ((-656 (-1197)) (-326 (-227)) (-783))) (-15 -3915 ((-1056) (-1197) (-1056))) (-15 -3933 ((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227)))))) (-15 -3255 ((-656 (-1179)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))))))) -((-3489 (((-112) $ $) NIL)) (-2927 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 56)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 32) (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) +((-1969 (((-656 (-1197)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) 53)) (-3446 (((-656 (-1197)) (-326 (-227)) (-783)) 94)) (-3513 (((-3 (-326 (-227)) "failed") (-326 (-227))) 63)) (-1808 (((-326 (-227)) (-326 (-227))) 79)) (-1440 (((-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 38)) (-4086 (((-112) (-656 (-326 (-227)))) 104)) (-2618 (((-112) (-326 (-227))) 36)) (-3351 (((-656 (-1179)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))))) 132)) (-2100 (((-656 (-326 (-227))) (-656 (-326 (-227)))) 108)) (-2251 (((-656 (-326 (-227))) (-656 (-326 (-227)))) 106)) (-2028 (((-701 (-227)) (-656 (-326 (-227))) (-783)) 120)) (-3753 (((-112) (-326 (-227))) 31) (((-112) (-656 (-326 (-227)))) 105)) (-3028 (((-656 (-227)) (-656 (-855 (-227))) (-227)) 15)) (-3886 (((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) 126)) (-3702 (((-1056) (-1197) (-1056)) 46))) +(((-276) (-10 -7 (-15 -3028 ((-656 (-227)) (-656 (-855 (-227))) (-227))) (-15 -1440 ((-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -3513 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -1808 ((-326 (-227)) (-326 (-227)))) (-15 -4086 ((-112) (-656 (-326 (-227))))) (-15 -3753 ((-112) (-656 (-326 (-227))))) (-15 -3753 ((-112) (-326 (-227)))) (-15 -2028 ((-701 (-227)) (-656 (-326 (-227))) (-783))) (-15 -2251 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -2100 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -2618 ((-112) (-326 (-227)))) (-15 -1969 ((-656 (-1197)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))) (-15 -3446 ((-656 (-1197)) (-326 (-227)) (-783))) (-15 -3702 ((-1056) (-1197) (-1056))) (-15 -3886 ((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))) (-15 -3351 ((-656 (-1179)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))))))) (T -276)) +((-3351 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))))) (-5 *2 (-656 (-1179))) (-5 *1 (-276)))) (-3886 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) (-5 *2 (-390)) (-5 *1 (-276)))) (-3702 (*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-1197)) (-5 *1 (-276)))) (-3446 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-783)) (-5 *2 (-656 (-1197))) (-5 *1 (-276)))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) (-5 *2 (-656 (-1197))) (-5 *1 (-276)))) (-2618 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) (-2100 (*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276)))) (-2251 (*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276)))) (-2028 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) (-5 *1 (-276)))) (-3753 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) (-3753 (*1 *2 *3) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) (-4086 (*1 *2 *3) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) (-1808 (*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))) (-3513 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))) (-1440 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *1 (-276)))) (-3028 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-855 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 *4)) (-5 *1 (-276))))) +(-10 -7 (-15 -3028 ((-656 (-227)) (-656 (-855 (-227))) (-227))) (-15 -1440 ((-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -3513 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -1808 ((-326 (-227)) (-326 (-227)))) (-15 -4086 ((-112) (-656 (-326 (-227))))) (-15 -3753 ((-112) (-656 (-326 (-227))))) (-15 -3753 ((-112) (-326 (-227)))) (-15 -2028 ((-701 (-227)) (-656 (-326 (-227))) (-783))) (-15 -2251 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -2100 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -2618 ((-112) (-326 (-227)))) (-15 -1969 ((-656 (-1197)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))) (-15 -3446 ((-656 (-1197)) (-326 (-227)) (-783))) (-15 -3702 ((-1056) (-1197) (-1056))) (-15 -3886 ((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))) (-15 -3351 ((-656 (-1179)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))))))) +((-3488 (((-112) $ $) NIL)) (-3301 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 56)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 32) (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) (((-277) (-851)) (T -277)) NIL (-851) -((-3489 (((-112) $ $) NIL)) (-2927 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) 72) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 63)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 41) (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) 43)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-3301 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) 72) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 63)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 41) (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) 43)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) (((-278) (-851)) (T -278)) NIL (-851) -((-3489 (((-112) $ $) NIL)) (-2927 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) 90) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 85)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 52) (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) 65)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-3301 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) 90) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 85)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 52) (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) 65)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) (((-279) (-851)) (T -279)) NIL (-851) -((-3489 (((-112) $ $) NIL)) (-2927 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 73)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 45) (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-3301 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 73)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 45) (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) (((-280) (-851)) (T -280)) NIL (-851) -((-3489 (((-112) $ $) NIL)) (-2927 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 65)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 31) (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-3301 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 65)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 31) (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) (((-281) (-851)) (T -281)) NIL (-851) -((-3489 (((-112) $ $) NIL)) (-2927 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 90)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 33) (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-3301 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 90)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 33) (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) (((-282) (-851)) (T -282)) NIL (-851) -((-3489 (((-112) $ $) NIL)) (-2927 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 87)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 32) (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-3301 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 87)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 32) (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) (((-283) (-851)) (T -283)) NIL (-851) -((-3489 (((-112) $ $) NIL)) (-3125 (($ $ $) NIL)) (-3133 (($ $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1797 (((-656 (-576)) $) 29)) (-3634 (((-783) $) 27)) (-3570 (((-876) $) 33) (($ (-656 (-576))) 23)) (-4055 (((-112) $ $) NIL)) (-3385 (($ (-783)) 30)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 9)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) 17))) -(((-284) (-13 (-861) (-10 -8 (-15 -3570 ($ (-656 (-576)))) (-15 -3634 ((-783) $)) (-15 -1797 ((-656 (-576)) $)) (-15 -3385 ($ (-783)))))) (T -284)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284)))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-284)))) (-1797 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284)))) (-3385 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-284))))) -(-13 (-861) (-10 -8 (-15 -3570 ($ (-656 (-576)))) (-15 -3634 ((-783) $)) (-15 -1797 ((-656 (-576)) $)) (-15 -3385 ($ (-783))))) -((-4025 ((|#2| |#2|) 77)) (-3901 ((|#2| |#2|) 65)) (-3399 (((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-4006 ((|#2| |#2|) 75)) (-3877 ((|#2| |#2|) 63)) (-4050 ((|#2| |#2|) 79)) (-3920 ((|#2| |#2|) 67)) (-1600 ((|#2|) 46)) (-1777 (((-115) (-115)) 100)) (-3745 ((|#2| |#2|) 61)) (-2235 (((-112) |#2|) 147)) (-2696 ((|#2| |#2|) 195)) (-2674 ((|#2| |#2|) 171)) (-4084 ((|#2|) 59)) (-4167 ((|#2|) 58)) (-1502 ((|#2| |#2|) 191)) (-1544 ((|#2| |#2|) 167)) (-1734 ((|#2| |#2|) 199)) (-3209 ((|#2| |#2|) 175)) (-1973 ((|#2| |#2|) 163)) (-1571 ((|#2| |#2|) 165)) (-3997 ((|#2| |#2|) 201)) (-3062 ((|#2| |#2|) 177)) (-1782 ((|#2| |#2|) 197)) (-2485 ((|#2| |#2|) 173)) (-2497 ((|#2| |#2|) 193)) (-4374 ((|#2| |#2|) 169)) (-3789 ((|#2| |#2|) 207)) (-2352 ((|#2| |#2|) 183)) (-3178 ((|#2| |#2|) 203)) (-1407 ((|#2| |#2|) 179)) (-1578 ((|#2| |#2|) 211)) (-3524 ((|#2| |#2|) 187)) (-3023 ((|#2| |#2|) 213)) (-3693 ((|#2| |#2|) 189)) (-1448 ((|#2| |#2|) 209)) (-2390 ((|#2| |#2|) 185)) (-3356 ((|#2| |#2|) 205)) (-1981 ((|#2| |#2|) 181)) (-4104 ((|#2| |#2|) 62)) (-4061 ((|#2| |#2|) 80)) (-3930 ((|#2| |#2|) 68)) (-4037 ((|#2| |#2|) 78)) (-3910 ((|#2| |#2|) 66)) (-4014 ((|#2| |#2|) 76)) (-3889 ((|#2| |#2|) 64)) (-2468 (((-112) (-115)) 98)) (-2791 ((|#2| |#2|) 83)) (-3961 ((|#2| |#2|) 71)) (-4071 ((|#2| |#2|) 81)) (-3938 ((|#2| |#2|) 69)) (-2815 ((|#2| |#2|) 85)) (-3983 ((|#2| |#2|) 73)) (-4388 ((|#2| |#2|) 86)) (-3995 ((|#2| |#2|) 74)) (-2803 ((|#2| |#2|) 84)) (-3974 ((|#2| |#2|) 72)) (-4083 ((|#2| |#2|) 82)) (-3951 ((|#2| |#2|) 70))) -(((-285 |#1| |#2|) (-10 -7 (-15 -4104 (|#2| |#2|)) (-15 -3745 (|#2| |#2|)) (-15 -3877 (|#2| |#2|)) (-15 -3889 (|#2| |#2|)) (-15 -3901 (|#2| |#2|)) (-15 -3910 (|#2| |#2|)) (-15 -3920 (|#2| |#2|)) (-15 -3930 (|#2| |#2|)) (-15 -3938 (|#2| |#2|)) (-15 -3951 (|#2| |#2|)) (-15 -3961 (|#2| |#2|)) (-15 -3974 (|#2| |#2|)) (-15 -3983 (|#2| |#2|)) (-15 -3995 (|#2| |#2|)) (-15 -4006 (|#2| |#2|)) (-15 -4014 (|#2| |#2|)) (-15 -4025 (|#2| |#2|)) (-15 -4037 (|#2| |#2|)) (-15 -4050 (|#2| |#2|)) (-15 -4061 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -4083 (|#2| |#2|)) (-15 -2791 (|#2| |#2|)) (-15 -2803 (|#2| |#2|)) (-15 -2815 (|#2| |#2|)) (-15 -4388 (|#2| |#2|)) (-15 -1600 (|#2|)) (-15 -2468 ((-112) (-115))) (-15 -1777 ((-115) (-115))) (-15 -4167 (|#2|)) (-15 -4084 (|#2|)) (-15 -1571 (|#2| |#2|)) (-15 -1973 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -4374 (|#2| |#2|)) (-15 -2674 (|#2| |#2|)) (-15 -2485 (|#2| |#2|)) (-15 -3209 (|#2| |#2|)) (-15 -3062 (|#2| |#2|)) (-15 -1407 (|#2| |#2|)) (-15 -1981 (|#2| |#2|)) (-15 -2352 (|#2| |#2|)) (-15 -2390 (|#2| |#2|)) (-15 -3524 (|#2| |#2|)) (-15 -3693 (|#2| |#2|)) (-15 -1502 (|#2| |#2|)) (-15 -2497 (|#2| |#2|)) (-15 -2696 (|#2| |#2|)) (-15 -1782 (|#2| |#2|)) (-15 -1734 (|#2| |#2|)) (-15 -3997 (|#2| |#2|)) (-15 -3178 (|#2| |#2|)) (-15 -3356 (|#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -1448 (|#2| |#2|)) (-15 -1578 (|#2| |#2|)) (-15 -3023 (|#2| |#2|)) (-15 -3399 ((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2235 ((-112) |#2|))) (-568) (-13 (-442 |#1|) (-1023))) (T -285)) -((-2235 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-442 *4) (-1023))))) (-3399 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-656 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-442 *4) (-1023))) (-4 *4 (-568)) (-5 *1 (-285 *4 *2)))) (-3023 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1578 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1448 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3356 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3178 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3997 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1734 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1782 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2696 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2497 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1502 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3693 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3524 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2390 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2352 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1981 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1407 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3062 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3209 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2485 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2674 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4374 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1973 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1571 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4084 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1023))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-4167 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1023))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-1777 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-285 *3 *4)) (-4 *4 (-13 (-442 *3) (-1023))))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-442 *4) (-1023))))) (-1600 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1023))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-4388 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2815 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2803 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2791 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4083 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4061 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4050 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4037 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4025 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4014 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4006 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3995 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3983 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3974 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3961 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3951 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3938 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3930 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3920 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3910 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3901 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3889 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3877 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3745 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4104 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023)))))) -(-10 -7 (-15 -4104 (|#2| |#2|)) (-15 -3745 (|#2| |#2|)) (-15 -3877 (|#2| |#2|)) (-15 -3889 (|#2| |#2|)) (-15 -3901 (|#2| |#2|)) (-15 -3910 (|#2| |#2|)) (-15 -3920 (|#2| |#2|)) (-15 -3930 (|#2| |#2|)) (-15 -3938 (|#2| |#2|)) (-15 -3951 (|#2| |#2|)) (-15 -3961 (|#2| |#2|)) (-15 -3974 (|#2| |#2|)) (-15 -3983 (|#2| |#2|)) (-15 -3995 (|#2| |#2|)) (-15 -4006 (|#2| |#2|)) (-15 -4014 (|#2| |#2|)) (-15 -4025 (|#2| |#2|)) (-15 -4037 (|#2| |#2|)) (-15 -4050 (|#2| |#2|)) (-15 -4061 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -4083 (|#2| |#2|)) (-15 -2791 (|#2| |#2|)) (-15 -2803 (|#2| |#2|)) (-15 -2815 (|#2| |#2|)) (-15 -4388 (|#2| |#2|)) (-15 -1600 (|#2|)) (-15 -2468 ((-112) (-115))) (-15 -1777 ((-115) (-115))) (-15 -4167 (|#2|)) (-15 -4084 (|#2|)) (-15 -1571 (|#2| |#2|)) (-15 -1973 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -4374 (|#2| |#2|)) (-15 -2674 (|#2| |#2|)) (-15 -2485 (|#2| |#2|)) (-15 -3209 (|#2| |#2|)) (-15 -3062 (|#2| |#2|)) (-15 -1407 (|#2| |#2|)) (-15 -1981 (|#2| |#2|)) (-15 -2352 (|#2| |#2|)) (-15 -2390 (|#2| |#2|)) (-15 -3524 (|#2| |#2|)) (-15 -3693 (|#2| |#2|)) (-15 -1502 (|#2| |#2|)) (-15 -2497 (|#2| |#2|)) (-15 -2696 (|#2| |#2|)) (-15 -1782 (|#2| |#2|)) (-15 -1734 (|#2| |#2|)) (-15 -3997 (|#2| |#2|)) (-15 -3178 (|#2| |#2|)) (-15 -3356 (|#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -1448 (|#2| |#2|)) (-15 -1578 (|#2| |#2|)) (-15 -3023 (|#2| |#2|)) (-15 -3399 ((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2235 ((-112) |#2|))) -((-2998 (((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1197)) 151)) (-3040 ((|#2| (-419 (-576)) |#2|) 49)) (-1549 ((|#2| |#2| (-624 |#2|)) 144)) (-1744 (((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1197)) 143)) (-2730 ((|#2| |#2| (-1197)) 20) ((|#2| |#2|) 23)) (-2923 ((|#2| |#2| (-1197)) 157) ((|#2| |#2|) 155))) -(((-286 |#1| |#2|) (-10 -7 (-15 -2923 (|#2| |#2|)) (-15 -2923 (|#2| |#2| (-1197))) (-15 -1744 ((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1197))) (-15 -2730 (|#2| |#2|)) (-15 -2730 (|#2| |#2| (-1197))) (-15 -2998 ((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1197))) (-15 -1549 (|#2| |#2| (-624 |#2|))) (-15 -3040 (|#2| (-419 (-576)) |#2|))) (-13 (-568) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -286)) -((-3040 (*1 *2 *3 *2) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) (-1549 (*1 *2 *2 *3) (-12 (-5 *3 (-624 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))) (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)))) (-2998 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-1197)) (-4 *2 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *5 *2)))) (-2730 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) (-2730 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) (-1744 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-656 (-624 *3))) (|:| |vals| (-656 *3)))) (-5 *1 (-286 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-2923 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) (-2923 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3)))))) -(-10 -7 (-15 -2923 (|#2| |#2|)) (-15 -2923 (|#2| |#2| (-1197))) (-15 -1744 ((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1197))) (-15 -2730 (|#2| |#2|)) (-15 -2730 (|#2| |#2| (-1197))) (-15 -2998 ((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1197))) (-15 -1549 (|#2| |#2| (-624 |#2|))) (-15 -3040 (|#2| (-419 (-576)) |#2|))) -((-2099 (((-3 |#3| "failed") |#3|) 120)) (-4025 ((|#3| |#3|) 142)) (-2447 (((-3 |#3| "failed") |#3|) 89)) (-3901 ((|#3| |#3|) 132)) (-4329 (((-3 |#3| "failed") |#3|) 65)) (-4006 ((|#3| |#3|) 140)) (-3704 (((-3 |#3| "failed") |#3|) 53)) (-3877 ((|#3| |#3|) 130)) (-4410 (((-3 |#3| "failed") |#3|) 122)) (-4050 ((|#3| |#3|) 144)) (-1393 (((-3 |#3| "failed") |#3|) 91)) (-3920 ((|#3| |#3|) 134)) (-2932 (((-3 |#3| "failed") |#3| (-783)) 41)) (-2194 (((-3 |#3| "failed") |#3|) 81)) (-3745 ((|#3| |#3|) 129)) (-4331 (((-3 |#3| "failed") |#3|) 51)) (-4104 ((|#3| |#3|) 128)) (-2501 (((-3 |#3| "failed") |#3|) 123)) (-4061 ((|#3| |#3|) 145)) (-1488 (((-3 |#3| "failed") |#3|) 92)) (-3930 ((|#3| |#3|) 135)) (-3293 (((-3 |#3| "failed") |#3|) 121)) (-4037 ((|#3| |#3|) 143)) (-3180 (((-3 |#3| "failed") |#3|) 90)) (-3910 ((|#3| |#3|) 133)) (-3575 (((-3 |#3| "failed") |#3|) 67)) (-4014 ((|#3| |#3|) 141)) (-4427 (((-3 |#3| "failed") |#3|) 55)) (-3889 ((|#3| |#3|) 131)) (-2527 (((-3 |#3| "failed") |#3|) 73)) (-2791 ((|#3| |#3|) 148)) (-2563 (((-3 |#3| "failed") |#3|) 114)) (-3961 ((|#3| |#3|) 152)) (-3241 (((-3 |#3| "failed") |#3|) 69)) (-4071 ((|#3| |#3|) 146)) (-4228 (((-3 |#3| "failed") |#3|) 57)) (-3938 ((|#3| |#3|) 136)) (-4381 (((-3 |#3| "failed") |#3|) 77)) (-2815 ((|#3| |#3|) 150)) (-1733 (((-3 |#3| "failed") |#3|) 61)) (-3983 ((|#3| |#3|) 138)) (-2981 (((-3 |#3| "failed") |#3|) 79)) (-4388 ((|#3| |#3|) 151)) (-1441 (((-3 |#3| "failed") |#3|) 63)) (-3995 ((|#3| |#3|) 139)) (-2838 (((-3 |#3| "failed") |#3|) 75)) (-2803 ((|#3| |#3|) 149)) (-1961 (((-3 |#3| "failed") |#3|) 117)) (-3974 ((|#3| |#3|) 153)) (-4289 (((-3 |#3| "failed") |#3|) 71)) (-4083 ((|#3| |#3|) 147)) (-3658 (((-3 |#3| "failed") |#3|) 59)) (-3951 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-419 (-576))) 47 (|has| |#1| (-374))))) -(((-287 |#1| |#2| |#3|) (-13 (-1004 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -4104 (|#3| |#3|)) (-15 -3745 (|#3| |#3|)) (-15 -3877 (|#3| |#3|)) (-15 -3889 (|#3| |#3|)) (-15 -3901 (|#3| |#3|)) (-15 -3910 (|#3| |#3|)) (-15 -3920 (|#3| |#3|)) (-15 -3930 (|#3| |#3|)) (-15 -3938 (|#3| |#3|)) (-15 -3951 (|#3| |#3|)) (-15 -3961 (|#3| |#3|)) (-15 -3974 (|#3| |#3|)) (-15 -3983 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -4006 (|#3| |#3|)) (-15 -4014 (|#3| |#3|)) (-15 -4025 (|#3| |#3|)) (-15 -4037 (|#3| |#3|)) (-15 -4050 (|#3| |#3|)) (-15 -4061 (|#3| |#3|)) (-15 -4071 (|#3| |#3|)) (-15 -4083 (|#3| |#3|)) (-15 -2791 (|#3| |#3|)) (-15 -2803 (|#3| |#3|)) (-15 -2815 (|#3| |#3|)) (-15 -4388 (|#3| |#3|)))) (-38 (-419 (-576))) (-1279 |#1|) (-1250 |#1| |#2|)) (T -287)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) (-4 *5 (-1279 *4)) (-5 *1 (-287 *4 *5 *2)) (-4 *2 (-1250 *4 *5)))) (-4104 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3745 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3877 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3889 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3901 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3910 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3920 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3930 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3938 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3951 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3961 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3974 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3983 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3995 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4006 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4014 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4025 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4037 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4050 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4061 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4083 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-2791 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-2803 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-2815 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4388 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4))))) -(-13 (-1004 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -4104 (|#3| |#3|)) (-15 -3745 (|#3| |#3|)) (-15 -3877 (|#3| |#3|)) (-15 -3889 (|#3| |#3|)) (-15 -3901 (|#3| |#3|)) (-15 -3910 (|#3| |#3|)) (-15 -3920 (|#3| |#3|)) (-15 -3930 (|#3| |#3|)) (-15 -3938 (|#3| |#3|)) (-15 -3951 (|#3| |#3|)) (-15 -3961 (|#3| |#3|)) (-15 -3974 (|#3| |#3|)) (-15 -3983 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -4006 (|#3| |#3|)) (-15 -4014 (|#3| |#3|)) (-15 -4025 (|#3| |#3|)) (-15 -4037 (|#3| |#3|)) (-15 -4050 (|#3| |#3|)) (-15 -4061 (|#3| |#3|)) (-15 -4071 (|#3| |#3|)) (-15 -4083 (|#3| |#3|)) (-15 -2791 (|#3| |#3|)) (-15 -2803 (|#3| |#3|)) (-15 -2815 (|#3| |#3|)) (-15 -4388 (|#3| |#3|)))) -((-2099 (((-3 |#3| "failed") |#3|) 70)) (-4025 ((|#3| |#3|) 137)) (-2447 (((-3 |#3| "failed") |#3|) 54)) (-3901 ((|#3| |#3|) 125)) (-4329 (((-3 |#3| "failed") |#3|) 66)) (-4006 ((|#3| |#3|) 135)) (-3704 (((-3 |#3| "failed") |#3|) 50)) (-3877 ((|#3| |#3|) 123)) (-4410 (((-3 |#3| "failed") |#3|) 74)) (-4050 ((|#3| |#3|) 139)) (-1393 (((-3 |#3| "failed") |#3|) 58)) (-3920 ((|#3| |#3|) 127)) (-2932 (((-3 |#3| "failed") |#3| (-783)) 38)) (-2194 (((-3 |#3| "failed") |#3|) 48)) (-3745 ((|#3| |#3|) 111)) (-4331 (((-3 |#3| "failed") |#3|) 46)) (-4104 ((|#3| |#3|) 122)) (-2501 (((-3 |#3| "failed") |#3|) 76)) (-4061 ((|#3| |#3|) 140)) (-1488 (((-3 |#3| "failed") |#3|) 60)) (-3930 ((|#3| |#3|) 128)) (-3293 (((-3 |#3| "failed") |#3|) 72)) (-4037 ((|#3| |#3|) 138)) (-3180 (((-3 |#3| "failed") |#3|) 56)) (-3910 ((|#3| |#3|) 126)) (-3575 (((-3 |#3| "failed") |#3|) 68)) (-4014 ((|#3| |#3|) 136)) (-4427 (((-3 |#3| "failed") |#3|) 52)) (-3889 ((|#3| |#3|) 124)) (-2527 (((-3 |#3| "failed") |#3|) 78)) (-2791 ((|#3| |#3|) 143)) (-2563 (((-3 |#3| "failed") |#3|) 62)) (-3961 ((|#3| |#3|) 131)) (-3241 (((-3 |#3| "failed") |#3|) 112)) (-4071 ((|#3| |#3|) 141)) (-4228 (((-3 |#3| "failed") |#3|) 100)) (-3938 ((|#3| |#3|) 129)) (-4381 (((-3 |#3| "failed") |#3|) 116)) (-2815 ((|#3| |#3|) 145)) (-1733 (((-3 |#3| "failed") |#3|) 107)) (-3983 ((|#3| |#3|) 133)) (-2981 (((-3 |#3| "failed") |#3|) 117)) (-4388 ((|#3| |#3|) 146)) (-1441 (((-3 |#3| "failed") |#3|) 109)) (-3995 ((|#3| |#3|) 134)) (-2838 (((-3 |#3| "failed") |#3|) 80)) (-2803 ((|#3| |#3|) 144)) (-1961 (((-3 |#3| "failed") |#3|) 64)) (-3974 ((|#3| |#3|) 132)) (-4289 (((-3 |#3| "failed") |#3|) 113)) (-4083 ((|#3| |#3|) 142)) (-3658 (((-3 |#3| "failed") |#3|) 103)) (-3951 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-419 (-576))) 44 (|has| |#1| (-374))))) -(((-288 |#1| |#2| |#3| |#4|) (-13 (-1004 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -4104 (|#3| |#3|)) (-15 -3745 (|#3| |#3|)) (-15 -3877 (|#3| |#3|)) (-15 -3889 (|#3| |#3|)) (-15 -3901 (|#3| |#3|)) (-15 -3910 (|#3| |#3|)) (-15 -3920 (|#3| |#3|)) (-15 -3930 (|#3| |#3|)) (-15 -3938 (|#3| |#3|)) (-15 -3951 (|#3| |#3|)) (-15 -3961 (|#3| |#3|)) (-15 -3974 (|#3| |#3|)) (-15 -3983 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -4006 (|#3| |#3|)) (-15 -4014 (|#3| |#3|)) (-15 -4025 (|#3| |#3|)) (-15 -4037 (|#3| |#3|)) (-15 -4050 (|#3| |#3|)) (-15 -4061 (|#3| |#3|)) (-15 -4071 (|#3| |#3|)) (-15 -4083 (|#3| |#3|)) (-15 -2791 (|#3| |#3|)) (-15 -2803 (|#3| |#3|)) (-15 -2815 (|#3| |#3|)) (-15 -4388 (|#3| |#3|)))) (-38 (-419 (-576))) (-1248 |#1|) (-1271 |#1| |#2|) (-1004 |#2|)) (T -288)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) (-4 *5 (-1248 *4)) (-5 *1 (-288 *4 *5 *2 *6)) (-4 *2 (-1271 *4 *5)) (-4 *6 (-1004 *5)))) (-4104 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3745 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3877 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3889 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3901 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3910 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3920 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3930 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3938 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3951 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3961 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3974 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3983 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3995 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-4006 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-4014 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-4025 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-4037 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-4050 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-4061 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-4083 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-2791 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-2803 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-2815 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-4388 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4))))) -(-13 (-1004 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -4104 (|#3| |#3|)) (-15 -3745 (|#3| |#3|)) (-15 -3877 (|#3| |#3|)) (-15 -3889 (|#3| |#3|)) (-15 -3901 (|#3| |#3|)) (-15 -3910 (|#3| |#3|)) (-15 -3920 (|#3| |#3|)) (-15 -3930 (|#3| |#3|)) (-15 -3938 (|#3| |#3|)) (-15 -3951 (|#3| |#3|)) (-15 -3961 (|#3| |#3|)) (-15 -3974 (|#3| |#3|)) (-15 -3983 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -4006 (|#3| |#3|)) (-15 -4014 (|#3| |#3|)) (-15 -4025 (|#3| |#3|)) (-15 -4037 (|#3| |#3|)) (-15 -4050 (|#3| |#3|)) (-15 -4061 (|#3| |#3|)) (-15 -4071 (|#3| |#3|)) (-15 -4083 (|#3| |#3|)) (-15 -2791 (|#3| |#3|)) (-15 -2803 (|#3| |#3|)) (-15 -2815 (|#3| |#3|)) (-15 -4388 (|#3| |#3|)))) -((-1410 (((-112) $) 20)) (-3035 (((-1202) $) 7)) (-2294 (((-3 (-518) "failed") $) 14)) (-3326 (((-3 (-656 $) "failed") $) NIL)) (-2350 (((-3 (-518) "failed") $) 21)) (-4033 (((-3 (-1125) "failed") $) 18)) (-3535 (((-112) $) 16)) (-3570 (((-876) $) NIL)) (-4041 (((-112) $) 9))) -(((-289) (-13 (-625 (-876)) (-10 -8 (-15 -3035 ((-1202) $)) (-15 -3535 ((-112) $)) (-15 -4033 ((-3 (-1125) "failed") $)) (-15 -1410 ((-112) $)) (-15 -2350 ((-3 (-518) "failed") $)) (-15 -4041 ((-112) $)) (-15 -2294 ((-3 (-518) "failed") $)) (-15 -3326 ((-3 (-656 $) "failed") $))))) (T -289)) -((-3035 (*1 *2 *1) (-12 (-5 *2 (-1202)) (-5 *1 (-289)))) (-3535 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-4033 (*1 *2 *1) (|partial| -12 (-5 *2 (-1125)) (-5 *1 (-289)))) (-1410 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-2350 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) (-4041 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-2294 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) (-3326 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-289))) (-5 *1 (-289))))) -(-13 (-625 (-876)) (-10 -8 (-15 -3035 ((-1202) $)) (-15 -3535 ((-112) $)) (-15 -4033 ((-3 (-1125) "failed") $)) (-15 -1410 ((-112) $)) (-15 -2350 ((-3 (-518) "failed") $)) (-15 -4041 ((-112) $)) (-15 -2294 ((-3 (-518) "failed") $)) (-15 -3326 ((-3 (-656 $) "failed") $)))) -((-3649 (((-609) $) 10)) (-3828 (((-597) $) 8)) (-1585 (((-301) $) 12)) (-4139 (($ (-597) (-609) (-301)) NIL)) (-3570 (((-876) $) 19))) -(((-290) (-13 (-625 (-876)) (-10 -8 (-15 -4139 ($ (-597) (-609) (-301))) (-15 -3828 ((-597) $)) (-15 -3649 ((-609) $)) (-15 -1585 ((-301) $))))) (T -290)) -((-4139 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-597)) (-5 *3 (-609)) (-5 *4 (-301)) (-5 *1 (-290)))) (-3828 (*1 *2 *1) (-12 (-5 *2 (-597)) (-5 *1 (-290)))) (-3649 (*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-290)))) (-1585 (*1 *2 *1) (-12 (-5 *2 (-301)) (-5 *1 (-290))))) -(-13 (-625 (-876)) (-10 -8 (-15 -4139 ($ (-597) (-609) (-301))) (-15 -3828 ((-597) $)) (-15 -3649 ((-609) $)) (-15 -1585 ((-301) $)))) -((-1974 (($ (-1 (-112) |#2|) $) 24)) (-1415 (($ $) 38)) (-1671 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3946 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-2453 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-2176 (($ |#2| $ (-576)) 20) (($ $ $ (-576)) 22)) (-3466 (($ $ (-576)) 11) (($ $ (-1255 (-576))) 14)) (-2974 (($ $ |#2|) 32) (($ $ $) NIL)) (-1615 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-656 $)) NIL))) -(((-291 |#1| |#2|) (-10 -8 (-15 -2453 (|#1| |#1| |#1|)) (-15 -1671 (|#1| |#2| |#1|)) (-15 -2453 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1671 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2974 (|#1| |#1| |#1|)) (-15 -2974 (|#1| |#1| |#2|)) (-15 -2176 (|#1| |#1| |#1| (-576))) (-15 -2176 (|#1| |#2| |#1| (-576))) (-15 -3466 (|#1| |#1| (-1255 (-576)))) (-15 -3466 (|#1| |#1| (-576))) (-15 -1615 (|#1| (-656 |#1|))) (-15 -1615 (|#1| |#1| |#1|)) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#2|)) (-15 -3946 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1974 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3946 (|#1| |#2| |#1|)) (-15 -1415 (|#1| |#1|))) (-292 |#2|) (-1238)) (T -291)) -NIL -(-10 -8 (-15 -2453 (|#1| |#1| |#1|)) (-15 -1671 (|#1| |#2| |#1|)) (-15 -2453 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1671 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2974 (|#1| |#1| |#1|)) (-15 -2974 (|#1| |#1| |#2|)) (-15 -2176 (|#1| |#1| |#1| (-576))) (-15 -2176 (|#1| |#2| |#1| (-576))) (-15 -3466 (|#1| |#1| (-1255 (-576)))) (-15 -3466 (|#1| |#1| (-576))) (-15 -1615 (|#1| (-656 |#1|))) (-15 -1615 (|#1| |#1| |#1|)) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#2|)) (-15 -3946 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1974 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3946 (|#1| |#2| |#1|)) (-15 -1415 (|#1| |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2047 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4466)))) (-1808 (((-112) $ (-783)) 8)) (-3756 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4466))) ((|#1| $ (-1255 (-576)) |#1|) 60 (|has| $ (-6 -4466)))) (-2300 (($ (-1 (-112) |#1|) $) 88)) (-1974 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4465)))) (-3886 (($) 7 T CONST)) (-1703 (($ $) 86 (|has| |#1| (-1121)))) (-1415 (($ $) 80 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1671 (($ (-1 (-112) |#1|) $) 92) (($ |#1| $) 87 (|has| |#1| (-1121)))) (-3946 (($ |#1| $) 79 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4465)))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4465)))) (-4335 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4466)))) (-4274 ((|#1| $ (-576)) 52)) (-3966 (((-656 |#1|) $) 31 (|has| $ (-6 -4465)))) (-4141 (($ (-783) |#1|) 70)) (-3870 (((-112) $ (-783)) 9)) (-2924 (((-576) $) 44 (|has| (-576) (-861)))) (-2453 (($ (-1 (-112) |#1| |#1|) $ $) 89) (($ $ $) 85 (|has| |#1| (-861)))) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-2137 (((-576) $) 45 (|has| (-576) (-861)))) (-4323 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1330 (((-112) $ (-783)) 10)) (-3699 (((-1179) $) 23 (|has| |#1| (-1121)))) (-1901 (($ |#1| $ (-576)) 91) (($ $ $ (-576)) 90)) (-2176 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-4234 (((-656 (-576)) $) 47)) (-3354 (((-112) (-576) $) 48)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3581 ((|#1| $) 43 (|has| (-576) (-861)))) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4046 (($ $ |#1|) 42 (|has| $ (-6 -4466)))) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3845 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2281 (((-656 |#1|) $) 49)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-2797 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1255 (-576))) 71)) (-2161 (($ $ (-576)) 94) (($ $ (-1255 (-576))) 93)) (-3466 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 13)) (-4172 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) 72)) (-2974 (($ $ |#1|) 96) (($ $ $) 95)) (-1615 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3570 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) NIL)) (-3124 (($ $ $) NIL)) (-1441 (($ $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-4178 (((-656 (-576)) $) 29)) (-2683 (((-783) $) 27)) (-3569 (((-876) $) 33) (($ (-656 (-576))) 23)) (-2399 (((-112) $ $) NIL)) (-2110 (($ (-783)) 30)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 9)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) 17))) +(((-284) (-13 (-861) (-10 -8 (-15 -3569 ($ (-656 (-576)))) (-15 -2683 ((-783) $)) (-15 -4178 ((-656 (-576)) $)) (-15 -2110 ($ (-783)))))) (T -284)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284)))) (-2683 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-284)))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284)))) (-2110 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-284))))) +(-13 (-861) (-10 -8 (-15 -3569 ($ (-656 (-576)))) (-15 -2683 ((-783) $)) (-15 -4178 ((-656 (-576)) $)) (-15 -2110 ($ (-783))))) +((-4024 ((|#2| |#2|) 77)) (-3900 ((|#2| |#2|) 65)) (-2271 (((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-4005 ((|#2| |#2|) 75)) (-3876 ((|#2| |#2|) 63)) (-4049 ((|#2| |#2|) 79)) (-3919 ((|#2| |#2|) 67)) (-1600 ((|#2|) 46)) (-1776 (((-115) (-115)) 100)) (-3744 ((|#2| |#2|) 61)) (-2676 (((-112) |#2|) 147)) (-1702 ((|#2| |#2|) 195)) (-1521 ((|#2| |#2|) 171)) (-2667 ((|#2|) 59)) (-4238 ((|#2|) 58)) (-4259 ((|#2| |#2|) 191)) (-3470 ((|#2| |#2|) 167)) (-1601 ((|#2| |#2|) 199)) (-4130 ((|#2| |#2|) 175)) (-2024 ((|#2| |#2|) 163)) (-3767 ((|#2| |#2|) 165)) (-3164 ((|#2| |#2|) 201)) (-3210 ((|#2| |#2|) 177)) (-4037 ((|#2| |#2|) 197)) (-3419 ((|#2| |#2|) 173)) (-3554 ((|#2| |#2|) 193)) (-2493 ((|#2| |#2|) 169)) (-1771 ((|#2| |#2|) 207)) (-1457 ((|#2| |#2|) 183)) (-1831 ((|#2| |#2|) 203)) (-3494 ((|#2| |#2|) 179)) (-3834 ((|#2| |#2|) 211)) (-4167 ((|#2| |#2|) 187)) (-2816 ((|#2| |#2|) 213)) (-3275 ((|#2| |#2|) 189)) (-2379 ((|#2| |#2|) 209)) (-1754 ((|#2| |#2|) 185)) (-3114 ((|#2| |#2|) 205)) (-2083 ((|#2| |#2|) 181)) (-4103 ((|#2| |#2|) 62)) (-4060 ((|#2| |#2|) 80)) (-3929 ((|#2| |#2|) 68)) (-4036 ((|#2| |#2|) 78)) (-3909 ((|#2| |#2|) 66)) (-4013 ((|#2| |#2|) 76)) (-3888 ((|#2| |#2|) 64)) (-1349 (((-112) (-115)) 98)) (-2790 ((|#2| |#2|) 83)) (-3960 ((|#2| |#2|) 71)) (-4070 ((|#2| |#2|) 81)) (-3937 ((|#2| |#2|) 69)) (-2814 ((|#2| |#2|) 85)) (-3982 ((|#2| |#2|) 73)) (-4387 ((|#2| |#2|) 86)) (-3994 ((|#2| |#2|) 74)) (-2802 ((|#2| |#2|) 84)) (-3973 ((|#2| |#2|) 72)) (-4082 ((|#2| |#2|) 82)) (-3950 ((|#2| |#2|) 70))) +(((-285 |#1| |#2|) (-10 -7 (-15 -4103 (|#2| |#2|)) (-15 -3744 (|#2| |#2|)) (-15 -3876 (|#2| |#2|)) (-15 -3888 (|#2| |#2|)) (-15 -3900 (|#2| |#2|)) (-15 -3909 (|#2| |#2|)) (-15 -3919 (|#2| |#2|)) (-15 -3929 (|#2| |#2|)) (-15 -3937 (|#2| |#2|)) (-15 -3950 (|#2| |#2|)) (-15 -3960 (|#2| |#2|)) (-15 -3973 (|#2| |#2|)) (-15 -3982 (|#2| |#2|)) (-15 -3994 (|#2| |#2|)) (-15 -4005 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -4024 (|#2| |#2|)) (-15 -4036 (|#2| |#2|)) (-15 -4049 (|#2| |#2|)) (-15 -4060 (|#2| |#2|)) (-15 -4070 (|#2| |#2|)) (-15 -4082 (|#2| |#2|)) (-15 -2790 (|#2| |#2|)) (-15 -2802 (|#2| |#2|)) (-15 -2814 (|#2| |#2|)) (-15 -4387 (|#2| |#2|)) (-15 -1600 (|#2|)) (-15 -1349 ((-112) (-115))) (-15 -1776 ((-115) (-115))) (-15 -4238 (|#2|)) (-15 -2667 (|#2|)) (-15 -3767 (|#2| |#2|)) (-15 -2024 (|#2| |#2|)) (-15 -3470 (|#2| |#2|)) (-15 -2493 (|#2| |#2|)) (-15 -1521 (|#2| |#2|)) (-15 -3419 (|#2| |#2|)) (-15 -4130 (|#2| |#2|)) (-15 -3210 (|#2| |#2|)) (-15 -3494 (|#2| |#2|)) (-15 -2083 (|#2| |#2|)) (-15 -1457 (|#2| |#2|)) (-15 -1754 (|#2| |#2|)) (-15 -4167 (|#2| |#2|)) (-15 -3275 (|#2| |#2|)) (-15 -4259 (|#2| |#2|)) (-15 -3554 (|#2| |#2|)) (-15 -1702 (|#2| |#2|)) (-15 -4037 (|#2| |#2|)) (-15 -1601 (|#2| |#2|)) (-15 -3164 (|#2| |#2|)) (-15 -1831 (|#2| |#2|)) (-15 -3114 (|#2| |#2|)) (-15 -1771 (|#2| |#2|)) (-15 -2379 (|#2| |#2|)) (-15 -3834 (|#2| |#2|)) (-15 -2816 (|#2| |#2|)) (-15 -2271 ((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2676 ((-112) |#2|))) (-568) (-13 (-442 |#1|) (-1023))) (T -285)) +((-2676 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-442 *4) (-1023))))) (-2271 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-656 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-442 *4) (-1023))) (-4 *4 (-568)) (-5 *1 (-285 *4 *2)))) (-2816 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3834 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2379 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1771 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3114 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1831 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3164 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1601 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4037 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1702 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3554 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4259 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3275 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4167 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1754 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1457 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2083 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3210 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4130 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3419 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1521 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2493 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3470 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2024 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3767 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2667 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1023))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-4238 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1023))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-1776 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-285 *3 *4)) (-4 *4 (-13 (-442 *3) (-1023))))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-442 *4) (-1023))))) (-1600 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1023))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-4387 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2814 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2802 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2790 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4082 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4060 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4049 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4036 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4024 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4013 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4005 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3994 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3982 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3973 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3960 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3950 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3929 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3900 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3888 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3876 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3744 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4103 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023)))))) +(-10 -7 (-15 -4103 (|#2| |#2|)) (-15 -3744 (|#2| |#2|)) (-15 -3876 (|#2| |#2|)) (-15 -3888 (|#2| |#2|)) (-15 -3900 (|#2| |#2|)) (-15 -3909 (|#2| |#2|)) (-15 -3919 (|#2| |#2|)) (-15 -3929 (|#2| |#2|)) (-15 -3937 (|#2| |#2|)) (-15 -3950 (|#2| |#2|)) (-15 -3960 (|#2| |#2|)) (-15 -3973 (|#2| |#2|)) (-15 -3982 (|#2| |#2|)) (-15 -3994 (|#2| |#2|)) (-15 -4005 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -4024 (|#2| |#2|)) (-15 -4036 (|#2| |#2|)) (-15 -4049 (|#2| |#2|)) (-15 -4060 (|#2| |#2|)) (-15 -4070 (|#2| |#2|)) (-15 -4082 (|#2| |#2|)) (-15 -2790 (|#2| |#2|)) (-15 -2802 (|#2| |#2|)) (-15 -2814 (|#2| |#2|)) (-15 -4387 (|#2| |#2|)) (-15 -1600 (|#2|)) (-15 -1349 ((-112) (-115))) (-15 -1776 ((-115) (-115))) (-15 -4238 (|#2|)) (-15 -2667 (|#2|)) (-15 -3767 (|#2| |#2|)) (-15 -2024 (|#2| |#2|)) (-15 -3470 (|#2| |#2|)) (-15 -2493 (|#2| |#2|)) (-15 -1521 (|#2| |#2|)) (-15 -3419 (|#2| |#2|)) (-15 -4130 (|#2| |#2|)) (-15 -3210 (|#2| |#2|)) (-15 -3494 (|#2| |#2|)) (-15 -2083 (|#2| |#2|)) (-15 -1457 (|#2| |#2|)) (-15 -1754 (|#2| |#2|)) (-15 -4167 (|#2| |#2|)) (-15 -3275 (|#2| |#2|)) (-15 -4259 (|#2| |#2|)) (-15 -3554 (|#2| |#2|)) (-15 -1702 (|#2| |#2|)) (-15 -4037 (|#2| |#2|)) (-15 -1601 (|#2| |#2|)) (-15 -3164 (|#2| |#2|)) (-15 -1831 (|#2| |#2|)) (-15 -3114 (|#2| |#2|)) (-15 -1771 (|#2| |#2|)) (-15 -2379 (|#2| |#2|)) (-15 -3834 (|#2| |#2|)) (-15 -2816 (|#2| |#2|)) (-15 -2271 ((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2676 ((-112) |#2|))) +((-3865 (((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1197)) 151)) (-3010 ((|#2| (-419 (-576)) |#2|) 49)) (-3534 ((|#2| |#2| (-624 |#2|)) 144)) (-1706 (((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1197)) 143)) (-1981 ((|#2| |#2| (-1197)) 20) ((|#2| |#2|) 23)) (-3270 ((|#2| |#2| (-1197)) 157) ((|#2| |#2|) 155))) +(((-286 |#1| |#2|) (-10 -7 (-15 -3270 (|#2| |#2|)) (-15 -3270 (|#2| |#2| (-1197))) (-15 -1706 ((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1197))) (-15 -1981 (|#2| |#2|)) (-15 -1981 (|#2| |#2| (-1197))) (-15 -3865 ((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1197))) (-15 -3534 (|#2| |#2| (-624 |#2|))) (-15 -3010 (|#2| (-419 (-576)) |#2|))) (-13 (-568) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -286)) +((-3010 (*1 *2 *3 *2) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) (-3534 (*1 *2 *2 *3) (-12 (-5 *3 (-624 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))) (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)))) (-3865 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-1197)) (-4 *2 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *5 *2)))) (-1981 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) (-1981 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) (-1706 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-656 (-624 *3))) (|:| |vals| (-656 *3)))) (-5 *1 (-286 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-3270 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) (-3270 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3)))))) +(-10 -7 (-15 -3270 (|#2| |#2|)) (-15 -3270 (|#2| |#2| (-1197))) (-15 -1706 ((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1197))) (-15 -1981 (|#2| |#2|)) (-15 -1981 (|#2| |#2| (-1197))) (-15 -3865 ((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1197))) (-15 -3534 (|#2| |#2| (-624 |#2|))) (-15 -3010 (|#2| (-419 (-576)) |#2|))) +((-1960 (((-3 |#3| "failed") |#3|) 120)) (-4024 ((|#3| |#3|) 142)) (-4266 (((-3 |#3| "failed") |#3|) 89)) (-3900 ((|#3| |#3|) 132)) (-3326 (((-3 |#3| "failed") |#3|) 65)) (-4005 ((|#3| |#3|) 140)) (-2097 (((-3 |#3| "failed") |#3|) 53)) (-3876 ((|#3| |#3|) 130)) (-1652 (((-3 |#3| "failed") |#3|) 122)) (-4049 ((|#3| |#3|) 144)) (-1563 (((-3 |#3| "failed") |#3|) 91)) (-3919 ((|#3| |#3|) 134)) (-3344 (((-3 |#3| "failed") |#3| (-783)) 41)) (-3572 (((-3 |#3| "failed") |#3|) 81)) (-3744 ((|#3| |#3|) 129)) (-3349 (((-3 |#3| "failed") |#3|) 51)) (-4103 ((|#3| |#3|) 128)) (-3602 (((-3 |#3| "failed") |#3|) 123)) (-4060 ((|#3| |#3|) 145)) (-4129 (((-3 |#3| "failed") |#3|) 92)) (-3929 ((|#3| |#3|) 135)) (-3747 (((-3 |#3| "failed") |#3|) 121)) (-4036 ((|#3| |#3|) 143)) (-1854 (((-3 |#3| "failed") |#3|) 90)) (-3909 ((|#3| |#3|) 133)) (-3379 (((-3 |#3| "failed") |#3|) 67)) (-4013 ((|#3| |#3|) 141)) (-1805 (((-3 |#3| "failed") |#3|) 55)) (-3888 ((|#3| |#3|) 131)) (-3892 (((-3 |#3| "failed") |#3|) 73)) (-2790 ((|#3| |#3|) 148)) (-2973 (((-3 |#3| "failed") |#3|) 114)) (-3960 ((|#3| |#3|) 152)) (-1322 (((-3 |#3| "failed") |#3|) 69)) (-4070 ((|#3| |#3|) 146)) (-3614 (((-3 |#3| "failed") |#3|) 57)) (-3937 ((|#3| |#3|) 136)) (-2561 (((-3 |#3| "failed") |#3|) 77)) (-2814 ((|#3| |#3|) 150)) (-1591 (((-3 |#3| "failed") |#3|) 61)) (-3982 ((|#3| |#3|) 138)) (-3705 (((-3 |#3| "failed") |#3|) 79)) (-4387 ((|#3| |#3|) 151)) (-2295 (((-3 |#3| "failed") |#3|) 63)) (-3994 ((|#3| |#3|) 139)) (-3715 (((-3 |#3| "failed") |#3|) 75)) (-2802 ((|#3| |#3|) 149)) (-3211 (((-3 |#3| "failed") |#3|) 117)) (-3973 ((|#3| |#3|) 153)) (-2946 (((-3 |#3| "failed") |#3|) 71)) (-4082 ((|#3| |#3|) 147)) (-2932 (((-3 |#3| "failed") |#3|) 59)) (-3950 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-419 (-576))) 47 (|has| |#1| (-374))))) +(((-287 |#1| |#2| |#3|) (-13 (-1004 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -4103 (|#3| |#3|)) (-15 -3744 (|#3| |#3|)) (-15 -3876 (|#3| |#3|)) (-15 -3888 (|#3| |#3|)) (-15 -3900 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -3950 (|#3| |#3|)) (-15 -3960 (|#3| |#3|)) (-15 -3973 (|#3| |#3|)) (-15 -3982 (|#3| |#3|)) (-15 -3994 (|#3| |#3|)) (-15 -4005 (|#3| |#3|)) (-15 -4013 (|#3| |#3|)) (-15 -4024 (|#3| |#3|)) (-15 -4036 (|#3| |#3|)) (-15 -4049 (|#3| |#3|)) (-15 -4060 (|#3| |#3|)) (-15 -4070 (|#3| |#3|)) (-15 -4082 (|#3| |#3|)) (-15 -2790 (|#3| |#3|)) (-15 -2802 (|#3| |#3|)) (-15 -2814 (|#3| |#3|)) (-15 -4387 (|#3| |#3|)))) (-38 (-419 (-576))) (-1279 |#1|) (-1250 |#1| |#2|)) (T -287)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) (-4 *5 (-1279 *4)) (-5 *1 (-287 *4 *5 *2)) (-4 *2 (-1250 *4 *5)))) (-4103 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3744 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3876 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3888 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3900 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3929 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3950 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3960 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3973 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3982 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3994 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4005 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4013 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4024 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4036 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4049 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4060 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4082 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-2790 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-2802 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-2814 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-4387 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4))))) +(-13 (-1004 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -4103 (|#3| |#3|)) (-15 -3744 (|#3| |#3|)) (-15 -3876 (|#3| |#3|)) (-15 -3888 (|#3| |#3|)) (-15 -3900 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -3950 (|#3| |#3|)) (-15 -3960 (|#3| |#3|)) (-15 -3973 (|#3| |#3|)) (-15 -3982 (|#3| |#3|)) (-15 -3994 (|#3| |#3|)) (-15 -4005 (|#3| |#3|)) (-15 -4013 (|#3| |#3|)) (-15 -4024 (|#3| |#3|)) (-15 -4036 (|#3| |#3|)) (-15 -4049 (|#3| |#3|)) (-15 -4060 (|#3| |#3|)) (-15 -4070 (|#3| |#3|)) (-15 -4082 (|#3| |#3|)) (-15 -2790 (|#3| |#3|)) (-15 -2802 (|#3| |#3|)) (-15 -2814 (|#3| |#3|)) (-15 -4387 (|#3| |#3|)))) +((-1960 (((-3 |#3| "failed") |#3|) 70)) (-4024 ((|#3| |#3|) 137)) (-4266 (((-3 |#3| "failed") |#3|) 54)) (-3900 ((|#3| |#3|) 125)) (-3326 (((-3 |#3| "failed") |#3|) 66)) (-4005 ((|#3| |#3|) 135)) (-2097 (((-3 |#3| "failed") |#3|) 50)) (-3876 ((|#3| |#3|) 123)) (-1652 (((-3 |#3| "failed") |#3|) 74)) (-4049 ((|#3| |#3|) 139)) (-1563 (((-3 |#3| "failed") |#3|) 58)) (-3919 ((|#3| |#3|) 127)) (-3344 (((-3 |#3| "failed") |#3| (-783)) 38)) (-3572 (((-3 |#3| "failed") |#3|) 48)) (-3744 ((|#3| |#3|) 111)) (-3349 (((-3 |#3| "failed") |#3|) 46)) (-4103 ((|#3| |#3|) 122)) (-3602 (((-3 |#3| "failed") |#3|) 76)) (-4060 ((|#3| |#3|) 140)) (-4129 (((-3 |#3| "failed") |#3|) 60)) (-3929 ((|#3| |#3|) 128)) (-3747 (((-3 |#3| "failed") |#3|) 72)) (-4036 ((|#3| |#3|) 138)) (-1854 (((-3 |#3| "failed") |#3|) 56)) (-3909 ((|#3| |#3|) 126)) (-3379 (((-3 |#3| "failed") |#3|) 68)) (-4013 ((|#3| |#3|) 136)) (-1805 (((-3 |#3| "failed") |#3|) 52)) (-3888 ((|#3| |#3|) 124)) (-3892 (((-3 |#3| "failed") |#3|) 78)) (-2790 ((|#3| |#3|) 143)) (-2973 (((-3 |#3| "failed") |#3|) 62)) (-3960 ((|#3| |#3|) 131)) (-1322 (((-3 |#3| "failed") |#3|) 112)) (-4070 ((|#3| |#3|) 141)) (-3614 (((-3 |#3| "failed") |#3|) 100)) (-3937 ((|#3| |#3|) 129)) (-2561 (((-3 |#3| "failed") |#3|) 116)) (-2814 ((|#3| |#3|) 145)) (-1591 (((-3 |#3| "failed") |#3|) 107)) (-3982 ((|#3| |#3|) 133)) (-3705 (((-3 |#3| "failed") |#3|) 117)) (-4387 ((|#3| |#3|) 146)) (-2295 (((-3 |#3| "failed") |#3|) 109)) (-3994 ((|#3| |#3|) 134)) (-3715 (((-3 |#3| "failed") |#3|) 80)) (-2802 ((|#3| |#3|) 144)) (-3211 (((-3 |#3| "failed") |#3|) 64)) (-3973 ((|#3| |#3|) 132)) (-2946 (((-3 |#3| "failed") |#3|) 113)) (-4082 ((|#3| |#3|) 142)) (-2932 (((-3 |#3| "failed") |#3|) 103)) (-3950 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-419 (-576))) 44 (|has| |#1| (-374))))) +(((-288 |#1| |#2| |#3| |#4|) (-13 (-1004 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -4103 (|#3| |#3|)) (-15 -3744 (|#3| |#3|)) (-15 -3876 (|#3| |#3|)) (-15 -3888 (|#3| |#3|)) (-15 -3900 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -3950 (|#3| |#3|)) (-15 -3960 (|#3| |#3|)) (-15 -3973 (|#3| |#3|)) (-15 -3982 (|#3| |#3|)) (-15 -3994 (|#3| |#3|)) (-15 -4005 (|#3| |#3|)) (-15 -4013 (|#3| |#3|)) (-15 -4024 (|#3| |#3|)) (-15 -4036 (|#3| |#3|)) (-15 -4049 (|#3| |#3|)) (-15 -4060 (|#3| |#3|)) (-15 -4070 (|#3| |#3|)) (-15 -4082 (|#3| |#3|)) (-15 -2790 (|#3| |#3|)) (-15 -2802 (|#3| |#3|)) (-15 -2814 (|#3| |#3|)) (-15 -4387 (|#3| |#3|)))) (-38 (-419 (-576))) (-1248 |#1|) (-1271 |#1| |#2|) (-1004 |#2|)) (T -288)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) (-4 *5 (-1248 *4)) (-5 *1 (-288 *4 *5 *2 *6)) (-4 *2 (-1271 *4 *5)) (-4 *6 (-1004 *5)))) (-4103 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3744 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3876 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3888 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3900 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3929 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3950 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3960 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3973 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3982 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3994 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-4005 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-4013 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-4024 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-4036 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-4049 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-4060 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-4082 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-2790 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-2802 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-2814 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-4387 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4))))) +(-13 (-1004 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -4103 (|#3| |#3|)) (-15 -3744 (|#3| |#3|)) (-15 -3876 (|#3| |#3|)) (-15 -3888 (|#3| |#3|)) (-15 -3900 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -3950 (|#3| |#3|)) (-15 -3960 (|#3| |#3|)) (-15 -3973 (|#3| |#3|)) (-15 -3982 (|#3| |#3|)) (-15 -3994 (|#3| |#3|)) (-15 -4005 (|#3| |#3|)) (-15 -4013 (|#3| |#3|)) (-15 -4024 (|#3| |#3|)) (-15 -4036 (|#3| |#3|)) (-15 -4049 (|#3| |#3|)) (-15 -4060 (|#3| |#3|)) (-15 -4070 (|#3| |#3|)) (-15 -4082 (|#3| |#3|)) (-15 -2790 (|#3| |#3|)) (-15 -2802 (|#3| |#3|)) (-15 -2814 (|#3| |#3|)) (-15 -4387 (|#3| |#3|)))) +((-3072 (((-112) $) 20)) (-3034 (((-1202) $) 7)) (-2058 (((-3 (-518) "failed") $) 14)) (-2776 (((-3 (-656 $) "failed") $) NIL)) (-2603 (((-3 (-518) "failed") $) 21)) (-2209 (((-3 (-1125) "failed") $) 18)) (-4257 (((-112) $) 16)) (-3569 (((-876) $) NIL)) (-2263 (((-112) $) 9))) +(((-289) (-13 (-625 (-876)) (-10 -8 (-15 -3034 ((-1202) $)) (-15 -4257 ((-112) $)) (-15 -2209 ((-3 (-1125) "failed") $)) (-15 -3072 ((-112) $)) (-15 -2603 ((-3 (-518) "failed") $)) (-15 -2263 ((-112) $)) (-15 -2058 ((-3 (-518) "failed") $)) (-15 -2776 ((-3 (-656 $) "failed") $))))) (T -289)) +((-3034 (*1 *2 *1) (-12 (-5 *2 (-1202)) (-5 *1 (-289)))) (-4257 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-2209 (*1 *2 *1) (|partial| -12 (-5 *2 (-1125)) (-5 *1 (-289)))) (-3072 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-2603 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) (-2263 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-2058 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) (-2776 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-289))) (-5 *1 (-289))))) +(-13 (-625 (-876)) (-10 -8 (-15 -3034 ((-1202) $)) (-15 -4257 ((-112) $)) (-15 -2209 ((-3 (-1125) "failed") $)) (-15 -3072 ((-112) $)) (-15 -2603 ((-3 (-518) "failed") $)) (-15 -2263 ((-112) $)) (-15 -2058 ((-3 (-518) "failed") $)) (-15 -2776 ((-3 (-656 $) "failed") $)))) +((-3648 (((-609) $) 10)) (-4132 (((-597) $) 8)) (-2592 (((-301) $) 12)) (-1994 (($ (-597) (-609) (-301)) NIL)) (-3569 (((-876) $) 19))) +(((-290) (-13 (-625 (-876)) (-10 -8 (-15 -1994 ($ (-597) (-609) (-301))) (-15 -4132 ((-597) $)) (-15 -3648 ((-609) $)) (-15 -2592 ((-301) $))))) (T -290)) +((-1994 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-597)) (-5 *3 (-609)) (-5 *4 (-301)) (-5 *1 (-290)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-597)) (-5 *1 (-290)))) (-3648 (*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-290)))) (-2592 (*1 *2 *1) (-12 (-5 *2 (-301)) (-5 *1 (-290))))) +(-13 (-625 (-876)) (-10 -8 (-15 -1994 ($ (-597) (-609) (-301))) (-15 -4132 ((-597) $)) (-15 -3648 ((-609) $)) (-15 -2592 ((-301) $)))) +((-1974 (($ (-1 (-112) |#2|) $) 24)) (-2034 (($ $) 38)) (-2172 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3945 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-4330 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-2176 (($ |#2| $ (-576)) 20) (($ $ $ (-576)) 22)) (-3465 (($ $ (-576)) 11) (($ $ (-1255 (-576))) 14)) (-3631 (($ $ |#2|) 32) (($ $ $) NIL)) (-1615 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-656 $)) NIL))) +(((-291 |#1| |#2|) (-10 -8 (-15 -4330 (|#1| |#1| |#1|)) (-15 -2172 (|#1| |#2| |#1|)) (-15 -4330 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2172 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3631 (|#1| |#1| |#1|)) (-15 -3631 (|#1| |#1| |#2|)) (-15 -2176 (|#1| |#1| |#1| (-576))) (-15 -2176 (|#1| |#2| |#1| (-576))) (-15 -3465 (|#1| |#1| (-1255 (-576)))) (-15 -3465 (|#1| |#1| (-576))) (-15 -1615 (|#1| (-656 |#1|))) (-15 -1615 (|#1| |#1| |#1|)) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#2|)) (-15 -3945 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1974 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3945 (|#1| |#2| |#1|)) (-15 -2034 (|#1| |#1|))) (-292 |#2|) (-1238)) (T -291)) +NIL +(-10 -8 (-15 -4330 (|#1| |#1| |#1|)) (-15 -2172 (|#1| |#2| |#1|)) (-15 -4330 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2172 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3631 (|#1| |#1| |#1|)) (-15 -3631 (|#1| |#1| |#2|)) (-15 -2176 (|#1| |#1| |#1| (-576))) (-15 -2176 (|#1| |#2| |#1| (-576))) (-15 -3465 (|#1| |#1| (-1255 (-576)))) (-15 -3465 (|#1| |#1| (-576))) (-15 -1615 (|#1| (-656 |#1|))) (-15 -1615 (|#1| |#1| |#1|)) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#2|)) (-15 -3945 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1974 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3945 (|#1| |#2| |#1|)) (-15 -2034 (|#1| |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1512 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4465)))) (-4264 (((-112) $ (-783)) 8)) (-3755 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 60 (|has| $ (-6 -4465)))) (-2123 (($ (-1 (-112) |#1|) $) 88)) (-1974 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4464)))) (-3404 (($) 7 T CONST)) (-2495 (($ $) 86 (|has| |#1| (-1121)))) (-2034 (($ $) 80 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2172 (($ (-1 (-112) |#1|) $) 92) (($ |#1| $) 87 (|has| |#1| (-1121)))) (-3945 (($ |#1| $) 79 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) 52)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-4140 (($ (-783) |#1|) 70)) (-1368 (((-112) $ (-783)) 9)) (-3281 (((-576) $) 44 (|has| (-576) (-861)))) (-4330 (($ (-1 (-112) |#1| |#1|) $ $) 89) (($ $ $) 85 (|has| |#1| (-861)))) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4280 (((-576) $) 45 (|has| (-576) (-861)))) (-4326 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2883 (((-112) $ (-783)) 10)) (-2046 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2597 (($ |#1| $ (-576)) 91) (($ $ $ (-576)) 90)) (-2176 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3669 (((-656 (-576)) $) 47)) (-3090 (((-112) (-576) $) 48)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3580 ((|#1| $) 43 (|has| (-576) (-861)))) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2304 (($ $ |#1|) 42 (|has| $ (-6 -4465)))) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-4282 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3207 (((-656 |#1|) $) 49)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-2796 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1255 (-576))) 71)) (-1352 (($ $ (-576)) 94) (($ $ (-1255 (-576))) 93)) (-3465 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-4171 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 72)) (-3631 (($ $ |#1|) 96) (($ $ $) 95)) (-1615 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-292 |#1|) (-141) (-1238)) (T -292)) -((-2974 (*1 *1 *1 *2) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)))) (-2974 (*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)))) (-2161 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) (-2161 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 (-576))) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) (-1671 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) (-1901 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-292 *2)) (-4 *2 (-1238)))) (-1901 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) (-2453 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) (-2300 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) (-1671 (*1 *1 *2 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)) (-4 *2 (-1121)))) (-1703 (*1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)) (-4 *2 (-1121)))) (-2453 (*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)) (-4 *2 (-861))))) -(-13 (-663 |t#1|) (-10 -8 (-6 -4466) (-15 -2974 ($ $ |t#1|)) (-15 -2974 ($ $ $)) (-15 -2161 ($ $ (-576))) (-15 -2161 ($ $ (-1255 (-576)))) (-15 -1671 ($ (-1 (-112) |t#1|) $)) (-15 -1901 ($ |t#1| $ (-576))) (-15 -1901 ($ $ $ (-576))) (-15 -2453 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2300 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1121)) (PROGN (-15 -1671 ($ |t#1| $)) (-15 -1703 ($ $))) |%noBranch|) (IF (|has| |t#1| (-861)) (-15 -2453 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-102) -2760 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2760 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-3631 (*1 *1 *1 *2) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)))) (-3631 (*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)))) (-1352 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) (-1352 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 (-576))) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) (-2172 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) (-2597 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-292 *2)) (-4 *2 (-1238)))) (-2597 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) (-4330 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) (-2123 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) (-2172 (*1 *1 *2 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)) (-4 *2 (-1121)))) (-2495 (*1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)) (-4 *2 (-1121)))) (-4330 (*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)) (-4 *2 (-861))))) +(-13 (-663 |t#1|) (-10 -8 (-6 -4465) (-15 -3631 ($ $ |t#1|)) (-15 -3631 ($ $ $)) (-15 -1352 ($ $ (-576))) (-15 -1352 ($ $ (-1255 (-576)))) (-15 -2172 ($ (-1 (-112) |t#1|) $)) (-15 -2597 ($ |t#1| $ (-576))) (-15 -2597 ($ $ $ (-576))) (-15 -4330 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2123 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1121)) (PROGN (-15 -2172 ($ |t#1| $)) (-15 -2495 ($ $))) |%noBranch|) (IF (|has| |t#1| (-861)) (-15 -4330 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-102) -2759 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2759 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) ((** (($ $ $) 10))) (((-293 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-294)) (T -293)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-3745 (($ $) 6)) (-4104 (($ $) 7)) (** (($ $ $) 8))) +((-3744 (($ $) 6)) (-4103 (($ $) 7)) (** (($ $ $) 8))) (((-294) (-141)) (T -294)) -((** (*1 *1 *1 *1) (-4 *1 (-294))) (-4104 (*1 *1 *1) (-4 *1 (-294))) (-3745 (*1 *1 *1) (-4 *1 (-294)))) -(-13 (-10 -8 (-15 -3745 ($ $)) (-15 -4104 ($ $)) (-15 ** ($ $ $)))) -((-1680 (((-656 (-1178 |#1|)) (-1178 |#1|) |#1|) 35)) (-3964 ((|#2| |#2| |#1|) 39)) (-3538 ((|#2| |#2| |#1|) 41)) (-2016 ((|#2| |#2| |#1|) 40))) -(((-295 |#1| |#2|) (-10 -7 (-15 -3964 (|#2| |#2| |#1|)) (-15 -2016 (|#2| |#2| |#1|)) (-15 -3538 (|#2| |#2| |#1|)) (-15 -1680 ((-656 (-1178 |#1|)) (-1178 |#1|) |#1|))) (-374) (-1279 |#1|)) (T -295)) -((-1680 (*1 *2 *3 *4) (-12 (-4 *4 (-374)) (-5 *2 (-656 (-1178 *4))) (-5 *1 (-295 *4 *5)) (-5 *3 (-1178 *4)) (-4 *5 (-1279 *4)))) (-3538 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1279 *3)))) (-2016 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1279 *3)))) (-3964 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1279 *3))))) -(-10 -7 (-15 -3964 (|#2| |#2| |#1|)) (-15 -2016 (|#2| |#2| |#1|)) (-15 -3538 (|#2| |#2| |#1|)) (-15 -1680 ((-656 (-1178 |#1|)) (-1178 |#1|) |#1|))) -((-2797 ((|#2| $ |#1|) 6))) +((** (*1 *1 *1 *1) (-4 *1 (-294))) (-4103 (*1 *1 *1) (-4 *1 (-294))) (-3744 (*1 *1 *1) (-4 *1 (-294)))) +(-13 (-10 -8 (-15 -3744 ($ $)) (-15 -4103 ($ $)) (-15 ** ($ $ $)))) +((-2270 (((-656 (-1178 |#1|)) (-1178 |#1|) |#1|) 35)) (-3962 ((|#2| |#2| |#1|) 39)) (-4287 ((|#2| |#2| |#1|) 41)) (-2016 ((|#2| |#2| |#1|) 40))) +(((-295 |#1| |#2|) (-10 -7 (-15 -3962 (|#2| |#2| |#1|)) (-15 -2016 (|#2| |#2| |#1|)) (-15 -4287 (|#2| |#2| |#1|)) (-15 -2270 ((-656 (-1178 |#1|)) (-1178 |#1|) |#1|))) (-374) (-1279 |#1|)) (T -295)) +((-2270 (*1 *2 *3 *4) (-12 (-4 *4 (-374)) (-5 *2 (-656 (-1178 *4))) (-5 *1 (-295 *4 *5)) (-5 *3 (-1178 *4)) (-4 *5 (-1279 *4)))) (-4287 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1279 *3)))) (-2016 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1279 *3)))) (-3962 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1279 *3))))) +(-10 -7 (-15 -3962 (|#2| |#2| |#1|)) (-15 -2016 (|#2| |#2| |#1|)) (-15 -4287 (|#2| |#2| |#1|)) (-15 -2270 ((-656 (-1178 |#1|)) (-1178 |#1|) |#1|))) +((-2796 ((|#2| $ |#1|) 6))) (((-296 |#1| |#2|) (-141) (-1238) (-1238)) (T -296)) -((-2797 (*1 *2 *1 *3) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1238)) (-4 *2 (-1238))))) -(-13 (-1238) (-10 -8 (-15 -2797 (|t#2| $ |t#1|)))) +((-2796 (*1 *2 *1 *3) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1238)) (-4 *2 (-1238))))) +(-13 (-1238) (-10 -8 (-15 -2796 (|t#2| $ |t#1|)))) (((-1238) . T)) -((-4335 ((|#3| $ |#2| |#3|) 12)) (-4274 ((|#3| $ |#2|) 10))) -(((-297 |#1| |#2| |#3|) (-10 -8 (-15 -4335 (|#3| |#1| |#2| |#3|)) (-15 -4274 (|#3| |#1| |#2|))) (-298 |#2| |#3|) (-1121) (-1238)) (T -297)) +((-4332 ((|#3| $ |#2| |#3|) 12)) (-4272 ((|#3| $ |#2|) 10))) +(((-297 |#1| |#2| |#3|) (-10 -8 (-15 -4332 (|#3| |#1| |#2| |#3|)) (-15 -4272 (|#3| |#1| |#2|))) (-298 |#2| |#3|) (-1121) (-1238)) (T -297)) NIL -(-10 -8 (-15 -4335 (|#3| |#1| |#2| |#3|)) (-15 -4274 (|#3| |#1| |#2|))) -((-3756 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4466)))) (-4335 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4466)))) (-4274 ((|#2| $ |#1|) 11)) (-2797 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(-10 -8 (-15 -4332 (|#3| |#1| |#2| |#3|)) (-15 -4272 (|#3| |#1| |#2|))) +((-3755 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4465)))) (-4332 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4465)))) (-4272 ((|#2| $ |#1|) 11)) (-2796 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) (((-298 |#1| |#2|) (-141) (-1121) (-1238)) (T -298)) -((-2797 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1238)))) (-4274 (*1 *2 *1 *3) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1238)))) (-3756 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1238)))) (-4335 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1238))))) -(-13 (-296 |t#1| |t#2|) (-10 -8 (-15 -2797 (|t#2| $ |t#1| |t#2|)) (-15 -4274 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4466)) (PROGN (-15 -3756 (|t#2| $ |t#1| |t#2|)) (-15 -4335 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +((-2796 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1238)))) (-4272 (*1 *2 *1 *3) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1238)))) (-3755 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1238)))) (-4332 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1238))))) +(-13 (-296 |t#1| |t#2|) (-10 -8 (-15 -2796 (|t#2| $ |t#1| |t#2|)) (-15 -4272 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4465)) (PROGN (-15 -3755 (|t#2| $ |t#1| |t#2|)) (-15 -4332 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) (((-296 |#1| |#2|) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 37)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 44)) (-2757 (($ $) 41)) (-3788 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-4016 (((-112) $ $) NIL)) (-3886 (($) NIL T CONST)) (-3429 (($ $ $) 35)) (-3686 (($ |#2| |#3|) 18)) (-1561 (((-3 $ "failed") $) NIL)) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-4193 (((-112) $) NIL)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1633 ((|#3| $) NIL)) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) 19)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3011 (((-3 $ "failed") $ $) NIL)) (-1967 (((-783) $) 36)) (-2797 ((|#2| $ |#2|) 46)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 23)) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL)) (-2721 (($) 31 T CONST)) (-2732 (($) 39 T CONST)) (-2925 (((-112) $ $) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 40))) -(((-299 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-317) (-296 |#2| |#2|) (-10 -8 (-15 -1633 (|#3| $)) (-15 -3570 (|#2| $)) (-15 -3686 ($ |#2| |#3|)) (-15 -3011 ((-3 $ "failed") $ $)) (-15 -1561 ((-3 $ "failed") $)) (-15 -2050 ($ $)))) (-174) (-1264 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -299)) -((-1561 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1264 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1633 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-299 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1264 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3570 (*1 *2 *1) (-12 (-4 *2 (-1264 *3)) (-5 *1 (-299 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3686 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-299 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1264 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3011 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1264 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2050 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1264 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))) -(-13 (-317) (-296 |#2| |#2|) (-10 -8 (-15 -1633 (|#3| $)) (-15 -3570 (|#2| $)) (-15 -3686 ($ |#2| |#3|)) (-15 -3011 ((-3 $ "failed") $ $)) (-15 -1561 ((-3 $ "failed") $)) (-15 -2050 ($ $)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-1561 (((-3 $ "failed") $) 37)) (-4193 (((-112) $) 35)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12) (($ (-576)) 33)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 37)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 44)) (-4195 (($ $) 41)) (-1760 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3330 (((-112) $ $) NIL)) (-3404 (($) NIL T CONST)) (-3428 (($ $ $) 35)) (-3685 (($ |#2| |#3|) 18)) (-3673 (((-3 $ "failed") $) NIL)) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-1351 (((-112) $) NIL)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3125 ((|#3| $) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) 19)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2680 (((-3 $ "failed") $ $) NIL)) (-1979 (((-783) $) 36)) (-2796 ((|#2| $ |#2|) 46)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 23)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL)) (-2721 (($) 31 T CONST)) (-2731 (($) 39 T CONST)) (-2924 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 40))) +(((-299 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-317) (-296 |#2| |#2|) (-10 -8 (-15 -3125 (|#3| $)) (-15 -3569 (|#2| $)) (-15 -3685 ($ |#2| |#3|)) (-15 -2680 ((-3 $ "failed") $ $)) (-15 -3673 ((-3 $ "failed") $)) (-15 -2050 ($ $)))) (-174) (-1264 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -299)) +((-3673 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1264 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3125 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-299 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1264 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3569 (*1 *2 *1) (-12 (-4 *2 (-1264 *3)) (-5 *1 (-299 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3685 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-299 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1264 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2680 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1264 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2050 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1264 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))) +(-13 (-317) (-296 |#2| |#2|) (-10 -8 (-15 -3125 (|#3| $)) (-15 -3569 (|#2| $)) (-15 -3685 ($ |#2| |#3|)) (-15 -2680 ((-3 $ "failed") $ $)) (-15 -3673 ((-3 $ "failed") $)) (-15 -2050 ($ $)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-3673 (((-3 $ "failed") $) 37)) (-1351 (((-112) $) 35)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ (-576)) 33)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-300) (-141)) (T -300)) NIL -(-13 (-1070) (-111 $ $) (-10 -7 (-6 -4458))) +(-13 (-1070) (-111 $ $) (-10 -7 (-6 -4457))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-3063 (((-656 (-1106)) $) 10)) (-2472 (($ (-518) (-518) (-1125) $) 19)) (-3148 (($ (-518) (-656 (-984)) $) 23)) (-1526 (($) 25)) (-2886 (((-703 (-1125)) (-518) (-518) $) 18)) (-1855 (((-656 (-984)) (-518) $) 22)) (-4225 (($) 7)) (-1688 (($) 24)) (-3570 (((-876) $) 29)) (-1683 (($) 26))) -(((-301) (-13 (-625 (-876)) (-10 -8 (-15 -4225 ($)) (-15 -3063 ((-656 (-1106)) $)) (-15 -2886 ((-703 (-1125)) (-518) (-518) $)) (-15 -2472 ($ (-518) (-518) (-1125) $)) (-15 -1855 ((-656 (-984)) (-518) $)) (-15 -3148 ($ (-518) (-656 (-984)) $)) (-15 -1688 ($)) (-15 -1526 ($)) (-15 -1683 ($))))) (T -301)) -((-4225 (*1 *1) (-5 *1 (-301))) (-3063 (*1 *2 *1) (-12 (-5 *2 (-656 (-1106))) (-5 *1 (-301)))) (-2886 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-1125))) (-5 *1 (-301)))) (-2472 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-1125)) (-5 *1 (-301)))) (-1855 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-656 (-984))) (-5 *1 (-301)))) (-3148 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-984))) (-5 *1 (-301)))) (-1688 (*1 *1) (-5 *1 (-301))) (-1526 (*1 *1) (-5 *1 (-301))) (-1683 (*1 *1) (-5 *1 (-301)))) -(-13 (-625 (-876)) (-10 -8 (-15 -4225 ($)) (-15 -3063 ((-656 (-1106)) $)) (-15 -2886 ((-703 (-1125)) (-518) (-518) $)) (-15 -2472 ($ (-518) (-518) (-1125) $)) (-15 -1855 ((-656 (-984)) (-518) $)) (-15 -3148 ($ (-518) (-656 (-984)) $)) (-15 -1688 ($)) (-15 -1526 ($)) (-15 -1683 ($)))) -((-3410 (((-656 (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-971 |#1|))))))) (-701 (-419 (-971 |#1|)))) 102)) (-1823 (((-656 (-701 (-419 (-971 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 |#1|)))))) (-701 (-419 (-971 |#1|)))) 97) (((-656 (-701 (-419 (-971 |#1|)))) (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|))) (-701 (-419 (-971 |#1|))) (-783) (-783)) 41)) (-4246 (((-656 (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 |#1|))))))) (-701 (-419 (-971 |#1|)))) 99)) (-3309 (((-656 (-701 (-419 (-971 |#1|)))) (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|))) (-701 (-419 (-971 |#1|)))) 75)) (-1964 (((-656 (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (-701 (-419 (-971 |#1|)))) 74)) (-4281 (((-971 |#1|) (-701 (-419 (-971 |#1|)))) 55) (((-971 |#1|) (-701 (-419 (-971 |#1|))) (-1197)) 56))) -(((-302 |#1|) (-10 -7 (-15 -4281 ((-971 |#1|) (-701 (-419 (-971 |#1|))) (-1197))) (-15 -4281 ((-971 |#1|) (-701 (-419 (-971 |#1|))))) (-15 -1964 ((-656 (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (-701 (-419 (-971 |#1|))))) (-15 -3309 ((-656 (-701 (-419 (-971 |#1|)))) (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|))) (-701 (-419 (-971 |#1|))))) (-15 -1823 ((-656 (-701 (-419 (-971 |#1|)))) (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|))) (-701 (-419 (-971 |#1|))) (-783) (-783))) (-15 -1823 ((-656 (-701 (-419 (-971 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 |#1|)))))) (-701 (-419 (-971 |#1|))))) (-15 -3410 ((-656 (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-971 |#1|))))))) (-701 (-419 (-971 |#1|))))) (-15 -4246 ((-656 (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 |#1|))))))) (-701 (-419 (-971 |#1|)))))) (-464)) (T -302)) -((-4246 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-656 (-2 (|:| |eigval| (-3 (-419 (-971 *4)) (-1186 (-1197) (-971 *4)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 *4)))))))) (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-971 *4)))))) (-3410 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-656 (-2 (|:| |eigval| (-3 (-419 (-971 *4)) (-1186 (-1197) (-971 *4)))) (|:| |geneigvec| (-656 (-701 (-419 (-971 *4)))))))) (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-971 *4)))))) (-1823 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-419 (-971 *5)) (-1186 (-1197) (-971 *5)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 *4)))) (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-971 *5))))) (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-971 *5)))))) (-1823 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-419 (-971 *6)) (-1186 (-1197) (-971 *6)))) (-5 *5 (-783)) (-4 *6 (-464)) (-5 *2 (-656 (-701 (-419 (-971 *6))))) (-5 *1 (-302 *6)) (-5 *4 (-701 (-419 (-971 *6)))))) (-3309 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-419 (-971 *5)) (-1186 (-1197) (-971 *5)))) (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-971 *5))))) (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-971 *5)))))) (-1964 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-971 *4)))) (-4 *4 (-464)) (-5 *2 (-656 (-3 (-419 (-971 *4)) (-1186 (-1197) (-971 *4))))) (-5 *1 (-302 *4)))) (-4281 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-971 *4)))) (-5 *2 (-971 *4)) (-5 *1 (-302 *4)) (-4 *4 (-464)))) (-4281 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-971 *5)))) (-5 *4 (-1197)) (-5 *2 (-971 *5)) (-5 *1 (-302 *5)) (-4 *5 (-464))))) -(-10 -7 (-15 -4281 ((-971 |#1|) (-701 (-419 (-971 |#1|))) (-1197))) (-15 -4281 ((-971 |#1|) (-701 (-419 (-971 |#1|))))) (-15 -1964 ((-656 (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (-701 (-419 (-971 |#1|))))) (-15 -3309 ((-656 (-701 (-419 (-971 |#1|)))) (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|))) (-701 (-419 (-971 |#1|))))) (-15 -1823 ((-656 (-701 (-419 (-971 |#1|)))) (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|))) (-701 (-419 (-971 |#1|))) (-783) (-783))) (-15 -1823 ((-656 (-701 (-419 (-971 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 |#1|)))))) (-701 (-419 (-971 |#1|))))) (-15 -3410 ((-656 (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-971 |#1|))))))) (-701 (-419 (-971 |#1|))))) (-15 -4246 ((-656 (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 |#1|))))))) (-701 (-419 (-971 |#1|)))))) -((-4117 (((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)) 14))) -(((-303 |#1| |#2|) (-10 -7 (-15 -4117 ((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)))) (-1238) (-1238)) (T -303)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-304 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-304 *6)) (-5 *1 (-303 *5 *6))))) -(-10 -7 (-15 -4117 ((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-4308 (((-112) $) NIL (|has| |#1| (-21)))) (-3853 (($ $) 12)) (-4367 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3428 (($ $ $) 95 (|has| |#1| (-312)))) (-3886 (($) NIL (-2760 (|has| |#1| (-21)) (|has| |#1| (-738))) CONST)) (-4406 (($ $) 51 (|has| |#1| (-21)))) (-2781 (((-3 $ "failed") $) 62 (|has| |#1| (-738)))) (-1669 ((|#1| $) 11)) (-1561 (((-3 $ "failed") $) 60 (|has| |#1| (-738)))) (-4193 (((-112) $) NIL (|has| |#1| (-738)))) (-4117 (($ (-1 |#1| |#1|) $) 14)) (-1657 ((|#1| $) 10)) (-3058 (($ $) 50 (|has| |#1| (-21)))) (-3329 (((-3 $ "failed") $) 61 (|has| |#1| (-738)))) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2050 (($ $) 64 (-2760 (|has| |#1| (-374)) (|has| |#1| (-485))))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4067 (((-656 $) $) 85 (|has| |#1| (-568)))) (-3284 (($ $ $) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 $)) 28 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-1197) |#1|) 17 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 21 (|has| |#1| (-526 (-1197) |#1|)))) (-2337 (($ |#1| |#1|) 9)) (-2003 (((-135)) 90 (|has| |#1| (-374)))) (-2775 (($ $ (-1197)) 87 (|has| |#1| (-917 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-917 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-917 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-917 (-1197))))) (-2314 (($ $ $) NIL (|has| |#1| (-485)))) (-2076 (($ $ $) NIL (|has| |#1| (-485)))) (-3570 (($ (-576)) NIL (|has| |#1| (-1070))) (((-112) $) 37 (|has| |#1| (-1121))) (((-876) $) 36 (|has| |#1| (-1121)))) (-3996 (((-783)) 67 (|has| |#1| (-1070)) CONST)) (-4055 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2721 (($) 47 (|has| |#1| (-21)) CONST)) (-2732 (($) 57 (|has| |#1| (-738)) CONST)) (-2020 (($ $ (-1197)) NIL (|has| |#1| (-917 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-917 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-917 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-917 (-1197))))) (-2925 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1121)))) (-3057 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 92 (-2760 (|has| |#1| (-374)) (|has| |#1| (-485))))) (-3044 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3030 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-576)) NIL (|has| |#1| (-485))) (($ $ (-783)) NIL (|has| |#1| (-738))) (($ $ (-940)) NIL (|has| |#1| (-1133)))) (* (($ $ |#1|) 55 (|has| |#1| (-1133))) (($ |#1| $) 54 (|has| |#1| (-1133))) (($ $ $) 53 (|has| |#1| (-1133))) (($ (-576) $) 70 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-940) $) NIL (|has| |#1| (-25))))) -(((-304 |#1|) (-13 (-1238) (-10 -8 (-15 -2925 ($ |#1| |#1|)) (-15 -2337 ($ |#1| |#1|)) (-15 -3853 ($ $)) (-15 -1657 (|#1| $)) (-15 -1669 (|#1| $)) (-15 -4117 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1197) |#1|)) (-6 (-526 (-1197) |#1|)) |%noBranch|) (IF (|has| |#1| (-1121)) (PROGN (-6 (-1121)) (-6 (-625 (-112))) (IF (|has| |#1| (-319 |#1|)) (PROGN (-15 -3284 ($ $ $)) (-15 -3284 ($ $ (-656 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3030 ($ |#1| $)) (-15 -3030 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3058 ($ $)) (-15 -4406 ($ $)) (-15 -3044 ($ |#1| $)) (-15 -3044 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1133)) (PROGN (-6 (-1133)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-738)) (PROGN (-6 (-738)) (-15 -3329 ((-3 $ "failed") $)) (-15 -2781 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -3329 ((-3 $ "failed") $)) (-15 -2781 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1070)) (PROGN (-6 (-1070)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|) (IF (|has| |#1| (-568)) (-15 -4067 ((-656 $) $)) |%noBranch|) (IF (|has| |#1| (-917 (-1197))) (-6 (-917 (-1197))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-1295 |#1|)) (-15 -3057 ($ $ $)) (-15 -2050 ($ $))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3428 ($ $ $)) |%noBranch|))) (-1238)) (T -304)) -((-2925 (*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) (-2337 (*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) (-3853 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) (-1657 (*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) (-1669 (*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) (-4117 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-304 *3)))) (-3284 (*1 *1 *1 *1) (-12 (-4 *2 (-319 *2)) (-4 *2 (-1121)) (-4 *2 (-1238)) (-5 *1 (-304 *2)))) (-3284 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *3))) (-4 *3 (-319 *3)) (-4 *3 (-1121)) (-4 *3 (-1238)) (-5 *1 (-304 *3)))) (-3030 (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1238)))) (-3030 (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1238)))) (-3058 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) (-4406 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) (-3044 (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) (-3044 (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) (-3329 (*1 *1 *1) (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1238)))) (-2781 (*1 *1 *1) (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1238)))) (-4067 (*1 *2 *1) (-12 (-5 *2 (-656 (-304 *3))) (-5 *1 (-304 *3)) (-4 *3 (-568)) (-4 *3 (-1238)))) (-3428 (*1 *1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-312)) (-4 *2 (-1238)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1133)) (-4 *2 (-1238)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1133)) (-4 *2 (-1238)))) (-3057 (*1 *1 *1 *1) (-2760 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1238))) (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1238))))) (-2050 (*1 *1 *1) (-2760 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1238))) (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1238)))))) -(-13 (-1238) (-10 -8 (-15 -2925 ($ |#1| |#1|)) (-15 -2337 ($ |#1| |#1|)) (-15 -3853 ($ $)) (-15 -1657 (|#1| $)) (-15 -1669 (|#1| $)) (-15 -4117 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1197) |#1|)) (-6 (-526 (-1197) |#1|)) |%noBranch|) (IF (|has| |#1| (-1121)) (PROGN (-6 (-1121)) (-6 (-625 (-112))) (IF (|has| |#1| (-319 |#1|)) (PROGN (-15 -3284 ($ $ $)) (-15 -3284 ($ $ (-656 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3030 ($ |#1| $)) (-15 -3030 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3058 ($ $)) (-15 -4406 ($ $)) (-15 -3044 ($ |#1| $)) (-15 -3044 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1133)) (PROGN (-6 (-1133)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-738)) (PROGN (-6 (-738)) (-15 -3329 ((-3 $ "failed") $)) (-15 -2781 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -3329 ((-3 $ "failed") $)) (-15 -2781 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1070)) (PROGN (-6 (-1070)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|) (IF (|has| |#1| (-568)) (-15 -4067 ((-656 $) $)) |%noBranch|) (IF (|has| |#1| (-917 (-1197))) (-6 (-917 (-1197))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-1295 |#1|)) (-15 -3057 ($ $ $)) (-15 -2050 ($ $))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3428 ($ $ $)) |%noBranch|))) -((-3489 (((-112) $ $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-4128 (($) NIL) (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-2047 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4466)))) (-1808 (((-112) $ (-783)) NIL)) (-3756 ((|#2| $ |#1| |#2|) NIL)) (-2300 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-2197 (((-3 |#2| "failed") |#1| $) NIL)) (-3886 (($) NIL T CONST)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121))))) (-1671 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (|has| $ (-6 -4465))) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-3 |#2| "failed") |#1| $) NIL)) (-3946 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-3686 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4465))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-4335 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4466)))) (-4274 ((|#2| $ |#1|) NIL)) (-3966 (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-656 |#2|) $) NIL (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) NIL)) (-2924 ((|#1| $) NIL (|has| |#1| (-861)))) (-2014 (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-656 |#2|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-2137 ((|#1| $) NIL (|has| |#1| (-861)))) (-4323 (($ (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3203 (((-656 |#1|) $) NIL)) (-4008 (((-112) |#1| $) NIL)) (-1597 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL)) (-1901 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL)) (-4234 (((-656 |#1|) $) NIL)) (-3354 (((-112) |#1| $) NIL)) (-1450 (((-1141) $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3581 ((|#2| $) NIL (|has| |#1| (-861)))) (-1541 (((-3 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL)) (-4046 (($ $ |#2|) NIL (|has| $ (-6 -4466)))) (-3449 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL)) (-4320 (((-112) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-2281 (((-656 |#2|) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2271 (($) NIL) (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-783) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4172 (((-548) $) NIL (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-626 (-548))))) (-3582 (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-3570 (((-876) $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-4055 (((-112) $ $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3943 (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-3321 (((-112) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-305 |#1| |#2|) (-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4465))) (-1121) (-1121)) (T -305)) -NIL -(-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4465))) -((-3314 (((-322) (-1179) (-656 (-1179))) 17) (((-322) (-1179) (-1179)) 16) (((-322) (-656 (-1179))) 15) (((-322) (-1179)) 14))) -(((-306) (-10 -7 (-15 -3314 ((-322) (-1179))) (-15 -3314 ((-322) (-656 (-1179)))) (-15 -3314 ((-322) (-1179) (-1179))) (-15 -3314 ((-322) (-1179) (-656 (-1179)))))) (T -306)) -((-3314 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1179))) (-5 *3 (-1179)) (-5 *2 (-322)) (-5 *1 (-306)))) (-3314 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-322)) (-5 *1 (-306)))) (-3314 (*1 *2 *3) (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-322)) (-5 *1 (-306)))) (-3314 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-322)) (-5 *1 (-306))))) -(-10 -7 (-15 -3314 ((-322) (-1179))) (-15 -3314 ((-322) (-656 (-1179)))) (-15 -3314 ((-322) (-1179) (-1179))) (-15 -3314 ((-322) (-1179) (-656 (-1179))))) -((-4117 ((|#2| (-1 |#2| |#1|) (-1179) (-624 |#1|)) 18))) -(((-307 |#1| |#2|) (-10 -7 (-15 -4117 (|#2| (-1 |#2| |#1|) (-1179) (-624 |#1|)))) (-312) (-1238)) (T -307)) -((-4117 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1179)) (-5 *5 (-624 *6)) (-4 *6 (-312)) (-4 *2 (-1238)) (-5 *1 (-307 *6 *2))))) -(-10 -7 (-15 -4117 (|#2| (-1 |#2| |#1|) (-1179) (-624 |#1|)))) -((-4117 ((|#2| (-1 |#2| |#1|) (-624 |#1|)) 17))) -(((-308 |#1| |#2|) (-10 -7 (-15 -4117 (|#2| (-1 |#2| |#1|) (-624 |#1|)))) (-312) (-312)) (T -308)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-624 *5)) (-4 *5 (-312)) (-4 *2 (-312)) (-5 *1 (-308 *5 *2))))) -(-10 -7 (-15 -4117 (|#2| (-1 |#2| |#1|) (-624 |#1|)))) -((-1748 (((-112) (-227)) 12))) -(((-309 |#1| |#2|) (-10 -7 (-15 -1748 ((-112) (-227)))) (-227) (-227)) (T -309)) -((-1748 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-309 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -1748 ((-112) (-227)))) -((-3052 (((-1178 (-227)) (-326 (-227)) (-656 (-1197)) (-1115 (-855 (-227)))) 118)) (-3783 (((-1178 (-227)) (-1288 (-326 (-227))) (-656 (-1197)) (-1115 (-855 (-227)))) 135) (((-1178 (-227)) (-326 (-227)) (-656 (-1197)) (-1115 (-855 (-227)))) 72)) (-4313 (((-656 (-1179)) (-1178 (-227))) NIL)) (-3144 (((-656 (-227)) (-326 (-227)) (-1197) (-1115 (-855 (-227)))) 69)) (-3387 (((-656 (-227)) (-971 (-419 (-576))) (-1197) (-1115 (-855 (-227)))) 59)) (-3653 (((-656 (-1179)) (-656 (-227))) NIL)) (-2868 (((-227) (-1115 (-855 (-227)))) 29)) (-4073 (((-227) (-1115 (-855 (-227)))) 30)) (-4297 (((-112) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 64)) (-4312 (((-1179) (-227)) NIL))) -(((-310) (-10 -7 (-15 -2868 ((-227) (-1115 (-855 (-227))))) (-15 -4073 ((-227) (-1115 (-855 (-227))))) (-15 -4297 ((-112) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3144 ((-656 (-227)) (-326 (-227)) (-1197) (-1115 (-855 (-227))))) (-15 -3052 ((-1178 (-227)) (-326 (-227)) (-656 (-1197)) (-1115 (-855 (-227))))) (-15 -3783 ((-1178 (-227)) (-326 (-227)) (-656 (-1197)) (-1115 (-855 (-227))))) (-15 -3783 ((-1178 (-227)) (-1288 (-326 (-227))) (-656 (-1197)) (-1115 (-855 (-227))))) (-15 -3387 ((-656 (-227)) (-971 (-419 (-576))) (-1197) (-1115 (-855 (-227))))) (-15 -4312 ((-1179) (-227))) (-15 -3653 ((-656 (-1179)) (-656 (-227)))) (-15 -4313 ((-656 (-1179)) (-1178 (-227)))))) (T -310)) -((-4313 (*1 *2 *3) (-12 (-5 *3 (-1178 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-310)))) (-3653 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-310)))) (-4312 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1179)) (-5 *1 (-310)))) (-3387 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-971 (-419 (-576)))) (-5 *4 (-1197)) (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310)))) (-3783 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *4 (-656 (-1197))) (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-310)))) (-3783 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1197))) (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-310)))) (-3052 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1197))) (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-310)))) (-3144 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1197)) (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310)))) (-4297 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-112)) (-5 *1 (-310)))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) (-2868 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310))))) -(-10 -7 (-15 -2868 ((-227) (-1115 (-855 (-227))))) (-15 -4073 ((-227) (-1115 (-855 (-227))))) (-15 -4297 ((-112) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3144 ((-656 (-227)) (-326 (-227)) (-1197) (-1115 (-855 (-227))))) (-15 -3052 ((-1178 (-227)) (-326 (-227)) (-656 (-1197)) (-1115 (-855 (-227))))) (-15 -3783 ((-1178 (-227)) (-326 (-227)) (-656 (-1197)) (-1115 (-855 (-227))))) (-15 -3783 ((-1178 (-227)) (-1288 (-326 (-227))) (-656 (-1197)) (-1115 (-855 (-227))))) (-15 -3387 ((-656 (-227)) (-971 (-419 (-576))) (-1197) (-1115 (-855 (-227))))) (-15 -4312 ((-1179) (-227))) (-15 -3653 ((-656 (-1179)) (-656 (-227)))) (-15 -4313 ((-656 (-1179)) (-1178 (-227))))) -((-3988 (((-656 (-624 $)) $) 27)) (-3428 (($ $ (-304 $)) 78) (($ $ (-656 (-304 $))) 139) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-1572 (((-3 (-624 $) "failed") $) 127)) (-2860 (((-624 $) $) 126)) (-2236 (($ $) 17) (($ (-656 $)) 54)) (-3545 (((-656 (-115)) $) 35)) (-1777 (((-115) (-115)) 88)) (-2946 (((-112) $) 150)) (-4117 (($ (-1 $ $) (-624 $)) 86)) (-2608 (((-3 (-624 $) "failed") $) 94)) (-1640 (($ (-115) $) 59) (($ (-115) (-656 $)) 110)) (-1322 (((-112) $ (-115)) 132) (((-112) $ (-1197)) 131)) (-2327 (((-783) $) 44)) (-1726 (((-112) $ $) 57) (((-112) $ (-1197)) 49)) (-3644 (((-112) $) 148)) (-3284 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) 137) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ $))) 81) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1197) (-1 $ (-656 $))) 67) (($ $ (-1197) (-1 $ $)) 72) (($ $ (-656 (-115)) (-656 (-1 $ $))) 80) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 82) (($ $ (-115) (-1 $ (-656 $))) 68) (($ $ (-115) (-1 $ $)) 74)) (-2797 (($ (-115) $) 60) (($ (-115) $ $) 61) (($ (-115) $ $ $) 62) (($ (-115) $ $ $ $) 63) (($ (-115) (-656 $)) 123)) (-3496 (($ $) 51) (($ $ $) 135)) (-3681 (($ $) 15) (($ (-656 $)) 53)) (-2468 (((-112) (-115)) 21))) -(((-311 |#1|) (-10 -8 (-15 -2946 ((-112) |#1|)) (-15 -3644 ((-112) |#1|)) (-15 -3284 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3284 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -3284 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3284 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -3284 (|#1| |#1| (-1197) (-1 |#1| |#1|))) (-15 -3284 (|#1| |#1| (-1197) (-1 |#1| (-656 |#1|)))) (-15 -3284 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3284 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| |#1|)))) (-15 -1726 ((-112) |#1| (-1197))) (-15 -1726 ((-112) |#1| |#1|)) (-15 -4117 (|#1| (-1 |#1| |#1|) (-624 |#1|))) (-15 -1640 (|#1| (-115) (-656 |#1|))) (-15 -1640 (|#1| (-115) |#1|)) (-15 -1322 ((-112) |#1| (-1197))) (-15 -1322 ((-112) |#1| (-115))) (-15 -2468 ((-112) (-115))) (-15 -1777 ((-115) (-115))) (-15 -3545 ((-656 (-115)) |#1|)) (-15 -3988 ((-656 (-624 |#1|)) |#1|)) (-15 -2608 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2327 ((-783) |#1|)) (-15 -3496 (|#1| |#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -2236 (|#1| (-656 |#1|))) (-15 -2236 (|#1| |#1|)) (-15 -3681 (|#1| (-656 |#1|))) (-15 -3681 (|#1| |#1|)) (-15 -3428 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3428 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3428 (|#1| |#1| (-304 |#1|))) (-15 -2797 (|#1| (-115) (-656 |#1|))) (-15 -2797 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2797 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2797 (|#1| (-115) |#1| |#1|)) (-15 -2797 (|#1| (-115) |#1|)) (-15 -3284 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3284 (|#1| |#1| |#1| |#1|)) (-15 -3284 (|#1| |#1| (-304 |#1|))) (-15 -3284 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3284 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3284 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -1572 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2860 ((-624 |#1|) |#1|))) (-312)) (T -311)) -((-1777 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-311 *3)) (-4 *3 (-312)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-311 *4)) (-4 *4 (-312))))) -(-10 -8 (-15 -2946 ((-112) |#1|)) (-15 -3644 ((-112) |#1|)) (-15 -3284 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3284 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -3284 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3284 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -3284 (|#1| |#1| (-1197) (-1 |#1| |#1|))) (-15 -3284 (|#1| |#1| (-1197) (-1 |#1| (-656 |#1|)))) (-15 -3284 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3284 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| |#1|)))) (-15 -1726 ((-112) |#1| (-1197))) (-15 -1726 ((-112) |#1| |#1|)) (-15 -4117 (|#1| (-1 |#1| |#1|) (-624 |#1|))) (-15 -1640 (|#1| (-115) (-656 |#1|))) (-15 -1640 (|#1| (-115) |#1|)) (-15 -1322 ((-112) |#1| (-1197))) (-15 -1322 ((-112) |#1| (-115))) (-15 -2468 ((-112) (-115))) (-15 -1777 ((-115) (-115))) (-15 -3545 ((-656 (-115)) |#1|)) (-15 -3988 ((-656 (-624 |#1|)) |#1|)) (-15 -2608 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2327 ((-783) |#1|)) (-15 -3496 (|#1| |#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -2236 (|#1| (-656 |#1|))) (-15 -2236 (|#1| |#1|)) (-15 -3681 (|#1| (-656 |#1|))) (-15 -3681 (|#1| |#1|)) (-15 -3428 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3428 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3428 (|#1| |#1| (-304 |#1|))) (-15 -2797 (|#1| (-115) (-656 |#1|))) (-15 -2797 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2797 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2797 (|#1| (-115) |#1| |#1|)) (-15 -2797 (|#1| (-115) |#1|)) (-15 -3284 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3284 (|#1| |#1| |#1| |#1|)) (-15 -3284 (|#1| |#1| (-304 |#1|))) (-15 -3284 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3284 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3284 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -1572 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2860 ((-624 |#1|) |#1|))) -((-3489 (((-112) $ $) 7)) (-3988 (((-656 (-624 $)) $) 39)) (-3428 (($ $ (-304 $)) 51) (($ $ (-656 (-304 $))) 50) (($ $ (-656 (-624 $)) (-656 $)) 49)) (-1572 (((-3 (-624 $) "failed") $) 64)) (-2860 (((-624 $) $) 65)) (-2236 (($ $) 46) (($ (-656 $)) 45)) (-3545 (((-656 (-115)) $) 38)) (-1777 (((-115) (-115)) 37)) (-2946 (((-112) $) 17 (|has| $ (-1059 (-576))))) (-3971 (((-1193 $) (-624 $)) 20 (|has| $ (-1070)))) (-4117 (($ (-1 $ $) (-624 $)) 31)) (-2608 (((-3 (-624 $) "failed") $) 41)) (-3699 (((-1179) $) 10)) (-1763 (((-656 (-624 $)) $) 40)) (-1640 (($ (-115) $) 33) (($ (-115) (-656 $)) 32)) (-1322 (((-112) $ (-115)) 35) (((-112) $ (-1197)) 34)) (-2327 (((-783) $) 42)) (-1450 (((-1141) $) 11)) (-1726 (((-112) $ $) 30) (((-112) $ (-1197)) 29)) (-3644 (((-112) $) 18 (|has| $ (-1059 (-576))))) (-3284 (($ $ (-624 $) $) 62) (($ $ (-656 (-624 $)) (-656 $)) 61) (($ $ (-656 (-304 $))) 60) (($ $ (-304 $)) 59) (($ $ $ $) 58) (($ $ (-656 $) (-656 $)) 57) (($ $ (-656 (-1197)) (-656 (-1 $ $))) 28) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) 27) (($ $ (-1197) (-1 $ (-656 $))) 26) (($ $ (-1197) (-1 $ $)) 25) (($ $ (-656 (-115)) (-656 (-1 $ $))) 24) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 23) (($ $ (-115) (-1 $ (-656 $))) 22) (($ $ (-115) (-1 $ $)) 21)) (-2797 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-656 $)) 52)) (-3496 (($ $) 44) (($ $ $) 43)) (-3867 (($ $) 19 (|has| $ (-1070)))) (-3570 (((-876) $) 12) (($ (-624 $)) 63)) (-3681 (($ $) 48) (($ (-656 $)) 47)) (-2468 (((-112) (-115)) 36)) (-4055 (((-112) $ $) 6)) (-2925 (((-112) $ $) 8))) +((-3219 (((-656 (-1106)) $) 10)) (-1391 (($ (-518) (-518) (-1125) $) 19)) (-1554 (($ (-518) (-656 (-984)) $) 23)) (-3277 (($) 25)) (-2874 (((-703 (-1125)) (-518) (-518) $) 18)) (-3463 (((-656 (-984)) (-518) $) 22)) (-3579 (($) 7)) (-1688 (($) 24)) (-3569 (((-876) $) 29)) (-2301 (($) 26))) +(((-301) (-13 (-625 (-876)) (-10 -8 (-15 -3579 ($)) (-15 -3219 ((-656 (-1106)) $)) (-15 -2874 ((-703 (-1125)) (-518) (-518) $)) (-15 -1391 ($ (-518) (-518) (-1125) $)) (-15 -3463 ((-656 (-984)) (-518) $)) (-15 -1554 ($ (-518) (-656 (-984)) $)) (-15 -1688 ($)) (-15 -3277 ($)) (-15 -2301 ($))))) (T -301)) +((-3579 (*1 *1) (-5 *1 (-301))) (-3219 (*1 *2 *1) (-12 (-5 *2 (-656 (-1106))) (-5 *1 (-301)))) (-2874 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-1125))) (-5 *1 (-301)))) (-1391 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-1125)) (-5 *1 (-301)))) (-3463 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-656 (-984))) (-5 *1 (-301)))) (-1554 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-984))) (-5 *1 (-301)))) (-1688 (*1 *1) (-5 *1 (-301))) (-3277 (*1 *1) (-5 *1 (-301))) (-2301 (*1 *1) (-5 *1 (-301)))) +(-13 (-625 (-876)) (-10 -8 (-15 -3579 ($)) (-15 -3219 ((-656 (-1106)) $)) (-15 -2874 ((-703 (-1125)) (-518) (-518) $)) (-15 -1391 ($ (-518) (-518) (-1125) $)) (-15 -3463 ((-656 (-984)) (-518) $)) (-15 -1554 ($ (-518) (-656 (-984)) $)) (-15 -1688 ($)) (-15 -3277 ($)) (-15 -2301 ($)))) +((-2374 (((-656 (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-971 |#1|))))))) (-701 (-419 (-971 |#1|)))) 102)) (-4407 (((-656 (-701 (-419 (-971 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 |#1|)))))) (-701 (-419 (-971 |#1|)))) 97) (((-656 (-701 (-419 (-971 |#1|)))) (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|))) (-701 (-419 (-971 |#1|))) (-783) (-783)) 41)) (-3796 (((-656 (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 |#1|))))))) (-701 (-419 (-971 |#1|)))) 99)) (-3915 (((-656 (-701 (-419 (-971 |#1|)))) (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|))) (-701 (-419 (-971 |#1|)))) 75)) (-3230 (((-656 (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (-701 (-419 (-971 |#1|)))) 74)) (-2857 (((-971 |#1|) (-701 (-419 (-971 |#1|)))) 55) (((-971 |#1|) (-701 (-419 (-971 |#1|))) (-1197)) 56))) +(((-302 |#1|) (-10 -7 (-15 -2857 ((-971 |#1|) (-701 (-419 (-971 |#1|))) (-1197))) (-15 -2857 ((-971 |#1|) (-701 (-419 (-971 |#1|))))) (-15 -3230 ((-656 (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (-701 (-419 (-971 |#1|))))) (-15 -3915 ((-656 (-701 (-419 (-971 |#1|)))) (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|))) (-701 (-419 (-971 |#1|))))) (-15 -4407 ((-656 (-701 (-419 (-971 |#1|)))) (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|))) (-701 (-419 (-971 |#1|))) (-783) (-783))) (-15 -4407 ((-656 (-701 (-419 (-971 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 |#1|)))))) (-701 (-419 (-971 |#1|))))) (-15 -2374 ((-656 (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-971 |#1|))))))) (-701 (-419 (-971 |#1|))))) (-15 -3796 ((-656 (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 |#1|))))))) (-701 (-419 (-971 |#1|)))))) (-464)) (T -302)) +((-3796 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-656 (-2 (|:| |eigval| (-3 (-419 (-971 *4)) (-1186 (-1197) (-971 *4)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 *4)))))))) (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-971 *4)))))) (-2374 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-656 (-2 (|:| |eigval| (-3 (-419 (-971 *4)) (-1186 (-1197) (-971 *4)))) (|:| |geneigvec| (-656 (-701 (-419 (-971 *4)))))))) (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-971 *4)))))) (-4407 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-419 (-971 *5)) (-1186 (-1197) (-971 *5)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 *4)))) (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-971 *5))))) (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-971 *5)))))) (-4407 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-419 (-971 *6)) (-1186 (-1197) (-971 *6)))) (-5 *5 (-783)) (-4 *6 (-464)) (-5 *2 (-656 (-701 (-419 (-971 *6))))) (-5 *1 (-302 *6)) (-5 *4 (-701 (-419 (-971 *6)))))) (-3915 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-419 (-971 *5)) (-1186 (-1197) (-971 *5)))) (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-971 *5))))) (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-971 *5)))))) (-3230 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-971 *4)))) (-4 *4 (-464)) (-5 *2 (-656 (-3 (-419 (-971 *4)) (-1186 (-1197) (-971 *4))))) (-5 *1 (-302 *4)))) (-2857 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-971 *4)))) (-5 *2 (-971 *4)) (-5 *1 (-302 *4)) (-4 *4 (-464)))) (-2857 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-971 *5)))) (-5 *4 (-1197)) (-5 *2 (-971 *5)) (-5 *1 (-302 *5)) (-4 *5 (-464))))) +(-10 -7 (-15 -2857 ((-971 |#1|) (-701 (-419 (-971 |#1|))) (-1197))) (-15 -2857 ((-971 |#1|) (-701 (-419 (-971 |#1|))))) (-15 -3230 ((-656 (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (-701 (-419 (-971 |#1|))))) (-15 -3915 ((-656 (-701 (-419 (-971 |#1|)))) (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|))) (-701 (-419 (-971 |#1|))))) (-15 -4407 ((-656 (-701 (-419 (-971 |#1|)))) (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|))) (-701 (-419 (-971 |#1|))) (-783) (-783))) (-15 -4407 ((-656 (-701 (-419 (-971 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 |#1|)))))) (-701 (-419 (-971 |#1|))))) (-15 -2374 ((-656 (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-971 |#1|))))))) (-701 (-419 (-971 |#1|))))) (-15 -3796 ((-656 (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 |#1|))))))) (-701 (-419 (-971 |#1|)))))) +((-4116 (((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)) 14))) +(((-303 |#1| |#2|) (-10 -7 (-15 -4116 ((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)))) (-1238) (-1238)) (T -303)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-304 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-304 *6)) (-5 *1 (-303 *5 *6))))) +(-10 -7 (-15 -4116 ((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-3135 (((-112) $) NIL (|has| |#1| (-21)))) (-4357 (($ $) 12)) (-2428 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3427 (($ $ $) 95 (|has| |#1| (-312)))) (-3404 (($) NIL (-2759 (|has| |#1| (-21)) (|has| |#1| (-738))) CONST)) (-1609 (($ $) 51 (|has| |#1| (-21)))) (-4376 (((-3 $ "failed") $) 62 (|has| |#1| (-738)))) (-1669 ((|#1| $) 11)) (-3673 (((-3 $ "failed") $) 60 (|has| |#1| (-738)))) (-1351 (((-112) $) NIL (|has| |#1| (-738)))) (-4116 (($ (-1 |#1| |#1|) $) 14)) (-1657 ((|#1| $) 10)) (-3166 (($ $) 50 (|has| |#1| (-21)))) (-2810 (((-3 $ "failed") $) 61 (|has| |#1| (-738)))) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2050 (($ $) 64 (-2759 (|has| |#1| (-374)) (|has| |#1| (-485))))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-2518 (((-656 $) $) 85 (|has| |#1| (-568)))) (-3282 (($ $ $) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 $)) 28 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-1197) |#1|) 17 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 21 (|has| |#1| (-526 (-1197) |#1|)))) (-2337 (($ |#1| |#1|) 9)) (-2319 (((-135)) 90 (|has| |#1| (-374)))) (-2774 (($ $ (-1197)) 87 (|has| |#1| (-917 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-917 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-917 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-917 (-1197))))) (-2272 (($ $ $) NIL (|has| |#1| (-485)))) (-1758 (($ $ $) NIL (|has| |#1| (-485)))) (-3569 (($ (-576)) NIL (|has| |#1| (-1070))) (((-112) $) 37 (|has| |#1| (-1121))) (((-876) $) 36 (|has| |#1| (-1121)))) (-3154 (((-783)) 67 (|has| |#1| (-1070)) CONST)) (-2399 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2721 (($) 47 (|has| |#1| (-21)) CONST)) (-2731 (($) 57 (|has| |#1| (-738)) CONST)) (-2020 (($ $ (-1197)) NIL (|has| |#1| (-917 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-917 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-917 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-917 (-1197))))) (-2924 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1121)))) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 92 (-2759 (|has| |#1| (-374)) (|has| |#1| (-485))))) (-3043 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3029 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-576)) NIL (|has| |#1| (-485))) (($ $ (-783)) NIL (|has| |#1| (-738))) (($ $ (-940)) NIL (|has| |#1| (-1133)))) (* (($ $ |#1|) 55 (|has| |#1| (-1133))) (($ |#1| $) 54 (|has| |#1| (-1133))) (($ $ $) 53 (|has| |#1| (-1133))) (($ (-576) $) 70 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-940) $) NIL (|has| |#1| (-25))))) +(((-304 |#1|) (-13 (-1238) (-10 -8 (-15 -2924 ($ |#1| |#1|)) (-15 -2337 ($ |#1| |#1|)) (-15 -4357 ($ $)) (-15 -1657 (|#1| $)) (-15 -1669 (|#1| $)) (-15 -4116 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1197) |#1|)) (-6 (-526 (-1197) |#1|)) |%noBranch|) (IF (|has| |#1| (-1121)) (PROGN (-6 (-1121)) (-6 (-625 (-112))) (IF (|has| |#1| (-319 |#1|)) (PROGN (-15 -3282 ($ $ $)) (-15 -3282 ($ $ (-656 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3029 ($ |#1| $)) (-15 -3029 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3166 ($ $)) (-15 -1609 ($ $)) (-15 -3043 ($ |#1| $)) (-15 -3043 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1133)) (PROGN (-6 (-1133)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-738)) (PROGN (-6 (-738)) (-15 -2810 ((-3 $ "failed") $)) (-15 -4376 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -2810 ((-3 $ "failed") $)) (-15 -4376 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1070)) (PROGN (-6 (-1070)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|) (IF (|has| |#1| (-568)) (-15 -2518 ((-656 $) $)) |%noBranch|) (IF (|has| |#1| (-917 (-1197))) (-6 (-917 (-1197))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-1295 |#1|)) (-15 -3056 ($ $ $)) (-15 -2050 ($ $))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3427 ($ $ $)) |%noBranch|))) (-1238)) (T -304)) +((-2924 (*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) (-2337 (*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) (-4357 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) (-1657 (*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) (-1669 (*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) (-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-304 *3)))) (-3282 (*1 *1 *1 *1) (-12 (-4 *2 (-319 *2)) (-4 *2 (-1121)) (-4 *2 (-1238)) (-5 *1 (-304 *2)))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *3))) (-4 *3 (-319 *3)) (-4 *3 (-1121)) (-4 *3 (-1238)) (-5 *1 (-304 *3)))) (-3029 (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1238)))) (-3029 (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1238)))) (-3166 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) (-1609 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) (-3043 (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) (-3043 (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) (-2810 (*1 *1 *1) (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1238)))) (-4376 (*1 *1 *1) (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1238)))) (-2518 (*1 *2 *1) (-12 (-5 *2 (-656 (-304 *3))) (-5 *1 (-304 *3)) (-4 *3 (-568)) (-4 *3 (-1238)))) (-3427 (*1 *1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-312)) (-4 *2 (-1238)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1133)) (-4 *2 (-1238)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1133)) (-4 *2 (-1238)))) (-3056 (*1 *1 *1 *1) (-2759 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1238))) (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1238))))) (-2050 (*1 *1 *1) (-2759 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1238))) (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1238)))))) +(-13 (-1238) (-10 -8 (-15 -2924 ($ |#1| |#1|)) (-15 -2337 ($ |#1| |#1|)) (-15 -4357 ($ $)) (-15 -1657 (|#1| $)) (-15 -1669 (|#1| $)) (-15 -4116 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1197) |#1|)) (-6 (-526 (-1197) |#1|)) |%noBranch|) (IF (|has| |#1| (-1121)) (PROGN (-6 (-1121)) (-6 (-625 (-112))) (IF (|has| |#1| (-319 |#1|)) (PROGN (-15 -3282 ($ $ $)) (-15 -3282 ($ $ (-656 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3029 ($ |#1| $)) (-15 -3029 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3166 ($ $)) (-15 -1609 ($ $)) (-15 -3043 ($ |#1| $)) (-15 -3043 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1133)) (PROGN (-6 (-1133)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-738)) (PROGN (-6 (-738)) (-15 -2810 ((-3 $ "failed") $)) (-15 -4376 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -2810 ((-3 $ "failed") $)) (-15 -4376 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1070)) (PROGN (-6 (-1070)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|) (IF (|has| |#1| (-568)) (-15 -2518 ((-656 $) $)) |%noBranch|) (IF (|has| |#1| (-917 (-1197))) (-6 (-917 (-1197))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-1295 |#1|)) (-15 -3056 ($ $ $)) (-15 -2050 ($ $))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3427 ($ $ $)) |%noBranch|))) +((-3488 (((-112) $ $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102)) (|has| |#2| (-102))))) (-4127 (($) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-1512 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4465)))) (-4264 (((-112) $ (-783)) NIL)) (-3755 ((|#2| $ |#1| |#2|) NIL)) (-2123 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-1974 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2198 (((-3 |#2| "failed") |#1| $) NIL)) (-3404 (($) NIL T CONST)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121))))) (-2172 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) NIL)) (-3945 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#2| $ |#1|) NIL)) (-3965 (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) NIL)) (-3281 ((|#1| $) NIL (|has| |#1| (-861)))) (-2425 (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-4280 ((|#1| $) NIL (|has| |#1| (-861)))) (-4326 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4465))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3200 (((-656 |#1|) $) NIL)) (-3259 (((-112) |#1| $) NIL)) (-2722 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL)) (-2597 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL)) (-3669 (((-656 |#1|) $) NIL)) (-3090 (((-112) |#1| $) NIL)) (-1450 (((-1141) $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3580 ((|#2| $) NIL (|has| |#1| (-861)))) (-3434 (((-3 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) "failed") (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL)) (-2304 (($ $ |#2|) NIL (|has| $ (-6 -4465)))) (-1541 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL)) (-3252 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-3207 (((-656 |#2|) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3101 (($) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-3569 (((-876) $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-2399 (((-112) $ $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102)) (|has| |#2| (-102))))) (-3972 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-2708 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102)) (|has| |#2| (-102))))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-305 |#1| |#2|) (-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4464))) (-1121) (-1121)) (T -305)) +NIL +(-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4464))) +((-3313 (((-322) (-1179) (-656 (-1179))) 17) (((-322) (-1179) (-1179)) 16) (((-322) (-656 (-1179))) 15) (((-322) (-1179)) 14))) +(((-306) (-10 -7 (-15 -3313 ((-322) (-1179))) (-15 -3313 ((-322) (-656 (-1179)))) (-15 -3313 ((-322) (-1179) (-1179))) (-15 -3313 ((-322) (-1179) (-656 (-1179)))))) (T -306)) +((-3313 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1179))) (-5 *3 (-1179)) (-5 *2 (-322)) (-5 *1 (-306)))) (-3313 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-322)) (-5 *1 (-306)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-322)) (-5 *1 (-306)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-322)) (-5 *1 (-306))))) +(-10 -7 (-15 -3313 ((-322) (-1179))) (-15 -3313 ((-322) (-656 (-1179)))) (-15 -3313 ((-322) (-1179) (-1179))) (-15 -3313 ((-322) (-1179) (-656 (-1179))))) +((-4116 ((|#2| (-1 |#2| |#1|) (-1179) (-624 |#1|)) 18))) +(((-307 |#1| |#2|) (-10 -7 (-15 -4116 (|#2| (-1 |#2| |#1|) (-1179) (-624 |#1|)))) (-312) (-1238)) (T -307)) +((-4116 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1179)) (-5 *5 (-624 *6)) (-4 *6 (-312)) (-4 *2 (-1238)) (-5 *1 (-307 *6 *2))))) +(-10 -7 (-15 -4116 (|#2| (-1 |#2| |#1|) (-1179) (-624 |#1|)))) +((-4116 ((|#2| (-1 |#2| |#1|) (-624 |#1|)) 17))) +(((-308 |#1| |#2|) (-10 -7 (-15 -4116 (|#2| (-1 |#2| |#1|) (-624 |#1|)))) (-312) (-312)) (T -308)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-624 *5)) (-4 *5 (-312)) (-4 *2 (-312)) (-5 *1 (-308 *5 *2))))) +(-10 -7 (-15 -4116 (|#2| (-1 |#2| |#1|) (-624 |#1|)))) +((-1734 (((-112) (-227)) 12))) +(((-309 |#1| |#2|) (-10 -7 (-15 -1734 ((-112) (-227)))) (-227) (-227)) (T -309)) +((-1734 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-309 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -1734 ((-112) (-227)))) +((-3119 (((-1178 (-227)) (-326 (-227)) (-656 (-1197)) (-1115 (-855 (-227)))) 118)) (-1713 (((-1178 (-227)) (-1288 (-326 (-227))) (-656 (-1197)) (-1115 (-855 (-227)))) 135) (((-1178 (-227)) (-326 (-227)) (-656 (-1197)) (-1115 (-855 (-227)))) 72)) (-3192 (((-656 (-1179)) (-1178 (-227))) NIL)) (-1520 (((-656 (-227)) (-326 (-227)) (-1197) (-1115 (-855 (-227)))) 69)) (-2134 (((-656 (-227)) (-971 (-419 (-576))) (-1197) (-1115 (-855 (-227)))) 59)) (-2867 (((-656 (-1179)) (-656 (-227))) NIL)) (-3993 (((-227) (-1115 (-855 (-227)))) 29)) (-2566 (((-227) (-1115 (-855 (-227)))) 30)) (-3026 (((-112) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 64)) (-3181 (((-1179) (-227)) NIL))) +(((-310) (-10 -7 (-15 -3993 ((-227) (-1115 (-855 (-227))))) (-15 -2566 ((-227) (-1115 (-855 (-227))))) (-15 -3026 ((-112) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1520 ((-656 (-227)) (-326 (-227)) (-1197) (-1115 (-855 (-227))))) (-15 -3119 ((-1178 (-227)) (-326 (-227)) (-656 (-1197)) (-1115 (-855 (-227))))) (-15 -1713 ((-1178 (-227)) (-326 (-227)) (-656 (-1197)) (-1115 (-855 (-227))))) (-15 -1713 ((-1178 (-227)) (-1288 (-326 (-227))) (-656 (-1197)) (-1115 (-855 (-227))))) (-15 -2134 ((-656 (-227)) (-971 (-419 (-576))) (-1197) (-1115 (-855 (-227))))) (-15 -3181 ((-1179) (-227))) (-15 -2867 ((-656 (-1179)) (-656 (-227)))) (-15 -3192 ((-656 (-1179)) (-1178 (-227)))))) (T -310)) +((-3192 (*1 *2 *3) (-12 (-5 *3 (-1178 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-310)))) (-2867 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-310)))) (-3181 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1179)) (-5 *1 (-310)))) (-2134 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-971 (-419 (-576)))) (-5 *4 (-1197)) (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310)))) (-1713 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *4 (-656 (-1197))) (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-310)))) (-1713 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1197))) (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-310)))) (-3119 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1197))) (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-310)))) (-1520 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1197)) (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310)))) (-3026 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-112)) (-5 *1 (-310)))) (-2566 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) (-3993 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310))))) +(-10 -7 (-15 -3993 ((-227) (-1115 (-855 (-227))))) (-15 -2566 ((-227) (-1115 (-855 (-227))))) (-15 -3026 ((-112) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1520 ((-656 (-227)) (-326 (-227)) (-1197) (-1115 (-855 (-227))))) (-15 -3119 ((-1178 (-227)) (-326 (-227)) (-656 (-1197)) (-1115 (-855 (-227))))) (-15 -1713 ((-1178 (-227)) (-326 (-227)) (-656 (-1197)) (-1115 (-855 (-227))))) (-15 -1713 ((-1178 (-227)) (-1288 (-326 (-227))) (-656 (-1197)) (-1115 (-855 (-227))))) (-15 -2134 ((-656 (-227)) (-971 (-419 (-576))) (-1197) (-1115 (-855 (-227))))) (-15 -3181 ((-1179) (-227))) (-15 -2867 ((-656 (-1179)) (-656 (-227)))) (-15 -3192 ((-656 (-1179)) (-1178 (-227))))) +((-3987 (((-656 (-624 $)) $) 27)) (-3427 (($ $ (-304 $)) 78) (($ $ (-656 (-304 $))) 139) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-1572 (((-3 (-624 $) "failed") $) 127)) (-2859 (((-624 $) $) 126)) (-2687 (($ $) 17) (($ (-656 $)) 54)) (-4348 (((-656 (-115)) $) 35)) (-1776 (((-115) (-115)) 88)) (-3376 (((-112) $) 150)) (-4116 (($ (-1 $ $) (-624 $)) 86)) (-2119 (((-3 (-624 $) "failed") $) 94)) (-1640 (($ (-115) $) 59) (($ (-115) (-656 $)) 110)) (-2808 (((-112) $ (-115)) 132) (((-112) $ (-1197)) 131)) (-2327 (((-783) $) 44)) (-1523 (((-112) $ $) 57) (((-112) $ (-1197)) 49)) (-2768 (((-112) $) 148)) (-3282 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) 137) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ $))) 81) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1197) (-1 $ (-656 $))) 67) (($ $ (-1197) (-1 $ $)) 72) (($ $ (-656 (-115)) (-656 (-1 $ $))) 80) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 82) (($ $ (-115) (-1 $ (-656 $))) 68) (($ $ (-115) (-1 $ $)) 74)) (-2796 (($ (-115) $) 60) (($ (-115) $ $) 61) (($ (-115) $ $ $) 62) (($ (-115) $ $ $ $) 63) (($ (-115) (-656 $)) 123)) (-1954 (($ $) 51) (($ $ $) 135)) (-3680 (($ $) 15) (($ (-656 $)) 53)) (-1349 (((-112) (-115)) 21))) +(((-311 |#1|) (-10 -8 (-15 -3376 ((-112) |#1|)) (-15 -2768 ((-112) |#1|)) (-15 -3282 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3282 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -3282 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3282 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -3282 (|#1| |#1| (-1197) (-1 |#1| |#1|))) (-15 -3282 (|#1| |#1| (-1197) (-1 |#1| (-656 |#1|)))) (-15 -3282 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3282 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| |#1|)))) (-15 -1523 ((-112) |#1| (-1197))) (-15 -1523 ((-112) |#1| |#1|)) (-15 -4116 (|#1| (-1 |#1| |#1|) (-624 |#1|))) (-15 -1640 (|#1| (-115) (-656 |#1|))) (-15 -1640 (|#1| (-115) |#1|)) (-15 -2808 ((-112) |#1| (-1197))) (-15 -2808 ((-112) |#1| (-115))) (-15 -1349 ((-112) (-115))) (-15 -1776 ((-115) (-115))) (-15 -4348 ((-656 (-115)) |#1|)) (-15 -3987 ((-656 (-624 |#1|)) |#1|)) (-15 -2119 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2327 ((-783) |#1|)) (-15 -1954 (|#1| |#1| |#1|)) (-15 -1954 (|#1| |#1|)) (-15 -2687 (|#1| (-656 |#1|))) (-15 -2687 (|#1| |#1|)) (-15 -3680 (|#1| (-656 |#1|))) (-15 -3680 (|#1| |#1|)) (-15 -3427 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3427 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3427 (|#1| |#1| (-304 |#1|))) (-15 -2796 (|#1| (-115) (-656 |#1|))) (-15 -2796 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2796 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2796 (|#1| (-115) |#1| |#1|)) (-15 -2796 (|#1| (-115) |#1|)) (-15 -3282 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3282 (|#1| |#1| |#1| |#1|)) (-15 -3282 (|#1| |#1| (-304 |#1|))) (-15 -3282 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3282 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3282 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -1572 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2859 ((-624 |#1|) |#1|))) (-312)) (T -311)) +((-1776 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-311 *3)) (-4 *3 (-312)))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-311 *4)) (-4 *4 (-312))))) +(-10 -8 (-15 -3376 ((-112) |#1|)) (-15 -2768 ((-112) |#1|)) (-15 -3282 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3282 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -3282 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3282 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -3282 (|#1| |#1| (-1197) (-1 |#1| |#1|))) (-15 -3282 (|#1| |#1| (-1197) (-1 |#1| (-656 |#1|)))) (-15 -3282 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3282 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| |#1|)))) (-15 -1523 ((-112) |#1| (-1197))) (-15 -1523 ((-112) |#1| |#1|)) (-15 -4116 (|#1| (-1 |#1| |#1|) (-624 |#1|))) (-15 -1640 (|#1| (-115) (-656 |#1|))) (-15 -1640 (|#1| (-115) |#1|)) (-15 -2808 ((-112) |#1| (-1197))) (-15 -2808 ((-112) |#1| (-115))) (-15 -1349 ((-112) (-115))) (-15 -1776 ((-115) (-115))) (-15 -4348 ((-656 (-115)) |#1|)) (-15 -3987 ((-656 (-624 |#1|)) |#1|)) (-15 -2119 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2327 ((-783) |#1|)) (-15 -1954 (|#1| |#1| |#1|)) (-15 -1954 (|#1| |#1|)) (-15 -2687 (|#1| (-656 |#1|))) (-15 -2687 (|#1| |#1|)) (-15 -3680 (|#1| (-656 |#1|))) (-15 -3680 (|#1| |#1|)) (-15 -3427 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3427 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3427 (|#1| |#1| (-304 |#1|))) (-15 -2796 (|#1| (-115) (-656 |#1|))) (-15 -2796 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2796 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2796 (|#1| (-115) |#1| |#1|)) (-15 -2796 (|#1| (-115) |#1|)) (-15 -3282 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3282 (|#1| |#1| |#1| |#1|)) (-15 -3282 (|#1| |#1| (-304 |#1|))) (-15 -3282 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3282 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3282 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -1572 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2859 ((-624 |#1|) |#1|))) +((-3488 (((-112) $ $) 7)) (-3987 (((-656 (-624 $)) $) 39)) (-3427 (($ $ (-304 $)) 51) (($ $ (-656 (-304 $))) 50) (($ $ (-656 (-624 $)) (-656 $)) 49)) (-1572 (((-3 (-624 $) "failed") $) 64)) (-2859 (((-624 $) $) 65)) (-2687 (($ $) 46) (($ (-656 $)) 45)) (-4348 (((-656 (-115)) $) 38)) (-1776 (((-115) (-115)) 37)) (-3376 (((-112) $) 17 (|has| $ (-1059 (-576))))) (-2913 (((-1193 $) (-624 $)) 20 (|has| $ (-1070)))) (-4116 (($ (-1 $ $) (-624 $)) 31)) (-2119 (((-3 (-624 $) "failed") $) 41)) (-2046 (((-1179) $) 10)) (-1763 (((-656 (-624 $)) $) 40)) (-1640 (($ (-115) $) 33) (($ (-115) (-656 $)) 32)) (-2808 (((-112) $ (-115)) 35) (((-112) $ (-1197)) 34)) (-2327 (((-783) $) 42)) (-1450 (((-1141) $) 11)) (-1523 (((-112) $ $) 30) (((-112) $ (-1197)) 29)) (-2768 (((-112) $) 18 (|has| $ (-1059 (-576))))) (-3282 (($ $ (-624 $) $) 62) (($ $ (-656 (-624 $)) (-656 $)) 61) (($ $ (-656 (-304 $))) 60) (($ $ (-304 $)) 59) (($ $ $ $) 58) (($ $ (-656 $) (-656 $)) 57) (($ $ (-656 (-1197)) (-656 (-1 $ $))) 28) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) 27) (($ $ (-1197) (-1 $ (-656 $))) 26) (($ $ (-1197) (-1 $ $)) 25) (($ $ (-656 (-115)) (-656 (-1 $ $))) 24) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 23) (($ $ (-115) (-1 $ (-656 $))) 22) (($ $ (-115) (-1 $ $)) 21)) (-2796 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-656 $)) 52)) (-1954 (($ $) 44) (($ $ $) 43)) (-1346 (($ $) 19 (|has| $ (-1070)))) (-3569 (((-876) $) 12) (($ (-624 $)) 63)) (-3680 (($ $) 48) (($ (-656 $)) 47)) (-1349 (((-112) (-115)) 36)) (-2399 (((-112) $ $) 6)) (-2924 (((-112) $ $) 8))) (((-312) (-141)) (T -312)) -((-2797 (*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2797 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2797 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2797 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2797 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-3428 (*1 *1 *1 *2) (-12 (-5 *2 (-304 *1)) (-4 *1 (-312)))) (-3428 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *1))) (-4 *1 (-312)))) (-3428 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-624 *1))) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-3681 (*1 *1 *1) (-4 *1 (-312))) (-3681 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) (-2236 (*1 *1 *1) (-4 *1 (-312))) (-2236 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) (-3496 (*1 *1 *1) (-4 *1 (-312))) (-3496 (*1 *1 *1 *1) (-4 *1 (-312))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-783)))) (-2608 (*1 *2 *1) (|partial| -12 (-5 *2 (-624 *1)) (-4 *1 (-312)))) (-1763 (*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312)))) (-3988 (*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312)))) (-3545 (*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-656 (-115))))) (-1777 (*1 *2 *2) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2468 (*1 *2 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) (-1322 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) (-1322 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1197)) (-5 *2 (-112)))) (-1640 (*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-1640 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-4117 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-624 *1)) (-4 *1 (-312)))) (-1726 (*1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-112)))) (-1726 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1197)) (-5 *2 (-112)))) (-3284 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) (-3284 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-312)))) (-3284 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) (-3284 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) (-3284 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) (-3284 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-312)))) (-3284 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) (-3284 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-624 *1)) (-4 *1 (-1070)) (-4 *1 (-312)) (-5 *2 (-1193 *1)))) (-3867 (*1 *1 *1) (-12 (-4 *1 (-1070)) (-4 *1 (-312)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-1059 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) (-2946 (*1 *2 *1) (-12 (-4 *1 (-1059 (-576))) (-4 *1 (-312)) (-5 *2 (-112))))) -(-13 (-1121) (-1059 (-624 $)) (-526 (-624 $) $) (-319 $) (-10 -8 (-15 -2797 ($ (-115) $)) (-15 -2797 ($ (-115) $ $)) (-15 -2797 ($ (-115) $ $ $)) (-15 -2797 ($ (-115) $ $ $ $)) (-15 -2797 ($ (-115) (-656 $))) (-15 -3428 ($ $ (-304 $))) (-15 -3428 ($ $ (-656 (-304 $)))) (-15 -3428 ($ $ (-656 (-624 $)) (-656 $))) (-15 -3681 ($ $)) (-15 -3681 ($ (-656 $))) (-15 -2236 ($ $)) (-15 -2236 ($ (-656 $))) (-15 -3496 ($ $)) (-15 -3496 ($ $ $)) (-15 -2327 ((-783) $)) (-15 -2608 ((-3 (-624 $) "failed") $)) (-15 -1763 ((-656 (-624 $)) $)) (-15 -3988 ((-656 (-624 $)) $)) (-15 -3545 ((-656 (-115)) $)) (-15 -1777 ((-115) (-115))) (-15 -2468 ((-112) (-115))) (-15 -1322 ((-112) $ (-115))) (-15 -1322 ((-112) $ (-1197))) (-15 -1640 ($ (-115) $)) (-15 -1640 ($ (-115) (-656 $))) (-15 -4117 ($ (-1 $ $) (-624 $))) (-15 -1726 ((-112) $ $)) (-15 -1726 ((-112) $ (-1197))) (-15 -3284 ($ $ (-656 (-1197)) (-656 (-1 $ $)))) (-15 -3284 ($ $ (-656 (-1197)) (-656 (-1 $ (-656 $))))) (-15 -3284 ($ $ (-1197) (-1 $ (-656 $)))) (-15 -3284 ($ $ (-1197) (-1 $ $))) (-15 -3284 ($ $ (-656 (-115)) (-656 (-1 $ $)))) (-15 -3284 ($ $ (-656 (-115)) (-656 (-1 $ (-656 $))))) (-15 -3284 ($ $ (-115) (-1 $ (-656 $)))) (-15 -3284 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1070)) (PROGN (-15 -3971 ((-1193 $) (-624 $))) (-15 -3867 ($ $))) |%noBranch|) (IF (|has| $ (-1059 (-576))) (PROGN (-15 -3644 ((-112) $)) (-15 -2946 ((-112) $))) |%noBranch|))) +((-2796 (*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2796 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2796 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2796 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2796 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-3427 (*1 *1 *1 *2) (-12 (-5 *2 (-304 *1)) (-4 *1 (-312)))) (-3427 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *1))) (-4 *1 (-312)))) (-3427 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-624 *1))) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-3680 (*1 *1 *1) (-4 *1 (-312))) (-3680 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) (-2687 (*1 *1 *1) (-4 *1 (-312))) (-2687 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) (-1954 (*1 *1 *1) (-4 *1 (-312))) (-1954 (*1 *1 *1 *1) (-4 *1 (-312))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-783)))) (-2119 (*1 *2 *1) (|partial| -12 (-5 *2 (-624 *1)) (-4 *1 (-312)))) (-1763 (*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312)))) (-3987 (*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312)))) (-4348 (*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-656 (-115))))) (-1776 (*1 *2 *2) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-1349 (*1 *2 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) (-2808 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) (-2808 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1197)) (-5 *2 (-112)))) (-1640 (*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-1640 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-4116 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-624 *1)) (-4 *1 (-312)))) (-1523 (*1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-112)))) (-1523 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1197)) (-5 *2 (-112)))) (-3282 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) (-3282 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-312)))) (-3282 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) (-3282 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) (-3282 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) (-3282 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-312)))) (-3282 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) (-3282 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) (-2913 (*1 *2 *3) (-12 (-5 *3 (-624 *1)) (-4 *1 (-1070)) (-4 *1 (-312)) (-5 *2 (-1193 *1)))) (-1346 (*1 *1 *1) (-12 (-4 *1 (-1070)) (-4 *1 (-312)))) (-2768 (*1 *2 *1) (-12 (-4 *1 (-1059 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) (-3376 (*1 *2 *1) (-12 (-4 *1 (-1059 (-576))) (-4 *1 (-312)) (-5 *2 (-112))))) +(-13 (-1121) (-1059 (-624 $)) (-526 (-624 $) $) (-319 $) (-10 -8 (-15 -2796 ($ (-115) $)) (-15 -2796 ($ (-115) $ $)) (-15 -2796 ($ (-115) $ $ $)) (-15 -2796 ($ (-115) $ $ $ $)) (-15 -2796 ($ (-115) (-656 $))) (-15 -3427 ($ $ (-304 $))) (-15 -3427 ($ $ (-656 (-304 $)))) (-15 -3427 ($ $ (-656 (-624 $)) (-656 $))) (-15 -3680 ($ $)) (-15 -3680 ($ (-656 $))) (-15 -2687 ($ $)) (-15 -2687 ($ (-656 $))) (-15 -1954 ($ $)) (-15 -1954 ($ $ $)) (-15 -2327 ((-783) $)) (-15 -2119 ((-3 (-624 $) "failed") $)) (-15 -1763 ((-656 (-624 $)) $)) (-15 -3987 ((-656 (-624 $)) $)) (-15 -4348 ((-656 (-115)) $)) (-15 -1776 ((-115) (-115))) (-15 -1349 ((-112) (-115))) (-15 -2808 ((-112) $ (-115))) (-15 -2808 ((-112) $ (-1197))) (-15 -1640 ($ (-115) $)) (-15 -1640 ($ (-115) (-656 $))) (-15 -4116 ($ (-1 $ $) (-624 $))) (-15 -1523 ((-112) $ $)) (-15 -1523 ((-112) $ (-1197))) (-15 -3282 ($ $ (-656 (-1197)) (-656 (-1 $ $)))) (-15 -3282 ($ $ (-656 (-1197)) (-656 (-1 $ (-656 $))))) (-15 -3282 ($ $ (-1197) (-1 $ (-656 $)))) (-15 -3282 ($ $ (-1197) (-1 $ $))) (-15 -3282 ($ $ (-656 (-115)) (-656 (-1 $ $)))) (-15 -3282 ($ $ (-656 (-115)) (-656 (-1 $ (-656 $))))) (-15 -3282 ($ $ (-115) (-1 $ (-656 $)))) (-15 -3282 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1070)) (PROGN (-15 -2913 ((-1193 $) (-624 $))) (-15 -1346 ($ $))) |%noBranch|) (IF (|has| $ (-1059 (-576))) (PROGN (-15 -2768 ((-112) $)) (-15 -3376 ((-112) $))) |%noBranch|))) (((-102) . T) ((-628 #0=(-624 $)) . T) ((-625 (-876)) . T) ((-319 $) . T) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-1059 #0#) . T) ((-1121) . T) ((-1238) . T)) -((-2136 (((-656 |#1|) (-656 |#1|)) 10))) -(((-313 |#1|) (-10 -7 (-15 -2136 ((-656 |#1|) (-656 |#1|)))) (-860)) (T -313)) -((-2136 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-860)) (-5 *1 (-313 *3))))) -(-10 -7 (-15 -2136 ((-656 |#1|) (-656 |#1|)))) -((-4117 (((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)) 17))) -(((-314 |#1| |#2|) (-10 -7 (-15 -4117 ((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)))) (-1070) (-1070)) (T -314)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-701 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-5 *2 (-701 *6)) (-5 *1 (-314 *5 *6))))) -(-10 -7 (-15 -4117 ((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)))) -((-3273 (((-1288 (-326 (-390))) (-1288 (-326 (-227)))) 110)) (-2969 (((-1115 (-855 (-227))) (-1115 (-855 (-390)))) 43)) (-4313 (((-656 (-1179)) (-1178 (-227))) 92)) (-1509 (((-326 (-390)) (-971 (-227))) 53)) (-3802 (((-227) (-971 (-227))) 49)) (-3324 (((-1179) (-390)) 195)) (-3637 (((-855 (-227)) (-855 (-390))) 37)) (-2749 (((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1288 (-326 (-227)))) 165)) (-4147 (((-1056) (-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) 207) (((-1056) (-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179))))) 205)) (-2590 (((-701 (-227)) (-656 (-227)) (-783)) 19)) (-4057 (((-1288 (-711)) (-656 (-227))) 99)) (-3653 (((-656 (-1179)) (-656 (-227))) 79)) (-2274 (((-3 (-326 (-227)) "failed") (-326 (-227))) 128)) (-1748 (((-112) (-227) (-1115 (-855 (-227)))) 117)) (-2119 (((-1056) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) 224)) (-2868 (((-227) (-1115 (-855 (-227)))) 112)) (-4073 (((-227) (-1115 (-855 (-227)))) 113)) (-1989 (((-227) (-419 (-576))) 31)) (-2552 (((-1179) (-390)) 77)) (-2024 (((-227) (-390)) 22)) (-3933 (((-390) (-1288 (-326 (-227)))) 177)) (-1646 (((-326 (-227)) (-326 (-390))) 28)) (-1626 (((-419 (-576)) (-326 (-227))) 56)) (-3531 (((-326 (-419 (-576))) (-326 (-227))) 73)) (-1913 (((-326 (-390)) (-326 (-227))) 103)) (-3323 (((-227) (-326 (-227))) 57)) (-4196 (((-656 (-227)) (-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))))) 68)) (-3337 (((-1115 (-855 (-227))) (-1115 (-855 (-227)))) 65)) (-4312 (((-1179) (-227)) 76)) (-1619 (((-711) (-227)) 95)) (-2763 (((-419 (-576)) (-227)) 58)) (-3258 (((-326 (-390)) (-227)) 52)) (-4172 (((-656 (-1115 (-855 (-227)))) (-656 (-1115 (-855 (-390))))) 46)) (-1615 (((-1056) (-656 (-1056))) 191) (((-1056) (-1056) (-1056)) 185)) (-4052 (((-1056) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2951 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221))) -(((-315) (-10 -7 (-15 -2024 ((-227) (-390))) (-15 -1646 ((-326 (-227)) (-326 (-390)))) (-15 -3637 ((-855 (-227)) (-855 (-390)))) (-15 -2969 ((-1115 (-855 (-227))) (-1115 (-855 (-390))))) (-15 -4172 ((-656 (-1115 (-855 (-227)))) (-656 (-1115 (-855 (-390)))))) (-15 -2763 ((-419 (-576)) (-227))) (-15 -1626 ((-419 (-576)) (-326 (-227)))) (-15 -3323 ((-227) (-326 (-227)))) (-15 -2274 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -3933 ((-390) (-1288 (-326 (-227))))) (-15 -2749 ((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1288 (-326 (-227))))) (-15 -3531 ((-326 (-419 (-576))) (-326 (-227)))) (-15 -3337 ((-1115 (-855 (-227))) (-1115 (-855 (-227))))) (-15 -4196 ((-656 (-227)) (-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))))) (-15 -1619 ((-711) (-227))) (-15 -4057 ((-1288 (-711)) (-656 (-227)))) (-15 -1913 ((-326 (-390)) (-326 (-227)))) (-15 -3273 ((-1288 (-326 (-390))) (-1288 (-326 (-227))))) (-15 -1748 ((-112) (-227) (-1115 (-855 (-227))))) (-15 -4312 ((-1179) (-227))) (-15 -2552 ((-1179) (-390))) (-15 -3653 ((-656 (-1179)) (-656 (-227)))) (-15 -4313 ((-656 (-1179)) (-1178 (-227)))) (-15 -2868 ((-227) (-1115 (-855 (-227))))) (-15 -4073 ((-227) (-1115 (-855 (-227))))) (-15 -1615 ((-1056) (-1056) (-1056))) (-15 -1615 ((-1056) (-656 (-1056)))) (-15 -3324 ((-1179) (-390))) (-15 -4147 ((-1056) (-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179)))))) (-15 -4147 ((-1056) (-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))))) (-15 -4052 ((-1056) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2951 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2119 ((-1056) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))) (-15 -1509 ((-326 (-390)) (-971 (-227)))) (-15 -3802 ((-227) (-971 (-227)))) (-15 -3258 ((-326 (-390)) (-227))) (-15 -1989 ((-227) (-419 (-576)))) (-15 -2590 ((-701 (-227)) (-656 (-227)) (-783))))) (T -315)) -((-2590 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) (-5 *1 (-315)))) (-1989 (*1 *2 *3) (-12 (-5 *3 (-419 (-576))) (-5 *2 (-227)) (-5 *1 (-315)))) (-3258 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-3802 (*1 *2 *3) (-12 (-5 *3 (-971 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))) (-1509 (*1 *2 *3) (-12 (-5 *3 (-971 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-2119 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) (-5 *2 (-1056)) (-5 *1 (-315)))) (-4052 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2951 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1056)) (-5 *1 (-315)))) (-4147 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) (-5 *2 (-1056)) (-5 *1 (-315)))) (-4147 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *2 (-1056)) (-5 *1 (-315)))) (-3324 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1179)) (-5 *1 (-315)))) (-1615 (*1 *2 *3) (-12 (-5 *3 (-656 (-1056))) (-5 *2 (-1056)) (-5 *1 (-315)))) (-1615 (*1 *2 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-315)))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))) (-2868 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))) (-4313 (*1 *2 *3) (-12 (-5 *3 (-1178 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-315)))) (-3653 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-315)))) (-2552 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1179)) (-5 *1 (-315)))) (-4312 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1179)) (-5 *1 (-315)))) (-1748 (*1 *2 *3 *4) (-12 (-5 *4 (-1115 (-855 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-315)))) (-3273 (*1 *2 *3) (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *2 (-1288 (-326 (-390)))) (-5 *1 (-315)))) (-1913 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-4057 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1288 (-711))) (-5 *1 (-315)))) (-1619 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-711)) (-5 *1 (-315)))) (-4196 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))))) (-5 *2 (-656 (-227))) (-5 *1 (-315)))) (-3337 (*1 *2 *2) (-12 (-5 *2 (-1115 (-855 (-227)))) (-5 *1 (-315)))) (-3531 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-419 (-576)))) (-5 *1 (-315)))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *2 (-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576)))) (-5 *1 (-315)))) (-3933 (*1 *2 *3) (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-315)))) (-2274 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-315)))) (-3323 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))) (-1626 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-419 (-576))) (-5 *1 (-315)))) (-2763 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-419 (-576))) (-5 *1 (-315)))) (-4172 (*1 *2 *3) (-12 (-5 *3 (-656 (-1115 (-855 (-390))))) (-5 *2 (-656 (-1115 (-855 (-227))))) (-5 *1 (-315)))) (-2969 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-390)))) (-5 *2 (-1115 (-855 (-227)))) (-5 *1 (-315)))) (-3637 (*1 *2 *3) (-12 (-5 *3 (-855 (-390))) (-5 *2 (-855 (-227))) (-5 *1 (-315)))) (-1646 (*1 *2 *3) (-12 (-5 *3 (-326 (-390))) (-5 *2 (-326 (-227))) (-5 *1 (-315)))) (-2024 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-315))))) -(-10 -7 (-15 -2024 ((-227) (-390))) (-15 -1646 ((-326 (-227)) (-326 (-390)))) (-15 -3637 ((-855 (-227)) (-855 (-390)))) (-15 -2969 ((-1115 (-855 (-227))) (-1115 (-855 (-390))))) (-15 -4172 ((-656 (-1115 (-855 (-227)))) (-656 (-1115 (-855 (-390)))))) (-15 -2763 ((-419 (-576)) (-227))) (-15 -1626 ((-419 (-576)) (-326 (-227)))) (-15 -3323 ((-227) (-326 (-227)))) (-15 -2274 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -3933 ((-390) (-1288 (-326 (-227))))) (-15 -2749 ((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1288 (-326 (-227))))) (-15 -3531 ((-326 (-419 (-576))) (-326 (-227)))) (-15 -3337 ((-1115 (-855 (-227))) (-1115 (-855 (-227))))) (-15 -4196 ((-656 (-227)) (-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))))) (-15 -1619 ((-711) (-227))) (-15 -4057 ((-1288 (-711)) (-656 (-227)))) (-15 -1913 ((-326 (-390)) (-326 (-227)))) (-15 -3273 ((-1288 (-326 (-390))) (-1288 (-326 (-227))))) (-15 -1748 ((-112) (-227) (-1115 (-855 (-227))))) (-15 -4312 ((-1179) (-227))) (-15 -2552 ((-1179) (-390))) (-15 -3653 ((-656 (-1179)) (-656 (-227)))) (-15 -4313 ((-656 (-1179)) (-1178 (-227)))) (-15 -2868 ((-227) (-1115 (-855 (-227))))) (-15 -4073 ((-227) (-1115 (-855 (-227))))) (-15 -1615 ((-1056) (-1056) (-1056))) (-15 -1615 ((-1056) (-656 (-1056)))) (-15 -3324 ((-1179) (-390))) (-15 -4147 ((-1056) (-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179)))))) (-15 -4147 ((-1056) (-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))))) (-15 -4052 ((-1056) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2951 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2119 ((-1056) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))) (-15 -1509 ((-326 (-390)) (-971 (-227)))) (-15 -3802 ((-227) (-971 (-227)))) (-15 -3258 ((-326 (-390)) (-227))) (-15 -1989 ((-227) (-419 (-576)))) (-15 -2590 ((-701 (-227)) (-656 (-227)) (-783)))) -((-4016 (((-112) $ $) 14)) (-3429 (($ $ $) 18)) (-3441 (($ $ $) 17)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) 50)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) 65)) (-3498 (($ $ $) 25) (($ (-656 $)) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-3476 (((-3 $ "failed") $ $) 21)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) 53))) -(((-316 |#1|) (-10 -8 (-15 -3872 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -2288 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2288 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4129 |#1|)) |#1| |#1|)) (-15 -3429 (|#1| |#1| |#1|)) (-15 -3441 (|#1| |#1| |#1|)) (-15 -4016 ((-112) |#1| |#1|)) (-15 -2722 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -2174 ((-2 (|:| -1714 (-656 |#1|)) (|:| -4129 |#1|)) (-656 |#1|))) (-15 -3498 (|#1| (-656 |#1|))) (-15 -3498 (|#1| |#1| |#1|)) (-15 -3476 ((-3 |#1| "failed") |#1| |#1|))) (-317)) (T -316)) -NIL -(-10 -8 (-15 -3872 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -2288 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2288 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4129 |#1|)) |#1| |#1|)) (-15 -3429 (|#1| |#1| |#1|)) (-15 -3441 (|#1| |#1| |#1|)) (-15 -4016 ((-112) |#1| |#1|)) (-15 -2722 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -2174 ((-2 (|:| -1714 (-656 |#1|)) (|:| -4129 |#1|)) (-656 |#1|))) (-15 -3498 (|#1| (-656 |#1|))) (-15 -3498 (|#1| |#1| |#1|)) (-15 -3476 ((-3 |#1| "failed") |#1| |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 47)) (-2757 (($ $) 46)) (-3788 (((-112) $) 44)) (-4367 (((-3 $ "failed") $ $) 20)) (-4016 (((-112) $ $) 65)) (-3886 (($) 18 T CONST)) (-3429 (($ $ $) 61)) (-1561 (((-3 $ "failed") $) 37)) (-3441 (($ $ $) 62)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) 57)) (-4193 (((-112) $) 35)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3458 (($ $ $) 52) (($ (-656 $)) 51)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3476 (((-3 $ "failed") $ $) 48)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1967 (((-783) $) 64)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 63)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2672 (((-112) $ $) 45)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-4270 (((-656 |#1|) (-656 |#1|)) 10))) +(((-313 |#1|) (-10 -7 (-15 -4270 ((-656 |#1|) (-656 |#1|)))) (-860)) (T -313)) +((-4270 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-860)) (-5 *1 (-313 *3))))) +(-10 -7 (-15 -4270 ((-656 |#1|) (-656 |#1|)))) +((-4116 (((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)) 17))) +(((-314 |#1| |#2|) (-10 -7 (-15 -4116 ((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)))) (-1070) (-1070)) (T -314)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-701 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-5 *2 (-701 *6)) (-5 *1 (-314 *5 *6))))) +(-10 -7 (-15 -4116 ((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)))) +((-3523 (((-1288 (-326 (-390))) (-1288 (-326 (-227)))) 110)) (-3600 (((-1115 (-855 (-227))) (-1115 (-855 (-390)))) 43)) (-3192 (((-656 (-1179)) (-1178 (-227))) 92)) (-4333 (((-326 (-390)) (-971 (-227))) 53)) (-1909 (((-227) (-971 (-227))) 49)) (-2746 (((-1179) (-390)) 195)) (-2701 (((-855 (-227)) (-855 (-390))) 37)) (-4120 (((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1288 (-326 (-227)))) 165)) (-2061 (((-1056) (-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) 207) (((-1056) (-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179))))) 205)) (-3232 (((-701 (-227)) (-656 (-227)) (-783)) 19)) (-2421 (((-1288 (-711)) (-656 (-227))) 99)) (-2867 (((-656 (-1179)) (-656 (-227))) 79)) (-2274 (((-3 (-326 (-227)) "failed") (-326 (-227))) 128)) (-1734 (((-112) (-227) (-1115 (-855 (-227)))) 117)) (-4108 (((-1056) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) 224)) (-3993 (((-227) (-1115 (-855 (-227)))) 112)) (-2566 (((-227) (-1115 (-855 (-227)))) 113)) (-2178 (((-227) (-419 (-576))) 31)) (-2842 (((-1179) (-390)) 77)) (-2489 (((-227) (-390)) 22)) (-3886 (((-390) (-1288 (-326 (-227)))) 177)) (-1973 (((-326 (-227)) (-326 (-390))) 28)) (-3041 (((-419 (-576)) (-326 (-227))) 56)) (-4226 (((-326 (-419 (-576))) (-326 (-227))) 73)) (-2714 (((-326 (-390)) (-326 (-227))) 103)) (-2733 (((-227) (-326 (-227))) 57)) (-1383 (((-656 (-227)) (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) 68)) (-2900 (((-1115 (-855 (-227))) (-1115 (-855 (-227)))) 65)) (-3181 (((-1179) (-227)) 76)) (-2948 (((-711) (-227)) 95)) (-4224 (((-419 (-576)) (-227)) 58)) (-3362 (((-326 (-390)) (-227)) 52)) (-4171 (((-656 (-1115 (-855 (-227)))) (-656 (-1115 (-855 (-390))))) 46)) (-1615 (((-1056) (-656 (-1056))) 191) (((-1056) (-1056) (-1056)) 185)) (-2366 (((-1056) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3417 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221))) +(((-315) (-10 -7 (-15 -2489 ((-227) (-390))) (-15 -1973 ((-326 (-227)) (-326 (-390)))) (-15 -2701 ((-855 (-227)) (-855 (-390)))) (-15 -3600 ((-1115 (-855 (-227))) (-1115 (-855 (-390))))) (-15 -4171 ((-656 (-1115 (-855 (-227)))) (-656 (-1115 (-855 (-390)))))) (-15 -4224 ((-419 (-576)) (-227))) (-15 -3041 ((-419 (-576)) (-326 (-227)))) (-15 -2733 ((-227) (-326 (-227)))) (-15 -2274 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -3886 ((-390) (-1288 (-326 (-227))))) (-15 -4120 ((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1288 (-326 (-227))))) (-15 -4226 ((-326 (-419 (-576))) (-326 (-227)))) (-15 -2900 ((-1115 (-855 (-227))) (-1115 (-855 (-227))))) (-15 -1383 ((-656 (-227)) (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))))) (-15 -2948 ((-711) (-227))) (-15 -2421 ((-1288 (-711)) (-656 (-227)))) (-15 -2714 ((-326 (-390)) (-326 (-227)))) (-15 -3523 ((-1288 (-326 (-390))) (-1288 (-326 (-227))))) (-15 -1734 ((-112) (-227) (-1115 (-855 (-227))))) (-15 -3181 ((-1179) (-227))) (-15 -2842 ((-1179) (-390))) (-15 -2867 ((-656 (-1179)) (-656 (-227)))) (-15 -3192 ((-656 (-1179)) (-1178 (-227)))) (-15 -3993 ((-227) (-1115 (-855 (-227))))) (-15 -2566 ((-227) (-1115 (-855 (-227))))) (-15 -1615 ((-1056) (-1056) (-1056))) (-15 -1615 ((-1056) (-656 (-1056)))) (-15 -2746 ((-1179) (-390))) (-15 -2061 ((-1056) (-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179)))))) (-15 -2061 ((-1056) (-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))))) (-15 -2366 ((-1056) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3417 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -4108 ((-1056) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))) (-15 -4333 ((-326 (-390)) (-971 (-227)))) (-15 -1909 ((-227) (-971 (-227)))) (-15 -3362 ((-326 (-390)) (-227))) (-15 -2178 ((-227) (-419 (-576)))) (-15 -3232 ((-701 (-227)) (-656 (-227)) (-783))))) (T -315)) +((-3232 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) (-5 *1 (-315)))) (-2178 (*1 *2 *3) (-12 (-5 *3 (-419 (-576))) (-5 *2 (-227)) (-5 *1 (-315)))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-1909 (*1 *2 *3) (-12 (-5 *3 (-971 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))) (-4333 (*1 *2 *3) (-12 (-5 *3 (-971 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-4108 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) (-5 *2 (-1056)) (-5 *1 (-315)))) (-2366 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3417 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1056)) (-5 *1 (-315)))) (-2061 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) (-5 *2 (-1056)) (-5 *1 (-315)))) (-2061 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *2 (-1056)) (-5 *1 (-315)))) (-2746 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1179)) (-5 *1 (-315)))) (-1615 (*1 *2 *3) (-12 (-5 *3 (-656 (-1056))) (-5 *2 (-1056)) (-5 *1 (-315)))) (-1615 (*1 *2 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-315)))) (-2566 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))) (-3993 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))) (-3192 (*1 *2 *3) (-12 (-5 *3 (-1178 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-315)))) (-2867 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-315)))) (-2842 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1179)) (-5 *1 (-315)))) (-3181 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1179)) (-5 *1 (-315)))) (-1734 (*1 *2 *3 *4) (-12 (-5 *4 (-1115 (-855 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-315)))) (-3523 (*1 *2 *3) (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *2 (-1288 (-326 (-390)))) (-5 *1 (-315)))) (-2714 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1288 (-711))) (-5 *1 (-315)))) (-2948 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-711)) (-5 *1 (-315)))) (-1383 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-5 *2 (-656 (-227))) (-5 *1 (-315)))) (-2900 (*1 *2 *2) (-12 (-5 *2 (-1115 (-855 (-227)))) (-5 *1 (-315)))) (-4226 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-419 (-576)))) (-5 *1 (-315)))) (-4120 (*1 *2 *3) (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *2 (-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576)))) (-5 *1 (-315)))) (-3886 (*1 *2 *3) (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-315)))) (-2274 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-315)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))) (-3041 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-419 (-576))) (-5 *1 (-315)))) (-4224 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-419 (-576))) (-5 *1 (-315)))) (-4171 (*1 *2 *3) (-12 (-5 *3 (-656 (-1115 (-855 (-390))))) (-5 *2 (-656 (-1115 (-855 (-227))))) (-5 *1 (-315)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-390)))) (-5 *2 (-1115 (-855 (-227)))) (-5 *1 (-315)))) (-2701 (*1 *2 *3) (-12 (-5 *3 (-855 (-390))) (-5 *2 (-855 (-227))) (-5 *1 (-315)))) (-1973 (*1 *2 *3) (-12 (-5 *3 (-326 (-390))) (-5 *2 (-326 (-227))) (-5 *1 (-315)))) (-2489 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-315))))) +(-10 -7 (-15 -2489 ((-227) (-390))) (-15 -1973 ((-326 (-227)) (-326 (-390)))) (-15 -2701 ((-855 (-227)) (-855 (-390)))) (-15 -3600 ((-1115 (-855 (-227))) (-1115 (-855 (-390))))) (-15 -4171 ((-656 (-1115 (-855 (-227)))) (-656 (-1115 (-855 (-390)))))) (-15 -4224 ((-419 (-576)) (-227))) (-15 -3041 ((-419 (-576)) (-326 (-227)))) (-15 -2733 ((-227) (-326 (-227)))) (-15 -2274 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -3886 ((-390) (-1288 (-326 (-227))))) (-15 -4120 ((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1288 (-326 (-227))))) (-15 -4226 ((-326 (-419 (-576))) (-326 (-227)))) (-15 -2900 ((-1115 (-855 (-227))) (-1115 (-855 (-227))))) (-15 -1383 ((-656 (-227)) (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))))) (-15 -2948 ((-711) (-227))) (-15 -2421 ((-1288 (-711)) (-656 (-227)))) (-15 -2714 ((-326 (-390)) (-326 (-227)))) (-15 -3523 ((-1288 (-326 (-390))) (-1288 (-326 (-227))))) (-15 -1734 ((-112) (-227) (-1115 (-855 (-227))))) (-15 -3181 ((-1179) (-227))) (-15 -2842 ((-1179) (-390))) (-15 -2867 ((-656 (-1179)) (-656 (-227)))) (-15 -3192 ((-656 (-1179)) (-1178 (-227)))) (-15 -3993 ((-227) (-1115 (-855 (-227))))) (-15 -2566 ((-227) (-1115 (-855 (-227))))) (-15 -1615 ((-1056) (-1056) (-1056))) (-15 -1615 ((-1056) (-656 (-1056)))) (-15 -2746 ((-1179) (-390))) (-15 -2061 ((-1056) (-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179)))))) (-15 -2061 ((-1056) (-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))))) (-15 -2366 ((-1056) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3417 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -4108 ((-1056) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))) (-15 -4333 ((-326 (-390)) (-971 (-227)))) (-15 -1909 ((-227) (-971 (-227)))) (-15 -3362 ((-326 (-390)) (-227))) (-15 -2178 ((-227) (-419 (-576)))) (-15 -3232 ((-701 (-227)) (-656 (-227)) (-783)))) +((-3330 (((-112) $ $) 14)) (-3428 (($ $ $) 18)) (-3440 (($ $ $) 17)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) 50)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) 65)) (-3497 (($ $ $) 25) (($ (-656 $)) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-3475 (((-3 $ "failed") $ $) 21)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) 53))) +(((-316 |#1|) (-10 -8 (-15 -1387 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -3278 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3278 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4128 |#1|)) |#1| |#1|)) (-15 -3428 (|#1| |#1| |#1|)) (-15 -3440 (|#1| |#1| |#1|)) (-15 -3330 ((-112) |#1| |#1|)) (-15 -1899 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -3363 ((-2 (|:| -1715 (-656 |#1|)) (|:| -4128 |#1|)) (-656 |#1|))) (-15 -3497 (|#1| (-656 |#1|))) (-15 -3497 (|#1| |#1| |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#1|))) (-317)) (T -316)) +NIL +(-10 -8 (-15 -1387 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -3278 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3278 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4128 |#1|)) |#1| |#1|)) (-15 -3428 (|#1| |#1| |#1|)) (-15 -3440 (|#1| |#1| |#1|)) (-15 -3330 ((-112) |#1| |#1|)) (-15 -1899 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -3363 ((-2 (|:| -1715 (-656 |#1|)) (|:| -4128 |#1|)) (-656 |#1|))) (-15 -3497 (|#1| (-656 |#1|))) (-15 -3497 (|#1| |#1| |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-4195 (($ $) 46)) (-1760 (((-112) $) 44)) (-2428 (((-3 $ "failed") $ $) 20)) (-3330 (((-112) $ $) 65)) (-3404 (($) 18 T CONST)) (-3428 (($ $ $) 61)) (-3673 (((-3 $ "failed") $) 37)) (-3440 (($ $ $) 62)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) 57)) (-1351 (((-112) $) 35)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3497 (($ $ $) 54) (($ (-656 $)) 53)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3475 (((-3 $ "failed") $ $) 48)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1979 (((-783) $) 64)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 63)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-1505 (((-112) $ $) 45)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-317) (-141)) (T -317)) -((-4016 (*1 *2 *1 *1) (-12 (-4 *1 (-317)) (-5 *2 (-112)))) (-1967 (*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-783)))) (-3274 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2715 *1) (|:| -3624 *1))) (-4 *1 (-317)))) (-3441 (*1 *1 *1 *1) (-4 *1 (-317))) (-3429 (*1 *1 *1 *1) (-4 *1 (-317))) (-2288 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4129 *1))) (-4 *1 (-317)))) (-2288 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-317)))) (-3872 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-317))))) -(-13 (-939) (-10 -8 (-15 -4016 ((-112) $ $)) (-15 -1967 ((-783) $)) (-15 -3274 ((-2 (|:| -2715 $) (|:| -3624 $)) $ $)) (-15 -3441 ($ $ $)) (-15 -3429 ($ $ $)) (-15 -2288 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $)) (-15 -2288 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3872 ((-3 (-656 $) "failed") (-656 $) $)))) +((-3330 (*1 *2 *1 *1) (-12 (-4 *1 (-317)) (-5 *2 (-112)))) (-1979 (*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-783)))) (-3536 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1855 *1) (|:| -3891 *1))) (-4 *1 (-317)))) (-3440 (*1 *1 *1 *1) (-4 *1 (-317))) (-3428 (*1 *1 *1 *1) (-4 *1 (-317))) (-3278 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4128 *1))) (-4 *1 (-317)))) (-3278 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-317)))) (-1387 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-317))))) +(-13 (-939) (-10 -8 (-15 -3330 ((-112) $ $)) (-15 -1979 ((-783) $)) (-15 -3536 ((-2 (|:| -1855 $) (|:| -3891 $)) $ $)) (-15 -3440 ($ $ $)) (-15 -3428 ($ $ $)) (-15 -3278 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $)) (-15 -3278 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1387 ((-3 (-656 $) "failed") (-656 $) $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-939) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-3284 (($ $ (-656 |#2|) (-656 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-304 |#2|)) 11) (($ $ (-656 (-304 |#2|))) NIL))) -(((-318 |#1| |#2|) (-10 -8 (-15 -3284 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3284 (|#1| |#1| (-304 |#2|))) (-15 -3284 (|#1| |#1| |#2| |#2|)) (-15 -3284 (|#1| |#1| (-656 |#2|) (-656 |#2|)))) (-319 |#2|) (-1121)) (T -318)) +((-3282 (($ $ (-656 |#2|) (-656 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-304 |#2|)) 11) (($ $ (-656 (-304 |#2|))) NIL))) +(((-318 |#1| |#2|) (-10 -8 (-15 -3282 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3282 (|#1| |#1| (-304 |#2|))) (-15 -3282 (|#1| |#1| |#2| |#2|)) (-15 -3282 (|#1| |#1| (-656 |#2|) (-656 |#2|)))) (-319 |#2|) (-1121)) (T -318)) NIL -(-10 -8 (-15 -3284 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3284 (|#1| |#1| (-304 |#2|))) (-15 -3284 (|#1| |#1| |#2| |#2|)) (-15 -3284 (|#1| |#1| (-656 |#2|) (-656 |#2|)))) -((-3284 (($ $ (-656 |#1|) (-656 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-304 |#1|)) 11) (($ $ (-656 (-304 |#1|))) 10))) +(-10 -8 (-15 -3282 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3282 (|#1| |#1| (-304 |#2|))) (-15 -3282 (|#1| |#1| |#2| |#2|)) (-15 -3282 (|#1| |#1| (-656 |#2|) (-656 |#2|)))) +((-3282 (($ $ (-656 |#1|) (-656 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-304 |#1|)) 11) (($ $ (-656 (-304 |#1|))) 10))) (((-319 |#1|) (-141) (-1121)) (T -319)) -((-3284 (*1 *1 *1 *2) (-12 (-5 *2 (-304 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1121)))) (-3284 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *3))) (-4 *1 (-319 *3)) (-4 *3 (-1121))))) -(-13 (-526 |t#1| |t#1|) (-10 -8 (-15 -3284 ($ $ (-304 |t#1|))) (-15 -3284 ($ $ (-656 (-304 |t#1|)))))) +((-3282 (*1 *1 *1 *2) (-12 (-5 *2 (-304 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1121)))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *3))) (-4 *1 (-319 *3)) (-4 *3 (-1121))))) +(-13 (-526 |t#1| |t#1|) (-10 -8 (-15 -3282 ($ $ (-304 |t#1|))) (-15 -3282 ($ $ (-656 (-304 |t#1|)))))) (((-526 |#1| |#1|) . T)) -((-3284 ((|#1| (-1 |#1| (-576)) (-1199 (-419 (-576)))) 26))) -(((-320 |#1|) (-10 -7 (-15 -3284 (|#1| (-1 |#1| (-576)) (-1199 (-419 (-576)))))) (-38 (-419 (-576)))) (T -320)) -((-3284 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-576))) (-5 *4 (-1199 (-419 (-576)))) (-5 *1 (-320 *2)) (-4 *2 (-38 (-419 (-576))))))) -(-10 -7 (-15 -3284 (|#1| (-1 |#1| (-576)) (-1199 (-419 (-576)))))) -((-3489 (((-112) $ $) NIL)) (-2816 (((-576) $) 12)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3123 (((-1156) $) 9)) (-3570 (((-876) $) 19) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-321) (-13 (-1104) (-10 -8 (-15 -3123 ((-1156) $)) (-15 -2816 ((-576) $))))) (T -321)) -((-3123 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-321)))) (-2816 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-321))))) -(-13 (-1104) (-10 -8 (-15 -3123 ((-1156) $)) (-15 -2816 ((-576) $)))) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 7)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 9))) +((-3282 ((|#1| (-1 |#1| (-576)) (-1199 (-419 (-576)))) 26))) +(((-320 |#1|) (-10 -7 (-15 -3282 (|#1| (-1 |#1| (-576)) (-1199 (-419 (-576)))))) (-38 (-419 (-576)))) (T -320)) +((-3282 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-576))) (-5 *4 (-1199 (-419 (-576)))) (-5 *1 (-320 *2)) (-4 *2 (-38 (-419 (-576))))))) +(-10 -7 (-15 -3282 (|#1| (-1 |#1| (-576)) (-1199 (-419 (-576)))))) +((-3488 (((-112) $ $) NIL)) (-2815 (((-576) $) 12)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3121 (((-1156) $) 9)) (-3569 (((-876) $) 19) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-321) (-13 (-1104) (-10 -8 (-15 -3121 ((-1156) $)) (-15 -2815 ((-576) $))))) (T -321)) +((-3121 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-321)))) (-2815 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-321))))) +(-13 (-1104) (-10 -8 (-15 -3121 ((-1156) $)) (-15 -2815 ((-576) $)))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 7)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 9))) (((-322) (-1121)) (T -322)) NIL (-1121) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 60)) (-2575 (((-1274 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-317)))) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3601 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-928)))) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-928)))) (-4016 (((-112) $ $) NIL)) (-3308 (((-576) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-832)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-1274 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-576)))) (((-3 (-1273 |#2| |#3| |#4|) "failed") $) 26)) (-2860 (((-1274 |#1| |#2| |#3| |#4|) $) NIL) (((-1197) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-576)))) (((-576) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-576)))) (((-1273 |#2| |#3| |#4|) $) NIL)) (-3429 (($ $ $) NIL)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-1274 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1288 (-1274 |#1| |#2| |#3| |#4|)))) (-701 $) (-1288 $)) NIL) (((-701 (-1274 |#1| |#2| |#3| |#4|)) (-701 $)) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-557)))) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-4249 (((-112) $) NIL)) (-2087 (((-112) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-832)))) (-1840 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-901 (-390))))) (-4193 (((-112) $) NIL)) (-2171 (($ $) NIL)) (-1570 (((-1274 |#1| |#2| |#3| |#4|) $) 22)) (-2240 (((-3 $ "failed") $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1173)))) (-1634 (((-112) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-832)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3125 (($ $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-861)))) (-3133 (($ $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-861)))) (-4117 (($ (-1 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)) $) NIL)) (-2478 (((-3 (-855 |#2|) "failed") $) 80)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-1274 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1288 (-1274 |#1| |#2| |#3| |#4|)))) (-1288 $) $) NIL) (((-701 (-1274 |#1| |#2| |#3| |#4|)) (-1288 $)) NIL)) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3540 (($) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2393 (($ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-317)))) (-2443 (((-1274 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-557)))) (-4100 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-928)))) (-1828 (((-430 $) $) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3284 (($ $ (-656 (-1274 |#1| |#2| |#3| |#4|)) (-656 (-1274 |#1| |#2| |#3| |#4|))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-319 (-1274 |#1| |#2| |#3| |#4|)))) (($ $ (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-319 (-1274 |#1| |#2| |#3| |#4|)))) (($ $ (-304 (-1274 |#1| |#2| |#3| |#4|))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-319 (-1274 |#1| |#2| |#3| |#4|)))) (($ $ (-656 (-304 (-1274 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-319 (-1274 |#1| |#2| |#3| |#4|)))) (($ $ (-656 (-1197)) (-656 (-1274 |#1| |#2| |#3| |#4|))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-526 (-1197) (-1274 |#1| |#2| |#3| |#4|)))) (($ $ (-1197) (-1274 |#1| |#2| |#3| |#4|)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-526 (-1197) (-1274 |#1| |#2| |#3| |#4|))))) (-1967 (((-783) $) NIL)) (-2797 (($ $ (-1274 |#1| |#2| |#3| |#4|)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-296 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|))))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-2775 (($ $ (-1 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|))) NIL) (($ $ (-1 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-783)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-237)))) (-2143 (($ $) NIL)) (-1581 (((-1274 |#1| |#2| |#3| |#4|) $) 19)) (-4172 (((-907 (-576)) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-626 (-548)))) (((-390) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1043))) (((-227) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1043)))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1274 |#1| |#2| |#3| |#4|) (-928))))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-1274 |#1| |#2| |#3| |#4|)) 30) (($ (-1197)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-1197)))) (($ (-1273 |#2| |#3| |#4|)) 37)) (-4336 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| $ (-146)) (|has| (-1274 |#1| |#2| |#3| |#4|) (-928))) (|has| (-1274 |#1| |#2| |#3| |#4|) (-146))))) (-3996 (((-783)) NIL T CONST)) (-4118 (((-1274 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-557)))) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL)) (-2122 (($ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-832)))) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2020 (($ $ (-1 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|))) NIL) (($ $ (-1 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-783)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-237)))) (-2992 (((-112) $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-861)))) (-2964 (((-112) $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-861)))) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-861)))) (-2950 (((-112) $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-861)))) (-3057 (($ $ $) 35) (($ (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)) 32)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-1274 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1274 |#1| |#2| |#3| |#4|)) NIL))) -(((-323 |#1| |#2| |#3| |#4|) (-13 (-1013 (-1274 |#1| |#2| |#3| |#4|)) (-1059 (-1273 |#2| |#3| |#4|)) (-10 -8 (-15 -2478 ((-3 (-855 |#2|) "failed") $)) (-15 -3570 ($ (-1273 |#2| |#3| |#4|))))) (-13 (-1059 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1223) (-442 |#1|)) (-1197) |#2|) (T -323)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-1273 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-442 *3))) (-14 *5 (-1197)) (-14 *6 *4) (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) (-5 *1 (-323 *3 *4 *5 *6)))) (-2478 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) (-5 *2 (-855 *4)) (-5 *1 (-323 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-442 *3))) (-14 *5 (-1197)) (-14 *6 *4)))) -(-13 (-1013 (-1274 |#1| |#2| |#3| |#4|)) (-1059 (-1273 |#2| |#3| |#4|)) (-10 -8 (-15 -2478 ((-3 (-855 |#2|) "failed") $)) (-15 -3570 ($ (-1273 |#2| |#3| |#4|))))) -((-4117 (((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)) 13))) -(((-324 |#1| |#2|) (-10 -7 (-15 -4117 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) (-1121) (-1121)) (T -324)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-326 *6)) (-5 *1 (-324 *5 *6))))) -(-10 -7 (-15 -4117 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) -((-2010 (((-52) |#2| (-304 |#2|) (-783)) 40) (((-52) |#2| (-304 |#2|)) 32) (((-52) |#2| (-783)) 35) (((-52) |#2|) 33) (((-52) (-1197)) 26)) (-3080 (((-52) |#2| (-304 |#2|) (-419 (-576))) 59) (((-52) |#2| (-304 |#2|)) 56) (((-52) |#2| (-419 (-576))) 58) (((-52) |#2|) 57) (((-52) (-1197)) 55)) (-2031 (((-52) |#2| (-304 |#2|) (-419 (-576))) 54) (((-52) |#2| (-304 |#2|)) 51) (((-52) |#2| (-419 (-576))) 53) (((-52) |#2|) 52) (((-52) (-1197)) 50)) (-2021 (((-52) |#2| (-304 |#2|) (-576)) 47) (((-52) |#2| (-304 |#2|)) 44) (((-52) |#2| (-576)) 46) (((-52) |#2|) 45) (((-52) (-1197)) 43))) -(((-325 |#1| |#2|) (-10 -7 (-15 -2010 ((-52) (-1197))) (-15 -2010 ((-52) |#2|)) (-15 -2010 ((-52) |#2| (-783))) (-15 -2010 ((-52) |#2| (-304 |#2|))) (-15 -2010 ((-52) |#2| (-304 |#2|) (-783))) (-15 -2021 ((-52) (-1197))) (-15 -2021 ((-52) |#2|)) (-15 -2021 ((-52) |#2| (-576))) (-15 -2021 ((-52) |#2| (-304 |#2|))) (-15 -2021 ((-52) |#2| (-304 |#2|) (-576))) (-15 -2031 ((-52) (-1197))) (-15 -2031 ((-52) |#2|)) (-15 -2031 ((-52) |#2| (-419 (-576)))) (-15 -2031 ((-52) |#2| (-304 |#2|))) (-15 -2031 ((-52) |#2| (-304 |#2|) (-419 (-576)))) (-15 -3080 ((-52) (-1197))) (-15 -3080 ((-52) |#2|)) (-15 -3080 ((-52) |#2| (-419 (-576)))) (-15 -3080 ((-52) |#2| (-304 |#2|))) (-15 -3080 ((-52) |#2| (-304 |#2|) (-419 (-576))))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -325)) -((-3080 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-3080 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) (-3080 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-442 *4))))) (-2031 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-2031 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-2031 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-2031 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) (-2031 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-442 *4))))) (-2021 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-464) (-1059 *5) (-651 *5))) (-5 *5 (-576)) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-2021 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-2021 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *5 (-13 (-464) (-1059 *4) (-651 *4))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-2021 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) (-2021 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-442 *4))))) (-2010 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-783)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-2010 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-2010 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-2010 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-442 *4)))))) -(-10 -7 (-15 -2010 ((-52) (-1197))) (-15 -2010 ((-52) |#2|)) (-15 -2010 ((-52) |#2| (-783))) (-15 -2010 ((-52) |#2| (-304 |#2|))) (-15 -2010 ((-52) |#2| (-304 |#2|) (-783))) (-15 -2021 ((-52) (-1197))) (-15 -2021 ((-52) |#2|)) (-15 -2021 ((-52) |#2| (-576))) (-15 -2021 ((-52) |#2| (-304 |#2|))) (-15 -2021 ((-52) |#2| (-304 |#2|) (-576))) (-15 -2031 ((-52) (-1197))) (-15 -2031 ((-52) |#2|)) (-15 -2031 ((-52) |#2| (-419 (-576)))) (-15 -2031 ((-52) |#2| (-304 |#2|))) (-15 -2031 ((-52) |#2| (-304 |#2|) (-419 (-576)))) (-15 -3080 ((-52) (-1197))) (-15 -3080 ((-52) |#2|)) (-15 -3080 ((-52) |#2| (-419 (-576)))) (-15 -3080 ((-52) |#2| (-304 |#2|))) (-15 -3080 ((-52) |#2| (-304 |#2|) (-419 (-576))))) -((-3489 (((-112) $ $) NIL)) (-3052 (((-656 $) $ (-1197)) NIL (|has| |#1| (-568))) (((-656 $) $) NIL (|has| |#1| (-568))) (((-656 $) (-1193 $) (-1197)) NIL (|has| |#1| (-568))) (((-656 $) (-1193 $)) NIL (|has| |#1| (-568))) (((-656 $) (-971 $)) NIL (|has| |#1| (-568)))) (-3346 (($ $ (-1197)) NIL (|has| |#1| (-568))) (($ $) NIL (|has| |#1| (-568))) (($ (-1193 $) (-1197)) NIL (|has| |#1| (-568))) (($ (-1193 $)) NIL (|has| |#1| (-568))) (($ (-971 $)) NIL (|has| |#1| (-568)))) (-4308 (((-112) $) 27 (-2760 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))))) (-1969 (((-656 (-1197)) $) 368)) (-1798 (((-419 (-1193 $)) $ (-624 $)) NIL (|has| |#1| (-568)))) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2757 (($ $) NIL (|has| |#1| (-568)))) (-3788 (((-112) $) NIL (|has| |#1| (-568)))) (-3988 (((-656 (-624 $)) $) NIL)) (-4025 (($ $) 171 (|has| |#1| (-568)))) (-3901 (($ $) 147 (|has| |#1| (-568)))) (-3597 (($ $ (-1113 $)) 232 (|has| |#1| (-568))) (($ $ (-1197)) 228 (|has| |#1| (-568)))) (-4367 (((-3 $ "failed") $ $) NIL (-2760 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))))) (-3428 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) 386) (($ $ (-656 (-624 $)) (-656 $)) 430)) (-3601 (((-430 (-1193 $)) (-1193 $)) 308 (-12 (|has| |#1| (-464)) (|has| |#1| (-568))))) (-2487 (($ $) NIL (|has| |#1| (-568)))) (-3921 (((-430 $) $) NIL (|has| |#1| (-568)))) (-1839 (($ $) NIL (|has| |#1| (-568)))) (-4016 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4006 (($ $) 167 (|has| |#1| (-568)))) (-3877 (($ $) 143 (|has| |#1| (-568)))) (-3991 (($ $ (-576)) 73 (|has| |#1| (-568)))) (-4050 (($ $) 175 (|has| |#1| (-568)))) (-3920 (($ $) 151 (|has| |#1| (-568)))) (-3886 (($) NIL (-2760 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))) (|has| |#1| (-1133))) CONST)) (-1796 (((-656 $) $ (-1197)) NIL (|has| |#1| (-568))) (((-656 $) $) NIL (|has| |#1| (-568))) (((-656 $) (-1193 $) (-1197)) NIL (|has| |#1| (-568))) (((-656 $) (-1193 $)) NIL (|has| |#1| (-568))) (((-656 $) (-971 $)) NIL (|has| |#1| (-568)))) (-2607 (($ $ (-1197)) NIL (|has| |#1| (-568))) (($ $) NIL (|has| |#1| (-568))) (($ (-1193 $) (-1197)) 134 (|has| |#1| (-568))) (($ (-1193 $)) NIL (|has| |#1| (-568))) (($ (-971 $)) NIL (|has| |#1| (-568)))) (-1572 (((-3 (-624 $) "failed") $) 18) (((-3 (-1197) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-971 |#1|)) "failed") $) NIL (|has| |#1| (-568))) (((-3 (-971 |#1|) "failed") $) NIL (|has| |#1| (-1070))) (((-3 (-419 (-576)) "failed") $) 46 (-2760 (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-2860 (((-624 $) $) 12) (((-1197) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-971 |#1|)) $) NIL (|has| |#1| (-568))) (((-971 |#1|) $) NIL (|has| |#1| (-1070))) (((-419 (-576)) $) 319 (-2760 (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-3429 (($ $ $) NIL (|has| |#1| (-568)))) (-2204 (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 125 (|has| |#1| (-1070))) (((-701 |#1|) (-701 $)) 115 (|has| |#1| (-1070))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (-3686 (($ $) 96 (|has| |#1| (-568)))) (-1561 (((-3 $ "failed") $) NIL (|has| |#1| (-1133)))) (-3441 (($ $ $) NIL (|has| |#1| (-568)))) (-1940 (($ $ (-1113 $)) 236 (|has| |#1| (-568))) (($ $ (-1197)) 234 (|has| |#1| (-568)))) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL (|has| |#1| (-568)))) (-4249 (((-112) $) NIL (|has| |#1| (-568)))) (-3667 (($ $ $) 202 (|has| |#1| (-568)))) (-1600 (($) 137 (|has| |#1| (-568)))) (-1432 (($ $ $) 222 (|has| |#1| (-568)))) (-1840 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 392 (|has| |#1| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 399 (|has| |#1| (-901 (-390))))) (-2236 (($ $) NIL) (($ (-656 $)) NIL)) (-3545 (((-656 (-115)) $) NIL)) (-1777 (((-115) (-115)) 276)) (-4193 (((-112) $) 25 (|has| |#1| (-1133)))) (-2946 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-2171 (($ $) 72 (|has| |#1| (-1070)))) (-1570 (((-1146 |#1| (-624 $)) $) 91 (|has| |#1| (-1070)))) (-3269 (((-112) $) 62 (|has| |#1| (-568)))) (-2121 (($ $ (-576)) NIL (|has| |#1| (-568)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-568)))) (-3971 (((-1193 $) (-624 $)) 277 (|has| $ (-1070)))) (-4117 (($ (-1 $ $) (-624 $)) 426)) (-2608 (((-3 (-624 $) "failed") $) NIL)) (-3745 (($ $) 141 (|has| |#1| (-568)))) (-3851 (($ $) 247 (|has| |#1| (-568)))) (-3913 (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL (|has| |#1| (-1070))) (((-701 |#1|) (-1288 $)) NIL (|has| |#1| (-1070))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (-3458 (($ (-656 $)) NIL (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-3699 (((-1179) $) NIL)) (-1763 (((-656 (-624 $)) $) 49)) (-1640 (($ (-115) $) NIL) (($ (-115) (-656 $)) 431)) (-1385 (((-3 (-656 $) "failed") $) NIL (|has| |#1| (-1133)))) (-3349 (((-3 (-2 (|:| |val| $) (|:| -3422 (-576))) "failed") $) NIL (|has| |#1| (-1070)))) (-1690 (((-3 (-656 $) "failed") $) 436 (|has| |#1| (-25)))) (-3229 (((-3 (-2 (|:| -1714 (-576)) (|:| |var| (-624 $))) "failed") $) 440 (|has| |#1| (-25)))) (-2040 (((-3 (-2 (|:| |var| (-624 $)) (|:| -3422 (-576))) "failed") $) NIL (|has| |#1| (-1133))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -3422 (-576))) "failed") $ (-115)) NIL (|has| |#1| (-1070))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -3422 (-576))) "failed") $ (-1197)) NIL (|has| |#1| (-1070)))) (-1322 (((-112) $ (-115)) NIL) (((-112) $ (-1197)) 51)) (-2050 (($ $) NIL (-2760 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-3948 (($ $ (-1197)) 251 (|has| |#1| (-568))) (($ $ (-1113 $)) 253 (|has| |#1| (-568)))) (-2327 (((-783) $) NIL)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) 43)) (-2070 ((|#1| $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 301 (|has| |#1| (-568)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-1726 (((-112) $ $) NIL) (((-112) $ (-1197)) NIL)) (-2275 (($ $ (-1197)) 226 (|has| |#1| (-568))) (($ $) 224 (|has| |#1| (-568)))) (-1803 (($ $) 218 (|has| |#1| (-568)))) (-1811 (((-430 (-1193 $)) (-1193 $)) 306 (-12 (|has| |#1| (-464)) (|has| |#1| (-568))))) (-1828 (((-430 $) $) NIL (|has| |#1| (-568)))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-568))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| |#1| (-568)))) (-3476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-568)))) (-4104 (($ $) 139 (|has| |#1| (-568)))) (-3644 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-3284 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) 425) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1197) (-1 $ (-656 $))) NIL) (($ $ (-1197) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) 379) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-626 (-548)))) (($ $) NIL (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1197)) 366 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-115)) (-656 $) (-1197)) 365 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ $))) NIL (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ (-656 $)))) NIL (|has| |#1| (-1070))) (($ $ (-1197) (-783) (-1 $ (-656 $))) NIL (|has| |#1| (-1070))) (($ $ (-1197) (-783) (-1 $ $)) NIL (|has| |#1| (-1070)))) (-1967 (((-783) $) NIL (|has| |#1| (-568)))) (-3827 (($ $) 239 (|has| |#1| (-568)))) (-2797 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#1| (-568)))) (-3496 (($ $) NIL) (($ $ $) NIL)) (-3864 (($ $) 249 (|has| |#1| (-568)))) (-1854 (($ $) 200 (|has| |#1| (-568)))) (-2775 (($ $ (-1197)) NIL (|has| |#1| (-1070))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-1070))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-1070)))) (-2143 (($ $) 74 (|has| |#1| (-568)))) (-1581 (((-1146 |#1| (-624 $)) $) 93 (|has| |#1| (-568)))) (-3867 (($ $) 317 (|has| $ (-1070)))) (-4061 (($ $) 177 (|has| |#1| (-568)))) (-3930 (($ $) 153 (|has| |#1| (-568)))) (-4037 (($ $) 173 (|has| |#1| (-568)))) (-3910 (($ $) 149 (|has| |#1| (-568)))) (-4014 (($ $) 169 (|has| |#1| (-568)))) (-3889 (($ $) 145 (|has| |#1| (-568)))) (-4172 (((-907 (-576)) $) NIL (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| |#1| (-626 (-907 (-390))))) (($ (-430 $)) NIL (|has| |#1| (-568))) (((-548) $) 363 (|has| |#1| (-626 (-548))))) (-2314 (($ $ $) NIL (|has| |#1| (-485)))) (-2076 (($ $ $) NIL (|has| |#1| (-485)))) (-3570 (((-876) $) 424) (($ (-624 $)) 415) (($ (-1197)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-568))) (($ (-48)) 312 (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576))))) (($ (-1146 |#1| (-624 $))) 95 (|has| |#1| (-1070))) (($ (-419 |#1|)) NIL (|has| |#1| (-568))) (($ (-971 (-419 |#1|))) NIL (|has| |#1| (-568))) (($ (-419 (-971 (-419 |#1|)))) NIL (|has| |#1| (-568))) (($ (-419 (-971 |#1|))) NIL (|has| |#1| (-568))) (($ (-971 |#1|)) NIL (|has| |#1| (-1070))) (($ (-576)) 34 (-2760 (|has| |#1| (-1059 (-576))) (|has| |#1| (-1070)))) (($ (-419 (-576))) NIL (-2760 (|has| |#1| (-568)) (|has| |#1| (-1059 (-419 (-576))))))) (-4336 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3996 (((-783)) NIL (|has| |#1| (-1070)) CONST)) (-3681 (($ $) NIL) (($ (-656 $)) NIL)) (-2979 (($ $ $) 220 (|has| |#1| (-568)))) (-2221 (($ $ $) 206 (|has| |#1| (-568)))) (-1918 (($ $ $) 210 (|has| |#1| (-568)))) (-3775 (($ $ $) 204 (|has| |#1| (-568)))) (-2089 (($ $ $) 208 (|has| |#1| (-568)))) (-2468 (((-112) (-115)) 10)) (-4055 (((-112) $ $) 86)) (-2791 (($ $) 183 (|has| |#1| (-568)))) (-3961 (($ $) 159 (|has| |#1| (-568)))) (-2672 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4071 (($ $) 179 (|has| |#1| (-568)))) (-3938 (($ $) 155 (|has| |#1| (-568)))) (-2815 (($ $) 187 (|has| |#1| (-568)))) (-3983 (($ $) 163 (|has| |#1| (-568)))) (-2852 (($ (-1197) $) NIL) (($ (-1197) $ $) NIL) (($ (-1197) $ $ $) NIL) (($ (-1197) $ $ $ $) NIL) (($ (-1197) (-656 $)) NIL)) (-4386 (($ $) 214 (|has| |#1| (-568)))) (-2097 (($ $) 212 (|has| |#1| (-568)))) (-4388 (($ $) 189 (|has| |#1| (-568)))) (-3995 (($ $) 165 (|has| |#1| (-568)))) (-2803 (($ $) 185 (|has| |#1| (-568)))) (-3974 (($ $) 161 (|has| |#1| (-568)))) (-4083 (($ $) 181 (|has| |#1| (-568)))) (-3951 (($ $) 157 (|has| |#1| (-568)))) (-2122 (($ $) 192 (|has| |#1| (-568)))) (-2721 (($) 21 (-2760 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) CONST)) (-3588 (($ $) 243 (|has| |#1| (-568)))) (-2732 (($) 23 (|has| |#1| (-1133)) CONST)) (-3625 (($ $) 194 (|has| |#1| (-568))) (($ $ $) 196 (|has| |#1| (-568)))) (-2894 (($ $) 241 (|has| |#1| (-568)))) (-2020 (($ $ (-1197)) NIL (|has| |#1| (-1070))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-1070))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-1070)))) (-2643 (($ $) 245 (|has| |#1| (-568)))) (-4000 (($ $ $) 198 (|has| |#1| (-568)))) (-2925 (((-112) $ $) 88)) (-3057 (($ (-1146 |#1| (-624 $)) (-1146 |#1| (-624 $))) 106 (|has| |#1| (-568))) (($ $ $) 42 (-2760 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-3044 (($ $ $) 40 (-2760 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (($ $) 29 (-2760 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))))) (-3030 (($ $ $) 38 (-2760 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))))) (** (($ $ $) 64 (|has| |#1| (-568))) (($ $ (-419 (-576))) 314 (|has| |#1| (-568))) (($ $ (-576)) 80 (-2760 (|has| |#1| (-485)) (|has| |#1| (-568)))) (($ $ (-783)) 75 (|has| |#1| (-1133))) (($ $ (-940)) 84 (|has| |#1| (-1133)))) (* (($ (-419 (-576)) $) NIL (|has| |#1| (-568))) (($ $ (-419 (-576))) NIL (|has| |#1| (-568))) (($ $ |#1|) NIL (|has| |#1| (-174))) (($ |#1| $) NIL (|has| |#1| (-1070))) (($ $ $) 36 (|has| |#1| (-1133))) (($ (-576) $) 32 (-2760 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (($ (-783) $) NIL (-2760 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (($ (-940) $) NIL (-2760 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))))) -(((-326 |#1|) (-13 (-442 |#1|) (-10 -8 (IF (|has| |#1| (-568)) (PROGN (-6 (-29 |#1|)) (-6 (-1223)) (-6 (-161)) (-6 (-641)) (-6 (-1160)) (-15 -3686 ($ $)) (-15 -3269 ((-112) $)) (-15 -3991 ($ $ (-576))) (IF (|has| |#1| (-464)) (PROGN (-15 -1811 ((-430 (-1193 $)) (-1193 $))) (-15 -3601 ((-430 (-1193 $)) (-1193 $)))) |%noBranch|) (IF (|has| |#1| (-1059 (-576))) (-6 (-1059 (-48))) |%noBranch|)) |%noBranch|))) (-1121)) (T -326)) -((-3686 (*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-568)) (-4 *2 (-1121)))) (-3269 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1121)))) (-3991 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1121)))) (-1811 (*1 *2 *3) (-12 (-5 *2 (-430 (-1193 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1193 *1)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1121)))) (-3601 (*1 *2 *3) (-12 (-5 *2 (-430 (-1193 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1193 *1)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1121))))) -(-13 (-442 |#1|) (-10 -8 (IF (|has| |#1| (-568)) (PROGN (-6 (-29 |#1|)) (-6 (-1223)) (-6 (-161)) (-6 (-641)) (-6 (-1160)) (-15 -3686 ($ $)) (-15 -3269 ((-112) $)) (-15 -3991 ($ $ (-576))) (IF (|has| |#1| (-464)) (PROGN (-15 -1811 ((-430 (-1193 $)) (-1193 $))) (-15 -3601 ((-430 (-1193 $)) (-1193 $)))) |%noBranch|) (IF (|has| |#1| (-1059 (-576))) (-6 (-1059 (-48))) |%noBranch|)) |%noBranch|))) -((-2386 (((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)) 89) (((-52) |#2| (-115) (-304 |#2|) (-304 |#2|)) 85) (((-52) |#2| (-115) (-304 |#2|) |#2|) 87) (((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|) 88) (((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|))) 81) (((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|)) 83) (((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|)) 84) (((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|))) 82) (((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|)) 90) (((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|)) 86))) -(((-327 |#1| |#2|) (-10 -7 (-15 -2386 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|))) (-15 -2386 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -2386 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -2386 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -2386 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -2386 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -2386 ((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|)) (-15 -2386 ((-52) |#2| (-115) (-304 |#2|) |#2|)) (-15 -2386 ((-52) |#2| (-115) (-304 |#2|) (-304 |#2|))) (-15 -2386 ((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)))) (-13 (-568) (-626 (-548))) (-442 |#1|)) (T -327)) -((-2386 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-5 *6 (-656 *3)) (-4 *3 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *3)))) (-2386 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-2386 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-2386 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-304 *5)) (-5 *4 (-115)) (-4 *5 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *5)))) (-2386 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-115))) (-5 *6 (-656 (-304 *8))) (-4 *8 (-442 *7)) (-5 *5 (-304 *8)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *8)))) (-2386 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-2386 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 (-304 *8))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *8)) (-5 *6 (-656 *8)) (-4 *8 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *8)))) (-2386 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-2386 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-656 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-2386 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-304 *6)) (-5 *4 (-115)) (-4 *6 (-442 *5)) (-4 *5 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *5 *6))))) -(-10 -7 (-15 -2386 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|))) (-15 -2386 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -2386 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -2386 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -2386 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -2386 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -2386 ((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|)) (-15 -2386 ((-52) |#2| (-115) (-304 |#2|) |#2|)) (-15 -2386 ((-52) |#2| (-115) (-304 |#2|) (-304 |#2|))) (-15 -2386 ((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)))) -((-3749 (((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-227) (-576) (-1179)) 67) (((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-227) (-576)) 68) (((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-1 (-227) (-227)) (-576) (-1179)) 64) (((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-1 (-227) (-227)) (-576)) 65)) (-3142 (((-1 (-227) (-227)) (-227)) 66))) -(((-328) (-10 -7 (-15 -3142 ((-1 (-227) (-227)) (-227))) (-15 -3749 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-1 (-227) (-227)) (-576))) (-15 -3749 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-1 (-227) (-227)) (-576) (-1179))) (-15 -3749 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-227) (-576))) (-15 -3749 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-227) (-576) (-1179))))) (T -328)) -((-3749 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1115 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *8 (-1179)) (-5 *2 (-1233 (-945))) (-5 *1 (-328)))) (-3749 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1115 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *2 (-1233 (-945))) (-5 *1 (-328)))) (-3749 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1115 (-227))) (-5 *6 (-576)) (-5 *7 (-1179)) (-5 *2 (-1233 (-945))) (-5 *1 (-328)))) (-3749 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1115 (-227))) (-5 *6 (-576)) (-5 *2 (-1233 (-945))) (-5 *1 (-328)))) (-3142 (*1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-328)) (-5 *3 (-227))))) -(-10 -7 (-15 -3142 ((-1 (-227) (-227)) (-227))) (-15 -3749 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-1 (-227) (-227)) (-576))) (-15 -3749 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-1 (-227) (-227)) (-576) (-1179))) (-15 -3749 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-227) (-576))) (-15 -3749 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-227) (-576) (-1179)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 26)) (-1969 (((-656 (-1103)) $) NIL)) (-3055 (((-1197) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2757 (($ $) NIL (|has| |#1| (-568)))) (-3788 (((-112) $) NIL (|has| |#1| (-568)))) (-2326 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-3669 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 20)) (-4025 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3901 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL (|has| |#1| (-374)))) (-3921 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1839 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4016 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4006 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3877 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3080 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-4050 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($) NIL T CONST)) (-3429 (($ $ $) NIL (|has| |#1| (-374)))) (-2114 (($ $) 36)) (-1561 (((-3 $ "failed") $) NIL)) (-3441 (($ $ $) NIL (|has| |#1| (-374)))) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-4249 (((-112) $) NIL (|has| |#1| (-374)))) (-1424 (((-112) $) NIL)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3917 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) 16)) (-4193 (((-112) $) NIL)) (-2121 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4116 (($ $ (-940)) NIL) (($ $ (-419 (-576))) NIL)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2823 (((-112) $) NIL)) (-1945 (($ |#1| (-419 (-576))) NIL) (($ $ (-1103) (-419 (-576))) NIL) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) NIL)) (-3125 (($ $ $) NIL)) (-3133 (($ $ $) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-3745 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-3458 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL (|has| |#1| (-374)))) (-1491 (($ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) NIL (-2760 (-12 (|has| |#1| (-15 -1491 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223)))))) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| |#1| (-374)))) (-1749 (($ $ (-419 (-576))) NIL)) (-3476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2830 (((-419 (-576)) $) 17)) (-1368 (($ (-1273 |#1| |#2| |#3|)) 11)) (-3422 (((-1273 |#1| |#2| |#3|) $) 12)) (-4104 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3284 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-1967 (((-783) $) NIL (|has| |#1| (-374)))) (-2797 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1133)))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#1| (-374)))) (-2775 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3634 (((-419 (-576)) $) NIL)) (-4061 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3930 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4037 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4014 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3889 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3126 (($ $) 10)) (-3570 (((-876) $) 42) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-3177 ((|#1| $ (-419 (-576))) 34)) (-4336 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3996 (((-783)) NIL T CONST)) (-2396 ((|#1| $) NIL)) (-4055 (((-112) $ $) NIL)) (-2791 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3961 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2672 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4071 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2815 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3983 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4166 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3570 (|#1| (-1197))))))) (-4388 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3995 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2803 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3974 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4083 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3951 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2020 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 28)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) 37)) (-3057 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-329 |#1| |#2| |#3|) (-13 (-1269 |#1|) (-804) (-10 -8 (-15 -1368 ($ (-1273 |#1| |#2| |#3|))) (-15 -3422 ((-1273 |#1| |#2| |#3|) $)) (-15 -2830 ((-419 (-576)) $)))) (-374) (-1197) |#1|) (T -329)) -((-1368 (*1 *1 *2) (-12 (-5 *2 (-1273 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1197)) (-14 *5 *3) (-5 *1 (-329 *3 *4 *5)))) (-3422 (*1 *2 *1) (-12 (-5 *2 (-1273 *3 *4 *5)) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1197)) (-14 *5 *3))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1197)) (-14 *5 *3)))) -(-13 (-1269 |#1|) (-804) (-10 -8 (-15 -1368 ($ (-1273 |#1| |#2| |#3|))) (-15 -3422 ((-1273 |#1| |#2| |#3|) $)) (-15 -2830 ((-419 (-576)) $)))) -((-2121 (((-2 (|:| -3422 (-783)) (|:| -1714 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783)) 35)) (-3745 (((-656 (-2 (|:| -1714 (-783)) (|:| |logand| |#1|))) (-430 |#1|)) 40))) -(((-330 |#1|) (-10 -7 (-15 -2121 ((-2 (|:| -3422 (-783)) (|:| -1714 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783))) (-15 -3745 ((-656 (-2 (|:| -1714 (-783)) (|:| |logand| |#1|))) (-430 |#1|)))) (-568)) (T -330)) -((-3745 (*1 *2 *3) (-12 (-5 *3 (-430 *4)) (-4 *4 (-568)) (-5 *2 (-656 (-2 (|:| -1714 (-783)) (|:| |logand| *4)))) (-5 *1 (-330 *4)))) (-2121 (*1 *2 *3 *4) (-12 (-5 *3 (-430 *5)) (-4 *5 (-568)) (-5 *2 (-2 (|:| -3422 (-783)) (|:| -1714 *5) (|:| |radicand| (-656 *5)))) (-5 *1 (-330 *5)) (-5 *4 (-783))))) -(-10 -7 (-15 -2121 ((-2 (|:| -3422 (-783)) (|:| -1714 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783))) (-15 -3745 ((-656 (-2 (|:| -1714 (-783)) (|:| |logand| |#1|))) (-430 |#1|)))) -((-1969 (((-656 |#2|) (-1193 |#4|)) 44)) (-4087 ((|#3| (-576)) 47)) (-1396 (((-1193 |#4|) (-1193 |#3|)) 30)) (-2937 (((-1193 |#4|) (-1193 |#4|) (-576)) 66)) (-3629 (((-1193 |#3|) (-1193 |#4|)) 21)) (-3634 (((-656 (-783)) (-1193 |#4|) (-656 |#2|)) 41)) (-3477 (((-1193 |#3|) (-1193 |#4|) (-656 |#2|) (-656 |#3|)) 35))) -(((-331 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3477 ((-1193 |#3|) (-1193 |#4|) (-656 |#2|) (-656 |#3|))) (-15 -3634 ((-656 (-783)) (-1193 |#4|) (-656 |#2|))) (-15 -1969 ((-656 |#2|) (-1193 |#4|))) (-15 -3629 ((-1193 |#3|) (-1193 |#4|))) (-15 -1396 ((-1193 |#4|) (-1193 |#3|))) (-15 -2937 ((-1193 |#4|) (-1193 |#4|) (-576))) (-15 -4087 (|#3| (-576)))) (-805) (-861) (-1070) (-968 |#3| |#1| |#2|)) (T -331)) -((-4087 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1070)) (-5 *1 (-331 *4 *5 *2 *6)) (-4 *6 (-968 *2 *4 *5)))) (-2937 (*1 *2 *2 *3) (-12 (-5 *2 (-1193 *7)) (-5 *3 (-576)) (-4 *7 (-968 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-5 *1 (-331 *4 *5 *6 *7)))) (-1396 (*1 *2 *3) (-12 (-5 *3 (-1193 *6)) (-4 *6 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-1193 *7)) (-5 *1 (-331 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) (-3629 (*1 *2 *3) (-12 (-5 *3 (-1193 *7)) (-4 *7 (-968 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-5 *2 (-1193 *6)) (-5 *1 (-331 *4 *5 *6 *7)))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-1193 *7)) (-4 *7 (-968 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-5 *2 (-656 *5)) (-5 *1 (-331 *4 *5 *6 *7)))) (-3634 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *8)) (-5 *4 (-656 *6)) (-4 *6 (-861)) (-4 *8 (-968 *7 *5 *6)) (-4 *5 (-805)) (-4 *7 (-1070)) (-5 *2 (-656 (-783))) (-5 *1 (-331 *5 *6 *7 *8)))) (-3477 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1193 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 *8)) (-4 *7 (-861)) (-4 *8 (-1070)) (-4 *9 (-968 *8 *6 *7)) (-4 *6 (-805)) (-5 *2 (-1193 *8)) (-5 *1 (-331 *6 *7 *8 *9))))) -(-10 -7 (-15 -3477 ((-1193 |#3|) (-1193 |#4|) (-656 |#2|) (-656 |#3|))) (-15 -3634 ((-656 (-783)) (-1193 |#4|) (-656 |#2|))) (-15 -1969 ((-656 |#2|) (-1193 |#4|))) (-15 -3629 ((-1193 |#3|) (-1193 |#4|))) (-15 -1396 ((-1193 |#4|) (-1193 |#3|))) (-15 -2937 ((-1193 |#4|) (-1193 |#4|) (-576))) (-15 -4087 (|#3| (-576)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 19)) (-3669 (((-656 (-2 (|:| |gen| |#1|) (|:| -4104 (-576)))) $) 21)) (-4367 (((-3 $ "failed") $ $) NIL)) (-2098 (((-783) $) NIL)) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2860 ((|#1| $) NIL)) (-4276 ((|#1| $ (-576)) NIL)) (-3053 (((-576) $ (-576)) NIL)) (-3125 (($ $ $) NIL (|has| |#1| (-861)))) (-3133 (($ $ $) NIL (|has| |#1| (-861)))) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-2231 (($ (-1 (-576) (-576)) $) 11)) (-3699 (((-1179) $) NIL)) (-2707 (($ $ $) NIL (|has| (-576) (-804)))) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL) (($ |#1|) NIL)) (-3177 (((-576) |#1| $) NIL)) (-4055 (((-112) $ $) NIL)) (-2721 (($) NIL T CONST)) (-2992 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2950 (((-112) $ $) 29 (|has| |#1| (-861)))) (-3044 (($ $) 12) (($ $ $) 28)) (-3030 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL) (($ (-576) |#1|) 27))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 60)) (-3110 (((-1274 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-317)))) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3646 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-928)))) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-928)))) (-3330 (((-112) $ $) NIL)) (-3906 (((-576) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-832)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-1274 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-576)))) (((-3 (-1273 |#2| |#3| |#4|) "failed") $) 26)) (-2859 (((-1274 |#1| |#2| |#3| |#4|) $) NIL) (((-1197) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-576)))) (((-576) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-576)))) (((-1273 |#2| |#3| |#4|) $) NIL)) (-3428 (($ $ $) NIL)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-1274 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1288 (-1274 |#1| |#2| |#3| |#4|)))) (-701 $) (-1288 $)) NIL) (((-701 (-1274 |#1| |#2| |#3| |#4|)) (-701 $)) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-557)))) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3833 (((-112) $) NIL)) (-1866 (((-112) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-832)))) (-3325 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-901 (-390))))) (-1351 (((-112) $) NIL)) (-3328 (($ $) NIL)) (-1570 (((-1274 |#1| |#2| |#3| |#4|) $) 22)) (-2734 (((-3 $ "failed") $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1173)))) (-3137 (((-112) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-832)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3124 (($ $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-861)))) (-1441 (($ $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-861)))) (-4116 (($ (-1 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)) $) NIL)) (-3348 (((-3 (-855 |#2|) "failed") $) 80)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-1274 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1288 (-1274 |#1| |#2| |#3| |#4|)))) (-1288 $) $) NIL) (((-701 (-1274 |#1| |#2| |#3| |#4|)) (-1288 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3539 (($) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1788 (($ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-317)))) (-4236 (((-1274 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-557)))) (-1644 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-928)))) (-1828 (((-430 $) $) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3282 (($ $ (-656 (-1274 |#1| |#2| |#3| |#4|)) (-656 (-1274 |#1| |#2| |#3| |#4|))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-319 (-1274 |#1| |#2| |#3| |#4|)))) (($ $ (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-319 (-1274 |#1| |#2| |#3| |#4|)))) (($ $ (-304 (-1274 |#1| |#2| |#3| |#4|))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-319 (-1274 |#1| |#2| |#3| |#4|)))) (($ $ (-656 (-304 (-1274 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-319 (-1274 |#1| |#2| |#3| |#4|)))) (($ $ (-656 (-1197)) (-656 (-1274 |#1| |#2| |#3| |#4|))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-526 (-1197) (-1274 |#1| |#2| |#3| |#4|)))) (($ $ (-1197) (-1274 |#1| |#2| |#3| |#4|)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-526 (-1197) (-1274 |#1| |#2| |#3| |#4|))))) (-1979 (((-783) $) NIL)) (-2796 (($ $ (-1274 |#1| |#2| |#3| |#4|)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-296 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|))))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-2774 (($ $ (-1 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|))) NIL) (($ $ (-1 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-783)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-237)))) (-4325 (($ $) NIL)) (-1581 (((-1274 |#1| |#2| |#3| |#4|) $) 19)) (-4171 (((-907 (-576)) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-626 (-548)))) (((-390) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1043))) (((-227) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1043)))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1274 |#1| |#2| |#3| |#4|) (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-1274 |#1| |#2| |#3| |#4|)) 30) (($ (-1197)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-1197)))) (($ (-1273 |#2| |#3| |#4|)) 37)) (-3390 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| $ (-146)) (|has| (-1274 |#1| |#2| |#3| |#4|) (-928))) (|has| (-1274 |#1| |#2| |#3| |#4|) (-146))))) (-3154 (((-783)) NIL T CONST)) (-1810 (((-1274 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-557)))) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL)) (-4143 (($ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-832)))) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2020 (($ $ (-1 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|))) NIL) (($ $ (-1 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-783)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-237)))) (-2990 (((-112) $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-861)))) (-2962 (((-112) $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-861)))) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-861)))) (-2949 (((-112) $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-861)))) (-3056 (($ $ $) 35) (($ (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)) 32)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-1274 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1274 |#1| |#2| |#3| |#4|)) NIL))) +(((-323 |#1| |#2| |#3| |#4|) (-13 (-1013 (-1274 |#1| |#2| |#3| |#4|)) (-1059 (-1273 |#2| |#3| |#4|)) (-10 -8 (-15 -3348 ((-3 (-855 |#2|) "failed") $)) (-15 -3569 ($ (-1273 |#2| |#3| |#4|))))) (-13 (-1059 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1223) (-442 |#1|)) (-1197) |#2|) (T -323)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1273 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-442 *3))) (-14 *5 (-1197)) (-14 *6 *4) (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) (-5 *1 (-323 *3 *4 *5 *6)))) (-3348 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) (-5 *2 (-855 *4)) (-5 *1 (-323 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-442 *3))) (-14 *5 (-1197)) (-14 *6 *4)))) +(-13 (-1013 (-1274 |#1| |#2| |#3| |#4|)) (-1059 (-1273 |#2| |#3| |#4|)) (-10 -8 (-15 -3348 ((-3 (-855 |#2|) "failed") $)) (-15 -3569 ($ (-1273 |#2| |#3| |#4|))))) +((-4116 (((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)) 13))) +(((-324 |#1| |#2|) (-10 -7 (-15 -4116 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) (-1121) (-1121)) (T -324)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-326 *6)) (-5 *1 (-324 *5 *6))))) +(-10 -7 (-15 -4116 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) +((-2010 (((-52) |#2| (-304 |#2|) (-783)) 40) (((-52) |#2| (-304 |#2|)) 32) (((-52) |#2| (-783)) 35) (((-52) |#2|) 33) (((-52) (-1197)) 26)) (-3079 (((-52) |#2| (-304 |#2|) (-419 (-576))) 59) (((-52) |#2| (-304 |#2|)) 56) (((-52) |#2| (-419 (-576))) 58) (((-52) |#2|) 57) (((-52) (-1197)) 55)) (-2031 (((-52) |#2| (-304 |#2|) (-419 (-576))) 54) (((-52) |#2| (-304 |#2|)) 51) (((-52) |#2| (-419 (-576))) 53) (((-52) |#2|) 52) (((-52) (-1197)) 50)) (-2021 (((-52) |#2| (-304 |#2|) (-576)) 47) (((-52) |#2| (-304 |#2|)) 44) (((-52) |#2| (-576)) 46) (((-52) |#2|) 45) (((-52) (-1197)) 43))) +(((-325 |#1| |#2|) (-10 -7 (-15 -2010 ((-52) (-1197))) (-15 -2010 ((-52) |#2|)) (-15 -2010 ((-52) |#2| (-783))) (-15 -2010 ((-52) |#2| (-304 |#2|))) (-15 -2010 ((-52) |#2| (-304 |#2|) (-783))) (-15 -2021 ((-52) (-1197))) (-15 -2021 ((-52) |#2|)) (-15 -2021 ((-52) |#2| (-576))) (-15 -2021 ((-52) |#2| (-304 |#2|))) (-15 -2021 ((-52) |#2| (-304 |#2|) (-576))) (-15 -2031 ((-52) (-1197))) (-15 -2031 ((-52) |#2|)) (-15 -2031 ((-52) |#2| (-419 (-576)))) (-15 -2031 ((-52) |#2| (-304 |#2|))) (-15 -2031 ((-52) |#2| (-304 |#2|) (-419 (-576)))) (-15 -3079 ((-52) (-1197))) (-15 -3079 ((-52) |#2|)) (-15 -3079 ((-52) |#2| (-419 (-576)))) (-15 -3079 ((-52) |#2| (-304 |#2|))) (-15 -3079 ((-52) |#2| (-304 |#2|) (-419 (-576))))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -325)) +((-3079 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-3079 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-3079 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-3079 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) (-3079 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-442 *4))))) (-2031 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-2031 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-2031 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-2031 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) (-2031 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-442 *4))))) (-2021 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-464) (-1059 *5) (-651 *5))) (-5 *5 (-576)) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-2021 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-2021 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *5 (-13 (-464) (-1059 *4) (-651 *4))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-2021 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) (-2021 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-442 *4))))) (-2010 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-783)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-2010 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-2010 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-2010 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-442 *4)))))) +(-10 -7 (-15 -2010 ((-52) (-1197))) (-15 -2010 ((-52) |#2|)) (-15 -2010 ((-52) |#2| (-783))) (-15 -2010 ((-52) |#2| (-304 |#2|))) (-15 -2010 ((-52) |#2| (-304 |#2|) (-783))) (-15 -2021 ((-52) (-1197))) (-15 -2021 ((-52) |#2|)) (-15 -2021 ((-52) |#2| (-576))) (-15 -2021 ((-52) |#2| (-304 |#2|))) (-15 -2021 ((-52) |#2| (-304 |#2|) (-576))) (-15 -2031 ((-52) (-1197))) (-15 -2031 ((-52) |#2|)) (-15 -2031 ((-52) |#2| (-419 (-576)))) (-15 -2031 ((-52) |#2| (-304 |#2|))) (-15 -2031 ((-52) |#2| (-304 |#2|) (-419 (-576)))) (-15 -3079 ((-52) (-1197))) (-15 -3079 ((-52) |#2|)) (-15 -3079 ((-52) |#2| (-419 (-576)))) (-15 -3079 ((-52) |#2| (-304 |#2|))) (-15 -3079 ((-52) |#2| (-304 |#2|) (-419 (-576))))) +((-3488 (((-112) $ $) NIL)) (-3119 (((-656 $) $ (-1197)) NIL (|has| |#1| (-568))) (((-656 $) $) NIL (|has| |#1| (-568))) (((-656 $) (-1193 $) (-1197)) NIL (|has| |#1| (-568))) (((-656 $) (-1193 $)) NIL (|has| |#1| (-568))) (((-656 $) (-971 $)) NIL (|has| |#1| (-568)))) (-2992 (($ $ (-1197)) NIL (|has| |#1| (-568))) (($ $) NIL (|has| |#1| (-568))) (($ (-1193 $) (-1197)) NIL (|has| |#1| (-568))) (($ (-1193 $)) NIL (|has| |#1| (-568))) (($ (-971 $)) NIL (|has| |#1| (-568)))) (-3135 (((-112) $) 27 (-2759 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))))) (-1969 (((-656 (-1197)) $) 368)) (-1797 (((-419 (-1193 $)) $ (-624 $)) NIL (|has| |#1| (-568)))) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4195 (($ $) NIL (|has| |#1| (-568)))) (-1760 (((-112) $) NIL (|has| |#1| (-568)))) (-3987 (((-656 (-624 $)) $) NIL)) (-4024 (($ $) 171 (|has| |#1| (-568)))) (-3900 (($ $) 147 (|has| |#1| (-568)))) (-3598 (($ $ (-1113 $)) 232 (|has| |#1| (-568))) (($ $ (-1197)) 228 (|has| |#1| (-568)))) (-2428 (((-3 $ "failed") $ $) NIL (-2759 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))))) (-3427 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) 386) (($ $ (-656 (-624 $)) (-656 $)) 430)) (-3646 (((-430 (-1193 $)) (-1193 $)) 308 (-12 (|has| |#1| (-464)) (|has| |#1| (-568))))) (-3444 (($ $) NIL (|has| |#1| (-568)))) (-3760 (((-430 $) $) NIL (|has| |#1| (-568)))) (-1840 (($ $) NIL (|has| |#1| (-568)))) (-3330 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4005 (($ $) 167 (|has| |#1| (-568)))) (-3876 (($ $) 143 (|has| |#1| (-568)))) (-3102 (($ $ (-576)) 73 (|has| |#1| (-568)))) (-4049 (($ $) 175 (|has| |#1| (-568)))) (-3919 (($ $) 151 (|has| |#1| (-568)))) (-3404 (($) NIL (-2759 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))) (|has| |#1| (-1133))) CONST)) (-4166 (((-656 $) $ (-1197)) NIL (|has| |#1| (-568))) (((-656 $) $) NIL (|has| |#1| (-568))) (((-656 $) (-1193 $) (-1197)) NIL (|has| |#1| (-568))) (((-656 $) (-1193 $)) NIL (|has| |#1| (-568))) (((-656 $) (-971 $)) NIL (|has| |#1| (-568)))) (-2108 (($ $ (-1197)) NIL (|has| |#1| (-568))) (($ $) NIL (|has| |#1| (-568))) (($ (-1193 $) (-1197)) 134 (|has| |#1| (-568))) (($ (-1193 $)) NIL (|has| |#1| (-568))) (($ (-971 $)) NIL (|has| |#1| (-568)))) (-1572 (((-3 (-624 $) "failed") $) 18) (((-3 (-1197) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-971 |#1|)) "failed") $) NIL (|has| |#1| (-568))) (((-3 (-971 |#1|) "failed") $) NIL (|has| |#1| (-1070))) (((-3 (-419 (-576)) "failed") $) 46 (-2759 (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-2859 (((-624 $) $) 12) (((-1197) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-971 |#1|)) $) NIL (|has| |#1| (-568))) (((-971 |#1|) $) NIL (|has| |#1| (-1070))) (((-419 (-576)) $) 319 (-2759 (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-3428 (($ $ $) NIL (|has| |#1| (-568)))) (-3674 (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 125 (|has| |#1| (-1070))) (((-701 |#1|) (-701 $)) 115 (|has| |#1| (-1070))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (-3685 (($ $) 96 (|has| |#1| (-568)))) (-3673 (((-3 $ "failed") $) NIL (|has| |#1| (-1133)))) (-3440 (($ $ $) NIL (|has| |#1| (-568)))) (-3023 (($ $ (-1113 $)) 236 (|has| |#1| (-568))) (($ $ (-1197)) 234 (|has| |#1| (-568)))) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-568)))) (-3833 (((-112) $) NIL (|has| |#1| (-568)))) (-3038 (($ $ $) 202 (|has| |#1| (-568)))) (-1600 (($) 137 (|has| |#1| (-568)))) (-2199 (($ $ $) 222 (|has| |#1| (-568)))) (-3325 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 392 (|has| |#1| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 399 (|has| |#1| (-901 (-390))))) (-2687 (($ $) NIL) (($ (-656 $)) NIL)) (-4348 (((-656 (-115)) $) NIL)) (-1776 (((-115) (-115)) 276)) (-1351 (((-112) $) 25 (|has| |#1| (-1133)))) (-3376 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-3328 (($ $) 72 (|has| |#1| (-1070)))) (-1570 (((-1146 |#1| (-624 $)) $) 91 (|has| |#1| (-1070)))) (-3471 (((-112) $) 62 (|has| |#1| (-568)))) (-4131 (($ $ (-576)) NIL (|has| |#1| (-568)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-568)))) (-2913 (((-1193 $) (-624 $)) 277 (|has| $ (-1070)))) (-4116 (($ (-1 $ $) (-624 $)) 426)) (-2119 (((-3 (-624 $) "failed") $) NIL)) (-3744 (($ $) 141 (|has| |#1| (-568)))) (-3850 (($ $) 247 (|has| |#1| (-568)))) (-3676 (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL (|has| |#1| (-1070))) (((-701 |#1|) (-1288 $)) NIL (|has| |#1| (-1070))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (-3457 (($ (-656 $)) NIL (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-2046 (((-1179) $) NIL)) (-1763 (((-656 (-624 $)) $) 49)) (-1640 (($ (-115) $) NIL) (($ (-115) (-656 $)) 431)) (-3845 (((-3 (-656 $) "failed") $) NIL (|has| |#1| (-1133)))) (-3030 (((-3 (-2 (|:| |val| $) (|:| -2508 (-576))) "failed") $) NIL (|has| |#1| (-1070)))) (-2363 (((-3 (-656 $) "failed") $) 436 (|has| |#1| (-25)))) (-4324 (((-3 (-2 (|:| -1715 (-576)) (|:| |var| (-624 $))) "failed") $) 440 (|has| |#1| (-25)))) (-1452 (((-3 (-2 (|:| |var| (-624 $)) (|:| -2508 (-576))) "failed") $) NIL (|has| |#1| (-1133))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2508 (-576))) "failed") $ (-115)) NIL (|has| |#1| (-1070))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2508 (-576))) "failed") $ (-1197)) NIL (|has| |#1| (-1070)))) (-2808 (((-112) $ (-115)) NIL) (((-112) $ (-1197)) 51)) (-2050 (($ $) NIL (-2759 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-4003 (($ $ (-1197)) 251 (|has| |#1| (-568))) (($ $ (-1113 $)) 253 (|has| |#1| (-568)))) (-2327 (((-783) $) NIL)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) 43)) (-2070 ((|#1| $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 301 (|has| |#1| (-568)))) (-3497 (($ (-656 $)) NIL (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-1523 (((-112) $ $) NIL) (((-112) $ (-1197)) NIL)) (-3139 (($ $ (-1197)) 226 (|has| |#1| (-568))) (($ $) 224 (|has| |#1| (-568)))) (-4225 (($ $) 218 (|has| |#1| (-568)))) (-4296 (((-430 (-1193 $)) (-1193 $)) 306 (-12 (|has| |#1| (-464)) (|has| |#1| (-568))))) (-1828 (((-430 $) $) NIL (|has| |#1| (-568)))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-568))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-568)))) (-3475 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-568)))) (-4103 (($ $) 139 (|has| |#1| (-568)))) (-2768 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-3282 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) 425) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1197) (-1 $ (-656 $))) NIL) (($ $ (-1197) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) 379) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-626 (-548)))) (($ $) NIL (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1197)) 366 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-115)) (-656 $) (-1197)) 365 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ $))) NIL (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ (-656 $)))) NIL (|has| |#1| (-1070))) (($ $ (-1197) (-783) (-1 $ (-656 $))) NIL (|has| |#1| (-1070))) (($ $ (-1197) (-783) (-1 $ $)) NIL (|has| |#1| (-1070)))) (-1979 (((-783) $) NIL (|has| |#1| (-568)))) (-3826 (($ $) 239 (|has| |#1| (-568)))) (-2796 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#1| (-568)))) (-1954 (($ $) NIL) (($ $ $) NIL)) (-3863 (($ $) 249 (|has| |#1| (-568)))) (-3452 (($ $) 200 (|has| |#1| (-568)))) (-2774 (($ $ (-1197)) NIL (|has| |#1| (-1070))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-1070))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-1070)))) (-4325 (($ $) 74 (|has| |#1| (-568)))) (-1581 (((-1146 |#1| (-624 $)) $) 93 (|has| |#1| (-568)))) (-1346 (($ $) 317 (|has| $ (-1070)))) (-4060 (($ $) 177 (|has| |#1| (-568)))) (-3929 (($ $) 153 (|has| |#1| (-568)))) (-4036 (($ $) 173 (|has| |#1| (-568)))) (-3909 (($ $) 149 (|has| |#1| (-568)))) (-4013 (($ $) 169 (|has| |#1| (-568)))) (-3888 (($ $) 145 (|has| |#1| (-568)))) (-4171 (((-907 (-576)) $) NIL (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| |#1| (-626 (-907 (-390))))) (($ (-430 $)) NIL (|has| |#1| (-568))) (((-548) $) 363 (|has| |#1| (-626 (-548))))) (-2272 (($ $ $) NIL (|has| |#1| (-485)))) (-1758 (($ $ $) NIL (|has| |#1| (-485)))) (-3569 (((-876) $) 424) (($ (-624 $)) 415) (($ (-1197)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-568))) (($ (-48)) 312 (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576))))) (($ (-1146 |#1| (-624 $))) 95 (|has| |#1| (-1070))) (($ (-419 |#1|)) NIL (|has| |#1| (-568))) (($ (-971 (-419 |#1|))) NIL (|has| |#1| (-568))) (($ (-419 (-971 (-419 |#1|)))) NIL (|has| |#1| (-568))) (($ (-419 (-971 |#1|))) NIL (|has| |#1| (-568))) (($ (-971 |#1|)) NIL (|has| |#1| (-1070))) (($ (-576)) 34 (-2759 (|has| |#1| (-1059 (-576))) (|has| |#1| (-1070)))) (($ (-419 (-576))) NIL (-2759 (|has| |#1| (-568)) (|has| |#1| (-1059 (-419 (-576))))))) (-3390 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3154 (((-783)) NIL (|has| |#1| (-1070)) CONST)) (-3680 (($ $) NIL) (($ (-656 $)) NIL)) (-3679 (($ $ $) 220 (|has| |#1| (-568)))) (-3849 (($ $ $) 206 (|has| |#1| (-568)))) (-2767 (($ $ $) 210 (|has| |#1| (-568)))) (-1629 (($ $ $) 204 (|has| |#1| (-568)))) (-1888 (($ $ $) 208 (|has| |#1| (-568)))) (-1349 (((-112) (-115)) 10)) (-2399 (((-112) $ $) 86)) (-2790 (($ $) 183 (|has| |#1| (-568)))) (-3960 (($ $) 159 (|has| |#1| (-568)))) (-1505 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4070 (($ $) 179 (|has| |#1| (-568)))) (-3937 (($ $) 155 (|has| |#1| (-568)))) (-2814 (($ $) 187 (|has| |#1| (-568)))) (-3982 (($ $) 163 (|has| |#1| (-568)))) (-2851 (($ (-1197) $) NIL) (($ (-1197) $ $) NIL) (($ (-1197) $ $ $) NIL) (($ (-1197) $ $ $ $) NIL) (($ (-1197) (-656 $)) NIL)) (-2612 (($ $) 214 (|has| |#1| (-568)))) (-1948 (($ $) 212 (|has| |#1| (-568)))) (-4387 (($ $) 189 (|has| |#1| (-568)))) (-3994 (($ $) 165 (|has| |#1| (-568)))) (-2802 (($ $) 185 (|has| |#1| (-568)))) (-3973 (($ $) 161 (|has| |#1| (-568)))) (-4082 (($ $) 181 (|has| |#1| (-568)))) (-3950 (($ $) 157 (|has| |#1| (-568)))) (-4143 (($ $) 192 (|has| |#1| (-568)))) (-2721 (($) 21 (-2759 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) CONST)) (-3505 (($ $) 243 (|has| |#1| (-568)))) (-2731 (($) 23 (|has| |#1| (-1133)) CONST)) (-3902 (($ $) 194 (|has| |#1| (-568))) (($ $ $) 196 (|has| |#1| (-568)))) (-2967 (($ $) 241 (|has| |#1| (-568)))) (-2020 (($ $ (-1197)) NIL (|has| |#1| (-1070))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-1070))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-1070)))) (-2437 (($ $) 245 (|has| |#1| (-568)))) (-3198 (($ $ $) 198 (|has| |#1| (-568)))) (-2924 (((-112) $ $) 88)) (-3056 (($ (-1146 |#1| (-624 $)) (-1146 |#1| (-624 $))) 106 (|has| |#1| (-568))) (($ $ $) 42 (-2759 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-3043 (($ $ $) 40 (-2759 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (($ $) 29 (-2759 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))))) (-3029 (($ $ $) 38 (-2759 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))))) (** (($ $ $) 64 (|has| |#1| (-568))) (($ $ (-419 (-576))) 314 (|has| |#1| (-568))) (($ $ (-576)) 80 (-2759 (|has| |#1| (-485)) (|has| |#1| (-568)))) (($ $ (-783)) 75 (|has| |#1| (-1133))) (($ $ (-940)) 84 (|has| |#1| (-1133)))) (* (($ (-419 (-576)) $) NIL (|has| |#1| (-568))) (($ $ (-419 (-576))) NIL (|has| |#1| (-568))) (($ $ |#1|) NIL (|has| |#1| (-174))) (($ |#1| $) NIL (|has| |#1| (-1070))) (($ $ $) 36 (|has| |#1| (-1133))) (($ (-576) $) 32 (-2759 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (($ (-783) $) NIL (-2759 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (($ (-940) $) NIL (-2759 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))))) +(((-326 |#1|) (-13 (-442 |#1|) (-10 -8 (IF (|has| |#1| (-568)) (PROGN (-6 (-29 |#1|)) (-6 (-1223)) (-6 (-161)) (-6 (-641)) (-6 (-1160)) (-15 -3685 ($ $)) (-15 -3471 ((-112) $)) (-15 -3102 ($ $ (-576))) (IF (|has| |#1| (-464)) (PROGN (-15 -4296 ((-430 (-1193 $)) (-1193 $))) (-15 -3646 ((-430 (-1193 $)) (-1193 $)))) |%noBranch|) (IF (|has| |#1| (-1059 (-576))) (-6 (-1059 (-48))) |%noBranch|)) |%noBranch|))) (-1121)) (T -326)) +((-3685 (*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-568)) (-4 *2 (-1121)))) (-3471 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1121)))) (-3102 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1121)))) (-4296 (*1 *2 *3) (-12 (-5 *2 (-430 (-1193 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1193 *1)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1121)))) (-3646 (*1 *2 *3) (-12 (-5 *2 (-430 (-1193 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1193 *1)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1121))))) +(-13 (-442 |#1|) (-10 -8 (IF (|has| |#1| (-568)) (PROGN (-6 (-29 |#1|)) (-6 (-1223)) (-6 (-161)) (-6 (-641)) (-6 (-1160)) (-15 -3685 ($ $)) (-15 -3471 ((-112) $)) (-15 -3102 ($ $ (-576))) (IF (|has| |#1| (-464)) (PROGN (-15 -4296 ((-430 (-1193 $)) (-1193 $))) (-15 -3646 ((-430 (-1193 $)) (-1193 $)))) |%noBranch|) (IF (|has| |#1| (-1059 (-576))) (-6 (-1059 (-48))) |%noBranch|)) |%noBranch|))) +((-1726 (((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)) 89) (((-52) |#2| (-115) (-304 |#2|) (-304 |#2|)) 85) (((-52) |#2| (-115) (-304 |#2|) |#2|) 87) (((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|) 88) (((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|))) 81) (((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|)) 83) (((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|)) 84) (((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|))) 82) (((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|)) 90) (((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|)) 86))) +(((-327 |#1| |#2|) (-10 -7 (-15 -1726 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|))) (-15 -1726 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -1726 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -1726 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -1726 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -1726 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -1726 ((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|)) (-15 -1726 ((-52) |#2| (-115) (-304 |#2|) |#2|)) (-15 -1726 ((-52) |#2| (-115) (-304 |#2|) (-304 |#2|))) (-15 -1726 ((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)))) (-13 (-568) (-626 (-548))) (-442 |#1|)) (T -327)) +((-1726 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-5 *6 (-656 *3)) (-4 *3 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *3)))) (-1726 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-1726 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-1726 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-304 *5)) (-5 *4 (-115)) (-4 *5 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *5)))) (-1726 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-115))) (-5 *6 (-656 (-304 *8))) (-4 *8 (-442 *7)) (-5 *5 (-304 *8)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *8)))) (-1726 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-1726 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 (-304 *8))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *8)) (-5 *6 (-656 *8)) (-4 *8 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *8)))) (-1726 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-1726 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-656 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-1726 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-304 *6)) (-5 *4 (-115)) (-4 *6 (-442 *5)) (-4 *5 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *5 *6))))) +(-10 -7 (-15 -1726 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|))) (-15 -1726 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -1726 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -1726 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -1726 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -1726 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -1726 ((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|)) (-15 -1726 ((-52) |#2| (-115) (-304 |#2|) |#2|)) (-15 -1726 ((-52) |#2| (-115) (-304 |#2|) (-304 |#2|))) (-15 -1726 ((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)))) +((-2556 (((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-227) (-576) (-1179)) 67) (((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-227) (-576)) 68) (((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-1 (-227) (-227)) (-576) (-1179)) 64) (((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-1 (-227) (-227)) (-576)) 65)) (-1502 (((-1 (-227) (-227)) (-227)) 66))) +(((-328) (-10 -7 (-15 -1502 ((-1 (-227) (-227)) (-227))) (-15 -2556 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-1 (-227) (-227)) (-576))) (-15 -2556 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-1 (-227) (-227)) (-576) (-1179))) (-15 -2556 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-227) (-576))) (-15 -2556 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-227) (-576) (-1179))))) (T -328)) +((-2556 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1115 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *8 (-1179)) (-5 *2 (-1233 (-945))) (-5 *1 (-328)))) (-2556 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1115 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *2 (-1233 (-945))) (-5 *1 (-328)))) (-2556 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1115 (-227))) (-5 *6 (-576)) (-5 *7 (-1179)) (-5 *2 (-1233 (-945))) (-5 *1 (-328)))) (-2556 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1115 (-227))) (-5 *6 (-576)) (-5 *2 (-1233 (-945))) (-5 *1 (-328)))) (-1502 (*1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-328)) (-5 *3 (-227))))) +(-10 -7 (-15 -1502 ((-1 (-227) (-227)) (-227))) (-15 -2556 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-1 (-227) (-227)) (-576))) (-15 -2556 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-1 (-227) (-227)) (-576) (-1179))) (-15 -2556 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-227) (-576))) (-15 -2556 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-227) (-576) (-1179)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 26)) (-1969 (((-656 (-1103)) $) NIL)) (-3054 (((-1197) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4195 (($ $) NIL (|has| |#1| (-568)))) (-1760 (((-112) $) NIL (|has| |#1| (-568)))) (-2408 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-3064 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 20)) (-4024 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL (|has| |#1| (-374)))) (-3760 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1840 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3330 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4005 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3079 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-4049 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3404 (($) NIL T CONST)) (-3428 (($ $ $) NIL (|has| |#1| (-374)))) (-2114 (($ $) 36)) (-3673 (((-3 $ "failed") $) NIL)) (-3440 (($ $ $) NIL (|has| |#1| (-374)))) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3833 (((-112) $) NIL (|has| |#1| (-374)))) (-2116 (((-112) $) NIL)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3726 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) 16)) (-1351 (((-112) $) NIL)) (-4131 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1800 (($ $ (-940)) NIL) (($ $ (-419 (-576))) NIL)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3538 (((-112) $) NIL)) (-1944 (($ |#1| (-419 (-576))) NIL) (($ $ (-1103) (-419 (-576))) NIL) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) NIL)) (-3124 (($ $ $) NIL)) (-1441 (($ $ $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3744 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL (|has| |#1| (-374)))) (-4160 (($ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) NIL (-2759 (-12 (|has| |#1| (-15 -4160 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223)))))) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3497 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-1743 (($ $ (-419 (-576))) NIL)) (-3475 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3618 (((-419 (-576)) $) 17)) (-2464 (($ (-1273 |#1| |#2| |#3|)) 11)) (-2508 (((-1273 |#1| |#2| |#3|) $) 12)) (-4103 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3282 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-1979 (((-783) $) NIL (|has| |#1| (-374)))) (-2796 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1133)))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#1| (-374)))) (-2774 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2683 (((-419 (-576)) $) NIL)) (-4060 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2539 (($ $) 10)) (-3569 (((-876) $) 42) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-1822 ((|#1| $ (-419 (-576))) 34)) (-3390 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3154 (((-783)) NIL T CONST)) (-2396 ((|#1| $) NIL)) (-2399 (((-112) $ $) NIL)) (-2790 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1505 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2020 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 28)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) 37)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-329 |#1| |#2| |#3|) (-13 (-1269 |#1|) (-804) (-10 -8 (-15 -2464 ($ (-1273 |#1| |#2| |#3|))) (-15 -2508 ((-1273 |#1| |#2| |#3|) $)) (-15 -3618 ((-419 (-576)) $)))) (-374) (-1197) |#1|) (T -329)) +((-2464 (*1 *1 *2) (-12 (-5 *2 (-1273 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1197)) (-14 *5 *3) (-5 *1 (-329 *3 *4 *5)))) (-2508 (*1 *2 *1) (-12 (-5 *2 (-1273 *3 *4 *5)) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1197)) (-14 *5 *3))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1197)) (-14 *5 *3)))) +(-13 (-1269 |#1|) (-804) (-10 -8 (-15 -2464 ($ (-1273 |#1| |#2| |#3|))) (-15 -2508 ((-1273 |#1| |#2| |#3|) $)) (-15 -3618 ((-419 (-576)) $)))) +((-4131 (((-2 (|:| -2508 (-783)) (|:| -1715 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783)) 35)) (-3744 (((-656 (-2 (|:| -1715 (-783)) (|:| |logand| |#1|))) (-430 |#1|)) 40))) +(((-330 |#1|) (-10 -7 (-15 -4131 ((-2 (|:| -2508 (-783)) (|:| -1715 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783))) (-15 -3744 ((-656 (-2 (|:| -1715 (-783)) (|:| |logand| |#1|))) (-430 |#1|)))) (-568)) (T -330)) +((-3744 (*1 *2 *3) (-12 (-5 *3 (-430 *4)) (-4 *4 (-568)) (-5 *2 (-656 (-2 (|:| -1715 (-783)) (|:| |logand| *4)))) (-5 *1 (-330 *4)))) (-4131 (*1 *2 *3 *4) (-12 (-5 *3 (-430 *5)) (-4 *5 (-568)) (-5 *2 (-2 (|:| -2508 (-783)) (|:| -1715 *5) (|:| |radicand| (-656 *5)))) (-5 *1 (-330 *5)) (-5 *4 (-783))))) +(-10 -7 (-15 -4131 ((-2 (|:| -2508 (-783)) (|:| -1715 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783))) (-15 -3744 ((-656 (-2 (|:| -1715 (-783)) (|:| |logand| |#1|))) (-430 |#1|)))) +((-1969 (((-656 |#2|) (-1193 |#4|)) 44)) (-1518 ((|#3| (-576)) 47)) (-1779 (((-1193 |#4|) (-1193 |#3|)) 30)) (-3291 (((-1193 |#4|) (-1193 |#4|) (-576)) 66)) (-3940 (((-1193 |#3|) (-1193 |#4|)) 21)) (-2683 (((-656 (-783)) (-1193 |#4|) (-656 |#2|)) 41)) (-1787 (((-1193 |#3|) (-1193 |#4|) (-656 |#2|) (-656 |#3|)) 35))) +(((-331 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1787 ((-1193 |#3|) (-1193 |#4|) (-656 |#2|) (-656 |#3|))) (-15 -2683 ((-656 (-783)) (-1193 |#4|) (-656 |#2|))) (-15 -1969 ((-656 |#2|) (-1193 |#4|))) (-15 -3940 ((-1193 |#3|) (-1193 |#4|))) (-15 -1779 ((-1193 |#4|) (-1193 |#3|))) (-15 -3291 ((-1193 |#4|) (-1193 |#4|) (-576))) (-15 -1518 (|#3| (-576)))) (-805) (-861) (-1070) (-968 |#3| |#1| |#2|)) (T -331)) +((-1518 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1070)) (-5 *1 (-331 *4 *5 *2 *6)) (-4 *6 (-968 *2 *4 *5)))) (-3291 (*1 *2 *2 *3) (-12 (-5 *2 (-1193 *7)) (-5 *3 (-576)) (-4 *7 (-968 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-5 *1 (-331 *4 *5 *6 *7)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-1193 *6)) (-4 *6 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-1193 *7)) (-5 *1 (-331 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) (-3940 (*1 *2 *3) (-12 (-5 *3 (-1193 *7)) (-4 *7 (-968 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-5 *2 (-1193 *6)) (-5 *1 (-331 *4 *5 *6 *7)))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-1193 *7)) (-4 *7 (-968 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-5 *2 (-656 *5)) (-5 *1 (-331 *4 *5 *6 *7)))) (-2683 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *8)) (-5 *4 (-656 *6)) (-4 *6 (-861)) (-4 *8 (-968 *7 *5 *6)) (-4 *5 (-805)) (-4 *7 (-1070)) (-5 *2 (-656 (-783))) (-5 *1 (-331 *5 *6 *7 *8)))) (-1787 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1193 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 *8)) (-4 *7 (-861)) (-4 *8 (-1070)) (-4 *9 (-968 *8 *6 *7)) (-4 *6 (-805)) (-5 *2 (-1193 *8)) (-5 *1 (-331 *6 *7 *8 *9))))) +(-10 -7 (-15 -1787 ((-1193 |#3|) (-1193 |#4|) (-656 |#2|) (-656 |#3|))) (-15 -2683 ((-656 (-783)) (-1193 |#4|) (-656 |#2|))) (-15 -1969 ((-656 |#2|) (-1193 |#4|))) (-15 -3940 ((-1193 |#3|) (-1193 |#4|))) (-15 -1779 ((-1193 |#4|) (-1193 |#3|))) (-15 -3291 ((-1193 |#4|) (-1193 |#4|) (-576))) (-15 -1518 (|#3| (-576)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 19)) (-3064 (((-656 (-2 (|:| |gen| |#1|) (|:| -4103 (-576)))) $) 21)) (-2428 (((-3 $ "failed") $ $) NIL)) (-2098 (((-783) $) NIL)) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2859 ((|#1| $) NIL)) (-2807 ((|#1| $ (-576)) NIL)) (-3131 (((-576) $ (-576)) NIL)) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-1441 (($ $ $) NIL (|has| |#1| (-861)))) (-3925 (($ (-1 |#1| |#1|) $) NIL)) (-2645 (($ (-1 (-576) (-576)) $) 11)) (-2046 (((-1179) $) NIL)) (-1792 (($ $ $) NIL (|has| (-576) (-804)))) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL) (($ |#1|) NIL)) (-1822 (((-576) |#1| $) NIL)) (-2399 (((-112) $ $) NIL)) (-2721 (($) NIL T CONST)) (-2990 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2949 (((-112) $ $) 29 (|has| |#1| (-861)))) (-3043 (($ $) 12) (($ $ $) 28)) (-3029 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL) (($ (-576) |#1|) 27))) (((-332 |#1|) (-13 (-21) (-729 (-576)) (-333 |#1| (-576)) (-10 -7 (IF (|has| |#1| (-861)) (-6 (-861)) |%noBranch|))) (-1121)) (T -332)) NIL (-13 (-21) (-729 (-576)) (-333 |#1| (-576)) (-10 -7 (IF (|has| |#1| (-861)) (-6 (-861)) |%noBranch|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-3669 (((-656 (-2 (|:| |gen| |#1|) (|:| -4104 |#2|))) $) 28)) (-4367 (((-3 $ "failed") $ $) 20)) (-2098 (((-783) $) 29)) (-3886 (($) 18 T CONST)) (-1572 (((-3 |#1| "failed") $) 33)) (-2860 ((|#1| $) 34)) (-4276 ((|#1| $ (-576)) 26)) (-3053 ((|#2| $ (-576)) 27)) (-3310 (($ (-1 |#1| |#1|) $) 23)) (-2231 (($ (-1 |#2| |#2|) $) 24)) (-3699 (((-1179) $) 10)) (-2707 (($ $ $) 22 (|has| |#2| (-804)))) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12) (($ |#1|) 32)) (-3177 ((|#2| |#1| $) 25)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2925 (((-112) $ $) 8)) (-3030 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ |#2| |#1|) 30))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-3064 (((-656 (-2 (|:| |gen| |#1|) (|:| -4103 |#2|))) $) 28)) (-2428 (((-3 $ "failed") $ $) 20)) (-2098 (((-783) $) 29)) (-3404 (($) 18 T CONST)) (-1572 (((-3 |#1| "failed") $) 33)) (-2859 ((|#1| $) 34)) (-2807 ((|#1| $ (-576)) 26)) (-3131 ((|#2| $ (-576)) 27)) (-3925 (($ (-1 |#1| |#1|) $) 23)) (-2645 (($ (-1 |#2| |#2|) $) 24)) (-2046 (((-1179) $) 10)) (-1792 (($ $ $) 22 (|has| |#2| (-804)))) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ |#1|) 32)) (-1822 ((|#2| |#1| $) 25)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2924 (((-112) $ $) 8)) (-3029 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ |#2| |#1|) 30))) (((-333 |#1| |#2|) (-141) (-1121) (-132)) (T -333)) -((-3030 (*1 *1 *2 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-132)))) (-2098 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-132)) (-5 *2 (-783)))) (-3669 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-132)) (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4104 *4)))))) (-3053 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-333 *4 *2)) (-4 *4 (-1121)) (-4 *2 (-132)))) (-4276 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-333 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1121)))) (-3177 (*1 *2 *3 *1) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-132)))) (-2231 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-132)))) (-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-132)))) (-2707 (*1 *1 *1 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-132)) (-4 *3 (-804))))) -(-13 (-132) (-1059 |t#1|) (-10 -8 (-15 -3030 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2098 ((-783) $)) (-15 -3669 ((-656 (-2 (|:| |gen| |t#1|) (|:| -4104 |t#2|))) $)) (-15 -3053 (|t#2| $ (-576))) (-15 -4276 (|t#1| $ (-576))) (-15 -3177 (|t#2| |t#1| $)) (-15 -2231 ($ (-1 |t#2| |t#2|) $)) (-15 -3310 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-804)) (-15 -2707 ($ $ $)) |%noBranch|))) +((-3029 (*1 *1 *2 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-132)))) (-2098 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-132)) (-5 *2 (-783)))) (-3064 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-132)) (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4103 *4)))))) (-3131 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-333 *4 *2)) (-4 *4 (-1121)) (-4 *2 (-132)))) (-2807 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-333 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1121)))) (-1822 (*1 *2 *3 *1) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-132)))) (-2645 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-132)))) (-3925 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-132)))) (-1792 (*1 *1 *1 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-132)) (-4 *3 (-804))))) +(-13 (-132) (-1059 |t#1|) (-10 -8 (-15 -3029 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2098 ((-783) $)) (-15 -3064 ((-656 (-2 (|:| |gen| |t#1|) (|:| -4103 |t#2|))) $)) (-15 -3131 (|t#2| $ (-576))) (-15 -2807 (|t#1| $ (-576))) (-15 -1822 (|t#2| |t#1| $)) (-15 -2645 ($ (-1 |t#2| |t#2|) $)) (-15 -3925 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-804)) (-15 -1792 ($ $ $)) |%noBranch|))) (((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-1059 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-3669 (((-656 (-2 (|:| |gen| |#1|) (|:| -4104 (-783)))) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-2098 (((-783) $) NIL)) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2860 ((|#1| $) NIL)) (-4276 ((|#1| $ (-576)) NIL)) (-3053 (((-783) $ (-576)) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-2231 (($ (-1 (-783) (-783)) $) NIL)) (-3699 (((-1179) $) NIL)) (-2707 (($ $ $) NIL (|has| (-783) (-804)))) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL) (($ |#1|) NIL)) (-3177 (((-783) |#1| $) NIL)) (-4055 (((-112) $ $) NIL)) (-2721 (($) NIL T CONST)) (-2925 (((-112) $ $) NIL)) (-3030 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-783) |#1|) NIL))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-3064 (((-656 (-2 (|:| |gen| |#1|) (|:| -4103 (-783)))) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-2098 (((-783) $) NIL)) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2859 ((|#1| $) NIL)) (-2807 ((|#1| $ (-576)) NIL)) (-3131 (((-783) $ (-576)) NIL)) (-3925 (($ (-1 |#1| |#1|) $) NIL)) (-2645 (($ (-1 (-783) (-783)) $) NIL)) (-2046 (((-1179) $) NIL)) (-1792 (($ $ $) NIL (|has| (-783) (-804)))) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL) (($ |#1|) NIL)) (-1822 (((-783) |#1| $) NIL)) (-2399 (((-112) $ $) NIL)) (-2721 (($) NIL T CONST)) (-2924 (((-112) $ $) NIL)) (-3029 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-783) |#1|) NIL))) (((-334 |#1|) (-333 |#1| (-783)) (-1121)) (T -334)) NIL (-333 |#1| (-783)) -((-3767 (($ $) 72)) (-2431 (($ $ |#2| |#3| $) 14)) (-2999 (($ (-1 |#3| |#3|) $) 51)) (-2060 (((-112) $) 42)) (-2070 ((|#2| $) 44)) (-3476 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-2457 ((|#2| $) 68)) (-1618 (((-656 |#2|) $) 56)) (-2541 (($ $ $ (-783)) 37)) (-3057 (($ $ |#2|) 60))) -(((-335 |#1| |#2| |#3|) (-10 -8 (-15 -3767 (|#1| |#1|)) (-15 -2457 (|#2| |#1|)) (-15 -3476 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2541 (|#1| |#1| |#1| (-783))) (-15 -2431 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2999 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1618 ((-656 |#2|) |#1|)) (-15 -2070 (|#2| |#1|)) (-15 -2060 ((-112) |#1|)) (-15 -3476 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3057 (|#1| |#1| |#2|))) (-336 |#2| |#3|) (-1070) (-804)) (T -335)) +((-1547 (($ $) 72)) (-4124 (($ $ |#2| |#3| $) 14)) (-3878 (($ (-1 |#3| |#3|) $) 51)) (-2060 (((-112) $) 42)) (-2070 ((|#2| $) 44)) (-3475 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-4370 ((|#2| $) 68)) (-2937 (((-656 |#2|) $) 56)) (-2717 (($ $ $ (-783)) 37)) (-3056 (($ $ |#2|) 60))) +(((-335 |#1| |#2| |#3|) (-10 -8 (-15 -1547 (|#1| |#1|)) (-15 -4370 (|#2| |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2717 (|#1| |#1| |#1| (-783))) (-15 -4124 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3878 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2937 ((-656 |#2|) |#1|)) (-15 -2070 (|#2| |#1|)) (-15 -2060 ((-112) |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3056 (|#1| |#1| |#2|))) (-336 |#2| |#3|) (-1070) (-804)) (T -335)) NIL -(-10 -8 (-15 -3767 (|#1| |#1|)) (-15 -2457 (|#2| |#1|)) (-15 -3476 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2541 (|#1| |#1| |#1| (-783))) (-15 -2431 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2999 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1618 ((-656 |#2|) |#1|)) (-15 -2070 (|#2| |#1|)) (-15 -2060 ((-112) |#1|)) (-15 -3476 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3057 (|#1| |#1| |#2|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2757 (($ $) 64 (|has| |#1| (-568)))) (-3788 (((-112) $) 66 (|has| |#1| (-568)))) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-1572 (((-3 (-576) "failed") $) 100 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 98 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 95)) (-2860 (((-576) $) 99 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 97 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 96)) (-2114 (($ $) 72)) (-1561 (((-3 $ "failed") $) 37)) (-3767 (($ $) 84 (|has| |#1| (-464)))) (-2431 (($ $ |#1| |#2| $) 88)) (-4193 (((-112) $) 35)) (-2217 (((-783) $) 91)) (-2823 (((-112) $) 74)) (-1945 (($ |#1| |#2|) 73)) (-3751 ((|#2| $) 90)) (-2999 (($ (-1 |#2| |#2|) $) 89)) (-4117 (($ (-1 |#1| |#1|) $) 75)) (-2081 (($ $) 77)) (-2091 ((|#1| $) 78)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2060 (((-112) $) 94)) (-2070 ((|#1| $) 93)) (-3476 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-568)))) (-3634 ((|#2| $) 76)) (-2457 ((|#1| $) 85 (|has| |#1| (-464)))) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59) (($ (-419 (-576))) 69 (-2760 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))))) (-1618 (((-656 |#1|) $) 92)) (-3177 ((|#1| $ |#2|) 71)) (-4336 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3996 (((-783)) 32 T CONST)) (-2541 (($ $ $ (-783)) 87 (|has| |#1| (-174)))) (-4055 (((-112) $ $) 6)) (-2672 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3057 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(-10 -8 (-15 -1547 (|#1| |#1|)) (-15 -4370 (|#2| |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2717 (|#1| |#1| |#1| (-783))) (-15 -4124 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3878 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2937 ((-656 |#2|) |#1|)) (-15 -2070 (|#2| |#1|)) (-15 -2060 ((-112) |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3056 (|#1| |#1| |#2|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4195 (($ $) 64 (|has| |#1| (-568)))) (-1760 (((-112) $) 66 (|has| |#1| (-568)))) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-1572 (((-3 (-576) "failed") $) 100 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 98 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 95)) (-2859 (((-576) $) 99 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 97 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 96)) (-2114 (($ $) 72)) (-3673 (((-3 $ "failed") $) 37)) (-1547 (($ $) 84 (|has| |#1| (-464)))) (-4124 (($ $ |#1| |#2| $) 88)) (-1351 (((-112) $) 35)) (-3799 (((-783) $) 91)) (-3538 (((-112) $) 74)) (-1944 (($ |#1| |#2|) 73)) (-2578 ((|#2| $) 90)) (-3878 (($ (-1 |#2| |#2|) $) 89)) (-4116 (($ (-1 |#1| |#1|) $) 75)) (-2081 (($ $) 77)) (-2091 ((|#1| $) 78)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2060 (((-112) $) 94)) (-2070 ((|#1| $) 93)) (-3475 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-568)))) (-2683 ((|#2| $) 76)) (-4370 ((|#1| $) 85 (|has| |#1| (-464)))) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59) (($ (-419 (-576))) 69 (-2759 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))))) (-2937 (((-656 |#1|) $) 92)) (-1822 ((|#1| $ |#2|) 71)) (-3390 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3154 (((-783)) 32 T CONST)) (-2717 (($ $ $ (-783)) 87 (|has| |#1| (-174)))) (-2399 (((-112) $ $) 6)) (-1505 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) (((-336 |#1| |#2|) (-141) (-1070) (-804)) (T -336)) -((-2060 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-5 *2 (-112)))) (-2070 (*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)))) (-1618 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-5 *2 (-656 *3)))) (-2217 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-5 *2 (-783)))) (-3751 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-2999 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)))) (-2431 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)))) (-2541 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-4 *3 (-174)))) (-3476 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)) (-4 *2 (-568)))) (-2457 (*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)) (-4 *2 (-464)))) (-3767 (*1 *1 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)) (-4 *2 (-464))))) -(-13 (-47 |t#1| |t#2|) (-423 |t#1|) (-10 -8 (-15 -2060 ((-112) $)) (-15 -2070 (|t#1| $)) (-15 -1618 ((-656 |t#1|) $)) (-15 -2217 ((-783) $)) (-15 -3751 (|t#2| $)) (-15 -2999 ($ (-1 |t#2| |t#2|) $)) (-15 -2431 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -2541 ($ $ $ (-783))) |%noBranch|) (IF (|has| |t#1| (-568)) (-15 -3476 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -2457 (|t#1| $)) (-15 -3767 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2760 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2760 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) -2760 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-423 |#1|) . T) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2047 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4466)))) (-1710 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-4298 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4466))) (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-861))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-1808 (((-112) $ (-783)) NIL)) (-3710 (((-112) (-112)) NIL)) (-3756 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4466))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4466)))) (-2300 (($ (-1 (-112) |#1|) $) NIL)) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3886 (($) NIL T CONST)) (-3990 (($ $) NIL (|has| $ (-6 -4466)))) (-3836 (($ $) NIL)) (-1703 (($ $) NIL (|has| |#1| (-1121)))) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1671 (($ |#1| $) NIL (|has| |#1| (-1121))) (($ (-1 (-112) |#1|) $) NIL)) (-3946 (($ |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4335 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4466)))) (-4274 ((|#1| $ (-576)) NIL)) (-3660 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-3474 (($ $ (-576)) NIL)) (-3138 (((-783) $) NIL)) (-3966 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-4141 (($ (-783) |#1|) NIL)) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-576) $) NIL (|has| (-576) (-861)))) (-3125 (($ $ $) NIL (|has| |#1| (-861)))) (-2453 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3391 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2137 (((-576) $) NIL (|has| (-576) (-861)))) (-3133 (($ $ $) NIL (|has| |#1| (-861)))) (-4323 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1901 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2176 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-4234 (((-656 (-576)) $) NIL)) (-3354 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3434 (($ (-656 |#1|)) NIL)) (-3581 ((|#1| $) NIL (|has| (-576) (-861)))) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4046 (($ $ |#1|) NIL (|has| $ (-6 -4466)))) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2281 (((-656 |#1|) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-2161 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-3466 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3025 (($ $ $ (-576)) NIL (|has| $ (-6 -4466)))) (-1870 (($ $) NIL)) (-4172 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) NIL)) (-2974 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1615 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3570 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2992 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2950 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-337 |#1|) (-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -3434 ($ (-656 |#1|))) (-15 -3138 ((-783) $)) (-15 -3474 ($ $ (-576))) (-15 -3710 ((-112) (-112))))) (-1238)) (T -337)) -((-3434 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-337 *3)))) (-3138 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-337 *3)) (-4 *3 (-1238)))) (-3474 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-337 *3)) (-4 *3 (-1238)))) (-3710 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-1238))))) -(-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -3434 ($ (-656 |#1|))) (-15 -3138 ((-783) $)) (-15 -3474 ($ $ (-576))) (-15 -3710 ((-112) (-112))))) -((-2441 (((-112) $) 47)) (-2664 (((-783)) 23)) (-2210 ((|#2| $) 51) (($ $ (-940)) 121)) (-2098 (((-783)) 122)) (-4119 (($ (-1288 |#2|)) 20)) (-1536 (((-112) $) 134)) (-1381 ((|#2| $) 53) (($ $ (-940)) 118)) (-2731 (((-1193 |#2|) $) NIL) (((-1193 $) $ (-940)) 109)) (-1938 (((-1193 |#2|) $) 95)) (-2512 (((-1193 |#2|) $) 91) (((-3 (-1193 |#2|) "failed") $ $) 88)) (-1649 (($ $ (-1193 |#2|)) 58)) (-2301 (((-845 (-940))) 30) (((-940)) 48)) (-2003 (((-135)) 27)) (-3634 (((-845 (-940)) $) 32) (((-940) $) 137)) (-2532 (($) 128)) (-4152 (((-1288 |#2|) $) NIL) (((-701 |#2|) (-1288 $)) 42)) (-4336 (($ $) NIL) (((-3 $ "failed") $) 98)) (-3419 (((-112) $) 45))) -(((-338 |#1| |#2|) (-10 -8 (-15 -4336 ((-3 |#1| "failed") |#1|)) (-15 -2098 ((-783))) (-15 -4336 (|#1| |#1|)) (-15 -2512 ((-3 (-1193 |#2|) "failed") |#1| |#1|)) (-15 -2512 ((-1193 |#2|) |#1|)) (-15 -1938 ((-1193 |#2|) |#1|)) (-15 -1649 (|#1| |#1| (-1193 |#2|))) (-15 -1536 ((-112) |#1|)) (-15 -2532 (|#1|)) (-15 -2210 (|#1| |#1| (-940))) (-15 -1381 (|#1| |#1| (-940))) (-15 -2731 ((-1193 |#1|) |#1| (-940))) (-15 -2210 (|#2| |#1|)) (-15 -1381 (|#2| |#1|)) (-15 -3634 ((-940) |#1|)) (-15 -2301 ((-940))) (-15 -2731 ((-1193 |#2|) |#1|)) (-15 -4119 (|#1| (-1288 |#2|))) (-15 -4152 ((-701 |#2|) (-1288 |#1|))) (-15 -4152 ((-1288 |#2|) |#1|)) (-15 -2664 ((-783))) (-15 -2301 ((-845 (-940)))) (-15 -3634 ((-845 (-940)) |#1|)) (-15 -2441 ((-112) |#1|)) (-15 -3419 ((-112) |#1|)) (-15 -2003 ((-135)))) (-339 |#2|) (-374)) (T -338)) -((-2003 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-135)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-2301 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-845 (-940))) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-2664 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-2301 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-940)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-2098 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4))))) -(-10 -8 (-15 -4336 ((-3 |#1| "failed") |#1|)) (-15 -2098 ((-783))) (-15 -4336 (|#1| |#1|)) (-15 -2512 ((-3 (-1193 |#2|) "failed") |#1| |#1|)) (-15 -2512 ((-1193 |#2|) |#1|)) (-15 -1938 ((-1193 |#2|) |#1|)) (-15 -1649 (|#1| |#1| (-1193 |#2|))) (-15 -1536 ((-112) |#1|)) (-15 -2532 (|#1|)) (-15 -2210 (|#1| |#1| (-940))) (-15 -1381 (|#1| |#1| (-940))) (-15 -2731 ((-1193 |#1|) |#1| (-940))) (-15 -2210 (|#2| |#1|)) (-15 -1381 (|#2| |#1|)) (-15 -3634 ((-940) |#1|)) (-15 -2301 ((-940))) (-15 -2731 ((-1193 |#2|) |#1|)) (-15 -4119 (|#1| (-1288 |#2|))) (-15 -4152 ((-701 |#2|) (-1288 |#1|))) (-15 -4152 ((-1288 |#2|) |#1|)) (-15 -2664 ((-783))) (-15 -2301 ((-845 (-940)))) (-15 -3634 ((-845 (-940)) |#1|)) (-15 -2441 ((-112) |#1|)) (-15 -3419 ((-112) |#1|)) (-15 -2003 ((-135)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 47)) (-2757 (($ $) 46)) (-3788 (((-112) $) 44)) (-2441 (((-112) $) 104)) (-2664 (((-783)) 100)) (-2210 ((|#1| $) 151) (($ $ (-940)) 148 (|has| |#1| (-379)))) (-4183 (((-1210 (-940) (-783)) (-576)) 133 (|has| |#1| (-379)))) (-4367 (((-3 $ "failed") $ $) 20)) (-2487 (($ $) 81)) (-3921 (((-430 $) $) 80)) (-4016 (((-112) $ $) 65)) (-2098 (((-783)) 123 (|has| |#1| (-379)))) (-3886 (($) 18 T CONST)) (-1572 (((-3 |#1| "failed") $) 111)) (-2860 ((|#1| $) 112)) (-4119 (($ (-1288 |#1|)) 157)) (-2554 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-379)))) (-3429 (($ $ $) 61)) (-1561 (((-3 $ "failed") $) 37)) (-1836 (($) 120 (|has| |#1| (-379)))) (-3441 (($ $ $) 62)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) 57)) (-2005 (($) 135 (|has| |#1| (-379)))) (-4090 (((-112) $) 136 (|has| |#1| (-379)))) (-2910 (($ $ (-783)) 97 (-2760 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) 96 (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4249 (((-112) $) 79)) (-3917 (((-940) $) 138 (|has| |#1| (-379))) (((-845 (-940)) $) 94 (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4193 (((-112) $) 35)) (-4263 (($) 146 (|has| |#1| (-379)))) (-1536 (((-112) $) 145 (|has| |#1| (-379)))) (-1381 ((|#1| $) 152) (($ $ (-940)) 149 (|has| |#1| (-379)))) (-2240 (((-3 $ "failed") $) 124 (|has| |#1| (-379)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-2731 (((-1193 |#1|) $) 156) (((-1193 $) $ (-940)) 150 (|has| |#1| (-379)))) (-4401 (((-940) $) 121 (|has| |#1| (-379)))) (-1938 (((-1193 |#1|) $) 142 (|has| |#1| (-379)))) (-2512 (((-1193 |#1|) $) 141 (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) 140 (|has| |#1| (-379)))) (-1649 (($ $ (-1193 |#1|)) 143 (|has| |#1| (-379)))) (-3458 (($ $ $) 52) (($ (-656 $)) 51)) (-3699 (((-1179) $) 10)) (-2050 (($ $) 78)) (-3540 (($) 125 (|has| |#1| (-379)) CONST)) (-3224 (($ (-940)) 122 (|has| |#1| (-379)))) (-2844 (((-112) $) 103)) (-1450 (((-1141) $) 11)) (-4129 (($) 144 (|has| |#1| (-379)))) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-2406 (((-656 (-2 (|:| -1828 (-576)) (|:| -3422 (-576))))) 132 (|has| |#1| (-379)))) (-1828 (((-430 $) $) 82)) (-2301 (((-845 (-940))) 101) (((-940)) 154)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3476 (((-3 $ "failed") $ $) 48)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1967 (((-783) $) 64)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 63)) (-3793 (((-783) $) 137 (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) 95 (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2003 (((-135)) 109)) (-2775 (($ $ (-783)) 128 (|has| |#1| (-379))) (($ $) 126 (|has| |#1| (-379)))) (-3634 (((-845 (-940)) $) 102) (((-940) $) 153)) (-3867 (((-1193 |#1|)) 155)) (-1535 (($) 134 (|has| |#1| (-379)))) (-2532 (($) 147 (|has| |#1| (-379)))) (-4152 (((-1288 |#1|) $) 159) (((-701 |#1|) (-1288 $)) 158)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) 131 (|has| |#1| (-379)))) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 110)) (-4336 (($ $) 130 (|has| |#1| (-379))) (((-3 $ "failed") $) 93 (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-1593 (((-1288 $)) 161) (((-1288 $) (-940)) 160)) (-2672 (((-112) $ $) 45)) (-3419 (((-112) $) 105)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-3051 (($ $) 99 (|has| |#1| (-379))) (($ $ (-783)) 98 (|has| |#1| (-379)))) (-2020 (($ $ (-783)) 129 (|has| |#1| (-379))) (($ $) 127 (|has| |#1| (-379)))) (-2925 (((-112) $ $) 8)) (-3057 (($ $ $) 73) (($ $ |#1|) 108)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +((-2060 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-5 *2 (-112)))) (-2070 (*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)))) (-2937 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-5 *2 (-656 *3)))) (-3799 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-5 *2 (-783)))) (-2578 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-3878 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)))) (-4124 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)))) (-2717 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-4 *3 (-174)))) (-3475 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)) (-4 *2 (-568)))) (-4370 (*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)) (-4 *2 (-464)))) (-1547 (*1 *1 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)) (-4 *2 (-464))))) +(-13 (-47 |t#1| |t#2|) (-423 |t#1|) (-10 -8 (-15 -2060 ((-112) $)) (-15 -2070 (|t#1| $)) (-15 -2937 ((-656 |t#1|) $)) (-15 -3799 ((-783) $)) (-15 -2578 (|t#2| $)) (-15 -3878 ($ (-1 |t#2| |t#2|) $)) (-15 -4124 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -2717 ($ $ $ (-783))) |%noBranch|) (IF (|has| |t#1| (-568)) (-15 -3475 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -4370 (|t#1| $)) (-15 -1547 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2759 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2759 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) -2759 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-423 |#1|) . T) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1512 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-1390 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-3039 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-4264 (((-112) $ (-783)) NIL)) (-2168 (((-112) (-112)) NIL)) (-3755 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465)))) (-2123 (($ (-1 (-112) |#1|) $) NIL)) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3404 (($) NIL T CONST)) (-3092 (($ $) NIL (|has| $ (-6 -4465)))) (-3835 (($ $) NIL)) (-2495 (($ $) NIL (|has| |#1| (-1121)))) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2172 (($ |#1| $) NIL (|has| |#1| (-1121))) (($ (-1 (-112) |#1|) $) NIL)) (-3945 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) NIL)) (-3659 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-1765 (($ $ (-576)) NIL)) (-1477 (((-783) $) NIL)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-4140 (($ (-783) |#1|) NIL)) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-4330 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2185 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4280 (((-576) $) NIL (|has| (-576) (-861)))) (-1441 (($ $ $) NIL (|has| |#1| (-861)))) (-4326 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2597 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2176 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3669 (((-656 (-576)) $) NIL)) (-3090 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-2604 (($ (-656 |#1|)) NIL)) (-3580 ((|#1| $) NIL (|has| (-576) (-861)))) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2304 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3207 (((-656 |#1|) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1352 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-3465 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2840 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) NIL)) (-3631 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1615 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2924 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2949 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-337 |#1|) (-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -2604 ($ (-656 |#1|))) (-15 -1477 ((-783) $)) (-15 -1765 ($ $ (-576))) (-15 -2168 ((-112) (-112))))) (-1238)) (T -337)) +((-2604 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-337 *3)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-337 *3)) (-4 *3 (-1238)))) (-1765 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-337 *3)) (-4 *3 (-1238)))) (-2168 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-1238))))) +(-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -2604 ($ (-656 |#1|))) (-15 -1477 ((-783) $)) (-15 -1765 ($ $ (-576))) (-15 -2168 ((-112) (-112))))) +((-4217 (((-112) $) 47)) (-2611 (((-783)) 23)) (-2210 ((|#2| $) 51) (($ $ (-940)) 121)) (-2098 (((-783)) 122)) (-1819 (($ (-1288 |#2|)) 20)) (-3381 (((-112) $) 134)) (-2738 ((|#2| $) 53) (($ $ (-940)) 118)) (-1989 (((-1193 |#2|) $) NIL) (((-1193 $) $ (-940)) 109)) (-2997 (((-1193 |#2|) $) 95)) (-3720 (((-1193 |#2|) $) 91) (((-3 (-1193 |#2|) "failed") $ $) 88)) (-1999 (($ $ (-1193 |#2|)) 58)) (-2135 (((-845 (-940))) 30) (((-940)) 48)) (-2319 (((-135)) 27)) (-2683 (((-845 (-940)) $) 32) (((-940) $) 137)) (-3931 (($) 128)) (-4096 (((-1288 |#2|) $) NIL) (((-701 |#2|) (-1288 $)) 42)) (-3390 (($ $) NIL) (((-3 $ "failed") $) 98)) (-2476 (((-112) $) 45))) +(((-338 |#1| |#2|) (-10 -8 (-15 -3390 ((-3 |#1| "failed") |#1|)) (-15 -2098 ((-783))) (-15 -3390 (|#1| |#1|)) (-15 -3720 ((-3 (-1193 |#2|) "failed") |#1| |#1|)) (-15 -3720 ((-1193 |#2|) |#1|)) (-15 -2997 ((-1193 |#2|) |#1|)) (-15 -1999 (|#1| |#1| (-1193 |#2|))) (-15 -3381 ((-112) |#1|)) (-15 -3931 (|#1|)) (-15 -2210 (|#1| |#1| (-940))) (-15 -2738 (|#1| |#1| (-940))) (-15 -1989 ((-1193 |#1|) |#1| (-940))) (-15 -2210 (|#2| |#1|)) (-15 -2738 (|#2| |#1|)) (-15 -2683 ((-940) |#1|)) (-15 -2135 ((-940))) (-15 -1989 ((-1193 |#2|) |#1|)) (-15 -1819 (|#1| (-1288 |#2|))) (-15 -4096 ((-701 |#2|) (-1288 |#1|))) (-15 -4096 ((-1288 |#2|) |#1|)) (-15 -2611 ((-783))) (-15 -2135 ((-845 (-940)))) (-15 -2683 ((-845 (-940)) |#1|)) (-15 -4217 ((-112) |#1|)) (-15 -2476 ((-112) |#1|)) (-15 -2319 ((-135)))) (-339 |#2|) (-374)) (T -338)) +((-2319 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-135)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-2135 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-845 (-940))) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-2611 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-2135 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-940)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-2098 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4))))) +(-10 -8 (-15 -3390 ((-3 |#1| "failed") |#1|)) (-15 -2098 ((-783))) (-15 -3390 (|#1| |#1|)) (-15 -3720 ((-3 (-1193 |#2|) "failed") |#1| |#1|)) (-15 -3720 ((-1193 |#2|) |#1|)) (-15 -2997 ((-1193 |#2|) |#1|)) (-15 -1999 (|#1| |#1| (-1193 |#2|))) (-15 -3381 ((-112) |#1|)) (-15 -3931 (|#1|)) (-15 -2210 (|#1| |#1| (-940))) (-15 -2738 (|#1| |#1| (-940))) (-15 -1989 ((-1193 |#1|) |#1| (-940))) (-15 -2210 (|#2| |#1|)) (-15 -2738 (|#2| |#1|)) (-15 -2683 ((-940) |#1|)) (-15 -2135 ((-940))) (-15 -1989 ((-1193 |#2|) |#1|)) (-15 -1819 (|#1| (-1288 |#2|))) (-15 -4096 ((-701 |#2|) (-1288 |#1|))) (-15 -4096 ((-1288 |#2|) |#1|)) (-15 -2611 ((-783))) (-15 -2135 ((-845 (-940)))) (-15 -2683 ((-845 (-940)) |#1|)) (-15 -4217 ((-112) |#1|)) (-15 -2476 ((-112) |#1|)) (-15 -2319 ((-135)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-4195 (($ $) 46)) (-1760 (((-112) $) 44)) (-4217 (((-112) $) 104)) (-2611 (((-783)) 100)) (-2210 ((|#1| $) 151) (($ $ (-940)) 148 (|has| |#1| (-379)))) (-4371 (((-1210 (-940) (-783)) (-576)) 133 (|has| |#1| (-379)))) (-2428 (((-3 $ "failed") $ $) 20)) (-3444 (($ $) 81)) (-3760 (((-430 $) $) 80)) (-3330 (((-112) $ $) 65)) (-2098 (((-783)) 123 (|has| |#1| (-379)))) (-3404 (($) 18 T CONST)) (-1572 (((-3 |#1| "failed") $) 111)) (-2859 ((|#1| $) 112)) (-1819 (($ (-1288 |#1|)) 157)) (-2868 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-379)))) (-3428 (($ $ $) 61)) (-3673 (((-3 $ "failed") $) 37)) (-1836 (($) 120 (|has| |#1| (-379)))) (-3440 (($ $ $) 62)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) 57)) (-2345 (($) 135 (|has| |#1| (-379)))) (-1543 (((-112) $) 136 (|has| |#1| (-379)))) (-3153 (($ $ (-783)) 97 (-2759 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) 96 (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3833 (((-112) $) 79)) (-3726 (((-940) $) 138 (|has| |#1| (-379))) (((-845 (-940)) $) 94 (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1351 (((-112) $) 35)) (-3975 (($) 146 (|has| |#1| (-379)))) (-3381 (((-112) $) 145 (|has| |#1| (-379)))) (-2738 ((|#1| $) 152) (($ $ (-940)) 149 (|has| |#1| (-379)))) (-2734 (((-3 $ "failed") $) 124 (|has| |#1| (-379)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-1989 (((-1193 |#1|) $) 156) (((-1193 $) $ (-940)) 150 (|has| |#1| (-379)))) (-1558 (((-940) $) 121 (|has| |#1| (-379)))) (-2997 (((-1193 |#1|) $) 142 (|has| |#1| (-379)))) (-3720 (((-1193 |#1|) $) 141 (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) 140 (|has| |#1| (-379)))) (-1999 (($ $ (-1193 |#1|)) 143 (|has| |#1| (-379)))) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-2046 (((-1179) $) 10)) (-2050 (($ $) 78)) (-3539 (($) 125 (|has| |#1| (-379)) CONST)) (-3223 (($ (-940)) 122 (|has| |#1| (-379)))) (-3759 (((-112) $) 103)) (-1450 (((-1141) $) 11)) (-4128 (($) 144 (|has| |#1| (-379)))) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3497 (($ $ $) 54) (($ (-656 $)) 53)) (-1913 (((-656 (-2 (|:| -1828 (-576)) (|:| -2508 (-576))))) 132 (|has| |#1| (-379)))) (-1828 (((-430 $) $) 82)) (-2135 (((-845 (-940))) 101) (((-940)) 154)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3475 (((-3 $ "failed") $ $) 48)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1979 (((-783) $) 64)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 63)) (-1813 (((-783) $) 137 (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) 95 (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2319 (((-135)) 109)) (-2774 (($ $ (-783)) 128 (|has| |#1| (-379))) (($ $) 126 (|has| |#1| (-379)))) (-2683 (((-845 (-940)) $) 102) (((-940) $) 153)) (-1346 (((-1193 |#1|)) 155)) (-3371 (($) 134 (|has| |#1| (-379)))) (-3931 (($) 147 (|has| |#1| (-379)))) (-4096 (((-1288 |#1|) $) 159) (((-701 |#1|) (-1288 $)) 158)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) 131 (|has| |#1| (-379)))) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 110)) (-3390 (($ $) 130 (|has| |#1| (-379))) (((-3 $ "failed") $) 93 (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-2675 (((-1288 $)) 161) (((-1288 $) (-940)) 160)) (-1505 (((-112) $ $) 45)) (-2476 (((-112) $) 105)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-3108 (($ $) 99 (|has| |#1| (-379))) (($ $ (-783)) 98 (|has| |#1| (-379)))) (-2020 (($ $ (-783)) 129 (|has| |#1| (-379))) (($ $) 127 (|has| |#1| (-379)))) (-2924 (((-112) $ $) 8)) (-3056 (($ $ $) 73) (($ $ |#1|) 108)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) (((-339 |#1|) (-141) (-374)) (T -339)) -((-1593 (*1 *2) (-12 (-4 *3 (-374)) (-5 *2 (-1288 *1)) (-4 *1 (-339 *3)))) (-1593 (*1 *2 *3) (-12 (-5 *3 (-940)) (-4 *4 (-374)) (-5 *2 (-1288 *1)) (-4 *1 (-339 *4)))) (-4152 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1288 *3)))) (-4152 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-339 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)))) (-4119 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-374)) (-4 *1 (-339 *3)))) (-2731 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1193 *3)))) (-3867 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1193 *3)))) (-2301 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-940)))) (-3634 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-940)))) (-1381 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) (-2210 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) (-2731 (*1 *2 *1 *3) (-12 (-5 *3 (-940)) (-4 *4 (-379)) (-4 *4 (-374)) (-5 *2 (-1193 *1)) (-4 *1 (-339 *4)))) (-1381 (*1 *1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) (-2210 (*1 *1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) (-2532 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-4263 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-1536 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-112)))) (-4129 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-1649 (*1 *1 *1 *2) (-12 (-5 *2 (-1193 *3)) (-4 *3 (-379)) (-4 *1 (-339 *3)) (-4 *3 (-374)))) (-1938 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1193 *3)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1193 *3)))) (-2512 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1193 *3))))) -(-13 (-1307 |t#1|) (-1059 |t#1|) (-10 -8 (-15 -1593 ((-1288 $))) (-15 -1593 ((-1288 $) (-940))) (-15 -4152 ((-1288 |t#1|) $)) (-15 -4152 ((-701 |t#1|) (-1288 $))) (-15 -4119 ($ (-1288 |t#1|))) (-15 -2731 ((-1193 |t#1|) $)) (-15 -3867 ((-1193 |t#1|))) (-15 -2301 ((-940))) (-15 -3634 ((-940) $)) (-15 -1381 (|t#1| $)) (-15 -2210 (|t#1| $)) (IF (|has| |t#1| (-379)) (PROGN (-6 (-360)) (-15 -2731 ((-1193 $) $ (-940))) (-15 -1381 ($ $ (-940))) (-15 -2210 ($ $ (-940))) (-15 -2532 ($)) (-15 -4263 ($)) (-15 -1536 ((-112) $)) (-15 -4129 ($)) (-15 -1649 ($ $ (-1193 |t#1|))) (-15 -1938 ((-1193 |t#1|) $)) (-15 -2512 ((-1193 |t#1|) $)) (-15 -2512 ((-3 (-1193 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2760 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-234 $) |has| |#1| (-379)) ((-238) |has| |#1| (-379)) ((-237) |has| |#1| (-379)) ((-248) . T) ((-300) . T) ((-317) . T) ((-1307 |#1|) . T) ((-374) . T) ((-414) -2760 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-379) |has| |#1| (-379)) ((-360) |has| |#1| (-379)) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-939) . T) ((-1059 |#1|) . T) ((-1072 #0#) . T) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 |#1|) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) |has| |#1| (-379)) ((-1238) . T) ((-1242) . T) ((-1295 |#1|) . T)) -((-3489 (((-112) $ $) NIL)) (-3036 (($ (-1196) $) 100)) (-4168 (($) 89)) (-1990 (((-1141) (-1141)) 9)) (-1392 (($) 90)) (-3769 (($) 104) (($ (-326 (-711))) 112) (($ (-326 (-713))) 108) (($ (-326 (-706))) 116) (($ (-326 (-390))) 123) (($ (-326 (-576))) 119) (($ (-326 (-171 (-390)))) 127)) (-3729 (($ (-1196) $) 101)) (-3808 (($ (-656 (-876))) 91)) (-1767 (((-1293) $) 87)) (-3947 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3566 (($ (-1141)) 58)) (-4415 (((-1125) $) 30)) (-1827 (($ (-1113 (-971 (-576))) $) 97) (($ (-1113 (-971 (-576))) (-971 (-576)) $) 98)) (-1429 (($ (-1141)) 99)) (-2856 (($ (-1196) $) 129) (($ (-1196) $ $) 130)) (-2427 (($ (-1197) (-656 (-1197))) 88)) (-2389 (($ (-1179)) 94) (($ (-656 (-1179))) 92)) (-3570 (((-876) $) 132)) (-4349 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1197)) (|:| |arrayIndex| (-656 (-971 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3004 (-876)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1197)) (|:| |rand| (-876)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1196)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3973 (-112)) (|:| -3106 (-2 (|:| |ints2Floats?| (-112)) (|:| -3004 (-876)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1179))) (|:| |callBranch| (-1179)) (|:| |forBranch| (-2 (|:| -2951 (-1113 (-971 (-576)))) (|:| |span| (-971 (-576))) (|:| -2641 $))) (|:| |labelBranch| (-1141)) (|:| |loopBranch| (-2 (|:| |switch| (-1196)) (|:| -2641 $))) (|:| |commonBranch| (-2 (|:| -2629 (-1197)) (|:| |contents| (-656 (-1197))))) (|:| |printBranch| (-656 (-876)))) $) 50)) (-2482 (($ (-1179)) 202)) (-3599 (($ (-656 $)) 128)) (-4055 (((-112) $ $) NIL)) (-3782 (($ (-1197) (-1179)) 135) (($ (-1197) (-326 (-713))) 175) (($ (-1197) (-326 (-711))) 176) (($ (-1197) (-326 (-706))) 177) (($ (-1197) (-701 (-713))) 138) (($ (-1197) (-701 (-711))) 141) (($ (-1197) (-701 (-706))) 144) (($ (-1197) (-1288 (-713))) 147) (($ (-1197) (-1288 (-711))) 150) (($ (-1197) (-1288 (-706))) 153) (($ (-1197) (-701 (-326 (-713)))) 156) (($ (-1197) (-701 (-326 (-711)))) 159) (($ (-1197) (-701 (-326 (-706)))) 162) (($ (-1197) (-1288 (-326 (-713)))) 165) (($ (-1197) (-1288 (-326 (-711)))) 168) (($ (-1197) (-1288 (-326 (-706)))) 171) (($ (-1197) (-656 (-971 (-576))) (-326 (-713))) 172) (($ (-1197) (-656 (-971 (-576))) (-326 (-711))) 173) (($ (-1197) (-656 (-971 (-576))) (-326 (-706))) 174) (($ (-1197) (-326 (-576))) 199) (($ (-1197) (-326 (-390))) 200) (($ (-1197) (-326 (-171 (-390)))) 201) (($ (-1197) (-701 (-326 (-576)))) 180) (($ (-1197) (-701 (-326 (-390)))) 183) (($ (-1197) (-701 (-326 (-171 (-390))))) 186) (($ (-1197) (-1288 (-326 (-576)))) 189) (($ (-1197) (-1288 (-326 (-390)))) 192) (($ (-1197) (-1288 (-326 (-171 (-390))))) 195) (($ (-1197) (-656 (-971 (-576))) (-326 (-576))) 196) (($ (-1197) (-656 (-971 (-576))) (-326 (-390))) 197) (($ (-1197) (-656 (-971 (-576))) (-326 (-171 (-390)))) 198)) (-2925 (((-112) $ $) NIL))) -(((-340) (-13 (-1121) (-10 -8 (-15 -1827 ($ (-1113 (-971 (-576))) $)) (-15 -1827 ($ (-1113 (-971 (-576))) (-971 (-576)) $)) (-15 -3036 ($ (-1196) $)) (-15 -3729 ($ (-1196) $)) (-15 -3566 ($ (-1141))) (-15 -1429 ($ (-1141))) (-15 -2389 ($ (-1179))) (-15 -2389 ($ (-656 (-1179)))) (-15 -2482 ($ (-1179))) (-15 -3769 ($)) (-15 -3769 ($ (-326 (-711)))) (-15 -3769 ($ (-326 (-713)))) (-15 -3769 ($ (-326 (-706)))) (-15 -3769 ($ (-326 (-390)))) (-15 -3769 ($ (-326 (-576)))) (-15 -3769 ($ (-326 (-171 (-390))))) (-15 -2856 ($ (-1196) $)) (-15 -2856 ($ (-1196) $ $)) (-15 -3782 ($ (-1197) (-1179))) (-15 -3782 ($ (-1197) (-326 (-713)))) (-15 -3782 ($ (-1197) (-326 (-711)))) (-15 -3782 ($ (-1197) (-326 (-706)))) (-15 -3782 ($ (-1197) (-701 (-713)))) (-15 -3782 ($ (-1197) (-701 (-711)))) (-15 -3782 ($ (-1197) (-701 (-706)))) (-15 -3782 ($ (-1197) (-1288 (-713)))) (-15 -3782 ($ (-1197) (-1288 (-711)))) (-15 -3782 ($ (-1197) (-1288 (-706)))) (-15 -3782 ($ (-1197) (-701 (-326 (-713))))) (-15 -3782 ($ (-1197) (-701 (-326 (-711))))) (-15 -3782 ($ (-1197) (-701 (-326 (-706))))) (-15 -3782 ($ (-1197) (-1288 (-326 (-713))))) (-15 -3782 ($ (-1197) (-1288 (-326 (-711))))) (-15 -3782 ($ (-1197) (-1288 (-326 (-706))))) (-15 -3782 ($ (-1197) (-656 (-971 (-576))) (-326 (-713)))) (-15 -3782 ($ (-1197) (-656 (-971 (-576))) (-326 (-711)))) (-15 -3782 ($ (-1197) (-656 (-971 (-576))) (-326 (-706)))) (-15 -3782 ($ (-1197) (-326 (-576)))) (-15 -3782 ($ (-1197) (-326 (-390)))) (-15 -3782 ($ (-1197) (-326 (-171 (-390))))) (-15 -3782 ($ (-1197) (-701 (-326 (-576))))) (-15 -3782 ($ (-1197) (-701 (-326 (-390))))) (-15 -3782 ($ (-1197) (-701 (-326 (-171 (-390)))))) (-15 -3782 ($ (-1197) (-1288 (-326 (-576))))) (-15 -3782 ($ (-1197) (-1288 (-326 (-390))))) (-15 -3782 ($ (-1197) (-1288 (-326 (-171 (-390)))))) (-15 -3782 ($ (-1197) (-656 (-971 (-576))) (-326 (-576)))) (-15 -3782 ($ (-1197) (-656 (-971 (-576))) (-326 (-390)))) (-15 -3782 ($ (-1197) (-656 (-971 (-576))) (-326 (-171 (-390))))) (-15 -3599 ($ (-656 $))) (-15 -4168 ($)) (-15 -1392 ($)) (-15 -3808 ($ (-656 (-876)))) (-15 -2427 ($ (-1197) (-656 (-1197)))) (-15 -3947 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -4349 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1197)) (|:| |arrayIndex| (-656 (-971 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3004 (-876)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1197)) (|:| |rand| (-876)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1196)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3973 (-112)) (|:| -3106 (-2 (|:| |ints2Floats?| (-112)) (|:| -3004 (-876)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1179))) (|:| |callBranch| (-1179)) (|:| |forBranch| (-2 (|:| -2951 (-1113 (-971 (-576)))) (|:| |span| (-971 (-576))) (|:| -2641 $))) (|:| |labelBranch| (-1141)) (|:| |loopBranch| (-2 (|:| |switch| (-1196)) (|:| -2641 $))) (|:| |commonBranch| (-2 (|:| -2629 (-1197)) (|:| |contents| (-656 (-1197))))) (|:| |printBranch| (-656 (-876)))) $)) (-15 -1767 ((-1293) $)) (-15 -4415 ((-1125) $)) (-15 -1990 ((-1141) (-1141)))))) (T -340)) -((-1827 (*1 *1 *2 *1) (-12 (-5 *2 (-1113 (-971 (-576)))) (-5 *1 (-340)))) (-1827 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1113 (-971 (-576)))) (-5 *3 (-971 (-576))) (-5 *1 (-340)))) (-3036 (*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340)))) (-3729 (*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340)))) (-3566 (*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-340)))) (-1429 (*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-340)))) (-2389 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-340)))) (-2389 (*1 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-340)))) (-2482 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-340)))) (-3769 (*1 *1) (-5 *1 (-340))) (-3769 (*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-340)))) (-3769 (*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-340)))) (-3769 (*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-340)))) (-3769 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-340)))) (-3769 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-340)))) (-3769 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-2856 (*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340)))) (-2856 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1179)) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-713))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-711))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-706))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-713))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-711))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-706))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-713))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-711))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-706))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-713)))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-711)))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-706)))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-713)))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-711)))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-706)))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-326 (-713))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-326 (-711))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-326 (-706))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-576))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-390))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-576)))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-390)))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-171 (-390))))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-576)))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-390)))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-171 (-390))))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-326 (-576))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-326 (-390))) (-5 *1 (-340)))) (-3782 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-3599 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-340)))) (-4168 (*1 *1) (-5 *1 (-340))) (-1392 (*1 *1) (-5 *1 (-340))) (-3808 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-340)))) (-2427 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1197)) (-5 *1 (-340)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-340)))) (-4349 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1197)) (|:| |arrayIndex| (-656 (-971 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3004 (-876)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1197)) (|:| |rand| (-876)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1196)) (|:| |thenClause| (-340)) (|:| |elseClause| (-340)))) (|:| |returnBranch| (-2 (|:| -3973 (-112)) (|:| -3106 (-2 (|:| |ints2Floats?| (-112)) (|:| -3004 (-876)))))) (|:| |blockBranch| (-656 (-340))) (|:| |commentBranch| (-656 (-1179))) (|:| |callBranch| (-1179)) (|:| |forBranch| (-2 (|:| -2951 (-1113 (-971 (-576)))) (|:| |span| (-971 (-576))) (|:| -2641 (-340)))) (|:| |labelBranch| (-1141)) (|:| |loopBranch| (-2 (|:| |switch| (-1196)) (|:| -2641 (-340)))) (|:| |commonBranch| (-2 (|:| -2629 (-1197)) (|:| |contents| (-656 (-1197))))) (|:| |printBranch| (-656 (-876))))) (-5 *1 (-340)))) (-1767 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-340)))) (-4415 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-340)))) (-1990 (*1 *2 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-340))))) -(-13 (-1121) (-10 -8 (-15 -1827 ($ (-1113 (-971 (-576))) $)) (-15 -1827 ($ (-1113 (-971 (-576))) (-971 (-576)) $)) (-15 -3036 ($ (-1196) $)) (-15 -3729 ($ (-1196) $)) (-15 -3566 ($ (-1141))) (-15 -1429 ($ (-1141))) (-15 -2389 ($ (-1179))) (-15 -2389 ($ (-656 (-1179)))) (-15 -2482 ($ (-1179))) (-15 -3769 ($)) (-15 -3769 ($ (-326 (-711)))) (-15 -3769 ($ (-326 (-713)))) (-15 -3769 ($ (-326 (-706)))) (-15 -3769 ($ (-326 (-390)))) (-15 -3769 ($ (-326 (-576)))) (-15 -3769 ($ (-326 (-171 (-390))))) (-15 -2856 ($ (-1196) $)) (-15 -2856 ($ (-1196) $ $)) (-15 -3782 ($ (-1197) (-1179))) (-15 -3782 ($ (-1197) (-326 (-713)))) (-15 -3782 ($ (-1197) (-326 (-711)))) (-15 -3782 ($ (-1197) (-326 (-706)))) (-15 -3782 ($ (-1197) (-701 (-713)))) (-15 -3782 ($ (-1197) (-701 (-711)))) (-15 -3782 ($ (-1197) (-701 (-706)))) (-15 -3782 ($ (-1197) (-1288 (-713)))) (-15 -3782 ($ (-1197) (-1288 (-711)))) (-15 -3782 ($ (-1197) (-1288 (-706)))) (-15 -3782 ($ (-1197) (-701 (-326 (-713))))) (-15 -3782 ($ (-1197) (-701 (-326 (-711))))) (-15 -3782 ($ (-1197) (-701 (-326 (-706))))) (-15 -3782 ($ (-1197) (-1288 (-326 (-713))))) (-15 -3782 ($ (-1197) (-1288 (-326 (-711))))) (-15 -3782 ($ (-1197) (-1288 (-326 (-706))))) (-15 -3782 ($ (-1197) (-656 (-971 (-576))) (-326 (-713)))) (-15 -3782 ($ (-1197) (-656 (-971 (-576))) (-326 (-711)))) (-15 -3782 ($ (-1197) (-656 (-971 (-576))) (-326 (-706)))) (-15 -3782 ($ (-1197) (-326 (-576)))) (-15 -3782 ($ (-1197) (-326 (-390)))) (-15 -3782 ($ (-1197) (-326 (-171 (-390))))) (-15 -3782 ($ (-1197) (-701 (-326 (-576))))) (-15 -3782 ($ (-1197) (-701 (-326 (-390))))) (-15 -3782 ($ (-1197) (-701 (-326 (-171 (-390)))))) (-15 -3782 ($ (-1197) (-1288 (-326 (-576))))) (-15 -3782 ($ (-1197) (-1288 (-326 (-390))))) (-15 -3782 ($ (-1197) (-1288 (-326 (-171 (-390)))))) (-15 -3782 ($ (-1197) (-656 (-971 (-576))) (-326 (-576)))) (-15 -3782 ($ (-1197) (-656 (-971 (-576))) (-326 (-390)))) (-15 -3782 ($ (-1197) (-656 (-971 (-576))) (-326 (-171 (-390))))) (-15 -3599 ($ (-656 $))) (-15 -4168 ($)) (-15 -1392 ($)) (-15 -3808 ($ (-656 (-876)))) (-15 -2427 ($ (-1197) (-656 (-1197)))) (-15 -3947 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -4349 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1197)) (|:| |arrayIndex| (-656 (-971 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3004 (-876)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1197)) (|:| |rand| (-876)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1196)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3973 (-112)) (|:| -3106 (-2 (|:| |ints2Floats?| (-112)) (|:| -3004 (-876)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1179))) (|:| |callBranch| (-1179)) (|:| |forBranch| (-2 (|:| -2951 (-1113 (-971 (-576)))) (|:| |span| (-971 (-576))) (|:| -2641 $))) (|:| |labelBranch| (-1141)) (|:| |loopBranch| (-2 (|:| |switch| (-1196)) (|:| -2641 $))) (|:| |commonBranch| (-2 (|:| -2629 (-1197)) (|:| |contents| (-656 (-1197))))) (|:| |printBranch| (-656 (-876)))) $)) (-15 -1767 ((-1293) $)) (-15 -4415 ((-1125) $)) (-15 -1990 ((-1141) (-1141))))) -((-3489 (((-112) $ $) NIL)) (-3375 (((-112) $) 13)) (-3877 (($ |#1|) 10)) (-3125 (($ $ $) NIL)) (-3133 (($ $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3889 (($ |#1|) 12)) (-3570 (((-876) $) 19)) (-4055 (((-112) $ $) NIL)) (-1737 ((|#1| $) 14)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) 21))) -(((-341 |#1|) (-13 (-861) (-10 -8 (-15 -3877 ($ |#1|)) (-15 -3889 ($ |#1|)) (-15 -3375 ((-112) $)) (-15 -1737 (|#1| $)))) (-861)) (T -341)) -((-3877 (*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-861)))) (-3889 (*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-861)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3)) (-4 *3 (-861)))) (-1737 (*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-861))))) -(-13 (-861) (-10 -8 (-15 -3877 ($ |#1|)) (-15 -3889 ($ |#1|)) (-15 -3375 ((-112) $)) (-15 -1737 (|#1| $)))) -((-4151 (((-340) (-1197) (-971 (-576))) 23)) (-1658 (((-340) (-1197) (-971 (-576))) 27)) (-1537 (((-340) (-1197) (-1113 (-971 (-576))) (-1113 (-971 (-576)))) 26) (((-340) (-1197) (-971 (-576)) (-971 (-576))) 24)) (-3547 (((-340) (-1197) (-971 (-576))) 31))) -(((-342) (-10 -7 (-15 -4151 ((-340) (-1197) (-971 (-576)))) (-15 -1537 ((-340) (-1197) (-971 (-576)) (-971 (-576)))) (-15 -1537 ((-340) (-1197) (-1113 (-971 (-576))) (-1113 (-971 (-576))))) (-15 -1658 ((-340) (-1197) (-971 (-576)))) (-15 -3547 ((-340) (-1197) (-971 (-576)))))) (T -342)) -((-3547 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-1658 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-1537 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-1113 (-971 (-576)))) (-5 *2 (-340)) (-5 *1 (-342)))) (-1537 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-4151 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) (-5 *1 (-342))))) -(-10 -7 (-15 -4151 ((-340) (-1197) (-971 (-576)))) (-15 -1537 ((-340) (-1197) (-971 (-576)) (-971 (-576)))) (-15 -1537 ((-340) (-1197) (-1113 (-971 (-576))) (-1113 (-971 (-576))))) (-15 -1658 ((-340) (-1197) (-971 (-576)))) (-15 -3547 ((-340) (-1197) (-971 (-576))))) -((-3489 (((-112) $ $) NIL)) (-1728 (((-518) $) 20)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3172 (((-977 (-783)) $) 18)) (-3655 (((-256) $) 7)) (-3570 (((-876) $) 26)) (-1564 (((-977 (-185 (-140))) $) 16)) (-4055 (((-112) $ $) NIL)) (-2460 (((-656 (-887 (-1202) (-783))) $) 12)) (-2925 (((-112) $ $) 22))) -(((-343) (-13 (-1121) (-10 -8 (-15 -3655 ((-256) $)) (-15 -2460 ((-656 (-887 (-1202) (-783))) $)) (-15 -3172 ((-977 (-783)) $)) (-15 -1564 ((-977 (-185 (-140))) $)) (-15 -1728 ((-518) $))))) (T -343)) -((-3655 (*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-343)))) (-2460 (*1 *2 *1) (-12 (-5 *2 (-656 (-887 (-1202) (-783)))) (-5 *1 (-343)))) (-3172 (*1 *2 *1) (-12 (-5 *2 (-977 (-783))) (-5 *1 (-343)))) (-1564 (*1 *2 *1) (-12 (-5 *2 (-977 (-185 (-140)))) (-5 *1 (-343)))) (-1728 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-343))))) -(-13 (-1121) (-10 -8 (-15 -3655 ((-256) $)) (-15 -2460 ((-656 (-887 (-1202) (-783))) $)) (-15 -3172 ((-977 (-783)) $)) (-15 -1564 ((-977 (-185 (-140))) $)) (-15 -1728 ((-518) $)))) -((-4117 (((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)) 33))) -(((-344 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4117 ((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)))) (-374) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-374) (-1264 |#5|) (-1264 (-419 |#6|)) (-353 |#5| |#6| |#7|)) (T -344)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-347 *5 *6 *7 *8)) (-4 *5 (-374)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *9 (-374)) (-4 *10 (-1264 *9)) (-4 *11 (-1264 (-419 *10))) (-5 *2 (-347 *9 *10 *11 *12)) (-5 *1 (-344 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-353 *9 *10 *11))))) -(-10 -7 (-15 -4117 ((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)))) -((-4340 (((-112) $) 14))) -(((-345 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4340 ((-112) |#1|))) (-346 |#2| |#3| |#4| |#5|) (-374) (-1264 |#2|) (-1264 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -345)) -NIL -(-10 -8 (-15 -4340 ((-112) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-3686 (($ $) 29)) (-4340 (((-112) $) 28)) (-3699 (((-1179) $) 10)) (-4145 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 35)) (-1450 (((-1141) $) 11)) (-4129 (((-3 |#4| "failed") $) 27)) (-2043 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-576)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-1508 (((-2 (|:| -3099 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24))) +((-2675 (*1 *2) (-12 (-4 *3 (-374)) (-5 *2 (-1288 *1)) (-4 *1 (-339 *3)))) (-2675 (*1 *2 *3) (-12 (-5 *3 (-940)) (-4 *4 (-374)) (-5 *2 (-1288 *1)) (-4 *1 (-339 *4)))) (-4096 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1288 *3)))) (-4096 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-339 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)))) (-1819 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-374)) (-4 *1 (-339 *3)))) (-1989 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1193 *3)))) (-1346 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1193 *3)))) (-2135 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-940)))) (-2683 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-940)))) (-2738 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) (-2210 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) (-1989 (*1 *2 *1 *3) (-12 (-5 *3 (-940)) (-4 *4 (-379)) (-4 *4 (-374)) (-5 *2 (-1193 *1)) (-4 *1 (-339 *4)))) (-2738 (*1 *1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) (-2210 (*1 *1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) (-3931 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-3975 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-3381 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-112)))) (-4128 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-1999 (*1 *1 *1 *2) (-12 (-5 *2 (-1193 *3)) (-4 *3 (-379)) (-4 *1 (-339 *3)) (-4 *3 (-374)))) (-2997 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1193 *3)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1193 *3)))) (-3720 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1193 *3))))) +(-13 (-1307 |t#1|) (-1059 |t#1|) (-10 -8 (-15 -2675 ((-1288 $))) (-15 -2675 ((-1288 $) (-940))) (-15 -4096 ((-1288 |t#1|) $)) (-15 -4096 ((-701 |t#1|) (-1288 $))) (-15 -1819 ($ (-1288 |t#1|))) (-15 -1989 ((-1193 |t#1|) $)) (-15 -1346 ((-1193 |t#1|))) (-15 -2135 ((-940))) (-15 -2683 ((-940) $)) (-15 -2738 (|t#1| $)) (-15 -2210 (|t#1| $)) (IF (|has| |t#1| (-379)) (PROGN (-6 (-360)) (-15 -1989 ((-1193 $) $ (-940))) (-15 -2738 ($ $ (-940))) (-15 -2210 ($ $ (-940))) (-15 -3931 ($)) (-15 -3975 ($)) (-15 -3381 ((-112) $)) (-15 -4128 ($)) (-15 -1999 ($ $ (-1193 |t#1|))) (-15 -2997 ((-1193 |t#1|) $)) (-15 -3720 ((-1193 |t#1|) $)) (-15 -3720 ((-3 (-1193 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2759 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-234 $) |has| |#1| (-379)) ((-238) |has| |#1| (-379)) ((-237) |has| |#1| (-379)) ((-248) . T) ((-300) . T) ((-317) . T) ((-1307 |#1|) . T) ((-374) . T) ((-414) -2759 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-379) |has| |#1| (-379)) ((-360) |has| |#1| (-379)) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-939) . T) ((-1059 |#1|) . T) ((-1072 #0#) . T) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 |#1|) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) |has| |#1| (-379)) ((-1238) . T) ((-1242) . T) ((-1295 |#1|) . T)) +((-3488 (((-112) $ $) NIL)) (-2955 (($ (-1196) $) 100)) (-4168 (($) 89)) (-2189 (((-1141) (-1141)) 9)) (-1392 (($) 90)) (-1567 (($) 104) (($ (-326 (-711))) 112) (($ (-326 (-713))) 108) (($ (-326 (-706))) 116) (($ (-326 (-390))) 123) (($ (-326 (-576))) 119) (($ (-326 (-171 (-390)))) 127)) (-2370 (($ (-1196) $) 101)) (-1971 (($ (-656 (-876))) 91)) (-1912 (((-1293) $) 87)) (-3946 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1410 (($ (-1141)) 58)) (-1705 (((-1125) $) 30)) (-1327 (($ (-1113 (-971 (-576))) $) 97) (($ (-1113 (-971 (-576))) (-971 (-576)) $) 98)) (-1429 (($ (-1141)) 99)) (-2852 (($ (-1196) $) 129) (($ (-1196) $ $) 130)) (-2426 (($ (-1197) (-656 (-1197))) 88)) (-2389 (($ (-1179)) 94) (($ (-656 (-1179))) 92)) (-3569 (((-876) $) 132)) (-4350 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1197)) (|:| |arrayIndex| (-656 (-971 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3003 (-876)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1197)) (|:| |rand| (-876)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1196)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2940 (-112)) (|:| -3104 (-2 (|:| |ints2Floats?| (-112)) (|:| -3003 (-876)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1179))) (|:| |callBranch| (-1179)) (|:| |forBranch| (-2 (|:| -3417 (-1113 (-971 (-576)))) (|:| |span| (-971 (-576))) (|:| -2640 $))) (|:| |labelBranch| (-1141)) (|:| |loopBranch| (-2 (|:| |switch| (-1196)) (|:| -2640 $))) (|:| |commonBranch| (-2 (|:| -2628 (-1197)) (|:| |contents| (-656 (-1197))))) (|:| |printBranch| (-656 (-876)))) $) 50)) (-3388 (($ (-1179)) 202)) (-3622 (($ (-656 $)) 128)) (-2399 (((-112) $ $) NIL)) (-1703 (($ (-1197) (-1179)) 135) (($ (-1197) (-326 (-713))) 175) (($ (-1197) (-326 (-711))) 176) (($ (-1197) (-326 (-706))) 177) (($ (-1197) (-701 (-713))) 138) (($ (-1197) (-701 (-711))) 141) (($ (-1197) (-701 (-706))) 144) (($ (-1197) (-1288 (-713))) 147) (($ (-1197) (-1288 (-711))) 150) (($ (-1197) (-1288 (-706))) 153) (($ (-1197) (-701 (-326 (-713)))) 156) (($ (-1197) (-701 (-326 (-711)))) 159) (($ (-1197) (-701 (-326 (-706)))) 162) (($ (-1197) (-1288 (-326 (-713)))) 165) (($ (-1197) (-1288 (-326 (-711)))) 168) (($ (-1197) (-1288 (-326 (-706)))) 171) (($ (-1197) (-656 (-971 (-576))) (-326 (-713))) 172) (($ (-1197) (-656 (-971 (-576))) (-326 (-711))) 173) (($ (-1197) (-656 (-971 (-576))) (-326 (-706))) 174) (($ (-1197) (-326 (-576))) 199) (($ (-1197) (-326 (-390))) 200) (($ (-1197) (-326 (-171 (-390)))) 201) (($ (-1197) (-701 (-326 (-576)))) 180) (($ (-1197) (-701 (-326 (-390)))) 183) (($ (-1197) (-701 (-326 (-171 (-390))))) 186) (($ (-1197) (-1288 (-326 (-576)))) 189) (($ (-1197) (-1288 (-326 (-390)))) 192) (($ (-1197) (-1288 (-326 (-171 (-390))))) 195) (($ (-1197) (-656 (-971 (-576))) (-326 (-576))) 196) (($ (-1197) (-656 (-971 (-576))) (-326 (-390))) 197) (($ (-1197) (-656 (-971 (-576))) (-326 (-171 (-390)))) 198)) (-2924 (((-112) $ $) NIL))) +(((-340) (-13 (-1121) (-10 -8 (-15 -1327 ($ (-1113 (-971 (-576))) $)) (-15 -1327 ($ (-1113 (-971 (-576))) (-971 (-576)) $)) (-15 -2955 ($ (-1196) $)) (-15 -2370 ($ (-1196) $)) (-15 -1410 ($ (-1141))) (-15 -1429 ($ (-1141))) (-15 -2389 ($ (-1179))) (-15 -2389 ($ (-656 (-1179)))) (-15 -3388 ($ (-1179))) (-15 -1567 ($)) (-15 -1567 ($ (-326 (-711)))) (-15 -1567 ($ (-326 (-713)))) (-15 -1567 ($ (-326 (-706)))) (-15 -1567 ($ (-326 (-390)))) (-15 -1567 ($ (-326 (-576)))) (-15 -1567 ($ (-326 (-171 (-390))))) (-15 -2852 ($ (-1196) $)) (-15 -2852 ($ (-1196) $ $)) (-15 -1703 ($ (-1197) (-1179))) (-15 -1703 ($ (-1197) (-326 (-713)))) (-15 -1703 ($ (-1197) (-326 (-711)))) (-15 -1703 ($ (-1197) (-326 (-706)))) (-15 -1703 ($ (-1197) (-701 (-713)))) (-15 -1703 ($ (-1197) (-701 (-711)))) (-15 -1703 ($ (-1197) (-701 (-706)))) (-15 -1703 ($ (-1197) (-1288 (-713)))) (-15 -1703 ($ (-1197) (-1288 (-711)))) (-15 -1703 ($ (-1197) (-1288 (-706)))) (-15 -1703 ($ (-1197) (-701 (-326 (-713))))) (-15 -1703 ($ (-1197) (-701 (-326 (-711))))) (-15 -1703 ($ (-1197) (-701 (-326 (-706))))) (-15 -1703 ($ (-1197) (-1288 (-326 (-713))))) (-15 -1703 ($ (-1197) (-1288 (-326 (-711))))) (-15 -1703 ($ (-1197) (-1288 (-326 (-706))))) (-15 -1703 ($ (-1197) (-656 (-971 (-576))) (-326 (-713)))) (-15 -1703 ($ (-1197) (-656 (-971 (-576))) (-326 (-711)))) (-15 -1703 ($ (-1197) (-656 (-971 (-576))) (-326 (-706)))) (-15 -1703 ($ (-1197) (-326 (-576)))) (-15 -1703 ($ (-1197) (-326 (-390)))) (-15 -1703 ($ (-1197) (-326 (-171 (-390))))) (-15 -1703 ($ (-1197) (-701 (-326 (-576))))) (-15 -1703 ($ (-1197) (-701 (-326 (-390))))) (-15 -1703 ($ (-1197) (-701 (-326 (-171 (-390)))))) (-15 -1703 ($ (-1197) (-1288 (-326 (-576))))) (-15 -1703 ($ (-1197) (-1288 (-326 (-390))))) (-15 -1703 ($ (-1197) (-1288 (-326 (-171 (-390)))))) (-15 -1703 ($ (-1197) (-656 (-971 (-576))) (-326 (-576)))) (-15 -1703 ($ (-1197) (-656 (-971 (-576))) (-326 (-390)))) (-15 -1703 ($ (-1197) (-656 (-971 (-576))) (-326 (-171 (-390))))) (-15 -3622 ($ (-656 $))) (-15 -4168 ($)) (-15 -1392 ($)) (-15 -1971 ($ (-656 (-876)))) (-15 -2426 ($ (-1197) (-656 (-1197)))) (-15 -3946 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -4350 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1197)) (|:| |arrayIndex| (-656 (-971 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3003 (-876)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1197)) (|:| |rand| (-876)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1196)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2940 (-112)) (|:| -3104 (-2 (|:| |ints2Floats?| (-112)) (|:| -3003 (-876)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1179))) (|:| |callBranch| (-1179)) (|:| |forBranch| (-2 (|:| -3417 (-1113 (-971 (-576)))) (|:| |span| (-971 (-576))) (|:| -2640 $))) (|:| |labelBranch| (-1141)) (|:| |loopBranch| (-2 (|:| |switch| (-1196)) (|:| -2640 $))) (|:| |commonBranch| (-2 (|:| -2628 (-1197)) (|:| |contents| (-656 (-1197))))) (|:| |printBranch| (-656 (-876)))) $)) (-15 -1912 ((-1293) $)) (-15 -1705 ((-1125) $)) (-15 -2189 ((-1141) (-1141)))))) (T -340)) +((-1327 (*1 *1 *2 *1) (-12 (-5 *2 (-1113 (-971 (-576)))) (-5 *1 (-340)))) (-1327 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1113 (-971 (-576)))) (-5 *3 (-971 (-576))) (-5 *1 (-340)))) (-2955 (*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340)))) (-2370 (*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340)))) (-1410 (*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-340)))) (-1429 (*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-340)))) (-2389 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-340)))) (-2389 (*1 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-340)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-340)))) (-1567 (*1 *1) (-5 *1 (-340))) (-1567 (*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-340)))) (-1567 (*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-340)))) (-1567 (*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-340)))) (-1567 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-340)))) (-1567 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-340)))) (-1567 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-2852 (*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340)))) (-2852 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1179)) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-713))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-711))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-706))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-713))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-711))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-706))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-713))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-711))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-706))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-713)))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-711)))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-706)))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-713)))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-711)))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-706)))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-326 (-713))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-326 (-711))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-326 (-706))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-576))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-390))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-576)))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-390)))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-171 (-390))))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-576)))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-390)))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-171 (-390))))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-326 (-576))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-326 (-390))) (-5 *1 (-340)))) (-1703 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-3622 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-340)))) (-4168 (*1 *1) (-5 *1 (-340))) (-1392 (*1 *1) (-5 *1 (-340))) (-1971 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-340)))) (-2426 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1197)) (-5 *1 (-340)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-340)))) (-4350 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1197)) (|:| |arrayIndex| (-656 (-971 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3003 (-876)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1197)) (|:| |rand| (-876)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1196)) (|:| |thenClause| (-340)) (|:| |elseClause| (-340)))) (|:| |returnBranch| (-2 (|:| -2940 (-112)) (|:| -3104 (-2 (|:| |ints2Floats?| (-112)) (|:| -3003 (-876)))))) (|:| |blockBranch| (-656 (-340))) (|:| |commentBranch| (-656 (-1179))) (|:| |callBranch| (-1179)) (|:| |forBranch| (-2 (|:| -3417 (-1113 (-971 (-576)))) (|:| |span| (-971 (-576))) (|:| -2640 (-340)))) (|:| |labelBranch| (-1141)) (|:| |loopBranch| (-2 (|:| |switch| (-1196)) (|:| -2640 (-340)))) (|:| |commonBranch| (-2 (|:| -2628 (-1197)) (|:| |contents| (-656 (-1197))))) (|:| |printBranch| (-656 (-876))))) (-5 *1 (-340)))) (-1912 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-340)))) (-1705 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-340)))) (-2189 (*1 *2 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-340))))) +(-13 (-1121) (-10 -8 (-15 -1327 ($ (-1113 (-971 (-576))) $)) (-15 -1327 ($ (-1113 (-971 (-576))) (-971 (-576)) $)) (-15 -2955 ($ (-1196) $)) (-15 -2370 ($ (-1196) $)) (-15 -1410 ($ (-1141))) (-15 -1429 ($ (-1141))) (-15 -2389 ($ (-1179))) (-15 -2389 ($ (-656 (-1179)))) (-15 -3388 ($ (-1179))) (-15 -1567 ($)) (-15 -1567 ($ (-326 (-711)))) (-15 -1567 ($ (-326 (-713)))) (-15 -1567 ($ (-326 (-706)))) (-15 -1567 ($ (-326 (-390)))) (-15 -1567 ($ (-326 (-576)))) (-15 -1567 ($ (-326 (-171 (-390))))) (-15 -2852 ($ (-1196) $)) (-15 -2852 ($ (-1196) $ $)) (-15 -1703 ($ (-1197) (-1179))) (-15 -1703 ($ (-1197) (-326 (-713)))) (-15 -1703 ($ (-1197) (-326 (-711)))) (-15 -1703 ($ (-1197) (-326 (-706)))) (-15 -1703 ($ (-1197) (-701 (-713)))) (-15 -1703 ($ (-1197) (-701 (-711)))) (-15 -1703 ($ (-1197) (-701 (-706)))) (-15 -1703 ($ (-1197) (-1288 (-713)))) (-15 -1703 ($ (-1197) (-1288 (-711)))) (-15 -1703 ($ (-1197) (-1288 (-706)))) (-15 -1703 ($ (-1197) (-701 (-326 (-713))))) (-15 -1703 ($ (-1197) (-701 (-326 (-711))))) (-15 -1703 ($ (-1197) (-701 (-326 (-706))))) (-15 -1703 ($ (-1197) (-1288 (-326 (-713))))) (-15 -1703 ($ (-1197) (-1288 (-326 (-711))))) (-15 -1703 ($ (-1197) (-1288 (-326 (-706))))) (-15 -1703 ($ (-1197) (-656 (-971 (-576))) (-326 (-713)))) (-15 -1703 ($ (-1197) (-656 (-971 (-576))) (-326 (-711)))) (-15 -1703 ($ (-1197) (-656 (-971 (-576))) (-326 (-706)))) (-15 -1703 ($ (-1197) (-326 (-576)))) (-15 -1703 ($ (-1197) (-326 (-390)))) (-15 -1703 ($ (-1197) (-326 (-171 (-390))))) (-15 -1703 ($ (-1197) (-701 (-326 (-576))))) (-15 -1703 ($ (-1197) (-701 (-326 (-390))))) (-15 -1703 ($ (-1197) (-701 (-326 (-171 (-390)))))) (-15 -1703 ($ (-1197) (-1288 (-326 (-576))))) (-15 -1703 ($ (-1197) (-1288 (-326 (-390))))) (-15 -1703 ($ (-1197) (-1288 (-326 (-171 (-390)))))) (-15 -1703 ($ (-1197) (-656 (-971 (-576))) (-326 (-576)))) (-15 -1703 ($ (-1197) (-656 (-971 (-576))) (-326 (-390)))) (-15 -1703 ($ (-1197) (-656 (-971 (-576))) (-326 (-171 (-390))))) (-15 -3622 ($ (-656 $))) (-15 -4168 ($)) (-15 -1392 ($)) (-15 -1971 ($ (-656 (-876)))) (-15 -2426 ($ (-1197) (-656 (-1197)))) (-15 -3946 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -4350 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1197)) (|:| |arrayIndex| (-656 (-971 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3003 (-876)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1197)) (|:| |rand| (-876)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1196)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2940 (-112)) (|:| -3104 (-2 (|:| |ints2Floats?| (-112)) (|:| -3003 (-876)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1179))) (|:| |callBranch| (-1179)) (|:| |forBranch| (-2 (|:| -3417 (-1113 (-971 (-576)))) (|:| |span| (-971 (-576))) (|:| -2640 $))) (|:| |labelBranch| (-1141)) (|:| |loopBranch| (-2 (|:| |switch| (-1196)) (|:| -2640 $))) (|:| |commonBranch| (-2 (|:| -2628 (-1197)) (|:| |contents| (-656 (-1197))))) (|:| |printBranch| (-656 (-876)))) $)) (-15 -1912 ((-1293) $)) (-15 -1705 ((-1125) $)) (-15 -2189 ((-1141) (-1141))))) +((-3488 (((-112) $ $) NIL)) (-2007 (((-112) $) 13)) (-3876 (($ |#1|) 10)) (-3124 (($ $ $) NIL)) (-1441 (($ $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3888 (($ |#1|) 12)) (-3569 (((-876) $) 19)) (-2399 (((-112) $ $) NIL)) (-1631 ((|#1| $) 14)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) 21))) +(((-341 |#1|) (-13 (-861) (-10 -8 (-15 -3876 ($ |#1|)) (-15 -3888 ($ |#1|)) (-15 -2007 ((-112) $)) (-15 -1631 (|#1| $)))) (-861)) (T -341)) +((-3876 (*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-861)))) (-3888 (*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-861)))) (-2007 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3)) (-4 *3 (-861)))) (-1631 (*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-861))))) +(-13 (-861) (-10 -8 (-15 -3876 ($ |#1|)) (-15 -3888 ($ |#1|)) (-15 -2007 ((-112) $)) (-15 -1631 (|#1| $)))) +((-4087 (((-340) (-1197) (-971 (-576))) 23)) (-2057 (((-340) (-1197) (-971 (-576))) 27)) (-3391 (((-340) (-1197) (-1113 (-971 (-576))) (-1113 (-971 (-576)))) 26) (((-340) (-1197) (-971 (-576)) (-971 (-576))) 24)) (-4360 (((-340) (-1197) (-971 (-576))) 31))) +(((-342) (-10 -7 (-15 -4087 ((-340) (-1197) (-971 (-576)))) (-15 -3391 ((-340) (-1197) (-971 (-576)) (-971 (-576)))) (-15 -3391 ((-340) (-1197) (-1113 (-971 (-576))) (-1113 (-971 (-576))))) (-15 -2057 ((-340) (-1197) (-971 (-576)))) (-15 -4360 ((-340) (-1197) (-971 (-576)))))) (T -342)) +((-4360 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-2057 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-3391 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-1113 (-971 (-576)))) (-5 *2 (-340)) (-5 *1 (-342)))) (-3391 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) (-5 *1 (-342))))) +(-10 -7 (-15 -4087 ((-340) (-1197) (-971 (-576)))) (-15 -3391 ((-340) (-1197) (-971 (-576)) (-971 (-576)))) (-15 -3391 ((-340) (-1197) (-1113 (-971 (-576))) (-1113 (-971 (-576))))) (-15 -2057 ((-340) (-1197) (-971 (-576)))) (-15 -4360 ((-340) (-1197) (-971 (-576))))) +((-3488 (((-112) $ $) NIL)) (-1540 (((-518) $) 20)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1780 (((-977 (-783)) $) 18)) (-2891 (((-256) $) 7)) (-3569 (((-876) $) 26)) (-1564 (((-977 (-185 (-140))) $) 16)) (-2399 (((-112) $ $) NIL)) (-4399 (((-656 (-887 (-1202) (-783))) $) 12)) (-2924 (((-112) $ $) 22))) +(((-343) (-13 (-1121) (-10 -8 (-15 -2891 ((-256) $)) (-15 -4399 ((-656 (-887 (-1202) (-783))) $)) (-15 -1780 ((-977 (-783)) $)) (-15 -1564 ((-977 (-185 (-140))) $)) (-15 -1540 ((-518) $))))) (T -343)) +((-2891 (*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-343)))) (-4399 (*1 *2 *1) (-12 (-5 *2 (-656 (-887 (-1202) (-783)))) (-5 *1 (-343)))) (-1780 (*1 *2 *1) (-12 (-5 *2 (-977 (-783))) (-5 *1 (-343)))) (-1564 (*1 *2 *1) (-12 (-5 *2 (-977 (-185 (-140)))) (-5 *1 (-343)))) (-1540 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-343))))) +(-13 (-1121) (-10 -8 (-15 -2891 ((-256) $)) (-15 -4399 ((-656 (-887 (-1202) (-783))) $)) (-15 -1780 ((-977 (-783)) $)) (-15 -1564 ((-977 (-185 (-140))) $)) (-15 -1540 ((-518) $)))) +((-4116 (((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)) 33))) +(((-344 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4116 ((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)))) (-374) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-374) (-1264 |#5|) (-1264 (-419 |#6|)) (-353 |#5| |#6| |#7|)) (T -344)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-347 *5 *6 *7 *8)) (-4 *5 (-374)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *9 (-374)) (-4 *10 (-1264 *9)) (-4 *11 (-1264 (-419 *10))) (-5 *2 (-347 *9 *10 *11 *12)) (-5 *1 (-344 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-353 *9 *10 *11))))) +(-10 -7 (-15 -4116 ((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)))) +((-2158 (((-112) $) 14))) +(((-345 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2158 ((-112) |#1|))) (-346 |#2| |#3| |#4| |#5|) (-374) (-1264 |#2|) (-1264 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -345)) +NIL +(-10 -8 (-15 -2158 ((-112) |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-3685 (($ $) 29)) (-2158 (((-112) $) 28)) (-2046 (((-1179) $) 10)) (-2041 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 35)) (-1450 (((-1141) $) 11)) (-4128 (((-3 |#4| "failed") $) 27)) (-1476 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-576)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-4323 (((-2 (|:| -3099 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24))) (((-346 |#1| |#2| |#3| |#4|) (-141) (-374) (-1264 |t#1|) (-1264 (-419 |t#2|)) (-353 |t#1| |t#2| |t#3|)) (T -346)) -((-4145 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-425 *4 (-419 *4) *5 *6)))) (-2043 (*1 *1 *2) (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-4 *3 (-374)) (-4 *1 (-346 *3 *4 *5 *6)))) (-2043 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *1 (-346 *3 *4 *5 *2)) (-4 *2 (-353 *3 *4 *5)))) (-2043 (*1 *1 *2 *2) (-12 (-4 *2 (-374)) (-4 *3 (-1264 *2)) (-4 *4 (-1264 (-419 *3))) (-4 *1 (-346 *2 *3 *4 *5)) (-4 *5 (-353 *2 *3 *4)))) (-2043 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-576)) (-4 *2 (-374)) (-4 *4 (-1264 *2)) (-4 *5 (-1264 (-419 *4))) (-4 *1 (-346 *2 *4 *5 *6)) (-4 *6 (-353 *2 *4 *5)))) (-1508 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-2 (|:| -3099 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) (-3686 (*1 *1 *1) (-12 (-4 *1 (-346 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *3 (-1264 *2)) (-4 *4 (-1264 (-419 *3))) (-4 *5 (-353 *2 *3 *4)))) (-4340 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-112)))) (-4129 (*1 *2 *1) (|partial| -12 (-4 *1 (-346 *3 *4 *5 *2)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *2 (-353 *3 *4 *5)))) (-2043 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-374)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) (-4 *1 (-346 *4 *3 *5 *2)) (-4 *2 (-353 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -4145 ((-425 |t#2| (-419 |t#2|) |t#3| |t#4|) $)) (-15 -2043 ($ (-425 |t#2| (-419 |t#2|) |t#3| |t#4|))) (-15 -2043 ($ |t#4|)) (-15 -2043 ($ |t#1| |t#1|)) (-15 -2043 ($ |t#1| |t#1| (-576))) (-15 -1508 ((-2 (|:| -3099 (-425 |t#2| (-419 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3686 ($ $)) (-15 -4340 ((-112) $)) (-15 -4129 ((-3 |t#4| "failed") $)) (-15 -2043 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +((-2041 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-425 *4 (-419 *4) *5 *6)))) (-1476 (*1 *1 *2) (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-4 *3 (-374)) (-4 *1 (-346 *3 *4 *5 *6)))) (-1476 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *1 (-346 *3 *4 *5 *2)) (-4 *2 (-353 *3 *4 *5)))) (-1476 (*1 *1 *2 *2) (-12 (-4 *2 (-374)) (-4 *3 (-1264 *2)) (-4 *4 (-1264 (-419 *3))) (-4 *1 (-346 *2 *3 *4 *5)) (-4 *5 (-353 *2 *3 *4)))) (-1476 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-576)) (-4 *2 (-374)) (-4 *4 (-1264 *2)) (-4 *5 (-1264 (-419 *4))) (-4 *1 (-346 *2 *4 *5 *6)) (-4 *6 (-353 *2 *4 *5)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-2 (|:| -3099 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) (-3685 (*1 *1 *1) (-12 (-4 *1 (-346 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *3 (-1264 *2)) (-4 *4 (-1264 (-419 *3))) (-4 *5 (-353 *2 *3 *4)))) (-2158 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-112)))) (-4128 (*1 *2 *1) (|partial| -12 (-4 *1 (-346 *3 *4 *5 *2)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *2 (-353 *3 *4 *5)))) (-1476 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-374)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) (-4 *1 (-346 *4 *3 *5 *2)) (-4 *2 (-353 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -2041 ((-425 |t#2| (-419 |t#2|) |t#3| |t#4|) $)) (-15 -1476 ($ (-425 |t#2| (-419 |t#2|) |t#3| |t#4|))) (-15 -1476 ($ |t#4|)) (-15 -1476 ($ |t#1| |t#1|)) (-15 -1476 ($ |t#1| |t#1| (-576))) (-15 -4323 ((-2 (|:| -3099 (-425 |t#2| (-419 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3685 ($ $)) (-15 -2158 ((-112) $)) (-15 -4128 ((-3 |t#4| "failed") $)) (-15 -1476 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-3686 (($ $) 33)) (-4340 (((-112) $) NIL)) (-3699 (((-1179) $) NIL)) (-1478 (((-1288 |#4|) $) 134)) (-4145 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 31)) (-1450 (((-1141) $) NIL)) (-4129 (((-3 |#4| "failed") $) 36)) (-4188 (((-1288 |#4|) $) 126)) (-2043 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-576)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-1508 (((-2 (|:| -3099 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3570 (((-876) $) 17)) (-4055 (((-112) $ $) NIL)) (-2721 (($) 14 T CONST)) (-2925 (((-112) $ $) 20)) (-3044 (($ $) 27) (($ $ $) NIL)) (-3030 (($ $ $) 25)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 23))) -(((-347 |#1| |#2| |#3| |#4|) (-13 (-346 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4188 ((-1288 |#4|) $)) (-15 -1478 ((-1288 |#4|) $)))) (-374) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -347)) -((-4188 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-1288 *6)) (-5 *1 (-347 *3 *4 *5 *6)) (-4 *6 (-353 *3 *4 *5)))) (-1478 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-1288 *6)) (-5 *1 (-347 *3 *4 *5 *6)) (-4 *6 (-353 *3 *4 *5))))) -(-13 (-346 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4188 ((-1288 |#4|) $)) (-15 -1478 ((-1288 |#4|) $)))) -((-3284 (($ $ (-1197) |#2|) NIL) (($ $ (-656 (-1197)) (-656 |#2|)) 20) (($ $ (-656 (-304 |#2|))) 15) (($ $ (-304 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-656 |#2|) (-656 |#2|)) NIL)) (-2797 (($ $ |#2|) 11))) -(((-348 |#1| |#2|) (-10 -8 (-15 -2797 (|#1| |#1| |#2|)) (-15 -3284 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -3284 (|#1| |#1| |#2| |#2|)) (-15 -3284 (|#1| |#1| (-304 |#2|))) (-15 -3284 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3284 (|#1| |#1| (-656 (-1197)) (-656 |#2|))) (-15 -3284 (|#1| |#1| (-1197) |#2|))) (-349 |#2|) (-1121)) (T -348)) -NIL -(-10 -8 (-15 -2797 (|#1| |#1| |#2|)) (-15 -3284 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -3284 (|#1| |#1| |#2| |#2|)) (-15 -3284 (|#1| |#1| (-304 |#2|))) (-15 -3284 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3284 (|#1| |#1| (-656 (-1197)) (-656 |#2|))) (-15 -3284 (|#1| |#1| (-1197) |#2|))) -((-4117 (($ (-1 |#1| |#1|) $) 6)) (-3284 (($ $ (-1197) |#1|) 17 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 16 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-656 (-304 |#1|))) 15 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 14 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-319 |#1|))) (($ $ (-656 |#1|) (-656 |#1|)) 12 (|has| |#1| (-319 |#1|)))) (-2797 (($ $ |#1|) 11 (|has| |#1| (-296 |#1| |#1|))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-3685 (($ $) 33)) (-2158 (((-112) $) NIL)) (-2046 (((-1179) $) NIL)) (-4030 (((-1288 |#4|) $) 134)) (-2041 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 31)) (-1450 (((-1141) $) NIL)) (-4128 (((-3 |#4| "failed") $) 36)) (-4420 (((-1288 |#4|) $) 126)) (-1476 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-576)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-4323 (((-2 (|:| -3099 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3569 (((-876) $) 17)) (-2399 (((-112) $ $) NIL)) (-2721 (($) 14 T CONST)) (-2924 (((-112) $ $) 20)) (-3043 (($ $) 27) (($ $ $) NIL)) (-3029 (($ $ $) 25)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 23))) +(((-347 |#1| |#2| |#3| |#4|) (-13 (-346 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4420 ((-1288 |#4|) $)) (-15 -4030 ((-1288 |#4|) $)))) (-374) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -347)) +((-4420 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-1288 *6)) (-5 *1 (-347 *3 *4 *5 *6)) (-4 *6 (-353 *3 *4 *5)))) (-4030 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-1288 *6)) (-5 *1 (-347 *3 *4 *5 *6)) (-4 *6 (-353 *3 *4 *5))))) +(-13 (-346 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4420 ((-1288 |#4|) $)) (-15 -4030 ((-1288 |#4|) $)))) +((-3282 (($ $ (-1197) |#2|) NIL) (($ $ (-656 (-1197)) (-656 |#2|)) 20) (($ $ (-656 (-304 |#2|))) 15) (($ $ (-304 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-656 |#2|) (-656 |#2|)) NIL)) (-2796 (($ $ |#2|) 11))) +(((-348 |#1| |#2|) (-10 -8 (-15 -2796 (|#1| |#1| |#2|)) (-15 -3282 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -3282 (|#1| |#1| |#2| |#2|)) (-15 -3282 (|#1| |#1| (-304 |#2|))) (-15 -3282 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3282 (|#1| |#1| (-656 (-1197)) (-656 |#2|))) (-15 -3282 (|#1| |#1| (-1197) |#2|))) (-349 |#2|) (-1121)) (T -348)) +NIL +(-10 -8 (-15 -2796 (|#1| |#1| |#2|)) (-15 -3282 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -3282 (|#1| |#1| |#2| |#2|)) (-15 -3282 (|#1| |#1| (-304 |#2|))) (-15 -3282 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3282 (|#1| |#1| (-656 (-1197)) (-656 |#2|))) (-15 -3282 (|#1| |#1| (-1197) |#2|))) +((-4116 (($ (-1 |#1| |#1|) $) 6)) (-3282 (($ $ (-1197) |#1|) 17 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 16 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-656 (-304 |#1|))) 15 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 14 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-319 |#1|))) (($ $ (-656 |#1|) (-656 |#1|)) 12 (|has| |#1| (-319 |#1|)))) (-2796 (($ $ |#1|) 11 (|has| |#1| (-296 |#1| |#1|))))) (((-349 |#1|) (-141) (-1121)) (T -349)) -((-4117 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1121))))) -(-13 (-10 -8 (-15 -4117 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-296 |t#1| |t#1|)) (-6 (-296 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-319 |t#1|)) (-6 (-319 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-526 (-1197) |t#1|)) (-6 (-526 (-1197) |t#1|)) |%noBranch|))) +((-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1121))))) +(-13 (-10 -8 (-15 -4116 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-296 |t#1| |t#1|)) (-6 (-296 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-319 |t#1|)) (-6 (-319 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-526 (-1197) |t#1|)) (-6 (-526 (-1197) |t#1|)) |%noBranch|))) (((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-526 (-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-1238) |has| |#1| (-296 |#1| |#1|))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-1969 (((-656 (-1197)) $) NIL)) (-3301 (((-112)) 96) (((-112) (-112)) 97)) (-3988 (((-656 (-624 $)) $) NIL)) (-4025 (($ $) NIL)) (-3901 (($ $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3428 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-1839 (($ $) NIL)) (-4006 (($ $) NIL)) (-3877 (($ $) NIL)) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-624 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-326 |#3|)) 76) (((-3 $ "failed") (-1197)) 103) (((-3 $ "failed") (-326 (-576))) 64 (|has| |#3| (-1059 (-576)))) (((-3 $ "failed") (-419 (-971 (-576)))) 70 (|has| |#3| (-1059 (-576)))) (((-3 $ "failed") (-971 (-576))) 65 (|has| |#3| (-1059 (-576)))) (((-3 $ "failed") (-326 (-390))) 94 (|has| |#3| (-1059 (-390)))) (((-3 $ "failed") (-419 (-971 (-390)))) 88 (|has| |#3| (-1059 (-390)))) (((-3 $ "failed") (-971 (-390))) 83 (|has| |#3| (-1059 (-390))))) (-2860 (((-624 $) $) NIL) ((|#3| $) NIL) (($ (-326 |#3|)) 77) (($ (-1197)) 104) (($ (-326 (-576))) 66 (|has| |#3| (-1059 (-576)))) (($ (-419 (-971 (-576)))) 71 (|has| |#3| (-1059 (-576)))) (($ (-971 (-576))) 67 (|has| |#3| (-1059 (-576)))) (($ (-326 (-390))) 95 (|has| |#3| (-1059 (-390)))) (($ (-419 (-971 (-390)))) 89 (|has| |#3| (-1059 (-390)))) (($ (-971 (-390))) 85 (|has| |#3| (-1059 (-390))))) (-1561 (((-3 $ "failed") $) NIL)) (-1600 (($) 101)) (-2236 (($ $) NIL) (($ (-656 $)) NIL)) (-3545 (((-656 (-115)) $) NIL)) (-1777 (((-115) (-115)) NIL)) (-4193 (((-112) $) NIL)) (-2946 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-3971 (((-1193 $) (-624 $)) NIL (|has| $ (-1070)))) (-4117 (($ (-1 $ $) (-624 $)) NIL)) (-2608 (((-3 (-624 $) "failed") $) NIL)) (-2330 (($ $) 99)) (-3745 (($ $) NIL)) (-3699 (((-1179) $) NIL)) (-1763 (((-656 (-624 $)) $) NIL)) (-1640 (($ (-115) $) 98) (($ (-115) (-656 $)) NIL)) (-1322 (((-112) $ (-115)) NIL) (((-112) $ (-1197)) NIL)) (-2327 (((-783) $) NIL)) (-1450 (((-1141) $) NIL)) (-1726 (((-112) $ $) NIL) (((-112) $ (-1197)) NIL)) (-4104 (($ $) NIL)) (-3644 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-3284 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1197) (-1 $ (-656 $))) NIL) (($ $ (-1197) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2797 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-3496 (($ $) NIL) (($ $ $) NIL)) (-2775 (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-3867 (($ $) NIL (|has| $ (-1070)))) (-4014 (($ $) NIL)) (-3889 (($ $) NIL)) (-3570 (((-876) $) NIL) (($ (-624 $)) NIL) (($ |#3|) NIL) (($ (-576)) NIL) (((-326 |#3|) $) 102)) (-3996 (((-783)) NIL T CONST)) (-3681 (($ $) NIL) (($ (-656 $)) NIL)) (-2468 (((-112) (-115)) NIL)) (-4055 (((-112) $ $) NIL)) (-3961 (($ $) NIL)) (-3938 (($ $) NIL)) (-3951 (($ $) NIL)) (-2122 (($ $) NIL)) (-2721 (($) 100 T CONST)) (-2732 (($) NIL T CONST)) (-2020 (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-2925 (((-112) $ $) NIL)) (-3044 (($ $ $) NIL) (($ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-940)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-940) $) NIL))) -(((-350 |#1| |#2| |#3|) (-13 (-312) (-38 |#3|) (-1059 |#3|) (-917 (-1197)) (-10 -8 (-15 -2860 ($ (-326 |#3|))) (-15 -1572 ((-3 $ "failed") (-326 |#3|))) (-15 -2860 ($ (-1197))) (-15 -1572 ((-3 $ "failed") (-1197))) (-15 -3570 ((-326 |#3|) $)) (IF (|has| |#3| (-1059 (-576))) (PROGN (-15 -2860 ($ (-326 (-576)))) (-15 -1572 ((-3 $ "failed") (-326 (-576)))) (-15 -2860 ($ (-419 (-971 (-576))))) (-15 -1572 ((-3 $ "failed") (-419 (-971 (-576))))) (-15 -2860 ($ (-971 (-576)))) (-15 -1572 ((-3 $ "failed") (-971 (-576))))) |%noBranch|) (IF (|has| |#3| (-1059 (-390))) (PROGN (-15 -2860 ($ (-326 (-390)))) (-15 -1572 ((-3 $ "failed") (-326 (-390)))) (-15 -2860 ($ (-419 (-971 (-390))))) (-15 -1572 ((-3 $ "failed") (-419 (-971 (-390))))) (-15 -2860 ($ (-971 (-390)))) (-15 -1572 ((-3 $ "failed") (-971 (-390))))) |%noBranch|) (-15 -2122 ($ $)) (-15 -1839 ($ $)) (-15 -4104 ($ $)) (-15 -3745 ($ $)) (-15 -2330 ($ $)) (-15 -3877 ($ $)) (-15 -3889 ($ $)) (-15 -3901 ($ $)) (-15 -3938 ($ $)) (-15 -3951 ($ $)) (-15 -3961 ($ $)) (-15 -4006 ($ $)) (-15 -4014 ($ $)) (-15 -4025 ($ $)) (-15 -1600 ($)) (-15 -1969 ((-656 (-1197)) $)) (-15 -3301 ((-112))) (-15 -3301 ((-112) (-112))))) (-656 (-1197)) (-656 (-1197)) (-399)) (T -350)) -((-2860 (*1 *1 *2) (-12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-1197)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-326 *5)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-419 (-971 (-576)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-971 (-576)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-971 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-971 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-419 (-971 (-390)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-971 (-390)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-971 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-971 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2122 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-1839 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-4104 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3745 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-2330 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3877 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3889 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3901 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3938 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3951 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3961 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-4006 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-4014 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-4025 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-1600 (*1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-1969 (*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-350 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-399)))) (-3301 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-3301 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399))))) -(-13 (-312) (-38 |#3|) (-1059 |#3|) (-917 (-1197)) (-10 -8 (-15 -2860 ($ (-326 |#3|))) (-15 -1572 ((-3 $ "failed") (-326 |#3|))) (-15 -2860 ($ (-1197))) (-15 -1572 ((-3 $ "failed") (-1197))) (-15 -3570 ((-326 |#3|) $)) (IF (|has| |#3| (-1059 (-576))) (PROGN (-15 -2860 ($ (-326 (-576)))) (-15 -1572 ((-3 $ "failed") (-326 (-576)))) (-15 -2860 ($ (-419 (-971 (-576))))) (-15 -1572 ((-3 $ "failed") (-419 (-971 (-576))))) (-15 -2860 ($ (-971 (-576)))) (-15 -1572 ((-3 $ "failed") (-971 (-576))))) |%noBranch|) (IF (|has| |#3| (-1059 (-390))) (PROGN (-15 -2860 ($ (-326 (-390)))) (-15 -1572 ((-3 $ "failed") (-326 (-390)))) (-15 -2860 ($ (-419 (-971 (-390))))) (-15 -1572 ((-3 $ "failed") (-419 (-971 (-390))))) (-15 -2860 ($ (-971 (-390)))) (-15 -1572 ((-3 $ "failed") (-971 (-390))))) |%noBranch|) (-15 -2122 ($ $)) (-15 -1839 ($ $)) (-15 -4104 ($ $)) (-15 -3745 ($ $)) (-15 -2330 ($ $)) (-15 -3877 ($ $)) (-15 -3889 ($ $)) (-15 -3901 ($ $)) (-15 -3938 ($ $)) (-15 -3951 ($ $)) (-15 -3961 ($ $)) (-15 -4006 ($ $)) (-15 -4014 ($ $)) (-15 -4025 ($ $)) (-15 -1600 ($)) (-15 -1969 ((-656 (-1197)) $)) (-15 -3301 ((-112))) (-15 -3301 ((-112) (-112))))) -((-4117 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-351 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4117 (|#8| (-1 |#5| |#1|) |#4|))) (-1242) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-1242) (-1264 |#5|) (-1264 (-419 |#6|)) (-353 |#5| |#6| |#7|)) (T -351)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1242)) (-4 *8 (-1242)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *9 (-1264 *8)) (-4 *2 (-353 *8 *9 *10)) (-5 *1 (-351 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-353 *5 *6 *7)) (-4 *10 (-1264 (-419 *9)))))) -(-10 -7 (-15 -4117 (|#8| (-1 |#5| |#1|) |#4|))) -((-2306 (((-2 (|:| |num| (-1288 |#3|)) (|:| |den| |#3|)) $) 39)) (-4119 (($ (-1288 (-419 |#3|)) (-1288 $)) NIL) (($ (-1288 (-419 |#3|))) NIL) (($ (-1288 |#3|) |#3|) 173)) (-2624 (((-1288 $) (-1288 $)) 156)) (-3670 (((-656 (-656 |#2|))) 126)) (-4180 (((-112) |#2| |#2|) 76)) (-3767 (($ $) 148)) (-3247 (((-783)) 172)) (-1409 (((-1288 $) (-1288 $)) 218)) (-3613 (((-656 (-971 |#2|)) (-1197)) 115)) (-1352 (((-112) $) 169)) (-1569 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 222)) (-2451 (((-3 |#3| "failed")) 52)) (-3884 (((-783)) 184)) (-2797 ((|#2| $ |#2| |#2|) 140)) (-3334 (((-3 |#3| "failed")) 71)) (-2775 (($ $ (-1 (-419 |#3|) (-419 |#3|))) NIL) (($ $ (-1 (-419 |#3|) (-419 |#3|)) (-783)) NIL) (($ $ (-1 |#3| |#3|)) 226) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-2329 (((-1288 $) (-1288 $)) 162)) (-3753 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-2826 (((-112)) 34))) -(((-352 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2775 (|#1| |#1|)) (-15 -2775 (|#1| |#1| (-783))) (-15 -2775 (|#1| |#1| (-1197))) (-15 -2775 (|#1| |#1| (-656 (-1197)))) (-15 -2775 (|#1| |#1| (-1197) (-783))) (-15 -2775 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -3670 ((-656 (-656 |#2|)))) (-15 -3613 ((-656 (-971 |#2|)) (-1197))) (-15 -3753 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2451 ((-3 |#3| "failed"))) (-15 -3334 ((-3 |#3| "failed"))) (-15 -2797 (|#2| |#1| |#2| |#2|)) (-15 -3767 (|#1| |#1|)) (-15 -2775 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1569 ((-112) |#1| |#3|)) (-15 -1569 ((-112) |#1| |#2|)) (-15 -4119 (|#1| (-1288 |#3|) |#3|)) (-15 -2306 ((-2 (|:| |num| (-1288 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2624 ((-1288 |#1|) (-1288 |#1|))) (-15 -1409 ((-1288 |#1|) (-1288 |#1|))) (-15 -2329 ((-1288 |#1|) (-1288 |#1|))) (-15 -1569 ((-112) |#1|)) (-15 -1352 ((-112) |#1|)) (-15 -4180 ((-112) |#2| |#2|)) (-15 -2826 ((-112))) (-15 -3884 ((-783))) (-15 -3247 ((-783))) (-15 -2775 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-783))) (-15 -2775 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -4119 (|#1| (-1288 (-419 |#3|)))) (-15 -4119 (|#1| (-1288 (-419 |#3|)) (-1288 |#1|)))) (-353 |#2| |#3| |#4|) (-1242) (-1264 |#2|) (-1264 (-419 |#3|))) (T -352)) -((-3247 (*1 *2) (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-3884 (*1 *2) (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-2826 (*1 *2) (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-4180 (*1 *2 *3 *3) (-12 (-4 *3 (-1242)) (-4 *5 (-1264 *3)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-112)) (-5 *1 (-352 *4 *3 *5 *6)) (-4 *4 (-353 *3 *5 *6)))) (-3334 (*1 *2) (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1264 (-419 *2))) (-4 *2 (-1264 *4)) (-5 *1 (-352 *3 *4 *2 *5)) (-4 *3 (-353 *4 *2 *5)))) (-2451 (*1 *2) (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1264 (-419 *2))) (-4 *2 (-1264 *4)) (-5 *1 (-352 *3 *4 *2 *5)) (-4 *3 (-353 *4 *2 *5)))) (-3613 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *5 (-1242)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-5 *2 (-656 (-971 *5))) (-5 *1 (-352 *4 *5 *6 *7)) (-4 *4 (-353 *5 *6 *7)))) (-3670 (*1 *2) (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-656 (-656 *4))) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6))))) -(-10 -8 (-15 -2775 (|#1| |#1|)) (-15 -2775 (|#1| |#1| (-783))) (-15 -2775 (|#1| |#1| (-1197))) (-15 -2775 (|#1| |#1| (-656 (-1197)))) (-15 -2775 (|#1| |#1| (-1197) (-783))) (-15 -2775 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -3670 ((-656 (-656 |#2|)))) (-15 -3613 ((-656 (-971 |#2|)) (-1197))) (-15 -3753 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2451 ((-3 |#3| "failed"))) (-15 -3334 ((-3 |#3| "failed"))) (-15 -2797 (|#2| |#1| |#2| |#2|)) (-15 -3767 (|#1| |#1|)) (-15 -2775 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1569 ((-112) |#1| |#3|)) (-15 -1569 ((-112) |#1| |#2|)) (-15 -4119 (|#1| (-1288 |#3|) |#3|)) (-15 -2306 ((-2 (|:| |num| (-1288 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2624 ((-1288 |#1|) (-1288 |#1|))) (-15 -1409 ((-1288 |#1|) (-1288 |#1|))) (-15 -2329 ((-1288 |#1|) (-1288 |#1|))) (-15 -1569 ((-112) |#1|)) (-15 -1352 ((-112) |#1|)) (-15 -4180 ((-112) |#2| |#2|)) (-15 -2826 ((-112))) (-15 -3884 ((-783))) (-15 -3247 ((-783))) (-15 -2775 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-783))) (-15 -2775 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -4119 (|#1| (-1288 (-419 |#3|)))) (-15 -4119 (|#1| (-1288 (-419 |#3|)) (-1288 |#1|)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2306 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) 211)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 105 (|has| (-419 |#2|) (-374)))) (-2757 (($ $) 106 (|has| (-419 |#2|) (-374)))) (-3788 (((-112) $) 108 (|has| (-419 |#2|) (-374)))) (-4101 (((-701 (-419 |#2|)) (-1288 $)) 53) (((-701 (-419 |#2|))) 68)) (-2210 (((-419 |#2|) $) 59)) (-4183 (((-1210 (-940) (-783)) (-576)) 158 (|has| (-419 |#2|) (-360)))) (-4367 (((-3 $ "failed") $ $) 20)) (-2487 (($ $) 125 (|has| (-419 |#2|) (-374)))) (-3921 (((-430 $) $) 126 (|has| (-419 |#2|) (-374)))) (-4016 (((-112) $ $) 116 (|has| (-419 |#2|) (-374)))) (-2098 (((-783)) 99 (|has| (-419 |#2|) (-379)))) (-3413 (((-112)) 228)) (-4306 (((-112) |#1|) 227) (((-112) |#2|) 226)) (-3886 (($) 18 T CONST)) (-1572 (((-3 (-576) "failed") $) 185 (|has| (-419 |#2|) (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 183 (|has| (-419 |#2|) (-1059 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) 180)) (-2860 (((-576) $) 184 (|has| (-419 |#2|) (-1059 (-576)))) (((-419 (-576)) $) 182 (|has| (-419 |#2|) (-1059 (-419 (-576))))) (((-419 |#2|) $) 181)) (-4119 (($ (-1288 (-419 |#2|)) (-1288 $)) 55) (($ (-1288 (-419 |#2|))) 71) (($ (-1288 |#2|) |#2|) 210)) (-2554 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| (-419 |#2|) (-360)))) (-3429 (($ $ $) 120 (|has| (-419 |#2|) (-374)))) (-1420 (((-701 (-419 |#2|)) $ (-1288 $)) 60) (((-701 (-419 |#2|)) $) 66)) (-2204 (((-701 (-576)) (-701 $)) 177 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 176 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-701 $) (-1288 $)) 175) (((-701 (-419 |#2|)) (-701 $)) 174)) (-2624 (((-1288 $) (-1288 $)) 216)) (-3686 (($ |#3|) 169) (((-3 $ "failed") (-419 |#3|)) 166 (|has| (-419 |#2|) (-374)))) (-1561 (((-3 $ "failed") $) 37)) (-3670 (((-656 (-656 |#1|))) 197 (|has| |#1| (-379)))) (-4180 (((-112) |#1| |#1|) 232)) (-3734 (((-940)) 61)) (-1836 (($) 102 (|has| (-419 |#2|) (-379)))) (-4233 (((-112)) 225)) (-2263 (((-112) |#1|) 224) (((-112) |#2|) 223)) (-3441 (($ $ $) 119 (|has| (-419 |#2|) (-374)))) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) 114 (|has| (-419 |#2|) (-374)))) (-3767 (($ $) 203)) (-2005 (($) 160 (|has| (-419 |#2|) (-360)))) (-4090 (((-112) $) 161 (|has| (-419 |#2|) (-360)))) (-2910 (($ $ (-783)) 152 (|has| (-419 |#2|) (-360))) (($ $) 151 (|has| (-419 |#2|) (-360)))) (-4249 (((-112) $) 127 (|has| (-419 |#2|) (-374)))) (-3917 (((-940) $) 163 (|has| (-419 |#2|) (-360))) (((-845 (-940)) $) 149 (|has| (-419 |#2|) (-360)))) (-4193 (((-112) $) 35)) (-3247 (((-783)) 235)) (-1409 (((-1288 $) (-1288 $)) 217)) (-1381 (((-419 |#2|) $) 58)) (-3613 (((-656 (-971 |#1|)) (-1197)) 198 (|has| |#1| (-374)))) (-2240 (((-3 $ "failed") $) 153 (|has| (-419 |#2|) (-360)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) 123 (|has| (-419 |#2|) (-374)))) (-2731 ((|#3| $) 51 (|has| (-419 |#2|) (-374)))) (-4401 (((-940) $) 101 (|has| (-419 |#2|) (-379)))) (-3672 ((|#3| $) 167)) (-3913 (((-701 (-576)) (-1288 $)) 179 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 178 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-1288 $) $) 173) (((-701 (-419 |#2|)) (-1288 $)) 172)) (-3458 (($ (-656 $)) 112 (|has| (-419 |#2|) (-374))) (($ $ $) 111 (|has| (-419 |#2|) (-374)))) (-3699 (((-1179) $) 10)) (-2154 (((-701 (-419 |#2|))) 212)) (-2212 (((-701 (-419 |#2|))) 214)) (-2050 (($ $) 128 (|has| (-419 |#2|) (-374)))) (-2854 (($ (-1288 |#2|) |#2|) 208)) (-1830 (((-701 (-419 |#2|))) 213)) (-3576 (((-701 (-419 |#2|))) 215)) (-1609 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 207)) (-2078 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) 209)) (-3283 (((-1288 $)) 221)) (-3573 (((-1288 $)) 222)) (-1352 (((-112) $) 220)) (-1569 (((-112) $) 219) (((-112) $ |#1|) 206) (((-112) $ |#2|) 205)) (-3540 (($) 154 (|has| (-419 |#2|) (-360)) CONST)) (-3224 (($ (-940)) 100 (|has| (-419 |#2|) (-379)))) (-2451 (((-3 |#2| "failed")) 200)) (-1450 (((-1141) $) 11)) (-3884 (((-783)) 234)) (-4129 (($) 171)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 113 (|has| (-419 |#2|) (-374)))) (-3498 (($ (-656 $)) 110 (|has| (-419 |#2|) (-374))) (($ $ $) 109 (|has| (-419 |#2|) (-374)))) (-2406 (((-656 (-2 (|:| -1828 (-576)) (|:| -3422 (-576))))) 157 (|has| (-419 |#2|) (-360)))) (-1828 (((-430 $) $) 124 (|has| (-419 |#2|) (-374)))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 121 (|has| (-419 |#2|) (-374)))) (-3476 (((-3 $ "failed") $ $) 104 (|has| (-419 |#2|) (-374)))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) 115 (|has| (-419 |#2|) (-374)))) (-1967 (((-783) $) 117 (|has| (-419 |#2|) (-374)))) (-2797 ((|#1| $ |#1| |#1|) 202)) (-3334 (((-3 |#2| "failed")) 201)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 118 (|has| (-419 |#2|) (-374)))) (-4352 (((-419 |#2|) (-1288 $)) 54) (((-419 |#2|)) 67)) (-3793 (((-783) $) 162 (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) 150 (|has| (-419 |#2|) (-360)))) (-2775 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 136 (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) 135 (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) 204) (($ $ (-656 (-1197)) (-656 (-783))) 141 (-2760 (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2675 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-1197) (-783)) 140 (-2760 (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2675 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-656 (-1197))) 139 (-2760 (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2675 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-1197)) 137 (-2760 (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2675 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-783)) 147 (-2760 (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2675 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) 145 (-2760 (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2675 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-2433 (((-701 (-419 |#2|)) (-1288 $) (-1 (-419 |#2|) (-419 |#2|))) 165 (|has| (-419 |#2|) (-374)))) (-3867 ((|#3|) 170)) (-1535 (($) 159 (|has| (-419 |#2|) (-360)))) (-4152 (((-1288 (-419 |#2|)) $ (-1288 $)) 57) (((-701 (-419 |#2|)) (-1288 $) (-1288 $)) 56) (((-1288 (-419 |#2|)) $) 73) (((-701 (-419 |#2|)) (-1288 $)) 72)) (-4172 (((-1288 (-419 |#2|)) $) 70) (($ (-1288 (-419 |#2|))) 69) ((|#3| $) 186) (($ |#3|) 168)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) 156 (|has| (-419 |#2|) (-360)))) (-2329 (((-1288 $) (-1288 $)) 218)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ (-419 |#2|)) 44) (($ (-419 (-576))) 98 (-2760 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-1059 (-419 (-576)))))) (($ $) 103 (|has| (-419 |#2|) (-374)))) (-4336 (($ $) 155 (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) 50 (|has| (-419 |#2|) (-146)))) (-4281 ((|#3| $) 52)) (-3996 (((-783)) 32 T CONST)) (-1628 (((-112)) 231)) (-1495 (((-112) |#1|) 230) (((-112) |#2|) 229)) (-4055 (((-112) $ $) 6)) (-1593 (((-1288 $)) 74)) (-2672 (((-112) $ $) 107 (|has| (-419 |#2|) (-374)))) (-3753 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 199)) (-2826 (((-112)) 233)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2020 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 134 (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) 133 (|has| (-419 |#2|) (-374))) (($ $ (-656 (-1197)) (-656 (-783))) 144 (-2760 (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2675 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-1197) (-783)) 143 (-2760 (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2675 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-656 (-1197))) 142 (-2760 (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2675 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-1197)) 138 (-2760 (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2675 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-783)) 148 (-2760 (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2675 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) 146 (-2760 (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2675 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-2925 (((-112) $ $) 8)) (-3057 (($ $ $) 132 (|has| (-419 |#2|) (-374)))) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 129 (|has| (-419 |#2|) (-374)))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 |#2|)) 46) (($ (-419 |#2|) $) 45) (($ (-419 (-576)) $) 131 (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) 130 (|has| (-419 |#2|) (-374))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-1969 (((-656 (-1197)) $) NIL)) (-3822 (((-112)) 96) (((-112) (-112)) 97)) (-3987 (((-656 (-624 $)) $) NIL)) (-4024 (($ $) NIL)) (-3900 (($ $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3427 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-1840 (($ $) NIL)) (-4005 (($ $) NIL)) (-3876 (($ $) NIL)) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-624 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-326 |#3|)) 76) (((-3 $ "failed") (-1197)) 103) (((-3 $ "failed") (-326 (-576))) 64 (|has| |#3| (-1059 (-576)))) (((-3 $ "failed") (-419 (-971 (-576)))) 70 (|has| |#3| (-1059 (-576)))) (((-3 $ "failed") (-971 (-576))) 65 (|has| |#3| (-1059 (-576)))) (((-3 $ "failed") (-326 (-390))) 94 (|has| |#3| (-1059 (-390)))) (((-3 $ "failed") (-419 (-971 (-390)))) 88 (|has| |#3| (-1059 (-390)))) (((-3 $ "failed") (-971 (-390))) 83 (|has| |#3| (-1059 (-390))))) (-2859 (((-624 $) $) NIL) ((|#3| $) NIL) (($ (-326 |#3|)) 77) (($ (-1197)) 104) (($ (-326 (-576))) 66 (|has| |#3| (-1059 (-576)))) (($ (-419 (-971 (-576)))) 71 (|has| |#3| (-1059 (-576)))) (($ (-971 (-576))) 67 (|has| |#3| (-1059 (-576)))) (($ (-326 (-390))) 95 (|has| |#3| (-1059 (-390)))) (($ (-419 (-971 (-390)))) 89 (|has| |#3| (-1059 (-390)))) (($ (-971 (-390))) 85 (|has| |#3| (-1059 (-390))))) (-3673 (((-3 $ "failed") $) NIL)) (-1600 (($) 101)) (-2687 (($ $) NIL) (($ (-656 $)) NIL)) (-4348 (((-656 (-115)) $) NIL)) (-1776 (((-115) (-115)) NIL)) (-1351 (((-112) $) NIL)) (-3376 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-2913 (((-1193 $) (-624 $)) NIL (|has| $ (-1070)))) (-4116 (($ (-1 $ $) (-624 $)) NIL)) (-2119 (((-3 (-624 $) "failed") $) NIL)) (-2330 (($ $) 99)) (-3744 (($ $) NIL)) (-2046 (((-1179) $) NIL)) (-1763 (((-656 (-624 $)) $) NIL)) (-1640 (($ (-115) $) 98) (($ (-115) (-656 $)) NIL)) (-2808 (((-112) $ (-115)) NIL) (((-112) $ (-1197)) NIL)) (-2327 (((-783) $) NIL)) (-1450 (((-1141) $) NIL)) (-1523 (((-112) $ $) NIL) (((-112) $ (-1197)) NIL)) (-4103 (($ $) NIL)) (-2768 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-3282 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1197) (-1 $ (-656 $))) NIL) (($ $ (-1197) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2796 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-1954 (($ $) NIL) (($ $ $) NIL)) (-2774 (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-1346 (($ $) NIL (|has| $ (-1070)))) (-4013 (($ $) NIL)) (-3888 (($ $) NIL)) (-3569 (((-876) $) NIL) (($ (-624 $)) NIL) (($ |#3|) NIL) (($ (-576)) NIL) (((-326 |#3|) $) 102)) (-3154 (((-783)) NIL T CONST)) (-3680 (($ $) NIL) (($ (-656 $)) NIL)) (-1349 (((-112) (-115)) NIL)) (-2399 (((-112) $ $) NIL)) (-3960 (($ $) NIL)) (-3937 (($ $) NIL)) (-3950 (($ $) NIL)) (-4143 (($ $) NIL)) (-2721 (($) 100 T CONST)) (-2731 (($) NIL T CONST)) (-2020 (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-2924 (((-112) $ $) NIL)) (-3043 (($ $ $) NIL) (($ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-940)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-940) $) NIL))) +(((-350 |#1| |#2| |#3|) (-13 (-312) (-38 |#3|) (-1059 |#3|) (-917 (-1197)) (-10 -8 (-15 -2859 ($ (-326 |#3|))) (-15 -1572 ((-3 $ "failed") (-326 |#3|))) (-15 -2859 ($ (-1197))) (-15 -1572 ((-3 $ "failed") (-1197))) (-15 -3569 ((-326 |#3|) $)) (IF (|has| |#3| (-1059 (-576))) (PROGN (-15 -2859 ($ (-326 (-576)))) (-15 -1572 ((-3 $ "failed") (-326 (-576)))) (-15 -2859 ($ (-419 (-971 (-576))))) (-15 -1572 ((-3 $ "failed") (-419 (-971 (-576))))) (-15 -2859 ($ (-971 (-576)))) (-15 -1572 ((-3 $ "failed") (-971 (-576))))) |%noBranch|) (IF (|has| |#3| (-1059 (-390))) (PROGN (-15 -2859 ($ (-326 (-390)))) (-15 -1572 ((-3 $ "failed") (-326 (-390)))) (-15 -2859 ($ (-419 (-971 (-390))))) (-15 -1572 ((-3 $ "failed") (-419 (-971 (-390))))) (-15 -2859 ($ (-971 (-390)))) (-15 -1572 ((-3 $ "failed") (-971 (-390))))) |%noBranch|) (-15 -4143 ($ $)) (-15 -1840 ($ $)) (-15 -4103 ($ $)) (-15 -3744 ($ $)) (-15 -2330 ($ $)) (-15 -3876 ($ $)) (-15 -3888 ($ $)) (-15 -3900 ($ $)) (-15 -3937 ($ $)) (-15 -3950 ($ $)) (-15 -3960 ($ $)) (-15 -4005 ($ $)) (-15 -4013 ($ $)) (-15 -4024 ($ $)) (-15 -1600 ($)) (-15 -1969 ((-656 (-1197)) $)) (-15 -3822 ((-112))) (-15 -3822 ((-112) (-112))))) (-656 (-1197)) (-656 (-1197)) (-399)) (T -350)) +((-2859 (*1 *1 *2) (-12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-1197)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-326 *5)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-419 (-971 (-576)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-971 (-576)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-971 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-971 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-419 (-971 (-390)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-971 (-390)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-971 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-971 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-4143 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-1840 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-4103 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3744 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-2330 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3876 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3888 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3900 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3937 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3950 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3960 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-4005 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-4013 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-4024 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-1600 (*1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-1969 (*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-350 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-399)))) (-3822 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-3822 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399))))) +(-13 (-312) (-38 |#3|) (-1059 |#3|) (-917 (-1197)) (-10 -8 (-15 -2859 ($ (-326 |#3|))) (-15 -1572 ((-3 $ "failed") (-326 |#3|))) (-15 -2859 ($ (-1197))) (-15 -1572 ((-3 $ "failed") (-1197))) (-15 -3569 ((-326 |#3|) $)) (IF (|has| |#3| (-1059 (-576))) (PROGN (-15 -2859 ($ (-326 (-576)))) (-15 -1572 ((-3 $ "failed") (-326 (-576)))) (-15 -2859 ($ (-419 (-971 (-576))))) (-15 -1572 ((-3 $ "failed") (-419 (-971 (-576))))) (-15 -2859 ($ (-971 (-576)))) (-15 -1572 ((-3 $ "failed") (-971 (-576))))) |%noBranch|) (IF (|has| |#3| (-1059 (-390))) (PROGN (-15 -2859 ($ (-326 (-390)))) (-15 -1572 ((-3 $ "failed") (-326 (-390)))) (-15 -2859 ($ (-419 (-971 (-390))))) (-15 -1572 ((-3 $ "failed") (-419 (-971 (-390))))) (-15 -2859 ($ (-971 (-390)))) (-15 -1572 ((-3 $ "failed") (-971 (-390))))) |%noBranch|) (-15 -4143 ($ $)) (-15 -1840 ($ $)) (-15 -4103 ($ $)) (-15 -3744 ($ $)) (-15 -2330 ($ $)) (-15 -3876 ($ $)) (-15 -3888 ($ $)) (-15 -3900 ($ $)) (-15 -3937 ($ $)) (-15 -3950 ($ $)) (-15 -3960 ($ $)) (-15 -4005 ($ $)) (-15 -4013 ($ $)) (-15 -4024 ($ $)) (-15 -1600 ($)) (-15 -1969 ((-656 (-1197)) $)) (-15 -3822 ((-112))) (-15 -3822 ((-112) (-112))))) +((-4116 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-351 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4116 (|#8| (-1 |#5| |#1|) |#4|))) (-1242) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-1242) (-1264 |#5|) (-1264 (-419 |#6|)) (-353 |#5| |#6| |#7|)) (T -351)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1242)) (-4 *8 (-1242)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *9 (-1264 *8)) (-4 *2 (-353 *8 *9 *10)) (-5 *1 (-351 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-353 *5 *6 *7)) (-4 *10 (-1264 (-419 *9)))))) +(-10 -7 (-15 -4116 (|#8| (-1 |#5| |#1|) |#4|))) +((-2195 (((-2 (|:| |num| (-1288 |#3|)) (|:| |den| |#3|)) $) 39)) (-1819 (($ (-1288 (-419 |#3|)) (-1288 $)) NIL) (($ (-1288 (-419 |#3|))) NIL) (($ (-1288 |#3|) |#3|) 173)) (-2268 (((-1288 $) (-1288 $)) 156)) (-3075 (((-656 (-656 |#2|))) 126)) (-4341 (((-112) |#2| |#2|) 76)) (-1547 (($ $) 148)) (-1386 (((-783)) 172)) (-4076 (((-1288 $) (-1288 $)) 218)) (-3763 (((-656 (-971 |#2|)) (-1197)) 115)) (-1353 (((-112) $) 169)) (-3756 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 222)) (-4308 (((-3 |#3| "failed")) 52)) (-3385 (((-783)) 184)) (-2796 ((|#2| $ |#2| |#2|) 140)) (-2861 (((-3 |#3| "failed")) 71)) (-2774 (($ $ (-1 (-419 |#3|) (-419 |#3|))) NIL) (($ $ (-1 (-419 |#3|) (-419 |#3|)) (-783)) NIL) (($ $ (-1 |#3| |#3|)) 226) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-2420 (((-1288 $) (-1288 $)) 162)) (-2598 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-3573 (((-112)) 34))) +(((-352 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2774 (|#1| |#1|)) (-15 -2774 (|#1| |#1| (-783))) (-15 -2774 (|#1| |#1| (-1197))) (-15 -2774 (|#1| |#1| (-656 (-1197)))) (-15 -2774 (|#1| |#1| (-1197) (-783))) (-15 -2774 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -3075 ((-656 (-656 |#2|)))) (-15 -3763 ((-656 (-971 |#2|)) (-1197))) (-15 -2598 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4308 ((-3 |#3| "failed"))) (-15 -2861 ((-3 |#3| "failed"))) (-15 -2796 (|#2| |#1| |#2| |#2|)) (-15 -1547 (|#1| |#1|)) (-15 -2774 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3756 ((-112) |#1| |#3|)) (-15 -3756 ((-112) |#1| |#2|)) (-15 -1819 (|#1| (-1288 |#3|) |#3|)) (-15 -2195 ((-2 (|:| |num| (-1288 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2268 ((-1288 |#1|) (-1288 |#1|))) (-15 -4076 ((-1288 |#1|) (-1288 |#1|))) (-15 -2420 ((-1288 |#1|) (-1288 |#1|))) (-15 -3756 ((-112) |#1|)) (-15 -1353 ((-112) |#1|)) (-15 -4341 ((-112) |#2| |#2|)) (-15 -3573 ((-112))) (-15 -3385 ((-783))) (-15 -1386 ((-783))) (-15 -2774 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-783))) (-15 -2774 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -1819 (|#1| (-1288 (-419 |#3|)))) (-15 -1819 (|#1| (-1288 (-419 |#3|)) (-1288 |#1|)))) (-353 |#2| |#3| |#4|) (-1242) (-1264 |#2|) (-1264 (-419 |#3|))) (T -352)) +((-1386 (*1 *2) (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-3385 (*1 *2) (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-3573 (*1 *2) (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-4341 (*1 *2 *3 *3) (-12 (-4 *3 (-1242)) (-4 *5 (-1264 *3)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-112)) (-5 *1 (-352 *4 *3 *5 *6)) (-4 *4 (-353 *3 *5 *6)))) (-2861 (*1 *2) (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1264 (-419 *2))) (-4 *2 (-1264 *4)) (-5 *1 (-352 *3 *4 *2 *5)) (-4 *3 (-353 *4 *2 *5)))) (-4308 (*1 *2) (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1264 (-419 *2))) (-4 *2 (-1264 *4)) (-5 *1 (-352 *3 *4 *2 *5)) (-4 *3 (-353 *4 *2 *5)))) (-3763 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *5 (-1242)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-5 *2 (-656 (-971 *5))) (-5 *1 (-352 *4 *5 *6 *7)) (-4 *4 (-353 *5 *6 *7)))) (-3075 (*1 *2) (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-656 (-656 *4))) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6))))) +(-10 -8 (-15 -2774 (|#1| |#1|)) (-15 -2774 (|#1| |#1| (-783))) (-15 -2774 (|#1| |#1| (-1197))) (-15 -2774 (|#1| |#1| (-656 (-1197)))) (-15 -2774 (|#1| |#1| (-1197) (-783))) (-15 -2774 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -3075 ((-656 (-656 |#2|)))) (-15 -3763 ((-656 (-971 |#2|)) (-1197))) (-15 -2598 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4308 ((-3 |#3| "failed"))) (-15 -2861 ((-3 |#3| "failed"))) (-15 -2796 (|#2| |#1| |#2| |#2|)) (-15 -1547 (|#1| |#1|)) (-15 -2774 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3756 ((-112) |#1| |#3|)) (-15 -3756 ((-112) |#1| |#2|)) (-15 -1819 (|#1| (-1288 |#3|) |#3|)) (-15 -2195 ((-2 (|:| |num| (-1288 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2268 ((-1288 |#1|) (-1288 |#1|))) (-15 -4076 ((-1288 |#1|) (-1288 |#1|))) (-15 -2420 ((-1288 |#1|) (-1288 |#1|))) (-15 -3756 ((-112) |#1|)) (-15 -1353 ((-112) |#1|)) (-15 -4341 ((-112) |#2| |#2|)) (-15 -3573 ((-112))) (-15 -3385 ((-783))) (-15 -1386 ((-783))) (-15 -2774 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-783))) (-15 -2774 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -1819 (|#1| (-1288 (-419 |#3|)))) (-15 -1819 (|#1| (-1288 (-419 |#3|)) (-1288 |#1|)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2195 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) 211)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 105 (|has| (-419 |#2|) (-374)))) (-4195 (($ $) 106 (|has| (-419 |#2|) (-374)))) (-1760 (((-112) $) 108 (|has| (-419 |#2|) (-374)))) (-1656 (((-701 (-419 |#2|)) (-1288 $)) 53) (((-701 (-419 |#2|))) 68)) (-2210 (((-419 |#2|) $) 59)) (-4371 (((-1210 (-940) (-783)) (-576)) 158 (|has| (-419 |#2|) (-360)))) (-2428 (((-3 $ "failed") $ $) 20)) (-3444 (($ $) 125 (|has| (-419 |#2|) (-374)))) (-3760 (((-430 $) $) 126 (|has| (-419 |#2|) (-374)))) (-3330 (((-112) $ $) 116 (|has| (-419 |#2|) (-374)))) (-2098 (((-783)) 99 (|has| (-419 |#2|) (-379)))) (-2407 (((-112)) 228)) (-3123 (((-112) |#1|) 227) (((-112) |#2|) 226)) (-3404 (($) 18 T CONST)) (-1572 (((-3 (-576) "failed") $) 185 (|has| (-419 |#2|) (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 183 (|has| (-419 |#2|) (-1059 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) 180)) (-2859 (((-576) $) 184 (|has| (-419 |#2|) (-1059 (-576)))) (((-419 (-576)) $) 182 (|has| (-419 |#2|) (-1059 (-419 (-576))))) (((-419 |#2|) $) 181)) (-1819 (($ (-1288 (-419 |#2|)) (-1288 $)) 55) (($ (-1288 (-419 |#2|))) 71) (($ (-1288 |#2|) |#2|) 210)) (-2868 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| (-419 |#2|) (-360)))) (-3428 (($ $ $) 120 (|has| (-419 |#2|) (-374)))) (-2072 (((-701 (-419 |#2|)) $ (-1288 $)) 60) (((-701 (-419 |#2|)) $) 66)) (-3674 (((-701 (-576)) (-701 $)) 177 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 176 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-701 $) (-1288 $)) 175) (((-701 (-419 |#2|)) (-701 $)) 174)) (-2268 (((-1288 $) (-1288 $)) 216)) (-3685 (($ |#3|) 169) (((-3 $ "failed") (-419 |#3|)) 166 (|has| (-419 |#2|) (-374)))) (-3673 (((-3 $ "failed") $) 37)) (-3075 (((-656 (-656 |#1|))) 197 (|has| |#1| (-379)))) (-4341 (((-112) |#1| |#1|) 232)) (-3733 (((-940)) 61)) (-1836 (($) 102 (|has| (-419 |#2|) (-379)))) (-3658 (((-112)) 225)) (-3005 (((-112) |#1|) 224) (((-112) |#2|) 223)) (-3440 (($ $ $) 119 (|has| (-419 |#2|) (-374)))) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) 114 (|has| (-419 |#2|) (-374)))) (-1547 (($ $) 203)) (-2345 (($) 160 (|has| (-419 |#2|) (-360)))) (-1543 (((-112) $) 161 (|has| (-419 |#2|) (-360)))) (-3153 (($ $ (-783)) 152 (|has| (-419 |#2|) (-360))) (($ $) 151 (|has| (-419 |#2|) (-360)))) (-3833 (((-112) $) 127 (|has| (-419 |#2|) (-374)))) (-3726 (((-940) $) 163 (|has| (-419 |#2|) (-360))) (((-845 (-940)) $) 149 (|has| (-419 |#2|) (-360)))) (-1351 (((-112) $) 35)) (-1386 (((-783)) 235)) (-4076 (((-1288 $) (-1288 $)) 217)) (-2738 (((-419 |#2|) $) 58)) (-3763 (((-656 (-971 |#1|)) (-1197)) 198 (|has| |#1| (-374)))) (-2734 (((-3 $ "failed") $) 153 (|has| (-419 |#2|) (-360)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) 123 (|has| (-419 |#2|) (-374)))) (-1989 ((|#3| $) 51 (|has| (-419 |#2|) (-374)))) (-1558 (((-940) $) 101 (|has| (-419 |#2|) (-379)))) (-3671 ((|#3| $) 167)) (-3676 (((-701 (-576)) (-1288 $)) 179 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 178 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-1288 $) $) 173) (((-701 (-419 |#2|)) (-1288 $)) 172)) (-3457 (($ (-656 $)) 112 (|has| (-419 |#2|) (-374))) (($ $ $) 111 (|has| (-419 |#2|) (-374)))) (-2046 (((-1179) $) 10)) (-4412 (((-701 (-419 |#2|))) 212)) (-3746 (((-701 (-419 |#2|))) 214)) (-2050 (($ $) 128 (|has| (-419 |#2|) (-374)))) (-3858 (($ (-1288 |#2|) |#2|) 208)) (-1348 (((-701 (-419 |#2|))) 213)) (-3389 (((-701 (-419 |#2|))) 215)) (-2860 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 207)) (-1781 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) 209)) (-3637 (((-1288 $)) 221)) (-3358 (((-1288 $)) 222)) (-1353 (((-112) $) 220)) (-3756 (((-112) $) 219) (((-112) $ |#1|) 206) (((-112) $ |#2|) 205)) (-3539 (($) 154 (|has| (-419 |#2|) (-360)) CONST)) (-3223 (($ (-940)) 100 (|has| (-419 |#2|) (-379)))) (-4308 (((-3 |#2| "failed")) 200)) (-1450 (((-1141) $) 11)) (-3385 (((-783)) 234)) (-4128 (($) 171)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 113 (|has| (-419 |#2|) (-374)))) (-3497 (($ (-656 $)) 110 (|has| (-419 |#2|) (-374))) (($ $ $) 109 (|has| (-419 |#2|) (-374)))) (-1913 (((-656 (-2 (|:| -1828 (-576)) (|:| -2508 (-576))))) 157 (|has| (-419 |#2|) (-360)))) (-1828 (((-430 $) $) 124 (|has| (-419 |#2|) (-374)))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 121 (|has| (-419 |#2|) (-374)))) (-3475 (((-3 $ "failed") $ $) 104 (|has| (-419 |#2|) (-374)))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) 115 (|has| (-419 |#2|) (-374)))) (-1979 (((-783) $) 117 (|has| (-419 |#2|) (-374)))) (-2796 ((|#1| $ |#1| |#1|) 202)) (-2861 (((-3 |#2| "failed")) 201)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 118 (|has| (-419 |#2|) (-374)))) (-2269 (((-419 |#2|) (-1288 $)) 54) (((-419 |#2|)) 67)) (-1813 (((-783) $) 162 (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) 150 (|has| (-419 |#2|) (-360)))) (-2774 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 136 (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) 135 (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) 204) (($ $ (-656 (-1197)) (-656 (-783))) 141 (-2759 (-2674 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2674 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2674 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-1197) (-783)) 140 (-2759 (-2674 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2674 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2674 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-656 (-1197))) 139 (-2759 (-2674 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2674 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2674 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-1197)) 137 (-2759 (-2674 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2674 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2674 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-783)) 147 (-2759 (-2674 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2674 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2674 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) 145 (-2759 (-2674 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2674 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2674 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-4149 (((-701 (-419 |#2|)) (-1288 $) (-1 (-419 |#2|) (-419 |#2|))) 165 (|has| (-419 |#2|) (-374)))) (-1346 ((|#3|) 170)) (-3371 (($) 159 (|has| (-419 |#2|) (-360)))) (-4096 (((-1288 (-419 |#2|)) $ (-1288 $)) 57) (((-701 (-419 |#2|)) (-1288 $) (-1288 $)) 56) (((-1288 (-419 |#2|)) $) 73) (((-701 (-419 |#2|)) (-1288 $)) 72)) (-4171 (((-1288 (-419 |#2|)) $) 70) (($ (-1288 (-419 |#2|))) 69) ((|#3| $) 186) (($ |#3|) 168)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) 156 (|has| (-419 |#2|) (-360)))) (-2420 (((-1288 $) (-1288 $)) 218)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ (-419 |#2|)) 44) (($ (-419 (-576))) 98 (-2759 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-1059 (-419 (-576)))))) (($ $) 103 (|has| (-419 |#2|) (-374)))) (-3390 (($ $) 155 (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) 50 (|has| (-419 |#2|) (-146)))) (-2857 ((|#3| $) 52)) (-3154 (((-783)) 32 T CONST)) (-3067 (((-112)) 231)) (-4191 (((-112) |#1|) 230) (((-112) |#2|) 229)) (-2399 (((-112) $ $) 6)) (-2675 (((-1288 $)) 74)) (-1505 (((-112) $ $) 107 (|has| (-419 |#2|) (-374)))) (-2598 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 199)) (-3573 (((-112)) 233)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2020 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 134 (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) 133 (|has| (-419 |#2|) (-374))) (($ $ (-656 (-1197)) (-656 (-783))) 144 (-2759 (-2674 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2674 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2674 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-1197) (-783)) 143 (-2759 (-2674 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2674 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2674 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-656 (-1197))) 142 (-2759 (-2674 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2674 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2674 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-1197)) 138 (-2759 (-2674 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2674 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2674 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-783)) 148 (-2759 (-2674 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2674 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2674 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) 146 (-2759 (-2674 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2674 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2674 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-2924 (((-112) $ $) 8)) (-3056 (($ $ $) 132 (|has| (-419 |#2|) (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 129 (|has| (-419 |#2|) (-374)))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 |#2|)) 46) (($ (-419 |#2|) $) 45) (($ (-419 (-576)) $) 131 (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) 130 (|has| (-419 |#2|) (-374))))) (((-353 |#1| |#2| |#3|) (-141) (-1242) (-1264 |t#1|) (-1264 (-419 |t#2|))) (T -353)) -((-3247 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-783)))) (-3884 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-783)))) (-2826 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-4180 (*1 *2 *3 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-1628 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-1495 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-1495 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) (-3413 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-4306 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-4306 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) (-4233 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-2263 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-2263 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) (-3573 (*1 *2) (-12 (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)))) (-3283 (*1 *2) (-12 (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)))) (-1352 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-1569 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-2329 (*1 *2 *2) (-12 (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))))) (-1409 (*1 *2 *2) (-12 (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))))) (-2624 (*1 *2 *2) (-12 (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))))) (-3576 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-2212 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-1830 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-2154 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-2306 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1288 *4)) (|:| |den| *4))))) (-4119 (*1 *1 *2 *3) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1264 *4)) (-4 *4 (-1242)) (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1264 (-419 *3))))) (-2078 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1288 *4)) (|:| |den| *4))))) (-2854 (*1 *1 *2 *3) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1264 *4)) (-4 *4 (-1242)) (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1264 (-419 *3))))) (-1609 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-2 (|:| |num| (-701 *5)) (|:| |den| *5))))) (-1569 (*1 *2 *1 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-1569 (*1 *2 *1 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) (-2775 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))))) (-3767 (*1 *1 *1) (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1242)) (-4 *3 (-1264 *2)) (-4 *4 (-1264 (-419 *3))))) (-2797 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1242)) (-4 *3 (-1264 *2)) (-4 *4 (-1264 (-419 *3))))) (-3334 (*1 *2) (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1242)) (-4 *4 (-1264 (-419 *2))) (-4 *2 (-1264 *3)))) (-2451 (*1 *2) (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1242)) (-4 *4 (-1264 (-419 *2))) (-4 *2 (-1264 *3)))) (-3753 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-1242)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-353 *4 *5 *6)))) (-3613 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-4 *4 (-374)) (-5 *2 (-656 (-971 *4))))) (-3670 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *3 (-379)) (-5 *2 (-656 (-656 *3)))))) -(-13 (-736 (-419 |t#2|) |t#3|) (-10 -8 (-15 -3247 ((-783))) (-15 -3884 ((-783))) (-15 -2826 ((-112))) (-15 -4180 ((-112) |t#1| |t#1|)) (-15 -1628 ((-112))) (-15 -1495 ((-112) |t#1|)) (-15 -1495 ((-112) |t#2|)) (-15 -3413 ((-112))) (-15 -4306 ((-112) |t#1|)) (-15 -4306 ((-112) |t#2|)) (-15 -4233 ((-112))) (-15 -2263 ((-112) |t#1|)) (-15 -2263 ((-112) |t#2|)) (-15 -3573 ((-1288 $))) (-15 -3283 ((-1288 $))) (-15 -1352 ((-112) $)) (-15 -1569 ((-112) $)) (-15 -2329 ((-1288 $) (-1288 $))) (-15 -1409 ((-1288 $) (-1288 $))) (-15 -2624 ((-1288 $) (-1288 $))) (-15 -3576 ((-701 (-419 |t#2|)))) (-15 -2212 ((-701 (-419 |t#2|)))) (-15 -1830 ((-701 (-419 |t#2|)))) (-15 -2154 ((-701 (-419 |t#2|)))) (-15 -2306 ((-2 (|:| |num| (-1288 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4119 ($ (-1288 |t#2|) |t#2|)) (-15 -2078 ((-2 (|:| |num| (-1288 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2854 ($ (-1288 |t#2|) |t#2|)) (-15 -1609 ((-2 (|:| |num| (-701 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1569 ((-112) $ |t#1|)) (-15 -1569 ((-112) $ |t#2|)) (-15 -2775 ($ $ (-1 |t#2| |t#2|))) (-15 -3767 ($ $)) (-15 -2797 (|t#1| $ |t#1| |t#1|)) (-15 -3334 ((-3 |t#2| "failed"))) (-15 -2451 ((-3 |t#2| "failed"))) (-15 -3753 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-374)) (-15 -3613 ((-656 (-971 |t#1|)) (-1197))) |%noBranch|) (IF (|has| |t#1| (-379)) (-15 -3670 ((-656 (-656 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -2760 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-38 #1=(-419 |#2|)) . T) ((-38 $) -2760 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-102) . T) ((-111 #0# #0#) -2760 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2760 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-146))) ((-148) |has| (-419 |#2|) (-148)) ((-628 #0#) -2760 (|has| (-419 |#2|) (-1059 (-419 (-576)))) (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-628 #1#) . T) ((-628 (-576)) . T) ((-628 $) -2760 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-625 (-876)) . T) ((-174) . T) ((-626 |#3|) . T) ((-234 $) -2760 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-232 #1#) |has| (-419 |#2|) (-374)) ((-238) -2760 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-237) -2760 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-272 #1#) |has| (-419 |#2|) (-374)) ((-248) -2760 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-300) -2760 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-317) -2760 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-374) -2760 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-414) |has| (-419 |#2|) (-360)) ((-379) -2760 (|has| (-419 |#2|) (-379)) (|has| (-419 |#2|) (-360))) ((-360) |has| (-419 |#2|) (-360)) ((-381 #1# |#3|) . T) ((-421 #1# |#3|) . T) ((-388 #1#) . T) ((-423 #1#) . T) ((-464) -2760 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-568) -2760 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-658 #0#) -2760 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-658 #1#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) -2760 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-660 #1#) . T) ((-660 #2=(-576)) |has| (-419 |#2|) (-651 (-576))) ((-660 $) . T) ((-652 #0#) -2760 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-652 #1#) . T) ((-652 $) -2760 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-651 #1#) . T) ((-651 #2#) |has| (-419 |#2|) (-651 (-576))) ((-729 #0#) -2760 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-729 #1#) . T) ((-729 $) -2760 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-736 #1# |#3|) . T) ((-738) . T) ((-911 $ #3=(-1197)) -2760 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197))))) ((-917 (-1197)) -12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) ((-919 #3#) -2760 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197))))) ((-939) -2760 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1059 (-419 (-576))) |has| (-419 |#2|) (-1059 (-419 (-576)))) ((-1059 #1#) . T) ((-1059 (-576)) |has| (-419 |#2|) (-1059 (-576))) ((-1072 #0#) -2760 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1072 #1#) . T) ((-1072 $) . T) ((-1077 #0#) -2760 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1077 #1#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) |has| (-419 |#2|) (-360)) ((-1238) . T) ((-1242) -2760 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-2441 (((-112) $) NIL)) (-2664 (((-783)) NIL)) (-2210 (((-929 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-4183 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-929 |#1|) (-379)))) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-4016 (((-112) $ $) NIL)) (-2098 (((-783)) NIL (|has| (-929 |#1|) (-379)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-929 |#1|) "failed") $) NIL)) (-2860 (((-929 |#1|) $) NIL)) (-4119 (($ (-1288 (-929 |#1|))) NIL)) (-2554 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-929 |#1|) (-379)))) (-3429 (($ $ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-929 |#1|) (-379)))) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-2005 (($) NIL (|has| (-929 |#1|) (-379)))) (-4090 (((-112) $) NIL (|has| (-929 |#1|) (-379)))) (-2910 (($ $ (-783)) NIL (-2760 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379)))) (($ $) NIL (-2760 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-4249 (((-112) $) NIL)) (-3917 (((-940) $) NIL (|has| (-929 |#1|) (-379))) (((-845 (-940)) $) NIL (-2760 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-4193 (((-112) $) NIL)) (-4263 (($) NIL (|has| (-929 |#1|) (-379)))) (-1536 (((-112) $) NIL (|has| (-929 |#1|) (-379)))) (-1381 (((-929 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-2240 (((-3 $ "failed") $) NIL (|has| (-929 |#1|) (-379)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2731 (((-1193 (-929 |#1|)) $) NIL) (((-1193 $) $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-4401 (((-940) $) NIL (|has| (-929 |#1|) (-379)))) (-1938 (((-1193 (-929 |#1|)) $) NIL (|has| (-929 |#1|) (-379)))) (-2512 (((-1193 (-929 |#1|)) $) NIL (|has| (-929 |#1|) (-379))) (((-3 (-1193 (-929 |#1|)) "failed") $ $) NIL (|has| (-929 |#1|) (-379)))) (-1649 (($ $ (-1193 (-929 |#1|))) NIL (|has| (-929 |#1|) (-379)))) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3540 (($) NIL (|has| (-929 |#1|) (-379)) CONST)) (-3224 (($ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-2844 (((-112) $) NIL)) (-1450 (((-1141) $) NIL)) (-3854 (((-977 (-1141))) NIL)) (-4129 (($) NIL (|has| (-929 |#1|) (-379)))) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2406 (((-656 (-2 (|:| -1828 (-576)) (|:| -3422 (-576))))) NIL (|has| (-929 |#1|) (-379)))) (-1828 (((-430 $) $) NIL)) (-2301 (((-845 (-940))) NIL) (((-940)) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1967 (((-783) $) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-3793 (((-783) $) NIL (|has| (-929 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-2760 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-2003 (((-135)) NIL)) (-2775 (($ $ (-783)) NIL (|has| (-929 |#1|) (-379))) (($ $) NIL (|has| (-929 |#1|) (-379)))) (-3634 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-3867 (((-1193 (-929 |#1|))) NIL)) (-1535 (($) NIL (|has| (-929 |#1|) (-379)))) (-2532 (($) NIL (|has| (-929 |#1|) (-379)))) (-4152 (((-1288 (-929 |#1|)) $) NIL) (((-701 (-929 |#1|)) (-1288 $)) NIL)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| (-929 |#1|) (-379)))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-929 |#1|)) NIL)) (-4336 (($ $) NIL (|has| (-929 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2760 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-1593 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-2672 (((-112) $ $) NIL)) (-3419 (((-112) $) NIL)) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-3051 (($ $) NIL (|has| (-929 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-929 |#1|) (-379)))) (-2020 (($ $ (-783)) NIL (|has| (-929 |#1|) (-379))) (($ $) NIL (|has| (-929 |#1|) (-379)))) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ $) NIL) (($ $ (-929 |#1|)) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-929 |#1|)) NIL) (($ (-929 |#1|) $) NIL))) -(((-354 |#1| |#2|) (-13 (-339 (-929 |#1|)) (-10 -7 (-15 -3854 ((-977 (-1141)))))) (-940) (-940)) (T -354)) -((-3854 (*1 *2) (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-354 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940))))) -(-13 (-339 (-929 |#1|)) (-10 -7 (-15 -3854 ((-977 (-1141)))))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 58)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-2441 (((-112) $) NIL)) (-2664 (((-783)) NIL)) (-2210 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-4183 (((-1210 (-940) (-783)) (-576)) 56 (|has| |#1| (-379)))) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-4016 (((-112) $ $) NIL)) (-2098 (((-783)) NIL (|has| |#1| (-379)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) 142)) (-2860 ((|#1| $) 113)) (-4119 (($ (-1288 |#1|)) 130)) (-2554 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-379)))) (-3429 (($ $ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-1836 (($) 124 (|has| |#1| (-379)))) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-2005 (($) 160 (|has| |#1| (-379)))) (-4090 (((-112) $) 66 (|has| |#1| (-379)))) (-2910 (($ $ (-783)) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4249 (((-112) $) NIL)) (-3917 (((-940) $) 60 (|has| |#1| (-379))) (((-845 (-940)) $) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4193 (((-112) $) 62)) (-4263 (($) 162 (|has| |#1| (-379)))) (-1536 (((-112) $) NIL (|has| |#1| (-379)))) (-1381 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-2240 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2731 (((-1193 |#1|) $) 117) (((-1193 $) $ (-940)) NIL (|has| |#1| (-379)))) (-4401 (((-940) $) 171 (|has| |#1| (-379)))) (-1938 (((-1193 |#1|) $) NIL (|has| |#1| (-379)))) (-2512 (((-1193 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-1649 (($ $ (-1193 |#1|)) NIL (|has| |#1| (-379)))) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) 178)) (-3540 (($) NIL (|has| |#1| (-379)) CONST)) (-3224 (($ (-940)) 96 (|has| |#1| (-379)))) (-2844 (((-112) $) 147)) (-1450 (((-1141) $) NIL)) (-3854 (((-977 (-1141))) 57)) (-4129 (($) 158 (|has| |#1| (-379)))) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2406 (((-656 (-2 (|:| -1828 (-576)) (|:| -3422 (-576))))) 119 (|has| |#1| (-379)))) (-1828 (((-430 $) $) NIL)) (-2301 (((-845 (-940))) 90) (((-940)) 91)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1967 (((-783) $) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-3793 (((-783) $) 161 (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) 154 (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2003 (((-135)) NIL)) (-2775 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3634 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-3867 (((-1193 |#1|)) 122)) (-1535 (($) 159 (|has| |#1| (-379)))) (-2532 (($) 167 (|has| |#1| (-379)))) (-4152 (((-1288 |#1|) $) 77) (((-701 |#1|) (-1288 $)) NIL)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-3570 (((-876) $) 174) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 100)) (-4336 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3996 (((-783)) 155 T CONST)) (-4055 (((-112) $ $) NIL)) (-1593 (((-1288 $)) 144) (((-1288 $) (-940)) 98)) (-2672 (((-112) $ $) NIL)) (-3419 (((-112) $) NIL)) (-2721 (($) 67 T CONST)) (-2732 (($) 103 T CONST)) (-3051 (($ $) 107 (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-2020 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2925 (((-112) $ $) 65)) (-3057 (($ $ $) 176) (($ $ |#1|) 177)) (-3044 (($ $) 157) (($ $ $) NIL)) (-3030 (($ $ $) 86)) (** (($ $ (-940)) 180) (($ $ (-783)) 181) (($ $ (-576)) 179)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 102) (($ $ $) 101) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175))) -(((-355 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -3854 ((-977 (-1141)))))) (-360) (-1193 |#1|)) (T -355)) -((-3854 (*1 *2) (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-355 *3 *4)) (-4 *3 (-360)) (-14 *4 (-1193 *3))))) -(-13 (-339 |#1|) (-10 -7 (-15 -3854 ((-977 (-1141)))))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-2441 (((-112) $) NIL)) (-2664 (((-783)) NIL)) (-2210 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-4183 (((-1210 (-940) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-4016 (((-112) $ $) NIL)) (-2098 (((-783)) NIL (|has| |#1| (-379)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2860 ((|#1| $) NIL)) (-4119 (($ (-1288 |#1|)) NIL)) (-2554 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-3429 (($ $ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| |#1| (-379)))) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-2005 (($) NIL (|has| |#1| (-379)))) (-4090 (((-112) $) NIL (|has| |#1| (-379)))) (-2910 (($ $ (-783)) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4249 (((-112) $) NIL)) (-3917 (((-940) $) NIL (|has| |#1| (-379))) (((-845 (-940)) $) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4193 (((-112) $) NIL)) (-4263 (($) NIL (|has| |#1| (-379)))) (-1536 (((-112) $) NIL (|has| |#1| (-379)))) (-1381 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-2240 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2731 (((-1193 |#1|) $) NIL) (((-1193 $) $ (-940)) NIL (|has| |#1| (-379)))) (-4401 (((-940) $) NIL (|has| |#1| (-379)))) (-1938 (((-1193 |#1|) $) NIL (|has| |#1| (-379)))) (-2512 (((-1193 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-1649 (($ $ (-1193 |#1|)) NIL (|has| |#1| (-379)))) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3540 (($) NIL (|has| |#1| (-379)) CONST)) (-3224 (($ (-940)) NIL (|has| |#1| (-379)))) (-2844 (((-112) $) NIL)) (-1450 (((-1141) $) NIL)) (-3854 (((-977 (-1141))) NIL)) (-4129 (($) NIL (|has| |#1| (-379)))) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2406 (((-656 (-2 (|:| -1828 (-576)) (|:| -3422 (-576))))) NIL (|has| |#1| (-379)))) (-1828 (((-430 $) $) NIL)) (-2301 (((-845 (-940))) NIL) (((-940)) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1967 (((-783) $) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-3793 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2003 (((-135)) NIL)) (-2775 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3634 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-3867 (((-1193 |#1|)) NIL)) (-1535 (($) NIL (|has| |#1| (-379)))) (-2532 (($) NIL (|has| |#1| (-379)))) (-4152 (((-1288 |#1|) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-4336 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-1593 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-2672 (((-112) $ $) NIL)) (-3419 (((-112) $) NIL)) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-3051 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-2020 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-356 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -3854 ((-977 (-1141)))))) (-360) (-940)) (T -356)) -((-3854 (*1 *2) (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-356 *3 *4)) (-4 *3 (-360)) (-14 *4 (-940))))) -(-13 (-339 |#1|) (-10 -7 (-15 -3854 ((-977 (-1141)))))) -((-3925 (((-783) (-1288 (-656 (-2 (|:| -3106 |#1|) (|:| -3224 (-1141)))))) 61)) (-1601 (((-977 (-1141)) (-1193 |#1|)) 112)) (-1459 (((-1288 (-656 (-2 (|:| -3106 |#1|) (|:| -3224 (-1141))))) (-1193 |#1|)) 103)) (-3154 (((-701 |#1|) (-1288 (-656 (-2 (|:| -3106 |#1|) (|:| -3224 (-1141)))))) 113)) (-4411 (((-3 (-1288 (-656 (-2 (|:| -3106 |#1|) (|:| -3224 (-1141))))) "failed") (-940)) 13)) (-3292 (((-3 (-1193 |#1|) (-1288 (-656 (-2 (|:| -3106 |#1|) (|:| -3224 (-1141)))))) (-940)) 18))) -(((-357 |#1|) (-10 -7 (-15 -1601 ((-977 (-1141)) (-1193 |#1|))) (-15 -1459 ((-1288 (-656 (-2 (|:| -3106 |#1|) (|:| -3224 (-1141))))) (-1193 |#1|))) (-15 -3154 ((-701 |#1|) (-1288 (-656 (-2 (|:| -3106 |#1|) (|:| -3224 (-1141))))))) (-15 -3925 ((-783) (-1288 (-656 (-2 (|:| -3106 |#1|) (|:| -3224 (-1141))))))) (-15 -4411 ((-3 (-1288 (-656 (-2 (|:| -3106 |#1|) (|:| -3224 (-1141))))) "failed") (-940))) (-15 -3292 ((-3 (-1193 |#1|) (-1288 (-656 (-2 (|:| -3106 |#1|) (|:| -3224 (-1141)))))) (-940)))) (-360)) (T -357)) -((-3292 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-3 (-1193 *4) (-1288 (-656 (-2 (|:| -3106 *4) (|:| -3224 (-1141))))))) (-5 *1 (-357 *4)) (-4 *4 (-360)))) (-4411 (*1 *2 *3) (|partial| -12 (-5 *3 (-940)) (-5 *2 (-1288 (-656 (-2 (|:| -3106 *4) (|:| -3224 (-1141)))))) (-5 *1 (-357 *4)) (-4 *4 (-360)))) (-3925 (*1 *2 *3) (-12 (-5 *3 (-1288 (-656 (-2 (|:| -3106 *4) (|:| -3224 (-1141)))))) (-4 *4 (-360)) (-5 *2 (-783)) (-5 *1 (-357 *4)))) (-3154 (*1 *2 *3) (-12 (-5 *3 (-1288 (-656 (-2 (|:| -3106 *4) (|:| -3224 (-1141)))))) (-4 *4 (-360)) (-5 *2 (-701 *4)) (-5 *1 (-357 *4)))) (-1459 (*1 *2 *3) (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-1288 (-656 (-2 (|:| -3106 *4) (|:| -3224 (-1141)))))) (-5 *1 (-357 *4)))) (-1601 (*1 *2 *3) (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-977 (-1141))) (-5 *1 (-357 *4))))) -(-10 -7 (-15 -1601 ((-977 (-1141)) (-1193 |#1|))) (-15 -1459 ((-1288 (-656 (-2 (|:| -3106 |#1|) (|:| -3224 (-1141))))) (-1193 |#1|))) (-15 -3154 ((-701 |#1|) (-1288 (-656 (-2 (|:| -3106 |#1|) (|:| -3224 (-1141))))))) (-15 -3925 ((-783) (-1288 (-656 (-2 (|:| -3106 |#1|) (|:| -3224 (-1141))))))) (-15 -4411 ((-3 (-1288 (-656 (-2 (|:| -3106 |#1|) (|:| -3224 (-1141))))) "failed") (-940))) (-15 -3292 ((-3 (-1193 |#1|) (-1288 (-656 (-2 (|:| -3106 |#1|) (|:| -3224 (-1141)))))) (-940)))) -((-3570 ((|#1| |#3|) 104) ((|#3| |#1|) 87))) -(((-358 |#1| |#2| |#3|) (-10 -7 (-15 -3570 (|#3| |#1|)) (-15 -3570 (|#1| |#3|))) (-339 |#2|) (-360) (-339 |#2|)) (T -358)) -((-3570 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *2 *4 *3)) (-4 *3 (-339 *4)))) (-3570 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *3 *4 *2)) (-4 *3 (-339 *4))))) -(-10 -7 (-15 -3570 (|#3| |#1|)) (-15 -3570 (|#1| |#3|))) -((-4090 (((-112) $) 60)) (-3917 (((-845 (-940)) $) 23) (((-940) $) 64)) (-2240 (((-3 $ "failed") $) 18)) (-3540 (($) 9)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 114)) (-3793 (((-3 (-783) "failed") $ $) 92) (((-783) $) 79)) (-2775 (($ $) 8) (($ $ (-783)) NIL)) (-1535 (($) 53)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) 38)) (-4336 (((-3 $ "failed") $) 45) (($ $) 44))) -(((-359 |#1|) (-10 -8 (-15 -3917 ((-940) |#1|)) (-15 -3793 ((-783) |#1|)) (-15 -4090 ((-112) |#1|)) (-15 -1535 (|#1|)) (-15 -2887 ((-3 (-1288 |#1|) "failed") (-701 |#1|))) (-15 -4336 (|#1| |#1|)) (-15 -2775 (|#1| |#1| (-783))) (-15 -2775 (|#1| |#1|)) (-15 -3540 (|#1|)) (-15 -2240 ((-3 |#1| "failed") |#1|)) (-15 -3793 ((-3 (-783) "failed") |#1| |#1|)) (-15 -3917 ((-845 (-940)) |#1|)) (-15 -4336 ((-3 |#1| "failed") |#1|)) (-15 -1531 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|)))) (-360)) (T -359)) -NIL -(-10 -8 (-15 -3917 ((-940) |#1|)) (-15 -3793 ((-783) |#1|)) (-15 -4090 ((-112) |#1|)) (-15 -1535 (|#1|)) (-15 -2887 ((-3 (-1288 |#1|) "failed") (-701 |#1|))) (-15 -4336 (|#1| |#1|)) (-15 -2775 (|#1| |#1| (-783))) (-15 -2775 (|#1| |#1|)) (-15 -3540 (|#1|)) (-15 -2240 ((-3 |#1| "failed") |#1|)) (-15 -3793 ((-3 (-783) "failed") |#1| |#1|)) (-15 -3917 ((-845 (-940)) |#1|)) (-15 -4336 ((-3 |#1| "failed") |#1|)) (-15 -1531 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 47)) (-2757 (($ $) 46)) (-3788 (((-112) $) 44)) (-4183 (((-1210 (-940) (-783)) (-576)) 102)) (-4367 (((-3 $ "failed") $ $) 20)) (-2487 (($ $) 81)) (-3921 (((-430 $) $) 80)) (-4016 (((-112) $ $) 65)) (-2098 (((-783)) 112)) (-3886 (($) 18 T CONST)) (-2554 (((-3 "prime" "polynomial" "normal" "cyclic")) 96)) (-3429 (($ $ $) 61)) (-1561 (((-3 $ "failed") $) 37)) (-1836 (($) 115)) (-3441 (($ $ $) 62)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) 57)) (-2005 (($) 100)) (-4090 (((-112) $) 99)) (-2910 (($ $) 87) (($ $ (-783)) 86)) (-4249 (((-112) $) 79)) (-3917 (((-845 (-940)) $) 89) (((-940) $) 97)) (-4193 (((-112) $) 35)) (-2240 (((-3 $ "failed") $) 111)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-4401 (((-940) $) 114)) (-3458 (($ $ $) 52) (($ (-656 $)) 51)) (-3699 (((-1179) $) 10)) (-2050 (($ $) 78)) (-3540 (($) 110 T CONST)) (-3224 (($ (-940)) 113)) (-1450 (((-1141) $) 11)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-2406 (((-656 (-2 (|:| -1828 (-576)) (|:| -3422 (-576))))) 103)) (-1828 (((-430 $) $) 82)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3476 (((-3 $ "failed") $ $) 48)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1967 (((-783) $) 64)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 63)) (-3793 (((-3 (-783) "failed") $ $) 88) (((-783) $) 98)) (-2775 (($ $) 109) (($ $ (-783)) 107)) (-1535 (($) 101)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) 104)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-4336 (((-3 $ "failed") $) 90) (($ $) 105)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2672 (((-112) $ $) 45)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2020 (($ $) 108) (($ $ (-783)) 106)) (-2925 (((-112) $ $) 8)) (-3057 (($ $ $) 73)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) +((-1386 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-783)))) (-3385 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-783)))) (-3573 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-4341 (*1 *2 *3 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-3067 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-4191 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-4191 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) (-2407 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-3123 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-3123 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) (-3658 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-3005 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-3005 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) (-3358 (*1 *2) (-12 (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)))) (-3637 (*1 *2) (-12 (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)))) (-1353 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-3756 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-2420 (*1 *2 *2) (-12 (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))))) (-4076 (*1 *2 *2) (-12 (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))))) (-2268 (*1 *2 *2) (-12 (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))))) (-3389 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-3746 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-1348 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-4412 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-2195 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1288 *4)) (|:| |den| *4))))) (-1819 (*1 *1 *2 *3) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1264 *4)) (-4 *4 (-1242)) (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1264 (-419 *3))))) (-1781 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1288 *4)) (|:| |den| *4))))) (-3858 (*1 *1 *2 *3) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1264 *4)) (-4 *4 (-1242)) (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1264 (-419 *3))))) (-2860 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-2 (|:| |num| (-701 *5)) (|:| |den| *5))))) (-3756 (*1 *2 *1 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-3756 (*1 *2 *1 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) (-2774 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))))) (-1547 (*1 *1 *1) (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1242)) (-4 *3 (-1264 *2)) (-4 *4 (-1264 (-419 *3))))) (-2796 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1242)) (-4 *3 (-1264 *2)) (-4 *4 (-1264 (-419 *3))))) (-2861 (*1 *2) (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1242)) (-4 *4 (-1264 (-419 *2))) (-4 *2 (-1264 *3)))) (-4308 (*1 *2) (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1242)) (-4 *4 (-1264 (-419 *2))) (-4 *2 (-1264 *3)))) (-2598 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-1242)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-353 *4 *5 *6)))) (-3763 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-4 *4 (-374)) (-5 *2 (-656 (-971 *4))))) (-3075 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *3 (-379)) (-5 *2 (-656 (-656 *3)))))) +(-13 (-736 (-419 |t#2|) |t#3|) (-10 -8 (-15 -1386 ((-783))) (-15 -3385 ((-783))) (-15 -3573 ((-112))) (-15 -4341 ((-112) |t#1| |t#1|)) (-15 -3067 ((-112))) (-15 -4191 ((-112) |t#1|)) (-15 -4191 ((-112) |t#2|)) (-15 -2407 ((-112))) (-15 -3123 ((-112) |t#1|)) (-15 -3123 ((-112) |t#2|)) (-15 -3658 ((-112))) (-15 -3005 ((-112) |t#1|)) (-15 -3005 ((-112) |t#2|)) (-15 -3358 ((-1288 $))) (-15 -3637 ((-1288 $))) (-15 -1353 ((-112) $)) (-15 -3756 ((-112) $)) (-15 -2420 ((-1288 $) (-1288 $))) (-15 -4076 ((-1288 $) (-1288 $))) (-15 -2268 ((-1288 $) (-1288 $))) (-15 -3389 ((-701 (-419 |t#2|)))) (-15 -3746 ((-701 (-419 |t#2|)))) (-15 -1348 ((-701 (-419 |t#2|)))) (-15 -4412 ((-701 (-419 |t#2|)))) (-15 -2195 ((-2 (|:| |num| (-1288 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1819 ($ (-1288 |t#2|) |t#2|)) (-15 -1781 ((-2 (|:| |num| (-1288 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3858 ($ (-1288 |t#2|) |t#2|)) (-15 -2860 ((-2 (|:| |num| (-701 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3756 ((-112) $ |t#1|)) (-15 -3756 ((-112) $ |t#2|)) (-15 -2774 ($ $ (-1 |t#2| |t#2|))) (-15 -1547 ($ $)) (-15 -2796 (|t#1| $ |t#1| |t#1|)) (-15 -2861 ((-3 |t#2| "failed"))) (-15 -4308 ((-3 |t#2| "failed"))) (-15 -2598 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-374)) (-15 -3763 ((-656 (-971 |t#1|)) (-1197))) |%noBranch|) (IF (|has| |t#1| (-379)) (-15 -3075 ((-656 (-656 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -2759 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-38 #1=(-419 |#2|)) . T) ((-38 $) -2759 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-102) . T) ((-111 #0# #0#) -2759 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2759 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-146))) ((-148) |has| (-419 |#2|) (-148)) ((-628 #0#) -2759 (|has| (-419 |#2|) (-1059 (-419 (-576)))) (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-628 #1#) . T) ((-628 (-576)) . T) ((-628 $) -2759 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-625 (-876)) . T) ((-174) . T) ((-626 |#3|) . T) ((-234 $) -2759 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-232 #1#) |has| (-419 |#2|) (-374)) ((-238) -2759 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-237) -2759 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-272 #1#) |has| (-419 |#2|) (-374)) ((-248) -2759 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-300) -2759 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-317) -2759 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-374) -2759 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-414) |has| (-419 |#2|) (-360)) ((-379) -2759 (|has| (-419 |#2|) (-379)) (|has| (-419 |#2|) (-360))) ((-360) |has| (-419 |#2|) (-360)) ((-381 #1# |#3|) . T) ((-421 #1# |#3|) . T) ((-388 #1#) . T) ((-423 #1#) . T) ((-464) -2759 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-568) -2759 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-658 #0#) -2759 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-658 #1#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) -2759 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-660 #1#) . T) ((-660 #2=(-576)) |has| (-419 |#2|) (-651 (-576))) ((-660 $) . T) ((-652 #0#) -2759 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-652 #1#) . T) ((-652 $) -2759 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-651 #1#) . T) ((-651 #2#) |has| (-419 |#2|) (-651 (-576))) ((-729 #0#) -2759 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-729 #1#) . T) ((-729 $) -2759 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-736 #1# |#3|) . T) ((-738) . T) ((-911 $ #3=(-1197)) -2759 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197))))) ((-917 (-1197)) -12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) ((-919 #3#) -2759 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197))))) ((-939) -2759 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1059 (-419 (-576))) |has| (-419 |#2|) (-1059 (-419 (-576)))) ((-1059 #1#) . T) ((-1059 (-576)) |has| (-419 |#2|) (-1059 (-576))) ((-1072 #0#) -2759 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1072 #1#) . T) ((-1072 $) . T) ((-1077 #0#) -2759 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1077 #1#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) |has| (-419 |#2|) (-360)) ((-1238) . T) ((-1242) -2759 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-4217 (((-112) $) NIL)) (-2611 (((-783)) NIL)) (-2210 (((-929 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-4371 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-929 |#1|) (-379)))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3330 (((-112) $ $) NIL)) (-2098 (((-783)) NIL (|has| (-929 |#1|) (-379)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-929 |#1|) "failed") $) NIL)) (-2859 (((-929 |#1|) $) NIL)) (-1819 (($ (-1288 (-929 |#1|))) NIL)) (-2868 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-929 |#1|) (-379)))) (-3428 (($ $ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-929 |#1|) (-379)))) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-2345 (($) NIL (|has| (-929 |#1|) (-379)))) (-1543 (((-112) $) NIL (|has| (-929 |#1|) (-379)))) (-3153 (($ $ (-783)) NIL (-2759 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379)))) (($ $) NIL (-2759 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-3833 (((-112) $) NIL)) (-3726 (((-940) $) NIL (|has| (-929 |#1|) (-379))) (((-845 (-940)) $) NIL (-2759 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-1351 (((-112) $) NIL)) (-3975 (($) NIL (|has| (-929 |#1|) (-379)))) (-3381 (((-112) $) NIL (|has| (-929 |#1|) (-379)))) (-2738 (((-929 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-2734 (((-3 $ "failed") $) NIL (|has| (-929 |#1|) (-379)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1989 (((-1193 (-929 |#1|)) $) NIL) (((-1193 $) $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-1558 (((-940) $) NIL (|has| (-929 |#1|) (-379)))) (-2997 (((-1193 (-929 |#1|)) $) NIL (|has| (-929 |#1|) (-379)))) (-3720 (((-1193 (-929 |#1|)) $) NIL (|has| (-929 |#1|) (-379))) (((-3 (-1193 (-929 |#1|)) "failed") $ $) NIL (|has| (-929 |#1|) (-379)))) (-1999 (($ $ (-1193 (-929 |#1|))) NIL (|has| (-929 |#1|) (-379)))) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3539 (($) NIL (|has| (-929 |#1|) (-379)) CONST)) (-3223 (($ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-3759 (((-112) $) NIL)) (-1450 (((-1141) $) NIL)) (-4367 (((-977 (-1141))) NIL)) (-4128 (($) NIL (|has| (-929 |#1|) (-379)))) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1913 (((-656 (-2 (|:| -1828 (-576)) (|:| -2508 (-576))))) NIL (|has| (-929 |#1|) (-379)))) (-1828 (((-430 $) $) NIL)) (-2135 (((-845 (-940))) NIL) (((-940)) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1979 (((-783) $) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-1813 (((-783) $) NIL (|has| (-929 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-2759 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-2319 (((-135)) NIL)) (-2774 (($ $ (-783)) NIL (|has| (-929 |#1|) (-379))) (($ $) NIL (|has| (-929 |#1|) (-379)))) (-2683 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-1346 (((-1193 (-929 |#1|))) NIL)) (-3371 (($) NIL (|has| (-929 |#1|) (-379)))) (-3931 (($) NIL (|has| (-929 |#1|) (-379)))) (-4096 (((-1288 (-929 |#1|)) $) NIL) (((-701 (-929 |#1|)) (-1288 $)) NIL)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| (-929 |#1|) (-379)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-929 |#1|)) NIL)) (-3390 (($ $) NIL (|has| (-929 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2759 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-2675 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-1505 (((-112) $ $) NIL)) (-2476 (((-112) $) NIL)) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-3108 (($ $) NIL (|has| (-929 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-929 |#1|) (-379)))) (-2020 (($ $ (-783)) NIL (|has| (-929 |#1|) (-379))) (($ $) NIL (|has| (-929 |#1|) (-379)))) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL) (($ $ (-929 |#1|)) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-929 |#1|)) NIL) (($ (-929 |#1|) $) NIL))) +(((-354 |#1| |#2|) (-13 (-339 (-929 |#1|)) (-10 -7 (-15 -4367 ((-977 (-1141)))))) (-940) (-940)) (T -354)) +((-4367 (*1 *2) (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-354 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940))))) +(-13 (-339 (-929 |#1|)) (-10 -7 (-15 -4367 ((-977 (-1141)))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 58)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-4217 (((-112) $) NIL)) (-2611 (((-783)) NIL)) (-2210 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-4371 (((-1210 (-940) (-783)) (-576)) 56 (|has| |#1| (-379)))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3330 (((-112) $ $) NIL)) (-2098 (((-783)) NIL (|has| |#1| (-379)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) 142)) (-2859 ((|#1| $) 113)) (-1819 (($ (-1288 |#1|)) 130)) (-2868 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-379)))) (-3428 (($ $ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1836 (($) 124 (|has| |#1| (-379)))) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-2345 (($) 160 (|has| |#1| (-379)))) (-1543 (((-112) $) 66 (|has| |#1| (-379)))) (-3153 (($ $ (-783)) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3833 (((-112) $) NIL)) (-3726 (((-940) $) 60 (|has| |#1| (-379))) (((-845 (-940)) $) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1351 (((-112) $) 62)) (-3975 (($) 162 (|has| |#1| (-379)))) (-3381 (((-112) $) NIL (|has| |#1| (-379)))) (-2738 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-2734 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1989 (((-1193 |#1|) $) 117) (((-1193 $) $ (-940)) NIL (|has| |#1| (-379)))) (-1558 (((-940) $) 171 (|has| |#1| (-379)))) (-2997 (((-1193 |#1|) $) NIL (|has| |#1| (-379)))) (-3720 (((-1193 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-1999 (($ $ (-1193 |#1|)) NIL (|has| |#1| (-379)))) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) 178)) (-3539 (($) NIL (|has| |#1| (-379)) CONST)) (-3223 (($ (-940)) 96 (|has| |#1| (-379)))) (-3759 (((-112) $) 147)) (-1450 (((-1141) $) NIL)) (-4367 (((-977 (-1141))) 57)) (-4128 (($) 158 (|has| |#1| (-379)))) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1913 (((-656 (-2 (|:| -1828 (-576)) (|:| -2508 (-576))))) 119 (|has| |#1| (-379)))) (-1828 (((-430 $) $) NIL)) (-2135 (((-845 (-940))) 90) (((-940)) 91)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1979 (((-783) $) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-1813 (((-783) $) 161 (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) 154 (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2319 (((-135)) NIL)) (-2774 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2683 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-1346 (((-1193 |#1|)) 122)) (-3371 (($) 159 (|has| |#1| (-379)))) (-3931 (($) 167 (|has| |#1| (-379)))) (-4096 (((-1288 |#1|) $) 77) (((-701 |#1|) (-1288 $)) NIL)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-3569 (((-876) $) 174) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 100)) (-3390 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3154 (((-783)) 155 T CONST)) (-2399 (((-112) $ $) NIL)) (-2675 (((-1288 $)) 144) (((-1288 $) (-940)) 98)) (-1505 (((-112) $ $) NIL)) (-2476 (((-112) $) NIL)) (-2721 (($) 67 T CONST)) (-2731 (($) 103 T CONST)) (-3108 (($ $) 107 (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-2020 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2924 (((-112) $ $) 65)) (-3056 (($ $ $) 176) (($ $ |#1|) 177)) (-3043 (($ $) 157) (($ $ $) NIL)) (-3029 (($ $ $) 86)) (** (($ $ (-940)) 180) (($ $ (-783)) 181) (($ $ (-576)) 179)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 102) (($ $ $) 101) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175))) +(((-355 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -4367 ((-977 (-1141)))))) (-360) (-1193 |#1|)) (T -355)) +((-4367 (*1 *2) (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-355 *3 *4)) (-4 *3 (-360)) (-14 *4 (-1193 *3))))) +(-13 (-339 |#1|) (-10 -7 (-15 -4367 ((-977 (-1141)))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-4217 (((-112) $) NIL)) (-2611 (((-783)) NIL)) (-2210 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-4371 (((-1210 (-940) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3330 (((-112) $ $) NIL)) (-2098 (((-783)) NIL (|has| |#1| (-379)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2859 ((|#1| $) NIL)) (-1819 (($ (-1288 |#1|)) NIL)) (-2868 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-3428 (($ $ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| |#1| (-379)))) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-2345 (($) NIL (|has| |#1| (-379)))) (-1543 (((-112) $) NIL (|has| |#1| (-379)))) (-3153 (($ $ (-783)) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3833 (((-112) $) NIL)) (-3726 (((-940) $) NIL (|has| |#1| (-379))) (((-845 (-940)) $) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1351 (((-112) $) NIL)) (-3975 (($) NIL (|has| |#1| (-379)))) (-3381 (((-112) $) NIL (|has| |#1| (-379)))) (-2738 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-2734 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1989 (((-1193 |#1|) $) NIL) (((-1193 $) $ (-940)) NIL (|has| |#1| (-379)))) (-1558 (((-940) $) NIL (|has| |#1| (-379)))) (-2997 (((-1193 |#1|) $) NIL (|has| |#1| (-379)))) (-3720 (((-1193 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-1999 (($ $ (-1193 |#1|)) NIL (|has| |#1| (-379)))) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3539 (($) NIL (|has| |#1| (-379)) CONST)) (-3223 (($ (-940)) NIL (|has| |#1| (-379)))) (-3759 (((-112) $) NIL)) (-1450 (((-1141) $) NIL)) (-4367 (((-977 (-1141))) NIL)) (-4128 (($) NIL (|has| |#1| (-379)))) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1913 (((-656 (-2 (|:| -1828 (-576)) (|:| -2508 (-576))))) NIL (|has| |#1| (-379)))) (-1828 (((-430 $) $) NIL)) (-2135 (((-845 (-940))) NIL) (((-940)) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1979 (((-783) $) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-1813 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2319 (((-135)) NIL)) (-2774 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2683 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-1346 (((-1193 |#1|)) NIL)) (-3371 (($) NIL (|has| |#1| (-379)))) (-3931 (($) NIL (|has| |#1| (-379)))) (-4096 (((-1288 |#1|) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-3390 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-2675 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-1505 (((-112) $ $) NIL)) (-2476 (((-112) $) NIL)) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-3108 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-2020 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-356 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -4367 ((-977 (-1141)))))) (-360) (-940)) (T -356)) +((-4367 (*1 *2) (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-356 *3 *4)) (-4 *3 (-360)) (-14 *4 (-940))))) +(-13 (-339 |#1|) (-10 -7 (-15 -4367 ((-977 (-1141)))))) +((-3802 (((-783) (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141)))))) 61)) (-2760 (((-977 (-1141)) (-1193 |#1|)) 112)) (-2478 (((-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))) (-1193 |#1|)) 103)) (-1606 (((-701 |#1|) (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141)))))) 113)) (-1663 (((-3 (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))) "failed") (-940)) 13)) (-3736 (((-3 (-1193 |#1|) (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141)))))) (-940)) 18))) +(((-357 |#1|) (-10 -7 (-15 -2760 ((-977 (-1141)) (-1193 |#1|))) (-15 -2478 ((-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))) (-1193 |#1|))) (-15 -1606 ((-701 |#1|) (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))))) (-15 -3802 ((-783) (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))))) (-15 -1663 ((-3 (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))) "failed") (-940))) (-15 -3736 ((-3 (-1193 |#1|) (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141)))))) (-940)))) (-360)) (T -357)) +((-3736 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-3 (-1193 *4) (-1288 (-656 (-2 (|:| -3104 *4) (|:| -3223 (-1141))))))) (-5 *1 (-357 *4)) (-4 *4 (-360)))) (-1663 (*1 *2 *3) (|partial| -12 (-5 *3 (-940)) (-5 *2 (-1288 (-656 (-2 (|:| -3104 *4) (|:| -3223 (-1141)))))) (-5 *1 (-357 *4)) (-4 *4 (-360)))) (-3802 (*1 *2 *3) (-12 (-5 *3 (-1288 (-656 (-2 (|:| -3104 *4) (|:| -3223 (-1141)))))) (-4 *4 (-360)) (-5 *2 (-783)) (-5 *1 (-357 *4)))) (-1606 (*1 *2 *3) (-12 (-5 *3 (-1288 (-656 (-2 (|:| -3104 *4) (|:| -3223 (-1141)))))) (-4 *4 (-360)) (-5 *2 (-701 *4)) (-5 *1 (-357 *4)))) (-2478 (*1 *2 *3) (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-1288 (-656 (-2 (|:| -3104 *4) (|:| -3223 (-1141)))))) (-5 *1 (-357 *4)))) (-2760 (*1 *2 *3) (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-977 (-1141))) (-5 *1 (-357 *4))))) +(-10 -7 (-15 -2760 ((-977 (-1141)) (-1193 |#1|))) (-15 -2478 ((-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))) (-1193 |#1|))) (-15 -1606 ((-701 |#1|) (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))))) (-15 -3802 ((-783) (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))))) (-15 -1663 ((-3 (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))) "failed") (-940))) (-15 -3736 ((-3 (-1193 |#1|) (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141)))))) (-940)))) +((-3569 ((|#1| |#3|) 104) ((|#3| |#1|) 87))) +(((-358 |#1| |#2| |#3|) (-10 -7 (-15 -3569 (|#3| |#1|)) (-15 -3569 (|#1| |#3|))) (-339 |#2|) (-360) (-339 |#2|)) (T -358)) +((-3569 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *2 *4 *3)) (-4 *3 (-339 *4)))) (-3569 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *3 *4 *2)) (-4 *3 (-339 *4))))) +(-10 -7 (-15 -3569 (|#3| |#1|)) (-15 -3569 (|#1| |#3|))) +((-1543 (((-112) $) 60)) (-3726 (((-845 (-940)) $) 23) (((-940) $) 64)) (-2734 (((-3 $ "failed") $) 18)) (-3539 (($) 9)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 114)) (-1813 (((-3 (-783) "failed") $ $) 92) (((-783) $) 79)) (-2774 (($ $) 8) (($ $ (-783)) NIL)) (-3371 (($) 53)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) 38)) (-3390 (((-3 $ "failed") $) 45) (($ $) 44))) +(((-359 |#1|) (-10 -8 (-15 -3726 ((-940) |#1|)) (-15 -1813 ((-783) |#1|)) (-15 -1543 ((-112) |#1|)) (-15 -3371 (|#1|)) (-15 -2889 ((-3 (-1288 |#1|) "failed") (-701 |#1|))) (-15 -3390 (|#1| |#1|)) (-15 -2774 (|#1| |#1| (-783))) (-15 -2774 (|#1| |#1|)) (-15 -3539 (|#1|)) (-15 -2734 ((-3 |#1| "failed") |#1|)) (-15 -1813 ((-3 (-783) "failed") |#1| |#1|)) (-15 -3726 ((-845 (-940)) |#1|)) (-15 -3390 ((-3 |#1| "failed") |#1|)) (-15 -3327 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|)))) (-360)) (T -359)) +NIL +(-10 -8 (-15 -3726 ((-940) |#1|)) (-15 -1813 ((-783) |#1|)) (-15 -1543 ((-112) |#1|)) (-15 -3371 (|#1|)) (-15 -2889 ((-3 (-1288 |#1|) "failed") (-701 |#1|))) (-15 -3390 (|#1| |#1|)) (-15 -2774 (|#1| |#1| (-783))) (-15 -2774 (|#1| |#1|)) (-15 -3539 (|#1|)) (-15 -2734 ((-3 |#1| "failed") |#1|)) (-15 -1813 ((-3 (-783) "failed") |#1| |#1|)) (-15 -3726 ((-845 (-940)) |#1|)) (-15 -3390 ((-3 |#1| "failed") |#1|)) (-15 -3327 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-4195 (($ $) 46)) (-1760 (((-112) $) 44)) (-4371 (((-1210 (-940) (-783)) (-576)) 102)) (-2428 (((-3 $ "failed") $ $) 20)) (-3444 (($ $) 81)) (-3760 (((-430 $) $) 80)) (-3330 (((-112) $ $) 65)) (-2098 (((-783)) 112)) (-3404 (($) 18 T CONST)) (-2868 (((-3 "prime" "polynomial" "normal" "cyclic")) 96)) (-3428 (($ $ $) 61)) (-3673 (((-3 $ "failed") $) 37)) (-1836 (($) 115)) (-3440 (($ $ $) 62)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) 57)) (-2345 (($) 100)) (-1543 (((-112) $) 99)) (-3153 (($ $) 87) (($ $ (-783)) 86)) (-3833 (((-112) $) 79)) (-3726 (((-845 (-940)) $) 89) (((-940) $) 97)) (-1351 (((-112) $) 35)) (-2734 (((-3 $ "failed") $) 111)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-1558 (((-940) $) 114)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-2046 (((-1179) $) 10)) (-2050 (($ $) 78)) (-3539 (($) 110 T CONST)) (-3223 (($ (-940)) 113)) (-1450 (((-1141) $) 11)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3497 (($ $ $) 54) (($ (-656 $)) 53)) (-1913 (((-656 (-2 (|:| -1828 (-576)) (|:| -2508 (-576))))) 103)) (-1828 (((-430 $) $) 82)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3475 (((-3 $ "failed") $ $) 48)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1979 (((-783) $) 64)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 63)) (-1813 (((-3 (-783) "failed") $ $) 88) (((-783) $) 98)) (-2774 (($ $) 109) (($ $ (-783)) 107)) (-3371 (($) 101)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) 104)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-3390 (((-3 $ "failed") $) 90) (($ $) 105)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-1505 (((-112) $ $) 45)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2020 (($ $) 108) (($ $ (-783)) 106)) (-2924 (((-112) $ $) 8)) (-3056 (($ $ $) 73)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) (((-360) (-141)) (T -360)) -((-4336 (*1 *1 *1) (-4 *1 (-360))) (-2887 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-360)) (-5 *2 (-1288 *1)))) (-2406 (*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-656 (-2 (|:| -1828 (-576)) (|:| -3422 (-576))))))) (-4183 (*1 *2 *3) (-12 (-4 *1 (-360)) (-5 *3 (-576)) (-5 *2 (-1210 (-940) (-783))))) (-1535 (*1 *1) (-4 *1 (-360))) (-2005 (*1 *1) (-4 *1 (-360))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-112)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-783)))) (-3917 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-940)))) (-2554 (*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-414) (-379) (-1173) (-238) (-10 -8 (-15 -4336 ($ $)) (-15 -2887 ((-3 (-1288 $) "failed") (-701 $))) (-15 -2406 ((-656 (-2 (|:| -1828 (-576)) (|:| -3422 (-576)))))) (-15 -4183 ((-1210 (-940) (-783)) (-576))) (-15 -1535 ($)) (-15 -2005 ($)) (-15 -4090 ((-112) $)) (-15 -3793 ((-783) $)) (-15 -3917 ((-940) $)) (-15 -2554 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +((-3390 (*1 *1 *1) (-4 *1 (-360))) (-2889 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-360)) (-5 *2 (-1288 *1)))) (-1913 (*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-656 (-2 (|:| -1828 (-576)) (|:| -2508 (-576))))))) (-4371 (*1 *2 *3) (-12 (-4 *1 (-360)) (-5 *3 (-576)) (-5 *2 (-1210 (-940) (-783))))) (-3371 (*1 *1) (-4 *1 (-360))) (-2345 (*1 *1) (-4 *1 (-360))) (-1543 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-112)))) (-1813 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-783)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-940)))) (-2868 (*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-414) (-379) (-1173) (-238) (-10 -8 (-15 -3390 ($ $)) (-15 -2889 ((-3 (-1288 $) "failed") (-701 $))) (-15 -1913 ((-656 (-2 (|:| -1828 (-576)) (|:| -2508 (-576)))))) (-15 -4371 ((-1210 (-940) (-783)) (-576))) (-15 -3371 ($)) (-15 -2345 ($)) (-15 -1543 ((-112) $)) (-15 -1813 ((-783) $)) (-15 -3726 ((-940) $)) (-15 -2868 ((-3 "prime" "polynomial" "normal" "cyclic"))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-234 $) . T) ((-238) . T) ((-237) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-414) . T) ((-379) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-939) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) . T) ((-1238) . T) ((-1242) . T)) -((-1908 (((-2 (|:| -1593 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|) 55)) (-3573 (((-2 (|:| -1593 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))) 53))) -(((-361 |#1| |#2| |#3|) (-10 -7 (-15 -3573 ((-2 (|:| -1593 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))))) (-15 -1908 ((-2 (|:| -1593 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|))) (-13 (-317) (-10 -8 (-15 -3921 ((-430 $) $)))) (-1264 |#1|) (-421 |#1| |#2|)) (T -361)) -((-1908 (*1 *2 *3) (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -3921 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *2 (-2 (|:| -1593 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-3573 (*1 *2) (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -3921 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *2 (-2 (|:| -1593 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) -(-10 -7 (-15 -3573 ((-2 (|:| -1593 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))))) (-15 -1908 ((-2 (|:| -1593 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-2441 (((-112) $) NIL)) (-2664 (((-783)) NIL)) (-2210 (((-929 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-4183 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-929 |#1|) (-379)))) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-3925 (((-783)) NIL)) (-4016 (((-112) $ $) NIL)) (-2098 (((-783)) NIL (|has| (-929 |#1|) (-379)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-929 |#1|) "failed") $) NIL)) (-2860 (((-929 |#1|) $) NIL)) (-4119 (($ (-1288 (-929 |#1|))) NIL)) (-2554 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-929 |#1|) (-379)))) (-3429 (($ $ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-929 |#1|) (-379)))) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-2005 (($) NIL (|has| (-929 |#1|) (-379)))) (-4090 (((-112) $) NIL (|has| (-929 |#1|) (-379)))) (-2910 (($ $ (-783)) NIL (-2760 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379)))) (($ $) NIL (-2760 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-4249 (((-112) $) NIL)) (-3917 (((-940) $) NIL (|has| (-929 |#1|) (-379))) (((-845 (-940)) $) NIL (-2760 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-4193 (((-112) $) NIL)) (-4263 (($) NIL (|has| (-929 |#1|) (-379)))) (-1536 (((-112) $) NIL (|has| (-929 |#1|) (-379)))) (-1381 (((-929 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-2240 (((-3 $ "failed") $) NIL (|has| (-929 |#1|) (-379)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2731 (((-1193 (-929 |#1|)) $) NIL) (((-1193 $) $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-4401 (((-940) $) NIL (|has| (-929 |#1|) (-379)))) (-1938 (((-1193 (-929 |#1|)) $) NIL (|has| (-929 |#1|) (-379)))) (-2512 (((-1193 (-929 |#1|)) $) NIL (|has| (-929 |#1|) (-379))) (((-3 (-1193 (-929 |#1|)) "failed") $ $) NIL (|has| (-929 |#1|) (-379)))) (-1649 (($ $ (-1193 (-929 |#1|))) NIL (|has| (-929 |#1|) (-379)))) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3540 (($) NIL (|has| (-929 |#1|) (-379)) CONST)) (-3224 (($ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-2844 (((-112) $) NIL)) (-1450 (((-1141) $) NIL)) (-2655 (((-1288 (-656 (-2 (|:| -3106 (-929 |#1|)) (|:| -3224 (-1141)))))) NIL)) (-1917 (((-701 (-929 |#1|))) NIL)) (-4129 (($) NIL (|has| (-929 |#1|) (-379)))) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2406 (((-656 (-2 (|:| -1828 (-576)) (|:| -3422 (-576))))) NIL (|has| (-929 |#1|) (-379)))) (-1828 (((-430 $) $) NIL)) (-2301 (((-845 (-940))) NIL) (((-940)) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1967 (((-783) $) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-3793 (((-783) $) NIL (|has| (-929 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-2760 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-2003 (((-135)) NIL)) (-2775 (($ $ (-783)) NIL (|has| (-929 |#1|) (-379))) (($ $) NIL (|has| (-929 |#1|) (-379)))) (-3634 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-3867 (((-1193 (-929 |#1|))) NIL)) (-1535 (($) NIL (|has| (-929 |#1|) (-379)))) (-2532 (($) NIL (|has| (-929 |#1|) (-379)))) (-4152 (((-1288 (-929 |#1|)) $) NIL) (((-701 (-929 |#1|)) (-1288 $)) NIL)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| (-929 |#1|) (-379)))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-929 |#1|)) NIL)) (-4336 (($ $) NIL (|has| (-929 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2760 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-1593 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-2672 (((-112) $ $) NIL)) (-3419 (((-112) $) NIL)) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-3051 (($ $) NIL (|has| (-929 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-929 |#1|) (-379)))) (-2020 (($ $ (-783)) NIL (|has| (-929 |#1|) (-379))) (($ $) NIL (|has| (-929 |#1|) (-379)))) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ $) NIL) (($ $ (-929 |#1|)) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-929 |#1|)) NIL) (($ (-929 |#1|) $) NIL))) -(((-362 |#1| |#2|) (-13 (-339 (-929 |#1|)) (-10 -7 (-15 -2655 ((-1288 (-656 (-2 (|:| -3106 (-929 |#1|)) (|:| -3224 (-1141))))))) (-15 -1917 ((-701 (-929 |#1|)))) (-15 -3925 ((-783))))) (-940) (-940)) (T -362)) -((-2655 (*1 *2) (-12 (-5 *2 (-1288 (-656 (-2 (|:| -3106 (-929 *3)) (|:| -3224 (-1141)))))) (-5 *1 (-362 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940)))) (-1917 (*1 *2) (-12 (-5 *2 (-701 (-929 *3))) (-5 *1 (-362 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940)))) (-3925 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-362 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940))))) -(-13 (-339 (-929 |#1|)) (-10 -7 (-15 -2655 ((-1288 (-656 (-2 (|:| -3106 (-929 |#1|)) (|:| -3224 (-1141))))))) (-15 -1917 ((-701 (-929 |#1|)))) (-15 -3925 ((-783))))) -((-3489 (((-112) $ $) 73)) (-4308 (((-112) $) 88)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-2441 (((-112) $) NIL)) (-2664 (((-783)) NIL)) (-2210 ((|#1| $) 106) (($ $ (-940)) 104 (|has| |#1| (-379)))) (-4183 (((-1210 (-940) (-783)) (-576)) 170 (|has| |#1| (-379)))) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-3925 (((-783)) 103)) (-4016 (((-112) $ $) NIL)) (-2098 (((-783)) 187 (|has| |#1| (-379)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) 127)) (-2860 ((|#1| $) 105)) (-4119 (($ (-1288 |#1|)) 71)) (-2554 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-379)))) (-3429 (($ $ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-1836 (($) 182 (|has| |#1| (-379)))) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-2005 (($) 171 (|has| |#1| (-379)))) (-4090 (((-112) $) NIL (|has| |#1| (-379)))) (-2910 (($ $ (-783)) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4249 (((-112) $) NIL)) (-3917 (((-940) $) NIL (|has| |#1| (-379))) (((-845 (-940)) $) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4193 (((-112) $) NIL)) (-4263 (($) 113 (|has| |#1| (-379)))) (-1536 (((-112) $) 200 (|has| |#1| (-379)))) (-1381 ((|#1| $) 108) (($ $ (-940)) 107 (|has| |#1| (-379)))) (-2240 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2731 (((-1193 |#1|) $) 214) (((-1193 $) $ (-940)) NIL (|has| |#1| (-379)))) (-4401 (((-940) $) 148 (|has| |#1| (-379)))) (-1938 (((-1193 |#1|) $) 87 (|has| |#1| (-379)))) (-2512 (((-1193 |#1|) $) 84 (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) 96 (|has| |#1| (-379)))) (-1649 (($ $ (-1193 |#1|)) 83 (|has| |#1| (-379)))) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) 218)) (-3540 (($) NIL (|has| |#1| (-379)) CONST)) (-3224 (($ (-940)) 150 (|has| |#1| (-379)))) (-2844 (((-112) $) 123)) (-1450 (((-1141) $) NIL)) (-2655 (((-1288 (-656 (-2 (|:| -3106 |#1|) (|:| -3224 (-1141)))))) 97)) (-1917 (((-701 |#1|)) 101)) (-4129 (($) 110 (|has| |#1| (-379)))) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2406 (((-656 (-2 (|:| -1828 (-576)) (|:| -3422 (-576))))) 173 (|has| |#1| (-379)))) (-1828 (((-430 $) $) NIL)) (-2301 (((-845 (-940))) NIL) (((-940)) 174)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1967 (((-783) $) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-3793 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2003 (((-135)) NIL)) (-2775 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3634 (((-845 (-940)) $) NIL) (((-940) $) 75)) (-3867 (((-1193 |#1|)) 175)) (-1535 (($) 147 (|has| |#1| (-379)))) (-2532 (($) NIL (|has| |#1| (-379)))) (-4152 (((-1288 |#1|) $) 121) (((-701 |#1|) (-1288 $)) NIL)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-3570 (((-876) $) 140) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 70)) (-4336 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3996 (((-783)) 180 T CONST)) (-4055 (((-112) $ $) NIL)) (-1593 (((-1288 $)) 197) (((-1288 $) (-940)) 116)) (-2672 (((-112) $ $) NIL)) (-3419 (((-112) $) NIL)) (-2721 (($) 186 T CONST)) (-2732 (($) 161 T CONST)) (-3051 (($ $) 122 (|has| |#1| (-379))) (($ $ (-783)) 114 (|has| |#1| (-379)))) (-2020 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2925 (((-112) $ $) 208)) (-3057 (($ $ $) 119) (($ $ |#1|) 120)) (-3044 (($ $) 202) (($ $ $) 206)) (-3030 (($ $ $) 204)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 153)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 211) (($ $ $) 164) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 118))) -(((-363 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2655 ((-1288 (-656 (-2 (|:| -3106 |#1|) (|:| -3224 (-1141))))))) (-15 -1917 ((-701 |#1|))) (-15 -3925 ((-783))))) (-360) (-3 (-1193 |#1|) (-1288 (-656 (-2 (|:| -3106 |#1|) (|:| -3224 (-1141))))))) (T -363)) -((-2655 (*1 *2) (-12 (-5 *2 (-1288 (-656 (-2 (|:| -3106 *3) (|:| -3224 (-1141)))))) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1193 *3) *2)))) (-1917 (*1 *2) (-12 (-5 *2 (-701 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1193 *3) (-1288 (-656 (-2 (|:| -3106 *3) (|:| -3224 (-1141))))))))) (-3925 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1193 *3) (-1288 (-656 (-2 (|:| -3106 *3) (|:| -3224 (-1141)))))))))) -(-13 (-339 |#1|) (-10 -7 (-15 -2655 ((-1288 (-656 (-2 (|:| -3106 |#1|) (|:| -3224 (-1141))))))) (-15 -1917 ((-701 |#1|))) (-15 -3925 ((-783))))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-2441 (((-112) $) NIL)) (-2664 (((-783)) NIL)) (-2210 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-4183 (((-1210 (-940) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-3925 (((-783)) NIL)) (-4016 (((-112) $ $) NIL)) (-2098 (((-783)) NIL (|has| |#1| (-379)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2860 ((|#1| $) NIL)) (-4119 (($ (-1288 |#1|)) NIL)) (-2554 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-3429 (($ $ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| |#1| (-379)))) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-2005 (($) NIL (|has| |#1| (-379)))) (-4090 (((-112) $) NIL (|has| |#1| (-379)))) (-2910 (($ $ (-783)) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4249 (((-112) $) NIL)) (-3917 (((-940) $) NIL (|has| |#1| (-379))) (((-845 (-940)) $) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4193 (((-112) $) NIL)) (-4263 (($) NIL (|has| |#1| (-379)))) (-1536 (((-112) $) NIL (|has| |#1| (-379)))) (-1381 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-2240 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2731 (((-1193 |#1|) $) NIL) (((-1193 $) $ (-940)) NIL (|has| |#1| (-379)))) (-4401 (((-940) $) NIL (|has| |#1| (-379)))) (-1938 (((-1193 |#1|) $) NIL (|has| |#1| (-379)))) (-2512 (((-1193 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-1649 (($ $ (-1193 |#1|)) NIL (|has| |#1| (-379)))) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3540 (($) NIL (|has| |#1| (-379)) CONST)) (-3224 (($ (-940)) NIL (|has| |#1| (-379)))) (-2844 (((-112) $) NIL)) (-1450 (((-1141) $) NIL)) (-2655 (((-1288 (-656 (-2 (|:| -3106 |#1|) (|:| -3224 (-1141)))))) NIL)) (-1917 (((-701 |#1|)) NIL)) (-4129 (($) NIL (|has| |#1| (-379)))) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2406 (((-656 (-2 (|:| -1828 (-576)) (|:| -3422 (-576))))) NIL (|has| |#1| (-379)))) (-1828 (((-430 $) $) NIL)) (-2301 (((-845 (-940))) NIL) (((-940)) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1967 (((-783) $) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-3793 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2003 (((-135)) NIL)) (-2775 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3634 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-3867 (((-1193 |#1|)) NIL)) (-1535 (($) NIL (|has| |#1| (-379)))) (-2532 (($) NIL (|has| |#1| (-379)))) (-4152 (((-1288 |#1|) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-4336 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-1593 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-2672 (((-112) $ $) NIL)) (-3419 (((-112) $) NIL)) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-3051 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-2020 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-364 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2655 ((-1288 (-656 (-2 (|:| -3106 |#1|) (|:| -3224 (-1141))))))) (-15 -1917 ((-701 |#1|))) (-15 -3925 ((-783))))) (-360) (-940)) (T -364)) -((-2655 (*1 *2) (-12 (-5 *2 (-1288 (-656 (-2 (|:| -3106 *3) (|:| -3224 (-1141)))))) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-940)))) (-1917 (*1 *2) (-12 (-5 *2 (-701 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-940)))) (-3925 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-940))))) -(-13 (-339 |#1|) (-10 -7 (-15 -2655 ((-1288 (-656 (-2 (|:| -3106 |#1|) (|:| -3224 (-1141))))))) (-15 -1917 ((-701 |#1|))) (-15 -3925 ((-783))))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-2441 (((-112) $) NIL)) (-2664 (((-783)) NIL)) (-2210 (((-929 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-4183 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-929 |#1|) (-379)))) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-4016 (((-112) $ $) NIL)) (-2098 (((-783)) NIL (|has| (-929 |#1|) (-379)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-929 |#1|) "failed") $) NIL)) (-2860 (((-929 |#1|) $) NIL)) (-4119 (($ (-1288 (-929 |#1|))) NIL)) (-2554 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-929 |#1|) (-379)))) (-3429 (($ $ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-929 |#1|) (-379)))) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-2005 (($) NIL (|has| (-929 |#1|) (-379)))) (-4090 (((-112) $) NIL (|has| (-929 |#1|) (-379)))) (-2910 (($ $ (-783)) NIL (-2760 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379)))) (($ $) NIL (-2760 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-4249 (((-112) $) NIL)) (-3917 (((-940) $) NIL (|has| (-929 |#1|) (-379))) (((-845 (-940)) $) NIL (-2760 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-4193 (((-112) $) NIL)) (-4263 (($) NIL (|has| (-929 |#1|) (-379)))) (-1536 (((-112) $) NIL (|has| (-929 |#1|) (-379)))) (-1381 (((-929 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-2240 (((-3 $ "failed") $) NIL (|has| (-929 |#1|) (-379)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2731 (((-1193 (-929 |#1|)) $) NIL) (((-1193 $) $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-4401 (((-940) $) NIL (|has| (-929 |#1|) (-379)))) (-1938 (((-1193 (-929 |#1|)) $) NIL (|has| (-929 |#1|) (-379)))) (-2512 (((-1193 (-929 |#1|)) $) NIL (|has| (-929 |#1|) (-379))) (((-3 (-1193 (-929 |#1|)) "failed") $ $) NIL (|has| (-929 |#1|) (-379)))) (-1649 (($ $ (-1193 (-929 |#1|))) NIL (|has| (-929 |#1|) (-379)))) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3540 (($) NIL (|has| (-929 |#1|) (-379)) CONST)) (-3224 (($ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-2844 (((-112) $) NIL)) (-1450 (((-1141) $) NIL)) (-4129 (($) NIL (|has| (-929 |#1|) (-379)))) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2406 (((-656 (-2 (|:| -1828 (-576)) (|:| -3422 (-576))))) NIL (|has| (-929 |#1|) (-379)))) (-1828 (((-430 $) $) NIL)) (-2301 (((-845 (-940))) NIL) (((-940)) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1967 (((-783) $) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-3793 (((-783) $) NIL (|has| (-929 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-2760 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-2003 (((-135)) NIL)) (-2775 (($ $ (-783)) NIL (|has| (-929 |#1|) (-379))) (($ $) NIL (|has| (-929 |#1|) (-379)))) (-3634 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-3867 (((-1193 (-929 |#1|))) NIL)) (-1535 (($) NIL (|has| (-929 |#1|) (-379)))) (-2532 (($) NIL (|has| (-929 |#1|) (-379)))) (-4152 (((-1288 (-929 |#1|)) $) NIL) (((-701 (-929 |#1|)) (-1288 $)) NIL)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| (-929 |#1|) (-379)))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-929 |#1|)) NIL)) (-4336 (($ $) NIL (|has| (-929 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2760 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-1593 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-2672 (((-112) $ $) NIL)) (-3419 (((-112) $) NIL)) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-3051 (($ $) NIL (|has| (-929 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-929 |#1|) (-379)))) (-2020 (($ $ (-783)) NIL (|has| (-929 |#1|) (-379))) (($ $) NIL (|has| (-929 |#1|) (-379)))) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ $) NIL) (($ $ (-929 |#1|)) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-929 |#1|)) NIL) (($ (-929 |#1|) $) NIL))) +((-2659 (((-2 (|:| -2675 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|) 55)) (-3358 (((-2 (|:| -2675 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))) 53))) +(((-361 |#1| |#2| |#3|) (-10 -7 (-15 -3358 ((-2 (|:| -2675 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))))) (-15 -2659 ((-2 (|:| -2675 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|))) (-13 (-317) (-10 -8 (-15 -3760 ((-430 $) $)))) (-1264 |#1|) (-421 |#1| |#2|)) (T -361)) +((-2659 (*1 *2 *3) (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -3760 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *2 (-2 (|:| -2675 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-3358 (*1 *2) (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -3760 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *2 (-2 (|:| -2675 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) +(-10 -7 (-15 -3358 ((-2 (|:| -2675 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))))) (-15 -2659 ((-2 (|:| -2675 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-4217 (((-112) $) NIL)) (-2611 (((-783)) NIL)) (-2210 (((-929 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-4371 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-929 |#1|) (-379)))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3802 (((-783)) NIL)) (-3330 (((-112) $ $) NIL)) (-2098 (((-783)) NIL (|has| (-929 |#1|) (-379)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-929 |#1|) "failed") $) NIL)) (-2859 (((-929 |#1|) $) NIL)) (-1819 (($ (-1288 (-929 |#1|))) NIL)) (-2868 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-929 |#1|) (-379)))) (-3428 (($ $ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-929 |#1|) (-379)))) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-2345 (($) NIL (|has| (-929 |#1|) (-379)))) (-1543 (((-112) $) NIL (|has| (-929 |#1|) (-379)))) (-3153 (($ $ (-783)) NIL (-2759 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379)))) (($ $) NIL (-2759 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-3833 (((-112) $) NIL)) (-3726 (((-940) $) NIL (|has| (-929 |#1|) (-379))) (((-845 (-940)) $) NIL (-2759 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-1351 (((-112) $) NIL)) (-3975 (($) NIL (|has| (-929 |#1|) (-379)))) (-3381 (((-112) $) NIL (|has| (-929 |#1|) (-379)))) (-2738 (((-929 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-2734 (((-3 $ "failed") $) NIL (|has| (-929 |#1|) (-379)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1989 (((-1193 (-929 |#1|)) $) NIL) (((-1193 $) $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-1558 (((-940) $) NIL (|has| (-929 |#1|) (-379)))) (-2997 (((-1193 (-929 |#1|)) $) NIL (|has| (-929 |#1|) (-379)))) (-3720 (((-1193 (-929 |#1|)) $) NIL (|has| (-929 |#1|) (-379))) (((-3 (-1193 (-929 |#1|)) "failed") $ $) NIL (|has| (-929 |#1|) (-379)))) (-1999 (($ $ (-1193 (-929 |#1|))) NIL (|has| (-929 |#1|) (-379)))) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3539 (($) NIL (|has| (-929 |#1|) (-379)) CONST)) (-3223 (($ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-3759 (((-112) $) NIL)) (-1450 (((-1141) $) NIL)) (-2540 (((-1288 (-656 (-2 (|:| -3104 (-929 |#1|)) (|:| -3223 (-1141)))))) NIL)) (-2753 (((-701 (-929 |#1|))) NIL)) (-4128 (($) NIL (|has| (-929 |#1|) (-379)))) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1913 (((-656 (-2 (|:| -1828 (-576)) (|:| -2508 (-576))))) NIL (|has| (-929 |#1|) (-379)))) (-1828 (((-430 $) $) NIL)) (-2135 (((-845 (-940))) NIL) (((-940)) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1979 (((-783) $) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-1813 (((-783) $) NIL (|has| (-929 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-2759 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-2319 (((-135)) NIL)) (-2774 (($ $ (-783)) NIL (|has| (-929 |#1|) (-379))) (($ $) NIL (|has| (-929 |#1|) (-379)))) (-2683 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-1346 (((-1193 (-929 |#1|))) NIL)) (-3371 (($) NIL (|has| (-929 |#1|) (-379)))) (-3931 (($) NIL (|has| (-929 |#1|) (-379)))) (-4096 (((-1288 (-929 |#1|)) $) NIL) (((-701 (-929 |#1|)) (-1288 $)) NIL)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| (-929 |#1|) (-379)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-929 |#1|)) NIL)) (-3390 (($ $) NIL (|has| (-929 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2759 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-2675 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-1505 (((-112) $ $) NIL)) (-2476 (((-112) $) NIL)) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-3108 (($ $) NIL (|has| (-929 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-929 |#1|) (-379)))) (-2020 (($ $ (-783)) NIL (|has| (-929 |#1|) (-379))) (($ $) NIL (|has| (-929 |#1|) (-379)))) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL) (($ $ (-929 |#1|)) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-929 |#1|)) NIL) (($ (-929 |#1|) $) NIL))) +(((-362 |#1| |#2|) (-13 (-339 (-929 |#1|)) (-10 -7 (-15 -2540 ((-1288 (-656 (-2 (|:| -3104 (-929 |#1|)) (|:| -3223 (-1141))))))) (-15 -2753 ((-701 (-929 |#1|)))) (-15 -3802 ((-783))))) (-940) (-940)) (T -362)) +((-2540 (*1 *2) (-12 (-5 *2 (-1288 (-656 (-2 (|:| -3104 (-929 *3)) (|:| -3223 (-1141)))))) (-5 *1 (-362 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940)))) (-2753 (*1 *2) (-12 (-5 *2 (-701 (-929 *3))) (-5 *1 (-362 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940)))) (-3802 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-362 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940))))) +(-13 (-339 (-929 |#1|)) (-10 -7 (-15 -2540 ((-1288 (-656 (-2 (|:| -3104 (-929 |#1|)) (|:| -3223 (-1141))))))) (-15 -2753 ((-701 (-929 |#1|)))) (-15 -3802 ((-783))))) +((-3488 (((-112) $ $) 73)) (-3135 (((-112) $) 88)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-4217 (((-112) $) NIL)) (-2611 (((-783)) NIL)) (-2210 ((|#1| $) 106) (($ $ (-940)) 104 (|has| |#1| (-379)))) (-4371 (((-1210 (-940) (-783)) (-576)) 170 (|has| |#1| (-379)))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3802 (((-783)) 103)) (-3330 (((-112) $ $) NIL)) (-2098 (((-783)) 187 (|has| |#1| (-379)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) 127)) (-2859 ((|#1| $) 105)) (-1819 (($ (-1288 |#1|)) 71)) (-2868 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-379)))) (-3428 (($ $ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1836 (($) 182 (|has| |#1| (-379)))) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-2345 (($) 171 (|has| |#1| (-379)))) (-1543 (((-112) $) NIL (|has| |#1| (-379)))) (-3153 (($ $ (-783)) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3833 (((-112) $) NIL)) (-3726 (((-940) $) NIL (|has| |#1| (-379))) (((-845 (-940)) $) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1351 (((-112) $) NIL)) (-3975 (($) 113 (|has| |#1| (-379)))) (-3381 (((-112) $) 200 (|has| |#1| (-379)))) (-2738 ((|#1| $) 108) (($ $ (-940)) 107 (|has| |#1| (-379)))) (-2734 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1989 (((-1193 |#1|) $) 214) (((-1193 $) $ (-940)) NIL (|has| |#1| (-379)))) (-1558 (((-940) $) 148 (|has| |#1| (-379)))) (-2997 (((-1193 |#1|) $) 87 (|has| |#1| (-379)))) (-3720 (((-1193 |#1|) $) 84 (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) 96 (|has| |#1| (-379)))) (-1999 (($ $ (-1193 |#1|)) 83 (|has| |#1| (-379)))) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) 218)) (-3539 (($) NIL (|has| |#1| (-379)) CONST)) (-3223 (($ (-940)) 150 (|has| |#1| (-379)))) (-3759 (((-112) $) 123)) (-1450 (((-1141) $) NIL)) (-2540 (((-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141)))))) 97)) (-2753 (((-701 |#1|)) 101)) (-4128 (($) 110 (|has| |#1| (-379)))) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1913 (((-656 (-2 (|:| -1828 (-576)) (|:| -2508 (-576))))) 173 (|has| |#1| (-379)))) (-1828 (((-430 $) $) NIL)) (-2135 (((-845 (-940))) NIL) (((-940)) 174)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1979 (((-783) $) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-1813 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2319 (((-135)) NIL)) (-2774 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2683 (((-845 (-940)) $) NIL) (((-940) $) 75)) (-1346 (((-1193 |#1|)) 175)) (-3371 (($) 147 (|has| |#1| (-379)))) (-3931 (($) NIL (|has| |#1| (-379)))) (-4096 (((-1288 |#1|) $) 121) (((-701 |#1|) (-1288 $)) NIL)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-3569 (((-876) $) 140) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 70)) (-3390 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3154 (((-783)) 180 T CONST)) (-2399 (((-112) $ $) NIL)) (-2675 (((-1288 $)) 197) (((-1288 $) (-940)) 116)) (-1505 (((-112) $ $) NIL)) (-2476 (((-112) $) NIL)) (-2721 (($) 186 T CONST)) (-2731 (($) 161 T CONST)) (-3108 (($ $) 122 (|has| |#1| (-379))) (($ $ (-783)) 114 (|has| |#1| (-379)))) (-2020 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2924 (((-112) $ $) 208)) (-3056 (($ $ $) 119) (($ $ |#1|) 120)) (-3043 (($ $) 202) (($ $ $) 206)) (-3029 (($ $ $) 204)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 153)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 211) (($ $ $) 164) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 118))) +(((-363 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2540 ((-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))))) (-15 -2753 ((-701 |#1|))) (-15 -3802 ((-783))))) (-360) (-3 (-1193 |#1|) (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))))) (T -363)) +((-2540 (*1 *2) (-12 (-5 *2 (-1288 (-656 (-2 (|:| -3104 *3) (|:| -3223 (-1141)))))) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1193 *3) *2)))) (-2753 (*1 *2) (-12 (-5 *2 (-701 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1193 *3) (-1288 (-656 (-2 (|:| -3104 *3) (|:| -3223 (-1141))))))))) (-3802 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1193 *3) (-1288 (-656 (-2 (|:| -3104 *3) (|:| -3223 (-1141)))))))))) +(-13 (-339 |#1|) (-10 -7 (-15 -2540 ((-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))))) (-15 -2753 ((-701 |#1|))) (-15 -3802 ((-783))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-4217 (((-112) $) NIL)) (-2611 (((-783)) NIL)) (-2210 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-4371 (((-1210 (-940) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3802 (((-783)) NIL)) (-3330 (((-112) $ $) NIL)) (-2098 (((-783)) NIL (|has| |#1| (-379)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2859 ((|#1| $) NIL)) (-1819 (($ (-1288 |#1|)) NIL)) (-2868 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-3428 (($ $ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| |#1| (-379)))) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-2345 (($) NIL (|has| |#1| (-379)))) (-1543 (((-112) $) NIL (|has| |#1| (-379)))) (-3153 (($ $ (-783)) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3833 (((-112) $) NIL)) (-3726 (((-940) $) NIL (|has| |#1| (-379))) (((-845 (-940)) $) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1351 (((-112) $) NIL)) (-3975 (($) NIL (|has| |#1| (-379)))) (-3381 (((-112) $) NIL (|has| |#1| (-379)))) (-2738 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-2734 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1989 (((-1193 |#1|) $) NIL) (((-1193 $) $ (-940)) NIL (|has| |#1| (-379)))) (-1558 (((-940) $) NIL (|has| |#1| (-379)))) (-2997 (((-1193 |#1|) $) NIL (|has| |#1| (-379)))) (-3720 (((-1193 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-1999 (($ $ (-1193 |#1|)) NIL (|has| |#1| (-379)))) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3539 (($) NIL (|has| |#1| (-379)) CONST)) (-3223 (($ (-940)) NIL (|has| |#1| (-379)))) (-3759 (((-112) $) NIL)) (-1450 (((-1141) $) NIL)) (-2540 (((-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141)))))) NIL)) (-2753 (((-701 |#1|)) NIL)) (-4128 (($) NIL (|has| |#1| (-379)))) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1913 (((-656 (-2 (|:| -1828 (-576)) (|:| -2508 (-576))))) NIL (|has| |#1| (-379)))) (-1828 (((-430 $) $) NIL)) (-2135 (((-845 (-940))) NIL) (((-940)) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1979 (((-783) $) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-1813 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2319 (((-135)) NIL)) (-2774 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2683 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-1346 (((-1193 |#1|)) NIL)) (-3371 (($) NIL (|has| |#1| (-379)))) (-3931 (($) NIL (|has| |#1| (-379)))) (-4096 (((-1288 |#1|) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-3390 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-2675 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-1505 (((-112) $ $) NIL)) (-2476 (((-112) $) NIL)) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-3108 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-2020 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-364 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2540 ((-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))))) (-15 -2753 ((-701 |#1|))) (-15 -3802 ((-783))))) (-360) (-940)) (T -364)) +((-2540 (*1 *2) (-12 (-5 *2 (-1288 (-656 (-2 (|:| -3104 *3) (|:| -3223 (-1141)))))) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-940)))) (-2753 (*1 *2) (-12 (-5 *2 (-701 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-940)))) (-3802 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-940))))) +(-13 (-339 |#1|) (-10 -7 (-15 -2540 ((-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))))) (-15 -2753 ((-701 |#1|))) (-15 -3802 ((-783))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-4217 (((-112) $) NIL)) (-2611 (((-783)) NIL)) (-2210 (((-929 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-4371 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-929 |#1|) (-379)))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3330 (((-112) $ $) NIL)) (-2098 (((-783)) NIL (|has| (-929 |#1|) (-379)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-929 |#1|) "failed") $) NIL)) (-2859 (((-929 |#1|) $) NIL)) (-1819 (($ (-1288 (-929 |#1|))) NIL)) (-2868 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-929 |#1|) (-379)))) (-3428 (($ $ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-929 |#1|) (-379)))) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-2345 (($) NIL (|has| (-929 |#1|) (-379)))) (-1543 (((-112) $) NIL (|has| (-929 |#1|) (-379)))) (-3153 (($ $ (-783)) NIL (-2759 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379)))) (($ $) NIL (-2759 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-3833 (((-112) $) NIL)) (-3726 (((-940) $) NIL (|has| (-929 |#1|) (-379))) (((-845 (-940)) $) NIL (-2759 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-1351 (((-112) $) NIL)) (-3975 (($) NIL (|has| (-929 |#1|) (-379)))) (-3381 (((-112) $) NIL (|has| (-929 |#1|) (-379)))) (-2738 (((-929 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-2734 (((-3 $ "failed") $) NIL (|has| (-929 |#1|) (-379)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1989 (((-1193 (-929 |#1|)) $) NIL) (((-1193 $) $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-1558 (((-940) $) NIL (|has| (-929 |#1|) (-379)))) (-2997 (((-1193 (-929 |#1|)) $) NIL (|has| (-929 |#1|) (-379)))) (-3720 (((-1193 (-929 |#1|)) $) NIL (|has| (-929 |#1|) (-379))) (((-3 (-1193 (-929 |#1|)) "failed") $ $) NIL (|has| (-929 |#1|) (-379)))) (-1999 (($ $ (-1193 (-929 |#1|))) NIL (|has| (-929 |#1|) (-379)))) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3539 (($) NIL (|has| (-929 |#1|) (-379)) CONST)) (-3223 (($ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-3759 (((-112) $) NIL)) (-1450 (((-1141) $) NIL)) (-4128 (($) NIL (|has| (-929 |#1|) (-379)))) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1913 (((-656 (-2 (|:| -1828 (-576)) (|:| -2508 (-576))))) NIL (|has| (-929 |#1|) (-379)))) (-1828 (((-430 $) $) NIL)) (-2135 (((-845 (-940))) NIL) (((-940)) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1979 (((-783) $) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-1813 (((-783) $) NIL (|has| (-929 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-2759 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-2319 (((-135)) NIL)) (-2774 (($ $ (-783)) NIL (|has| (-929 |#1|) (-379))) (($ $) NIL (|has| (-929 |#1|) (-379)))) (-2683 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-1346 (((-1193 (-929 |#1|))) NIL)) (-3371 (($) NIL (|has| (-929 |#1|) (-379)))) (-3931 (($) NIL (|has| (-929 |#1|) (-379)))) (-4096 (((-1288 (-929 |#1|)) $) NIL) (((-701 (-929 |#1|)) (-1288 $)) NIL)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| (-929 |#1|) (-379)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-929 |#1|)) NIL)) (-3390 (($ $) NIL (|has| (-929 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2759 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-2675 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-1505 (((-112) $ $) NIL)) (-2476 (((-112) $) NIL)) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-3108 (($ $) NIL (|has| (-929 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-929 |#1|) (-379)))) (-2020 (($ $ (-783)) NIL (|has| (-929 |#1|) (-379))) (($ $) NIL (|has| (-929 |#1|) (-379)))) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL) (($ $ (-929 |#1|)) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-929 |#1|)) NIL) (($ (-929 |#1|) $) NIL))) (((-365 |#1| |#2|) (-339 (-929 |#1|)) (-940) (-940)) (T -365)) NIL (-339 (-929 |#1|)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-2441 (((-112) $) NIL)) (-2664 (((-783)) NIL)) (-2210 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-4183 (((-1210 (-940) (-783)) (-576)) 129 (|has| |#1| (-379)))) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-4016 (((-112) $ $) NIL)) (-2098 (((-783)) 155 (|has| |#1| (-379)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) 103)) (-2860 ((|#1| $) 100)) (-4119 (($ (-1288 |#1|)) 95)) (-2554 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-379)))) (-3429 (($ $ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-1836 (($) 92 (|has| |#1| (-379)))) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-2005 (($) 51 (|has| |#1| (-379)))) (-4090 (((-112) $) NIL (|has| |#1| (-379)))) (-2910 (($ $ (-783)) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4249 (((-112) $) NIL)) (-3917 (((-940) $) NIL (|has| |#1| (-379))) (((-845 (-940)) $) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4193 (((-112) $) NIL)) (-4263 (($) 130 (|has| |#1| (-379)))) (-1536 (((-112) $) 84 (|has| |#1| (-379)))) (-1381 ((|#1| $) 47) (($ $ (-940)) 52 (|has| |#1| (-379)))) (-2240 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2731 (((-1193 |#1|) $) 75) (((-1193 $) $ (-940)) NIL (|has| |#1| (-379)))) (-4401 (((-940) $) 107 (|has| |#1| (-379)))) (-1938 (((-1193 |#1|) $) NIL (|has| |#1| (-379)))) (-2512 (((-1193 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-1649 (($ $ (-1193 |#1|)) NIL (|has| |#1| (-379)))) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3540 (($) NIL (|has| |#1| (-379)) CONST)) (-3224 (($ (-940)) 105 (|has| |#1| (-379)))) (-2844 (((-112) $) 157)) (-1450 (((-1141) $) NIL)) (-4129 (($) 44 (|has| |#1| (-379)))) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2406 (((-656 (-2 (|:| -1828 (-576)) (|:| -3422 (-576))))) 124 (|has| |#1| (-379)))) (-1828 (((-430 $) $) NIL)) (-2301 (((-845 (-940))) NIL) (((-940)) 154)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1967 (((-783) $) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-3793 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2003 (((-135)) NIL)) (-2775 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3634 (((-845 (-940)) $) NIL) (((-940) $) 67)) (-3867 (((-1193 |#1|)) 98)) (-1535 (($) 135 (|has| |#1| (-379)))) (-2532 (($) NIL (|has| |#1| (-379)))) (-4152 (((-1288 |#1|) $) 63) (((-701 |#1|) (-1288 $)) NIL)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-3570 (((-876) $) 153) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 97)) (-4336 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3996 (((-783)) 159 T CONST)) (-4055 (((-112) $ $) 161)) (-1593 (((-1288 $)) 119) (((-1288 $) (-940)) 58)) (-2672 (((-112) $ $) NIL)) (-3419 (((-112) $) NIL)) (-2721 (($) 121 T CONST)) (-2732 (($) 40 T CONST)) (-3051 (($ $) 78 (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-2020 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2925 (((-112) $ $) 117)) (-3057 (($ $ $) 109) (($ $ |#1|) 110)) (-3044 (($ $) 90) (($ $ $) 115)) (-3030 (($ $ $) 113)) (** (($ $ (-940)) NIL) (($ $ (-783)) 53) (($ $ (-576)) 138)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 88) (($ $ $) 65) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 86))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-4217 (((-112) $) NIL)) (-2611 (((-783)) NIL)) (-2210 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-4371 (((-1210 (-940) (-783)) (-576)) 129 (|has| |#1| (-379)))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3330 (((-112) $ $) NIL)) (-2098 (((-783)) 155 (|has| |#1| (-379)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) 103)) (-2859 ((|#1| $) 100)) (-1819 (($ (-1288 |#1|)) 95)) (-2868 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-379)))) (-3428 (($ $ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1836 (($) 92 (|has| |#1| (-379)))) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-2345 (($) 51 (|has| |#1| (-379)))) (-1543 (((-112) $) NIL (|has| |#1| (-379)))) (-3153 (($ $ (-783)) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3833 (((-112) $) NIL)) (-3726 (((-940) $) NIL (|has| |#1| (-379))) (((-845 (-940)) $) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1351 (((-112) $) NIL)) (-3975 (($) 130 (|has| |#1| (-379)))) (-3381 (((-112) $) 84 (|has| |#1| (-379)))) (-2738 ((|#1| $) 47) (($ $ (-940)) 52 (|has| |#1| (-379)))) (-2734 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1989 (((-1193 |#1|) $) 75) (((-1193 $) $ (-940)) NIL (|has| |#1| (-379)))) (-1558 (((-940) $) 107 (|has| |#1| (-379)))) (-2997 (((-1193 |#1|) $) NIL (|has| |#1| (-379)))) (-3720 (((-1193 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-1999 (($ $ (-1193 |#1|)) NIL (|has| |#1| (-379)))) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3539 (($) NIL (|has| |#1| (-379)) CONST)) (-3223 (($ (-940)) 105 (|has| |#1| (-379)))) (-3759 (((-112) $) 157)) (-1450 (((-1141) $) NIL)) (-4128 (($) 44 (|has| |#1| (-379)))) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1913 (((-656 (-2 (|:| -1828 (-576)) (|:| -2508 (-576))))) 124 (|has| |#1| (-379)))) (-1828 (((-430 $) $) NIL)) (-2135 (((-845 (-940))) NIL) (((-940)) 154)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1979 (((-783) $) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-1813 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2319 (((-135)) NIL)) (-2774 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2683 (((-845 (-940)) $) NIL) (((-940) $) 67)) (-1346 (((-1193 |#1|)) 98)) (-3371 (($) 135 (|has| |#1| (-379)))) (-3931 (($) NIL (|has| |#1| (-379)))) (-4096 (((-1288 |#1|) $) 63) (((-701 |#1|) (-1288 $)) NIL)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-3569 (((-876) $) 153) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 97)) (-3390 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3154 (((-783)) 159 T CONST)) (-2399 (((-112) $ $) 161)) (-2675 (((-1288 $)) 119) (((-1288 $) (-940)) 58)) (-1505 (((-112) $ $) NIL)) (-2476 (((-112) $) NIL)) (-2721 (($) 121 T CONST)) (-2731 (($) 40 T CONST)) (-3108 (($ $) 78 (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-2020 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2924 (((-112) $ $) 117)) (-3056 (($ $ $) 109) (($ $ |#1|) 110)) (-3043 (($ $) 90) (($ $ $) 115)) (-3029 (($ $ $) 113)) (** (($ $ (-940)) NIL) (($ $ (-783)) 53) (($ $ (-576)) 138)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 88) (($ $ $) 65) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 86))) (((-366 |#1| |#2|) (-339 |#1|) (-360) (-1193 |#1|)) (T -366)) NIL (-339 |#1|) -((-2190 ((|#1| (-1193 |#2|)) 59))) -(((-367 |#1| |#2|) (-10 -7 (-15 -2190 (|#1| (-1193 |#2|)))) (-13 (-414) (-10 -7 (-15 -3570 (|#1| |#2|)) (-15 -4401 ((-940) |#1|)) (-15 -1593 ((-1288 |#1|) (-940))) (-15 -3051 (|#1| |#1|)))) (-360)) (T -367)) -((-2190 (*1 *2 *3) (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-4 *2 (-13 (-414) (-10 -7 (-15 -3570 (*2 *4)) (-15 -4401 ((-940) *2)) (-15 -1593 ((-1288 *2) (-940))) (-15 -3051 (*2 *2))))) (-5 *1 (-367 *2 *4))))) -(-10 -7 (-15 -2190 (|#1| (-1193 |#2|)))) -((-1647 (((-977 (-1193 |#1|)) (-1193 |#1|)) 49)) (-1836 (((-1193 |#1|) (-940) (-940)) 154) (((-1193 |#1|) (-940)) 150)) (-4090 (((-112) (-1193 |#1|)) 107)) (-2130 (((-940) (-940)) 85)) (-3777 (((-940) (-940)) 92)) (-3656 (((-940) (-940)) 83)) (-1536 (((-112) (-1193 |#1|)) 111)) (-2004 (((-3 (-1193 |#1|) "failed") (-1193 |#1|)) 135)) (-3682 (((-3 (-1193 |#1|) "failed") (-1193 |#1|)) 140)) (-3338 (((-3 (-1193 |#1|) "failed") (-1193 |#1|)) 139)) (-1831 (((-3 (-1193 |#1|) "failed") (-1193 |#1|)) 138)) (-2601 (((-3 (-1193 |#1|) "failed") (-1193 |#1|)) 131)) (-2158 (((-1193 |#1|) (-1193 |#1|)) 71)) (-2989 (((-1193 |#1|) (-940)) 145)) (-2049 (((-1193 |#1|) (-940)) 148)) (-4409 (((-1193 |#1|) (-940)) 147)) (-2239 (((-1193 |#1|) (-940)) 146)) (-2943 (((-1193 |#1|) (-940)) 143))) -(((-368 |#1|) (-10 -7 (-15 -4090 ((-112) (-1193 |#1|))) (-15 -1536 ((-112) (-1193 |#1|))) (-15 -3656 ((-940) (-940))) (-15 -2130 ((-940) (-940))) (-15 -3777 ((-940) (-940))) (-15 -2943 ((-1193 |#1|) (-940))) (-15 -2989 ((-1193 |#1|) (-940))) (-15 -2239 ((-1193 |#1|) (-940))) (-15 -4409 ((-1193 |#1|) (-940))) (-15 -2049 ((-1193 |#1|) (-940))) (-15 -2601 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -2004 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -1831 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -3338 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -3682 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -1836 ((-1193 |#1|) (-940))) (-15 -1836 ((-1193 |#1|) (-940) (-940))) (-15 -2158 ((-1193 |#1|) (-1193 |#1|))) (-15 -1647 ((-977 (-1193 |#1|)) (-1193 |#1|)))) (-360)) (T -368)) -((-1647 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-977 (-1193 *4))) (-5 *1 (-368 *4)) (-5 *3 (-1193 *4)))) (-2158 (*1 *2 *2) (-12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-1836 (*1 *2 *3 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-1836 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-3682 (*1 *2 *2) (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-3338 (*1 *2 *2) (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-1831 (*1 *2 *2) (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2004 (*1 *2 *2) (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2601 (*1 *2 *2) (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2049 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-4409 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2239 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2989 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2943 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-3777 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-2130 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-3656 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-1536 (*1 *2 *3) (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-368 *4)))) (-4090 (*1 *2 *3) (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-368 *4))))) -(-10 -7 (-15 -4090 ((-112) (-1193 |#1|))) (-15 -1536 ((-112) (-1193 |#1|))) (-15 -3656 ((-940) (-940))) (-15 -2130 ((-940) (-940))) (-15 -3777 ((-940) (-940))) (-15 -2943 ((-1193 |#1|) (-940))) (-15 -2989 ((-1193 |#1|) (-940))) (-15 -2239 ((-1193 |#1|) (-940))) (-15 -4409 ((-1193 |#1|) (-940))) (-15 -2049 ((-1193 |#1|) (-940))) (-15 -2601 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -2004 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -1831 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -3338 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -3682 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -1836 ((-1193 |#1|) (-940))) (-15 -1836 ((-1193 |#1|) (-940) (-940))) (-15 -2158 ((-1193 |#1|) (-1193 |#1|))) (-15 -1647 ((-977 (-1193 |#1|)) (-1193 |#1|)))) -((-1963 (((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|) 38))) -(((-369 |#1| |#2| |#3|) (-10 -7 (-15 -1963 ((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|))) (-360) (-1264 |#1|) (-1264 |#2|)) (T -369)) -((-1963 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-360)) (-5 *1 (-369 *4 *5 *3))))) -(-10 -7 (-15 -1963 ((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-2441 (((-112) $) NIL)) (-2664 (((-783)) NIL)) (-2210 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-4183 (((-1210 (-940) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-4016 (((-112) $ $) NIL)) (-2098 (((-783)) NIL (|has| |#1| (-379)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2860 ((|#1| $) NIL)) (-4119 (($ (-1288 |#1|)) NIL)) (-2554 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-3429 (($ $ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| |#1| (-379)))) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-2005 (($) NIL (|has| |#1| (-379)))) (-4090 (((-112) $) NIL (|has| |#1| (-379)))) (-2910 (($ $ (-783)) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4249 (((-112) $) NIL)) (-3917 (((-940) $) NIL (|has| |#1| (-379))) (((-845 (-940)) $) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4193 (((-112) $) NIL)) (-4263 (($) NIL (|has| |#1| (-379)))) (-1536 (((-112) $) NIL (|has| |#1| (-379)))) (-1381 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-2240 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2731 (((-1193 |#1|) $) NIL) (((-1193 $) $ (-940)) NIL (|has| |#1| (-379)))) (-4401 (((-940) $) NIL (|has| |#1| (-379)))) (-1938 (((-1193 |#1|) $) NIL (|has| |#1| (-379)))) (-2512 (((-1193 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-1649 (($ $ (-1193 |#1|)) NIL (|has| |#1| (-379)))) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3540 (($) NIL (|has| |#1| (-379)) CONST)) (-3224 (($ (-940)) NIL (|has| |#1| (-379)))) (-2844 (((-112) $) NIL)) (-1450 (((-1141) $) NIL)) (-4129 (($) NIL (|has| |#1| (-379)))) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2406 (((-656 (-2 (|:| -1828 (-576)) (|:| -3422 (-576))))) NIL (|has| |#1| (-379)))) (-1828 (((-430 $) $) NIL)) (-2301 (((-845 (-940))) NIL) (((-940)) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1967 (((-783) $) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-3793 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2003 (((-135)) NIL)) (-2775 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3634 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-3867 (((-1193 |#1|)) NIL)) (-1535 (($) NIL (|has| |#1| (-379)))) (-2532 (($) NIL (|has| |#1| (-379)))) (-4152 (((-1288 |#1|) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-4336 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-1593 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-2672 (((-112) $ $) NIL)) (-3419 (((-112) $) NIL)) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-3051 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-2020 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +((-3524 ((|#1| (-1193 |#2|)) 59))) +(((-367 |#1| |#2|) (-10 -7 (-15 -3524 (|#1| (-1193 |#2|)))) (-13 (-414) (-10 -7 (-15 -3569 (|#1| |#2|)) (-15 -1558 ((-940) |#1|)) (-15 -2675 ((-1288 |#1|) (-940))) (-15 -3108 (|#1| |#1|)))) (-360)) (T -367)) +((-3524 (*1 *2 *3) (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-4 *2 (-13 (-414) (-10 -7 (-15 -3569 (*2 *4)) (-15 -1558 ((-940) *2)) (-15 -2675 ((-1288 *2) (-940))) (-15 -3108 (*2 *2))))) (-5 *1 (-367 *2 *4))))) +(-10 -7 (-15 -3524 (|#1| (-1193 |#2|)))) +((-1983 (((-977 (-1193 |#1|)) (-1193 |#1|)) 49)) (-1836 (((-1193 |#1|) (-940) (-940)) 154) (((-1193 |#1|) (-940)) 150)) (-1543 (((-112) (-1193 |#1|)) 107)) (-4211 (((-940) (-940)) 85)) (-1646 (((-940) (-940)) 92)) (-2906 (((-940) (-940)) 83)) (-3381 (((-112) (-1193 |#1|)) 111)) (-2329 (((-3 (-1193 |#1|) "failed") (-1193 |#1|)) 135)) (-3179 (((-3 (-1193 |#1|) "failed") (-1193 |#1|)) 140)) (-2911 (((-3 (-1193 |#1|) "failed") (-1193 |#1|)) 139)) (-1359 (((-3 (-1193 |#1|) "failed") (-1193 |#1|)) 138)) (-2065 (((-3 (-1193 |#1|) "failed") (-1193 |#1|)) 131)) (-1332 (((-1193 |#1|) (-1193 |#1|)) 71)) (-3772 (((-1193 |#1|) (-940)) 145)) (-1527 (((-1193 |#1|) (-940)) 148)) (-1639 (((-1193 |#1|) (-940)) 147)) (-2723 (((-1193 |#1|) (-940)) 146)) (-3345 (((-1193 |#1|) (-940)) 143))) +(((-368 |#1|) (-10 -7 (-15 -1543 ((-112) (-1193 |#1|))) (-15 -3381 ((-112) (-1193 |#1|))) (-15 -2906 ((-940) (-940))) (-15 -4211 ((-940) (-940))) (-15 -1646 ((-940) (-940))) (-15 -3345 ((-1193 |#1|) (-940))) (-15 -3772 ((-1193 |#1|) (-940))) (-15 -2723 ((-1193 |#1|) (-940))) (-15 -1639 ((-1193 |#1|) (-940))) (-15 -1527 ((-1193 |#1|) (-940))) (-15 -2065 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -2329 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -1359 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -2911 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -3179 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -1836 ((-1193 |#1|) (-940))) (-15 -1836 ((-1193 |#1|) (-940) (-940))) (-15 -1332 ((-1193 |#1|) (-1193 |#1|))) (-15 -1983 ((-977 (-1193 |#1|)) (-1193 |#1|)))) (-360)) (T -368)) +((-1983 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-977 (-1193 *4))) (-5 *1 (-368 *4)) (-5 *3 (-1193 *4)))) (-1332 (*1 *2 *2) (-12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-1836 (*1 *2 *3 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-1836 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-3179 (*1 *2 *2) (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2911 (*1 *2 *2) (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-1359 (*1 *2 *2) (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2329 (*1 *2 *2) (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2065 (*1 *2 *2) (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-1527 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-1639 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2723 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-3772 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-3345 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-1646 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-4211 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-2906 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-368 *4)))) (-1543 (*1 *2 *3) (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-368 *4))))) +(-10 -7 (-15 -1543 ((-112) (-1193 |#1|))) (-15 -3381 ((-112) (-1193 |#1|))) (-15 -2906 ((-940) (-940))) (-15 -4211 ((-940) (-940))) (-15 -1646 ((-940) (-940))) (-15 -3345 ((-1193 |#1|) (-940))) (-15 -3772 ((-1193 |#1|) (-940))) (-15 -2723 ((-1193 |#1|) (-940))) (-15 -1639 ((-1193 |#1|) (-940))) (-15 -1527 ((-1193 |#1|) (-940))) (-15 -2065 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -2329 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -1359 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -2911 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -3179 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -1836 ((-1193 |#1|) (-940))) (-15 -1836 ((-1193 |#1|) (-940) (-940))) (-15 -1332 ((-1193 |#1|) (-1193 |#1|))) (-15 -1983 ((-977 (-1193 |#1|)) (-1193 |#1|)))) +((-3220 (((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|) 38))) +(((-369 |#1| |#2| |#3|) (-10 -7 (-15 -3220 ((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|))) (-360) (-1264 |#1|) (-1264 |#2|)) (T -369)) +((-3220 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-360)) (-5 *1 (-369 *4 *5 *3))))) +(-10 -7 (-15 -3220 ((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-4217 (((-112) $) NIL)) (-2611 (((-783)) NIL)) (-2210 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-4371 (((-1210 (-940) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3330 (((-112) $ $) NIL)) (-2098 (((-783)) NIL (|has| |#1| (-379)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2859 ((|#1| $) NIL)) (-1819 (($ (-1288 |#1|)) NIL)) (-2868 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-3428 (($ $ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| |#1| (-379)))) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-2345 (($) NIL (|has| |#1| (-379)))) (-1543 (((-112) $) NIL (|has| |#1| (-379)))) (-3153 (($ $ (-783)) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3833 (((-112) $) NIL)) (-3726 (((-940) $) NIL (|has| |#1| (-379))) (((-845 (-940)) $) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1351 (((-112) $) NIL)) (-3975 (($) NIL (|has| |#1| (-379)))) (-3381 (((-112) $) NIL (|has| |#1| (-379)))) (-2738 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-2734 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1989 (((-1193 |#1|) $) NIL) (((-1193 $) $ (-940)) NIL (|has| |#1| (-379)))) (-1558 (((-940) $) NIL (|has| |#1| (-379)))) (-2997 (((-1193 |#1|) $) NIL (|has| |#1| (-379)))) (-3720 (((-1193 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-1999 (($ $ (-1193 |#1|)) NIL (|has| |#1| (-379)))) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3539 (($) NIL (|has| |#1| (-379)) CONST)) (-3223 (($ (-940)) NIL (|has| |#1| (-379)))) (-3759 (((-112) $) NIL)) (-1450 (((-1141) $) NIL)) (-4128 (($) NIL (|has| |#1| (-379)))) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1913 (((-656 (-2 (|:| -1828 (-576)) (|:| -2508 (-576))))) NIL (|has| |#1| (-379)))) (-1828 (((-430 $) $) NIL)) (-2135 (((-845 (-940))) NIL) (((-940)) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1979 (((-783) $) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-1813 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2319 (((-135)) NIL)) (-2774 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2683 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-1346 (((-1193 |#1|)) NIL)) (-3371 (($) NIL (|has| |#1| (-379)))) (-3931 (($) NIL (|has| |#1| (-379)))) (-4096 (((-1288 |#1|) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-3390 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-2675 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-1505 (((-112) $ $) NIL)) (-2476 (((-112) $) NIL)) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-3108 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-2020 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) (((-370 |#1| |#2|) (-339 |#1|) (-360) (-940)) (T -370)) NIL (-339 |#1|) -((-3101 (((-112) (-656 (-971 |#1|))) 41)) (-1456 (((-656 (-971 |#1|)) (-656 (-971 |#1|))) 53)) (-2947 (((-3 (-656 (-971 |#1|)) "failed") (-656 (-971 |#1|))) 48))) -(((-371 |#1| |#2|) (-10 -7 (-15 -3101 ((-112) (-656 (-971 |#1|)))) (-15 -2947 ((-3 (-656 (-971 |#1|)) "failed") (-656 (-971 |#1|)))) (-15 -1456 ((-656 (-971 |#1|)) (-656 (-971 |#1|))))) (-464) (-656 (-1197))) (T -371)) -((-1456 (*1 *2 *2) (-12 (-5 *2 (-656 (-971 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1197))))) (-2947 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-971 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1197))))) (-3101 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-464)) (-5 *2 (-112)) (-5 *1 (-371 *4 *5)) (-14 *5 (-656 (-1197)))))) -(-10 -7 (-15 -3101 ((-112) (-656 (-971 |#1|)))) (-15 -2947 ((-3 (-656 (-971 |#1|)) "failed") (-656 (-971 |#1|)))) (-15 -1456 ((-656 (-971 |#1|)) (-656 (-971 |#1|))))) -((-3489 (((-112) $ $) NIL)) (-2098 (((-783) $) NIL)) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2860 ((|#1| $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-4193 (((-112) $) 17)) (-4276 ((|#1| $ (-576)) NIL)) (-2414 (((-576) $ (-576)) NIL)) (-3310 (($ (-1 |#1| |#1|) $) 34)) (-2053 (($ (-1 (-576) (-576)) $) 26)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) 28)) (-1450 (((-1141) $) NIL)) (-2761 (((-656 (-2 (|:| |gen| |#1|) (|:| -4104 (-576)))) $) 30)) (-2314 (($ $ $) NIL)) (-2076 (($ $ $) NIL)) (-3570 (((-876) $) 40) (($ |#1|) NIL)) (-4055 (((-112) $ $) NIL)) (-2732 (($) 11 T CONST)) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ |#1| (-576)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) -(((-372 |#1|) (-13 (-485) (-1059 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-576))) (-15 -2098 ((-783) $)) (-15 -2414 ((-576) $ (-576))) (-15 -4276 (|#1| $ (-576))) (-15 -2053 ($ (-1 (-576) (-576)) $)) (-15 -3310 ($ (-1 |#1| |#1|) $)) (-15 -2761 ((-656 (-2 (|:| |gen| |#1|) (|:| -4104 (-576)))) $)))) (-1121)) (T -372)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1121)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1121)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1121)))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-372 *3)) (-4 *3 (-1121)))) (-2414 (*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-372 *3)) (-4 *3 (-1121)))) (-4276 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1121)))) (-2053 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-576) (-576))) (-5 *1 (-372 *3)) (-4 *3 (-1121)))) (-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-372 *3)))) (-2761 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4104 (-576))))) (-5 *1 (-372 *3)) (-4 *3 (-1121))))) -(-13 (-485) (-1059 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-576))) (-15 -2098 ((-783) $)) (-15 -2414 ((-576) $ (-576))) (-15 -4276 (|#1| $ (-576))) (-15 -2053 ($ (-1 (-576) (-576)) $)) (-15 -3310 ($ (-1 |#1| |#1|) $)) (-15 -2761 ((-656 (-2 (|:| |gen| |#1|) (|:| -4104 (-576)))) $)))) -((-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 13)) (-2757 (($ $) 14)) (-3921 (((-430 $) $) 34)) (-4249 (((-112) $) 30)) (-2050 (($ $) 19)) (-3498 (($ $ $) 25) (($ (-656 $)) NIL)) (-1828 (((-430 $) $) 35)) (-3476 (((-3 $ "failed") $ $) 24)) (-1967 (((-783) $) 28)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 39)) (-2672 (((-112) $ $) 16)) (-3057 (($ $ $) 37))) -(((-373 |#1|) (-10 -8 (-15 -3057 (|#1| |#1| |#1|)) (-15 -2050 (|#1| |#1|)) (-15 -4249 ((-112) |#1|)) (-15 -3921 ((-430 |#1|) |#1|)) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -3274 ((-2 (|:| -2715 |#1|) (|:| -3624 |#1|)) |#1| |#1|)) (-15 -1967 ((-783) |#1|)) (-15 -3498 (|#1| (-656 |#1|))) (-15 -3498 (|#1| |#1| |#1|)) (-15 -2672 ((-112) |#1| |#1|)) (-15 -2757 (|#1| |#1|)) (-15 -2246 ((-2 (|:| -2778 |#1|) (|:| -4452 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3476 ((-3 |#1| "failed") |#1| |#1|))) (-374)) (T -373)) -NIL -(-10 -8 (-15 -3057 (|#1| |#1| |#1|)) (-15 -2050 (|#1| |#1|)) (-15 -4249 ((-112) |#1|)) (-15 -3921 ((-430 |#1|) |#1|)) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -3274 ((-2 (|:| -2715 |#1|) (|:| -3624 |#1|)) |#1| |#1|)) (-15 -1967 ((-783) |#1|)) (-15 -3498 (|#1| (-656 |#1|))) (-15 -3498 (|#1| |#1| |#1|)) (-15 -2672 ((-112) |#1| |#1|)) (-15 -2757 (|#1| |#1|)) (-15 -2246 ((-2 (|:| -2778 |#1|) (|:| -4452 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3476 ((-3 |#1| "failed") |#1| |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 47)) (-2757 (($ $) 46)) (-3788 (((-112) $) 44)) (-4367 (((-3 $ "failed") $ $) 20)) (-2487 (($ $) 81)) (-3921 (((-430 $) $) 80)) (-4016 (((-112) $ $) 65)) (-3886 (($) 18 T CONST)) (-3429 (($ $ $) 61)) (-1561 (((-3 $ "failed") $) 37)) (-3441 (($ $ $) 62)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) 57)) (-4249 (((-112) $) 79)) (-4193 (((-112) $) 35)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3458 (($ $ $) 52) (($ (-656 $)) 51)) (-3699 (((-1179) $) 10)) (-2050 (($ $) 78)) (-1450 (((-1141) $) 11)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-1828 (((-430 $) $) 82)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3476 (((-3 $ "failed") $ $) 48)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1967 (((-783) $) 64)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 63)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2672 (((-112) $ $) 45)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3057 (($ $ $) 73)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) +((-2318 (((-112) (-656 (-971 |#1|))) 41)) (-2445 (((-656 (-971 |#1|)) (-656 (-971 |#1|))) 53)) (-3386 (((-3 (-656 (-971 |#1|)) "failed") (-656 (-971 |#1|))) 48))) +(((-371 |#1| |#2|) (-10 -7 (-15 -2318 ((-112) (-656 (-971 |#1|)))) (-15 -3386 ((-3 (-656 (-971 |#1|)) "failed") (-656 (-971 |#1|)))) (-15 -2445 ((-656 (-971 |#1|)) (-656 (-971 |#1|))))) (-464) (-656 (-1197))) (T -371)) +((-2445 (*1 *2 *2) (-12 (-5 *2 (-656 (-971 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1197))))) (-3386 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-971 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1197))))) (-2318 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-464)) (-5 *2 (-112)) (-5 *1 (-371 *4 *5)) (-14 *5 (-656 (-1197)))))) +(-10 -7 (-15 -2318 ((-112) (-656 (-971 |#1|)))) (-15 -3386 ((-3 (-656 (-971 |#1|)) "failed") (-656 (-971 |#1|)))) (-15 -2445 ((-656 (-971 |#1|)) (-656 (-971 |#1|))))) +((-3488 (((-112) $ $) NIL)) (-2098 (((-783) $) NIL)) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2859 ((|#1| $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1351 (((-112) $) 17)) (-2807 ((|#1| $ (-576)) NIL)) (-1993 (((-576) $ (-576)) NIL)) (-3925 (($ (-1 |#1| |#1|) $) 34)) (-1555 (($ (-1 (-576) (-576)) $) 26)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) 28)) (-1450 (((-1141) $) NIL)) (-4213 (((-656 (-2 (|:| |gen| |#1|) (|:| -4103 (-576)))) $) 30)) (-2272 (($ $ $) NIL)) (-1758 (($ $ $) NIL)) (-3569 (((-876) $) 40) (($ |#1|) NIL)) (-2399 (((-112) $ $) NIL)) (-2731 (($) 11 T CONST)) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ |#1| (-576)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) +(((-372 |#1|) (-13 (-485) (-1059 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-576))) (-15 -2098 ((-783) $)) (-15 -1993 ((-576) $ (-576))) (-15 -2807 (|#1| $ (-576))) (-15 -1555 ($ (-1 (-576) (-576)) $)) (-15 -3925 ($ (-1 |#1| |#1|) $)) (-15 -4213 ((-656 (-2 (|:| |gen| |#1|) (|:| -4103 (-576)))) $)))) (-1121)) (T -372)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1121)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1121)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1121)))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-372 *3)) (-4 *3 (-1121)))) (-1993 (*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-372 *3)) (-4 *3 (-1121)))) (-2807 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1121)))) (-1555 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-576) (-576))) (-5 *1 (-372 *3)) (-4 *3 (-1121)))) (-3925 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-372 *3)))) (-4213 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4103 (-576))))) (-5 *1 (-372 *3)) (-4 *3 (-1121))))) +(-13 (-485) (-1059 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-576))) (-15 -2098 ((-783) $)) (-15 -1993 ((-576) $ (-576))) (-15 -2807 (|#1| $ (-576))) (-15 -1555 ($ (-1 (-576) (-576)) $)) (-15 -3925 ($ (-1 |#1| |#1|) $)) (-15 -4213 ((-656 (-2 (|:| |gen| |#1|) (|:| -4103 (-576)))) $)))) +((-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 13)) (-4195 (($ $) 14)) (-3760 (((-430 $) $) 34)) (-3833 (((-112) $) 30)) (-2050 (($ $) 19)) (-3497 (($ $ $) 25) (($ (-656 $)) NIL)) (-1828 (((-430 $) $) 35)) (-3475 (((-3 $ "failed") $ $) 24)) (-1979 (((-783) $) 28)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 39)) (-1505 (((-112) $ $) 16)) (-3056 (($ $ $) 37))) +(((-373 |#1|) (-10 -8 (-15 -3056 (|#1| |#1| |#1|)) (-15 -2050 (|#1| |#1|)) (-15 -3833 ((-112) |#1|)) (-15 -3760 ((-430 |#1|) |#1|)) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -3536 ((-2 (|:| -1855 |#1|) (|:| -3891 |#1|)) |#1| |#1|)) (-15 -1979 ((-783) |#1|)) (-15 -3497 (|#1| (-656 |#1|))) (-15 -3497 (|#1| |#1| |#1|)) (-15 -1505 ((-112) |#1| |#1|)) (-15 -4195 (|#1| |#1|)) (-15 -2798 ((-2 (|:| -4346 |#1|) (|:| -4451 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#1|))) (-374)) (T -373)) +NIL +(-10 -8 (-15 -3056 (|#1| |#1| |#1|)) (-15 -2050 (|#1| |#1|)) (-15 -3833 ((-112) |#1|)) (-15 -3760 ((-430 |#1|) |#1|)) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -3536 ((-2 (|:| -1855 |#1|) (|:| -3891 |#1|)) |#1| |#1|)) (-15 -1979 ((-783) |#1|)) (-15 -3497 (|#1| (-656 |#1|))) (-15 -3497 (|#1| |#1| |#1|)) (-15 -1505 ((-112) |#1| |#1|)) (-15 -4195 (|#1| |#1|)) (-15 -2798 ((-2 (|:| -4346 |#1|) (|:| -4451 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-4195 (($ $) 46)) (-1760 (((-112) $) 44)) (-2428 (((-3 $ "failed") $ $) 20)) (-3444 (($ $) 81)) (-3760 (((-430 $) $) 80)) (-3330 (((-112) $ $) 65)) (-3404 (($) 18 T CONST)) (-3428 (($ $ $) 61)) (-3673 (((-3 $ "failed") $) 37)) (-3440 (($ $ $) 62)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) 57)) (-3833 (((-112) $) 79)) (-1351 (((-112) $) 35)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-2046 (((-1179) $) 10)) (-2050 (($ $) 78)) (-1450 (((-1141) $) 11)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3497 (($ $ $) 54) (($ (-656 $)) 53)) (-1828 (((-430 $) $) 82)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3475 (((-3 $ "failed") $ $) 48)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1979 (((-783) $) 64)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 63)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-1505 (((-112) $ $) 45)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3056 (($ $ $) 73)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) (((-374) (-141)) (T -374)) -((-3057 (*1 *1 *1 *1) (-4 *1 (-374)))) -(-13 (-317) (-1242) (-248) (-10 -8 (-15 -3057 ($ $ $)) (-6 -4463) (-6 -4457))) +((-3056 (*1 *1 *1 *1) (-4 *1 (-374)))) +(-13 (-317) (-1242) (-248) (-10 -8 (-15 -3056 ($ $ $)) (-6 -4462) (-6 -4456))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-939) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T)) -((-3489 (((-112) $ $) 7)) (-1768 ((|#2| $ |#2|) 14)) (-1635 (($ $ (-1179)) 19)) (-3936 ((|#2| $) 15)) (-3257 (($ |#1|) 21) (($ |#1| (-1179)) 20)) (-2629 ((|#1| $) 17)) (-3699 (((-1179) $) 10)) (-4013 (((-1179) $) 16)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-3423 (($ $) 18)) (-4055 (((-112) $ $) 6)) (-2925 (((-112) $ $) 8))) +((-3488 (((-112) $ $) 7)) (-1923 ((|#2| $ |#2|) 14)) (-3149 (($ $ (-1179)) 19)) (-3917 ((|#2| $) 15)) (-3256 (($ |#1|) 21) (($ |#1| (-1179)) 20)) (-2628 ((|#1| $) 17)) (-2046 (((-1179) $) 10)) (-3311 (((-1179) $) 16)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2516 (($ $) 18)) (-2399 (((-112) $ $) 6)) (-2924 (((-112) $ $) 8))) (((-375 |#1| |#2|) (-141) (-1121) (-1121)) (T -375)) -((-3257 (*1 *1 *2) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-3257 (*1 *1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *1 (-375 *2 *4)) (-4 *2 (-1121)) (-4 *4 (-1121)))) (-1635 (*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-3423 (*1 *1 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-2629 (*1 *2 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1121)) (-4 *2 (-1121)))) (-4013 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-5 *2 (-1179)))) (-3936 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) (-1768 (*1 *2 *1 *2) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) -(-13 (-1121) (-10 -8 (-15 -3257 ($ |t#1|)) (-15 -3257 ($ |t#1| (-1179))) (-15 -1635 ($ $ (-1179))) (-15 -3423 ($ $)) (-15 -2629 (|t#1| $)) (-15 -4013 ((-1179) $)) (-15 -3936 (|t#2| $)) (-15 -1768 (|t#2| $ |t#2|)))) +((-3256 (*1 *1 *2) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-3256 (*1 *1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *1 (-375 *2 *4)) (-4 *2 (-1121)) (-4 *4 (-1121)))) (-3149 (*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-2516 (*1 *1 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-2628 (*1 *2 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1121)) (-4 *2 (-1121)))) (-3311 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-5 *2 (-1179)))) (-3917 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) (-1923 (*1 *2 *1 *2) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) +(-13 (-1121) (-10 -8 (-15 -3256 ($ |t#1|)) (-15 -3256 ($ |t#1| (-1179))) (-15 -3149 ($ $ (-1179))) (-15 -2516 ($ $)) (-15 -2628 (|t#1| $)) (-15 -3311 ((-1179) $)) (-15 -3917 (|t#2| $)) (-15 -1923 (|t#2| $ |t#2|)))) (((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-1768 ((|#1| $ |#1|) 31)) (-1635 (($ $ (-1179)) 23)) (-1506 (((-3 |#1| "failed") $) 30)) (-3936 ((|#1| $) 28)) (-3257 (($ (-400)) 22) (($ (-400) (-1179)) 21)) (-2629 (((-400) $) 25)) (-3699 (((-1179) $) NIL)) (-4013 (((-1179) $) 26)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 20)) (-3423 (($ $) 24)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 19))) -(((-376 |#1|) (-13 (-375 (-400) |#1|) (-10 -8 (-15 -1506 ((-3 |#1| "failed") $)))) (-1121)) (T -376)) -((-1506 (*1 *2 *1) (|partial| -12 (-5 *1 (-376 *2)) (-4 *2 (-1121))))) -(-13 (-375 (-400) |#1|) (-10 -8 (-15 -1506 ((-3 |#1| "failed") $)))) -((-3210 (((-1288 (-701 |#2|)) (-1288 $)) 67)) (-2191 (((-701 |#2|) (-1288 $)) 139)) (-3331 ((|#2| $) 36)) (-3352 (((-701 |#2|) $ (-1288 $)) 142)) (-2454 (((-3 $ "failed") $) 89)) (-1738 ((|#2| $) 39)) (-3471 (((-1193 |#2|) $) 98)) (-2267 ((|#2| (-1288 $)) 122)) (-2654 (((-1193 |#2|) $) 32)) (-2002 (((-112)) 116)) (-4119 (($ (-1288 |#2|) (-1288 $)) 132)) (-1561 (((-3 $ "failed") $) 93)) (-2035 (((-112)) 111)) (-1706 (((-112)) 106)) (-1758 (((-112)) 58)) (-1670 (((-701 |#2|) (-1288 $)) 137)) (-2756 ((|#2| $) 35)) (-2903 (((-701 |#2|) $ (-1288 $)) 141)) (-2941 (((-3 $ "failed") $) 87)) (-3394 ((|#2| $) 38)) (-4164 (((-1193 |#2|) $) 97)) (-3814 ((|#2| (-1288 $)) 120)) (-3145 (((-1193 |#2|) $) 30)) (-1707 (((-112)) 115)) (-2083 (((-112)) 108)) (-3897 (((-112)) 56)) (-3998 (((-112)) 103)) (-2522 (((-112)) 117)) (-4152 (((-1288 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) (-1288 $) (-1288 $)) 128)) (-2195 (((-112)) 113)) (-4208 (((-656 (-1288 |#2|))) 102)) (-1511 (((-112)) 114)) (-3689 (((-112)) 112)) (-3818 (((-112)) 51)) (-4395 (((-112)) 118))) -(((-377 |#1| |#2|) (-10 -8 (-15 -3471 ((-1193 |#2|) |#1|)) (-15 -4164 ((-1193 |#2|) |#1|)) (-15 -4208 ((-656 (-1288 |#2|)))) (-15 -2454 ((-3 |#1| "failed") |#1|)) (-15 -2941 ((-3 |#1| "failed") |#1|)) (-15 -1561 ((-3 |#1| "failed") |#1|)) (-15 -1706 ((-112))) (-15 -2083 ((-112))) (-15 -2035 ((-112))) (-15 -3897 ((-112))) (-15 -1758 ((-112))) (-15 -3998 ((-112))) (-15 -4395 ((-112))) (-15 -2522 ((-112))) (-15 -2002 ((-112))) (-15 -1707 ((-112))) (-15 -3818 ((-112))) (-15 -1511 ((-112))) (-15 -3689 ((-112))) (-15 -2195 ((-112))) (-15 -2654 ((-1193 |#2|) |#1|)) (-15 -3145 ((-1193 |#2|) |#1|)) (-15 -2191 ((-701 |#2|) (-1288 |#1|))) (-15 -1670 ((-701 |#2|) (-1288 |#1|))) (-15 -2267 (|#2| (-1288 |#1|))) (-15 -3814 (|#2| (-1288 |#1|))) (-15 -4119 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -4152 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4152 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -1738 (|#2| |#1|)) (-15 -3394 (|#2| |#1|)) (-15 -3331 (|#2| |#1|)) (-15 -2756 (|#2| |#1|)) (-15 -3352 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -2903 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -3210 ((-1288 (-701 |#2|)) (-1288 |#1|)))) (-378 |#2|) (-174)) (T -377)) -((-2195 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3689 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1511 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3818 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1707 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2002 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2522 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-4395 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3998 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1758 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3897 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2035 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2083 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1706 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-4208 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-656 (-1288 *4))) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4))))) -(-10 -8 (-15 -3471 ((-1193 |#2|) |#1|)) (-15 -4164 ((-1193 |#2|) |#1|)) (-15 -4208 ((-656 (-1288 |#2|)))) (-15 -2454 ((-3 |#1| "failed") |#1|)) (-15 -2941 ((-3 |#1| "failed") |#1|)) (-15 -1561 ((-3 |#1| "failed") |#1|)) (-15 -1706 ((-112))) (-15 -2083 ((-112))) (-15 -2035 ((-112))) (-15 -3897 ((-112))) (-15 -1758 ((-112))) (-15 -3998 ((-112))) (-15 -4395 ((-112))) (-15 -2522 ((-112))) (-15 -2002 ((-112))) (-15 -1707 ((-112))) (-15 -3818 ((-112))) (-15 -1511 ((-112))) (-15 -3689 ((-112))) (-15 -2195 ((-112))) (-15 -2654 ((-1193 |#2|) |#1|)) (-15 -3145 ((-1193 |#2|) |#1|)) (-15 -2191 ((-701 |#2|) (-1288 |#1|))) (-15 -1670 ((-701 |#2|) (-1288 |#1|))) (-15 -2267 (|#2| (-1288 |#1|))) (-15 -3814 (|#2| (-1288 |#1|))) (-15 -4119 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -4152 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4152 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -1738 (|#2| |#1|)) (-15 -3394 (|#2| |#1|)) (-15 -3331 (|#2| |#1|)) (-15 -2756 (|#2| |#1|)) (-15 -3352 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -2903 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -3210 ((-1288 (-701 |#2|)) (-1288 |#1|)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2778 (((-3 $ "failed")) 42 (|has| |#1| (-568)))) (-4367 (((-3 $ "failed") $ $) 20)) (-3210 (((-1288 (-701 |#1|)) (-1288 $)) 83)) (-2385 (((-1288 $)) 86)) (-3886 (($) 18 T CONST)) (-3251 (((-3 (-2 (|:| |particular| $) (|:| -1593 (-656 $))) "failed")) 45 (|has| |#1| (-568)))) (-3260 (((-3 $ "failed")) 43 (|has| |#1| (-568)))) (-2191 (((-701 |#1|) (-1288 $)) 70)) (-3331 ((|#1| $) 79)) (-3352 (((-701 |#1|) $ (-1288 $)) 81)) (-2454 (((-3 $ "failed") $) 50 (|has| |#1| (-568)))) (-3377 (($ $ (-940)) 31)) (-1738 ((|#1| $) 77)) (-3471 (((-1193 |#1|) $) 47 (|has| |#1| (-568)))) (-2267 ((|#1| (-1288 $)) 72)) (-2654 (((-1193 |#1|) $) 68)) (-2002 (((-112)) 62)) (-4119 (($ (-1288 |#1|) (-1288 $)) 74)) (-1561 (((-3 $ "failed") $) 52 (|has| |#1| (-568)))) (-3734 (((-940)) 85)) (-1576 (((-112)) 59)) (-4017 (($ $ (-940)) 38)) (-2035 (((-112)) 55)) (-1706 (((-112)) 53)) (-1758 (((-112)) 57)) (-3590 (((-3 (-2 (|:| |particular| $) (|:| -1593 (-656 $))) "failed")) 46 (|has| |#1| (-568)))) (-1778 (((-3 $ "failed")) 44 (|has| |#1| (-568)))) (-1670 (((-701 |#1|) (-1288 $)) 71)) (-2756 ((|#1| $) 80)) (-2903 (((-701 |#1|) $ (-1288 $)) 82)) (-2941 (((-3 $ "failed") $) 51 (|has| |#1| (-568)))) (-1783 (($ $ (-940)) 32)) (-3394 ((|#1| $) 78)) (-4164 (((-1193 |#1|) $) 48 (|has| |#1| (-568)))) (-3814 ((|#1| (-1288 $)) 73)) (-3145 (((-1193 |#1|) $) 69)) (-1707 (((-112)) 63)) (-3699 (((-1179) $) 10)) (-2083 (((-112)) 54)) (-3897 (((-112)) 56)) (-3998 (((-112)) 58)) (-1450 (((-1141) $) 11)) (-2522 (((-112)) 61)) (-4152 (((-1288 |#1|) $ (-1288 $)) 76) (((-701 |#1|) (-1288 $) (-1288 $)) 75)) (-4034 (((-656 (-971 |#1|)) (-1288 $)) 84)) (-2076 (($ $ $) 28)) (-2195 (((-112)) 67)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-4208 (((-656 (-1288 |#1|))) 49 (|has| |#1| (-568)))) (-3790 (($ $ $ $) 29)) (-1511 (((-112)) 65)) (-4064 (($ $ $) 27)) (-3689 (((-112)) 66)) (-3818 (((-112)) 64)) (-4395 (((-112)) 60)) (-2721 (($) 19 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 33)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +((-3488 (((-112) $ $) NIL)) (-1923 ((|#1| $ |#1|) 31)) (-3149 (($ $ (-1179)) 23)) (-4302 (((-3 |#1| "failed") $) 30)) (-3917 ((|#1| $) 28)) (-3256 (($ (-400)) 22) (($ (-400) (-1179)) 21)) (-2628 (((-400) $) 25)) (-2046 (((-1179) $) NIL)) (-3311 (((-1179) $) 26)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 20)) (-2516 (($ $) 24)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 19))) +(((-376 |#1|) (-13 (-375 (-400) |#1|) (-10 -8 (-15 -4302 ((-3 |#1| "failed") $)))) (-1121)) (T -376)) +((-4302 (*1 *2 *1) (|partial| -12 (-5 *1 (-376 *2)) (-4 *2 (-1121))))) +(-13 (-375 (-400) |#1|) (-10 -8 (-15 -4302 ((-3 |#1| "failed") $)))) +((-4142 (((-1288 (-701 |#2|)) (-1288 $)) 67)) (-3535 (((-701 |#2|) (-1288 $)) 139)) (-2834 ((|#2| $) 36)) (-3068 (((-701 |#2|) $ (-1288 $)) 142)) (-4339 (((-3 $ "failed") $) 89)) (-1641 ((|#2| $) 39)) (-1735 (((-1193 |#2|) $) 98)) (-3057 ((|#2| (-1288 $)) 122)) (-2531 (((-1193 |#2|) $) 32)) (-2306 (((-112)) 116)) (-1819 (($ (-1288 |#2|) (-1288 $)) 132)) (-3673 (((-3 $ "failed") $) 93)) (-1413 (((-112)) 111)) (-2515 (((-112)) 106)) (-1826 (((-112)) 58)) (-2160 (((-701 |#2|) (-1288 $)) 137)) (-4185 ((|#2| $) 35)) (-3070 (((-701 |#2|) $ (-1288 $)) 141)) (-3334 (((-3 $ "failed") $) 87)) (-2218 ((|#2| $) 38)) (-4218 (((-1193 |#2|) $) 97)) (-2004 ((|#2| (-1288 $)) 120)) (-1528 (((-1193 |#2|) $) 30)) (-2524 (((-112)) 115)) (-1821 (((-112)) 108)) (-3514 (((-112)) 56)) (-3175 (((-112)) 103)) (-3827 (((-112)) 117)) (-4096 (((-1288 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) (-1288 $) (-1288 $)) 128)) (-3583 (((-112)) 113)) (-1484 (((-656 (-1288 |#2|))) 102)) (-4354 (((-112)) 114)) (-3233 (((-112)) 112)) (-4033 (((-112)) 51)) (-2693 (((-112)) 118))) +(((-377 |#1| |#2|) (-10 -8 (-15 -1735 ((-1193 |#2|) |#1|)) (-15 -4218 ((-1193 |#2|) |#1|)) (-15 -1484 ((-656 (-1288 |#2|)))) (-15 -4339 ((-3 |#1| "failed") |#1|)) (-15 -3334 ((-3 |#1| "failed") |#1|)) (-15 -3673 ((-3 |#1| "failed") |#1|)) (-15 -2515 ((-112))) (-15 -1821 ((-112))) (-15 -1413 ((-112))) (-15 -3514 ((-112))) (-15 -1826 ((-112))) (-15 -3175 ((-112))) (-15 -2693 ((-112))) (-15 -3827 ((-112))) (-15 -2306 ((-112))) (-15 -2524 ((-112))) (-15 -4033 ((-112))) (-15 -4354 ((-112))) (-15 -3233 ((-112))) (-15 -3583 ((-112))) (-15 -2531 ((-1193 |#2|) |#1|)) (-15 -1528 ((-1193 |#2|) |#1|)) (-15 -3535 ((-701 |#2|) (-1288 |#1|))) (-15 -2160 ((-701 |#2|) (-1288 |#1|))) (-15 -3057 (|#2| (-1288 |#1|))) (-15 -2004 (|#2| (-1288 |#1|))) (-15 -1819 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -4096 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4096 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -1641 (|#2| |#1|)) (-15 -2218 (|#2| |#1|)) (-15 -2834 (|#2| |#1|)) (-15 -4185 (|#2| |#1|)) (-15 -3068 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -3070 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -4142 ((-1288 (-701 |#2|)) (-1288 |#1|)))) (-378 |#2|) (-174)) (T -377)) +((-3583 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3233 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-4354 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-4033 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2524 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2306 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3827 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2693 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3175 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1826 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3514 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1413 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1821 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2515 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1484 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-656 (-1288 *4))) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4))))) +(-10 -8 (-15 -1735 ((-1193 |#2|) |#1|)) (-15 -4218 ((-1193 |#2|) |#1|)) (-15 -1484 ((-656 (-1288 |#2|)))) (-15 -4339 ((-3 |#1| "failed") |#1|)) (-15 -3334 ((-3 |#1| "failed") |#1|)) (-15 -3673 ((-3 |#1| "failed") |#1|)) (-15 -2515 ((-112))) (-15 -1821 ((-112))) (-15 -1413 ((-112))) (-15 -3514 ((-112))) (-15 -1826 ((-112))) (-15 -3175 ((-112))) (-15 -2693 ((-112))) (-15 -3827 ((-112))) (-15 -2306 ((-112))) (-15 -2524 ((-112))) (-15 -4033 ((-112))) (-15 -4354 ((-112))) (-15 -3233 ((-112))) (-15 -3583 ((-112))) (-15 -2531 ((-1193 |#2|) |#1|)) (-15 -1528 ((-1193 |#2|) |#1|)) (-15 -3535 ((-701 |#2|) (-1288 |#1|))) (-15 -2160 ((-701 |#2|) (-1288 |#1|))) (-15 -3057 (|#2| (-1288 |#1|))) (-15 -2004 (|#2| (-1288 |#1|))) (-15 -1819 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -4096 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4096 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -1641 (|#2| |#1|)) (-15 -2218 (|#2| |#1|)) (-15 -2834 (|#2| |#1|)) (-15 -4185 (|#2| |#1|)) (-15 -3068 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -3070 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -4142 ((-1288 (-701 |#2|)) (-1288 |#1|)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-4346 (((-3 $ "failed")) 42 (|has| |#1| (-568)))) (-2428 (((-3 $ "failed") $ $) 20)) (-4142 (((-1288 (-701 |#1|)) (-1288 $)) 83)) (-1717 (((-1288 $)) 86)) (-3404 (($) 18 T CONST)) (-3320 (((-3 (-2 (|:| |particular| $) (|:| -2675 (-656 $))) "failed")) 45 (|has| |#1| (-568)))) (-3382 (((-3 $ "failed")) 43 (|has| |#1| (-568)))) (-3535 (((-701 |#1|) (-1288 $)) 70)) (-2834 ((|#1| $) 79)) (-3068 (((-701 |#1|) $ (-1288 $)) 81)) (-4339 (((-3 $ "failed") $) 50 (|has| |#1| (-568)))) (-2029 (($ $ (-940)) 31)) (-1641 ((|#1| $) 77)) (-1735 (((-1193 |#1|) $) 47 (|has| |#1| (-568)))) (-3057 ((|#1| (-1288 $)) 72)) (-2531 (((-1193 |#1|) $) 68)) (-2306 (((-112)) 62)) (-1819 (($ (-1288 |#1|) (-1288 $)) 74)) (-3673 (((-3 $ "failed") $) 52 (|has| |#1| (-568)))) (-3733 (((-940)) 85)) (-3810 (((-112)) 59)) (-3343 (($ $ (-940)) 38)) (-1413 (((-112)) 55)) (-2515 (((-112)) 53)) (-1826 (((-112)) 57)) (-3530 (((-3 (-2 (|:| |particular| $) (|:| -2675 (-656 $))) "failed")) 46 (|has| |#1| (-568)))) (-3995 (((-3 $ "failed")) 44 (|has| |#1| (-568)))) (-2160 (((-701 |#1|) (-1288 $)) 71)) (-4185 ((|#1| $) 80)) (-3070 (((-701 |#1|) $ (-1288 $)) 82)) (-3334 (((-3 $ "failed") $) 51 (|has| |#1| (-568)))) (-4050 (($ $ (-940)) 32)) (-2218 ((|#1| $) 78)) (-4218 (((-1193 |#1|) $) 48 (|has| |#1| (-568)))) (-2004 ((|#1| (-1288 $)) 73)) (-1528 (((-1193 |#1|) $) 69)) (-2524 (((-112)) 63)) (-2046 (((-1179) $) 10)) (-1821 (((-112)) 54)) (-3514 (((-112)) 56)) (-3175 (((-112)) 58)) (-1450 (((-1141) $) 11)) (-3827 (((-112)) 61)) (-4096 (((-1288 |#1|) $ (-1288 $)) 76) (((-701 |#1|) (-1288 $) (-1288 $)) 75)) (-2220 (((-656 (-971 |#1|)) (-1288 $)) 84)) (-1758 (($ $ $) 28)) (-3583 (((-112)) 67)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-1484 (((-656 (-1288 |#1|))) 49 (|has| |#1| (-568)))) (-1783 (($ $ $ $) 29)) (-4354 (((-112)) 65)) (-2487 (($ $ $) 27)) (-3233 (((-112)) 66)) (-4033 (((-112)) 64)) (-2693 (((-112)) 60)) (-2721 (($) 19 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 33)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) (((-378 |#1|) (-141) (-174)) (T -378)) -((-2385 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1288 *1)) (-4 *1 (-378 *3)))) (-3734 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-940)))) (-4034 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-656 (-971 *4))))) (-3210 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-1288 (-701 *4))))) (-2903 (*1 *2 *1 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-3352 (*1 *2 *1 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-2756 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-3394 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-1738 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-4152 (*1 *2 *1 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-1288 *4)))) (-4152 (*1 *2 *3 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-4119 (*1 *1 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1288 *1)) (-4 *4 (-174)) (-4 *1 (-378 *4)))) (-3814 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-2267 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-2191 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-3145 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1193 *3)))) (-2654 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1193 *3)))) (-2195 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3689 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1511 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3818 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1707 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2002 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2522 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4395 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1576 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3998 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1758 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3897 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2035 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2083 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1706 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1561 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-2941 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-2454 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-4208 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-656 (-1288 *3))))) (-4164 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-1193 *3)))) (-3471 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-1193 *3)))) (-3590 (*1 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1593 (-656 *1)))) (-4 *1 (-378 *3)))) (-3251 (*1 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1593 (-656 *1)))) (-4 *1 (-378 *3)))) (-1778 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) (-3260 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) (-2778 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) -(-13 (-756 |t#1|) (-10 -8 (-15 -2385 ((-1288 $))) (-15 -3734 ((-940))) (-15 -4034 ((-656 (-971 |t#1|)) (-1288 $))) (-15 -3210 ((-1288 (-701 |t#1|)) (-1288 $))) (-15 -2903 ((-701 |t#1|) $ (-1288 $))) (-15 -3352 ((-701 |t#1|) $ (-1288 $))) (-15 -2756 (|t#1| $)) (-15 -3331 (|t#1| $)) (-15 -3394 (|t#1| $)) (-15 -1738 (|t#1| $)) (-15 -4152 ((-1288 |t#1|) $ (-1288 $))) (-15 -4152 ((-701 |t#1|) (-1288 $) (-1288 $))) (-15 -4119 ($ (-1288 |t#1|) (-1288 $))) (-15 -3814 (|t#1| (-1288 $))) (-15 -2267 (|t#1| (-1288 $))) (-15 -1670 ((-701 |t#1|) (-1288 $))) (-15 -2191 ((-701 |t#1|) (-1288 $))) (-15 -3145 ((-1193 |t#1|) $)) (-15 -2654 ((-1193 |t#1|) $)) (-15 -2195 ((-112))) (-15 -3689 ((-112))) (-15 -1511 ((-112))) (-15 -3818 ((-112))) (-15 -1707 ((-112))) (-15 -2002 ((-112))) (-15 -2522 ((-112))) (-15 -4395 ((-112))) (-15 -1576 ((-112))) (-15 -3998 ((-112))) (-15 -1758 ((-112))) (-15 -3897 ((-112))) (-15 -2035 ((-112))) (-15 -2083 ((-112))) (-15 -1706 ((-112))) (IF (|has| |t#1| (-568)) (PROGN (-15 -1561 ((-3 $ "failed") $)) (-15 -2941 ((-3 $ "failed") $)) (-15 -2454 ((-3 $ "failed") $)) (-15 -4208 ((-656 (-1288 |t#1|)))) (-15 -4164 ((-1193 |t#1|) $)) (-15 -3471 ((-1193 |t#1|) $)) (-15 -3590 ((-3 (-2 (|:| |particular| $) (|:| -1593 (-656 $))) "failed"))) (-15 -3251 ((-3 (-2 (|:| |particular| $) (|:| -1593 (-656 $))) "failed"))) (-15 -1778 ((-3 $ "failed"))) (-15 -3260 ((-3 $ "failed"))) (-15 -2778 ((-3 $ "failed"))) (-6 -4462)) |%noBranch|))) +((-1717 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1288 *1)) (-4 *1 (-378 *3)))) (-3733 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-940)))) (-2220 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-656 (-971 *4))))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-1288 (-701 *4))))) (-3070 (*1 *2 *1 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-3068 (*1 *2 *1 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-4185 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-2834 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-2218 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-1641 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-4096 (*1 *2 *1 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-1288 *4)))) (-4096 (*1 *2 *3 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-1819 (*1 *1 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1288 *1)) (-4 *4 (-174)) (-4 *1 (-378 *4)))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-2160 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-3535 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-1528 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1193 *3)))) (-2531 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1193 *3)))) (-3583 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3233 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4354 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4033 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2524 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2306 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3827 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2693 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3810 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3175 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1826 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3514 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1413 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1821 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2515 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3673 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-3334 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-4339 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-1484 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-656 (-1288 *3))))) (-4218 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-1193 *3)))) (-1735 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-1193 *3)))) (-3530 (*1 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2675 (-656 *1)))) (-4 *1 (-378 *3)))) (-3320 (*1 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2675 (-656 *1)))) (-4 *1 (-378 *3)))) (-3995 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) (-3382 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) (-4346 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) +(-13 (-756 |t#1|) (-10 -8 (-15 -1717 ((-1288 $))) (-15 -3733 ((-940))) (-15 -2220 ((-656 (-971 |t#1|)) (-1288 $))) (-15 -4142 ((-1288 (-701 |t#1|)) (-1288 $))) (-15 -3070 ((-701 |t#1|) $ (-1288 $))) (-15 -3068 ((-701 |t#1|) $ (-1288 $))) (-15 -4185 (|t#1| $)) (-15 -2834 (|t#1| $)) (-15 -2218 (|t#1| $)) (-15 -1641 (|t#1| $)) (-15 -4096 ((-1288 |t#1|) $ (-1288 $))) (-15 -4096 ((-701 |t#1|) (-1288 $) (-1288 $))) (-15 -1819 ($ (-1288 |t#1|) (-1288 $))) (-15 -2004 (|t#1| (-1288 $))) (-15 -3057 (|t#1| (-1288 $))) (-15 -2160 ((-701 |t#1|) (-1288 $))) (-15 -3535 ((-701 |t#1|) (-1288 $))) (-15 -1528 ((-1193 |t#1|) $)) (-15 -2531 ((-1193 |t#1|) $)) (-15 -3583 ((-112))) (-15 -3233 ((-112))) (-15 -4354 ((-112))) (-15 -4033 ((-112))) (-15 -2524 ((-112))) (-15 -2306 ((-112))) (-15 -3827 ((-112))) (-15 -2693 ((-112))) (-15 -3810 ((-112))) (-15 -3175 ((-112))) (-15 -1826 ((-112))) (-15 -3514 ((-112))) (-15 -1413 ((-112))) (-15 -1821 ((-112))) (-15 -2515 ((-112))) (IF (|has| |t#1| (-568)) (PROGN (-15 -3673 ((-3 $ "failed") $)) (-15 -3334 ((-3 $ "failed") $)) (-15 -4339 ((-3 $ "failed") $)) (-15 -1484 ((-656 (-1288 |t#1|)))) (-15 -4218 ((-1193 |t#1|) $)) (-15 -1735 ((-1193 |t#1|) $)) (-15 -3530 ((-3 (-2 (|:| |particular| $) (|:| -2675 (-656 $))) "failed"))) (-15 -3320 ((-3 (-2 (|:| |particular| $) (|:| -2675 (-656 $))) "failed"))) (-15 -3995 ((-3 $ "failed"))) (-15 -3382 ((-3 $ "failed"))) (-15 -4346 ((-3 $ "failed"))) (-6 -4461)) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-732) . T) ((-756 |#1|) . T) ((-773) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) 7)) (-2098 (((-783)) 17)) (-1836 (($) 14)) (-4401 (((-940) $) 15)) (-3699 (((-1179) $) 10)) (-3224 (($ (-940)) 16)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2925 (((-112) $ $) 8))) +((-3488 (((-112) $ $) 7)) (-2098 (((-783)) 17)) (-1836 (($) 14)) (-1558 (((-940) $) 15)) (-2046 (((-1179) $) 10)) (-3223 (($ (-940)) 16)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2924 (((-112) $ $) 8))) (((-379) (-141)) (T -379)) -((-2098 (*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-783)))) (-3224 (*1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-379)))) (-4401 (*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-940)))) (-1836 (*1 *1) (-4 *1 (-379)))) -(-13 (-1121) (-10 -8 (-15 -2098 ((-783))) (-15 -3224 ($ (-940))) (-15 -4401 ((-940) $)) (-15 -1836 ($)))) +((-2098 (*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-783)))) (-3223 (*1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-379)))) (-1558 (*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-940)))) (-1836 (*1 *1) (-4 *1 (-379)))) +(-13 (-1121) (-10 -8 (-15 -2098 ((-783))) (-15 -3223 ($ (-940))) (-15 -1558 ((-940) $)) (-15 -1836 ($)))) (((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-4101 (((-701 |#2|) (-1288 $)) 45)) (-4119 (($ (-1288 |#2|) (-1288 $)) 39)) (-1420 (((-701 |#2|) $ (-1288 $)) 47)) (-4352 ((|#2| (-1288 $)) 13)) (-4152 (((-1288 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) (-1288 $) (-1288 $)) 27))) -(((-380 |#1| |#2| |#3|) (-10 -8 (-15 -4101 ((-701 |#2|) (-1288 |#1|))) (-15 -4352 (|#2| (-1288 |#1|))) (-15 -4119 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -4152 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4152 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -1420 ((-701 |#2|) |#1| (-1288 |#1|)))) (-381 |#2| |#3|) (-174) (-1264 |#2|)) (T -380)) +((-1656 (((-701 |#2|) (-1288 $)) 45)) (-1819 (($ (-1288 |#2|) (-1288 $)) 39)) (-2072 (((-701 |#2|) $ (-1288 $)) 47)) (-2269 ((|#2| (-1288 $)) 13)) (-4096 (((-1288 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) (-1288 $) (-1288 $)) 27))) +(((-380 |#1| |#2| |#3|) (-10 -8 (-15 -1656 ((-701 |#2|) (-1288 |#1|))) (-15 -2269 (|#2| (-1288 |#1|))) (-15 -1819 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -4096 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4096 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -2072 ((-701 |#2|) |#1| (-1288 |#1|)))) (-381 |#2| |#3|) (-174) (-1264 |#2|)) (T -380)) NIL -(-10 -8 (-15 -4101 ((-701 |#2|) (-1288 |#1|))) (-15 -4352 (|#2| (-1288 |#1|))) (-15 -4119 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -4152 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4152 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -1420 ((-701 |#2|) |#1| (-1288 |#1|)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4101 (((-701 |#1|) (-1288 $)) 53)) (-2210 ((|#1| $) 59)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-4119 (($ (-1288 |#1|) (-1288 $)) 55)) (-1420 (((-701 |#1|) $ (-1288 $)) 60)) (-1561 (((-3 $ "failed") $) 37)) (-3734 (((-940)) 61)) (-4193 (((-112) $) 35)) (-1381 ((|#1| $) 58)) (-2731 ((|#2| $) 51 (|has| |#1| (-374)))) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-4352 ((|#1| (-1288 $)) 54)) (-4152 (((-1288 |#1|) $ (-1288 $)) 57) (((-701 |#1|) (-1288 $) (-1288 $)) 56)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-4336 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-4281 ((|#2| $) 52)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(-10 -8 (-15 -1656 ((-701 |#2|) (-1288 |#1|))) (-15 -2269 (|#2| (-1288 |#1|))) (-15 -1819 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -4096 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4096 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -2072 ((-701 |#2|) |#1| (-1288 |#1|)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-1656 (((-701 |#1|) (-1288 $)) 53)) (-2210 ((|#1| $) 59)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-1819 (($ (-1288 |#1|) (-1288 $)) 55)) (-2072 (((-701 |#1|) $ (-1288 $)) 60)) (-3673 (((-3 $ "failed") $) 37)) (-3733 (((-940)) 61)) (-1351 (((-112) $) 35)) (-2738 ((|#1| $) 58)) (-1989 ((|#2| $) 51 (|has| |#1| (-374)))) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2269 ((|#1| (-1288 $)) 54)) (-4096 (((-1288 |#1|) $ (-1288 $)) 57) (((-701 |#1|) (-1288 $) (-1288 $)) 56)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-3390 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2857 ((|#2| $) 52)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) (((-381 |#1| |#2|) (-141) (-174) (-1264 |t#1|)) (T -381)) -((-3734 (*1 *2) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-940)))) (-1420 (*1 *2 *1 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) (-2210 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-174)))) (-1381 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-174)))) (-4152 (*1 *2 *1 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-1288 *4)))) (-4152 (*1 *2 *3 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) (-4119 (*1 *1 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1288 *1)) (-4 *4 (-174)) (-4 *1 (-381 *4 *5)) (-4 *5 (-1264 *4)))) (-4352 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *2 *4)) (-4 *4 (-1264 *2)) (-4 *2 (-174)))) (-4101 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) (-4281 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1264 *3)))) (-2731 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *3 (-374)) (-4 *2 (-1264 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -3734 ((-940))) (-15 -1420 ((-701 |t#1|) $ (-1288 $))) (-15 -2210 (|t#1| $)) (-15 -1381 (|t#1| $)) (-15 -4152 ((-1288 |t#1|) $ (-1288 $))) (-15 -4152 ((-701 |t#1|) (-1288 $) (-1288 $))) (-15 -4119 ($ (-1288 |t#1|) (-1288 $))) (-15 -4352 (|t#1| (-1288 $))) (-15 -4101 ((-701 |t#1|) (-1288 $))) (-15 -4281 (|t#2| $)) (IF (|has| |t#1| (-374)) (-15 -2731 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|))) +((-3733 (*1 *2) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-940)))) (-2072 (*1 *2 *1 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) (-2210 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-174)))) (-2738 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-174)))) (-4096 (*1 *2 *1 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-1288 *4)))) (-4096 (*1 *2 *3 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) (-1819 (*1 *1 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1288 *1)) (-4 *4 (-174)) (-4 *1 (-381 *4 *5)) (-4 *5 (-1264 *4)))) (-2269 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *2 *4)) (-4 *4 (-1264 *2)) (-4 *2 (-174)))) (-1656 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) (-2857 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1264 *3)))) (-1989 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *3 (-374)) (-4 *2 (-1264 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -3733 ((-940))) (-15 -2072 ((-701 |t#1|) $ (-1288 $))) (-15 -2210 (|t#1| $)) (-15 -2738 (|t#1| $)) (-15 -4096 ((-1288 |t#1|) $ (-1288 $))) (-15 -4096 ((-701 |t#1|) (-1288 $) (-1288 $))) (-15 -1819 ($ (-1288 |t#1|) (-1288 $))) (-15 -2269 (|t#1| (-1288 $))) (-15 -1656 ((-701 |t#1|) (-1288 $))) (-15 -2857 (|t#2| $)) (IF (|has| |t#1| (-374)) (-15 -1989 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-1950 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-3686 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-4117 ((|#4| (-1 |#3| |#1|) |#2|) 23))) -(((-382 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4117 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3686 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1950 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1238) (-384 |#1|) (-1238) (-384 |#3|)) (T -382)) -((-1950 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1238)) (-4 *5 (-1238)) (-4 *2 (-384 *5)) (-5 *1 (-382 *6 *4 *5 *2)) (-4 *4 (-384 *6)))) (-3686 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-382 *5 *4 *2 *6)) (-4 *4 (-384 *5)) (-4 *6 (-384 *2)))) (-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-4 *2 (-384 *6)) (-5 *1 (-382 *5 *4 *6 *2)) (-4 *4 (-384 *5))))) -(-10 -7 (-15 -4117 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3686 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1950 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-1710 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-4298 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-1795 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-3836 (($ $) 25)) (-3660 (((-576) (-1 (-112) |#2|) $) NIL) (((-576) |#2| $) 11) (((-576) |#2| $ (-576)) NIL)) (-3391 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-383 |#1| |#2|) (-10 -8 (-15 -4298 (|#1| |#1|)) (-15 -4298 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1710 ((-112) |#1|)) (-15 -1795 (|#1| |#1|)) (-15 -3391 (|#1| |#1| |#1|)) (-15 -3660 ((-576) |#2| |#1| (-576))) (-15 -3660 ((-576) |#2| |#1|)) (-15 -3660 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -1710 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1795 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3391 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-384 |#2|) (-1238)) (T -383)) -NIL -(-10 -8 (-15 -4298 (|#1| |#1|)) (-15 -4298 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1710 ((-112) |#1|)) (-15 -1795 (|#1| |#1|)) (-15 -3391 (|#1| |#1| |#1|)) (-15 -3660 ((-576) |#2| |#1| (-576))) (-15 -3660 ((-576) |#2| |#1|)) (-15 -3660 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -1710 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1795 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3391 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2047 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4466)))) (-1710 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-4298 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4466))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4466))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-1808 (((-112) $ (-783)) 8)) (-3756 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4466))) ((|#1| $ (-1255 (-576)) |#1|) 60 (|has| $ (-6 -4466)))) (-1974 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4465)))) (-3886 (($) 7 T CONST)) (-3990 (($ $) 93 (|has| $ (-6 -4466)))) (-3836 (($ $) 103)) (-1415 (($ $) 80 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-3946 (($ |#1| $) 79 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4465)))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4465)))) (-4335 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4466)))) (-4274 ((|#1| $ (-576)) 52)) (-3660 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1121)))) (-3966 (((-656 |#1|) $) 31 (|has| $ (-6 -4465)))) (-4141 (($ (-783) |#1|) 70)) (-3870 (((-112) $ (-783)) 9)) (-2924 (((-576) $) 44 (|has| (-576) (-861)))) (-3125 (($ $ $) 85 (|has| |#1| (-861)))) (-3391 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-2137 (((-576) $) 45 (|has| (-576) (-861)))) (-3133 (($ $ $) 86 (|has| |#1| (-861)))) (-4323 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1330 (((-112) $ (-783)) 10)) (-3699 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2176 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-4234 (((-656 (-576)) $) 47)) (-3354 (((-112) (-576) $) 48)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3581 ((|#1| $) 43 (|has| (-576) (-861)))) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4046 (($ $ |#1|) 42 (|has| $ (-6 -4466)))) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3845 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2281 (((-656 |#1|) $) 49)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-2797 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1255 (-576))) 71)) (-3466 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-3025 (($ $ $ (-576)) 94 (|has| $ (-6 -4466)))) (-1870 (($ $) 13)) (-4172 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) 72)) (-1615 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3570 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2992 (((-112) $ $) 87 (|has| |#1| (-861)))) (-2964 (((-112) $ $) 89 (|has| |#1| (-861)))) (-2925 (((-112) $ $) 19 (|has| |#1| (-102)))) (-2978 (((-112) $ $) 88 (|has| |#1| (-861)))) (-2950 (((-112) $ $) 90 (|has| |#1| (-861)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-3120 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-3685 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-4116 ((|#4| (-1 |#3| |#1|) |#2|) 23))) +(((-382 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4116 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3685 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3120 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1238) (-384 |#1|) (-1238) (-384 |#3|)) (T -382)) +((-3120 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1238)) (-4 *5 (-1238)) (-4 *2 (-384 *5)) (-5 *1 (-382 *6 *4 *5 *2)) (-4 *4 (-384 *6)))) (-3685 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-382 *5 *4 *2 *6)) (-4 *4 (-384 *5)) (-4 *6 (-384 *2)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-4 *2 (-384 *6)) (-5 *1 (-382 *5 *4 *6 *2)) (-4 *4 (-384 *5))))) +(-10 -7 (-15 -4116 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3685 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3120 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-1390 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-3039 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-1795 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-3835 (($ $) 25)) (-3659 (((-576) (-1 (-112) |#2|) $) NIL) (((-576) |#2| $) 11) (((-576) |#2| $ (-576)) NIL)) (-2185 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-383 |#1| |#2|) (-10 -8 (-15 -3039 (|#1| |#1|)) (-15 -3039 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1390 ((-112) |#1|)) (-15 -1795 (|#1| |#1|)) (-15 -2185 (|#1| |#1| |#1|)) (-15 -3659 ((-576) |#2| |#1| (-576))) (-15 -3659 ((-576) |#2| |#1|)) (-15 -3659 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -1390 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1795 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -2185 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-384 |#2|) (-1238)) (T -383)) +NIL +(-10 -8 (-15 -3039 (|#1| |#1|)) (-15 -3039 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1390 ((-112) |#1|)) (-15 -1795 (|#1| |#1|)) (-15 -2185 (|#1| |#1| |#1|)) (-15 -3659 ((-576) |#2| |#1| (-576))) (-15 -3659 ((-576) |#2| |#1|)) (-15 -3659 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -1390 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1795 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -2185 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1512 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4465)))) (-1390 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-3039 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4465))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4465))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-4264 (((-112) $ (-783)) 8)) (-3755 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 60 (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4464)))) (-3404 (($) 7 T CONST)) (-3092 (($ $) 93 (|has| $ (-6 -4465)))) (-3835 (($ $) 103)) (-2034 (($ $) 80 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ |#1| $) 79 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) 52)) (-3659 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1121)))) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-4140 (($ (-783) |#1|) 70)) (-1368 (((-112) $ (-783)) 9)) (-3281 (((-576) $) 44 (|has| (-576) (-861)))) (-3124 (($ $ $) 85 (|has| |#1| (-861)))) (-2185 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4280 (((-576) $) 45 (|has| (-576) (-861)))) (-1441 (($ $ $) 86 (|has| |#1| (-861)))) (-4326 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2883 (((-112) $ (-783)) 10)) (-2046 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2176 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3669 (((-656 (-576)) $) 47)) (-3090 (((-112) (-576) $) 48)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3580 ((|#1| $) 43 (|has| (-576) (-861)))) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2304 (($ $ |#1|) 42 (|has| $ (-6 -4465)))) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-4282 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3207 (((-656 |#1|) $) 49)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-2796 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1255 (-576))) 71)) (-3465 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2840 (($ $ $ (-576)) 94 (|has| $ (-6 -4465)))) (-1870 (($ $) 13)) (-4171 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 72)) (-1615 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2990 (((-112) $ $) 87 (|has| |#1| (-861)))) (-2962 (((-112) $ $) 89 (|has| |#1| (-861)))) (-2924 (((-112) $ $) 19 (|has| |#1| (-102)))) (-2978 (((-112) $ $) 88 (|has| |#1| (-861)))) (-2949 (((-112) $ $) 90 (|has| |#1| (-861)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-384 |#1|) (-141) (-1238)) (T -384)) -((-3391 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1238)))) (-3836 (*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1238)))) (-1795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1238)))) (-1710 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-384 *4)) (-4 *4 (-1238)) (-5 *2 (-112)))) (-3660 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-384 *4)) (-4 *4 (-1238)) (-5 *2 (-576)))) (-3660 (*1 *2 *3 *1) (-12 (-4 *1 (-384 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-576)))) (-3660 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-384 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)))) (-3391 (*1 *1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1238)) (-4 *2 (-861)))) (-1795 (*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1238)) (-4 *2 (-861)))) (-1710 (*1 *2 *1) (-12 (-4 *1 (-384 *3)) (-4 *3 (-1238)) (-4 *3 (-861)) (-5 *2 (-112)))) (-3025 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (|has| *1 (-6 -4466)) (-4 *1 (-384 *3)) (-4 *3 (-1238)))) (-3990 (*1 *1 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-384 *2)) (-4 *2 (-1238)))) (-4298 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4466)) (-4 *1 (-384 *3)) (-4 *3 (-1238)))) (-4298 (*1 *1 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-384 *2)) (-4 *2 (-1238)) (-4 *2 (-861))))) -(-13 (-663 |t#1|) (-10 -8 (-6 -4465) (-15 -3391 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3836 ($ $)) (-15 -1795 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1710 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3660 ((-576) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1121)) (PROGN (-15 -3660 ((-576) |t#1| $)) (-15 -3660 ((-576) |t#1| $ (-576)))) |%noBranch|) (IF (|has| |t#1| (-861)) (PROGN (-6 (-861)) (-15 -3391 ($ $ $)) (-15 -1795 ($ $)) (-15 -1710 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4466)) (PROGN (-15 -3025 ($ $ $ (-576))) (-15 -3990 ($ $)) (-15 -4298 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-861)) (-15 -4298 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -2760 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-625 (-876)) -2760 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1121) -2760 (|has| |#1| (-1121)) (|has| |#1| (-861))) ((-1238) . T)) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-3447 (((-656 |#1|) $) 37)) (-1996 (($ $ (-783)) 38)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-4442 (((-1312 |#1| |#2|) (-1312 |#1| |#2|) $) 41)) (-1372 (($ $) 39)) (-2054 (((-1312 |#1| |#2|) (-1312 |#1| |#2|) $) 42)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3284 (($ $ |#1| $) 36) (($ $ (-656 |#1|) (-656 $)) 35)) (-3634 (((-783) $) 43)) (-3582 (($ $ $) 34)) (-3570 (((-876) $) 12) (($ |#1|) 46) (((-1303 |#1| |#2|) $) 45) (((-1312 |#1| |#2|) $) 44)) (-1714 ((|#2| (-1312 |#1| |#2|) $) 47)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-3550 (($ (-684 |#1|)) 40)) (-2925 (((-112) $ $) 8)) (-3057 (($ $ |#2|) 33 (|has| |#2| (-374)))) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) +((-2185 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1238)))) (-3835 (*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1238)))) (-1795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1238)))) (-1390 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-384 *4)) (-4 *4 (-1238)) (-5 *2 (-112)))) (-3659 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-384 *4)) (-4 *4 (-1238)) (-5 *2 (-576)))) (-3659 (*1 *2 *3 *1) (-12 (-4 *1 (-384 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-576)))) (-3659 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-384 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)))) (-2185 (*1 *1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1238)) (-4 *2 (-861)))) (-1795 (*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1238)) (-4 *2 (-861)))) (-1390 (*1 *2 *1) (-12 (-4 *1 (-384 *3)) (-4 *3 (-1238)) (-4 *3 (-861)) (-5 *2 (-112)))) (-2840 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (|has| *1 (-6 -4465)) (-4 *1 (-384 *3)) (-4 *3 (-1238)))) (-3092 (*1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-384 *2)) (-4 *2 (-1238)))) (-3039 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4465)) (-4 *1 (-384 *3)) (-4 *3 (-1238)))) (-3039 (*1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-384 *2)) (-4 *2 (-1238)) (-4 *2 (-861))))) +(-13 (-663 |t#1|) (-10 -8 (-6 -4464) (-15 -2185 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3835 ($ $)) (-15 -1795 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1390 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3659 ((-576) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1121)) (PROGN (-15 -3659 ((-576) |t#1| $)) (-15 -3659 ((-576) |t#1| $ (-576)))) |%noBranch|) (IF (|has| |t#1| (-861)) (PROGN (-6 (-861)) (-15 -2185 ($ $ $)) (-15 -1795 ($ $)) (-15 -1390 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4465)) (PROGN (-15 -2840 ($ $ $ (-576))) (-15 -3092 ($ $)) (-15 -3039 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-861)) (-15 -3039 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -2759 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-625 (-876)) -2759 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1121) -2759 (|has| |#1| (-1121)) (|has| |#1| (-861))) ((-1238) . T)) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-3446 (((-656 |#1|) $) 37)) (-2256 (($ $ (-783)) 38)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-1932 (((-1312 |#1| |#2|) (-1312 |#1| |#2|) $) 41)) (-3187 (($ $) 39)) (-1566 (((-1312 |#1| |#2|) (-1312 |#1| |#2|) $) 42)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3282 (($ $ |#1| $) 36) (($ $ (-656 |#1|) (-656 $)) 35)) (-2683 (((-783) $) 43)) (-3581 (($ $ $) 34)) (-3569 (((-876) $) 12) (($ |#1|) 46) (((-1303 |#1| |#2|) $) 45) (((-1312 |#1| |#2|) $) 44)) (-1715 ((|#2| (-1312 |#1| |#2|) $) 47)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-4389 (($ (-684 |#1|)) 40)) (-2924 (((-112) $ $) 8)) (-3056 (($ $ |#2|) 33 (|has| |#2| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) (((-385 |#1| |#2|) (-141) (-861) (-174)) (T -385)) -((-1714 (*1 *2 *3 *1) (-12 (-5 *3 (-1312 *4 *2)) (-4 *1 (-385 *4 *2)) (-4 *4 (-861)) (-4 *2 (-174)))) (-3570 (*1 *1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-1303 *3 *4)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-1312 *3 *4)))) (-3634 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-783)))) (-2054 (*1 *2 *2 *1) (-12 (-5 *2 (-1312 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-4442 (*1 *2 *2 *1) (-12 (-5 *2 (-1312 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-3550 (*1 *1 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-4 *1 (-385 *3 *4)) (-4 *4 (-174)))) (-1372 (*1 *1 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) (-1996 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-656 *3)))) (-3284 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) (-3284 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *1)) (-4 *1 (-385 *4 *5)) (-4 *4 (-861)) (-4 *5 (-174))))) -(-13 (-646 |t#2|) (-10 -8 (-15 -1714 (|t#2| (-1312 |t#1| |t#2|) $)) (-15 -3570 ($ |t#1|)) (-15 -3570 ((-1303 |t#1| |t#2|) $)) (-15 -3570 ((-1312 |t#1| |t#2|) $)) (-15 -3634 ((-783) $)) (-15 -2054 ((-1312 |t#1| |t#2|) (-1312 |t#1| |t#2|) $)) (-15 -4442 ((-1312 |t#1| |t#2|) (-1312 |t#1| |t#2|) $)) (-15 -3550 ($ (-684 |t#1|))) (-15 -1372 ($ $)) (-15 -1996 ($ $ (-783))) (-15 -3447 ((-656 |t#1|) $)) (-15 -3284 ($ $ |t#1| $)) (-15 -3284 ($ $ (-656 |t#1|) (-656 $))))) +((-1715 (*1 *2 *3 *1) (-12 (-5 *3 (-1312 *4 *2)) (-4 *1 (-385 *4 *2)) (-4 *4 (-861)) (-4 *2 (-174)))) (-3569 (*1 *1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-1303 *3 *4)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-1312 *3 *4)))) (-2683 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-783)))) (-1566 (*1 *2 *2 *1) (-12 (-5 *2 (-1312 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-1932 (*1 *2 *2 *1) (-12 (-5 *2 (-1312 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-4389 (*1 *1 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-4 *1 (-385 *3 *4)) (-4 *4 (-174)))) (-3187 (*1 *1 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) (-2256 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-3446 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-656 *3)))) (-3282 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) (-3282 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *1)) (-4 *1 (-385 *4 *5)) (-4 *4 (-861)) (-4 *5 (-174))))) +(-13 (-646 |t#2|) (-10 -8 (-15 -1715 (|t#2| (-1312 |t#1| |t#2|) $)) (-15 -3569 ($ |t#1|)) (-15 -3569 ((-1303 |t#1| |t#2|) $)) (-15 -3569 ((-1312 |t#1| |t#2|) $)) (-15 -2683 ((-783) $)) (-15 -1566 ((-1312 |t#1| |t#2|) (-1312 |t#1| |t#2|) $)) (-15 -1932 ((-1312 |t#1| |t#2|) (-1312 |t#1| |t#2|) $)) (-15 -4389 ($ (-684 |t#1|))) (-15 -3187 ($ $)) (-15 -2256 ($ $ (-783))) (-15 -3446 ((-656 |t#1|) $)) (-15 -3282 ($ $ |t#1| $)) (-15 -3282 ($ $ (-656 |t#1|) (-656 $))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-660 |#2|) . T) ((-646 |#2|) . T) ((-652 |#2|) . T) ((-729 |#2|) . T) ((-1072 |#2|) . T) ((-1077 |#2|) . T) ((-1121) . T) ((-1238) . T)) -((-4122 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40)) (-1435 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-2596 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33))) -(((-386 |#1| |#2|) (-10 -7 (-15 -1435 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2596 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4122 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1238) (-13 (-384 |#1|) (-10 -7 (-6 -4466)))) (T -386)) -((-4122 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4466)))))) (-2596 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4466)))))) (-1435 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4466))))))) -(-10 -7 (-15 -1435 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2596 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4122 (|#2| (-1 (-112) |#1| |#1|) |#2|))) -((-2204 (((-701 |#2|) (-701 $)) NIL) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 22) (((-701 (-576)) (-701 $)) 14))) -(((-387 |#1| |#2|) (-10 -8 (-15 -2204 ((-701 (-576)) (-701 |#1|))) (-15 -2204 ((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -2204 ((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -2204 ((-701 |#2|) (-701 |#1|)))) (-388 |#2|) (-1070)) (T -387)) -NIL -(-10 -8 (-15 -2204 ((-701 (-576)) (-701 |#1|))) (-15 -2204 ((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -2204 ((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -2204 ((-701 |#2|) (-701 |#1|)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-2204 (((-701 |#1|) (-701 $)) 30) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 29) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 41 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 40 (|has| |#1| (-651 (-576))))) (-3913 (((-701 |#1|) (-1288 $)) 32) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 31) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 39 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-1288 $)) 38 (|has| |#1| (-651 (-576))))) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) +((-1852 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40)) (-2231 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-3293 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33))) +(((-386 |#1| |#2|) (-10 -7 (-15 -2231 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3293 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1852 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1238) (-13 (-384 |#1|) (-10 -7 (-6 -4465)))) (T -386)) +((-1852 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4465)))))) (-3293 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4465)))))) (-2231 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4465))))))) +(-10 -7 (-15 -2231 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3293 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1852 (|#2| (-1 (-112) |#1| |#1|) |#2|))) +((-3674 (((-701 |#2|) (-701 $)) NIL) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 22) (((-701 (-576)) (-701 $)) 14))) +(((-387 |#1| |#2|) (-10 -8 (-15 -3674 ((-701 (-576)) (-701 |#1|))) (-15 -3674 ((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -3674 ((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -3674 ((-701 |#2|) (-701 |#1|)))) (-388 |#2|) (-1070)) (T -387)) +NIL +(-10 -8 (-15 -3674 ((-701 (-576)) (-701 |#1|))) (-15 -3674 ((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -3674 ((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -3674 ((-701 |#2|) (-701 |#1|)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-3674 (((-701 |#1|) (-701 $)) 30) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 29) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 41 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 40 (|has| |#1| (-651 (-576))))) (-3676 (((-701 |#1|) (-1288 $)) 32) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 31) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 39 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-1288 $)) 38 (|has| |#1| (-651 (-576))))) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) (((-388 |#1|) (-141) (-1070)) (T -388)) NIL (-13 (-651 |t#1|) (-10 -7 (IF (|has| |t#1| (-651 (-576))) (-6 (-651 (-576))) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 #0=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-651 #0#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-2858 (((-656 (-304 (-971 (-171 |#1|)))) (-304 (-419 (-971 (-171 (-576))))) |#1|) 51) (((-656 (-304 (-971 (-171 |#1|)))) (-419 (-971 (-171 (-576)))) |#1|) 50) (((-656 (-656 (-304 (-971 (-171 |#1|))))) (-656 (-304 (-419 (-971 (-171 (-576)))))) |#1|) 47) (((-656 (-656 (-304 (-971 (-171 |#1|))))) (-656 (-419 (-971 (-171 (-576))))) |#1|) 41)) (-3119 (((-656 (-656 (-171 |#1|))) (-656 (-419 (-971 (-171 (-576))))) (-656 (-1197)) |#1|) 30) (((-656 (-171 |#1|)) (-419 (-971 (-171 (-576)))) |#1|) 18))) -(((-389 |#1|) (-10 -7 (-15 -2858 ((-656 (-656 (-304 (-971 (-171 |#1|))))) (-656 (-419 (-971 (-171 (-576))))) |#1|)) (-15 -2858 ((-656 (-656 (-304 (-971 (-171 |#1|))))) (-656 (-304 (-419 (-971 (-171 (-576)))))) |#1|)) (-15 -2858 ((-656 (-304 (-971 (-171 |#1|)))) (-419 (-971 (-171 (-576)))) |#1|)) (-15 -2858 ((-656 (-304 (-971 (-171 |#1|)))) (-304 (-419 (-971 (-171 (-576))))) |#1|)) (-15 -3119 ((-656 (-171 |#1|)) (-419 (-971 (-171 (-576)))) |#1|)) (-15 -3119 ((-656 (-656 (-171 |#1|))) (-656 (-419 (-971 (-171 (-576))))) (-656 (-1197)) |#1|))) (-13 (-374) (-860))) (T -389)) -((-3119 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-419 (-971 (-171 (-576)))))) (-5 *4 (-656 (-1197))) (-5 *2 (-656 (-656 (-171 *5)))) (-5 *1 (-389 *5)) (-4 *5 (-13 (-374) (-860))))) (-3119 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 (-171 (-576))))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-2858 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-971 (-171 (-576)))))) (-5 *2 (-656 (-304 (-971 (-171 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-2858 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 (-171 (-576))))) (-5 *2 (-656 (-304 (-971 (-171 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-2858 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-971 (-171 (-576))))))) (-5 *2 (-656 (-656 (-304 (-971 (-171 *4)))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-2858 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-971 (-171 (-576)))))) (-5 *2 (-656 (-656 (-304 (-971 (-171 *4)))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860)))))) -(-10 -7 (-15 -2858 ((-656 (-656 (-304 (-971 (-171 |#1|))))) (-656 (-419 (-971 (-171 (-576))))) |#1|)) (-15 -2858 ((-656 (-656 (-304 (-971 (-171 |#1|))))) (-656 (-304 (-419 (-971 (-171 (-576)))))) |#1|)) (-15 -2858 ((-656 (-304 (-971 (-171 |#1|)))) (-419 (-971 (-171 (-576)))) |#1|)) (-15 -2858 ((-656 (-304 (-971 (-171 |#1|)))) (-304 (-419 (-971 (-171 (-576))))) |#1|)) (-15 -3119 ((-656 (-171 |#1|)) (-419 (-971 (-171 (-576)))) |#1|)) (-15 -3119 ((-656 (-656 (-171 |#1|))) (-656 (-419 (-971 (-171 (-576))))) (-656 (-1197)) |#1|))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 35)) (-2575 (((-576) $) 62)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-2326 (($ $) 136)) (-4025 (($ $) 98)) (-3901 (($ $) 90)) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-1839 (($ $) 47)) (-4016 (((-112) $ $) NIL)) (-4006 (($ $) 96)) (-3877 (($ $) 85)) (-3308 (((-576) $) 78)) (-2745 (($ $ (-576)) 73)) (-4050 (($ $) NIL)) (-3920 (($ $) NIL)) (-3886 (($) NIL T CONST)) (-4300 (($ $) 138)) (-1572 (((-3 (-576) "failed") $) 231) (((-3 (-419 (-576)) "failed") $) 227)) (-2860 (((-576) $) 229) (((-419 (-576)) $) 225)) (-3429 (($ $ $) NIL)) (-3747 (((-576) $ $) 125)) (-1561 (((-3 $ "failed") $) 141)) (-2909 (((-419 (-576)) $ (-783)) 232) (((-419 (-576)) $ (-783) (-783)) 224)) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-4249 (((-112) $) NIL)) (-3340 (((-940)) 121) (((-940) (-940)) 122 (|has| $ (-6 -4456)))) (-2087 (((-112) $) 130)) (-1600 (($) 41)) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL)) (-1957 (((-1293) (-783)) 191)) (-3090 (((-1293)) 196) (((-1293) (-783)) 197)) (-2694 (((-1293)) 198) (((-1293) (-783)) 199)) (-2127 (((-1293)) 194) (((-1293) (-783)) 195)) (-3917 (((-576) $) 68)) (-4193 (((-112) $) 40)) (-2121 (($ $ (-576)) NIL)) (-2923 (($ $) 51)) (-1381 (($ $) NIL)) (-1634 (((-112) $) 37)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3125 (($ $ $) NIL) (($) NIL (-12 (-2663 (|has| $ (-6 -4448))) (-2663 (|has| $ (-6 -4456)))))) (-3133 (($ $ $) NIL) (($) NIL (-12 (-2663 (|has| $ (-6 -4448))) (-2663 (|has| $ (-6 -4456)))))) (-1492 (((-576) $) 17)) (-4171 (($) 106) (($ $) 113)) (-2330 (($) 112) (($ $) 114)) (-3745 (($ $) 101)) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) 143)) (-3373 (((-940) (-576)) 46 (|has| $ (-6 -4456)))) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2393 (($ $) 60)) (-2443 (($ $) 135)) (-3045 (($ (-576) (-576)) 131) (($ (-576) (-576) (-940)) 132)) (-1828 (((-430 $) $) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3422 (((-576) $) 19)) (-1418 (($) 115)) (-4104 (($ $) 95)) (-1967 (((-783) $) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-4326 (((-940)) 123) (((-940) (-940)) 124 (|has| $ (-6 -4456)))) (-2775 (($ $) 142) (($ $ (-783)) NIL)) (-1351 (((-940) (-576)) 50 (|has| $ (-6 -4456)))) (-4061 (($ $) NIL)) (-3930 (($ $) NIL)) (-4037 (($ $) NIL)) (-3910 (($ $) NIL)) (-4014 (($ $) 97)) (-3889 (($ $) 89)) (-4172 (((-390) $) 216) (((-227) $) 218) (((-907 (-390)) $) NIL) (((-1179) $) 202) (((-548) $) 214) (($ (-227)) 223)) (-3570 (((-876) $) 206) (($ (-576)) 228) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-576)) 228) (($ (-419 (-576))) NIL) (((-227) $) 219)) (-3996 (((-783)) NIL T CONST)) (-4118 (($ $) 137)) (-3029 (((-940)) 61) (((-940) (-940)) 80 (|has| $ (-6 -4456)))) (-4055 (((-112) $ $) NIL)) (-3516 (((-940)) 126)) (-2791 (($ $) 104)) (-3961 (($ $) 49) (($ $ $) 59)) (-2672 (((-112) $ $) NIL)) (-4071 (($ $) 102)) (-3938 (($ $) 39)) (-2815 (($ $) NIL)) (-3983 (($ $) NIL)) (-4388 (($ $) NIL)) (-3995 (($ $) NIL)) (-2803 (($ $) NIL)) (-3974 (($ $) NIL)) (-4083 (($ $) 103)) (-3951 (($ $) 52)) (-2122 (($ $) 58)) (-2721 (($) 36 T CONST)) (-2732 (($) 43 T CONST)) (-1636 (((-1179) $) 27) (((-1179) $ (-112)) 29) (((-1293) (-834) $) 30) (((-1293) (-834) $ (-112)) 31)) (-2020 (($ $) NIL) (($ $ (-783)) NIL)) (-2992 (((-112) $ $) 203)) (-2964 (((-112) $ $) 45)) (-2925 (((-112) $ $) 56)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) 57)) (-3057 (($ $ $) 48) (($ $ (-576)) 42)) (-3044 (($ $) 38) (($ $ $) 53)) (-3030 (($ $ $) 72)) (** (($ $ (-940)) 83) (($ $ (-783)) NIL) (($ $ (-576)) 107) (($ $ (-419 (-576))) 154) (($ $ $) 145)) (* (($ (-940) $) 79) (($ (-783) $) NIL) (($ (-576) $) 84) (($ $ $) 71) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-390) (-13 (-416) (-238) (-626 (-1179)) (-840) (-625 (-227)) (-1223) (-626 (-548)) (-630 (-227)) (-10 -8 (-15 -3057 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -2923 ($ $)) (-15 -3747 ((-576) $ $)) (-15 -2745 ($ $ (-576))) (-15 -2909 ((-419 (-576)) $ (-783))) (-15 -2909 ((-419 (-576)) $ (-783) (-783))) (-15 -4171 ($)) (-15 -2330 ($)) (-15 -1418 ($)) (-15 -3961 ($ $ $)) (-15 -4171 ($ $)) (-15 -2330 ($ $)) (-15 -2694 ((-1293))) (-15 -2694 ((-1293) (-783))) (-15 -2127 ((-1293))) (-15 -2127 ((-1293) (-783))) (-15 -3090 ((-1293))) (-15 -3090 ((-1293) (-783))) (-15 -1957 ((-1293) (-783))) (-6 -4456) (-6 -4448)))) (T -390)) -((** (*1 *1 *1 *1) (-5 *1 (-390))) (-3057 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-2923 (*1 *1 *1) (-5 *1 (-390))) (-3747 (*1 *2 *1 *1) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-2745 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-2909 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) (-2909 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) (-4171 (*1 *1) (-5 *1 (-390))) (-2330 (*1 *1) (-5 *1 (-390))) (-1418 (*1 *1) (-5 *1 (-390))) (-3961 (*1 *1 *1 *1) (-5 *1 (-390))) (-4171 (*1 *1 *1) (-5 *1 (-390))) (-2330 (*1 *1 *1) (-5 *1 (-390))) (-2694 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-390)))) (-2694 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390)))) (-2127 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-390)))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390)))) (-3090 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-390)))) (-3090 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390)))) (-1957 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390))))) -(-13 (-416) (-238) (-626 (-1179)) (-840) (-625 (-227)) (-1223) (-626 (-548)) (-630 (-227)) (-10 -8 (-15 -3057 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -2923 ($ $)) (-15 -3747 ((-576) $ $)) (-15 -2745 ($ $ (-576))) (-15 -2909 ((-419 (-576)) $ (-783))) (-15 -2909 ((-419 (-576)) $ (-783) (-783))) (-15 -4171 ($)) (-15 -2330 ($)) (-15 -1418 ($)) (-15 -3961 ($ $ $)) (-15 -4171 ($ $)) (-15 -2330 ($ $)) (-15 -2694 ((-1293))) (-15 -2694 ((-1293) (-783))) (-15 -2127 ((-1293))) (-15 -2127 ((-1293) (-783))) (-15 -3090 ((-1293))) (-15 -3090 ((-1293) (-783))) (-15 -1957 ((-1293) (-783))) (-6 -4456) (-6 -4448))) -((-2767 (((-656 (-304 (-971 |#1|))) (-304 (-419 (-971 (-576)))) |#1|) 46) (((-656 (-304 (-971 |#1|))) (-419 (-971 (-576))) |#1|) 45) (((-656 (-656 (-304 (-971 |#1|)))) (-656 (-304 (-419 (-971 (-576))))) |#1|) 42) (((-656 (-656 (-304 (-971 |#1|)))) (-656 (-419 (-971 (-576)))) |#1|) 36)) (-4210 (((-656 |#1|) (-419 (-971 (-576))) |#1|) 20) (((-656 (-656 |#1|)) (-656 (-419 (-971 (-576)))) (-656 (-1197)) |#1|) 30))) -(((-391 |#1|) (-10 -7 (-15 -2767 ((-656 (-656 (-304 (-971 |#1|)))) (-656 (-419 (-971 (-576)))) |#1|)) (-15 -2767 ((-656 (-656 (-304 (-971 |#1|)))) (-656 (-304 (-419 (-971 (-576))))) |#1|)) (-15 -2767 ((-656 (-304 (-971 |#1|))) (-419 (-971 (-576))) |#1|)) (-15 -2767 ((-656 (-304 (-971 |#1|))) (-304 (-419 (-971 (-576)))) |#1|)) (-15 -4210 ((-656 (-656 |#1|)) (-656 (-419 (-971 (-576)))) (-656 (-1197)) |#1|)) (-15 -4210 ((-656 |#1|) (-419 (-971 (-576))) |#1|))) (-13 (-860) (-374))) (T -391)) -((-4210 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-4210 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-419 (-971 (-576))))) (-5 *4 (-656 (-1197))) (-5 *2 (-656 (-656 *5))) (-5 *1 (-391 *5)) (-4 *5 (-13 (-860) (-374))))) (-2767 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-971 (-576))))) (-5 *2 (-656 (-304 (-971 *4)))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-2767 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 (-576)))) (-5 *2 (-656 (-304 (-971 *4)))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-2767 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-971 (-576)))))) (-5 *2 (-656 (-656 (-304 (-971 *4))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-2767 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-971 (-576))))) (-5 *2 (-656 (-656 (-304 (-971 *4))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374)))))) -(-10 -7 (-15 -2767 ((-656 (-656 (-304 (-971 |#1|)))) (-656 (-419 (-971 (-576)))) |#1|)) (-15 -2767 ((-656 (-656 (-304 (-971 |#1|)))) (-656 (-304 (-419 (-971 (-576))))) |#1|)) (-15 -2767 ((-656 (-304 (-971 |#1|))) (-419 (-971 (-576))) |#1|)) (-15 -2767 ((-656 (-304 (-971 |#1|))) (-304 (-419 (-971 (-576)))) |#1|)) (-15 -4210 ((-656 (-656 |#1|)) (-656 (-419 (-971 (-576)))) (-656 (-1197)) |#1|)) (-15 -4210 ((-656 |#1|) (-419 (-971 (-576))) |#1|))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) 30)) (-2860 ((|#2| $) 32)) (-2114 (($ $) NIL)) (-2217 (((-783) $) 11)) (-1608 (((-656 $) $) 23)) (-2823 (((-112) $) NIL)) (-3685 (($ |#2| |#1|) 21)) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-2644 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-2081 ((|#2| $) 18)) (-2091 ((|#1| $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 51) (($ |#2|) 31)) (-1618 (((-656 |#1|) $) 20)) (-3177 ((|#1| $ |#2|) 55)) (-4055 (((-112) $ $) NIL)) (-2721 (($) 33 T CONST)) (-3071 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2925 (((-112) $ $) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) +((-3898 (((-656 (-304 (-971 (-171 |#1|)))) (-304 (-419 (-971 (-171 (-576))))) |#1|) 51) (((-656 (-304 (-971 (-171 |#1|)))) (-419 (-971 (-171 (-576)))) |#1|) 50) (((-656 (-656 (-304 (-971 (-171 |#1|))))) (-656 (-304 (-419 (-971 (-171 (-576)))))) |#1|) 47) (((-656 (-656 (-304 (-971 (-171 |#1|))))) (-656 (-419 (-971 (-171 (-576))))) |#1|) 41)) (-2490 (((-656 (-656 (-171 |#1|))) (-656 (-419 (-971 (-171 (-576))))) (-656 (-1197)) |#1|) 30) (((-656 (-171 |#1|)) (-419 (-971 (-171 (-576)))) |#1|) 18))) +(((-389 |#1|) (-10 -7 (-15 -3898 ((-656 (-656 (-304 (-971 (-171 |#1|))))) (-656 (-419 (-971 (-171 (-576))))) |#1|)) (-15 -3898 ((-656 (-656 (-304 (-971 (-171 |#1|))))) (-656 (-304 (-419 (-971 (-171 (-576)))))) |#1|)) (-15 -3898 ((-656 (-304 (-971 (-171 |#1|)))) (-419 (-971 (-171 (-576)))) |#1|)) (-15 -3898 ((-656 (-304 (-971 (-171 |#1|)))) (-304 (-419 (-971 (-171 (-576))))) |#1|)) (-15 -2490 ((-656 (-171 |#1|)) (-419 (-971 (-171 (-576)))) |#1|)) (-15 -2490 ((-656 (-656 (-171 |#1|))) (-656 (-419 (-971 (-171 (-576))))) (-656 (-1197)) |#1|))) (-13 (-374) (-860))) (T -389)) +((-2490 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-419 (-971 (-171 (-576)))))) (-5 *4 (-656 (-1197))) (-5 *2 (-656 (-656 (-171 *5)))) (-5 *1 (-389 *5)) (-4 *5 (-13 (-374) (-860))))) (-2490 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 (-171 (-576))))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-3898 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-971 (-171 (-576)))))) (-5 *2 (-656 (-304 (-971 (-171 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-3898 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 (-171 (-576))))) (-5 *2 (-656 (-304 (-971 (-171 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-3898 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-971 (-171 (-576))))))) (-5 *2 (-656 (-656 (-304 (-971 (-171 *4)))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-3898 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-971 (-171 (-576)))))) (-5 *2 (-656 (-656 (-304 (-971 (-171 *4)))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860)))))) +(-10 -7 (-15 -3898 ((-656 (-656 (-304 (-971 (-171 |#1|))))) (-656 (-419 (-971 (-171 (-576))))) |#1|)) (-15 -3898 ((-656 (-656 (-304 (-971 (-171 |#1|))))) (-656 (-304 (-419 (-971 (-171 (-576)))))) |#1|)) (-15 -3898 ((-656 (-304 (-971 (-171 |#1|)))) (-419 (-971 (-171 (-576)))) |#1|)) (-15 -3898 ((-656 (-304 (-971 (-171 |#1|)))) (-304 (-419 (-971 (-171 (-576))))) |#1|)) (-15 -2490 ((-656 (-171 |#1|)) (-419 (-971 (-171 (-576)))) |#1|)) (-15 -2490 ((-656 (-656 (-171 |#1|))) (-656 (-419 (-971 (-171 (-576))))) (-656 (-1197)) |#1|))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 35)) (-3110 (((-576) $) 62)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-2408 (($ $) 136)) (-4024 (($ $) 98)) (-3900 (($ $) 90)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-1840 (($ $) 47)) (-3330 (((-112) $ $) NIL)) (-4005 (($ $) 96)) (-3876 (($ $) 85)) (-3906 (((-576) $) 78)) (-2743 (($ $ (-576)) 73)) (-4049 (($ $) NIL)) (-3919 (($ $) NIL)) (-3404 (($) NIL T CONST)) (-3065 (($ $) 138)) (-1572 (((-3 (-576) "failed") $) 231) (((-3 (-419 (-576)) "failed") $) 227)) (-2859 (((-576) $) 229) (((-419 (-576)) $) 225)) (-3428 (($ $ $) NIL)) (-2541 (((-576) $ $) 125)) (-3673 (((-3 $ "failed") $) 141)) (-3141 (((-419 (-576)) $ (-783)) 232) (((-419 (-576)) $ (-783) (-783)) 224)) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3833 (((-112) $) NIL)) (-3337 (((-940)) 121) (((-940) (-940)) 122 (|has| $ (-6 -4455)))) (-1866 (((-112) $) 130)) (-1600 (($) 41)) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL)) (-3177 (((-1293) (-783)) 191)) (-2213 (((-1293)) 196) (((-1293) (-783)) 197)) (-1692 (((-1293)) 198) (((-1293) (-783)) 199)) (-4183 (((-1293)) 194) (((-1293) (-783)) 195)) (-3726 (((-576) $) 68)) (-1351 (((-112) $) 40)) (-4131 (($ $ (-576)) NIL)) (-3270 (($ $) 51)) (-2738 (($ $) NIL)) (-3137 (((-112) $) 37)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3124 (($ $ $) NIL) (($) NIL (-12 (-2663 (|has| $ (-6 -4447))) (-2663 (|has| $ (-6 -4455)))))) (-1441 (($ $ $) NIL) (($) NIL (-12 (-2663 (|has| $ (-6 -4447))) (-2663 (|has| $ (-6 -4455)))))) (-1492 (((-576) $) 17)) (-4267 (($) 106) (($ $) 113)) (-2330 (($) 112) (($ $) 114)) (-3744 (($ $) 101)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) 143)) (-3268 (((-940) (-576)) 46 (|has| $ (-6 -4455)))) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1788 (($ $) 60)) (-4236 (($ $) 135)) (-3044 (($ (-576) (-576)) 131) (($ (-576) (-576) (-940)) 132)) (-1828 (((-430 $) $) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2508 (((-576) $) 19)) (-2062 (($) 115)) (-4103 (($ $) 95)) (-1979 (((-783) $) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-3295 (((-940)) 123) (((-940) (-940)) 124 (|has| $ (-6 -4455)))) (-2774 (($ $) 142) (($ $ (-783)) NIL)) (-1342 (((-940) (-576)) 50 (|has| $ (-6 -4455)))) (-4060 (($ $) NIL)) (-3929 (($ $) NIL)) (-4036 (($ $) NIL)) (-3909 (($ $) NIL)) (-4013 (($ $) 97)) (-3888 (($ $) 89)) (-4171 (((-390) $) 216) (((-227) $) 218) (((-907 (-390)) $) NIL) (((-1179) $) 202) (((-548) $) 214) (($ (-227)) 223)) (-3569 (((-876) $) 206) (($ (-576)) 228) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-576)) 228) (($ (-419 (-576))) NIL) (((-227) $) 219)) (-3154 (((-783)) NIL T CONST)) (-1810 (($ $) 137)) (-2892 (((-940)) 61) (((-940) (-940)) 80 (|has| $ (-6 -4455)))) (-2399 (((-112) $ $) NIL)) (-3515 (((-940)) 126)) (-2790 (($ $) 104)) (-3960 (($ $) 49) (($ $ $) 59)) (-1505 (((-112) $ $) NIL)) (-4070 (($ $) 102)) (-3937 (($ $) 39)) (-2814 (($ $) NIL)) (-3982 (($ $) NIL)) (-4387 (($ $) NIL)) (-3994 (($ $) NIL)) (-2802 (($ $) NIL)) (-3973 (($ $) NIL)) (-4082 (($ $) 103)) (-3950 (($ $) 52)) (-4143 (($ $) 58)) (-2721 (($) 36 T CONST)) (-2731 (($) 43 T CONST)) (-3160 (((-1179) $) 27) (((-1179) $ (-112)) 29) (((-1293) (-834) $) 30) (((-1293) (-834) $ (-112)) 31)) (-2020 (($ $) NIL) (($ $ (-783)) NIL)) (-2990 (((-112) $ $) 203)) (-2962 (((-112) $ $) 45)) (-2924 (((-112) $ $) 56)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) 57)) (-3056 (($ $ $) 48) (($ $ (-576)) 42)) (-3043 (($ $) 38) (($ $ $) 53)) (-3029 (($ $ $) 72)) (** (($ $ (-940)) 83) (($ $ (-783)) NIL) (($ $ (-576)) 107) (($ $ (-419 (-576))) 154) (($ $ $) 145)) (* (($ (-940) $) 79) (($ (-783) $) NIL) (($ (-576) $) 84) (($ $ $) 71) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +(((-390) (-13 (-416) (-238) (-626 (-1179)) (-840) (-625 (-227)) (-1223) (-626 (-548)) (-630 (-227)) (-10 -8 (-15 -3056 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -3270 ($ $)) (-15 -2541 ((-576) $ $)) (-15 -2743 ($ $ (-576))) (-15 -3141 ((-419 (-576)) $ (-783))) (-15 -3141 ((-419 (-576)) $ (-783) (-783))) (-15 -4267 ($)) (-15 -2330 ($)) (-15 -2062 ($)) (-15 -3960 ($ $ $)) (-15 -4267 ($ $)) (-15 -2330 ($ $)) (-15 -1692 ((-1293))) (-15 -1692 ((-1293) (-783))) (-15 -4183 ((-1293))) (-15 -4183 ((-1293) (-783))) (-15 -2213 ((-1293))) (-15 -2213 ((-1293) (-783))) (-15 -3177 ((-1293) (-783))) (-6 -4455) (-6 -4447)))) (T -390)) +((** (*1 *1 *1 *1) (-5 *1 (-390))) (-3056 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-3270 (*1 *1 *1) (-5 *1 (-390))) (-2541 (*1 *2 *1 *1) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-2743 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-3141 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) (-3141 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) (-4267 (*1 *1) (-5 *1 (-390))) (-2330 (*1 *1) (-5 *1 (-390))) (-2062 (*1 *1) (-5 *1 (-390))) (-3960 (*1 *1 *1 *1) (-5 *1 (-390))) (-4267 (*1 *1 *1) (-5 *1 (-390))) (-2330 (*1 *1 *1) (-5 *1 (-390))) (-1692 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-390)))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390)))) (-4183 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-390)))) (-4183 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390)))) (-2213 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-390)))) (-2213 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390)))) (-3177 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390))))) +(-13 (-416) (-238) (-626 (-1179)) (-840) (-625 (-227)) (-1223) (-626 (-548)) (-630 (-227)) (-10 -8 (-15 -3056 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -3270 ($ $)) (-15 -2541 ((-576) $ $)) (-15 -2743 ($ $ (-576))) (-15 -3141 ((-419 (-576)) $ (-783))) (-15 -3141 ((-419 (-576)) $ (-783) (-783))) (-15 -4267 ($)) (-15 -2330 ($)) (-15 -2062 ($)) (-15 -3960 ($ $ $)) (-15 -4267 ($ $)) (-15 -2330 ($ $)) (-15 -1692 ((-1293))) (-15 -1692 ((-1293) (-783))) (-15 -4183 ((-1293))) (-15 -4183 ((-1293) (-783))) (-15 -2213 ((-1293))) (-15 -2213 ((-1293) (-783))) (-15 -3177 ((-1293) (-783))) (-6 -4455) (-6 -4447))) +((-4263 (((-656 (-304 (-971 |#1|))) (-304 (-419 (-971 (-576)))) |#1|) 46) (((-656 (-304 (-971 |#1|))) (-419 (-971 (-576))) |#1|) 45) (((-656 (-656 (-304 (-971 |#1|)))) (-656 (-304 (-419 (-971 (-576))))) |#1|) 42) (((-656 (-656 (-304 (-971 |#1|)))) (-656 (-419 (-971 (-576)))) |#1|) 36)) (-3411 (((-656 |#1|) (-419 (-971 (-576))) |#1|) 20) (((-656 (-656 |#1|)) (-656 (-419 (-971 (-576)))) (-656 (-1197)) |#1|) 30))) +(((-391 |#1|) (-10 -7 (-15 -4263 ((-656 (-656 (-304 (-971 |#1|)))) (-656 (-419 (-971 (-576)))) |#1|)) (-15 -4263 ((-656 (-656 (-304 (-971 |#1|)))) (-656 (-304 (-419 (-971 (-576))))) |#1|)) (-15 -4263 ((-656 (-304 (-971 |#1|))) (-419 (-971 (-576))) |#1|)) (-15 -4263 ((-656 (-304 (-971 |#1|))) (-304 (-419 (-971 (-576)))) |#1|)) (-15 -3411 ((-656 (-656 |#1|)) (-656 (-419 (-971 (-576)))) (-656 (-1197)) |#1|)) (-15 -3411 ((-656 |#1|) (-419 (-971 (-576))) |#1|))) (-13 (-860) (-374))) (T -391)) +((-3411 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-3411 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-419 (-971 (-576))))) (-5 *4 (-656 (-1197))) (-5 *2 (-656 (-656 *5))) (-5 *1 (-391 *5)) (-4 *5 (-13 (-860) (-374))))) (-4263 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-971 (-576))))) (-5 *2 (-656 (-304 (-971 *4)))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-4263 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 (-576)))) (-5 *2 (-656 (-304 (-971 *4)))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-4263 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-971 (-576)))))) (-5 *2 (-656 (-656 (-304 (-971 *4))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-4263 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-971 (-576))))) (-5 *2 (-656 (-656 (-304 (-971 *4))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374)))))) +(-10 -7 (-15 -4263 ((-656 (-656 (-304 (-971 |#1|)))) (-656 (-419 (-971 (-576)))) |#1|)) (-15 -4263 ((-656 (-656 (-304 (-971 |#1|)))) (-656 (-304 (-419 (-971 (-576))))) |#1|)) (-15 -4263 ((-656 (-304 (-971 |#1|))) (-419 (-971 (-576))) |#1|)) (-15 -4263 ((-656 (-304 (-971 |#1|))) (-304 (-419 (-971 (-576)))) |#1|)) (-15 -3411 ((-656 (-656 |#1|)) (-656 (-419 (-971 (-576)))) (-656 (-1197)) |#1|)) (-15 -3411 ((-656 |#1|) (-419 (-971 (-576))) |#1|))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) 30)) (-2859 ((|#2| $) 32)) (-2114 (($ $) NIL)) (-3799 (((-783) $) 11)) (-2846 (((-656 $) $) 23)) (-3538 (((-112) $) NIL)) (-3684 (($ |#2| |#1|) 21)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2448 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-2081 ((|#2| $) 18)) (-2091 ((|#1| $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 51) (($ |#2|) 31)) (-2937 (((-656 |#1|) $) 20)) (-1822 ((|#1| $ |#2|) 55)) (-2399 (((-112) $ $) NIL)) (-2721 (($) 33 T CONST)) (-2012 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2924 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) (((-392 |#1| |#2|) (-13 (-393 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1070) (-861)) (T -392)) ((* (*1 *1 *2 *3) (-12 (-5 *1 (-392 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-861))))) (-13 (-393 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-1572 (((-3 |#2| "failed") $) 49)) (-2860 ((|#2| $) 50)) (-2114 (($ $) 35)) (-2217 (((-783) $) 39)) (-1608 (((-656 $) $) 40)) (-2823 (((-112) $) 43)) (-3685 (($ |#2| |#1|) 44)) (-4117 (($ (-1 |#1| |#1|) $) 45)) (-2644 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-2081 ((|#2| $) 38)) (-2091 ((|#1| $) 37)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12) (($ |#2|) 48)) (-1618 (((-656 |#1|) $) 41)) (-3177 ((|#1| $ |#2|) 46)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-3071 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-1572 (((-3 |#2| "failed") $) 49)) (-2859 ((|#2| $) 50)) (-2114 (($ $) 35)) (-3799 (((-783) $) 39)) (-2846 (((-656 $) $) 40)) (-3538 (((-112) $) 43)) (-3684 (($ |#2| |#1|) 44)) (-4116 (($ (-1 |#1| |#1|) $) 45)) (-2448 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-2081 ((|#2| $) 38)) (-2091 ((|#1| $) 37)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ |#2|) 48)) (-2937 (((-656 |#1|) $) 41)) (-1822 ((|#1| $ |#2|) 46)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2012 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) (((-393 |#1| |#2|) (-141) (-1070) (-1121)) (T -393)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-1121)))) (-3177 (*1 *2 *1 *3) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1121)) (-4 *2 (-1070)))) (-4117 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)))) (-3685 (*1 *1 *2 *3) (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1121)))) (-2823 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-112)))) (-3071 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-656 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1618 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-656 *3)))) (-1608 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-656 *1)) (-4 *1 (-393 *3 *4)))) (-2217 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-783)))) (-2081 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1121)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1121)) (-4 *2 (-1070)))) (-2644 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2114 (*1 *1 *1) (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-1121))))) -(-13 (-111 |t#1| |t#1|) (-1059 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3177 (|t#1| $ |t#2|)) (-15 -4117 ($ (-1 |t#1| |t#1|) $)) (-15 -3685 ($ |t#2| |t#1|)) (-15 -2823 ((-112) $)) (-15 -3071 ((-656 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1618 ((-656 |t#1|) $)) (-15 -1608 ((-656 $) $)) (-15 -2217 ((-783) $)) (-15 -2081 (|t#2| $)) (-15 -2091 (|t#1| $)) (-15 -2644 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2114 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-729 |t#1|)) |%noBranch|))) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-1121)))) (-1822 (*1 *2 *1 *3) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1121)) (-4 *2 (-1070)))) (-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)))) (-3684 (*1 *1 *2 *3) (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1121)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-112)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-656 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2937 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-656 *3)))) (-2846 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-656 *1)) (-4 *1 (-393 *3 *4)))) (-3799 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-783)))) (-2081 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1121)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1121)) (-4 *2 (-1070)))) (-2448 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2114 (*1 *1 *1) (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-1121))))) +(-13 (-111 |t#1| |t#1|) (-1059 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -1822 (|t#1| $ |t#2|)) (-15 -4116 ($ (-1 |t#1| |t#1|) $)) (-15 -3684 ($ |t#2| |t#1|)) (-15 -3538 ((-112) $)) (-15 -2012 ((-656 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2937 ((-656 |t#1|) $)) (-15 -2846 ((-656 $) $)) (-15 -3799 ((-783) $)) (-15 -2081 (|t#2| $)) (-15 -2091 (|t#1| $)) (-15 -2448 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2114 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-729 |t#1|)) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 |#2|) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-1059 |#2|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-2623 (((-1293) $) 7)) (-3570 (((-876) $) 8) (($ (-701 (-711))) 14) (($ (-656 (-340))) 13) (($ (-340)) 12) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 11))) +((-2622 (((-1293) $) 7)) (-3569 (((-876) $) 8) (($ (-701 (-711))) 14) (($ (-656 (-340))) 13) (($ (-340)) 12) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 11))) (((-394) (-141)) (T -394)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-701 (-711))) (-4 *1 (-394)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-394)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-394)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) (-4 *1 (-394))))) -(-13 (-407) (-10 -8 (-15 -3570 ($ (-701 (-711)))) (-15 -3570 ($ (-656 (-340)))) (-15 -3570 ($ (-340))) (-15 -3570 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340)))))))) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-701 (-711))) (-4 *1 (-394)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-394)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-394)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) (-4 *1 (-394))))) +(-13 (-407) (-10 -8 (-15 -3569 ($ (-701 (-711)))) (-15 -3569 ($ (-656 (-340)))) (-15 -3569 ($ (-340))) (-15 -3569 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340)))))))) (((-625 (-876)) . T) ((-407) . T) ((-1238) . T)) -((-1572 (((-3 $ "failed") (-701 (-326 (-390)))) 21) (((-3 $ "failed") (-701 (-326 (-576)))) 19) (((-3 $ "failed") (-701 (-971 (-390)))) 17) (((-3 $ "failed") (-701 (-971 (-576)))) 15) (((-3 $ "failed") (-701 (-419 (-971 (-390))))) 13) (((-3 $ "failed") (-701 (-419 (-971 (-576))))) 11)) (-2860 (($ (-701 (-326 (-390)))) 22) (($ (-701 (-326 (-576)))) 20) (($ (-701 (-971 (-390)))) 18) (($ (-701 (-971 (-576)))) 16) (($ (-701 (-419 (-971 (-390))))) 14) (($ (-701 (-419 (-971 (-576))))) 12)) (-2623 (((-1293) $) 7)) (-3570 (((-876) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 23))) +((-1572 (((-3 $ "failed") (-701 (-326 (-390)))) 21) (((-3 $ "failed") (-701 (-326 (-576)))) 19) (((-3 $ "failed") (-701 (-971 (-390)))) 17) (((-3 $ "failed") (-701 (-971 (-576)))) 15) (((-3 $ "failed") (-701 (-419 (-971 (-390))))) 13) (((-3 $ "failed") (-701 (-419 (-971 (-576))))) 11)) (-2859 (($ (-701 (-326 (-390)))) 22) (($ (-701 (-326 (-576)))) 20) (($ (-701 (-971 (-390)))) 18) (($ (-701 (-971 (-576)))) 16) (($ (-701 (-419 (-971 (-390))))) 14) (($ (-701 (-419 (-971 (-576))))) 12)) (-2622 (((-1293) $) 7)) (-3569 (((-876) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 23))) (((-395) (-141)) (T -395)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-395)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-395)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) (-4 *1 (-395)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-701 (-971 (-390)))) (-4 *1 (-395)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-971 (-390)))) (-4 *1 (-395)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-701 (-971 (-576)))) (-4 *1 (-395)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-971 (-576)))) (-4 *1 (-395)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-971 (-390))))) (-4 *1 (-395)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-419 (-971 (-390))))) (-4 *1 (-395)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-971 (-576))))) (-4 *1 (-395)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-419 (-971 (-576))))) (-4 *1 (-395))))) -(-13 (-407) (-10 -8 (-15 -3570 ($ (-656 (-340)))) (-15 -3570 ($ (-340))) (-15 -3570 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340)))))) (-15 -2860 ($ (-701 (-326 (-390))))) (-15 -1572 ((-3 $ "failed") (-701 (-326 (-390))))) (-15 -2860 ($ (-701 (-326 (-576))))) (-15 -1572 ((-3 $ "failed") (-701 (-326 (-576))))) (-15 -2860 ($ (-701 (-971 (-390))))) (-15 -1572 ((-3 $ "failed") (-701 (-971 (-390))))) (-15 -2860 ($ (-701 (-971 (-576))))) (-15 -1572 ((-3 $ "failed") (-701 (-971 (-576))))) (-15 -2860 ($ (-701 (-419 (-971 (-390)))))) (-15 -1572 ((-3 $ "failed") (-701 (-419 (-971 (-390)))))) (-15 -2860 ($ (-701 (-419 (-971 (-576)))))) (-15 -1572 ((-3 $ "failed") (-701 (-419 (-971 (-576)))))))) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-395)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-395)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) (-4 *1 (-395)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-701 (-971 (-390)))) (-4 *1 (-395)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-971 (-390)))) (-4 *1 (-395)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-701 (-971 (-576)))) (-4 *1 (-395)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-971 (-576)))) (-4 *1 (-395)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-971 (-390))))) (-4 *1 (-395)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-419 (-971 (-390))))) (-4 *1 (-395)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-971 (-576))))) (-4 *1 (-395)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-419 (-971 (-576))))) (-4 *1 (-395))))) +(-13 (-407) (-10 -8 (-15 -3569 ($ (-656 (-340)))) (-15 -3569 ($ (-340))) (-15 -3569 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340)))))) (-15 -2859 ($ (-701 (-326 (-390))))) (-15 -1572 ((-3 $ "failed") (-701 (-326 (-390))))) (-15 -2859 ($ (-701 (-326 (-576))))) (-15 -1572 ((-3 $ "failed") (-701 (-326 (-576))))) (-15 -2859 ($ (-701 (-971 (-390))))) (-15 -1572 ((-3 $ "failed") (-701 (-971 (-390))))) (-15 -2859 ($ (-701 (-971 (-576))))) (-15 -1572 ((-3 $ "failed") (-701 (-971 (-576))))) (-15 -2859 ($ (-701 (-419 (-971 (-390)))))) (-15 -1572 ((-3 $ "failed") (-701 (-419 (-971 (-390)))))) (-15 -2859 ($ (-701 (-419 (-971 (-576)))))) (-15 -1572 ((-3 $ "failed") (-701 (-419 (-971 (-576)))))))) (((-625 (-876)) . T) ((-407) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-3669 (((-656 (-887 |#2| |#1|)) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-1945 (($ |#1| |#2|) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-2278 ((|#2| $) NIL)) (-2091 ((|#1| $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 33)) (-4055 (((-112) $ $) NIL)) (-2721 (($) 12 T CONST)) (-2925 (((-112) $ $) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-3064 (((-656 (-887 |#2| |#1|)) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-1944 (($ |#1| |#2|) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3173 ((|#2| $) NIL)) (-2091 ((|#1| $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 33)) (-2399 (((-112) $ $) NIL)) (-2721 (($) 12 T CONST)) (-2924 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) (((-396 |#1| |#2|) (-13 (-111 |#1| |#1|) (-521 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|))) (-1070) (-861)) (T -396)) NIL (-13 (-111 |#1| |#1|) (-521 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|))) -((-3489 (((-112) $ $) 7)) (-2098 (((-783) $) 35)) (-3886 (($) 19 T CONST)) (-4442 (((-3 $ "failed") $ $) 38)) (-1572 (((-3 |#1| "failed") $) 46)) (-2860 ((|#1| $) 47)) (-1561 (((-3 $ "failed") $) 16)) (-2202 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 36)) (-4193 (((-112) $) 18)) (-4276 ((|#1| $ (-576)) 32)) (-2414 (((-783) $ (-576)) 33)) (-3125 (($ $ $) 24 (|has| |#1| (-861)))) (-3133 (($ $ $) 25 (|has| |#1| (-861)))) (-3310 (($ (-1 |#1| |#1|) $) 30)) (-2053 (($ (-1 (-783) (-783)) $) 31)) (-2054 (((-3 $ "failed") $ $) 39)) (-3699 (((-1179) $) 10)) (-2336 (($ $ $) 40)) (-3136 (($ $ $) 41)) (-1450 (((-1141) $) 11)) (-2761 (((-656 (-2 (|:| |gen| |#1|) (|:| -4104 (-783)))) $) 34)) (-3274 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 37)) (-3570 (((-876) $) 12) (($ |#1|) 45)) (-4055 (((-112) $ $) 6)) (-2732 (($) 20 T CONST)) (-2992 (((-112) $ $) 26 (|has| |#1| (-861)))) (-2964 (((-112) $ $) 28 (|has| |#1| (-861)))) (-2925 (((-112) $ $) 8)) (-2978 (((-112) $ $) 27 (|has| |#1| (-861)))) (-2950 (((-112) $ $) 29 (|has| |#1| (-861)))) (** (($ $ (-940)) 14) (($ $ (-783)) 17) (($ |#1| (-783)) 42)) (* (($ $ $) 15) (($ |#1| $) 44) (($ $ |#1|) 43))) +((-3488 (((-112) $ $) 7)) (-2098 (((-783) $) 35)) (-3404 (($) 19 T CONST)) (-1932 (((-3 $ "failed") $ $) 38)) (-1572 (((-3 |#1| "failed") $) 46)) (-2859 ((|#1| $) 47)) (-3673 (((-3 $ "failed") $) 16)) (-3650 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 36)) (-1351 (((-112) $) 18)) (-2807 ((|#1| $ (-576)) 32)) (-1993 (((-783) $ (-576)) 33)) (-3124 (($ $ $) 24 (|has| |#1| (-861)))) (-1441 (($ $ $) 25 (|has| |#1| (-861)))) (-3925 (($ (-1 |#1| |#1|) $) 30)) (-1555 (($ (-1 (-783) (-783)) $) 31)) (-1566 (((-3 $ "failed") $ $) 39)) (-2046 (((-1179) $) 10)) (-2485 (($ $ $) 40)) (-1461 (($ $ $) 41)) (-1450 (((-1141) $) 11)) (-4213 (((-656 (-2 (|:| |gen| |#1|) (|:| -4103 (-783)))) $) 34)) (-3536 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 37)) (-3569 (((-876) $) 12) (($ |#1|) 45)) (-2399 (((-112) $ $) 6)) (-2731 (($) 20 T CONST)) (-2990 (((-112) $ $) 26 (|has| |#1| (-861)))) (-2962 (((-112) $ $) 28 (|has| |#1| (-861)))) (-2924 (((-112) $ $) 8)) (-2978 (((-112) $ $) 27 (|has| |#1| (-861)))) (-2949 (((-112) $ $) 29 (|has| |#1| (-861)))) (** (($ $ (-940)) 14) (($ $ (-783)) 17) (($ |#1| (-783)) 42)) (* (($ $ $) 15) (($ |#1| $) 44) (($ $ |#1|) 43))) (((-397 |#1|) (-141) (-1121)) (T -397)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (-3136 (*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (-2336 (*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (-2054 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (-4442 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (-3274 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1121)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) (-2202 (*1 *2 *1 *1) (-12 (-4 *3 (-1121)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) (-2098 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1121)) (-5 *2 (-783)))) (-2761 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1121)) (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4104 (-783))))))) (-2414 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *4)) (-4 *4 (-1121)) (-5 *2 (-783)))) (-4276 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (-2053 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-783) (-783))) (-4 *1 (-397 *3)) (-4 *3 (-1121)))) (-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3)) (-4 *3 (-1121))))) -(-13 (-738) (-1059 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-783))) (-15 -3136 ($ $ $)) (-15 -2336 ($ $ $)) (-15 -2054 ((-3 $ "failed") $ $)) (-15 -4442 ((-3 $ "failed") $ $)) (-15 -3274 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2202 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2098 ((-783) $)) (-15 -2761 ((-656 (-2 (|:| |gen| |t#1|) (|:| -4104 (-783)))) $)) (-15 -2414 ((-783) $ (-576))) (-15 -4276 (|t#1| $ (-576))) (-15 -2053 ($ (-1 (-783) (-783)) $)) (-15 -3310 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|))) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (-1461 (*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (-2485 (*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (-1566 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (-1932 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (-3536 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1121)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) (-3650 (*1 *2 *1 *1) (-12 (-4 *3 (-1121)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) (-2098 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1121)) (-5 *2 (-783)))) (-4213 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1121)) (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4103 (-783))))))) (-1993 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *4)) (-4 *4 (-1121)) (-5 *2 (-783)))) (-2807 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (-1555 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-783) (-783))) (-4 *1 (-397 *3)) (-4 *3 (-1121)))) (-3925 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3)) (-4 *3 (-1121))))) +(-13 (-738) (-1059 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-783))) (-15 -1461 ($ $ $)) (-15 -2485 ($ $ $)) (-15 -1566 ((-3 $ "failed") $ $)) (-15 -1932 ((-3 $ "failed") $ $)) (-15 -3536 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3650 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2098 ((-783) $)) (-15 -4213 ((-656 (-2 (|:| |gen| |t#1|) (|:| -4103 (-783)))) $)) (-15 -1993 ((-783) $ (-576))) (-15 -2807 (|t#1| $ (-576))) (-15 -1555 ($ (-1 (-783) (-783)) $)) (-15 -3925 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|))) (((-102) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-738) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1059 |#1|) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-2098 (((-783) $) 74)) (-3886 (($) NIL T CONST)) (-4442 (((-3 $ "failed") $ $) 77)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2860 ((|#1| $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-2202 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-4193 (((-112) $) 17)) (-4276 ((|#1| $ (-576)) NIL)) (-2414 (((-783) $ (-576)) NIL)) (-3125 (($ $ $) NIL (|has| |#1| (-861)))) (-3133 (($ $ $) NIL (|has| |#1| (-861)))) (-3310 (($ (-1 |#1| |#1|) $) 40)) (-2053 (($ (-1 (-783) (-783)) $) 37)) (-2054 (((-3 $ "failed") $ $) 60)) (-3699 (((-1179) $) NIL)) (-2336 (($ $ $) 28)) (-3136 (($ $ $) 26)) (-1450 (((-1141) $) NIL)) (-2761 (((-656 (-2 (|:| |gen| |#1|) (|:| -4104 (-783)))) $) 34)) (-3274 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-3570 (((-876) $) 24) (($ |#1|) NIL)) (-4055 (((-112) $ $) NIL)) (-2732 (($) 11 T CONST)) (-2992 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2950 (((-112) $ $) 84 (|has| |#1| (-861)))) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ |#1| (-783)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) +((-3488 (((-112) $ $) NIL)) (-2098 (((-783) $) 74)) (-3404 (($) NIL T CONST)) (-1932 (((-3 $ "failed") $ $) 77)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2859 ((|#1| $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-3650 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-1351 (((-112) $) 17)) (-2807 ((|#1| $ (-576)) NIL)) (-1993 (((-783) $ (-576)) NIL)) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-1441 (($ $ $) NIL (|has| |#1| (-861)))) (-3925 (($ (-1 |#1| |#1|) $) 40)) (-1555 (($ (-1 (-783) (-783)) $) 37)) (-1566 (((-3 $ "failed") $ $) 60)) (-2046 (((-1179) $) NIL)) (-2485 (($ $ $) 28)) (-1461 (($ $ $) 26)) (-1450 (((-1141) $) NIL)) (-4213 (((-656 (-2 (|:| |gen| |#1|) (|:| -4103 (-783)))) $) 34)) (-3536 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-3569 (((-876) $) 24) (($ |#1|) NIL)) (-2399 (((-112) $ $) NIL)) (-2731 (($) 11 T CONST)) (-2990 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2949 (((-112) $ $) 84 (|has| |#1| (-861)))) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ |#1| (-783)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) (((-398 |#1|) (-397 |#1|) (-1121)) (T -398)) NIL (-397 |#1|) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 47)) (-2757 (($ $) 46)) (-3788 (((-112) $) 44)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-1572 (((-3 (-576) "failed") $) 54)) (-2860 (((-576) $) 55)) (-1561 (((-3 $ "failed") $) 37)) (-4193 (((-112) $) 35)) (-3125 (($ $ $) 56)) (-3133 (($ $ $) 57)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3476 (((-3 $ "failed") $ $) 48)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 53)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2672 (((-112) $ $) 45)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2992 (((-112) $ $) 58)) (-2964 (((-112) $ $) 60)) (-2925 (((-112) $ $) 8)) (-2978 (((-112) $ $) 59)) (-2950 (((-112) $ $) 61)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-4195 (($ $) 46)) (-1760 (((-112) $) 44)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-1572 (((-3 (-576) "failed") $) 54)) (-2859 (((-576) $) 55)) (-3673 (((-3 $ "failed") $) 37)) (-1351 (((-112) $) 35)) (-3124 (($ $ $) 56)) (-1441 (($ $ $) 57)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3475 (((-3 $ "failed") $ $) 48)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 53)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-1505 (((-112) $ $) 45)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2990 (((-112) $ $) 58)) (-2962 (((-112) $ $) 60)) (-2924 (((-112) $ $) 8)) (-2978 (((-112) $ $) 59)) (-2949 (((-112) $ $) 61)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-399) (-141)) (T -399)) NIL (-13 (-568) (-861) (-1059 (-576))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-861) . T) ((-864) . T) ((-1059 (-576)) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-4231 (((-112) $) 25)) (-3078 (((-112) $) 22)) (-4141 (($ (-1179) (-1179) (-1179)) 26)) (-2629 (((-1179) $) 16)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-4322 (($ (-1179) (-1179) (-1179)) 14)) (-1425 (((-1179) $) 17)) (-4345 (((-112) $) 18)) (-2310 (((-1179) $) 15)) (-3570 (((-876) $) 12) (($ (-1179)) 13) (((-1179) $) 9)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 7))) +((-3488 (((-112) $ $) NIL)) (-3634 (((-112) $) 25)) (-2084 (((-112) $) 22)) (-4140 (($ (-1179) (-1179) (-1179)) 26)) (-2628 (((-1179) $) 16)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-4321 (($ (-1179) (-1179) (-1179)) 14)) (-2127 (((-1179) $) 17)) (-2204 (((-112) $) 18)) (-2310 (((-1179) $) 15)) (-3569 (((-876) $) 12) (($ (-1179)) 13) (((-1179) $) 9)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 7))) (((-400) (-401)) (T -400)) NIL (-401) -((-3489 (((-112) $ $) 7)) (-4231 (((-112) $) 17)) (-3078 (((-112) $) 18)) (-4141 (($ (-1179) (-1179) (-1179)) 16)) (-2629 (((-1179) $) 21)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-4322 (($ (-1179) (-1179) (-1179)) 23)) (-1425 (((-1179) $) 20)) (-4345 (((-112) $) 19)) (-2310 (((-1179) $) 22)) (-3570 (((-876) $) 12) (($ (-1179)) 25) (((-1179) $) 24)) (-4055 (((-112) $ $) 6)) (-2925 (((-112) $ $) 8))) +((-3488 (((-112) $ $) 7)) (-3634 (((-112) $) 17)) (-2084 (((-112) $) 18)) (-4140 (($ (-1179) (-1179) (-1179)) 16)) (-2628 (((-1179) $) 21)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-4321 (($ (-1179) (-1179) (-1179)) 23)) (-2127 (((-1179) $) 20)) (-2204 (((-112) $) 19)) (-2310 (((-1179) $) 22)) (-3569 (((-876) $) 12) (($ (-1179)) 25) (((-1179) $) 24)) (-2399 (((-112) $ $) 6)) (-2924 (((-112) $ $) 8))) (((-401) (-141)) (T -401)) -((-4322 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-401)))) (-2310 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1179)))) (-2629 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1179)))) (-1425 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1179)))) (-4345 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-3078 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-4141 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-401))))) -(-13 (-1121) (-502 (-1179)) (-10 -8 (-15 -4322 ($ (-1179) (-1179) (-1179))) (-15 -2310 ((-1179) $)) (-15 -2629 ((-1179) $)) (-15 -1425 ((-1179) $)) (-15 -4345 ((-112) $)) (-15 -3078 ((-112) $)) (-15 -4231 ((-112) $)) (-15 -4141 ($ (-1179) (-1179) (-1179))))) +((-4321 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-401)))) (-2310 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1179)))) (-2628 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1179)))) (-2127 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1179)))) (-2204 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-2084 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-3634 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-4140 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-401))))) +(-13 (-1121) (-502 (-1179)) (-10 -8 (-15 -4321 ($ (-1179) (-1179) (-1179))) (-15 -2310 ((-1179) $)) (-15 -2628 ((-1179) $)) (-15 -2127 ((-1179) $)) (-15 -2204 ((-112) $)) (-15 -2084 ((-112) $)) (-15 -3634 ((-112) $)) (-15 -4140 ($ (-1179) (-1179) (-1179))))) (((-102) . T) ((-628 #0=(-1179)) . T) ((-625 (-876)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-2508 (((-876) $) 63)) (-3886 (($) NIL T CONST)) (-3377 (($ $ (-940)) NIL)) (-4017 (($ $ (-940)) NIL)) (-1783 (($ $ (-940)) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-4129 (($ (-783)) 38)) (-2003 (((-783)) 18)) (-3167 (((-876) $) 65)) (-2076 (($ $ $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-3790 (($ $ $ $) NIL)) (-4064 (($ $ $) NIL)) (-2721 (($) 24 T CONST)) (-2925 (((-112) $ $) 41)) (-3044 (($ $) 48) (($ $ $) 50)) (-3030 (($ $ $) 51)) (** (($ $ (-940)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) -(((-402 |#1| |#2| |#3|) (-13 (-756 |#3|) (-10 -8 (-15 -2003 ((-783))) (-15 -3167 ((-876) $)) (-15 -2508 ((-876) $)) (-15 -4129 ($ (-783))))) (-783) (-783) (-174)) (T -402)) -((-2003 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-3167 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783)) (-4 *5 (-174)))) (-2508 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783)) (-4 *5 (-174)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174))))) -(-13 (-756 |#3|) (-10 -8 (-15 -2003 ((-783))) (-15 -3167 ((-876) $)) (-15 -2508 ((-876) $)) (-15 -4129 ($ (-783))))) -((-3627 (((-1179)) 12)) (-3129 (((-1168 (-1179))) 30)) (-2602 (((-1293) (-1179)) 27) (((-1293) (-400)) 26)) (-2614 (((-1293)) 28)) (-3371 (((-1168 (-1179))) 29))) -(((-403) (-10 -7 (-15 -3371 ((-1168 (-1179)))) (-15 -3129 ((-1168 (-1179)))) (-15 -2614 ((-1293))) (-15 -2602 ((-1293) (-400))) (-15 -2602 ((-1293) (-1179))) (-15 -3627 ((-1179))))) (T -403)) -((-3627 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-403)))) (-2602 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-403)))) (-2602 (*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1293)) (-5 *1 (-403)))) (-2614 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-403)))) (-3129 (*1 *2) (-12 (-5 *2 (-1168 (-1179))) (-5 *1 (-403)))) (-3371 (*1 *2) (-12 (-5 *2 (-1168 (-1179))) (-5 *1 (-403))))) -(-10 -7 (-15 -3371 ((-1168 (-1179)))) (-15 -3129 ((-1168 (-1179)))) (-15 -2614 ((-1293))) (-15 -2602 ((-1293) (-400))) (-15 -2602 ((-1293) (-1179))) (-15 -3627 ((-1179)))) -((-3917 (((-783) (-347 |#1| |#2| |#3| |#4|)) 16))) -(((-404 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3917 ((-783) (-347 |#1| |#2| |#3| |#4|)))) (-13 (-379) (-374)) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -404)) -((-3917 (*1 *2 *3) (-12 (-5 *3 (-347 *4 *5 *6 *7)) (-4 *4 (-13 (-379) (-374))) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-4 *7 (-353 *4 *5 *6)) (-5 *2 (-783)) (-5 *1 (-404 *4 *5 *6 *7))))) -(-10 -7 (-15 -3917 ((-783) (-347 |#1| |#2| |#3| |#4|)))) -((-3570 (((-406) |#1|) 11))) -(((-405 |#1|) (-10 -7 (-15 -3570 ((-406) |#1|))) (-1121)) (T -405)) -((-3570 (*1 *2 *3) (-12 (-5 *2 (-406)) (-5 *1 (-405 *3)) (-4 *3 (-1121))))) -(-10 -7 (-15 -3570 ((-406) |#1|))) -((-3489 (((-112) $ $) NIL)) (-4311 (((-656 (-1179)) $ (-656 (-1179))) 42)) (-2213 (((-656 (-1179)) $ (-656 (-1179))) 43)) (-2896 (((-656 (-1179)) $ (-656 (-1179))) 44)) (-2863 (((-656 (-1179)) $) 39)) (-4141 (($) 30)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1645 (((-656 (-1179)) $) 40)) (-1824 (((-656 (-1179)) $) 41)) (-1977 (((-1293) $ (-576)) 37) (((-1293) $) 38)) (-4172 (($ (-876) (-576)) 35)) (-3570 (((-876) $) 49) (($ (-876)) 32)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-406) (-13 (-1121) (-628 (-876)) (-10 -8 (-15 -4172 ($ (-876) (-576))) (-15 -1977 ((-1293) $ (-576))) (-15 -1977 ((-1293) $)) (-15 -1824 ((-656 (-1179)) $)) (-15 -1645 ((-656 (-1179)) $)) (-15 -4141 ($)) (-15 -2863 ((-656 (-1179)) $)) (-15 -2896 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -2213 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -4311 ((-656 (-1179)) $ (-656 (-1179))))))) (T -406)) -((-4172 (*1 *1 *2 *3) (-12 (-5 *2 (-876)) (-5 *3 (-576)) (-5 *1 (-406)))) (-1977 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-406)))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-406)))) (-1824 (*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) (-1645 (*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) (-4141 (*1 *1) (-5 *1 (-406))) (-2863 (*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) (-2896 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) (-2213 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) (-4311 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406))))) -(-13 (-1121) (-628 (-876)) (-10 -8 (-15 -4172 ($ (-876) (-576))) (-15 -1977 ((-1293) $ (-576))) (-15 -1977 ((-1293) $)) (-15 -1824 ((-656 (-1179)) $)) (-15 -1645 ((-656 (-1179)) $)) (-15 -4141 ($)) (-15 -2863 ((-656 (-1179)) $)) (-15 -2896 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -2213 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -4311 ((-656 (-1179)) $ (-656 (-1179)))))) -((-2623 (((-1293) $) 7)) (-3570 (((-876) $) 8))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3667 (((-876) $) 63)) (-3404 (($) NIL T CONST)) (-2029 (($ $ (-940)) NIL)) (-3343 (($ $ (-940)) NIL)) (-4050 (($ $ (-940)) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-4128 (($ (-783)) 38)) (-2319 (((-783)) 18)) (-1729 (((-876) $) 65)) (-1758 (($ $ $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-1783 (($ $ $ $) NIL)) (-2487 (($ $ $) NIL)) (-2721 (($) 24 T CONST)) (-2924 (((-112) $ $) 41)) (-3043 (($ $) 48) (($ $ $) 50)) (-3029 (($ $ $) 51)) (** (($ $ (-940)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) +(((-402 |#1| |#2| |#3|) (-13 (-756 |#3|) (-10 -8 (-15 -2319 ((-783))) (-15 -1729 ((-876) $)) (-15 -3667 ((-876) $)) (-15 -4128 ($ (-783))))) (-783) (-783) (-174)) (T -402)) +((-2319 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-1729 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783)) (-4 *5 (-174)))) (-3667 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783)) (-4 *5 (-174)))) (-4128 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174))))) +(-13 (-756 |#3|) (-10 -8 (-15 -2319 ((-783))) (-15 -1729 ((-876) $)) (-15 -3667 ((-876) $)) (-15 -4128 ($ (-783))))) +((-3921 (((-1179)) 12)) (-2567 (((-1168 (-1179))) 30)) (-2601 (((-1293) (-1179)) 27) (((-1293) (-400)) 26)) (-2613 (((-1293)) 28)) (-3246 (((-1168 (-1179))) 29))) +(((-403) (-10 -7 (-15 -3246 ((-1168 (-1179)))) (-15 -2567 ((-1168 (-1179)))) (-15 -2613 ((-1293))) (-15 -2601 ((-1293) (-400))) (-15 -2601 ((-1293) (-1179))) (-15 -3921 ((-1179))))) (T -403)) +((-3921 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-403)))) (-2601 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-403)))) (-2601 (*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1293)) (-5 *1 (-403)))) (-2613 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-403)))) (-2567 (*1 *2) (-12 (-5 *2 (-1168 (-1179))) (-5 *1 (-403)))) (-3246 (*1 *2) (-12 (-5 *2 (-1168 (-1179))) (-5 *1 (-403))))) +(-10 -7 (-15 -3246 ((-1168 (-1179)))) (-15 -2567 ((-1168 (-1179)))) (-15 -2613 ((-1293))) (-15 -2601 ((-1293) (-400))) (-15 -2601 ((-1293) (-1179))) (-15 -3921 ((-1179)))) +((-3726 (((-783) (-347 |#1| |#2| |#3| |#4|)) 16))) +(((-404 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3726 ((-783) (-347 |#1| |#2| |#3| |#4|)))) (-13 (-379) (-374)) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -404)) +((-3726 (*1 *2 *3) (-12 (-5 *3 (-347 *4 *5 *6 *7)) (-4 *4 (-13 (-379) (-374))) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-4 *7 (-353 *4 *5 *6)) (-5 *2 (-783)) (-5 *1 (-404 *4 *5 *6 *7))))) +(-10 -7 (-15 -3726 ((-783) (-347 |#1| |#2| |#3| |#4|)))) +((-3569 (((-406) |#1|) 11))) +(((-405 |#1|) (-10 -7 (-15 -3569 ((-406) |#1|))) (-1121)) (T -405)) +((-3569 (*1 *2 *3) (-12 (-5 *2 (-406)) (-5 *1 (-405 *3)) (-4 *3 (-1121))))) +(-10 -7 (-15 -3569 ((-406) |#1|))) +((-3488 (((-112) $ $) NIL)) (-3170 (((-656 (-1179)) $ (-656 (-1179))) 42)) (-3757 (((-656 (-1179)) $ (-656 (-1179))) 43)) (-2995 (((-656 (-1179)) $ (-656 (-1179))) 44)) (-3936 (((-656 (-1179)) $) 39)) (-4140 (($) 30)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1645 (((-656 (-1179)) $) 40)) (-4417 (((-656 (-1179)) $) 41)) (-1977 (((-1293) $ (-576)) 37) (((-1293) $) 38)) (-4171 (($ (-876) (-576)) 35)) (-3569 (((-876) $) 49) (($ (-876)) 32)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-406) (-13 (-1121) (-628 (-876)) (-10 -8 (-15 -4171 ($ (-876) (-576))) (-15 -1977 ((-1293) $ (-576))) (-15 -1977 ((-1293) $)) (-15 -4417 ((-656 (-1179)) $)) (-15 -1645 ((-656 (-1179)) $)) (-15 -4140 ($)) (-15 -3936 ((-656 (-1179)) $)) (-15 -2995 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -3757 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -3170 ((-656 (-1179)) $ (-656 (-1179))))))) (T -406)) +((-4171 (*1 *1 *2 *3) (-12 (-5 *2 (-876)) (-5 *3 (-576)) (-5 *1 (-406)))) (-1977 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-406)))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-406)))) (-4417 (*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) (-1645 (*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) (-4140 (*1 *1) (-5 *1 (-406))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) (-2995 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) (-3757 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) (-3170 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406))))) +(-13 (-1121) (-628 (-876)) (-10 -8 (-15 -4171 ($ (-876) (-576))) (-15 -1977 ((-1293) $ (-576))) (-15 -1977 ((-1293) $)) (-15 -4417 ((-656 (-1179)) $)) (-15 -1645 ((-656 (-1179)) $)) (-15 -4140 ($)) (-15 -3936 ((-656 (-1179)) $)) (-15 -2995 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -3757 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -3170 ((-656 (-1179)) $ (-656 (-1179)))))) +((-2622 (((-1293) $) 7)) (-3569 (((-876) $) 8))) (((-407) (-141)) (T -407)) -((-2623 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-1293))))) -(-13 (-1238) (-625 (-876)) (-10 -8 (-15 -2623 ((-1293) $)))) +((-2622 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-1293))))) +(-13 (-1238) (-625 (-876)) (-10 -8 (-15 -2622 ((-1293) $)))) (((-625 (-876)) . T) ((-1238) . T)) -((-1572 (((-3 $ "failed") (-326 (-390))) 21) (((-3 $ "failed") (-326 (-576))) 19) (((-3 $ "failed") (-971 (-390))) 17) (((-3 $ "failed") (-971 (-576))) 15) (((-3 $ "failed") (-419 (-971 (-390)))) 13) (((-3 $ "failed") (-419 (-971 (-576)))) 11)) (-2860 (($ (-326 (-390))) 22) (($ (-326 (-576))) 20) (($ (-971 (-390))) 18) (($ (-971 (-576))) 16) (($ (-419 (-971 (-390)))) 14) (($ (-419 (-971 (-576)))) 12)) (-2623 (((-1293) $) 7)) (-3570 (((-876) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 23))) +((-1572 (((-3 $ "failed") (-326 (-390))) 21) (((-3 $ "failed") (-326 (-576))) 19) (((-3 $ "failed") (-971 (-390))) 17) (((-3 $ "failed") (-971 (-576))) 15) (((-3 $ "failed") (-419 (-971 (-390)))) 13) (((-3 $ "failed") (-419 (-971 (-576)))) 11)) (-2859 (($ (-326 (-390))) 22) (($ (-326 (-576))) 20) (($ (-971 (-390))) 18) (($ (-971 (-576))) 16) (($ (-419 (-971 (-390)))) 14) (($ (-419 (-971 (-576)))) 12)) (-2622 (((-1293) $) 7)) (-3569 (((-876) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 23))) (((-408) (-141)) (T -408)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-408)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-408)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) (-4 *1 (-408)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-971 (-390))) (-4 *1 (-408)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-971 (-390))) (-4 *1 (-408)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-971 (-576))) (-4 *1 (-408)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-971 (-576))) (-4 *1 (-408)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-419 (-971 (-390)))) (-4 *1 (-408)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-971 (-390)))) (-4 *1 (-408)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-419 (-971 (-576)))) (-4 *1 (-408)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-971 (-576)))) (-4 *1 (-408))))) -(-13 (-407) (-10 -8 (-15 -3570 ($ (-656 (-340)))) (-15 -3570 ($ (-340))) (-15 -3570 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340)))))) (-15 -2860 ($ (-326 (-390)))) (-15 -1572 ((-3 $ "failed") (-326 (-390)))) (-15 -2860 ($ (-326 (-576)))) (-15 -1572 ((-3 $ "failed") (-326 (-576)))) (-15 -2860 ($ (-971 (-390)))) (-15 -1572 ((-3 $ "failed") (-971 (-390)))) (-15 -2860 ($ (-971 (-576)))) (-15 -1572 ((-3 $ "failed") (-971 (-576)))) (-15 -2860 ($ (-419 (-971 (-390))))) (-15 -1572 ((-3 $ "failed") (-419 (-971 (-390))))) (-15 -2860 ($ (-419 (-971 (-576))))) (-15 -1572 ((-3 $ "failed") (-419 (-971 (-576))))))) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-408)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-408)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) (-4 *1 (-408)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-971 (-390))) (-4 *1 (-408)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-971 (-390))) (-4 *1 (-408)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-971 (-576))) (-4 *1 (-408)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-971 (-576))) (-4 *1 (-408)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-419 (-971 (-390)))) (-4 *1 (-408)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-971 (-390)))) (-4 *1 (-408)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-419 (-971 (-576)))) (-4 *1 (-408)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-971 (-576)))) (-4 *1 (-408))))) +(-13 (-407) (-10 -8 (-15 -3569 ($ (-656 (-340)))) (-15 -3569 ($ (-340))) (-15 -3569 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340)))))) (-15 -2859 ($ (-326 (-390)))) (-15 -1572 ((-3 $ "failed") (-326 (-390)))) (-15 -2859 ($ (-326 (-576)))) (-15 -1572 ((-3 $ "failed") (-326 (-576)))) (-15 -2859 ($ (-971 (-390)))) (-15 -1572 ((-3 $ "failed") (-971 (-390)))) (-15 -2859 ($ (-971 (-576)))) (-15 -1572 ((-3 $ "failed") (-971 (-576)))) (-15 -2859 ($ (-419 (-971 (-390))))) (-15 -1572 ((-3 $ "failed") (-419 (-971 (-390))))) (-15 -2859 ($ (-419 (-971 (-576))))) (-15 -1572 ((-3 $ "failed") (-419 (-971 (-576))))))) (((-625 (-876)) . T) ((-407) . T) ((-1238) . T)) -((-2056 (((-656 (-1179)) (-656 (-1179))) 9)) (-2623 (((-1293) (-400)) 26)) (-3501 (((-1125) (-1197) (-656 (-1197)) (-1200) (-656 (-1197))) 59) (((-1125) (-1197) (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197)))) (-656 (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197))))) (-656 (-1197)) (-1197)) 34) (((-1125) (-1197) (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197)))) (-656 (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197))))) (-656 (-1197))) 33))) -(((-409) (-10 -7 (-15 -3501 ((-1125) (-1197) (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197)))) (-656 (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197))))) (-656 (-1197)))) (-15 -3501 ((-1125) (-1197) (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197)))) (-656 (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197))))) (-656 (-1197)) (-1197))) (-15 -3501 ((-1125) (-1197) (-656 (-1197)) (-1200) (-656 (-1197)))) (-15 -2623 ((-1293) (-400))) (-15 -2056 ((-656 (-1179)) (-656 (-1179)))))) (T -409)) -((-2056 (*1 *2 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-409)))) (-2623 (*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1293)) (-5 *1 (-409)))) (-3501 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-656 (-1197))) (-5 *5 (-1200)) (-5 *3 (-1197)) (-5 *2 (-1125)) (-5 *1 (-409)))) (-3501 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1197))))) (-5 *6 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1125)) (-5 *1 (-409)))) (-3501 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1197))))) (-5 *6 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1125)) (-5 *1 (-409))))) -(-10 -7 (-15 -3501 ((-1125) (-1197) (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197)))) (-656 (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197))))) (-656 (-1197)))) (-15 -3501 ((-1125) (-1197) (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197)))) (-656 (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197))))) (-656 (-1197)) (-1197))) (-15 -3501 ((-1125) (-1197) (-656 (-1197)) (-1200) (-656 (-1197)))) (-15 -2623 ((-1293) (-400))) (-15 -2056 ((-656 (-1179)) (-656 (-1179))))) -((-2623 (((-1293) $) 35)) (-3570 (((-876) $) 97) (($ (-340)) 99) (($ (-656 (-340))) 98) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 96) (($ (-326 (-713))) 52) (($ (-326 (-711))) 72) (($ (-326 (-706))) 85) (($ (-304 (-326 (-713)))) 67) (($ (-304 (-326 (-711)))) 80) (($ (-304 (-326 (-706)))) 93) (($ (-326 (-576))) 104) (($ (-326 (-390))) 117) (($ (-326 (-171 (-390)))) 130) (($ (-304 (-326 (-576)))) 112) (($ (-304 (-326 (-390)))) 125) (($ (-304 (-326 (-171 (-390))))) 138))) -(((-410 |#1| |#2| |#3| |#4|) (-13 (-407) (-10 -8 (-15 -3570 ($ (-340))) (-15 -3570 ($ (-656 (-340)))) (-15 -3570 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340)))))) (-15 -3570 ($ (-326 (-713)))) (-15 -3570 ($ (-326 (-711)))) (-15 -3570 ($ (-326 (-706)))) (-15 -3570 ($ (-304 (-326 (-713))))) (-15 -3570 ($ (-304 (-326 (-711))))) (-15 -3570 ($ (-304 (-326 (-706))))) (-15 -3570 ($ (-326 (-576)))) (-15 -3570 ($ (-326 (-390)))) (-15 -3570 ($ (-326 (-171 (-390))))) (-15 -3570 ($ (-304 (-326 (-576))))) (-15 -3570 ($ (-304 (-326 (-390))))) (-15 -3570 ($ (-304 (-326 (-171 (-390)))))))) (-1197) (-3 (|:| |fst| (-446)) (|:| -2917 "void")) (-656 (-1197)) (-1201)) (T -410)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-340)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-713)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-711)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-706)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-576)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-171 (-390))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201))))) -(-13 (-407) (-10 -8 (-15 -3570 ($ (-340))) (-15 -3570 ($ (-656 (-340)))) (-15 -3570 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340)))))) (-15 -3570 ($ (-326 (-713)))) (-15 -3570 ($ (-326 (-711)))) (-15 -3570 ($ (-326 (-706)))) (-15 -3570 ($ (-304 (-326 (-713))))) (-15 -3570 ($ (-304 (-326 (-711))))) (-15 -3570 ($ (-304 (-326 (-706))))) (-15 -3570 ($ (-326 (-576)))) (-15 -3570 ($ (-326 (-390)))) (-15 -3570 ($ (-326 (-171 (-390))))) (-15 -3570 ($ (-304 (-326 (-576))))) (-15 -3570 ($ (-304 (-326 (-390))))) (-15 -3570 ($ (-304 (-326 (-171 (-390)))))))) -((-3489 (((-112) $ $) NIL)) (-3708 ((|#2| $) 38)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2398 (($ (-419 |#2|)) 93)) (-4020 (((-656 (-2 (|:| -3422 (-783)) (|:| -2396 |#2|) (|:| |num| |#2|))) $) 39)) (-2775 (($ $ (-783)) 36) (($ $) 34)) (-4172 (((-419 |#2|) $) 49)) (-3582 (($ (-656 (-2 (|:| -3422 (-783)) (|:| -2396 |#2|) (|:| |num| |#2|)))) 33)) (-3570 (((-876) $) 131)) (-4055 (((-112) $ $) NIL)) (-2020 (($ $ (-783)) 37) (($ $) 35)) (-2925 (((-112) $ $) NIL)) (-3030 (($ |#2| $) 41))) -(((-411 |#1| |#2|) (-13 (-1121) (-237) (-626 (-419 |#2|)) (-10 -8 (-15 -3030 ($ |#2| $)) (-15 -2398 ($ (-419 |#2|))) (-15 -3708 (|#2| $)) (-15 -4020 ((-656 (-2 (|:| -3422 (-783)) (|:| -2396 |#2|) (|:| |num| |#2|))) $)) (-15 -3582 ($ (-656 (-2 (|:| -3422 (-783)) (|:| -2396 |#2|) (|:| |num| |#2|))))))) (-13 (-374) (-148)) (-1264 |#1|)) (T -411)) -((-3030 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *2)) (-4 *2 (-1264 *3)))) (-2398 (*1 *1 *2) (-12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)))) (-3708 (*1 *2 *1) (-12 (-4 *2 (-1264 *3)) (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-374) (-148))))) (-4020 (*1 *2 *1) (-12 (-4 *3 (-13 (-374) (-148))) (-5 *2 (-656 (-2 (|:| -3422 (-783)) (|:| -2396 *4) (|:| |num| *4)))) (-5 *1 (-411 *3 *4)) (-4 *4 (-1264 *3)))) (-3582 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -3422 (-783)) (|:| -2396 *4) (|:| |num| *4)))) (-4 *4 (-1264 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4))))) -(-13 (-1121) (-237) (-626 (-419 |#2|)) (-10 -8 (-15 -3030 ($ |#2| $)) (-15 -2398 ($ (-419 |#2|))) (-15 -3708 (|#2| $)) (-15 -4020 ((-656 (-2 (|:| -3422 (-783)) (|:| -2396 |#2|) (|:| |num| |#2|))) $)) (-15 -3582 ($ (-656 (-2 (|:| -3422 (-783)) (|:| -2396 |#2|) (|:| |num| |#2|))))))) -((-3489 (((-112) $ $) 10 (-2760 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))))) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 16 (|has| |#1| (-901 (-390)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 15 (|has| |#1| (-901 (-576))))) (-3699 (((-1179) $) 14 (-2760 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))))) (-1450 (((-1141) $) 13 (-2760 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))))) (-3570 (((-876) $) 12 (-2760 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))))) (-4055 (((-112) $ $) 11 (-2760 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))))) (-2925 (((-112) $ $) 9 (-2760 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390))))))) +((-1586 (((-656 (-1179)) (-656 (-1179))) 9)) (-2622 (((-1293) (-400)) 26)) (-1992 (((-1125) (-1197) (-656 (-1197)) (-1200) (-656 (-1197))) 59) (((-1125) (-1197) (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197)))) (-656 (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197))))) (-656 (-1197)) (-1197)) 34) (((-1125) (-1197) (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197)))) (-656 (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197))))) (-656 (-1197))) 33))) +(((-409) (-10 -7 (-15 -1992 ((-1125) (-1197) (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197)))) (-656 (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197))))) (-656 (-1197)))) (-15 -1992 ((-1125) (-1197) (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197)))) (-656 (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197))))) (-656 (-1197)) (-1197))) (-15 -1992 ((-1125) (-1197) (-656 (-1197)) (-1200) (-656 (-1197)))) (-15 -2622 ((-1293) (-400))) (-15 -1586 ((-656 (-1179)) (-656 (-1179)))))) (T -409)) +((-1586 (*1 *2 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-409)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1293)) (-5 *1 (-409)))) (-1992 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-656 (-1197))) (-5 *5 (-1200)) (-5 *3 (-1197)) (-5 *2 (-1125)) (-5 *1 (-409)))) (-1992 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1197))))) (-5 *6 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1125)) (-5 *1 (-409)))) (-1992 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1197))))) (-5 *6 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1125)) (-5 *1 (-409))))) +(-10 -7 (-15 -1992 ((-1125) (-1197) (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197)))) (-656 (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197))))) (-656 (-1197)))) (-15 -1992 ((-1125) (-1197) (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197)))) (-656 (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197))))) (-656 (-1197)) (-1197))) (-15 -1992 ((-1125) (-1197) (-656 (-1197)) (-1200) (-656 (-1197)))) (-15 -2622 ((-1293) (-400))) (-15 -1586 ((-656 (-1179)) (-656 (-1179))))) +((-2622 (((-1293) $) 35)) (-3569 (((-876) $) 97) (($ (-340)) 99) (($ (-656 (-340))) 98) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 96) (($ (-326 (-713))) 52) (($ (-326 (-711))) 72) (($ (-326 (-706))) 85) (($ (-304 (-326 (-713)))) 67) (($ (-304 (-326 (-711)))) 80) (($ (-304 (-326 (-706)))) 93) (($ (-326 (-576))) 104) (($ (-326 (-390))) 117) (($ (-326 (-171 (-390)))) 130) (($ (-304 (-326 (-576)))) 112) (($ (-304 (-326 (-390)))) 125) (($ (-304 (-326 (-171 (-390))))) 138))) +(((-410 |#1| |#2| |#3| |#4|) (-13 (-407) (-10 -8 (-15 -3569 ($ (-340))) (-15 -3569 ($ (-656 (-340)))) (-15 -3569 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340)))))) (-15 -3569 ($ (-326 (-713)))) (-15 -3569 ($ (-326 (-711)))) (-15 -3569 ($ (-326 (-706)))) (-15 -3569 ($ (-304 (-326 (-713))))) (-15 -3569 ($ (-304 (-326 (-711))))) (-15 -3569 ($ (-304 (-326 (-706))))) (-15 -3569 ($ (-326 (-576)))) (-15 -3569 ($ (-326 (-390)))) (-15 -3569 ($ (-326 (-171 (-390))))) (-15 -3569 ($ (-304 (-326 (-576))))) (-15 -3569 ($ (-304 (-326 (-390))))) (-15 -3569 ($ (-304 (-326 (-171 (-390)))))))) (-1197) (-3 (|:| |fst| (-446)) (|:| -2916 "void")) (-656 (-1197)) (-1201)) (T -410)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-340)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-713)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-711)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-706)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-576)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-171 (-390))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201))))) +(-13 (-407) (-10 -8 (-15 -3569 ($ (-340))) (-15 -3569 ($ (-656 (-340)))) (-15 -3569 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340)))))) (-15 -3569 ($ (-326 (-713)))) (-15 -3569 ($ (-326 (-711)))) (-15 -3569 ($ (-326 (-706)))) (-15 -3569 ($ (-304 (-326 (-713))))) (-15 -3569 ($ (-304 (-326 (-711))))) (-15 -3569 ($ (-304 (-326 (-706))))) (-15 -3569 ($ (-326 (-576)))) (-15 -3569 ($ (-326 (-390)))) (-15 -3569 ($ (-326 (-171 (-390))))) (-15 -3569 ($ (-304 (-326 (-576))))) (-15 -3569 ($ (-304 (-326 (-390))))) (-15 -3569 ($ (-304 (-326 (-171 (-390)))))))) +((-3488 (((-112) $ $) NIL)) (-2144 ((|#2| $) 38)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1827 (($ (-419 |#2|)) 93)) (-2090 (((-656 (-2 (|:| -2508 (-783)) (|:| -2396 |#2|) (|:| |num| |#2|))) $) 39)) (-2774 (($ $ (-783)) 36) (($ $) 34)) (-4171 (((-419 |#2|) $) 49)) (-3581 (($ (-656 (-2 (|:| -2508 (-783)) (|:| -2396 |#2|) (|:| |num| |#2|)))) 33)) (-3569 (((-876) $) 131)) (-2399 (((-112) $ $) NIL)) (-2020 (($ $ (-783)) 37) (($ $) 35)) (-2924 (((-112) $ $) NIL)) (-3029 (($ |#2| $) 41))) +(((-411 |#1| |#2|) (-13 (-1121) (-237) (-626 (-419 |#2|)) (-10 -8 (-15 -3029 ($ |#2| $)) (-15 -1827 ($ (-419 |#2|))) (-15 -2144 (|#2| $)) (-15 -2090 ((-656 (-2 (|:| -2508 (-783)) (|:| -2396 |#2|) (|:| |num| |#2|))) $)) (-15 -3581 ($ (-656 (-2 (|:| -2508 (-783)) (|:| -2396 |#2|) (|:| |num| |#2|))))))) (-13 (-374) (-148)) (-1264 |#1|)) (T -411)) +((-3029 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *2)) (-4 *2 (-1264 *3)))) (-1827 (*1 *1 *2) (-12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)))) (-2144 (*1 *2 *1) (-12 (-4 *2 (-1264 *3)) (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-374) (-148))))) (-2090 (*1 *2 *1) (-12 (-4 *3 (-13 (-374) (-148))) (-5 *2 (-656 (-2 (|:| -2508 (-783)) (|:| -2396 *4) (|:| |num| *4)))) (-5 *1 (-411 *3 *4)) (-4 *4 (-1264 *3)))) (-3581 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -2508 (-783)) (|:| -2396 *4) (|:| |num| *4)))) (-4 *4 (-1264 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4))))) +(-13 (-1121) (-237) (-626 (-419 |#2|)) (-10 -8 (-15 -3029 ($ |#2| $)) (-15 -1827 ($ (-419 |#2|))) (-15 -2144 (|#2| $)) (-15 -2090 ((-656 (-2 (|:| -2508 (-783)) (|:| -2396 |#2|) (|:| |num| |#2|))) $)) (-15 -3581 ($ (-656 (-2 (|:| -2508 (-783)) (|:| -2396 |#2|) (|:| |num| |#2|))))))) +((-3488 (((-112) $ $) 10 (-2759 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))))) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 16 (|has| |#1| (-901 (-390)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 15 (|has| |#1| (-901 (-576))))) (-2046 (((-1179) $) 14 (-2759 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))))) (-1450 (((-1141) $) 13 (-2759 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))))) (-3569 (((-876) $) 12 (-2759 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))))) (-2399 (((-112) $ $) 11 (-2759 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))))) (-2924 (((-112) $ $) 9 (-2759 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390))))))) (((-412 |#1|) (-141) (-1238)) (T -412)) NIL (-13 (-1238) (-10 -7 (IF (|has| |t#1| (-901 (-576))) (-6 (-901 (-576))) |%noBranch|) (IF (|has| |t#1| (-901 (-390))) (-6 (-901 (-390))) |%noBranch|))) -(((-102) -2760 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))) ((-625 (-876)) -2760 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))) ((-901 (-390)) |has| |#1| (-901 (-390))) ((-901 (-576)) |has| |#1| (-901 (-576))) ((-1121) -2760 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))) ((-1238) . T)) -((-2910 (($ $) 10) (($ $ (-783)) 12))) -(((-413 |#1|) (-10 -8 (-15 -2910 (|#1| |#1| (-783))) (-15 -2910 (|#1| |#1|))) (-414)) (T -413)) +(((-102) -2759 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))) ((-625 (-876)) -2759 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))) ((-901 (-390)) |has| |#1| (-901 (-390))) ((-901 (-576)) |has| |#1| (-901 (-576))) ((-1121) -2759 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))) ((-1238) . T)) +((-3153 (($ $) 10) (($ $ (-783)) 12))) +(((-413 |#1|) (-10 -8 (-15 -3153 (|#1| |#1| (-783))) (-15 -3153 (|#1| |#1|))) (-414)) (T -413)) NIL -(-10 -8 (-15 -2910 (|#1| |#1| (-783))) (-15 -2910 (|#1| |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 47)) (-2757 (($ $) 46)) (-3788 (((-112) $) 44)) (-4367 (((-3 $ "failed") $ $) 20)) (-2487 (($ $) 81)) (-3921 (((-430 $) $) 80)) (-4016 (((-112) $ $) 65)) (-3886 (($) 18 T CONST)) (-3429 (($ $ $) 61)) (-1561 (((-3 $ "failed") $) 37)) (-3441 (($ $ $) 62)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) 57)) (-2910 (($ $) 87) (($ $ (-783)) 86)) (-4249 (((-112) $) 79)) (-3917 (((-845 (-940)) $) 89)) (-4193 (((-112) $) 35)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3458 (($ $ $) 52) (($ (-656 $)) 51)) (-3699 (((-1179) $) 10)) (-2050 (($ $) 78)) (-1450 (((-1141) $) 11)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-1828 (((-430 $) $) 82)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3476 (((-3 $ "failed") $ $) 48)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1967 (((-783) $) 64)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 63)) (-3793 (((-3 (-783) "failed") $ $) 88)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-4336 (((-3 $ "failed") $) 90)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2672 (((-112) $ $) 45)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3057 (($ $ $) 73)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) +(-10 -8 (-15 -3153 (|#1| |#1| (-783))) (-15 -3153 (|#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-4195 (($ $) 46)) (-1760 (((-112) $) 44)) (-2428 (((-3 $ "failed") $ $) 20)) (-3444 (($ $) 81)) (-3760 (((-430 $) $) 80)) (-3330 (((-112) $ $) 65)) (-3404 (($) 18 T CONST)) (-3428 (($ $ $) 61)) (-3673 (((-3 $ "failed") $) 37)) (-3440 (($ $ $) 62)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) 57)) (-3153 (($ $) 87) (($ $ (-783)) 86)) (-3833 (((-112) $) 79)) (-3726 (((-845 (-940)) $) 89)) (-1351 (((-112) $) 35)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-2046 (((-1179) $) 10)) (-2050 (($ $) 78)) (-1450 (((-1141) $) 11)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3497 (($ $ $) 54) (($ (-656 $)) 53)) (-1828 (((-430 $) $) 82)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3475 (((-3 $ "failed") $ $) 48)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1979 (((-783) $) 64)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 63)) (-1813 (((-3 (-783) "failed") $ $) 88)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-3390 (((-3 $ "failed") $) 90)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-1505 (((-112) $ $) 45)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3056 (($ $ $) 73)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) (((-414) (-141)) (T -414)) -((-3917 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-845 (-940))))) (-3793 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-783)))) (-2910 (*1 *1 *1) (-4 *1 (-414))) (-2910 (*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-783))))) -(-13 (-374) (-146) (-10 -8 (-15 -3917 ((-845 (-940)) $)) (-15 -3793 ((-3 (-783) "failed") $ $)) (-15 -2910 ($ $)) (-15 -2910 ($ $ (-783))))) +((-3726 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-845 (-940))))) (-1813 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-783)))) (-3153 (*1 *1 *1) (-4 *1 (-414))) (-3153 (*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-783))))) +(-13 (-374) (-146) (-10 -8 (-15 -3726 ((-845 (-940)) $)) (-15 -1813 ((-3 (-783) "failed") $ $)) (-15 -3153 ($ $)) (-15 -3153 ($ $ (-783))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-939) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T)) -((-3045 (($ (-576) (-576)) 11) (($ (-576) (-576) (-940)) NIL)) (-4326 (((-940)) 19) (((-940) (-940)) NIL))) -(((-415 |#1|) (-10 -8 (-15 -4326 ((-940) (-940))) (-15 -4326 ((-940))) (-15 -3045 (|#1| (-576) (-576) (-940))) (-15 -3045 (|#1| (-576) (-576)))) (-416)) (T -415)) -((-4326 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) (-4326 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-415 *3)) (-4 *3 (-416))))) -(-10 -8 (-15 -4326 ((-940) (-940))) (-15 -4326 ((-940))) (-15 -3045 (|#1| (-576) (-576) (-940))) (-15 -3045 (|#1| (-576) (-576)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2575 (((-576) $) 98)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 47)) (-2757 (($ $) 46)) (-3788 (((-112) $) 44)) (-2326 (($ $) 96)) (-4367 (((-3 $ "failed") $ $) 20)) (-2487 (($ $) 81)) (-3921 (((-430 $) $) 80)) (-1839 (($ $) 106)) (-4016 (((-112) $ $) 65)) (-3308 (((-576) $) 123)) (-3886 (($) 18 T CONST)) (-4300 (($ $) 95)) (-1572 (((-3 (-576) "failed") $) 111) (((-3 (-419 (-576)) "failed") $) 108)) (-2860 (((-576) $) 112) (((-419 (-576)) $) 109)) (-3429 (($ $ $) 61)) (-1561 (((-3 $ "failed") $) 37)) (-3441 (($ $ $) 62)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) 57)) (-4249 (((-112) $) 79)) (-3340 (((-940)) 139) (((-940) (-940)) 136 (|has| $ (-6 -4456)))) (-2087 (((-112) $) 121)) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 102)) (-3917 (((-576) $) 145)) (-4193 (((-112) $) 35)) (-2121 (($ $ (-576)) 105)) (-1381 (($ $) 101)) (-1634 (((-112) $) 122)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3125 (($ $ $) 115) (($) 133 (-12 (-2663 (|has| $ (-6 -4456))) (-2663 (|has| $ (-6 -4448)))))) (-3133 (($ $ $) 116) (($) 132 (-12 (-2663 (|has| $ (-6 -4456))) (-2663 (|has| $ (-6 -4448)))))) (-1492 (((-576) $) 142)) (-3458 (($ $ $) 52) (($ (-656 $)) 51)) (-3699 (((-1179) $) 10)) (-2050 (($ $) 78)) (-3373 (((-940) (-576)) 135 (|has| $ (-6 -4456)))) (-1450 (((-1141) $) 11)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-2393 (($ $) 97)) (-2443 (($ $) 99)) (-3045 (($ (-576) (-576)) 147) (($ (-576) (-576) (-940)) 146)) (-1828 (((-430 $) $) 82)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3476 (((-3 $ "failed") $ $) 48)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3422 (((-576) $) 143)) (-1967 (((-783) $) 64)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 63)) (-4326 (((-940)) 140) (((-940) (-940)) 137 (|has| $ (-6 -4456)))) (-1351 (((-940) (-576)) 134 (|has| $ (-6 -4456)))) (-4172 (((-390) $) 114) (((-227) $) 113) (((-907 (-390)) $) 103)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-576)) 110) (($ (-419 (-576))) 107)) (-3996 (((-783)) 32 T CONST)) (-4118 (($ $) 100)) (-3029 (((-940)) 141) (((-940) (-940)) 138 (|has| $ (-6 -4456)))) (-4055 (((-112) $ $) 6)) (-3516 (((-940)) 144)) (-2672 (((-112) $ $) 45)) (-2122 (($ $) 124)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2992 (((-112) $ $) 117)) (-2964 (((-112) $ $) 119)) (-2925 (((-112) $ $) 8)) (-2978 (((-112) $ $) 118)) (-2950 (((-112) $ $) 120)) (-3057 (($ $ $) 73)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 104)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) +((-3044 (($ (-576) (-576)) 11) (($ (-576) (-576) (-940)) NIL)) (-3295 (((-940)) 19) (((-940) (-940)) NIL))) +(((-415 |#1|) (-10 -8 (-15 -3295 ((-940) (-940))) (-15 -3295 ((-940))) (-15 -3044 (|#1| (-576) (-576) (-940))) (-15 -3044 (|#1| (-576) (-576)))) (-416)) (T -415)) +((-3295 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) (-3295 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-415 *3)) (-4 *3 (-416))))) +(-10 -8 (-15 -3295 ((-940) (-940))) (-15 -3295 ((-940))) (-15 -3044 (|#1| (-576) (-576) (-940))) (-15 -3044 (|#1| (-576) (-576)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-3110 (((-576) $) 98)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-4195 (($ $) 46)) (-1760 (((-112) $) 44)) (-2408 (($ $) 96)) (-2428 (((-3 $ "failed") $ $) 20)) (-3444 (($ $) 81)) (-3760 (((-430 $) $) 80)) (-1840 (($ $) 106)) (-3330 (((-112) $ $) 65)) (-3906 (((-576) $) 123)) (-3404 (($) 18 T CONST)) (-3065 (($ $) 95)) (-1572 (((-3 (-576) "failed") $) 111) (((-3 (-419 (-576)) "failed") $) 108)) (-2859 (((-576) $) 112) (((-419 (-576)) $) 109)) (-3428 (($ $ $) 61)) (-3673 (((-3 $ "failed") $) 37)) (-3440 (($ $ $) 62)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) 57)) (-3833 (((-112) $) 79)) (-3337 (((-940)) 139) (((-940) (-940)) 136 (|has| $ (-6 -4455)))) (-1866 (((-112) $) 121)) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 102)) (-3726 (((-576) $) 145)) (-1351 (((-112) $) 35)) (-4131 (($ $ (-576)) 105)) (-2738 (($ $) 101)) (-3137 (((-112) $) 122)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3124 (($ $ $) 115) (($) 133 (-12 (-2663 (|has| $ (-6 -4455))) (-2663 (|has| $ (-6 -4447)))))) (-1441 (($ $ $) 116) (($) 132 (-12 (-2663 (|has| $ (-6 -4455))) (-2663 (|has| $ (-6 -4447)))))) (-1492 (((-576) $) 142)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-2046 (((-1179) $) 10)) (-2050 (($ $) 78)) (-3268 (((-940) (-576)) 135 (|has| $ (-6 -4455)))) (-1450 (((-1141) $) 11)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3497 (($ $ $) 54) (($ (-656 $)) 53)) (-1788 (($ $) 97)) (-4236 (($ $) 99)) (-3044 (($ (-576) (-576)) 147) (($ (-576) (-576) (-940)) 146)) (-1828 (((-430 $) $) 82)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3475 (((-3 $ "failed") $ $) 48)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2508 (((-576) $) 143)) (-1979 (((-783) $) 64)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 63)) (-3295 (((-940)) 140) (((-940) (-940)) 137 (|has| $ (-6 -4455)))) (-1342 (((-940) (-576)) 134 (|has| $ (-6 -4455)))) (-4171 (((-390) $) 114) (((-227) $) 113) (((-907 (-390)) $) 103)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-576)) 110) (($ (-419 (-576))) 107)) (-3154 (((-783)) 32 T CONST)) (-1810 (($ $) 100)) (-2892 (((-940)) 141) (((-940) (-940)) 138 (|has| $ (-6 -4455)))) (-2399 (((-112) $ $) 6)) (-3515 (((-940)) 144)) (-1505 (((-112) $ $) 45)) (-4143 (($ $) 124)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2990 (((-112) $ $) 117)) (-2962 (((-112) $ $) 119)) (-2924 (((-112) $ $) 8)) (-2978 (((-112) $ $) 118)) (-2949 (((-112) $ $) 120)) (-3056 (($ $ $) 73)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 104)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) (((-416) (-141)) (T -416)) -((-3045 (*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-416)))) (-3045 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-940)) (-4 *1 (-416)))) (-3917 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-3516 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940)))) (-3422 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-3029 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940)))) (-4326 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940)))) (-3340 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940)))) (-3029 (*1 *2 *2) (-12 (-5 *2 (-940)) (|has| *1 (-6 -4456)) (-4 *1 (-416)))) (-4326 (*1 *2 *2) (-12 (-5 *2 (-940)) (|has| *1 (-6 -4456)) (-4 *1 (-416)))) (-3340 (*1 *2 *2) (-12 (-5 *2 (-940)) (|has| *1 (-6 -4456)) (-4 *1 (-416)))) (-3373 (*1 *2 *3) (-12 (-5 *3 (-576)) (|has| *1 (-6 -4456)) (-4 *1 (-416)) (-5 *2 (-940)))) (-1351 (*1 *2 *3) (-12 (-5 *3 (-576)) (|has| *1 (-6 -4456)) (-4 *1 (-416)) (-5 *2 (-940)))) (-3125 (*1 *1) (-12 (-4 *1 (-416)) (-2663 (|has| *1 (-6 -4456))) (-2663 (|has| *1 (-6 -4448))))) (-3133 (*1 *1) (-12 (-4 *1 (-416)) (-2663 (|has| *1 (-6 -4456))) (-2663 (|has| *1 (-6 -4448)))))) -(-13 (-1081) (-10 -8 (-6 -4166) (-15 -3045 ($ (-576) (-576))) (-15 -3045 ($ (-576) (-576) (-940))) (-15 -3917 ((-576) $)) (-15 -3516 ((-940))) (-15 -3422 ((-576) $)) (-15 -1492 ((-576) $)) (-15 -3029 ((-940))) (-15 -4326 ((-940))) (-15 -3340 ((-940))) (IF (|has| $ (-6 -4456)) (PROGN (-15 -3029 ((-940) (-940))) (-15 -4326 ((-940) (-940))) (-15 -3340 ((-940) (-940))) (-15 -3373 ((-940) (-576))) (-15 -1351 ((-940) (-576)))) |%noBranch|) (IF (|has| $ (-6 -4448)) |%noBranch| (IF (|has| $ (-6 -4456)) |%noBranch| (PROGN (-15 -3125 ($)) (-15 -3133 ($))))))) +((-3044 (*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-416)))) (-3044 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-940)) (-4 *1 (-416)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-3515 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940)))) (-2508 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-2892 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940)))) (-3295 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940)))) (-3337 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940)))) (-2892 (*1 *2 *2) (-12 (-5 *2 (-940)) (|has| *1 (-6 -4455)) (-4 *1 (-416)))) (-3295 (*1 *2 *2) (-12 (-5 *2 (-940)) (|has| *1 (-6 -4455)) (-4 *1 (-416)))) (-3337 (*1 *2 *2) (-12 (-5 *2 (-940)) (|has| *1 (-6 -4455)) (-4 *1 (-416)))) (-3268 (*1 *2 *3) (-12 (-5 *3 (-576)) (|has| *1 (-6 -4455)) (-4 *1 (-416)) (-5 *2 (-940)))) (-1342 (*1 *2 *3) (-12 (-5 *3 (-576)) (|has| *1 (-6 -4455)) (-4 *1 (-416)) (-5 *2 (-940)))) (-3124 (*1 *1) (-12 (-4 *1 (-416)) (-2663 (|has| *1 (-6 -4455))) (-2663 (|has| *1 (-6 -4447))))) (-1441 (*1 *1) (-12 (-4 *1 (-416)) (-2663 (|has| *1 (-6 -4455))) (-2663 (|has| *1 (-6 -4447)))))) +(-13 (-1081) (-10 -8 (-6 -4165) (-15 -3044 ($ (-576) (-576))) (-15 -3044 ($ (-576) (-576) (-940))) (-15 -3726 ((-576) $)) (-15 -3515 ((-940))) (-15 -2508 ((-576) $)) (-15 -1492 ((-576) $)) (-15 -2892 ((-940))) (-15 -3295 ((-940))) (-15 -3337 ((-940))) (IF (|has| $ (-6 -4455)) (PROGN (-15 -2892 ((-940) (-940))) (-15 -3295 ((-940) (-940))) (-15 -3337 ((-940) (-940))) (-15 -3268 ((-940) (-576))) (-15 -1342 ((-940) (-576)))) |%noBranch|) (IF (|has| $ (-6 -4447)) |%noBranch| (IF (|has| $ (-6 -4455)) |%noBranch| (PROGN (-15 -3124 ($)) (-15 -1441 ($))))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-907 (-390))) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-861) . T) ((-864) . T) ((-901 (-390)) . T) ((-939) . T) ((-1023) . T) ((-1043) . T) ((-1081) . T) ((-1059 (-419 (-576))) . T) ((-1059 (-576)) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T)) -((-4117 (((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)) 20))) -(((-417 |#1| |#2|) (-10 -7 (-15 -4117 ((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)))) (-568) (-568)) (T -417)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-430 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-5 *2 (-430 *6)) (-5 *1 (-417 *5 *6))))) -(-10 -7 (-15 -4117 ((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)))) -((-4117 (((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)) 13))) -(((-418 |#1| |#2|) (-10 -7 (-15 -4117 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) (-568) (-568)) (T -418)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-5 *2 (-419 *6)) (-5 *1 (-418 *5 *6))))) -(-10 -7 (-15 -4117 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 13)) (-2575 ((|#1| $) 21 (|has| |#1| (-317)))) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3601 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-4016 (((-112) $ $) NIL)) (-3308 (((-576) $) NIL (|has| |#1| (-832)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) 17) (((-3 (-1197) "failed") $) NIL (|has| |#1| (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) 72 (|has| |#1| (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576))))) (-2860 ((|#1| $) 15) (((-1197) $) NIL (|has| |#1| (-1059 (-1197)))) (((-419 (-576)) $) 69 (|has| |#1| (-1059 (-576)))) (((-576) $) NIL (|has| |#1| (-1059 (-576))))) (-3429 (($ $ $) NIL)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-1561 (((-3 $ "failed") $) 51)) (-1836 (($) NIL (|has| |#1| (-557)))) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-4249 (((-112) $) NIL)) (-2087 (((-112) $) NIL (|has| |#1| (-832)))) (-1840 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| |#1| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| |#1| (-901 (-390))))) (-4193 (((-112) $) 57)) (-2171 (($ $) NIL)) (-1570 ((|#1| $) 73)) (-2240 (((-3 $ "failed") $) NIL (|has| |#1| (-1173)))) (-1634 (((-112) $) NIL (|has| |#1| (-832)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3125 (($ $ $) NIL (|has| |#1| (-861)))) (-3133 (($ $ $) NIL (|has| |#1| (-861)))) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3540 (($) NIL (|has| |#1| (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 100)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2393 (($ $) NIL (|has| |#1| (-317)))) (-2443 ((|#1| $) 28 (|has| |#1| (-557)))) (-4100 (((-430 (-1193 $)) (-1193 $)) 145 (|has| |#1| (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) 138 (|has| |#1| (-928)))) (-1828 (((-430 $) $) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3284 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-526 (-1197) |#1|)))) (-1967 (((-783) $) NIL)) (-2797 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-2775 (($ $ (-1 |#1| |#1|)) 64) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2143 (($ $) NIL)) (-1581 ((|#1| $) 75)) (-4172 (((-907 (-576)) $) NIL (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| |#1| (-626 (-907 (-390))))) (((-548) $) NIL (|has| |#1| (-626 (-548)))) (((-390) $) NIL (|has| |#1| (-1043))) (((-227) $) NIL (|has| |#1| (-1043)))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 10) (($ (-1197)) NIL (|has| |#1| (-1059 (-1197))))) (-4336 (((-3 $ "failed") $) 102 (-2760 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3996 (((-783)) 103 T CONST)) (-4118 ((|#1| $) 26 (|has| |#1| (-557)))) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL)) (-2122 (($ $) NIL (|has| |#1| (-832)))) (-2721 (($) 22 T CONST)) (-2732 (($) 8 T CONST)) (-1636 (((-1179) $) 44 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1179) $ (-112)) 45 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1293) (-834) $) 46 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1293) (-834) $ (-112)) 47 (-12 (|has| |#1| (-557)) (|has| |#1| (-840))))) (-2020 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2992 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2925 (((-112) $ $) 66)) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2950 (((-112) $ $) 24 (|has| |#1| (-861)))) (-3057 (($ $ $) 133) (($ |#1| |#1|) 53)) (-3044 (($ $) 25) (($ $ $) 56)) (-3030 (($ $ $) 54)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 132)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 61) (($ $ $) 58) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) -(((-419 |#1|) (-13 (-1013 |#1|) (-10 -7 (IF (|has| |#1| (-557)) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4452)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4463)) (-6 -4452) |%noBranch|) |%noBranch|) |%noBranch|))) (-568)) (T -419)) -NIL -(-13 (-1013 |#1|) (-10 -7 (IF (|has| |#1| (-557)) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4452)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4463)) (-6 -4452) |%noBranch|) |%noBranch|) |%noBranch|))) -((-4101 (((-701 |#2|) (-1288 $)) NIL) (((-701 |#2|)) 18)) (-4119 (($ (-1288 |#2|) (-1288 $)) NIL) (($ (-1288 |#2|)) 24)) (-1420 (((-701 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) $) 40)) (-2731 ((|#3| $) 69)) (-4352 ((|#2| (-1288 $)) NIL) ((|#2|) 20)) (-4152 (((-1288 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) (-1288 $) (-1288 $)) NIL) (((-1288 |#2|) $) 22) (((-701 |#2|) (-1288 $)) 38)) (-4172 (((-1288 |#2|) $) 11) (($ (-1288 |#2|)) 13)) (-4281 ((|#3| $) 55))) -(((-420 |#1| |#2| |#3|) (-10 -8 (-15 -1420 ((-701 |#2|) |#1|)) (-15 -4352 (|#2|)) (-15 -4101 ((-701 |#2|))) (-15 -4172 (|#1| (-1288 |#2|))) (-15 -4172 ((-1288 |#2|) |#1|)) (-15 -4119 (|#1| (-1288 |#2|))) (-15 -4152 ((-701 |#2|) (-1288 |#1|))) (-15 -4152 ((-1288 |#2|) |#1|)) (-15 -2731 (|#3| |#1|)) (-15 -4281 (|#3| |#1|)) (-15 -4101 ((-701 |#2|) (-1288 |#1|))) (-15 -4352 (|#2| (-1288 |#1|))) (-15 -4119 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -4152 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4152 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -1420 ((-701 |#2|) |#1| (-1288 |#1|)))) (-421 |#2| |#3|) (-174) (-1264 |#2|)) (T -420)) -((-4101 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)) (-5 *1 (-420 *3 *4 *5)) (-4 *3 (-421 *4 *5)))) (-4352 (*1 *2) (-12 (-4 *4 (-1264 *2)) (-4 *2 (-174)) (-5 *1 (-420 *3 *2 *4)) (-4 *3 (-421 *2 *4))))) -(-10 -8 (-15 -1420 ((-701 |#2|) |#1|)) (-15 -4352 (|#2|)) (-15 -4101 ((-701 |#2|))) (-15 -4172 (|#1| (-1288 |#2|))) (-15 -4172 ((-1288 |#2|) |#1|)) (-15 -4119 (|#1| (-1288 |#2|))) (-15 -4152 ((-701 |#2|) (-1288 |#1|))) (-15 -4152 ((-1288 |#2|) |#1|)) (-15 -2731 (|#3| |#1|)) (-15 -4281 (|#3| |#1|)) (-15 -4101 ((-701 |#2|) (-1288 |#1|))) (-15 -4352 (|#2| (-1288 |#1|))) (-15 -4119 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -4152 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4152 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -1420 ((-701 |#2|) |#1| (-1288 |#1|)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4101 (((-701 |#1|) (-1288 $)) 53) (((-701 |#1|)) 68)) (-2210 ((|#1| $) 59)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-4119 (($ (-1288 |#1|) (-1288 $)) 55) (($ (-1288 |#1|)) 71)) (-1420 (((-701 |#1|) $ (-1288 $)) 60) (((-701 |#1|) $) 66)) (-1561 (((-3 $ "failed") $) 37)) (-3734 (((-940)) 61)) (-4193 (((-112) $) 35)) (-1381 ((|#1| $) 58)) (-2731 ((|#2| $) 51 (|has| |#1| (-374)))) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-4352 ((|#1| (-1288 $)) 54) ((|#1|) 67)) (-4152 (((-1288 |#1|) $ (-1288 $)) 57) (((-701 |#1|) (-1288 $) (-1288 $)) 56) (((-1288 |#1|) $) 73) (((-701 |#1|) (-1288 $)) 72)) (-4172 (((-1288 |#1|) $) 70) (($ (-1288 |#1|)) 69)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-4336 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-4281 ((|#2| $) 52)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-1593 (((-1288 $)) 74)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +((-4116 (((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)) 20))) +(((-417 |#1| |#2|) (-10 -7 (-15 -4116 ((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)))) (-568) (-568)) (T -417)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-430 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-5 *2 (-430 *6)) (-5 *1 (-417 *5 *6))))) +(-10 -7 (-15 -4116 ((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)))) +((-4116 (((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)) 13))) +(((-418 |#1| |#2|) (-10 -7 (-15 -4116 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) (-568) (-568)) (T -418)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-5 *2 (-419 *6)) (-5 *1 (-418 *5 *6))))) +(-10 -7 (-15 -4116 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 13)) (-3110 ((|#1| $) 21 (|has| |#1| (-317)))) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3646 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3330 (((-112) $ $) NIL)) (-3906 (((-576) $) NIL (|has| |#1| (-832)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) 17) (((-3 (-1197) "failed") $) NIL (|has| |#1| (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) 72 (|has| |#1| (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576))))) (-2859 ((|#1| $) 15) (((-1197) $) NIL (|has| |#1| (-1059 (-1197)))) (((-419 (-576)) $) 69 (|has| |#1| (-1059 (-576)))) (((-576) $) NIL (|has| |#1| (-1059 (-576))))) (-3428 (($ $ $) NIL)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3673 (((-3 $ "failed") $) 51)) (-1836 (($) NIL (|has| |#1| (-557)))) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3833 (((-112) $) NIL)) (-1866 (((-112) $) NIL (|has| |#1| (-832)))) (-3325 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| |#1| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| |#1| (-901 (-390))))) (-1351 (((-112) $) 57)) (-3328 (($ $) NIL)) (-1570 ((|#1| $) 73)) (-2734 (((-3 $ "failed") $) NIL (|has| |#1| (-1173)))) (-3137 (((-112) $) NIL (|has| |#1| (-832)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-1441 (($ $ $) NIL (|has| |#1| (-861)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3539 (($) NIL (|has| |#1| (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 100)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1788 (($ $) NIL (|has| |#1| (-317)))) (-4236 ((|#1| $) 28 (|has| |#1| (-557)))) (-1644 (((-430 (-1193 $)) (-1193 $)) 145 (|has| |#1| (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) 138 (|has| |#1| (-928)))) (-1828 (((-430 $) $) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3282 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-526 (-1197) |#1|)))) (-1979 (((-783) $) NIL)) (-2796 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-2774 (($ $ (-1 |#1| |#1|)) 64) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-4325 (($ $) NIL)) (-1581 ((|#1| $) 75)) (-4171 (((-907 (-576)) $) NIL (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| |#1| (-626 (-907 (-390))))) (((-548) $) NIL (|has| |#1| (-626 (-548)))) (((-390) $) NIL (|has| |#1| (-1043))) (((-227) $) NIL (|has| |#1| (-1043)))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 10) (($ (-1197)) NIL (|has| |#1| (-1059 (-1197))))) (-3390 (((-3 $ "failed") $) 102 (-2759 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3154 (((-783)) 103 T CONST)) (-1810 ((|#1| $) 26 (|has| |#1| (-557)))) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL)) (-4143 (($ $) NIL (|has| |#1| (-832)))) (-2721 (($) 22 T CONST)) (-2731 (($) 8 T CONST)) (-3160 (((-1179) $) 44 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1179) $ (-112)) 45 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1293) (-834) $) 46 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1293) (-834) $ (-112)) 47 (-12 (|has| |#1| (-557)) (|has| |#1| (-840))))) (-2020 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2924 (((-112) $ $) 66)) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2949 (((-112) $ $) 24 (|has| |#1| (-861)))) (-3056 (($ $ $) 133) (($ |#1| |#1|) 53)) (-3043 (($ $) 25) (($ $ $) 56)) (-3029 (($ $ $) 54)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 132)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 61) (($ $ $) 58) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) +(((-419 |#1|) (-13 (-1013 |#1|) (-10 -7 (IF (|has| |#1| (-557)) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4451)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4462)) (-6 -4451) |%noBranch|) |%noBranch|) |%noBranch|))) (-568)) (T -419)) +NIL +(-13 (-1013 |#1|) (-10 -7 (IF (|has| |#1| (-557)) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4451)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4462)) (-6 -4451) |%noBranch|) |%noBranch|) |%noBranch|))) +((-1656 (((-701 |#2|) (-1288 $)) NIL) (((-701 |#2|)) 18)) (-1819 (($ (-1288 |#2|) (-1288 $)) NIL) (($ (-1288 |#2|)) 24)) (-2072 (((-701 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) $) 40)) (-1989 ((|#3| $) 69)) (-2269 ((|#2| (-1288 $)) NIL) ((|#2|) 20)) (-4096 (((-1288 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) (-1288 $) (-1288 $)) NIL) (((-1288 |#2|) $) 22) (((-701 |#2|) (-1288 $)) 38)) (-4171 (((-1288 |#2|) $) 11) (($ (-1288 |#2|)) 13)) (-2857 ((|#3| $) 55))) +(((-420 |#1| |#2| |#3|) (-10 -8 (-15 -2072 ((-701 |#2|) |#1|)) (-15 -2269 (|#2|)) (-15 -1656 ((-701 |#2|))) (-15 -4171 (|#1| (-1288 |#2|))) (-15 -4171 ((-1288 |#2|) |#1|)) (-15 -1819 (|#1| (-1288 |#2|))) (-15 -4096 ((-701 |#2|) (-1288 |#1|))) (-15 -4096 ((-1288 |#2|) |#1|)) (-15 -1989 (|#3| |#1|)) (-15 -2857 (|#3| |#1|)) (-15 -1656 ((-701 |#2|) (-1288 |#1|))) (-15 -2269 (|#2| (-1288 |#1|))) (-15 -1819 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -4096 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4096 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -2072 ((-701 |#2|) |#1| (-1288 |#1|)))) (-421 |#2| |#3|) (-174) (-1264 |#2|)) (T -420)) +((-1656 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)) (-5 *1 (-420 *3 *4 *5)) (-4 *3 (-421 *4 *5)))) (-2269 (*1 *2) (-12 (-4 *4 (-1264 *2)) (-4 *2 (-174)) (-5 *1 (-420 *3 *2 *4)) (-4 *3 (-421 *2 *4))))) +(-10 -8 (-15 -2072 ((-701 |#2|) |#1|)) (-15 -2269 (|#2|)) (-15 -1656 ((-701 |#2|))) (-15 -4171 (|#1| (-1288 |#2|))) (-15 -4171 ((-1288 |#2|) |#1|)) (-15 -1819 (|#1| (-1288 |#2|))) (-15 -4096 ((-701 |#2|) (-1288 |#1|))) (-15 -4096 ((-1288 |#2|) |#1|)) (-15 -1989 (|#3| |#1|)) (-15 -2857 (|#3| |#1|)) (-15 -1656 ((-701 |#2|) (-1288 |#1|))) (-15 -2269 (|#2| (-1288 |#1|))) (-15 -1819 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -4096 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4096 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -2072 ((-701 |#2|) |#1| (-1288 |#1|)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-1656 (((-701 |#1|) (-1288 $)) 53) (((-701 |#1|)) 68)) (-2210 ((|#1| $) 59)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-1819 (($ (-1288 |#1|) (-1288 $)) 55) (($ (-1288 |#1|)) 71)) (-2072 (((-701 |#1|) $ (-1288 $)) 60) (((-701 |#1|) $) 66)) (-3673 (((-3 $ "failed") $) 37)) (-3733 (((-940)) 61)) (-1351 (((-112) $) 35)) (-2738 ((|#1| $) 58)) (-1989 ((|#2| $) 51 (|has| |#1| (-374)))) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2269 ((|#1| (-1288 $)) 54) ((|#1|) 67)) (-4096 (((-1288 |#1|) $ (-1288 $)) 57) (((-701 |#1|) (-1288 $) (-1288 $)) 56) (((-1288 |#1|) $) 73) (((-701 |#1|) (-1288 $)) 72)) (-4171 (((-1288 |#1|) $) 70) (($ (-1288 |#1|)) 69)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-3390 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2857 ((|#2| $) 52)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-2675 (((-1288 $)) 74)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) (((-421 |#1| |#2|) (-141) (-174) (-1264 |t#1|)) (T -421)) -((-1593 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-1288 *1)) (-4 *1 (-421 *3 *4)))) (-4152 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-1288 *3)))) (-4152 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-421 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) (-4119 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) (-4 *4 (-1264 *3)))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-1288 *3)))) (-4172 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) (-4 *4 (-1264 *3)))) (-4101 (*1 *2) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-701 *3)))) (-4352 (*1 *2) (-12 (-4 *1 (-421 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-174)))) (-1420 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-701 *3))))) -(-13 (-381 |t#1| |t#2|) (-10 -8 (-15 -1593 ((-1288 $))) (-15 -4152 ((-1288 |t#1|) $)) (-15 -4152 ((-701 |t#1|) (-1288 $))) (-15 -4119 ($ (-1288 |t#1|))) (-15 -4172 ((-1288 |t#1|) $)) (-15 -4172 ($ (-1288 |t#1|))) (-15 -4101 ((-701 |t#1|))) (-15 -4352 (|t#1|)) (-15 -1420 ((-701 |t#1|) $)))) +((-2675 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-1288 *1)) (-4 *1 (-421 *3 *4)))) (-4096 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-1288 *3)))) (-4096 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-421 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) (-1819 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) (-4 *4 (-1264 *3)))) (-4171 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-1288 *3)))) (-4171 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) (-4 *4 (-1264 *3)))) (-1656 (*1 *2) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-701 *3)))) (-2269 (*1 *2) (-12 (-4 *1 (-421 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-174)))) (-2072 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-701 *3))))) +(-13 (-381 |t#1| |t#2|) (-10 -8 (-15 -2675 ((-1288 $))) (-15 -4096 ((-1288 |t#1|) $)) (-15 -4096 ((-701 |t#1|) (-1288 $))) (-15 -1819 ($ (-1288 |t#1|))) (-15 -4171 ((-1288 |t#1|) $)) (-15 -4171 ($ (-1288 |t#1|))) (-15 -1656 ((-701 |t#1|))) (-15 -2269 (|t#1|)) (-15 -2072 ((-701 |t#1|) $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-381 |#1| |#2|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) 27) (((-3 (-576) "failed") $) 19)) (-2860 ((|#2| $) NIL) (((-419 (-576)) $) 24) (((-576) $) 14)) (-3570 (($ |#2|) NIL) (($ (-419 (-576))) 22) (($ (-576)) 11))) -(((-422 |#1| |#2|) (-10 -8 (-15 -3570 (|#1| (-576))) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2860 ((-576) |#1|)) (-15 -3570 (|#1| (-419 (-576)))) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2860 ((-419 (-576)) |#1|)) (-15 -2860 (|#2| |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -3570 (|#1| |#2|))) (-423 |#2|) (-1238)) (T -422)) +((-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) 27) (((-3 (-576) "failed") $) 19)) (-2859 ((|#2| $) NIL) (((-419 (-576)) $) 24) (((-576) $) 14)) (-3569 (($ |#2|) NIL) (($ (-419 (-576))) 22) (($ (-576)) 11))) +(((-422 |#1| |#2|) (-10 -8 (-15 -3569 (|#1| (-576))) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -3569 (|#1| |#2|))) (-423 |#2|) (-1238)) (T -422)) NIL -(-10 -8 (-15 -3570 (|#1| (-576))) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2860 ((-576) |#1|)) (-15 -3570 (|#1| (-419 (-576)))) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2860 ((-419 (-576)) |#1|)) (-15 -2860 (|#2| |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -3570 (|#1| |#2|))) -((-1572 (((-3 |#1| "failed") $) 9) (((-3 (-419 (-576)) "failed") $) 16 (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) 13 (|has| |#1| (-1059 (-576))))) (-2860 ((|#1| $) 8) (((-419 (-576)) $) 17 (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) 14 (|has| |#1| (-1059 (-576))))) (-3570 (($ |#1|) 6) (($ (-419 (-576))) 15 (|has| |#1| (-1059 (-419 (-576))))) (($ (-576)) 12 (|has| |#1| (-1059 (-576)))))) +(-10 -8 (-15 -3569 (|#1| (-576))) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -3569 (|#1| |#2|))) +((-1572 (((-3 |#1| "failed") $) 9) (((-3 (-419 (-576)) "failed") $) 16 (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) 13 (|has| |#1| (-1059 (-576))))) (-2859 ((|#1| $) 8) (((-419 (-576)) $) 17 (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) 14 (|has| |#1| (-1059 (-576))))) (-3569 (($ |#1|) 6) (($ (-419 (-576))) 15 (|has| |#1| (-1059 (-419 (-576))))) (($ (-576)) 12 (|has| |#1| (-1059 (-576)))))) (((-423 |#1|) (-141) (-1238)) (T -423)) NIL (-13 (-1059 |t#1|) (-10 -7 (IF (|has| |t#1| (-1059 (-576))) (-6 (-1059 (-576))) |%noBranch|) (IF (|has| |t#1| (-1059 (-419 (-576)))) (-6 (-1059 (-419 (-576)))) |%noBranch|))) (((-628 #0=(-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-628 #1=(-576)) |has| |#1| (-1059 (-576))) ((-628 |#1|) . T) ((-1059 #0#) |has| |#1| (-1059 (-419 (-576)))) ((-1059 #1#) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T)) -((-4117 (((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)) 35))) -(((-424 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4117 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)))) (-317) (-1013 |#1|) (-1264 |#2|) (-13 (-421 |#2| |#3|) (-1059 |#2|)) (-317) (-1013 |#5|) (-1264 |#6|) (-13 (-421 |#6| |#7|) (-1059 |#6|))) (T -424)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-317)) (-4 *6 (-1013 *5)) (-4 *7 (-1264 *6)) (-4 *8 (-13 (-421 *6 *7) (-1059 *6))) (-4 *9 (-317)) (-4 *10 (-1013 *9)) (-4 *11 (-1264 *10)) (-5 *2 (-425 *9 *10 *11 *12)) (-5 *1 (-424 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-421 *10 *11) (-1059 *10)))))) -(-10 -7 (-15 -4117 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)))) -((-3489 (((-112) $ $) NIL)) (-3886 (($) NIL T CONST)) (-1561 (((-3 $ "failed") $) NIL)) (-1879 ((|#4| (-783) (-1288 |#4|)) 55)) (-4193 (((-112) $) NIL)) (-1570 (((-1288 |#4|) $) 15)) (-1381 ((|#2| $) 53)) (-4360 (($ $) 157)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) 103)) (-4145 (($ (-1288 |#4|)) 102)) (-1450 (((-1141) $) NIL)) (-1581 ((|#1| $) 16)) (-2314 (($ $ $) NIL)) (-2076 (($ $ $) NIL)) (-3570 (((-876) $) 148)) (-4055 (((-112) $ $) NIL)) (-1593 (((-1288 |#4|) $) 141)) (-2732 (($) 11 T CONST)) (-2925 (((-112) $ $) 39)) (-3057 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 134)) (* (($ $ $) 130))) -(((-425 |#1| |#2| |#3| |#4|) (-13 (-485) (-10 -8 (-15 -4145 ($ (-1288 |#4|))) (-15 -1593 ((-1288 |#4|) $)) (-15 -1381 (|#2| $)) (-15 -1570 ((-1288 |#4|) $)) (-15 -1581 (|#1| $)) (-15 -4360 ($ $)) (-15 -1879 (|#4| (-783) (-1288 |#4|))))) (-317) (-1013 |#1|) (-1264 |#2|) (-13 (-421 |#2| |#3|) (-1059 |#2|))) (T -425)) -((-4145 (*1 *1 *2) (-12 (-5 *2 (-1288 *6)) (-4 *6 (-13 (-421 *4 *5) (-1059 *4))) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-4 *3 (-317)) (-5 *1 (-425 *3 *4 *5 *6)))) (-1593 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-1288 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-421 *4 *5) (-1059 *4))))) (-1381 (*1 *2 *1) (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1013 *3)) (-5 *1 (-425 *3 *2 *4 *5)) (-4 *3 (-317)) (-4 *5 (-13 (-421 *2 *4) (-1059 *2))))) (-1570 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-1288 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-421 *4 *5) (-1059 *4))))) (-1581 (*1 *2 *1) (-12 (-4 *3 (-1013 *2)) (-4 *4 (-1264 *3)) (-4 *2 (-317)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1059 *3))))) (-4360 (*1 *1 *1) (-12 (-4 *2 (-317)) (-4 *3 (-1013 *2)) (-4 *4 (-1264 *3)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1059 *3))))) (-1879 (*1 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-1288 *2)) (-4 *5 (-317)) (-4 *6 (-1013 *5)) (-4 *2 (-13 (-421 *6 *7) (-1059 *6))) (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1264 *6))))) -(-13 (-485) (-10 -8 (-15 -4145 ($ (-1288 |#4|))) (-15 -1593 ((-1288 |#4|) $)) (-15 -1381 (|#2| $)) (-15 -1570 ((-1288 |#4|) $)) (-15 -1581 (|#1| $)) (-15 -4360 ($ $)) (-15 -1879 (|#4| (-783) (-1288 |#4|))))) -((-3489 (((-112) $ $) NIL)) (-3886 (($) NIL T CONST)) (-1561 (((-3 $ "failed") $) NIL)) (-4193 (((-112) $) NIL)) (-1381 ((|#2| $) 71)) (-1470 (($ (-1288 |#4|)) 27) (($ (-425 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1059 |#2|)))) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 37)) (-4055 (((-112) $ $) NIL)) (-1593 (((-1288 |#4|) $) 28)) (-2732 (($) 25 T CONST)) (-2925 (((-112) $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ $ $) 82))) -(((-426 |#1| |#2| |#3| |#4| |#5|) (-13 (-738) (-10 -8 (-15 -1593 ((-1288 |#4|) $)) (-15 -1381 (|#2| $)) (-15 -1470 ($ (-1288 |#4|))) (IF (|has| |#4| (-1059 |#2|)) (-15 -1470 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-317) (-1013 |#1|) (-1264 |#2|) (-421 |#2| |#3|) (-1288 |#4|)) (T -426)) -((-1593 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-1288 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)) (-4 *6 (-421 *4 *5)) (-14 *7 *2))) (-1381 (*1 *2 *1) (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1013 *3)) (-5 *1 (-426 *3 *2 *4 *5 *6)) (-4 *3 (-317)) (-4 *5 (-421 *2 *4)) (-14 *6 (-1288 *5)))) (-1470 (*1 *1 *2) (-12 (-5 *2 (-1288 *6)) (-4 *6 (-421 *4 *5)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-4 *3 (-317)) (-5 *1 (-426 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1470 (*1 *1 *2) (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1059 *4)) (-4 *3 (-317)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-4 *6 (-421 *4 *5)) (-14 *7 (-1288 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7))))) -(-13 (-738) (-10 -8 (-15 -1593 ((-1288 |#4|) $)) (-15 -1381 (|#2| $)) (-15 -1470 ($ (-1288 |#4|))) (IF (|has| |#4| (-1059 |#2|)) (-15 -1470 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-4117 ((|#3| (-1 |#4| |#2|) |#1|) 29))) -(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4117 (|#3| (-1 |#4| |#2|) |#1|))) (-429 |#2|) (-174) (-429 |#4|) (-174)) (T -427)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-429 *6)) (-5 *1 (-427 *4 *5 *2 *6)) (-4 *4 (-429 *5))))) -(-10 -7 (-15 -4117 (|#3| (-1 |#4| |#2|) |#1|))) -((-2778 (((-3 $ "failed")) 98)) (-3210 (((-1288 (-701 |#2|)) (-1288 $)) NIL) (((-1288 (-701 |#2|))) 103)) (-3251 (((-3 (-2 (|:| |particular| $) (|:| -1593 (-656 $))) "failed")) 96)) (-3260 (((-3 $ "failed")) 95)) (-2191 (((-701 |#2|) (-1288 $)) NIL) (((-701 |#2|)) 114)) (-3352 (((-701 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) $) 122)) (-1979 (((-1193 (-971 |#2|))) 63)) (-2267 ((|#2| (-1288 $)) NIL) ((|#2|) 118)) (-4119 (($ (-1288 |#2|) (-1288 $)) NIL) (($ (-1288 |#2|)) 124)) (-3590 (((-3 (-2 (|:| |particular| $) (|:| -1593 (-656 $))) "failed")) 94)) (-1778 (((-3 $ "failed")) 86)) (-1670 (((-701 |#2|) (-1288 $)) NIL) (((-701 |#2|)) 112)) (-2903 (((-701 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) $) 120)) (-3548 (((-1193 (-971 |#2|))) 62)) (-3814 ((|#2| (-1288 $)) NIL) ((|#2|) 116)) (-4152 (((-1288 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) (-1288 $) (-1288 $)) NIL) (((-1288 |#2|) $) 123) (((-701 |#2|) (-1288 $)) 132)) (-4172 (((-1288 |#2|) $) 108) (($ (-1288 |#2|)) 110)) (-4034 (((-656 (-971 |#2|)) (-1288 $)) NIL) (((-656 (-971 |#2|))) 106)) (-3569 (($ (-701 |#2|) $) 102))) -(((-428 |#1| |#2|) (-10 -8 (-15 -3569 (|#1| (-701 |#2|) |#1|)) (-15 -1979 ((-1193 (-971 |#2|)))) (-15 -3548 ((-1193 (-971 |#2|)))) (-15 -3352 ((-701 |#2|) |#1|)) (-15 -2903 ((-701 |#2|) |#1|)) (-15 -2191 ((-701 |#2|))) (-15 -1670 ((-701 |#2|))) (-15 -2267 (|#2|)) (-15 -3814 (|#2|)) (-15 -4172 (|#1| (-1288 |#2|))) (-15 -4172 ((-1288 |#2|) |#1|)) (-15 -4119 (|#1| (-1288 |#2|))) (-15 -4034 ((-656 (-971 |#2|)))) (-15 -3210 ((-1288 (-701 |#2|)))) (-15 -4152 ((-701 |#2|) (-1288 |#1|))) (-15 -4152 ((-1288 |#2|) |#1|)) (-15 -2778 ((-3 |#1| "failed"))) (-15 -3260 ((-3 |#1| "failed"))) (-15 -1778 ((-3 |#1| "failed"))) (-15 -3251 ((-3 (-2 (|:| |particular| |#1|) (|:| -1593 (-656 |#1|))) "failed"))) (-15 -3590 ((-3 (-2 (|:| |particular| |#1|) (|:| -1593 (-656 |#1|))) "failed"))) (-15 -2191 ((-701 |#2|) (-1288 |#1|))) (-15 -1670 ((-701 |#2|) (-1288 |#1|))) (-15 -2267 (|#2| (-1288 |#1|))) (-15 -3814 (|#2| (-1288 |#1|))) (-15 -4119 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -4152 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4152 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -3352 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -2903 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -3210 ((-1288 (-701 |#2|)) (-1288 |#1|))) (-15 -4034 ((-656 (-971 |#2|)) (-1288 |#1|)))) (-429 |#2|) (-174)) (T -428)) -((-3210 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1288 (-701 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-4034 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-656 (-971 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-3814 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) (-2267 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) (-1670 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-2191 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-3548 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1193 (-971 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-1979 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1193 (-971 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4))))) -(-10 -8 (-15 -3569 (|#1| (-701 |#2|) |#1|)) (-15 -1979 ((-1193 (-971 |#2|)))) (-15 -3548 ((-1193 (-971 |#2|)))) (-15 -3352 ((-701 |#2|) |#1|)) (-15 -2903 ((-701 |#2|) |#1|)) (-15 -2191 ((-701 |#2|))) (-15 -1670 ((-701 |#2|))) (-15 -2267 (|#2|)) (-15 -3814 (|#2|)) (-15 -4172 (|#1| (-1288 |#2|))) (-15 -4172 ((-1288 |#2|) |#1|)) (-15 -4119 (|#1| (-1288 |#2|))) (-15 -4034 ((-656 (-971 |#2|)))) (-15 -3210 ((-1288 (-701 |#2|)))) (-15 -4152 ((-701 |#2|) (-1288 |#1|))) (-15 -4152 ((-1288 |#2|) |#1|)) (-15 -2778 ((-3 |#1| "failed"))) (-15 -3260 ((-3 |#1| "failed"))) (-15 -1778 ((-3 |#1| "failed"))) (-15 -3251 ((-3 (-2 (|:| |particular| |#1|) (|:| -1593 (-656 |#1|))) "failed"))) (-15 -3590 ((-3 (-2 (|:| |particular| |#1|) (|:| -1593 (-656 |#1|))) "failed"))) (-15 -2191 ((-701 |#2|) (-1288 |#1|))) (-15 -1670 ((-701 |#2|) (-1288 |#1|))) (-15 -2267 (|#2| (-1288 |#1|))) (-15 -3814 (|#2| (-1288 |#1|))) (-15 -4119 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -4152 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4152 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -3352 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -2903 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -3210 ((-1288 (-701 |#2|)) (-1288 |#1|))) (-15 -4034 ((-656 (-971 |#2|)) (-1288 |#1|)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2778 (((-3 $ "failed")) 42 (|has| |#1| (-568)))) (-4367 (((-3 $ "failed") $ $) 20)) (-3210 (((-1288 (-701 |#1|)) (-1288 $)) 83) (((-1288 (-701 |#1|))) 106)) (-2385 (((-1288 $)) 86)) (-3886 (($) 18 T CONST)) (-3251 (((-3 (-2 (|:| |particular| $) (|:| -1593 (-656 $))) "failed")) 45 (|has| |#1| (-568)))) (-3260 (((-3 $ "failed")) 43 (|has| |#1| (-568)))) (-2191 (((-701 |#1|) (-1288 $)) 70) (((-701 |#1|)) 98)) (-3331 ((|#1| $) 79)) (-3352 (((-701 |#1|) $ (-1288 $)) 81) (((-701 |#1|) $) 96)) (-2454 (((-3 $ "failed") $) 50 (|has| |#1| (-568)))) (-1979 (((-1193 (-971 |#1|))) 94 (|has| |#1| (-374)))) (-3377 (($ $ (-940)) 31)) (-1738 ((|#1| $) 77)) (-3471 (((-1193 |#1|) $) 47 (|has| |#1| (-568)))) (-2267 ((|#1| (-1288 $)) 72) ((|#1|) 100)) (-2654 (((-1193 |#1|) $) 68)) (-2002 (((-112)) 62)) (-4119 (($ (-1288 |#1|) (-1288 $)) 74) (($ (-1288 |#1|)) 104)) (-1561 (((-3 $ "failed") $) 52 (|has| |#1| (-568)))) (-3734 (((-940)) 85)) (-1576 (((-112)) 59)) (-4017 (($ $ (-940)) 38)) (-2035 (((-112)) 55)) (-1706 (((-112)) 53)) (-1758 (((-112)) 57)) (-3590 (((-3 (-2 (|:| |particular| $) (|:| -1593 (-656 $))) "failed")) 46 (|has| |#1| (-568)))) (-1778 (((-3 $ "failed")) 44 (|has| |#1| (-568)))) (-1670 (((-701 |#1|) (-1288 $)) 71) (((-701 |#1|)) 99)) (-2756 ((|#1| $) 80)) (-2903 (((-701 |#1|) $ (-1288 $)) 82) (((-701 |#1|) $) 97)) (-2941 (((-3 $ "failed") $) 51 (|has| |#1| (-568)))) (-3548 (((-1193 (-971 |#1|))) 95 (|has| |#1| (-374)))) (-1783 (($ $ (-940)) 32)) (-3394 ((|#1| $) 78)) (-4164 (((-1193 |#1|) $) 48 (|has| |#1| (-568)))) (-3814 ((|#1| (-1288 $)) 73) ((|#1|) 101)) (-3145 (((-1193 |#1|) $) 69)) (-1707 (((-112)) 63)) (-3699 (((-1179) $) 10)) (-2083 (((-112)) 54)) (-3897 (((-112)) 56)) (-3998 (((-112)) 58)) (-1450 (((-1141) $) 11)) (-2522 (((-112)) 61)) (-2797 ((|#1| $ (-576)) 110)) (-4152 (((-1288 |#1|) $ (-1288 $)) 76) (((-701 |#1|) (-1288 $) (-1288 $)) 75) (((-1288 |#1|) $) 108) (((-701 |#1|) (-1288 $)) 107)) (-4172 (((-1288 |#1|) $) 103) (($ (-1288 |#1|)) 102)) (-4034 (((-656 (-971 |#1|)) (-1288 $)) 84) (((-656 (-971 |#1|))) 105)) (-2076 (($ $ $) 28)) (-2195 (((-112)) 67)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-1593 (((-1288 $)) 109)) (-4208 (((-656 (-1288 |#1|))) 49 (|has| |#1| (-568)))) (-3790 (($ $ $ $) 29)) (-1511 (((-112)) 65)) (-3569 (($ (-701 |#1|) $) 93)) (-4064 (($ $ $) 27)) (-3689 (((-112)) 66)) (-3818 (((-112)) 64)) (-4395 (((-112)) 60)) (-2721 (($) 19 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 33)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +((-4116 (((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)) 35))) +(((-424 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4116 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)))) (-317) (-1013 |#1|) (-1264 |#2|) (-13 (-421 |#2| |#3|) (-1059 |#2|)) (-317) (-1013 |#5|) (-1264 |#6|) (-13 (-421 |#6| |#7|) (-1059 |#6|))) (T -424)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-317)) (-4 *6 (-1013 *5)) (-4 *7 (-1264 *6)) (-4 *8 (-13 (-421 *6 *7) (-1059 *6))) (-4 *9 (-317)) (-4 *10 (-1013 *9)) (-4 *11 (-1264 *10)) (-5 *2 (-425 *9 *10 *11 *12)) (-5 *1 (-424 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-421 *10 *11) (-1059 *10)))))) +(-10 -7 (-15 -4116 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)))) +((-3488 (((-112) $ $) NIL)) (-3404 (($) NIL T CONST)) (-3673 (((-3 $ "failed") $) NIL)) (-3678 ((|#4| (-783) (-1288 |#4|)) 55)) (-1351 (((-112) $) NIL)) (-1570 (((-1288 |#4|) $) 15)) (-2738 ((|#2| $) 53)) (-2348 (($ $) 157)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) 103)) (-2041 (($ (-1288 |#4|)) 102)) (-1450 (((-1141) $) NIL)) (-1581 ((|#1| $) 16)) (-2272 (($ $ $) NIL)) (-1758 (($ $ $) NIL)) (-3569 (((-876) $) 148)) (-2399 (((-112) $ $) NIL)) (-2675 (((-1288 |#4|) $) 141)) (-2731 (($) 11 T CONST)) (-2924 (((-112) $ $) 39)) (-3056 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 134)) (* (($ $ $) 130))) +(((-425 |#1| |#2| |#3| |#4|) (-13 (-485) (-10 -8 (-15 -2041 ($ (-1288 |#4|))) (-15 -2675 ((-1288 |#4|) $)) (-15 -2738 (|#2| $)) (-15 -1570 ((-1288 |#4|) $)) (-15 -1581 (|#1| $)) (-15 -2348 ($ $)) (-15 -3678 (|#4| (-783) (-1288 |#4|))))) (-317) (-1013 |#1|) (-1264 |#2|) (-13 (-421 |#2| |#3|) (-1059 |#2|))) (T -425)) +((-2041 (*1 *1 *2) (-12 (-5 *2 (-1288 *6)) (-4 *6 (-13 (-421 *4 *5) (-1059 *4))) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-4 *3 (-317)) (-5 *1 (-425 *3 *4 *5 *6)))) (-2675 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-1288 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-421 *4 *5) (-1059 *4))))) (-2738 (*1 *2 *1) (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1013 *3)) (-5 *1 (-425 *3 *2 *4 *5)) (-4 *3 (-317)) (-4 *5 (-13 (-421 *2 *4) (-1059 *2))))) (-1570 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-1288 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-421 *4 *5) (-1059 *4))))) (-1581 (*1 *2 *1) (-12 (-4 *3 (-1013 *2)) (-4 *4 (-1264 *3)) (-4 *2 (-317)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1059 *3))))) (-2348 (*1 *1 *1) (-12 (-4 *2 (-317)) (-4 *3 (-1013 *2)) (-4 *4 (-1264 *3)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1059 *3))))) (-3678 (*1 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-1288 *2)) (-4 *5 (-317)) (-4 *6 (-1013 *5)) (-4 *2 (-13 (-421 *6 *7) (-1059 *6))) (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1264 *6))))) +(-13 (-485) (-10 -8 (-15 -2041 ($ (-1288 |#4|))) (-15 -2675 ((-1288 |#4|) $)) (-15 -2738 (|#2| $)) (-15 -1570 ((-1288 |#4|) $)) (-15 -1581 (|#1| $)) (-15 -2348 ($ $)) (-15 -3678 (|#4| (-783) (-1288 |#4|))))) +((-3488 (((-112) $ $) NIL)) (-3404 (($) NIL T CONST)) (-3673 (((-3 $ "failed") $) NIL)) (-1351 (((-112) $) NIL)) (-2738 ((|#2| $) 71)) (-3944 (($ (-1288 |#4|)) 27) (($ (-425 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1059 |#2|)))) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 37)) (-2399 (((-112) $ $) NIL)) (-2675 (((-1288 |#4|) $) 28)) (-2731 (($) 25 T CONST)) (-2924 (((-112) $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ $ $) 82))) +(((-426 |#1| |#2| |#3| |#4| |#5|) (-13 (-738) (-10 -8 (-15 -2675 ((-1288 |#4|) $)) (-15 -2738 (|#2| $)) (-15 -3944 ($ (-1288 |#4|))) (IF (|has| |#4| (-1059 |#2|)) (-15 -3944 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-317) (-1013 |#1|) (-1264 |#2|) (-421 |#2| |#3|) (-1288 |#4|)) (T -426)) +((-2675 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-1288 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)) (-4 *6 (-421 *4 *5)) (-14 *7 *2))) (-2738 (*1 *2 *1) (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1013 *3)) (-5 *1 (-426 *3 *2 *4 *5 *6)) (-4 *3 (-317)) (-4 *5 (-421 *2 *4)) (-14 *6 (-1288 *5)))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-1288 *6)) (-4 *6 (-421 *4 *5)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-4 *3 (-317)) (-5 *1 (-426 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1059 *4)) (-4 *3 (-317)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-4 *6 (-421 *4 *5)) (-14 *7 (-1288 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7))))) +(-13 (-738) (-10 -8 (-15 -2675 ((-1288 |#4|) $)) (-15 -2738 (|#2| $)) (-15 -3944 ($ (-1288 |#4|))) (IF (|has| |#4| (-1059 |#2|)) (-15 -3944 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-4116 ((|#3| (-1 |#4| |#2|) |#1|) 29))) +(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4116 (|#3| (-1 |#4| |#2|) |#1|))) (-429 |#2|) (-174) (-429 |#4|) (-174)) (T -427)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-429 *6)) (-5 *1 (-427 *4 *5 *2 *6)) (-4 *4 (-429 *5))))) +(-10 -7 (-15 -4116 (|#3| (-1 |#4| |#2|) |#1|))) +((-4346 (((-3 $ "failed")) 98)) (-4142 (((-1288 (-701 |#2|)) (-1288 $)) NIL) (((-1288 (-701 |#2|))) 103)) (-3320 (((-3 (-2 (|:| |particular| $) (|:| -2675 (-656 $))) "failed")) 96)) (-3382 (((-3 $ "failed")) 95)) (-3535 (((-701 |#2|) (-1288 $)) NIL) (((-701 |#2|)) 114)) (-3068 (((-701 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) $) 122)) (-2064 (((-1193 (-971 |#2|))) 63)) (-3057 ((|#2| (-1288 $)) NIL) ((|#2|) 118)) (-1819 (($ (-1288 |#2|) (-1288 $)) NIL) (($ (-1288 |#2|)) 124)) (-3530 (((-3 (-2 (|:| |particular| $) (|:| -2675 (-656 $))) "failed")) 94)) (-3995 (((-3 $ "failed")) 86)) (-2160 (((-701 |#2|) (-1288 $)) NIL) (((-701 |#2|)) 112)) (-3070 (((-701 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) $) 120)) (-4369 (((-1193 (-971 |#2|))) 62)) (-2004 ((|#2| (-1288 $)) NIL) ((|#2|) 116)) (-4096 (((-1288 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) (-1288 $) (-1288 $)) NIL) (((-1288 |#2|) $) 123) (((-701 |#2|) (-1288 $)) 132)) (-4171 (((-1288 |#2|) $) 108) (($ (-1288 |#2|)) 110)) (-2220 (((-656 (-971 |#2|)) (-1288 $)) NIL) (((-656 (-971 |#2|))) 106)) (-3568 (($ (-701 |#2|) $) 102))) +(((-428 |#1| |#2|) (-10 -8 (-15 -3568 (|#1| (-701 |#2|) |#1|)) (-15 -2064 ((-1193 (-971 |#2|)))) (-15 -4369 ((-1193 (-971 |#2|)))) (-15 -3068 ((-701 |#2|) |#1|)) (-15 -3070 ((-701 |#2|) |#1|)) (-15 -3535 ((-701 |#2|))) (-15 -2160 ((-701 |#2|))) (-15 -3057 (|#2|)) (-15 -2004 (|#2|)) (-15 -4171 (|#1| (-1288 |#2|))) (-15 -4171 ((-1288 |#2|) |#1|)) (-15 -1819 (|#1| (-1288 |#2|))) (-15 -2220 ((-656 (-971 |#2|)))) (-15 -4142 ((-1288 (-701 |#2|)))) (-15 -4096 ((-701 |#2|) (-1288 |#1|))) (-15 -4096 ((-1288 |#2|) |#1|)) (-15 -4346 ((-3 |#1| "failed"))) (-15 -3382 ((-3 |#1| "failed"))) (-15 -3995 ((-3 |#1| "failed"))) (-15 -3320 ((-3 (-2 (|:| |particular| |#1|) (|:| -2675 (-656 |#1|))) "failed"))) (-15 -3530 ((-3 (-2 (|:| |particular| |#1|) (|:| -2675 (-656 |#1|))) "failed"))) (-15 -3535 ((-701 |#2|) (-1288 |#1|))) (-15 -2160 ((-701 |#2|) (-1288 |#1|))) (-15 -3057 (|#2| (-1288 |#1|))) (-15 -2004 (|#2| (-1288 |#1|))) (-15 -1819 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -4096 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4096 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -3068 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -3070 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -4142 ((-1288 (-701 |#2|)) (-1288 |#1|))) (-15 -2220 ((-656 (-971 |#2|)) (-1288 |#1|)))) (-429 |#2|) (-174)) (T -428)) +((-4142 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1288 (-701 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-2220 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-656 (-971 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-2004 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) (-3057 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) (-2160 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-3535 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-4369 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1193 (-971 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-2064 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1193 (-971 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4))))) +(-10 -8 (-15 -3568 (|#1| (-701 |#2|) |#1|)) (-15 -2064 ((-1193 (-971 |#2|)))) (-15 -4369 ((-1193 (-971 |#2|)))) (-15 -3068 ((-701 |#2|) |#1|)) (-15 -3070 ((-701 |#2|) |#1|)) (-15 -3535 ((-701 |#2|))) (-15 -2160 ((-701 |#2|))) (-15 -3057 (|#2|)) (-15 -2004 (|#2|)) (-15 -4171 (|#1| (-1288 |#2|))) (-15 -4171 ((-1288 |#2|) |#1|)) (-15 -1819 (|#1| (-1288 |#2|))) (-15 -2220 ((-656 (-971 |#2|)))) (-15 -4142 ((-1288 (-701 |#2|)))) (-15 -4096 ((-701 |#2|) (-1288 |#1|))) (-15 -4096 ((-1288 |#2|) |#1|)) (-15 -4346 ((-3 |#1| "failed"))) (-15 -3382 ((-3 |#1| "failed"))) (-15 -3995 ((-3 |#1| "failed"))) (-15 -3320 ((-3 (-2 (|:| |particular| |#1|) (|:| -2675 (-656 |#1|))) "failed"))) (-15 -3530 ((-3 (-2 (|:| |particular| |#1|) (|:| -2675 (-656 |#1|))) "failed"))) (-15 -3535 ((-701 |#2|) (-1288 |#1|))) (-15 -2160 ((-701 |#2|) (-1288 |#1|))) (-15 -3057 (|#2| (-1288 |#1|))) (-15 -2004 (|#2| (-1288 |#1|))) (-15 -1819 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -4096 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4096 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -3068 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -3070 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -4142 ((-1288 (-701 |#2|)) (-1288 |#1|))) (-15 -2220 ((-656 (-971 |#2|)) (-1288 |#1|)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-4346 (((-3 $ "failed")) 42 (|has| |#1| (-568)))) (-2428 (((-3 $ "failed") $ $) 20)) (-4142 (((-1288 (-701 |#1|)) (-1288 $)) 83) (((-1288 (-701 |#1|))) 106)) (-1717 (((-1288 $)) 86)) (-3404 (($) 18 T CONST)) (-3320 (((-3 (-2 (|:| |particular| $) (|:| -2675 (-656 $))) "failed")) 45 (|has| |#1| (-568)))) (-3382 (((-3 $ "failed")) 43 (|has| |#1| (-568)))) (-3535 (((-701 |#1|) (-1288 $)) 70) (((-701 |#1|)) 98)) (-2834 ((|#1| $) 79)) (-3068 (((-701 |#1|) $ (-1288 $)) 81) (((-701 |#1|) $) 96)) (-4339 (((-3 $ "failed") $) 50 (|has| |#1| (-568)))) (-2064 (((-1193 (-971 |#1|))) 94 (|has| |#1| (-374)))) (-2029 (($ $ (-940)) 31)) (-1641 ((|#1| $) 77)) (-1735 (((-1193 |#1|) $) 47 (|has| |#1| (-568)))) (-3057 ((|#1| (-1288 $)) 72) ((|#1|) 100)) (-2531 (((-1193 |#1|) $) 68)) (-2306 (((-112)) 62)) (-1819 (($ (-1288 |#1|) (-1288 $)) 74) (($ (-1288 |#1|)) 104)) (-3673 (((-3 $ "failed") $) 52 (|has| |#1| (-568)))) (-3733 (((-940)) 85)) (-3810 (((-112)) 59)) (-3343 (($ $ (-940)) 38)) (-1413 (((-112)) 55)) (-2515 (((-112)) 53)) (-1826 (((-112)) 57)) (-3530 (((-3 (-2 (|:| |particular| $) (|:| -2675 (-656 $))) "failed")) 46 (|has| |#1| (-568)))) (-3995 (((-3 $ "failed")) 44 (|has| |#1| (-568)))) (-2160 (((-701 |#1|) (-1288 $)) 71) (((-701 |#1|)) 99)) (-4185 ((|#1| $) 80)) (-3070 (((-701 |#1|) $ (-1288 $)) 82) (((-701 |#1|) $) 97)) (-3334 (((-3 $ "failed") $) 51 (|has| |#1| (-568)))) (-4369 (((-1193 (-971 |#1|))) 95 (|has| |#1| (-374)))) (-4050 (($ $ (-940)) 32)) (-2218 ((|#1| $) 78)) (-4218 (((-1193 |#1|) $) 48 (|has| |#1| (-568)))) (-2004 ((|#1| (-1288 $)) 73) ((|#1|) 101)) (-1528 (((-1193 |#1|) $) 69)) (-2524 (((-112)) 63)) (-2046 (((-1179) $) 10)) (-1821 (((-112)) 54)) (-3514 (((-112)) 56)) (-3175 (((-112)) 58)) (-1450 (((-1141) $) 11)) (-3827 (((-112)) 61)) (-2796 ((|#1| $ (-576)) 110)) (-4096 (((-1288 |#1|) $ (-1288 $)) 76) (((-701 |#1|) (-1288 $) (-1288 $)) 75) (((-1288 |#1|) $) 108) (((-701 |#1|) (-1288 $)) 107)) (-4171 (((-1288 |#1|) $) 103) (($ (-1288 |#1|)) 102)) (-2220 (((-656 (-971 |#1|)) (-1288 $)) 84) (((-656 (-971 |#1|))) 105)) (-1758 (($ $ $) 28)) (-3583 (((-112)) 67)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2675 (((-1288 $)) 109)) (-1484 (((-656 (-1288 |#1|))) 49 (|has| |#1| (-568)))) (-1783 (($ $ $ $) 29)) (-4354 (((-112)) 65)) (-3568 (($ (-701 |#1|) $) 93)) (-2487 (($ $ $) 27)) (-3233 (((-112)) 66)) (-4033 (((-112)) 64)) (-2693 (((-112)) 60)) (-2721 (($) 19 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 33)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) (((-429 |#1|) (-141) (-174)) (T -429)) -((-1593 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1288 *1)) (-4 *1 (-429 *3)))) (-4152 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1288 *3)))) (-4152 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-429 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-3210 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1288 (-701 *3))))) (-4034 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-656 (-971 *3))))) (-4119 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1288 *3)))) (-4172 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) (-3814 (*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))) (-2267 (*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))) (-1670 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-2191 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-2903 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-3352 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-3548 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) (-5 *2 (-1193 (-971 *3))))) (-1979 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) (-5 *2 (-1193 (-971 *3))))) (-3569 (*1 *1 *2 *1) (-12 (-5 *2 (-701 *3)) (-4 *1 (-429 *3)) (-4 *3 (-174))))) -(-13 (-378 |t#1|) (-296 (-576) |t#1|) (-10 -8 (-15 -1593 ((-1288 $))) (-15 -4152 ((-1288 |t#1|) $)) (-15 -4152 ((-701 |t#1|) (-1288 $))) (-15 -3210 ((-1288 (-701 |t#1|)))) (-15 -4034 ((-656 (-971 |t#1|)))) (-15 -4119 ($ (-1288 |t#1|))) (-15 -4172 ((-1288 |t#1|) $)) (-15 -4172 ($ (-1288 |t#1|))) (-15 -3814 (|t#1|)) (-15 -2267 (|t#1|)) (-15 -1670 ((-701 |t#1|))) (-15 -2191 ((-701 |t#1|))) (-15 -2903 ((-701 |t#1|) $)) (-15 -3352 ((-701 |t#1|) $)) (IF (|has| |t#1| (-374)) (PROGN (-15 -3548 ((-1193 (-971 |t#1|)))) (-15 -1979 ((-1193 (-971 |t#1|))))) |%noBranch|) (-15 -3569 ($ (-701 |t#1|) $)))) +((-2675 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1288 *1)) (-4 *1 (-429 *3)))) (-4096 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1288 *3)))) (-4096 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-429 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-4142 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1288 (-701 *3))))) (-2220 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-656 (-971 *3))))) (-1819 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) (-4171 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1288 *3)))) (-4171 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) (-2004 (*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))) (-3057 (*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))) (-2160 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-3535 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-3070 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-3068 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-4369 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) (-5 *2 (-1193 (-971 *3))))) (-2064 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) (-5 *2 (-1193 (-971 *3))))) (-3568 (*1 *1 *2 *1) (-12 (-5 *2 (-701 *3)) (-4 *1 (-429 *3)) (-4 *3 (-174))))) +(-13 (-378 |t#1|) (-296 (-576) |t#1|) (-10 -8 (-15 -2675 ((-1288 $))) (-15 -4096 ((-1288 |t#1|) $)) (-15 -4096 ((-701 |t#1|) (-1288 $))) (-15 -4142 ((-1288 (-701 |t#1|)))) (-15 -2220 ((-656 (-971 |t#1|)))) (-15 -1819 ($ (-1288 |t#1|))) (-15 -4171 ((-1288 |t#1|) $)) (-15 -4171 ($ (-1288 |t#1|))) (-15 -2004 (|t#1|)) (-15 -3057 (|t#1|)) (-15 -2160 ((-701 |t#1|))) (-15 -3535 ((-701 |t#1|))) (-15 -3070 ((-701 |t#1|) $)) (-15 -3068 ((-701 |t#1|) $)) (IF (|has| |t#1| (-374)) (PROGN (-15 -4369 ((-1193 (-971 |t#1|)))) (-15 -2064 ((-1193 (-971 |t#1|))))) |%noBranch|) (-15 -3568 ($ (-701 |t#1|) $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-296 (-576) |#1|) . T) ((-378 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-732) . T) ((-756 |#1|) . T) ((-773) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 60)) (-1559 (($ $) 78)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 192)) (-2757 (($ $) NIL)) (-3788 (((-112) $) 48)) (-2778 ((|#1| $) 16)) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL (|has| |#1| (-1242)))) (-3921 (((-430 $) $) NIL (|has| |#1| (-1242)))) (-2792 (($ |#1| (-576)) 42)) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 149)) (-2860 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 74)) (-1561 (((-3 $ "failed") $) 165)) (-3104 (((-3 (-419 (-576)) "failed") $) 85 (|has| |#1| (-557)))) (-2545 (((-112) $) 81 (|has| |#1| (-557)))) (-2568 (((-419 (-576)) $) 92 (|has| |#1| (-557)))) (-1482 (($ |#1| (-576)) 44)) (-4249 (((-112) $) 212 (|has| |#1| (-1242)))) (-4193 (((-112) $) 62)) (-3778 (((-783) $) 51)) (-4072 (((-3 "nil" "sqfr" "irred" "prime") $ (-576)) 176)) (-4276 ((|#1| $ (-576)) 175)) (-2914 (((-576) $ (-576)) 174)) (-2164 (($ |#1| (-576)) 41)) (-4117 (($ (-1 |#1| |#1|) $) 184)) (-2872 (($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576))))) 79)) (-3458 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3699 (((-1179) $) NIL)) (-2639 (($ |#1| (-576)) 43)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) 193 (|has| |#1| (-464)))) (-1968 (($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-2761 (((-656 (-2 (|:| -1828 |#1|) (|:| -3422 (-576)))) $) 73)) (-3600 (((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $) 12)) (-1828 (((-430 $) $) NIL (|has| |#1| (-1242)))) (-3476 (((-3 $ "failed") $ $) 177)) (-3422 (((-576) $) 168)) (-1942 ((|#1| $) 75)) (-3284 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 101 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 107 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) $) NIL (|has| |#1| (-526 (-1197) $))) (($ $ (-656 (-1197)) (-656 $)) 108 (|has| |#1| (-526 (-1197) $))) (($ $ (-656 (-304 $))) 104 (|has| |#1| (-319 $))) (($ $ (-304 $)) NIL (|has| |#1| (-319 $))) (($ $ $ $) NIL (|has| |#1| (-319 $))) (($ $ (-656 $) (-656 $)) NIL (|has| |#1| (-319 $)))) (-2797 (($ $ |#1|) 93 (|has| |#1| (-296 |#1| |#1|))) (($ $ $) 94 (|has| |#1| (-296 $ $)))) (-2775 (($ $ (-1 |#1| |#1|)) 183) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-4172 (((-548) $) 39 (|has| |#1| (-626 (-548)))) (((-390) $) 114 (|has| |#1| (-1043))) (((-227) $) 120 (|has| |#1| (-1043)))) (-3570 (((-876) $) 147) (($ (-576)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576)))))) (-3996 (((-783)) 67 T CONST)) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL)) (-2721 (($) 53 T CONST)) (-2732 (($) 52 T CONST)) (-2020 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-2925 (((-112) $ $) 160)) (-3044 (($ $) 162) (($ $ $) NIL)) (-3030 (($ $ $) 181)) (** (($ $ (-940)) NIL) (($ $ (-783)) 126)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) -(((-430 |#1|) (-13 (-568) (-232 |#1|) (-38 |#1|) (-349 |#1|) (-423 |#1|) (-10 -8 (-15 -1942 (|#1| $)) (-15 -3422 ((-576) $)) (-15 -2872 ($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))))) (-15 -3600 ((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $)) (-15 -2164 ($ |#1| (-576))) (-15 -2761 ((-656 (-2 (|:| -1828 |#1|) (|:| -3422 (-576)))) $)) (-15 -2639 ($ |#1| (-576))) (-15 -2914 ((-576) $ (-576))) (-15 -4276 (|#1| $ (-576))) (-15 -4072 ((-3 "nil" "sqfr" "irred" "prime") $ (-576))) (-15 -3778 ((-783) $)) (-15 -1482 ($ |#1| (-576))) (-15 -2792 ($ |#1| (-576))) (-15 -1968 ($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2778 (|#1| $)) (-15 -1559 ($ $)) (-15 -4117 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1043)) (-6 (-1043)) |%noBranch|) (IF (|has| |#1| (-1242)) (-6 (-1242)) |%noBranch|) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -2545 ((-112) $)) (-15 -2568 ((-419 (-576)) $)) (-15 -3104 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-296 $ $)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |#1| (-319 $)) (-6 (-319 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1197) $)) (-6 (-526 (-1197) $)) |%noBranch|))) (-568)) (T -430)) -((-4117 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-568)) (-5 *1 (-430 *3)))) (-1942 (*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3422 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-2872 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-576))))) (-4 *2 (-568)) (-5 *1 (-430 *2)))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-576))))) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-2164 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-2761 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -1828 *3) (|:| -3422 (-576))))) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-2639 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-2914 (*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-4276 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-4072 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-430 *4)) (-4 *4 (-568)))) (-3778 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-1482 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-2792 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-1968 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-2778 (*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-1559 (*1 *1 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-2545 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) (-2568 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) (-3104 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568))))) -(-13 (-568) (-232 |#1|) (-38 |#1|) (-349 |#1|) (-423 |#1|) (-10 -8 (-15 -1942 (|#1| $)) (-15 -3422 ((-576) $)) (-15 -2872 ($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))))) (-15 -3600 ((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $)) (-15 -2164 ($ |#1| (-576))) (-15 -2761 ((-656 (-2 (|:| -1828 |#1|) (|:| -3422 (-576)))) $)) (-15 -2639 ($ |#1| (-576))) (-15 -2914 ((-576) $ (-576))) (-15 -4276 (|#1| $ (-576))) (-15 -4072 ((-3 "nil" "sqfr" "irred" "prime") $ (-576))) (-15 -3778 ((-783) $)) (-15 -1482 ($ |#1| (-576))) (-15 -2792 ($ |#1| (-576))) (-15 -1968 ($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2778 (|#1| $)) (-15 -1559 ($ $)) (-15 -4117 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1043)) (-6 (-1043)) |%noBranch|) (IF (|has| |#1| (-1242)) (-6 (-1242)) |%noBranch|) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -2545 ((-112) $)) (-15 -2568 ((-419 (-576)) $)) (-15 -3104 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-296 $ $)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |#1| (-319 $)) (-6 (-319 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1197) $)) (-6 (-526 (-1197) $)) |%noBranch|))) -((-3823 (((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|)) 28)) (-2316 (((-430 |#1|) (-430 |#1|) (-430 |#1|)) 17))) -(((-431 |#1|) (-10 -7 (-15 -3823 ((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|))) (-15 -2316 ((-430 |#1|) (-430 |#1|) (-430 |#1|)))) (-568)) (T -431)) -((-2316 (*1 *2 *2 *2) (-12 (-5 *2 (-430 *3)) (-4 *3 (-568)) (-5 *1 (-431 *3)))) (-3823 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-430 *4) *4)) (-4 *4 (-568)) (-5 *2 (-430 *4)) (-5 *1 (-431 *4))))) -(-10 -7 (-15 -3823 ((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|))) (-15 -2316 ((-430 |#1|) (-430 |#1|) (-430 |#1|)))) -((-1519 ((|#2| |#2|) 183)) (-3968 (((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112)) 60))) -(((-432 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3968 ((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112))) (-15 -1519 (|#2| |#2|))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|)) (-1197) |#2|) (T -432)) -((-1519 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-432 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1223) (-442 *3))) (-14 *4 (-1197)) (-14 *5 *2))) (-3968 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |%expansion| (-323 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) (-5 *1 (-432 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) (-14 *6 (-1197)) (-14 *7 *3)))) -(-10 -7 (-15 -3968 ((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112))) (-15 -1519 (|#2| |#2|))) -((-4117 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4117 (|#4| (-1 |#3| |#1|) |#2|))) (-1070) (-442 |#1|) (-1070) (-442 |#3|)) (T -433)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-4 *2 (-442 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-442 *5))))) -(-10 -7 (-15 -4117 (|#4| (-1 |#3| |#1|) |#2|))) -((-1519 ((|#2| |#2|) 106)) (-2693 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112) (-1179)) 52)) (-1983 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112) (-1179)) 170))) -(((-434 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2693 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112) (-1179))) (-15 -1983 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112) (-1179))) (-15 -1519 (|#2| |#2|))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|) (-10 -8 (-15 -3570 ($ |#3|)))) (-860) (-13 (-1266 |#2| |#3|) (-374) (-1223) (-10 -8 (-15 -2775 ($ $)) (-15 -1491 ($ $)))) (-1004 |#4|) (-1197)) (T -434)) -((-1519 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-4 *2 (-13 (-27) (-1223) (-442 *3) (-10 -8 (-15 -3570 ($ *4))))) (-4 *4 (-860)) (-4 *5 (-13 (-1266 *2 *4) (-374) (-1223) (-10 -8 (-15 -2775 ($ $)) (-15 -1491 ($ $))))) (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1004 *5)) (-14 *7 (-1197)))) (-1983 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-4 *3 (-13 (-27) (-1223) (-442 *6) (-10 -8 (-15 -3570 ($ *7))))) (-4 *7 (-860)) (-4 *8 (-13 (-1266 *3 *7) (-374) (-1223) (-10 -8 (-15 -2775 ($ $)) (-15 -1491 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1179)) (-4 *9 (-1004 *8)) (-14 *10 (-1197)))) (-2693 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-4 *3 (-13 (-27) (-1223) (-442 *6) (-10 -8 (-15 -3570 ($ *7))))) (-4 *7 (-860)) (-4 *8 (-13 (-1266 *3 *7) (-374) (-1223) (-10 -8 (-15 -2775 ($ $)) (-15 -1491 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1179)) (-4 *9 (-1004 *8)) (-14 *10 (-1197))))) -(-10 -7 (-15 -2693 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112) (-1179))) (-15 -1983 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112) (-1179))) (-15 -1519 (|#2| |#2|))) -((-1950 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3686 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4117 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-435 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4117 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3686 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1950 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1121) (-437 |#1|) (-1121) (-437 |#3|)) (T -435)) -((-1950 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1121)) (-4 *5 (-1121)) (-4 *2 (-437 *5)) (-5 *1 (-435 *6 *4 *5 *2)) (-4 *4 (-437 *6)))) (-3686 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1121)) (-4 *2 (-1121)) (-5 *1 (-435 *5 *4 *2 *6)) (-4 *4 (-437 *5)) (-4 *6 (-437 *2)))) (-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-437 *6)) (-5 *1 (-435 *5 *4 *6 *2)) (-4 *4 (-437 *5))))) -(-10 -7 (-15 -4117 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3686 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1950 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-4358 (($) 51)) (-1820 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 47)) (-3319 (($ $ $) 46)) (-1928 (((-112) $ $) 35)) (-2098 (((-783)) 55)) (-2071 (($ (-656 |#2|)) 23) (($) NIL)) (-1836 (($) 66)) (-4248 (((-112) $ $) 15)) (-3125 ((|#2| $) 77)) (-3133 ((|#2| $) 75)) (-4401 (((-940) $) 70)) (-3285 (($ $ $) 42)) (-3224 (($ (-940)) 60)) (-3204 (($ $ |#2|) NIL) (($ $ $) 45)) (-1460 (((-783) (-1 (-112) |#2|) $) NIL) (((-783) |#2| $) 31)) (-3582 (($ (-656 |#2|)) 27)) (-4022 (($ $) 53)) (-3570 (((-876) $) 40)) (-1717 (((-783) $) 24)) (-1893 (($ (-656 |#2|)) 22) (($) NIL)) (-2925 (((-112) $ $) 19))) -(((-436 |#1| |#2|) (-10 -8 (-15 -2098 ((-783))) (-15 -3224 (|#1| (-940))) (-15 -4401 ((-940) |#1|)) (-15 -1836 (|#1|)) (-15 -3125 (|#2| |#1|)) (-15 -3133 (|#2| |#1|)) (-15 -4358 (|#1|)) (-15 -4022 (|#1| |#1|)) (-15 -1717 ((-783) |#1|)) (-15 -2925 ((-112) |#1| |#1|)) (-15 -3570 ((-876) |#1|)) (-15 -4248 ((-112) |#1| |#1|)) (-15 -1893 (|#1|)) (-15 -1893 (|#1| (-656 |#2|))) (-15 -2071 (|#1|)) (-15 -2071 (|#1| (-656 |#2|))) (-15 -3285 (|#1| |#1| |#1|)) (-15 -3204 (|#1| |#1| |#1|)) (-15 -3204 (|#1| |#1| |#2|)) (-15 -3319 (|#1| |#1| |#1|)) (-15 -1928 ((-112) |#1| |#1|)) (-15 -1820 (|#1| |#1| |#1|)) (-15 -1820 (|#1| |#1| |#2|)) (-15 -1820 (|#1| |#2| |#1|)) (-15 -3582 (|#1| (-656 |#2|))) (-15 -1460 ((-783) |#2| |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|))) (-437 |#2|) (-1121)) (T -436)) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 60)) (-3649 (($ $) 78)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 192)) (-4195 (($ $) NIL)) (-1760 (((-112) $) 48)) (-4346 ((|#1| $) 16)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL (|has| |#1| (-1242)))) (-3760 (((-430 $) $) NIL (|has| |#1| (-1242)))) (-1345 (($ |#1| (-576)) 42)) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 149)) (-2859 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 74)) (-3673 (((-3 $ "failed") $) 165)) (-2358 (((-3 (-419 (-576)) "failed") $) 85 (|has| |#1| (-557)))) (-2769 (((-112) $) 81 (|has| |#1| (-557)))) (-3025 (((-419 (-576)) $) 92 (|has| |#1| (-557)))) (-4065 (($ |#1| (-576)) 44)) (-3833 (((-112) $) 212 (|has| |#1| (-1242)))) (-1351 (((-112) $) 62)) (-1660 (((-783) $) 51)) (-2555 (((-3 "nil" "sqfr" "irred" "prime") $ (-576)) 176)) (-2807 ((|#1| $ (-576)) 175)) (-3194 (((-576) $ (-576)) 174)) (-1385 (($ |#1| (-576)) 41)) (-4116 (($ (-1 |#1| |#1|) $) 184)) (-2725 (($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576))))) 79)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2046 (((-1179) $) NIL)) (-2403 (($ |#1| (-576)) 43)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3497 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) 193 (|has| |#1| (-464)))) (-1987 (($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-4213 (((-656 (-2 (|:| -1828 |#1|) (|:| -2508 (-576)))) $) 73)) (-3632 (((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $) 12)) (-1828 (((-430 $) $) NIL (|has| |#1| (-1242)))) (-3475 (((-3 $ "failed") $ $) 177)) (-2508 (((-576) $) 168)) (-1942 ((|#1| $) 75)) (-3282 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 101 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 107 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) $) NIL (|has| |#1| (-526 (-1197) $))) (($ $ (-656 (-1197)) (-656 $)) 108 (|has| |#1| (-526 (-1197) $))) (($ $ (-656 (-304 $))) 104 (|has| |#1| (-319 $))) (($ $ (-304 $)) NIL (|has| |#1| (-319 $))) (($ $ $ $) NIL (|has| |#1| (-319 $))) (($ $ (-656 $) (-656 $)) NIL (|has| |#1| (-319 $)))) (-2796 (($ $ |#1|) 93 (|has| |#1| (-296 |#1| |#1|))) (($ $ $) 94 (|has| |#1| (-296 $ $)))) (-2774 (($ $ (-1 |#1| |#1|)) 183) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-4171 (((-548) $) 39 (|has| |#1| (-626 (-548)))) (((-390) $) 114 (|has| |#1| (-1043))) (((-227) $) 120 (|has| |#1| (-1043)))) (-3569 (((-876) $) 147) (($ (-576)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576)))))) (-3154 (((-783)) 67 T CONST)) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL)) (-2721 (($) 53 T CONST)) (-2731 (($) 52 T CONST)) (-2020 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-2924 (((-112) $ $) 160)) (-3043 (($ $) 162) (($ $ $) NIL)) (-3029 (($ $ $) 181)) (** (($ $ (-940)) NIL) (($ $ (-783)) 126)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) +(((-430 |#1|) (-13 (-568) (-232 |#1|) (-38 |#1|) (-349 |#1|) (-423 |#1|) (-10 -8 (-15 -1942 (|#1| $)) (-15 -2508 ((-576) $)) (-15 -2725 ($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))))) (-15 -3632 ((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $)) (-15 -1385 ($ |#1| (-576))) (-15 -4213 ((-656 (-2 (|:| -1828 |#1|) (|:| -2508 (-576)))) $)) (-15 -2403 ($ |#1| (-576))) (-15 -3194 ((-576) $ (-576))) (-15 -2807 (|#1| $ (-576))) (-15 -2555 ((-3 "nil" "sqfr" "irred" "prime") $ (-576))) (-15 -1660 ((-783) $)) (-15 -4065 ($ |#1| (-576))) (-15 -1345 ($ |#1| (-576))) (-15 -1987 ($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -4346 (|#1| $)) (-15 -3649 ($ $)) (-15 -4116 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1043)) (-6 (-1043)) |%noBranch|) (IF (|has| |#1| (-1242)) (-6 (-1242)) |%noBranch|) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -2769 ((-112) $)) (-15 -3025 ((-419 (-576)) $)) (-15 -2358 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-296 $ $)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |#1| (-319 $)) (-6 (-319 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1197) $)) (-6 (-526 (-1197) $)) |%noBranch|))) (-568)) (T -430)) +((-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-568)) (-5 *1 (-430 *3)))) (-1942 (*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-2508 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-2725 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-576))))) (-4 *2 (-568)) (-5 *1 (-430 *2)))) (-3632 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-576))))) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-1385 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-4213 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -1828 *3) (|:| -2508 (-576))))) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-2403 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3194 (*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-2807 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-2555 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-430 *4)) (-4 *4 (-568)))) (-1660 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-4065 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-1345 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-1987 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-4346 (*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3649 (*1 *1 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-2769 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) (-2358 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568))))) +(-13 (-568) (-232 |#1|) (-38 |#1|) (-349 |#1|) (-423 |#1|) (-10 -8 (-15 -1942 (|#1| $)) (-15 -2508 ((-576) $)) (-15 -2725 ($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))))) (-15 -3632 ((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $)) (-15 -1385 ($ |#1| (-576))) (-15 -4213 ((-656 (-2 (|:| -1828 |#1|) (|:| -2508 (-576)))) $)) (-15 -2403 ($ |#1| (-576))) (-15 -3194 ((-576) $ (-576))) (-15 -2807 (|#1| $ (-576))) (-15 -2555 ((-3 "nil" "sqfr" "irred" "prime") $ (-576))) (-15 -1660 ((-783) $)) (-15 -4065 ($ |#1| (-576))) (-15 -1345 ($ |#1| (-576))) (-15 -1987 ($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -4346 (|#1| $)) (-15 -3649 ($ $)) (-15 -4116 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1043)) (-6 (-1043)) |%noBranch|) (IF (|has| |#1| (-1242)) (-6 (-1242)) |%noBranch|) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -2769 ((-112) $)) (-15 -3025 ((-419 (-576)) $)) (-15 -2358 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-296 $ $)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |#1| (-319 $)) (-6 (-319 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1197) $)) (-6 (-526 (-1197) $)) |%noBranch|))) +((-4092 (((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|)) 28)) (-2292 (((-430 |#1|) (-430 |#1|) (-430 |#1|)) 17))) +(((-431 |#1|) (-10 -7 (-15 -4092 ((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|))) (-15 -2292 ((-430 |#1|) (-430 |#1|) (-430 |#1|)))) (-568)) (T -431)) +((-2292 (*1 *2 *2 *2) (-12 (-5 *2 (-430 *3)) (-4 *3 (-568)) (-5 *1 (-431 *3)))) (-4092 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-430 *4) *4)) (-4 *4 (-568)) (-5 *2 (-430 *4)) (-5 *1 (-431 *4))))) +(-10 -7 (-15 -4092 ((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|))) (-15 -2292 ((-430 |#1|) (-430 |#1|) (-430 |#1|)))) +((-4432 ((|#2| |#2|) 183)) (-2888 (((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112)) 60))) +(((-432 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2888 ((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112))) (-15 -4432 (|#2| |#2|))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|)) (-1197) |#2|) (T -432)) +((-4432 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-432 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1223) (-442 *3))) (-14 *4 (-1197)) (-14 *5 *2))) (-2888 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |%expansion| (-323 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) (-5 *1 (-432 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) (-14 *6 (-1197)) (-14 *7 *3)))) +(-10 -7 (-15 -2888 ((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112))) (-15 -4432 (|#2| |#2|))) +((-4116 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4116 (|#4| (-1 |#3| |#1|) |#2|))) (-1070) (-442 |#1|) (-1070) (-442 |#3|)) (T -433)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-4 *2 (-442 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-442 *5))))) +(-10 -7 (-15 -4116 (|#4| (-1 |#3| |#1|) |#2|))) +((-4432 ((|#2| |#2|) 106)) (-1681 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112) (-1179)) 52)) (-2106 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112) (-1179)) 170))) +(((-434 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1681 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112) (-1179))) (-15 -2106 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112) (-1179))) (-15 -4432 (|#2| |#2|))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|) (-10 -8 (-15 -3569 ($ |#3|)))) (-860) (-13 (-1266 |#2| |#3|) (-374) (-1223) (-10 -8 (-15 -2774 ($ $)) (-15 -4160 ($ $)))) (-1004 |#4|) (-1197)) (T -434)) +((-4432 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-4 *2 (-13 (-27) (-1223) (-442 *3) (-10 -8 (-15 -3569 ($ *4))))) (-4 *4 (-860)) (-4 *5 (-13 (-1266 *2 *4) (-374) (-1223) (-10 -8 (-15 -2774 ($ $)) (-15 -4160 ($ $))))) (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1004 *5)) (-14 *7 (-1197)))) (-2106 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-4 *3 (-13 (-27) (-1223) (-442 *6) (-10 -8 (-15 -3569 ($ *7))))) (-4 *7 (-860)) (-4 *8 (-13 (-1266 *3 *7) (-374) (-1223) (-10 -8 (-15 -2774 ($ $)) (-15 -4160 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1179)) (-4 *9 (-1004 *8)) (-14 *10 (-1197)))) (-1681 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-4 *3 (-13 (-27) (-1223) (-442 *6) (-10 -8 (-15 -3569 ($ *7))))) (-4 *7 (-860)) (-4 *8 (-13 (-1266 *3 *7) (-374) (-1223) (-10 -8 (-15 -2774 ($ $)) (-15 -4160 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1179)) (-4 *9 (-1004 *8)) (-14 *10 (-1197))))) +(-10 -7 (-15 -1681 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112) (-1179))) (-15 -2106 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112) (-1179))) (-15 -4432 (|#2| |#2|))) +((-3120 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3685 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4116 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-435 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4116 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3685 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3120 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1121) (-437 |#1|) (-1121) (-437 |#3|)) (T -435)) +((-3120 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1121)) (-4 *5 (-1121)) (-4 *2 (-437 *5)) (-5 *1 (-435 *6 *4 *5 *2)) (-4 *4 (-437 *6)))) (-3685 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1121)) (-4 *2 (-1121)) (-5 *1 (-435 *5 *4 *2 *6)) (-4 *4 (-437 *5)) (-4 *6 (-437 *2)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-437 *6)) (-5 *1 (-435 *5 *4 *6 *2)) (-4 *4 (-437 *5))))) +(-10 -7 (-15 -4116 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3685 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3120 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-2322 (($) 51)) (-1820 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 47)) (-2688 (($ $ $) 46)) (-2866 (((-112) $ $) 35)) (-2098 (((-783)) 55)) (-2071 (($ (-656 |#2|)) 23) (($) NIL)) (-1836 (($) 66)) (-3820 (((-112) $ $) 15)) (-3124 ((|#2| $) 77)) (-1441 ((|#2| $) 75)) (-1558 (((-940) $) 70)) (-3651 (($ $ $) 42)) (-3223 (($ (-940)) 60)) (-4079 (($ $ |#2|) NIL) (($ $ $) 45)) (-1460 (((-783) (-1 (-112) |#2|) $) NIL) (((-783) |#2| $) 31)) (-3581 (($ (-656 |#2|)) 27)) (-2111 (($ $) 53)) (-3569 (((-876) $) 40)) (-1445 (((-783) $) 24)) (-1895 (($ (-656 |#2|)) 22) (($) NIL)) (-2924 (((-112) $ $) 19))) +(((-436 |#1| |#2|) (-10 -8 (-15 -2098 ((-783))) (-15 -3223 (|#1| (-940))) (-15 -1558 ((-940) |#1|)) (-15 -1836 (|#1|)) (-15 -3124 (|#2| |#1|)) (-15 -1441 (|#2| |#1|)) (-15 -2322 (|#1|)) (-15 -2111 (|#1| |#1|)) (-15 -1445 ((-783) |#1|)) (-15 -2924 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -3820 ((-112) |#1| |#1|)) (-15 -1895 (|#1|)) (-15 -1895 (|#1| (-656 |#2|))) (-15 -2071 (|#1|)) (-15 -2071 (|#1| (-656 |#2|))) (-15 -3651 (|#1| |#1| |#1|)) (-15 -4079 (|#1| |#1| |#1|)) (-15 -4079 (|#1| |#1| |#2|)) (-15 -2688 (|#1| |#1| |#1|)) (-15 -2866 ((-112) |#1| |#1|)) (-15 -1820 (|#1| |#1| |#1|)) (-15 -1820 (|#1| |#1| |#2|)) (-15 -1820 (|#1| |#2| |#1|)) (-15 -3581 (|#1| (-656 |#2|))) (-15 -1460 ((-783) |#2| |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|))) (-437 |#2|) (-1121)) (T -436)) ((-2098 (*1 *2) (-12 (-4 *4 (-1121)) (-5 *2 (-783)) (-5 *1 (-436 *3 *4)) (-4 *3 (-437 *4))))) -(-10 -8 (-15 -2098 ((-783))) (-15 -3224 (|#1| (-940))) (-15 -4401 ((-940) |#1|)) (-15 -1836 (|#1|)) (-15 -3125 (|#2| |#1|)) (-15 -3133 (|#2| |#1|)) (-15 -4358 (|#1|)) (-15 -4022 (|#1| |#1|)) (-15 -1717 ((-783) |#1|)) (-15 -2925 ((-112) |#1| |#1|)) (-15 -3570 ((-876) |#1|)) (-15 -4248 ((-112) |#1| |#1|)) (-15 -1893 (|#1|)) (-15 -1893 (|#1| (-656 |#2|))) (-15 -2071 (|#1|)) (-15 -2071 (|#1| (-656 |#2|))) (-15 -3285 (|#1| |#1| |#1|)) (-15 -3204 (|#1| |#1| |#1|)) (-15 -3204 (|#1| |#1| |#2|)) (-15 -3319 (|#1| |#1| |#1|)) (-15 -1928 ((-112) |#1| |#1|)) (-15 -1820 (|#1| |#1| |#1|)) (-15 -1820 (|#1| |#1| |#2|)) (-15 -1820 (|#1| |#2| |#1|)) (-15 -3582 (|#1| (-656 |#2|))) (-15 -1460 ((-783) |#2| |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|))) -((-3489 (((-112) $ $) 20)) (-4358 (($) 68 (|has| |#1| (-379)))) (-1820 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-3319 (($ $ $) 79)) (-1928 (((-112) $ $) 80)) (-1808 (((-112) $ (-783)) 8)) (-2098 (((-783)) 62 (|has| |#1| (-379)))) (-2071 (($ (-656 |#1|)) 75) (($) 74)) (-2300 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4465)))) (-3886 (($) 7 T CONST)) (-1415 (($ $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1671 (($ |#1| $) 48 (|has| $ (-6 -4465))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4465)))) (-3946 (($ |#1| $) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4465)))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4465)))) (-1836 (($) 65 (|has| |#1| (-379)))) (-3966 (((-656 |#1|) $) 31 (|has| $ (-6 -4465)))) (-4248 (((-112) $ $) 71)) (-3870 (((-112) $ (-783)) 9)) (-3125 ((|#1| $) 66 (|has| |#1| (-861)))) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-3133 ((|#1| $) 67 (|has| |#1| (-861)))) (-4323 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 36)) (-4401 (((-940) $) 64 (|has| |#1| (-379)))) (-1330 (((-112) $ (-783)) 10)) (-3699 (((-1179) $) 23)) (-3285 (($ $ $) 76)) (-1597 ((|#1| $) 40)) (-1901 (($ |#1| $) 41)) (-3224 (($ (-940)) 63 (|has| |#1| (-379)))) (-1450 (((-1141) $) 22)) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3449 ((|#1| $) 42)) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-3204 (($ $ |#1|) 78) (($ $ $) 77)) (-2271 (($) 50) (($ (-656 |#1|)) 49)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 13)) (-4172 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) 51)) (-4022 (($ $) 69 (|has| |#1| (-379)))) (-3570 (((-876) $) 18)) (-1717 (((-783) $) 70)) (-1893 (($ (-656 |#1|)) 73) (($) 72)) (-4055 (((-112) $ $) 21)) (-3943 (($ (-656 |#1|)) 43)) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 19)) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +(-10 -8 (-15 -2098 ((-783))) (-15 -3223 (|#1| (-940))) (-15 -1558 ((-940) |#1|)) (-15 -1836 (|#1|)) (-15 -3124 (|#2| |#1|)) (-15 -1441 (|#2| |#1|)) (-15 -2322 (|#1|)) (-15 -2111 (|#1| |#1|)) (-15 -1445 ((-783) |#1|)) (-15 -2924 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -3820 ((-112) |#1| |#1|)) (-15 -1895 (|#1|)) (-15 -1895 (|#1| (-656 |#2|))) (-15 -2071 (|#1|)) (-15 -2071 (|#1| (-656 |#2|))) (-15 -3651 (|#1| |#1| |#1|)) (-15 -4079 (|#1| |#1| |#1|)) (-15 -4079 (|#1| |#1| |#2|)) (-15 -2688 (|#1| |#1| |#1|)) (-15 -2866 ((-112) |#1| |#1|)) (-15 -1820 (|#1| |#1| |#1|)) (-15 -1820 (|#1| |#1| |#2|)) (-15 -1820 (|#1| |#2| |#1|)) (-15 -3581 (|#1| (-656 |#2|))) (-15 -1460 ((-783) |#2| |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|))) +((-3488 (((-112) $ $) 20)) (-2322 (($) 68 (|has| |#1| (-379)))) (-1820 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-2688 (($ $ $) 79)) (-2866 (((-112) $ $) 80)) (-4264 (((-112) $ (-783)) 8)) (-2098 (((-783)) 62 (|has| |#1| (-379)))) (-2071 (($ (-656 |#1|)) 75) (($) 74)) (-2123 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4464)))) (-1974 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4464)))) (-3404 (($) 7 T CONST)) (-2034 (($ $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2172 (($ |#1| $) 48 (|has| $ (-6 -4464))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4464)))) (-3945 (($ |#1| $) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4464)))) (-1836 (($) 65 (|has| |#1| (-379)))) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-3820 (((-112) $ $) 71)) (-1368 (((-112) $ (-783)) 9)) (-3124 ((|#1| $) 66 (|has| |#1| (-861)))) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1441 ((|#1| $) 67 (|has| |#1| (-861)))) (-4326 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-1558 (((-940) $) 64 (|has| |#1| (-379)))) (-2883 (((-112) $ (-783)) 10)) (-2046 (((-1179) $) 23)) (-3651 (($ $ $) 76)) (-2722 ((|#1| $) 40)) (-2597 (($ |#1| $) 41)) (-3223 (($ (-940)) 63 (|has| |#1| (-379)))) (-1450 (((-1141) $) 22)) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1541 ((|#1| $) 42)) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-4079 (($ $ |#1|) 78) (($ $ $) 77)) (-3101 (($) 50) (($ (-656 |#1|)) 49)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-4171 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 51)) (-2111 (($ $) 69 (|has| |#1| (-379)))) (-3569 (((-876) $) 18)) (-1445 (((-783) $) 70)) (-1895 (($ (-656 |#1|)) 73) (($) 72)) (-2399 (((-112) $ $) 21)) (-3972 (($ (-656 |#1|)) 43)) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 19)) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-437 |#1|) (-141) (-1121)) (T -437)) -((-1717 (*1 *2 *1) (-12 (-4 *1 (-437 *3)) (-4 *3 (-1121)) (-5 *2 (-783)))) (-4022 (*1 *1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1121)) (-4 *2 (-379)))) (-4358 (*1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-379)) (-4 *2 (-1121)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1121)) (-4 *2 (-861)))) (-3125 (*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1121)) (-4 *2 (-861))))) -(-13 (-231 |t#1|) (-1119 |t#1|) (-10 -8 (-6 -4465) (-15 -1717 ((-783) $)) (IF (|has| |t#1| (-379)) (PROGN (-6 (-379)) (-15 -4022 ($ $)) (-15 -4358 ($))) |%noBranch|) (IF (|has| |t#1| (-861)) (PROGN (-15 -3133 (|t#1| $)) (-15 -3125 (|t#1| $))) |%noBranch|))) +((-1445 (*1 *2 *1) (-12 (-4 *1 (-437 *3)) (-4 *3 (-1121)) (-5 *2 (-783)))) (-2111 (*1 *1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1121)) (-4 *2 (-379)))) (-2322 (*1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-379)) (-4 *2 (-1121)))) (-1441 (*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1121)) (-4 *2 (-861)))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1121)) (-4 *2 (-861))))) +(-13 (-231 |t#1|) (-1119 |t#1|) (-10 -8 (-6 -4464) (-15 -1445 ((-783) $)) (IF (|has| |t#1| (-379)) (PROGN (-6 (-379)) (-15 -2111 ($ $)) (-15 -2322 ($))) |%noBranch|) (IF (|has| |t#1| (-861)) (PROGN (-15 -1441 (|t#1| $)) (-15 -3124 (|t#1| $))) |%noBranch|))) (((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-876)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-231 |#1|) . T) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-379) |has| |#1| (-379)) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1119 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-1642 (((-598 |#2|) |#2| (-1197)) 36)) (-3114 (((-598 |#2|) |#2| (-1197)) 21)) (-2402 ((|#2| |#2| (-1197)) 26))) -(((-438 |#1| |#2|) (-10 -7 (-15 -3114 ((-598 |#2|) |#2| (-1197))) (-15 -1642 ((-598 |#2|) |#2| (-1197))) (-15 -2402 (|#2| |#2| (-1197)))) (-13 (-317) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-29 |#1|))) (T -438)) -((-2402 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-438 *4 *2)) (-4 *2 (-13 (-1223) (-29 *4))))) (-1642 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1223) (-29 *5))))) (-3114 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1223) (-29 *5)))))) -(-10 -7 (-15 -3114 ((-598 |#2|) |#2| (-1197))) (-15 -1642 ((-598 |#2|) |#2| (-1197))) (-15 -2402 (|#2| |#2| (-1197)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-1561 (((-3 $ "failed") $) NIL)) (-4193 (((-112) $) NIL)) (-1560 (($ |#2| |#1|) 37)) (-2889 (($ |#2| |#1|) 35)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-341 |#2|)) 25)) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-2721 (($) 10 T CONST)) (-2732 (($) 16 T CONST)) (-2925 (((-112) $ $) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) 36)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-439 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4452)) (IF (|has| |#1| (-6 -4452)) (-6 -4452) |%noBranch|) |%noBranch|) (-15 -3570 ($ |#1|)) (-15 -3570 ($ (-341 |#2|))) (-15 -1560 ($ |#2| |#1|)) (-15 -2889 ($ |#2| |#1|)))) (-13 (-174) (-38 (-419 (-576)))) (-13 (-861) (-21))) (T -439)) -((-3570 (*1 *1 *2) (-12 (-5 *1 (-439 *2 *3)) (-4 *2 (-13 (-174) (-38 (-419 (-576))))) (-4 *3 (-13 (-861) (-21))))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-341 *4)) (-4 *4 (-13 (-861) (-21))) (-5 *1 (-439 *3 *4)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))))) (-1560 (*1 *1 *2 *3) (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) (-4 *2 (-13 (-861) (-21))))) (-2889 (*1 *1 *2 *3) (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) (-4 *2 (-13 (-861) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4452)) (IF (|has| |#1| (-6 -4452)) (-6 -4452) |%noBranch|) |%noBranch|) (-15 -3570 ($ |#1|)) (-15 -3570 ($ (-341 |#2|))) (-15 -1560 ($ |#2| |#1|)) (-15 -2889 ($ |#2| |#1|)))) -((-1491 (((-3 |#2| (-656 |#2|)) |#2| (-1197)) 115))) -(((-440 |#1| |#2|) (-10 -7 (-15 -1491 ((-3 |#2| (-656 |#2|)) |#2| (-1197)))) (-13 (-317) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-978) (-29 |#1|))) (T -440)) -((-1491 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 *3 (-656 *3))) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1223) (-978) (-29 *5)))))) -(-10 -7 (-15 -1491 ((-3 |#2| (-656 |#2|)) |#2| (-1197)))) -((-1969 (((-656 (-1197)) $) 81)) (-1798 (((-419 (-1193 $)) $ (-624 $)) 313)) (-3428 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) 277)) (-1572 (((-3 (-624 $) "failed") $) NIL) (((-3 (-1197) "failed") $) 84) (((-3 (-576) "failed") $) NIL) (((-3 |#2| "failed") $) 273) (((-3 (-419 (-971 |#2|)) "failed") $) 363) (((-3 (-971 |#2|) "failed") $) 275) (((-3 (-419 (-576)) "failed") $) NIL)) (-2860 (((-624 $) $) NIL) (((-1197) $) 28) (((-576) $) NIL) ((|#2| $) 271) (((-419 (-971 |#2|)) $) 345) (((-971 |#2|) $) 272) (((-419 (-576)) $) NIL)) (-1777 (((-115) (-115)) 47)) (-2171 (($ $) 99)) (-2608 (((-3 (-624 $) "failed") $) 268)) (-1763 (((-656 (-624 $)) $) 269)) (-1385 (((-3 (-656 $) "failed") $) 287)) (-3349 (((-3 (-2 (|:| |val| $) (|:| -3422 (-576))) "failed") $) 294)) (-1690 (((-3 (-656 $) "failed") $) 285)) (-3229 (((-3 (-2 (|:| -1714 (-576)) (|:| |var| (-624 $))) "failed") $) 304)) (-2040 (((-3 (-2 (|:| |var| (-624 $)) (|:| -3422 (-576))) "failed") $) 291) (((-3 (-2 (|:| |var| (-624 $)) (|:| -3422 (-576))) "failed") $ (-115)) 255) (((-3 (-2 (|:| |var| (-624 $)) (|:| -3422 (-576))) "failed") $ (-1197)) 257)) (-2060 (((-112) $) 17)) (-2070 ((|#2| $) 19)) (-3284 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) 276) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) 109) (($ $ (-1197) (-1 $ (-656 $))) NIL) (($ $ (-1197) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1197)) 62) (($ $ (-656 (-1197))) 280) (($ $) 281) (($ $ (-115) $ (-1197)) 65) (($ $ (-656 (-115)) (-656 $) (-1197)) 72) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ $))) 120) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 282) (($ $ (-1197) (-783) (-1 $ (-656 $))) 105) (($ $ (-1197) (-783) (-1 $ $)) 104)) (-2797 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) 119)) (-2775 (($ $ (-1197)) 278) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-2143 (($ $) 324)) (-4172 (((-907 (-576)) $) 297) (((-907 (-390)) $) 301) (($ (-430 $)) 359) (((-548) $) NIL)) (-3570 (((-876) $) 279) (($ (-624 $)) 93) (($ (-1197)) 24) (($ |#2|) NIL) (($ (-1146 |#2| (-624 $))) NIL) (($ (-419 |#2|)) 329) (($ (-971 (-419 |#2|))) 368) (($ (-419 (-971 (-419 |#2|)))) 341) (($ (-419 (-971 |#2|))) 335) (($ $) NIL) (($ (-971 |#2|)) 216) (($ (-576)) NIL) (($ (-419 (-576))) 373)) (-3996 (((-783)) 88)) (-2468 (((-112) (-115)) 42)) (-2852 (($ (-1197) $) 31) (($ (-1197) $ $) 32) (($ (-1197) $ $ $) 33) (($ (-1197) $ $ $ $) 34) (($ (-1197) (-656 $)) 39)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ |#2|) NIL) (($ |#2| $) 306) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-940) $) NIL))) -(((-441 |#1| |#2|) (-10 -8 (-15 * (|#1| (-940) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3570 (|#1| (-419 (-576)))) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2860 ((-419 (-576)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3570 (|#1| (-576))) (-15 -3996 ((-783))) (-15 * (|#1| |#2| |#1|)) (-15 -4172 ((-548) |#1|)) (-15 -3570 (|#1| (-971 |#2|))) (-15 -1572 ((-3 (-971 |#2|) "failed") |#1|)) (-15 -2860 ((-971 |#2|) |#1|)) (-15 -2775 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2775 (|#1| |#1| (-1197) (-783))) (-15 -2775 (|#1| |#1| (-656 (-1197)))) (-15 -2775 (|#1| |#1| (-1197))) (-15 * (|#1| |#1| |#2|)) (-15 -3570 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3570 (|#1| (-419 (-971 |#2|)))) (-15 -1572 ((-3 (-419 (-971 |#2|)) "failed") |#1|)) (-15 -2860 ((-419 (-971 |#2|)) |#1|)) (-15 -1798 ((-419 (-1193 |#1|)) |#1| (-624 |#1|))) (-15 -3570 (|#1| (-419 (-971 (-419 |#2|))))) (-15 -3570 (|#1| (-971 (-419 |#2|)))) (-15 -3570 (|#1| (-419 |#2|))) (-15 -2143 (|#1| |#1|)) (-15 -4172 (|#1| (-430 |#1|))) (-15 -3284 (|#1| |#1| (-1197) (-783) (-1 |#1| |#1|))) (-15 -3284 (|#1| |#1| (-1197) (-783) (-1 |#1| (-656 |#1|)))) (-15 -3284 (|#1| |#1| (-656 (-1197)) (-656 (-783)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3284 (|#1| |#1| (-656 (-1197)) (-656 (-783)) (-656 (-1 |#1| |#1|)))) (-15 -3349 ((-3 (-2 (|:| |val| |#1|) (|:| -3422 (-576))) "failed") |#1|)) (-15 -2040 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -3422 (-576))) "failed") |#1| (-1197))) (-15 -2040 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -3422 (-576))) "failed") |#1| (-115))) (-15 -2171 (|#1| |#1|)) (-15 -3570 (|#1| (-1146 |#2| (-624 |#1|)))) (-15 -3229 ((-3 (-2 (|:| -1714 (-576)) (|:| |var| (-624 |#1|))) "failed") |#1|)) (-15 -1690 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2040 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -3422 (-576))) "failed") |#1|)) (-15 -1385 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -3284 (|#1| |#1| (-656 (-115)) (-656 |#1|) (-1197))) (-15 -3284 (|#1| |#1| (-115) |#1| (-1197))) (-15 -3284 (|#1| |#1|)) (-15 -3284 (|#1| |#1| (-656 (-1197)))) (-15 -3284 (|#1| |#1| (-1197))) (-15 -2852 (|#1| (-1197) (-656 |#1|))) (-15 -2852 (|#1| (-1197) |#1| |#1| |#1| |#1|)) (-15 -2852 (|#1| (-1197) |#1| |#1| |#1|)) (-15 -2852 (|#1| (-1197) |#1| |#1|)) (-15 -2852 (|#1| (-1197) |#1|)) (-15 -1969 ((-656 (-1197)) |#1|)) (-15 -2070 (|#2| |#1|)) (-15 -2060 ((-112) |#1|)) (-15 -3570 (|#1| |#2|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2860 (|#2| |#1|)) (-15 -2860 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -4172 ((-907 (-390)) |#1|)) (-15 -4172 ((-907 (-576)) |#1|)) (-15 -3570 (|#1| (-1197))) (-15 -1572 ((-3 (-1197) "failed") |#1|)) (-15 -2860 ((-1197) |#1|)) (-15 -3284 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3284 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -3284 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3284 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -3284 (|#1| |#1| (-1197) (-1 |#1| |#1|))) (-15 -3284 (|#1| |#1| (-1197) (-1 |#1| (-656 |#1|)))) (-15 -3284 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3284 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| |#1|)))) (-15 -2468 ((-112) (-115))) (-15 -1777 ((-115) (-115))) (-15 -1763 ((-656 (-624 |#1|)) |#1|)) (-15 -2608 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -3428 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3428 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3428 (|#1| |#1| (-304 |#1|))) (-15 -2797 (|#1| (-115) (-656 |#1|))) (-15 -2797 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2797 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2797 (|#1| (-115) |#1| |#1|)) (-15 -2797 (|#1| (-115) |#1|)) (-15 -3284 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3284 (|#1| |#1| |#1| |#1|)) (-15 -3284 (|#1| |#1| (-304 |#1|))) (-15 -3284 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3284 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3284 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -3570 (|#1| (-624 |#1|))) (-15 -1572 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2860 ((-624 |#1|) |#1|)) (-15 -3570 ((-876) |#1|))) (-442 |#2|) (-1121)) (T -441)) -((-1777 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1121)) (-5 *1 (-441 *3 *4)) (-4 *3 (-442 *4)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1121)) (-5 *2 (-112)) (-5 *1 (-441 *4 *5)) (-4 *4 (-442 *5)))) (-3996 (*1 *2) (-12 (-4 *4 (-1121)) (-5 *2 (-783)) (-5 *1 (-441 *3 *4)) (-4 *3 (-442 *4))))) -(-10 -8 (-15 * (|#1| (-940) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3570 (|#1| (-419 (-576)))) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2860 ((-419 (-576)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3570 (|#1| (-576))) (-15 -3996 ((-783))) (-15 * (|#1| |#2| |#1|)) (-15 -4172 ((-548) |#1|)) (-15 -3570 (|#1| (-971 |#2|))) (-15 -1572 ((-3 (-971 |#2|) "failed") |#1|)) (-15 -2860 ((-971 |#2|) |#1|)) (-15 -2775 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2775 (|#1| |#1| (-1197) (-783))) (-15 -2775 (|#1| |#1| (-656 (-1197)))) (-15 -2775 (|#1| |#1| (-1197))) (-15 * (|#1| |#1| |#2|)) (-15 -3570 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3570 (|#1| (-419 (-971 |#2|)))) (-15 -1572 ((-3 (-419 (-971 |#2|)) "failed") |#1|)) (-15 -2860 ((-419 (-971 |#2|)) |#1|)) (-15 -1798 ((-419 (-1193 |#1|)) |#1| (-624 |#1|))) (-15 -3570 (|#1| (-419 (-971 (-419 |#2|))))) (-15 -3570 (|#1| (-971 (-419 |#2|)))) (-15 -3570 (|#1| (-419 |#2|))) (-15 -2143 (|#1| |#1|)) (-15 -4172 (|#1| (-430 |#1|))) (-15 -3284 (|#1| |#1| (-1197) (-783) (-1 |#1| |#1|))) (-15 -3284 (|#1| |#1| (-1197) (-783) (-1 |#1| (-656 |#1|)))) (-15 -3284 (|#1| |#1| (-656 (-1197)) (-656 (-783)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3284 (|#1| |#1| (-656 (-1197)) (-656 (-783)) (-656 (-1 |#1| |#1|)))) (-15 -3349 ((-3 (-2 (|:| |val| |#1|) (|:| -3422 (-576))) "failed") |#1|)) (-15 -2040 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -3422 (-576))) "failed") |#1| (-1197))) (-15 -2040 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -3422 (-576))) "failed") |#1| (-115))) (-15 -2171 (|#1| |#1|)) (-15 -3570 (|#1| (-1146 |#2| (-624 |#1|)))) (-15 -3229 ((-3 (-2 (|:| -1714 (-576)) (|:| |var| (-624 |#1|))) "failed") |#1|)) (-15 -1690 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2040 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -3422 (-576))) "failed") |#1|)) (-15 -1385 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -3284 (|#1| |#1| (-656 (-115)) (-656 |#1|) (-1197))) (-15 -3284 (|#1| |#1| (-115) |#1| (-1197))) (-15 -3284 (|#1| |#1|)) (-15 -3284 (|#1| |#1| (-656 (-1197)))) (-15 -3284 (|#1| |#1| (-1197))) (-15 -2852 (|#1| (-1197) (-656 |#1|))) (-15 -2852 (|#1| (-1197) |#1| |#1| |#1| |#1|)) (-15 -2852 (|#1| (-1197) |#1| |#1| |#1|)) (-15 -2852 (|#1| (-1197) |#1| |#1|)) (-15 -2852 (|#1| (-1197) |#1|)) (-15 -1969 ((-656 (-1197)) |#1|)) (-15 -2070 (|#2| |#1|)) (-15 -2060 ((-112) |#1|)) (-15 -3570 (|#1| |#2|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2860 (|#2| |#1|)) (-15 -2860 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -4172 ((-907 (-390)) |#1|)) (-15 -4172 ((-907 (-576)) |#1|)) (-15 -3570 (|#1| (-1197))) (-15 -1572 ((-3 (-1197) "failed") |#1|)) (-15 -2860 ((-1197) |#1|)) (-15 -3284 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3284 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -3284 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3284 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -3284 (|#1| |#1| (-1197) (-1 |#1| |#1|))) (-15 -3284 (|#1| |#1| (-1197) (-1 |#1| (-656 |#1|)))) (-15 -3284 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3284 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| |#1|)))) (-15 -2468 ((-112) (-115))) (-15 -1777 ((-115) (-115))) (-15 -1763 ((-656 (-624 |#1|)) |#1|)) (-15 -2608 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -3428 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3428 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3428 (|#1| |#1| (-304 |#1|))) (-15 -2797 (|#1| (-115) (-656 |#1|))) (-15 -2797 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2797 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2797 (|#1| (-115) |#1| |#1|)) (-15 -2797 (|#1| (-115) |#1|)) (-15 -3284 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3284 (|#1| |#1| |#1| |#1|)) (-15 -3284 (|#1| |#1| (-304 |#1|))) (-15 -3284 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3284 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3284 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -3570 (|#1| (-624 |#1|))) (-15 -1572 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2860 ((-624 |#1|) |#1|)) (-15 -3570 ((-876) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 117 (|has| |#1| (-25)))) (-1969 (((-656 (-1197)) $) 208)) (-1798 (((-419 (-1193 $)) $ (-624 $)) 176 (|has| |#1| (-568)))) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 148 (|has| |#1| (-568)))) (-2757 (($ $) 149 (|has| |#1| (-568)))) (-3788 (((-112) $) 151 (|has| |#1| (-568)))) (-3988 (((-656 (-624 $)) $) 39)) (-4367 (((-3 $ "failed") $ $) 119 (|has| |#1| (-21)))) (-3428 (($ $ (-304 $)) 51) (($ $ (-656 (-304 $))) 50) (($ $ (-656 (-624 $)) (-656 $)) 49)) (-2487 (($ $) 168 (|has| |#1| (-568)))) (-3921 (((-430 $) $) 169 (|has| |#1| (-568)))) (-4016 (((-112) $ $) 159 (|has| |#1| (-568)))) (-3886 (($) 105 (-2760 (|has| |#1| (-1133)) (|has| |#1| (-25))) CONST)) (-1572 (((-3 (-624 $) "failed") $) 64) (((-3 (-1197) "failed") $) 221) (((-3 (-576) "failed") $) 215 (|has| |#1| (-1059 (-576)))) (((-3 |#1| "failed") $) 212) (((-3 (-419 (-971 |#1|)) "failed") $) 174 (|has| |#1| (-568))) (((-3 (-971 |#1|) "failed") $) 124 (|has| |#1| (-1070))) (((-3 (-419 (-576)) "failed") $) 99 (-2760 (-12 (|has| |#1| (-1059 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1059 (-419 (-576))))))) (-2860 (((-624 $) $) 65) (((-1197) $) 222) (((-576) $) 214 (|has| |#1| (-1059 (-576)))) ((|#1| $) 213) (((-419 (-971 |#1|)) $) 175 (|has| |#1| (-568))) (((-971 |#1|) $) 125 (|has| |#1| (-1070))) (((-419 (-576)) $) 100 (-2760 (-12 (|has| |#1| (-1059 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1059 (-419 (-576))))))) (-3429 (($ $ $) 163 (|has| |#1| (-568)))) (-2204 (((-701 (-576)) (-701 $)) 141 (-2675 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 140 (-2675 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 139 (|has| |#1| (-1070))) (((-701 |#1|) (-701 $)) 138 (|has| |#1| (-1070)))) (-1561 (((-3 $ "failed") $) 107 (|has| |#1| (-1133)))) (-3441 (($ $ $) 162 (|has| |#1| (-568)))) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) 157 (|has| |#1| (-568)))) (-4249 (((-112) $) 170 (|has| |#1| (-568)))) (-1840 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 217 (|has| |#1| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 216 (|has| |#1| (-901 (-390))))) (-2236 (($ $) 46) (($ (-656 $)) 45)) (-3545 (((-656 (-115)) $) 38)) (-1777 (((-115) (-115)) 37)) (-4193 (((-112) $) 106 (|has| |#1| (-1133)))) (-2946 (((-112) $) 17 (|has| $ (-1059 (-576))))) (-2171 (($ $) 191 (|has| |#1| (-1070)))) (-1570 (((-1146 |#1| (-624 $)) $) 192 (|has| |#1| (-1070)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) 166 (|has| |#1| (-568)))) (-3971 (((-1193 $) (-624 $)) 20 (|has| $ (-1070)))) (-4117 (($ (-1 $ $) (-624 $)) 31)) (-2608 (((-3 (-624 $) "failed") $) 41)) (-3913 (((-701 (-576)) (-1288 $)) 143 (-2675 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 142 (-2675 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 137 (|has| |#1| (-1070))) (((-701 |#1|) (-1288 $)) 136 (|has| |#1| (-1070)))) (-3458 (($ (-656 $)) 155 (|has| |#1| (-568))) (($ $ $) 154 (|has| |#1| (-568)))) (-3699 (((-1179) $) 10)) (-1763 (((-656 (-624 $)) $) 40)) (-1640 (($ (-115) $) 33) (($ (-115) (-656 $)) 32)) (-1385 (((-3 (-656 $) "failed") $) 197 (|has| |#1| (-1133)))) (-3349 (((-3 (-2 (|:| |val| $) (|:| -3422 (-576))) "failed") $) 188 (|has| |#1| (-1070)))) (-1690 (((-3 (-656 $) "failed") $) 195 (|has| |#1| (-25)))) (-3229 (((-3 (-2 (|:| -1714 (-576)) (|:| |var| (-624 $))) "failed") $) 194 (|has| |#1| (-25)))) (-2040 (((-3 (-2 (|:| |var| (-624 $)) (|:| -3422 (-576))) "failed") $) 196 (|has| |#1| (-1133))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -3422 (-576))) "failed") $ (-115)) 190 (|has| |#1| (-1070))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -3422 (-576))) "failed") $ (-1197)) 189 (|has| |#1| (-1070)))) (-1322 (((-112) $ (-115)) 35) (((-112) $ (-1197)) 34)) (-2050 (($ $) 109 (-2760 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-2327 (((-783) $) 42)) (-1450 (((-1141) $) 11)) (-2060 (((-112) $) 210)) (-2070 ((|#1| $) 209)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 156 (|has| |#1| (-568)))) (-3498 (($ (-656 $)) 153 (|has| |#1| (-568))) (($ $ $) 152 (|has| |#1| (-568)))) (-1726 (((-112) $ $) 30) (((-112) $ (-1197)) 29)) (-1828 (((-430 $) $) 167 (|has| |#1| (-568)))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 165 (|has| |#1| (-568))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 164 (|has| |#1| (-568)))) (-3476 (((-3 $ "failed") $ $) 147 (|has| |#1| (-568)))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) 158 (|has| |#1| (-568)))) (-3644 (((-112) $) 18 (|has| $ (-1059 (-576))))) (-3284 (($ $ (-624 $) $) 62) (($ $ (-656 (-624 $)) (-656 $)) 61) (($ $ (-656 (-304 $))) 60) (($ $ (-304 $)) 59) (($ $ $ $) 58) (($ $ (-656 $) (-656 $)) 57) (($ $ (-656 (-1197)) (-656 (-1 $ $))) 28) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) 27) (($ $ (-1197) (-1 $ (-656 $))) 26) (($ $ (-1197) (-1 $ $)) 25) (($ $ (-656 (-115)) (-656 (-1 $ $))) 24) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 23) (($ $ (-115) (-1 $ (-656 $))) 22) (($ $ (-115) (-1 $ $)) 21) (($ $ (-1197)) 202 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1197))) 201 (|has| |#1| (-626 (-548)))) (($ $) 200 (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1197)) 199 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-115)) (-656 $) (-1197)) 198 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ $))) 187 (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 186 (|has| |#1| (-1070))) (($ $ (-1197) (-783) (-1 $ (-656 $))) 185 (|has| |#1| (-1070))) (($ $ (-1197) (-783) (-1 $ $)) 184 (|has| |#1| (-1070)))) (-1967 (((-783) $) 160 (|has| |#1| (-568)))) (-2797 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-656 $)) 52)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 161 (|has| |#1| (-568)))) (-3496 (($ $) 44) (($ $ $) 43)) (-2775 (($ $ (-1197)) 134 (|has| |#1| (-1070))) (($ $ (-656 (-1197))) 132 (|has| |#1| (-1070))) (($ $ (-1197) (-783)) 131 (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) 130 (|has| |#1| (-1070)))) (-2143 (($ $) 181 (|has| |#1| (-568)))) (-1581 (((-1146 |#1| (-624 $)) $) 182 (|has| |#1| (-568)))) (-3867 (($ $) 19 (|has| $ (-1070)))) (-4172 (((-907 (-576)) $) 219 (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) 218 (|has| |#1| (-626 (-907 (-390))))) (($ (-430 $)) 183 (|has| |#1| (-568))) (((-548) $) 101 (|has| |#1| (-626 (-548))))) (-2314 (($ $ $) 112 (|has| |#1| (-485)))) (-2076 (($ $ $) 113 (|has| |#1| (-485)))) (-3570 (((-876) $) 12) (($ (-624 $)) 63) (($ (-1197)) 220) (($ |#1|) 211) (($ (-1146 |#1| (-624 $))) 193 (|has| |#1| (-1070))) (($ (-419 |#1|)) 179 (|has| |#1| (-568))) (($ (-971 (-419 |#1|))) 178 (|has| |#1| (-568))) (($ (-419 (-971 (-419 |#1|)))) 177 (|has| |#1| (-568))) (($ (-419 (-971 |#1|))) 173 (|has| |#1| (-568))) (($ $) 146 (|has| |#1| (-568))) (($ (-971 |#1|)) 123 (|has| |#1| (-1070))) (($ (-419 (-576))) 98 (-2760 (|has| |#1| (-568)) (-12 (|has| |#1| (-1059 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1059 (-419 (-576)))))) (($ (-576)) 97 (-2760 (|has| |#1| (-1070)) (|has| |#1| (-1059 (-576)))))) (-4336 (((-3 $ "failed") $) 144 (|has| |#1| (-146)))) (-3996 (((-783)) 126 (|has| |#1| (-1070)) CONST)) (-3681 (($ $) 48) (($ (-656 $)) 47)) (-2468 (((-112) (-115)) 36)) (-4055 (((-112) $ $) 6)) (-2672 (((-112) $ $) 150 (|has| |#1| (-568)))) (-2852 (($ (-1197) $) 207) (($ (-1197) $ $) 206) (($ (-1197) $ $ $) 205) (($ (-1197) $ $ $ $) 204) (($ (-1197) (-656 $)) 203)) (-2721 (($) 116 (|has| |#1| (-25)) CONST)) (-2732 (($) 104 (|has| |#1| (-1133)) CONST)) (-2020 (($ $ (-1197)) 133 (|has| |#1| (-1070))) (($ $ (-656 (-1197))) 129 (|has| |#1| (-1070))) (($ $ (-1197) (-783)) 128 (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) 127 (|has| |#1| (-1070)))) (-2925 (((-112) $ $) 8)) (-3057 (($ (-1146 |#1| (-624 $)) (-1146 |#1| (-624 $))) 180 (|has| |#1| (-568))) (($ $ $) 110 (-2760 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-3044 (($ $ $) 122 (|has| |#1| (-21))) (($ $) 121 (|has| |#1| (-21)))) (-3030 (($ $ $) 114 (|has| |#1| (-25)))) (** (($ $ (-576)) 111 (-2760 (|has| |#1| (-485)) (|has| |#1| (-568)))) (($ $ (-783)) 108 (|has| |#1| (-1133))) (($ $ (-940)) 103 (|has| |#1| (-1133)))) (* (($ (-419 (-576)) $) 172 (|has| |#1| (-568))) (($ $ (-419 (-576))) 171 (|has| |#1| (-568))) (($ $ |#1|) 145 (|has| |#1| (-174))) (($ |#1| $) 135 (|has| |#1| (-1070))) (($ (-576) $) 120 (|has| |#1| (-21))) (($ (-783) $) 118 (|has| |#1| (-25))) (($ (-940) $) 115 (|has| |#1| (-25))) (($ $ $) 102 (|has| |#1| (-1133))))) +((-1941 (((-598 |#2|) |#2| (-1197)) 36)) (-2433 (((-598 |#2|) |#2| (-1197)) 21)) (-1874 ((|#2| |#2| (-1197)) 26))) +(((-438 |#1| |#2|) (-10 -7 (-15 -2433 ((-598 |#2|) |#2| (-1197))) (-15 -1941 ((-598 |#2|) |#2| (-1197))) (-15 -1874 (|#2| |#2| (-1197)))) (-13 (-317) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-29 |#1|))) (T -438)) +((-1874 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-438 *4 *2)) (-4 *2 (-13 (-1223) (-29 *4))))) (-1941 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1223) (-29 *5))))) (-2433 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1223) (-29 *5)))))) +(-10 -7 (-15 -2433 ((-598 |#2|) |#2| (-1197))) (-15 -1941 ((-598 |#2|) |#2| (-1197))) (-15 -1874 (|#2| |#2| (-1197)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-3673 (((-3 $ "failed") $) NIL)) (-1351 (((-112) $) NIL)) (-3660 (($ |#2| |#1|) 37)) (-2914 (($ |#2| |#1|) 35)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-341 |#2|)) 25)) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-2721 (($) 10 T CONST)) (-2731 (($) 16 T CONST)) (-2924 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 36)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-439 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4451)) (IF (|has| |#1| (-6 -4451)) (-6 -4451) |%noBranch|) |%noBranch|) (-15 -3569 ($ |#1|)) (-15 -3569 ($ (-341 |#2|))) (-15 -3660 ($ |#2| |#1|)) (-15 -2914 ($ |#2| |#1|)))) (-13 (-174) (-38 (-419 (-576)))) (-13 (-861) (-21))) (T -439)) +((-3569 (*1 *1 *2) (-12 (-5 *1 (-439 *2 *3)) (-4 *2 (-13 (-174) (-38 (-419 (-576))))) (-4 *3 (-13 (-861) (-21))))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-341 *4)) (-4 *4 (-13 (-861) (-21))) (-5 *1 (-439 *3 *4)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))))) (-3660 (*1 *1 *2 *3) (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) (-4 *2 (-13 (-861) (-21))))) (-2914 (*1 *1 *2 *3) (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) (-4 *2 (-13 (-861) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4451)) (IF (|has| |#1| (-6 -4451)) (-6 -4451) |%noBranch|) |%noBranch|) (-15 -3569 ($ |#1|)) (-15 -3569 ($ (-341 |#2|))) (-15 -3660 ($ |#2| |#1|)) (-15 -2914 ($ |#2| |#1|)))) +((-4160 (((-3 |#2| (-656 |#2|)) |#2| (-1197)) 115))) +(((-440 |#1| |#2|) (-10 -7 (-15 -4160 ((-3 |#2| (-656 |#2|)) |#2| (-1197)))) (-13 (-317) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-978) (-29 |#1|))) (T -440)) +((-4160 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 *3 (-656 *3))) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1223) (-978) (-29 *5)))))) +(-10 -7 (-15 -4160 ((-3 |#2| (-656 |#2|)) |#2| (-1197)))) +((-1969 (((-656 (-1197)) $) 81)) (-1797 (((-419 (-1193 $)) $ (-624 $)) 313)) (-3427 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) 277)) (-1572 (((-3 (-624 $) "failed") $) NIL) (((-3 (-1197) "failed") $) 84) (((-3 (-576) "failed") $) NIL) (((-3 |#2| "failed") $) 273) (((-3 (-419 (-971 |#2|)) "failed") $) 363) (((-3 (-971 |#2|) "failed") $) 275) (((-3 (-419 (-576)) "failed") $) NIL)) (-2859 (((-624 $) $) NIL) (((-1197) $) 28) (((-576) $) NIL) ((|#2| $) 271) (((-419 (-971 |#2|)) $) 345) (((-971 |#2|) $) 272) (((-419 (-576)) $) NIL)) (-1776 (((-115) (-115)) 47)) (-3328 (($ $) 99)) (-2119 (((-3 (-624 $) "failed") $) 268)) (-1763 (((-656 (-624 $)) $) 269)) (-3845 (((-3 (-656 $) "failed") $) 287)) (-3030 (((-3 (-2 (|:| |val| $) (|:| -2508 (-576))) "failed") $) 294)) (-2363 (((-3 (-656 $) "failed") $) 285)) (-4324 (((-3 (-2 (|:| -1715 (-576)) (|:| |var| (-624 $))) "failed") $) 304)) (-1452 (((-3 (-2 (|:| |var| (-624 $)) (|:| -2508 (-576))) "failed") $) 291) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2508 (-576))) "failed") $ (-115)) 255) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2508 (-576))) "failed") $ (-1197)) 257)) (-2060 (((-112) $) 17)) (-2070 ((|#2| $) 19)) (-3282 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) 276) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) 109) (($ $ (-1197) (-1 $ (-656 $))) NIL) (($ $ (-1197) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1197)) 62) (($ $ (-656 (-1197))) 280) (($ $) 281) (($ $ (-115) $ (-1197)) 65) (($ $ (-656 (-115)) (-656 $) (-1197)) 72) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ $))) 120) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 282) (($ $ (-1197) (-783) (-1 $ (-656 $))) 105) (($ $ (-1197) (-783) (-1 $ $)) 104)) (-2796 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) 119)) (-2774 (($ $ (-1197)) 278) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-4325 (($ $) 324)) (-4171 (((-907 (-576)) $) 297) (((-907 (-390)) $) 301) (($ (-430 $)) 359) (((-548) $) NIL)) (-3569 (((-876) $) 279) (($ (-624 $)) 93) (($ (-1197)) 24) (($ |#2|) NIL) (($ (-1146 |#2| (-624 $))) NIL) (($ (-419 |#2|)) 329) (($ (-971 (-419 |#2|))) 368) (($ (-419 (-971 (-419 |#2|)))) 341) (($ (-419 (-971 |#2|))) 335) (($ $) NIL) (($ (-971 |#2|)) 216) (($ (-576)) NIL) (($ (-419 (-576))) 373)) (-3154 (((-783)) 88)) (-1349 (((-112) (-115)) 42)) (-2851 (($ (-1197) $) 31) (($ (-1197) $ $) 32) (($ (-1197) $ $ $) 33) (($ (-1197) $ $ $ $) 34) (($ (-1197) (-656 $)) 39)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ |#2|) NIL) (($ |#2| $) 306) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-940) $) NIL))) +(((-441 |#1| |#2|) (-10 -8 (-15 * (|#1| (-940) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3569 (|#1| (-576))) (-15 -3154 ((-783))) (-15 * (|#1| |#2| |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -3569 (|#1| (-971 |#2|))) (-15 -1572 ((-3 (-971 |#2|) "failed") |#1|)) (-15 -2859 ((-971 |#2|) |#1|)) (-15 -2774 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2774 (|#1| |#1| (-1197) (-783))) (-15 -2774 (|#1| |#1| (-656 (-1197)))) (-15 -2774 (|#1| |#1| (-1197))) (-15 * (|#1| |#1| |#2|)) (-15 -3569 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3569 (|#1| (-419 (-971 |#2|)))) (-15 -1572 ((-3 (-419 (-971 |#2|)) "failed") |#1|)) (-15 -2859 ((-419 (-971 |#2|)) |#1|)) (-15 -1797 ((-419 (-1193 |#1|)) |#1| (-624 |#1|))) (-15 -3569 (|#1| (-419 (-971 (-419 |#2|))))) (-15 -3569 (|#1| (-971 (-419 |#2|)))) (-15 -3569 (|#1| (-419 |#2|))) (-15 -4325 (|#1| |#1|)) (-15 -4171 (|#1| (-430 |#1|))) (-15 -3282 (|#1| |#1| (-1197) (-783) (-1 |#1| |#1|))) (-15 -3282 (|#1| |#1| (-1197) (-783) (-1 |#1| (-656 |#1|)))) (-15 -3282 (|#1| |#1| (-656 (-1197)) (-656 (-783)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3282 (|#1| |#1| (-656 (-1197)) (-656 (-783)) (-656 (-1 |#1| |#1|)))) (-15 -3030 ((-3 (-2 (|:| |val| |#1|) (|:| -2508 (-576))) "failed") |#1|)) (-15 -1452 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -2508 (-576))) "failed") |#1| (-1197))) (-15 -1452 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -2508 (-576))) "failed") |#1| (-115))) (-15 -3328 (|#1| |#1|)) (-15 -3569 (|#1| (-1146 |#2| (-624 |#1|)))) (-15 -4324 ((-3 (-2 (|:| -1715 (-576)) (|:| |var| (-624 |#1|))) "failed") |#1|)) (-15 -2363 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1452 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -2508 (-576))) "failed") |#1|)) (-15 -3845 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -3282 (|#1| |#1| (-656 (-115)) (-656 |#1|) (-1197))) (-15 -3282 (|#1| |#1| (-115) |#1| (-1197))) (-15 -3282 (|#1| |#1|)) (-15 -3282 (|#1| |#1| (-656 (-1197)))) (-15 -3282 (|#1| |#1| (-1197))) (-15 -2851 (|#1| (-1197) (-656 |#1|))) (-15 -2851 (|#1| (-1197) |#1| |#1| |#1| |#1|)) (-15 -2851 (|#1| (-1197) |#1| |#1| |#1|)) (-15 -2851 (|#1| (-1197) |#1| |#1|)) (-15 -2851 (|#1| (-1197) |#1|)) (-15 -1969 ((-656 (-1197)) |#1|)) (-15 -2070 (|#2| |#1|)) (-15 -2060 ((-112) |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -4171 ((-907 (-390)) |#1|)) (-15 -4171 ((-907 (-576)) |#1|)) (-15 -3569 (|#1| (-1197))) (-15 -1572 ((-3 (-1197) "failed") |#1|)) (-15 -2859 ((-1197) |#1|)) (-15 -3282 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3282 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -3282 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3282 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -3282 (|#1| |#1| (-1197) (-1 |#1| |#1|))) (-15 -3282 (|#1| |#1| (-1197) (-1 |#1| (-656 |#1|)))) (-15 -3282 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3282 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| |#1|)))) (-15 -1349 ((-112) (-115))) (-15 -1776 ((-115) (-115))) (-15 -1763 ((-656 (-624 |#1|)) |#1|)) (-15 -2119 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -3427 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3427 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3427 (|#1| |#1| (-304 |#1|))) (-15 -2796 (|#1| (-115) (-656 |#1|))) (-15 -2796 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2796 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2796 (|#1| (-115) |#1| |#1|)) (-15 -2796 (|#1| (-115) |#1|)) (-15 -3282 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3282 (|#1| |#1| |#1| |#1|)) (-15 -3282 (|#1| |#1| (-304 |#1|))) (-15 -3282 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3282 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3282 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -3569 (|#1| (-624 |#1|))) (-15 -1572 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2859 ((-624 |#1|) |#1|)) (-15 -3569 ((-876) |#1|))) (-442 |#2|) (-1121)) (T -441)) +((-1776 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1121)) (-5 *1 (-441 *3 *4)) (-4 *3 (-442 *4)))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1121)) (-5 *2 (-112)) (-5 *1 (-441 *4 *5)) (-4 *4 (-442 *5)))) (-3154 (*1 *2) (-12 (-4 *4 (-1121)) (-5 *2 (-783)) (-5 *1 (-441 *3 *4)) (-4 *3 (-442 *4))))) +(-10 -8 (-15 * (|#1| (-940) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3569 (|#1| (-576))) (-15 -3154 ((-783))) (-15 * (|#1| |#2| |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -3569 (|#1| (-971 |#2|))) (-15 -1572 ((-3 (-971 |#2|) "failed") |#1|)) (-15 -2859 ((-971 |#2|) |#1|)) (-15 -2774 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2774 (|#1| |#1| (-1197) (-783))) (-15 -2774 (|#1| |#1| (-656 (-1197)))) (-15 -2774 (|#1| |#1| (-1197))) (-15 * (|#1| |#1| |#2|)) (-15 -3569 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3569 (|#1| (-419 (-971 |#2|)))) (-15 -1572 ((-3 (-419 (-971 |#2|)) "failed") |#1|)) (-15 -2859 ((-419 (-971 |#2|)) |#1|)) (-15 -1797 ((-419 (-1193 |#1|)) |#1| (-624 |#1|))) (-15 -3569 (|#1| (-419 (-971 (-419 |#2|))))) (-15 -3569 (|#1| (-971 (-419 |#2|)))) (-15 -3569 (|#1| (-419 |#2|))) (-15 -4325 (|#1| |#1|)) (-15 -4171 (|#1| (-430 |#1|))) (-15 -3282 (|#1| |#1| (-1197) (-783) (-1 |#1| |#1|))) (-15 -3282 (|#1| |#1| (-1197) (-783) (-1 |#1| (-656 |#1|)))) (-15 -3282 (|#1| |#1| (-656 (-1197)) (-656 (-783)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3282 (|#1| |#1| (-656 (-1197)) (-656 (-783)) (-656 (-1 |#1| |#1|)))) (-15 -3030 ((-3 (-2 (|:| |val| |#1|) (|:| -2508 (-576))) "failed") |#1|)) (-15 -1452 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -2508 (-576))) "failed") |#1| (-1197))) (-15 -1452 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -2508 (-576))) "failed") |#1| (-115))) (-15 -3328 (|#1| |#1|)) (-15 -3569 (|#1| (-1146 |#2| (-624 |#1|)))) (-15 -4324 ((-3 (-2 (|:| -1715 (-576)) (|:| |var| (-624 |#1|))) "failed") |#1|)) (-15 -2363 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1452 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -2508 (-576))) "failed") |#1|)) (-15 -3845 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -3282 (|#1| |#1| (-656 (-115)) (-656 |#1|) (-1197))) (-15 -3282 (|#1| |#1| (-115) |#1| (-1197))) (-15 -3282 (|#1| |#1|)) (-15 -3282 (|#1| |#1| (-656 (-1197)))) (-15 -3282 (|#1| |#1| (-1197))) (-15 -2851 (|#1| (-1197) (-656 |#1|))) (-15 -2851 (|#1| (-1197) |#1| |#1| |#1| |#1|)) (-15 -2851 (|#1| (-1197) |#1| |#1| |#1|)) (-15 -2851 (|#1| (-1197) |#1| |#1|)) (-15 -2851 (|#1| (-1197) |#1|)) (-15 -1969 ((-656 (-1197)) |#1|)) (-15 -2070 (|#2| |#1|)) (-15 -2060 ((-112) |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -4171 ((-907 (-390)) |#1|)) (-15 -4171 ((-907 (-576)) |#1|)) (-15 -3569 (|#1| (-1197))) (-15 -1572 ((-3 (-1197) "failed") |#1|)) (-15 -2859 ((-1197) |#1|)) (-15 -3282 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3282 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -3282 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3282 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -3282 (|#1| |#1| (-1197) (-1 |#1| |#1|))) (-15 -3282 (|#1| |#1| (-1197) (-1 |#1| (-656 |#1|)))) (-15 -3282 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3282 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| |#1|)))) (-15 -1349 ((-112) (-115))) (-15 -1776 ((-115) (-115))) (-15 -1763 ((-656 (-624 |#1|)) |#1|)) (-15 -2119 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -3427 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3427 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3427 (|#1| |#1| (-304 |#1|))) (-15 -2796 (|#1| (-115) (-656 |#1|))) (-15 -2796 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2796 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2796 (|#1| (-115) |#1| |#1|)) (-15 -2796 (|#1| (-115) |#1|)) (-15 -3282 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3282 (|#1| |#1| |#1| |#1|)) (-15 -3282 (|#1| |#1| (-304 |#1|))) (-15 -3282 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3282 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3282 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -3569 (|#1| (-624 |#1|))) (-15 -1572 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2859 ((-624 |#1|) |#1|)) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 117 (|has| |#1| (-25)))) (-1969 (((-656 (-1197)) $) 208)) (-1797 (((-419 (-1193 $)) $ (-624 $)) 176 (|has| |#1| (-568)))) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 148 (|has| |#1| (-568)))) (-4195 (($ $) 149 (|has| |#1| (-568)))) (-1760 (((-112) $) 151 (|has| |#1| (-568)))) (-3987 (((-656 (-624 $)) $) 39)) (-2428 (((-3 $ "failed") $ $) 119 (|has| |#1| (-21)))) (-3427 (($ $ (-304 $)) 51) (($ $ (-656 (-304 $))) 50) (($ $ (-656 (-624 $)) (-656 $)) 49)) (-3444 (($ $) 168 (|has| |#1| (-568)))) (-3760 (((-430 $) $) 169 (|has| |#1| (-568)))) (-3330 (((-112) $ $) 159 (|has| |#1| (-568)))) (-3404 (($) 105 (-2759 (|has| |#1| (-1133)) (|has| |#1| (-25))) CONST)) (-1572 (((-3 (-624 $) "failed") $) 64) (((-3 (-1197) "failed") $) 221) (((-3 (-576) "failed") $) 215 (|has| |#1| (-1059 (-576)))) (((-3 |#1| "failed") $) 212) (((-3 (-419 (-971 |#1|)) "failed") $) 174 (|has| |#1| (-568))) (((-3 (-971 |#1|) "failed") $) 124 (|has| |#1| (-1070))) (((-3 (-419 (-576)) "failed") $) 99 (-2759 (-12 (|has| |#1| (-1059 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1059 (-419 (-576))))))) (-2859 (((-624 $) $) 65) (((-1197) $) 222) (((-576) $) 214 (|has| |#1| (-1059 (-576)))) ((|#1| $) 213) (((-419 (-971 |#1|)) $) 175 (|has| |#1| (-568))) (((-971 |#1|) $) 125 (|has| |#1| (-1070))) (((-419 (-576)) $) 100 (-2759 (-12 (|has| |#1| (-1059 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1059 (-419 (-576))))))) (-3428 (($ $ $) 163 (|has| |#1| (-568)))) (-3674 (((-701 (-576)) (-701 $)) 141 (-2674 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 140 (-2674 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 139 (|has| |#1| (-1070))) (((-701 |#1|) (-701 $)) 138 (|has| |#1| (-1070)))) (-3673 (((-3 $ "failed") $) 107 (|has| |#1| (-1133)))) (-3440 (($ $ $) 162 (|has| |#1| (-568)))) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) 157 (|has| |#1| (-568)))) (-3833 (((-112) $) 170 (|has| |#1| (-568)))) (-3325 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 217 (|has| |#1| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 216 (|has| |#1| (-901 (-390))))) (-2687 (($ $) 46) (($ (-656 $)) 45)) (-4348 (((-656 (-115)) $) 38)) (-1776 (((-115) (-115)) 37)) (-1351 (((-112) $) 106 (|has| |#1| (-1133)))) (-3376 (((-112) $) 17 (|has| $ (-1059 (-576))))) (-3328 (($ $) 191 (|has| |#1| (-1070)))) (-1570 (((-1146 |#1| (-624 $)) $) 192 (|has| |#1| (-1070)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) 166 (|has| |#1| (-568)))) (-2913 (((-1193 $) (-624 $)) 20 (|has| $ (-1070)))) (-4116 (($ (-1 $ $) (-624 $)) 31)) (-2119 (((-3 (-624 $) "failed") $) 41)) (-3676 (((-701 (-576)) (-1288 $)) 143 (-2674 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 142 (-2674 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 137 (|has| |#1| (-1070))) (((-701 |#1|) (-1288 $)) 136 (|has| |#1| (-1070)))) (-3457 (($ (-656 $)) 155 (|has| |#1| (-568))) (($ $ $) 154 (|has| |#1| (-568)))) (-2046 (((-1179) $) 10)) (-1763 (((-656 (-624 $)) $) 40)) (-1640 (($ (-115) $) 33) (($ (-115) (-656 $)) 32)) (-3845 (((-3 (-656 $) "failed") $) 197 (|has| |#1| (-1133)))) (-3030 (((-3 (-2 (|:| |val| $) (|:| -2508 (-576))) "failed") $) 188 (|has| |#1| (-1070)))) (-2363 (((-3 (-656 $) "failed") $) 195 (|has| |#1| (-25)))) (-4324 (((-3 (-2 (|:| -1715 (-576)) (|:| |var| (-624 $))) "failed") $) 194 (|has| |#1| (-25)))) (-1452 (((-3 (-2 (|:| |var| (-624 $)) (|:| -2508 (-576))) "failed") $) 196 (|has| |#1| (-1133))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2508 (-576))) "failed") $ (-115)) 190 (|has| |#1| (-1070))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2508 (-576))) "failed") $ (-1197)) 189 (|has| |#1| (-1070)))) (-2808 (((-112) $ (-115)) 35) (((-112) $ (-1197)) 34)) (-2050 (($ $) 109 (-2759 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-2327 (((-783) $) 42)) (-1450 (((-1141) $) 11)) (-2060 (((-112) $) 210)) (-2070 ((|#1| $) 209)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 156 (|has| |#1| (-568)))) (-3497 (($ (-656 $)) 153 (|has| |#1| (-568))) (($ $ $) 152 (|has| |#1| (-568)))) (-1523 (((-112) $ $) 30) (((-112) $ (-1197)) 29)) (-1828 (((-430 $) $) 167 (|has| |#1| (-568)))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 165 (|has| |#1| (-568))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 164 (|has| |#1| (-568)))) (-3475 (((-3 $ "failed") $ $) 147 (|has| |#1| (-568)))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) 158 (|has| |#1| (-568)))) (-2768 (((-112) $) 18 (|has| $ (-1059 (-576))))) (-3282 (($ $ (-624 $) $) 62) (($ $ (-656 (-624 $)) (-656 $)) 61) (($ $ (-656 (-304 $))) 60) (($ $ (-304 $)) 59) (($ $ $ $) 58) (($ $ (-656 $) (-656 $)) 57) (($ $ (-656 (-1197)) (-656 (-1 $ $))) 28) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) 27) (($ $ (-1197) (-1 $ (-656 $))) 26) (($ $ (-1197) (-1 $ $)) 25) (($ $ (-656 (-115)) (-656 (-1 $ $))) 24) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 23) (($ $ (-115) (-1 $ (-656 $))) 22) (($ $ (-115) (-1 $ $)) 21) (($ $ (-1197)) 202 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1197))) 201 (|has| |#1| (-626 (-548)))) (($ $) 200 (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1197)) 199 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-115)) (-656 $) (-1197)) 198 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ $))) 187 (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 186 (|has| |#1| (-1070))) (($ $ (-1197) (-783) (-1 $ (-656 $))) 185 (|has| |#1| (-1070))) (($ $ (-1197) (-783) (-1 $ $)) 184 (|has| |#1| (-1070)))) (-1979 (((-783) $) 160 (|has| |#1| (-568)))) (-2796 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-656 $)) 52)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 161 (|has| |#1| (-568)))) (-1954 (($ $) 44) (($ $ $) 43)) (-2774 (($ $ (-1197)) 134 (|has| |#1| (-1070))) (($ $ (-656 (-1197))) 132 (|has| |#1| (-1070))) (($ $ (-1197) (-783)) 131 (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) 130 (|has| |#1| (-1070)))) (-4325 (($ $) 181 (|has| |#1| (-568)))) (-1581 (((-1146 |#1| (-624 $)) $) 182 (|has| |#1| (-568)))) (-1346 (($ $) 19 (|has| $ (-1070)))) (-4171 (((-907 (-576)) $) 219 (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) 218 (|has| |#1| (-626 (-907 (-390))))) (($ (-430 $)) 183 (|has| |#1| (-568))) (((-548) $) 101 (|has| |#1| (-626 (-548))))) (-2272 (($ $ $) 112 (|has| |#1| (-485)))) (-1758 (($ $ $) 113 (|has| |#1| (-485)))) (-3569 (((-876) $) 12) (($ (-624 $)) 63) (($ (-1197)) 220) (($ |#1|) 211) (($ (-1146 |#1| (-624 $))) 193 (|has| |#1| (-1070))) (($ (-419 |#1|)) 179 (|has| |#1| (-568))) (($ (-971 (-419 |#1|))) 178 (|has| |#1| (-568))) (($ (-419 (-971 (-419 |#1|)))) 177 (|has| |#1| (-568))) (($ (-419 (-971 |#1|))) 173 (|has| |#1| (-568))) (($ $) 146 (|has| |#1| (-568))) (($ (-971 |#1|)) 123 (|has| |#1| (-1070))) (($ (-419 (-576))) 98 (-2759 (|has| |#1| (-568)) (-12 (|has| |#1| (-1059 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1059 (-419 (-576)))))) (($ (-576)) 97 (-2759 (|has| |#1| (-1070)) (|has| |#1| (-1059 (-576)))))) (-3390 (((-3 $ "failed") $) 144 (|has| |#1| (-146)))) (-3154 (((-783)) 126 (|has| |#1| (-1070)) CONST)) (-3680 (($ $) 48) (($ (-656 $)) 47)) (-1349 (((-112) (-115)) 36)) (-2399 (((-112) $ $) 6)) (-1505 (((-112) $ $) 150 (|has| |#1| (-568)))) (-2851 (($ (-1197) $) 207) (($ (-1197) $ $) 206) (($ (-1197) $ $ $) 205) (($ (-1197) $ $ $ $) 204) (($ (-1197) (-656 $)) 203)) (-2721 (($) 116 (|has| |#1| (-25)) CONST)) (-2731 (($) 104 (|has| |#1| (-1133)) CONST)) (-2020 (($ $ (-1197)) 133 (|has| |#1| (-1070))) (($ $ (-656 (-1197))) 129 (|has| |#1| (-1070))) (($ $ (-1197) (-783)) 128 (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) 127 (|has| |#1| (-1070)))) (-2924 (((-112) $ $) 8)) (-3056 (($ (-1146 |#1| (-624 $)) (-1146 |#1| (-624 $))) 180 (|has| |#1| (-568))) (($ $ $) 110 (-2759 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-3043 (($ $ $) 122 (|has| |#1| (-21))) (($ $) 121 (|has| |#1| (-21)))) (-3029 (($ $ $) 114 (|has| |#1| (-25)))) (** (($ $ (-576)) 111 (-2759 (|has| |#1| (-485)) (|has| |#1| (-568)))) (($ $ (-783)) 108 (|has| |#1| (-1133))) (($ $ (-940)) 103 (|has| |#1| (-1133)))) (* (($ (-419 (-576)) $) 172 (|has| |#1| (-568))) (($ $ (-419 (-576))) 171 (|has| |#1| (-568))) (($ $ |#1|) 145 (|has| |#1| (-174))) (($ |#1| $) 135 (|has| |#1| (-1070))) (($ (-576) $) 120 (|has| |#1| (-21))) (($ (-783) $) 118 (|has| |#1| (-25))) (($ (-940) $) 115 (|has| |#1| (-25))) (($ $ $) 102 (|has| |#1| (-1133))))) (((-442 |#1|) (-141) (-1121)) (T -442)) -((-2060 (*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1121)) (-5 *2 (-112)))) (-2070 (*1 *2 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121)))) (-1969 (*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1121)) (-5 *2 (-656 (-1197))))) (-2852 (*1 *1 *2 *1) (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)))) (-2852 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)))) (-2852 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)))) (-2852 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)))) (-2852 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-656 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1121)))) (-3284 (*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)) (-4 *3 (-626 (-548))))) (-3284 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1197))) (-4 *1 (-442 *3)) (-4 *3 (-1121)) (-4 *3 (-626 (-548))))) (-3284 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121)) (-4 *2 (-626 (-548))))) (-3284 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1197)) (-4 *1 (-442 *4)) (-4 *4 (-1121)) (-4 *4 (-626 (-548))))) (-3284 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 *1)) (-5 *4 (-1197)) (-4 *1 (-442 *5)) (-4 *5 (-1121)) (-4 *5 (-626 (-548))))) (-1385 (*1 *2 *1) (|partial| -12 (-4 *3 (-1133)) (-4 *3 (-1121)) (-5 *2 (-656 *1)) (-4 *1 (-442 *3)))) (-2040 (*1 *2 *1) (|partial| -12 (-4 *3 (-1133)) (-4 *3 (-1121)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -3422 (-576)))) (-4 *1 (-442 *3)))) (-1690 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1121)) (-5 *2 (-656 *1)) (-4 *1 (-442 *3)))) (-3229 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1121)) (-5 *2 (-2 (|:| -1714 (-576)) (|:| |var| (-624 *1)))) (-4 *1 (-442 *3)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-1146 *3 (-624 *1))) (-4 *3 (-1070)) (-4 *3 (-1121)) (-4 *1 (-442 *3)))) (-1570 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *3 (-1121)) (-5 *2 (-1146 *3 (-624 *1))) (-4 *1 (-442 *3)))) (-2171 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121)) (-4 *2 (-1070)))) (-2040 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1070)) (-4 *4 (-1121)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -3422 (-576)))) (-4 *1 (-442 *4)))) (-2040 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1197)) (-4 *4 (-1070)) (-4 *4 (-1121)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -3422 (-576)))) (-4 *1 (-442 *4)))) (-3349 (*1 *2 *1) (|partial| -12 (-4 *3 (-1070)) (-4 *3 (-1121)) (-5 *2 (-2 (|:| |val| *1) (|:| -3422 (-576)))) (-4 *1 (-442 *3)))) (-3284 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-656 (-783))) (-5 *4 (-656 (-1 *1 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1121)) (-4 *5 (-1070)))) (-3284 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-656 (-783))) (-5 *4 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-442 *5)) (-4 *5 (-1121)) (-4 *5 (-1070)))) (-3284 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-783)) (-5 *4 (-1 *1 (-656 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1121)) (-4 *5 (-1070)))) (-3284 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-783)) (-5 *4 (-1 *1 *1)) (-4 *1 (-442 *5)) (-4 *5 (-1121)) (-4 *5 (-1070)))) (-4172 (*1 *1 *2) (-12 (-5 *2 (-430 *1)) (-4 *1 (-442 *3)) (-4 *3 (-568)) (-4 *3 (-1121)))) (-1581 (*1 *2 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1121)) (-5 *2 (-1146 *3 (-624 *1))) (-4 *1 (-442 *3)))) (-2143 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121)) (-4 *2 (-568)))) (-3057 (*1 *1 *2 *2) (-12 (-5 *2 (-1146 *3 (-624 *1))) (-4 *3 (-568)) (-4 *3 (-1121)) (-4 *1 (-442 *3)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-568)) (-4 *3 (-1121)) (-4 *1 (-442 *3)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-971 (-419 *3))) (-4 *3 (-568)) (-4 *3 (-1121)) (-4 *1 (-442 *3)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-419 (-971 (-419 *3)))) (-4 *3 (-568)) (-4 *3 (-1121)) (-4 *1 (-442 *3)))) (-1798 (*1 *2 *1 *3) (-12 (-5 *3 (-624 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1121)) (-4 *4 (-568)) (-5 *2 (-419 (-1193 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-442 *3)) (-4 *3 (-1121)) (-4 *3 (-1133))))) -(-13 (-312) (-1059 (-1197)) (-899 |t#1|) (-412 |t#1|) (-423 |t#1|) (-10 -8 (-15 -2060 ((-112) $)) (-15 -2070 (|t#1| $)) (-15 -1969 ((-656 (-1197)) $)) (-15 -2852 ($ (-1197) $)) (-15 -2852 ($ (-1197) $ $)) (-15 -2852 ($ (-1197) $ $ $)) (-15 -2852 ($ (-1197) $ $ $ $)) (-15 -2852 ($ (-1197) (-656 $))) (IF (|has| |t#1| (-626 (-548))) (PROGN (-6 (-626 (-548))) (-15 -3284 ($ $ (-1197))) (-15 -3284 ($ $ (-656 (-1197)))) (-15 -3284 ($ $)) (-15 -3284 ($ $ (-115) $ (-1197))) (-15 -3284 ($ $ (-656 (-115)) (-656 $) (-1197)))) |%noBranch|) (IF (|has| |t#1| (-1133)) (PROGN (-6 (-738)) (-15 ** ($ $ (-783))) (-15 -1385 ((-3 (-656 $) "failed") $)) (-15 -2040 ((-3 (-2 (|:| |var| (-624 $)) (|:| -3422 (-576))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-485)) (-6 (-485)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1690 ((-3 (-656 $) "failed") $)) (-15 -3229 ((-3 (-2 (|:| -1714 (-576)) (|:| |var| (-624 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1070)) (PROGN (-6 (-1070)) (-6 (-1059 (-971 |t#1|))) (-6 (-917 (-1197))) (-6 (-388 |t#1|)) (-15 -3570 ($ (-1146 |t#1| (-624 $)))) (-15 -1570 ((-1146 |t#1| (-624 $)) $)) (-15 -2171 ($ $)) (-15 -2040 ((-3 (-2 (|:| |var| (-624 $)) (|:| -3422 (-576))) "failed") $ (-115))) (-15 -2040 ((-3 (-2 (|:| |var| (-624 $)) (|:| -3422 (-576))) "failed") $ (-1197))) (-15 -3349 ((-3 (-2 (|:| |val| $) (|:| -3422 (-576))) "failed") $)) (-15 -3284 ($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ $)))) (-15 -3284 ($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ (-656 $))))) (-15 -3284 ($ $ (-1197) (-783) (-1 $ (-656 $)))) (-15 -3284 ($ $ (-1197) (-783) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-6 (-374)) (-6 (-1059 (-419 (-971 |t#1|)))) (-15 -4172 ($ (-430 $))) (-15 -1581 ((-1146 |t#1| (-624 $)) $)) (-15 -2143 ($ $)) (-15 -3057 ($ (-1146 |t#1| (-624 $)) (-1146 |t#1| (-624 $)))) (-15 -3570 ($ (-419 |t#1|))) (-15 -3570 ($ (-971 (-419 |t#1|)))) (-15 -3570 ($ (-419 (-971 (-419 |t#1|))))) (-15 -1798 ((-419 (-1193 $)) $ (-624 $))) (IF (|has| |t#1| (-1059 (-576))) (-6 (-1059 (-419 (-576)))) |%noBranch|)) |%noBranch|))) -(((-21) -2760 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -2760 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2760 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-419 (-576))) |has| |#1| (-568)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-568)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-568)) ((-132) -2760 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2760 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-568))) ((-628 #1=(-419 (-971 |#1|))) |has| |#1| (-568)) ((-628 (-576)) -2760 (|has| |#1| (-1070)) (|has| |#1| (-1059 (-576))) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-628 #2=(-624 $)) . T) ((-628 #3=(-971 |#1|)) |has| |#1| (-1070)) ((-628 #4=(-1197)) . T) ((-628 |#1|) . T) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) |has| |#1| (-568)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-907 (-390))) |has| |#1| (-626 (-907 (-390)))) ((-626 (-907 (-576))) |has| |#1| (-626 (-907 (-576)))) ((-248) |has| |#1| (-568)) ((-300) |has| |#1| (-568)) ((-317) |has| |#1| (-568)) ((-319 $) . T) ((-312) . T) ((-374) |has| |#1| (-568)) ((-388 |#1|) |has| |#1| (-1070)) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-464) |has| |#1| (-568)) ((-485) |has| |#1| (-485)) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-568)) ((-658 (-576)) -2760 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-658 |#1|) -2760 (|has| |#1| (-1070)) (|has| |#1| (-174))) ((-658 $) -2760 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-660 #0#) |has| |#1| (-568)) ((-660 #5=(-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))) ((-660 |#1|) -2760 (|has| |#1| (-1070)) (|has| |#1| (-174))) ((-660 $) -2760 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-652 #0#) |has| |#1| (-568)) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-651 #5#) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))) ((-651 |#1|) |has| |#1| (-1070)) ((-729 #0#) |has| |#1| (-568)) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) -2760 (|has| |#1| (-1133)) (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-485)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-911 $ #6=(-1197)) |has| |#1| (-1070)) ((-917 #6#) |has| |#1| (-1070)) ((-919 #6#) |has| |#1| (-1070)) ((-901 (-390)) |has| |#1| (-901 (-390))) ((-901 (-576)) |has| |#1| (-901 (-576))) ((-899 |#1|) . T) ((-939) |has| |#1| (-568)) ((-1059 (-419 (-576))) -2760 (|has| |#1| (-1059 (-419 (-576)))) (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576))))) ((-1059 #1#) |has| |#1| (-568)) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 #2#) . T) ((-1059 #3#) |has| |#1| (-1070)) ((-1059 #4#) . T) ((-1059 |#1|) . T) ((-1072 #0#) |has| |#1| (-568)) ((-1072 |#1|) |has| |#1| (-174)) ((-1072 $) |has| |#1| (-568)) ((-1077 #0#) |has| |#1| (-568)) ((-1077 |#1|) |has| |#1| (-174)) ((-1077 $) |has| |#1| (-568)) ((-1070) -2760 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1079) -2760 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1133) -2760 (|has| |#1| (-1133)) (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-485)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1121) . T) ((-1238) . T) ((-1242) |has| |#1| (-568))) -((-3667 ((|#2| |#2| |#2|) 31)) (-1777 (((-115) (-115)) 43)) (-4102 ((|#2| |#2|) 63)) (-1722 ((|#2| |#2|) 66)) (-1854 ((|#2| |#2|) 30)) (-2221 ((|#2| |#2| |#2|) 33)) (-1918 ((|#2| |#2| |#2|) 35)) (-3775 ((|#2| |#2| |#2|) 32)) (-2089 ((|#2| |#2| |#2|) 34)) (-2468 (((-112) (-115)) 41)) (-4386 ((|#2| |#2|) 37)) (-2097 ((|#2| |#2|) 36)) (-2122 ((|#2| |#2|) 25)) (-3625 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-4000 ((|#2| |#2| |#2|) 29))) -(((-443 |#1| |#2|) (-10 -7 (-15 -2468 ((-112) (-115))) (-15 -1777 ((-115) (-115))) (-15 -2122 (|#2| |#2|)) (-15 -3625 (|#2| |#2|)) (-15 -3625 (|#2| |#2| |#2|)) (-15 -4000 (|#2| |#2| |#2|)) (-15 -1854 (|#2| |#2|)) (-15 -3667 (|#2| |#2| |#2|)) (-15 -3775 (|#2| |#2| |#2|)) (-15 -2221 (|#2| |#2| |#2|)) (-15 -2089 (|#2| |#2| |#2|)) (-15 -1918 (|#2| |#2| |#2|)) (-15 -2097 (|#2| |#2|)) (-15 -4386 (|#2| |#2|)) (-15 -1722 (|#2| |#2|)) (-15 -4102 (|#2| |#2|))) (-568) (-442 |#1|)) (T -443)) -((-4102 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1722 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-4386 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2097 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1918 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2089 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2221 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3775 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3667 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1854 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-4000 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3625 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3625 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2122 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1777 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-443 *3 *4)) (-4 *4 (-442 *3)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-443 *4 *5)) (-4 *5 (-442 *4))))) -(-10 -7 (-15 -2468 ((-112) (-115))) (-15 -1777 ((-115) (-115))) (-15 -2122 (|#2| |#2|)) (-15 -3625 (|#2| |#2|)) (-15 -3625 (|#2| |#2| |#2|)) (-15 -4000 (|#2| |#2| |#2|)) (-15 -1854 (|#2| |#2|)) (-15 -3667 (|#2| |#2| |#2|)) (-15 -3775 (|#2| |#2| |#2|)) (-15 -2221 (|#2| |#2| |#2|)) (-15 -2089 (|#2| |#2| |#2|)) (-15 -1918 (|#2| |#2| |#2|)) (-15 -2097 (|#2| |#2|)) (-15 -4386 (|#2| |#2|)) (-15 -1722 (|#2| |#2|)) (-15 -4102 (|#2| |#2|))) -((-2005 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1193 |#2|)) (|:| |pol2| (-1193 |#2|)) (|:| |prim| (-1193 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1193 |#2|))) (|:| |prim| (-1193 |#2|))) (-656 |#2|)) 65))) -(((-444 |#1| |#2|) (-10 -7 (-15 -2005 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1193 |#2|))) (|:| |prim| (-1193 |#2|))) (-656 |#2|))) (IF (|has| |#2| (-27)) (-15 -2005 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1193 |#2|)) (|:| |pol2| (-1193 |#2|)) (|:| |prim| (-1193 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-568) (-148)) (-442 |#1|)) (T -444)) -((-2005 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1193 *3)) (|:| |pol2| (-1193 *3)) (|:| |prim| (-1193 *3)))) (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-442 *4)))) (-2005 (*1 *2 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-656 (-1193 *5))) (|:| |prim| (-1193 *5)))) (-5 *1 (-444 *4 *5))))) -(-10 -7 (-15 -2005 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1193 |#2|))) (|:| |prim| (-1193 |#2|))) (-656 |#2|))) (IF (|has| |#2| (-27)) (-15 -2005 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1193 |#2|)) (|:| |pol2| (-1193 |#2|)) (|:| |prim| (-1193 |#2|))) |#2| |#2|)) |%noBranch|)) -((-3087 (((-1293)) 18)) (-3715 (((-1193 (-419 (-576))) |#2| (-624 |#2|)) 40) (((-419 (-576)) |#2|) 24))) -(((-445 |#1| |#2|) (-10 -7 (-15 -3715 ((-419 (-576)) |#2|)) (-15 -3715 ((-1193 (-419 (-576))) |#2| (-624 |#2|))) (-15 -3087 ((-1293)))) (-13 (-568) (-1059 (-576))) (-442 |#1|)) (T -445)) -((-3087 (*1 *2) (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *2 (-1293)) (-5 *1 (-445 *3 *4)) (-4 *4 (-442 *3)))) (-3715 (*1 *2 *3 *4) (-12 (-5 *4 (-624 *3)) (-4 *3 (-442 *5)) (-4 *5 (-13 (-568) (-1059 (-576)))) (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-445 *5 *3)))) (-3715 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-445 *4 *3)) (-4 *3 (-442 *4))))) -(-10 -7 (-15 -3715 ((-419 (-576)) |#2|)) (-15 -3715 ((-1193 (-419 (-576))) |#2| (-624 |#2|))) (-15 -3087 ((-1293)))) -((-3159 (((-112) $) 33)) (-2342 (((-112) $) 35)) (-1421 (((-112) $) 36)) (-4212 (((-112) $) 39)) (-1681 (((-112) $) 34)) (-4422 (((-112) $) 38)) (-3570 (((-876) $) 20) (($ (-1179)) 32) (($ (-1197)) 30) (((-1197) $) 24) (((-1125) $) 23)) (-2222 (((-112) $) 37)) (-2925 (((-112) $ $) 17))) -(((-446) (-13 (-625 (-876)) (-10 -8 (-15 -3570 ($ (-1179))) (-15 -3570 ($ (-1197))) (-15 -3570 ((-1197) $)) (-15 -3570 ((-1125) $)) (-15 -3159 ((-112) $)) (-15 -1681 ((-112) $)) (-15 -1421 ((-112) $)) (-15 -4422 ((-112) $)) (-15 -4212 ((-112) $)) (-15 -2222 ((-112) $)) (-15 -2342 ((-112) $)) (-15 -2925 ((-112) $ $))))) (T -446)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-446)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-446)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-446)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-446)))) (-3159 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-1681 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-1421 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-4422 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-4212 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2342 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2925 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(-13 (-625 (-876)) (-10 -8 (-15 -3570 ($ (-1179))) (-15 -3570 ($ (-1197))) (-15 -3570 ((-1197) $)) (-15 -3570 ((-1125) $)) (-15 -3159 ((-112) $)) (-15 -1681 ((-112) $)) (-15 -1421 ((-112) $)) (-15 -4422 ((-112) $)) (-15 -4212 ((-112) $)) (-15 -2222 ((-112) $)) (-15 -2342 ((-112) $)) (-15 -2925 ((-112) $ $)))) -((-2123 (((-3 (-430 (-1193 (-419 (-576)))) "failed") |#3|) 72)) (-3738 (((-430 |#3|) |#3|) 34)) (-1775 (((-3 (-430 (-1193 (-48))) "failed") |#3|) 46 (|has| |#2| (-1059 (-48))))) (-2365 (((-3 (|:| |overq| (-1193 (-419 (-576)))) (|:| |overan| (-1193 (-48))) (|:| -4197 (-112))) |#3|) 37))) -(((-447 |#1| |#2| |#3|) (-10 -7 (-15 -3738 ((-430 |#3|) |#3|)) (-15 -2123 ((-3 (-430 (-1193 (-419 (-576)))) "failed") |#3|)) (-15 -2365 ((-3 (|:| |overq| (-1193 (-419 (-576)))) (|:| |overan| (-1193 (-48))) (|:| -4197 (-112))) |#3|)) (IF (|has| |#2| (-1059 (-48))) (-15 -1775 ((-3 (-430 (-1193 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-568) (-1059 (-576))) (-442 |#1|) (-1264 |#2|)) (T -447)) -((-1775 (*1 *2 *3) (|partial| -12 (-4 *5 (-1059 (-48))) (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 (-1193 (-48)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5)))) (-2365 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-3 (|:| |overq| (-1193 (-419 (-576)))) (|:| |overan| (-1193 (-48))) (|:| -4197 (-112)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5)))) (-2123 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 (-1193 (-419 (-576))))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5)))) (-3738 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5))))) -(-10 -7 (-15 -3738 ((-430 |#3|) |#3|)) (-15 -2123 ((-3 (-430 (-1193 (-419 (-576)))) "failed") |#3|)) (-15 -2365 ((-3 (|:| |overq| (-1193 (-419 (-576)))) (|:| |overan| (-1193 (-48))) (|:| -4197 (-112))) |#3|)) (IF (|has| |#2| (-1059 (-48))) (-15 -1775 ((-3 (-430 (-1193 (-48))) "failed") |#3|)) |%noBranch|)) -((-3489 (((-112) $ $) NIL)) (-1768 (((-1179) $ (-1179)) NIL)) (-1635 (($ $ (-1179)) NIL)) (-3936 (((-1179) $) NIL)) (-1408 (((-400) (-400) (-400)) 17) (((-400) (-400)) 15)) (-3257 (($ (-400)) NIL) (($ (-400) (-1179)) NIL)) (-2629 (((-400) $) NIL)) (-3699 (((-1179) $) NIL)) (-4013 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2036 (((-1293) (-1179)) 9)) (-3631 (((-1293) (-1179)) 10)) (-2094 (((-1293)) 11)) (-3570 (((-876) $) NIL)) (-3423 (($ $) 39)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-448) (-13 (-375 (-400) (-1179)) (-10 -7 (-15 -1408 ((-400) (-400) (-400))) (-15 -1408 ((-400) (-400))) (-15 -2036 ((-1293) (-1179))) (-15 -3631 ((-1293) (-1179))) (-15 -2094 ((-1293)))))) (T -448)) -((-1408 (*1 *2 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) (-1408 (*1 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-448)))) (-3631 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-448)))) (-2094 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-448))))) -(-13 (-375 (-400) (-1179)) (-10 -7 (-15 -1408 ((-400) (-400) (-400))) (-15 -1408 ((-400) (-400))) (-15 -2036 ((-1293) (-1179))) (-15 -3631 ((-1293) (-1179))) (-15 -2094 ((-1293))))) -((-3489 (((-112) $ $) NIL)) (-2971 (((-3 (|:| |fst| (-446)) (|:| -2917 "void")) $) 11)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2977 (($) 35)) (-2290 (($) 41)) (-2921 (($) 37)) (-1655 (($) 39)) (-2077 (($) 36)) (-2193 (($) 38)) (-3875 (($) 40)) (-1364 (((-112) $) 8)) (-2061 (((-656 (-971 (-576))) $) 19)) (-3582 (($ (-3 (|:| |fst| (-446)) (|:| -2917 "void")) (-656 (-1197)) (-112)) 29) (($ (-3 (|:| |fst| (-446)) (|:| -2917 "void")) (-656 (-971 (-576))) (-112)) 30)) (-3570 (((-876) $) 24) (($ (-446)) 32)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-449) (-13 (-1121) (-10 -8 (-15 -3570 ($ (-446))) (-15 -2971 ((-3 (|:| |fst| (-446)) (|:| -2917 "void")) $)) (-15 -2061 ((-656 (-971 (-576))) $)) (-15 -1364 ((-112) $)) (-15 -3582 ($ (-3 (|:| |fst| (-446)) (|:| -2917 "void")) (-656 (-1197)) (-112))) (-15 -3582 ($ (-3 (|:| |fst| (-446)) (|:| -2917 "void")) (-656 (-971 (-576))) (-112))) (-15 -2977 ($)) (-15 -2077 ($)) (-15 -2921 ($)) (-15 -2290 ($)) (-15 -2193 ($)) (-15 -1655 ($)) (-15 -3875 ($))))) (T -449)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-449)))) (-2971 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) (-5 *1 (-449)))) (-2061 (*1 *2 *1) (-12 (-5 *2 (-656 (-971 (-576)))) (-5 *1 (-449)))) (-1364 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-449)))) (-3582 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) (-5 *3 (-656 (-1197))) (-5 *4 (-112)) (-5 *1 (-449)))) (-3582 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-112)) (-5 *1 (-449)))) (-2977 (*1 *1) (-5 *1 (-449))) (-2077 (*1 *1) (-5 *1 (-449))) (-2921 (*1 *1) (-5 *1 (-449))) (-2290 (*1 *1) (-5 *1 (-449))) (-2193 (*1 *1) (-5 *1 (-449))) (-1655 (*1 *1) (-5 *1 (-449))) (-3875 (*1 *1) (-5 *1 (-449)))) -(-13 (-1121) (-10 -8 (-15 -3570 ($ (-446))) (-15 -2971 ((-3 (|:| |fst| (-446)) (|:| -2917 "void")) $)) (-15 -2061 ((-656 (-971 (-576))) $)) (-15 -1364 ((-112) $)) (-15 -3582 ($ (-3 (|:| |fst| (-446)) (|:| -2917 "void")) (-656 (-1197)) (-112))) (-15 -3582 ($ (-3 (|:| |fst| (-446)) (|:| -2917 "void")) (-656 (-971 (-576))) (-112))) (-15 -2977 ($)) (-15 -2077 ($)) (-15 -2921 ($)) (-15 -2290 ($)) (-15 -2193 ($)) (-15 -1655 ($)) (-15 -3875 ($)))) -((-3489 (((-112) $ $) NIL)) (-2629 (((-1197) $) 8)) (-3699 (((-1179) $) 17)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 11)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 14))) -(((-450 |#1|) (-13 (-1121) (-10 -8 (-15 -2629 ((-1197) $)))) (-1197)) (T -450)) -((-2629 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-450 *3)) (-14 *3 *2)))) -(-13 (-1121) (-10 -8 (-15 -2629 ((-1197) $)))) -((-3489 (((-112) $ $) NIL)) (-2705 (((-1139) $) 7)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 13)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 9))) -(((-451) (-13 (-1121) (-10 -8 (-15 -2705 ((-1139) $))))) (T -451)) -((-2705 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-451))))) -(-13 (-1121) (-10 -8 (-15 -2705 ((-1139) $)))) -((-2623 (((-1293) $) 7)) (-3570 (((-876) $) 8) (($ (-1288 (-711))) 14) (($ (-656 (-340))) 13) (($ (-340)) 12) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 11))) +((-2060 (*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1121)) (-5 *2 (-112)))) (-2070 (*1 *2 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121)))) (-1969 (*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1121)) (-5 *2 (-656 (-1197))))) (-2851 (*1 *1 *2 *1) (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)))) (-2851 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)))) (-2851 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)))) (-2851 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)))) (-2851 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-656 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1121)))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)) (-4 *3 (-626 (-548))))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1197))) (-4 *1 (-442 *3)) (-4 *3 (-1121)) (-4 *3 (-626 (-548))))) (-3282 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121)) (-4 *2 (-626 (-548))))) (-3282 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1197)) (-4 *1 (-442 *4)) (-4 *4 (-1121)) (-4 *4 (-626 (-548))))) (-3282 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 *1)) (-5 *4 (-1197)) (-4 *1 (-442 *5)) (-4 *5 (-1121)) (-4 *5 (-626 (-548))))) (-3845 (*1 *2 *1) (|partial| -12 (-4 *3 (-1133)) (-4 *3 (-1121)) (-5 *2 (-656 *1)) (-4 *1 (-442 *3)))) (-1452 (*1 *2 *1) (|partial| -12 (-4 *3 (-1133)) (-4 *3 (-1121)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -2508 (-576)))) (-4 *1 (-442 *3)))) (-2363 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1121)) (-5 *2 (-656 *1)) (-4 *1 (-442 *3)))) (-4324 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1121)) (-5 *2 (-2 (|:| -1715 (-576)) (|:| |var| (-624 *1)))) (-4 *1 (-442 *3)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-1146 *3 (-624 *1))) (-4 *3 (-1070)) (-4 *3 (-1121)) (-4 *1 (-442 *3)))) (-1570 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *3 (-1121)) (-5 *2 (-1146 *3 (-624 *1))) (-4 *1 (-442 *3)))) (-3328 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121)) (-4 *2 (-1070)))) (-1452 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1070)) (-4 *4 (-1121)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -2508 (-576)))) (-4 *1 (-442 *4)))) (-1452 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1197)) (-4 *4 (-1070)) (-4 *4 (-1121)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -2508 (-576)))) (-4 *1 (-442 *4)))) (-3030 (*1 *2 *1) (|partial| -12 (-4 *3 (-1070)) (-4 *3 (-1121)) (-5 *2 (-2 (|:| |val| *1) (|:| -2508 (-576)))) (-4 *1 (-442 *3)))) (-3282 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-656 (-783))) (-5 *4 (-656 (-1 *1 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1121)) (-4 *5 (-1070)))) (-3282 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-656 (-783))) (-5 *4 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-442 *5)) (-4 *5 (-1121)) (-4 *5 (-1070)))) (-3282 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-783)) (-5 *4 (-1 *1 (-656 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1121)) (-4 *5 (-1070)))) (-3282 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-783)) (-5 *4 (-1 *1 *1)) (-4 *1 (-442 *5)) (-4 *5 (-1121)) (-4 *5 (-1070)))) (-4171 (*1 *1 *2) (-12 (-5 *2 (-430 *1)) (-4 *1 (-442 *3)) (-4 *3 (-568)) (-4 *3 (-1121)))) (-1581 (*1 *2 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1121)) (-5 *2 (-1146 *3 (-624 *1))) (-4 *1 (-442 *3)))) (-4325 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121)) (-4 *2 (-568)))) (-3056 (*1 *1 *2 *2) (-12 (-5 *2 (-1146 *3 (-624 *1))) (-4 *3 (-568)) (-4 *3 (-1121)) (-4 *1 (-442 *3)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-568)) (-4 *3 (-1121)) (-4 *1 (-442 *3)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-971 (-419 *3))) (-4 *3 (-568)) (-4 *3 (-1121)) (-4 *1 (-442 *3)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-419 (-971 (-419 *3)))) (-4 *3 (-568)) (-4 *3 (-1121)) (-4 *1 (-442 *3)))) (-1797 (*1 *2 *1 *3) (-12 (-5 *3 (-624 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1121)) (-4 *4 (-568)) (-5 *2 (-419 (-1193 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-442 *3)) (-4 *3 (-1121)) (-4 *3 (-1133))))) +(-13 (-312) (-1059 (-1197)) (-899 |t#1|) (-412 |t#1|) (-423 |t#1|) (-10 -8 (-15 -2060 ((-112) $)) (-15 -2070 (|t#1| $)) (-15 -1969 ((-656 (-1197)) $)) (-15 -2851 ($ (-1197) $)) (-15 -2851 ($ (-1197) $ $)) (-15 -2851 ($ (-1197) $ $ $)) (-15 -2851 ($ (-1197) $ $ $ $)) (-15 -2851 ($ (-1197) (-656 $))) (IF (|has| |t#1| (-626 (-548))) (PROGN (-6 (-626 (-548))) (-15 -3282 ($ $ (-1197))) (-15 -3282 ($ $ (-656 (-1197)))) (-15 -3282 ($ $)) (-15 -3282 ($ $ (-115) $ (-1197))) (-15 -3282 ($ $ (-656 (-115)) (-656 $) (-1197)))) |%noBranch|) (IF (|has| |t#1| (-1133)) (PROGN (-6 (-738)) (-15 ** ($ $ (-783))) (-15 -3845 ((-3 (-656 $) "failed") $)) (-15 -1452 ((-3 (-2 (|:| |var| (-624 $)) (|:| -2508 (-576))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-485)) (-6 (-485)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2363 ((-3 (-656 $) "failed") $)) (-15 -4324 ((-3 (-2 (|:| -1715 (-576)) (|:| |var| (-624 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1070)) (PROGN (-6 (-1070)) (-6 (-1059 (-971 |t#1|))) (-6 (-917 (-1197))) (-6 (-388 |t#1|)) (-15 -3569 ($ (-1146 |t#1| (-624 $)))) (-15 -1570 ((-1146 |t#1| (-624 $)) $)) (-15 -3328 ($ $)) (-15 -1452 ((-3 (-2 (|:| |var| (-624 $)) (|:| -2508 (-576))) "failed") $ (-115))) (-15 -1452 ((-3 (-2 (|:| |var| (-624 $)) (|:| -2508 (-576))) "failed") $ (-1197))) (-15 -3030 ((-3 (-2 (|:| |val| $) (|:| -2508 (-576))) "failed") $)) (-15 -3282 ($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ $)))) (-15 -3282 ($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ (-656 $))))) (-15 -3282 ($ $ (-1197) (-783) (-1 $ (-656 $)))) (-15 -3282 ($ $ (-1197) (-783) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-6 (-374)) (-6 (-1059 (-419 (-971 |t#1|)))) (-15 -4171 ($ (-430 $))) (-15 -1581 ((-1146 |t#1| (-624 $)) $)) (-15 -4325 ($ $)) (-15 -3056 ($ (-1146 |t#1| (-624 $)) (-1146 |t#1| (-624 $)))) (-15 -3569 ($ (-419 |t#1|))) (-15 -3569 ($ (-971 (-419 |t#1|)))) (-15 -3569 ($ (-419 (-971 (-419 |t#1|))))) (-15 -1797 ((-419 (-1193 $)) $ (-624 $))) (IF (|has| |t#1| (-1059 (-576))) (-6 (-1059 (-419 (-576)))) |%noBranch|)) |%noBranch|))) +(((-21) -2759 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -2759 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2759 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-419 (-576))) |has| |#1| (-568)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-568)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-568)) ((-132) -2759 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2759 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-568))) ((-628 #1=(-419 (-971 |#1|))) |has| |#1| (-568)) ((-628 (-576)) -2759 (|has| |#1| (-1070)) (|has| |#1| (-1059 (-576))) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-628 #2=(-624 $)) . T) ((-628 #3=(-971 |#1|)) |has| |#1| (-1070)) ((-628 #4=(-1197)) . T) ((-628 |#1|) . T) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) |has| |#1| (-568)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-907 (-390))) |has| |#1| (-626 (-907 (-390)))) ((-626 (-907 (-576))) |has| |#1| (-626 (-907 (-576)))) ((-248) |has| |#1| (-568)) ((-300) |has| |#1| (-568)) ((-317) |has| |#1| (-568)) ((-319 $) . T) ((-312) . T) ((-374) |has| |#1| (-568)) ((-388 |#1|) |has| |#1| (-1070)) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-464) |has| |#1| (-568)) ((-485) |has| |#1| (-485)) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-568)) ((-658 (-576)) -2759 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-658 |#1|) -2759 (|has| |#1| (-1070)) (|has| |#1| (-174))) ((-658 $) -2759 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-660 #0#) |has| |#1| (-568)) ((-660 #5=(-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))) ((-660 |#1|) -2759 (|has| |#1| (-1070)) (|has| |#1| (-174))) ((-660 $) -2759 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-652 #0#) |has| |#1| (-568)) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-651 #5#) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))) ((-651 |#1|) |has| |#1| (-1070)) ((-729 #0#) |has| |#1| (-568)) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) -2759 (|has| |#1| (-1133)) (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-485)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-911 $ #6=(-1197)) |has| |#1| (-1070)) ((-917 #6#) |has| |#1| (-1070)) ((-919 #6#) |has| |#1| (-1070)) ((-901 (-390)) |has| |#1| (-901 (-390))) ((-901 (-576)) |has| |#1| (-901 (-576))) ((-899 |#1|) . T) ((-939) |has| |#1| (-568)) ((-1059 (-419 (-576))) -2759 (|has| |#1| (-1059 (-419 (-576)))) (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576))))) ((-1059 #1#) |has| |#1| (-568)) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 #2#) . T) ((-1059 #3#) |has| |#1| (-1070)) ((-1059 #4#) . T) ((-1059 |#1|) . T) ((-1072 #0#) |has| |#1| (-568)) ((-1072 |#1|) |has| |#1| (-174)) ((-1072 $) |has| |#1| (-568)) ((-1077 #0#) |has| |#1| (-568)) ((-1077 |#1|) |has| |#1| (-174)) ((-1077 $) |has| |#1| (-568)) ((-1070) -2759 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1079) -2759 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1133) -2759 (|has| |#1| (-1133)) (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-485)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1121) . T) ((-1238) . T) ((-1242) |has| |#1| (-568))) +((-3038 ((|#2| |#2| |#2|) 31)) (-1776 (((-115) (-115)) 43)) (-1668 ((|#2| |#2|) 63)) (-1489 ((|#2| |#2|) 66)) (-3452 ((|#2| |#2|) 30)) (-3849 ((|#2| |#2| |#2|) 33)) (-2767 ((|#2| |#2| |#2|) 35)) (-1629 ((|#2| |#2| |#2|) 32)) (-1888 ((|#2| |#2| |#2|) 34)) (-1349 (((-112) (-115)) 41)) (-2612 ((|#2| |#2|) 37)) (-1948 ((|#2| |#2|) 36)) (-4143 ((|#2| |#2|) 25)) (-3902 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-3198 ((|#2| |#2| |#2|) 29))) +(((-443 |#1| |#2|) (-10 -7 (-15 -1349 ((-112) (-115))) (-15 -1776 ((-115) (-115))) (-15 -4143 (|#2| |#2|)) (-15 -3902 (|#2| |#2|)) (-15 -3902 (|#2| |#2| |#2|)) (-15 -3198 (|#2| |#2| |#2|)) (-15 -3452 (|#2| |#2|)) (-15 -3038 (|#2| |#2| |#2|)) (-15 -1629 (|#2| |#2| |#2|)) (-15 -3849 (|#2| |#2| |#2|)) (-15 -1888 (|#2| |#2| |#2|)) (-15 -2767 (|#2| |#2| |#2|)) (-15 -1948 (|#2| |#2|)) (-15 -2612 (|#2| |#2|)) (-15 -1489 (|#2| |#2|)) (-15 -1668 (|#2| |#2|))) (-568) (-442 |#1|)) (T -443)) +((-1668 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1489 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2612 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1948 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2767 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1888 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3849 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1629 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3038 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3198 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3902 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3902 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-4143 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1776 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-443 *3 *4)) (-4 *4 (-442 *3)))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-443 *4 *5)) (-4 *5 (-442 *4))))) +(-10 -7 (-15 -1349 ((-112) (-115))) (-15 -1776 ((-115) (-115))) (-15 -4143 (|#2| |#2|)) (-15 -3902 (|#2| |#2|)) (-15 -3902 (|#2| |#2| |#2|)) (-15 -3198 (|#2| |#2| |#2|)) (-15 -3452 (|#2| |#2|)) (-15 -3038 (|#2| |#2| |#2|)) (-15 -1629 (|#2| |#2| |#2|)) (-15 -3849 (|#2| |#2| |#2|)) (-15 -1888 (|#2| |#2| |#2|)) (-15 -2767 (|#2| |#2| |#2|)) (-15 -1948 (|#2| |#2|)) (-15 -2612 (|#2| |#2|)) (-15 -1489 (|#2| |#2|)) (-15 -1668 (|#2| |#2|))) +((-2345 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1193 |#2|)) (|:| |pol2| (-1193 |#2|)) (|:| |prim| (-1193 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1193 |#2|))) (|:| |prim| (-1193 |#2|))) (-656 |#2|)) 65))) +(((-444 |#1| |#2|) (-10 -7 (-15 -2345 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1193 |#2|))) (|:| |prim| (-1193 |#2|))) (-656 |#2|))) (IF (|has| |#2| (-27)) (-15 -2345 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1193 |#2|)) (|:| |pol2| (-1193 |#2|)) (|:| |prim| (-1193 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-568) (-148)) (-442 |#1|)) (T -444)) +((-2345 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1193 *3)) (|:| |pol2| (-1193 *3)) (|:| |prim| (-1193 *3)))) (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-442 *4)))) (-2345 (*1 *2 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-656 (-1193 *5))) (|:| |prim| (-1193 *5)))) (-5 *1 (-444 *4 *5))))) +(-10 -7 (-15 -2345 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1193 |#2|))) (|:| |prim| (-1193 |#2|))) (-656 |#2|))) (IF (|has| |#2| (-27)) (-15 -2345 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1193 |#2|)) (|:| |pol2| (-1193 |#2|)) (|:| |prim| (-1193 |#2|))) |#2| |#2|)) |%noBranch|)) +((-2179 (((-1293)) 18)) (-2224 (((-1193 (-419 (-576))) |#2| (-624 |#2|)) 40) (((-419 (-576)) |#2|) 24))) +(((-445 |#1| |#2|) (-10 -7 (-15 -2224 ((-419 (-576)) |#2|)) (-15 -2224 ((-1193 (-419 (-576))) |#2| (-624 |#2|))) (-15 -2179 ((-1293)))) (-13 (-568) (-1059 (-576))) (-442 |#1|)) (T -445)) +((-2179 (*1 *2) (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *2 (-1293)) (-5 *1 (-445 *3 *4)) (-4 *4 (-442 *3)))) (-2224 (*1 *2 *3 *4) (-12 (-5 *4 (-624 *3)) (-4 *3 (-442 *5)) (-4 *5 (-13 (-568) (-1059 (-576)))) (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-445 *5 *3)))) (-2224 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-445 *4 *3)) (-4 *3 (-442 *4))))) +(-10 -7 (-15 -2224 ((-419 (-576)) |#2|)) (-15 -2224 ((-1193 (-419 (-576))) |#2| (-624 |#2|))) (-15 -2179 ((-1293)))) +((-1659 (((-112) $) 33)) (-2535 (((-112) $) 35)) (-2082 (((-112) $) 36)) (-3433 (((-112) $) 39)) (-2281 (((-112) $) 34)) (-1762 (((-112) $) 38)) (-3569 (((-876) $) 20) (($ (-1179)) 32) (($ (-1197)) 30) (((-1197) $) 24) (((-1125) $) 23)) (-3859 (((-112) $) 37)) (-2924 (((-112) $ $) 17))) +(((-446) (-13 (-625 (-876)) (-10 -8 (-15 -3569 ($ (-1179))) (-15 -3569 ($ (-1197))) (-15 -3569 ((-1197) $)) (-15 -3569 ((-1125) $)) (-15 -1659 ((-112) $)) (-15 -2281 ((-112) $)) (-15 -2082 ((-112) $)) (-15 -1762 ((-112) $)) (-15 -3433 ((-112) $)) (-15 -3859 ((-112) $)) (-15 -2535 ((-112) $)) (-15 -2924 ((-112) $ $))))) (T -446)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-446)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-446)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-446)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-446)))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2281 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-1762 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-3859 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2535 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2924 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) +(-13 (-625 (-876)) (-10 -8 (-15 -3569 ($ (-1179))) (-15 -3569 ($ (-1197))) (-15 -3569 ((-1197) $)) (-15 -3569 ((-1125) $)) (-15 -1659 ((-112) $)) (-15 -2281 ((-112) $)) (-15 -2082 ((-112) $)) (-15 -1762 ((-112) $)) (-15 -3433 ((-112) $)) (-15 -3859 ((-112) $)) (-15 -2535 ((-112) $)) (-15 -2924 ((-112) $ $)))) +((-4152 (((-3 (-430 (-1193 (-419 (-576)))) "failed") |#3|) 72)) (-2459 (((-430 |#3|) |#3|) 34)) (-3974 (((-3 (-430 (-1193 (-48))) "failed") |#3|) 46 (|has| |#2| (-1059 (-48))))) (-1532 (((-3 (|:| |overq| (-1193 (-419 (-576)))) (|:| |overan| (-1193 (-48))) (|:| -4196 (-112))) |#3|) 37))) +(((-447 |#1| |#2| |#3|) (-10 -7 (-15 -2459 ((-430 |#3|) |#3|)) (-15 -4152 ((-3 (-430 (-1193 (-419 (-576)))) "failed") |#3|)) (-15 -1532 ((-3 (|:| |overq| (-1193 (-419 (-576)))) (|:| |overan| (-1193 (-48))) (|:| -4196 (-112))) |#3|)) (IF (|has| |#2| (-1059 (-48))) (-15 -3974 ((-3 (-430 (-1193 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-568) (-1059 (-576))) (-442 |#1|) (-1264 |#2|)) (T -447)) +((-3974 (*1 *2 *3) (|partial| -12 (-4 *5 (-1059 (-48))) (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 (-1193 (-48)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5)))) (-1532 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-3 (|:| |overq| (-1193 (-419 (-576)))) (|:| |overan| (-1193 (-48))) (|:| -4196 (-112)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5)))) (-4152 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 (-1193 (-419 (-576))))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5)))) (-2459 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5))))) +(-10 -7 (-15 -2459 ((-430 |#3|) |#3|)) (-15 -4152 ((-3 (-430 (-1193 (-419 (-576)))) "failed") |#3|)) (-15 -1532 ((-3 (|:| |overq| (-1193 (-419 (-576)))) (|:| |overan| (-1193 (-48))) (|:| -4196 (-112))) |#3|)) (IF (|has| |#2| (-1059 (-48))) (-15 -3974 ((-3 (-430 (-1193 (-48))) "failed") |#3|)) |%noBranch|)) +((-3488 (((-112) $ $) NIL)) (-1923 (((-1179) $ (-1179)) NIL)) (-3149 (($ $ (-1179)) NIL)) (-3917 (((-1179) $) NIL)) (-3508 (((-400) (-400) (-400)) 17) (((-400) (-400)) 15)) (-3256 (($ (-400)) NIL) (($ (-400) (-1179)) NIL)) (-2628 (((-400) $) NIL)) (-2046 (((-1179) $) NIL)) (-3311 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1423 (((-1293) (-1179)) 9)) (-3963 (((-1293) (-1179)) 10)) (-1917 (((-1293)) 11)) (-3569 (((-876) $) NIL)) (-2516 (($ $) 39)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-448) (-13 (-375 (-400) (-1179)) (-10 -7 (-15 -3508 ((-400) (-400) (-400))) (-15 -3508 ((-400) (-400))) (-15 -1423 ((-1293) (-1179))) (-15 -3963 ((-1293) (-1179))) (-15 -1917 ((-1293)))))) (T -448)) +((-3508 (*1 *2 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) (-3508 (*1 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) (-1423 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-448)))) (-3963 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-448)))) (-1917 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-448))))) +(-13 (-375 (-400) (-1179)) (-10 -7 (-15 -3508 ((-400) (-400) (-400))) (-15 -3508 ((-400) (-400))) (-15 -1423 ((-1293) (-1179))) (-15 -3963 ((-1293) (-1179))) (-15 -1917 ((-1293))))) +((-3488 (((-112) $ $) NIL)) (-3611 (((-3 (|:| |fst| (-446)) (|:| -2916 "void")) $) 11)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3665 (($) 35)) (-2018 (($) 41)) (-3249 (($) 37)) (-2038 (($) 39)) (-1769 (($) 36)) (-3558 (($) 38)) (-1415 (($) 40)) (-1442 (((-112) $) 8)) (-1627 (((-656 (-971 (-576))) $) 19)) (-3581 (($ (-3 (|:| |fst| (-446)) (|:| -2916 "void")) (-656 (-1197)) (-112)) 29) (($ (-3 (|:| |fst| (-446)) (|:| -2916 "void")) (-656 (-971 (-576))) (-112)) 30)) (-3569 (((-876) $) 24) (($ (-446)) 32)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-449) (-13 (-1121) (-10 -8 (-15 -3569 ($ (-446))) (-15 -3611 ((-3 (|:| |fst| (-446)) (|:| -2916 "void")) $)) (-15 -1627 ((-656 (-971 (-576))) $)) (-15 -1442 ((-112) $)) (-15 -3581 ($ (-3 (|:| |fst| (-446)) (|:| -2916 "void")) (-656 (-1197)) (-112))) (-15 -3581 ($ (-3 (|:| |fst| (-446)) (|:| -2916 "void")) (-656 (-971 (-576))) (-112))) (-15 -3665 ($)) (-15 -1769 ($)) (-15 -3249 ($)) (-15 -2018 ($)) (-15 -3558 ($)) (-15 -2038 ($)) (-15 -1415 ($))))) (T -449)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-449)))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-5 *1 (-449)))) (-1627 (*1 *2 *1) (-12 (-5 *2 (-656 (-971 (-576)))) (-5 *1 (-449)))) (-1442 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-449)))) (-3581 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-5 *3 (-656 (-1197))) (-5 *4 (-112)) (-5 *1 (-449)))) (-3581 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-112)) (-5 *1 (-449)))) (-3665 (*1 *1) (-5 *1 (-449))) (-1769 (*1 *1) (-5 *1 (-449))) (-3249 (*1 *1) (-5 *1 (-449))) (-2018 (*1 *1) (-5 *1 (-449))) (-3558 (*1 *1) (-5 *1 (-449))) (-2038 (*1 *1) (-5 *1 (-449))) (-1415 (*1 *1) (-5 *1 (-449)))) +(-13 (-1121) (-10 -8 (-15 -3569 ($ (-446))) (-15 -3611 ((-3 (|:| |fst| (-446)) (|:| -2916 "void")) $)) (-15 -1627 ((-656 (-971 (-576))) $)) (-15 -1442 ((-112) $)) (-15 -3581 ($ (-3 (|:| |fst| (-446)) (|:| -2916 "void")) (-656 (-1197)) (-112))) (-15 -3581 ($ (-3 (|:| |fst| (-446)) (|:| -2916 "void")) (-656 (-971 (-576))) (-112))) (-15 -3665 ($)) (-15 -1769 ($)) (-15 -3249 ($)) (-15 -2018 ($)) (-15 -3558 ($)) (-15 -2038 ($)) (-15 -1415 ($)))) +((-3488 (((-112) $ $) NIL)) (-2628 (((-1197) $) 8)) (-2046 (((-1179) $) 17)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 11)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 14))) +(((-450 |#1|) (-13 (-1121) (-10 -8 (-15 -2628 ((-1197) $)))) (-1197)) (T -450)) +((-2628 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-450 *3)) (-14 *3 *2)))) +(-13 (-1121) (-10 -8 (-15 -2628 ((-1197) $)))) +((-3488 (((-112) $ $) NIL)) (-2704 (((-1139) $) 7)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 13)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 9))) +(((-451) (-13 (-1121) (-10 -8 (-15 -2704 ((-1139) $))))) (T -451)) +((-2704 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-451))))) +(-13 (-1121) (-10 -8 (-15 -2704 ((-1139) $)))) +((-2622 (((-1293) $) 7)) (-3569 (((-876) $) 8) (($ (-1288 (-711))) 14) (($ (-656 (-340))) 13) (($ (-340)) 12) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 11))) (((-452) (-141)) (T -452)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-1288 (-711))) (-4 *1 (-452)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-452)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-452)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) (-4 *1 (-452))))) -(-13 (-407) (-10 -8 (-15 -3570 ($ (-1288 (-711)))) (-15 -3570 ($ (-656 (-340)))) (-15 -3570 ($ (-340))) (-15 -3570 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340)))))))) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 (-711))) (-4 *1 (-452)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-452)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-452)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) (-4 *1 (-452))))) +(-13 (-407) (-10 -8 (-15 -3569 ($ (-1288 (-711)))) (-15 -3569 ($ (-656 (-340)))) (-15 -3569 ($ (-340))) (-15 -3569 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340)))))))) (((-625 (-876)) . T) ((-407) . T) ((-1238) . T)) -((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 21) (((-3 $ "failed") (-1288 (-326 (-576)))) 19) (((-3 $ "failed") (-1288 (-971 (-390)))) 17) (((-3 $ "failed") (-1288 (-971 (-576)))) 15) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 13) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 11)) (-2860 (($ (-1288 (-326 (-390)))) 22) (($ (-1288 (-326 (-576)))) 20) (($ (-1288 (-971 (-390)))) 18) (($ (-1288 (-971 (-576)))) 16) (($ (-1288 (-419 (-971 (-390))))) 14) (($ (-1288 (-419 (-971 (-576))))) 12)) (-2623 (((-1293) $) 7)) (-3570 (((-876) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) 23))) +((-1572 (((-3 $ "failed") (-1288 (-326 (-390)))) 21) (((-3 $ "failed") (-1288 (-326 (-576)))) 19) (((-3 $ "failed") (-1288 (-971 (-390)))) 17) (((-3 $ "failed") (-1288 (-971 (-576)))) 15) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 13) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 11)) (-2859 (($ (-1288 (-326 (-390)))) 22) (($ (-1288 (-326 (-576)))) 20) (($ (-1288 (-971 (-390)))) 18) (($ (-1288 (-971 (-576)))) 16) (($ (-1288 (-419 (-971 (-390))))) 14) (($ (-1288 (-419 (-971 (-576))))) 12)) (-2622 (((-1293) $) 7)) (-3569 (((-876) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) 23))) (((-453) (-141)) (T -453)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-453)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-453)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) (-4 *1 (-453)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-1288 (-326 (-390)))) (-4 *1 (-453)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-326 (-390)))) (-4 *1 (-453)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-1288 (-326 (-576)))) (-4 *1 (-453)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-326 (-576)))) (-4 *1 (-453)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-1288 (-971 (-390)))) (-4 *1 (-453)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-971 (-390)))) (-4 *1 (-453)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-1288 (-971 (-576)))) (-4 *1 (-453)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-971 (-576)))) (-4 *1 (-453)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-1288 (-419 (-971 (-390))))) (-4 *1 (-453)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-419 (-971 (-390))))) (-4 *1 (-453)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-1288 (-419 (-971 (-576))))) (-4 *1 (-453)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-419 (-971 (-576))))) (-4 *1 (-453))))) -(-13 (-407) (-10 -8 (-15 -3570 ($ (-656 (-340)))) (-15 -3570 ($ (-340))) (-15 -3570 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340)))))) (-15 -2860 ($ (-1288 (-326 (-390))))) (-15 -1572 ((-3 $ "failed") (-1288 (-326 (-390))))) (-15 -2860 ($ (-1288 (-326 (-576))))) (-15 -1572 ((-3 $ "failed") (-1288 (-326 (-576))))) (-15 -2860 ($ (-1288 (-971 (-390))))) (-15 -1572 ((-3 $ "failed") (-1288 (-971 (-390))))) (-15 -2860 ($ (-1288 (-971 (-576))))) (-15 -1572 ((-3 $ "failed") (-1288 (-971 (-576))))) (-15 -2860 ($ (-1288 (-419 (-971 (-390)))))) (-15 -1572 ((-3 $ "failed") (-1288 (-419 (-971 (-390)))))) (-15 -2860 ($ (-1288 (-419 (-971 (-576)))))) (-15 -1572 ((-3 $ "failed") (-1288 (-419 (-971 (-576)))))))) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-453)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-453)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) (-4 *1 (-453)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-1288 (-326 (-390)))) (-4 *1 (-453)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-326 (-390)))) (-4 *1 (-453)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-1288 (-326 (-576)))) (-4 *1 (-453)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-326 (-576)))) (-4 *1 (-453)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-1288 (-971 (-390)))) (-4 *1 (-453)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-971 (-390)))) (-4 *1 (-453)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-1288 (-971 (-576)))) (-4 *1 (-453)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-971 (-576)))) (-4 *1 (-453)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-1288 (-419 (-971 (-390))))) (-4 *1 (-453)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-419 (-971 (-390))))) (-4 *1 (-453)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-1288 (-419 (-971 (-576))))) (-4 *1 (-453)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-419 (-971 (-576))))) (-4 *1 (-453))))) +(-13 (-407) (-10 -8 (-15 -3569 ($ (-656 (-340)))) (-15 -3569 ($ (-340))) (-15 -3569 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340)))))) (-15 -2859 ($ (-1288 (-326 (-390))))) (-15 -1572 ((-3 $ "failed") (-1288 (-326 (-390))))) (-15 -2859 ($ (-1288 (-326 (-576))))) (-15 -1572 ((-3 $ "failed") (-1288 (-326 (-576))))) (-15 -2859 ($ (-1288 (-971 (-390))))) (-15 -1572 ((-3 $ "failed") (-1288 (-971 (-390))))) (-15 -2859 ($ (-1288 (-971 (-576))))) (-15 -1572 ((-3 $ "failed") (-1288 (-971 (-576))))) (-15 -2859 ($ (-1288 (-419 (-971 (-390)))))) (-15 -1572 ((-3 $ "failed") (-1288 (-419 (-971 (-390)))))) (-15 -2859 ($ (-1288 (-419 (-971 (-576)))))) (-15 -1572 ((-3 $ "failed") (-1288 (-419 (-971 (-576)))))))) (((-625 (-876)) . T) ((-407) . T) ((-1238) . T)) -((-3895 (((-112)) 18)) (-1865 (((-112) (-112)) 19)) (-2183 (((-112)) 14)) (-3760 (((-112) (-112)) 15)) (-3856 (((-112)) 16)) (-2953 (((-112) (-112)) 17)) (-1939 (((-940) (-940)) 22) (((-940)) 21)) (-3778 (((-783) (-656 (-2 (|:| -1828 |#1|) (|:| -3634 (-576))))) 52)) (-3357 (((-940) (-940)) 24) (((-940)) 23)) (-3108 (((-2 (|:| -2304 (-576)) (|:| -2761 (-656 |#1|))) |#1|) 94)) (-2872 (((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -2761 (-656 (-2 (|:| |irr| |#1|) (|:| -2567 (-576))))))) 174)) (-1589 (((-2 (|:| |contp| (-576)) (|:| -2761 (-656 (-2 (|:| |irr| |#1|) (|:| -2567 (-576)))))) |#1| (-112)) 207)) (-4391 (((-430 |#1|) |#1| (-783) (-783)) 222) (((-430 |#1|) |#1| (-656 (-783)) (-783)) 219) (((-430 |#1|) |#1| (-656 (-783))) 221) (((-430 |#1|) |#1| (-783)) 220) (((-430 |#1|) |#1|) 218)) (-4217 (((-3 |#1| "failed") (-940) |#1| (-656 (-783)) (-783) (-112)) 224) (((-3 |#1| "failed") (-940) |#1| (-656 (-783)) (-783)) 225) (((-3 |#1| "failed") (-940) |#1| (-656 (-783))) 227) (((-3 |#1| "failed") (-940) |#1| (-783)) 226) (((-3 |#1| "failed") (-940) |#1|) 228)) (-1828 (((-430 |#1|) |#1| (-783) (-783)) 217) (((-430 |#1|) |#1| (-656 (-783)) (-783)) 213) (((-430 |#1|) |#1| (-656 (-783))) 215) (((-430 |#1|) |#1| (-783)) 214) (((-430 |#1|) |#1|) 212)) (-2562 (((-112) |#1|) 44)) (-3841 (((-749 (-783)) (-656 (-2 (|:| -1828 |#1|) (|:| -3634 (-576))))) 99)) (-3165 (((-2 (|:| |contp| (-576)) (|:| -2761 (-656 (-2 (|:| |irr| |#1|) (|:| -2567 (-576)))))) |#1| (-112) (-1123 (-783)) (-783)) 211))) -(((-454 |#1|) (-10 -7 (-15 -2872 ((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -2761 (-656 (-2 (|:| |irr| |#1|) (|:| -2567 (-576)))))))) (-15 -3841 ((-749 (-783)) (-656 (-2 (|:| -1828 |#1|) (|:| -3634 (-576)))))) (-15 -3357 ((-940))) (-15 -3357 ((-940) (-940))) (-15 -1939 ((-940))) (-15 -1939 ((-940) (-940))) (-15 -3778 ((-783) (-656 (-2 (|:| -1828 |#1|) (|:| -3634 (-576)))))) (-15 -3108 ((-2 (|:| -2304 (-576)) (|:| -2761 (-656 |#1|))) |#1|)) (-15 -3895 ((-112))) (-15 -1865 ((-112) (-112))) (-15 -2183 ((-112))) (-15 -3760 ((-112) (-112))) (-15 -2562 ((-112) |#1|)) (-15 -3856 ((-112))) (-15 -2953 ((-112) (-112))) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -1828 ((-430 |#1|) |#1| (-783))) (-15 -1828 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -1828 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -1828 ((-430 |#1|) |#1| (-783) (-783))) (-15 -4391 ((-430 |#1|) |#1|)) (-15 -4391 ((-430 |#1|) |#1| (-783))) (-15 -4391 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -4391 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -4391 ((-430 |#1|) |#1| (-783) (-783))) (-15 -4217 ((-3 |#1| "failed") (-940) |#1|)) (-15 -4217 ((-3 |#1| "failed") (-940) |#1| (-783))) (-15 -4217 ((-3 |#1| "failed") (-940) |#1| (-656 (-783)))) (-15 -4217 ((-3 |#1| "failed") (-940) |#1| (-656 (-783)) (-783))) (-15 -4217 ((-3 |#1| "failed") (-940) |#1| (-656 (-783)) (-783) (-112))) (-15 -1589 ((-2 (|:| |contp| (-576)) (|:| -2761 (-656 (-2 (|:| |irr| |#1|) (|:| -2567 (-576)))))) |#1| (-112))) (-15 -3165 ((-2 (|:| |contp| (-576)) (|:| -2761 (-656 (-2 (|:| |irr| |#1|) (|:| -2567 (-576)))))) |#1| (-112) (-1123 (-783)) (-783)))) (-1264 (-576))) (T -454)) -((-3165 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1123 (-783))) (-5 *6 (-783)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -2761 (-656 (-2 (|:| |irr| *3) (|:| -2567 (-576))))))) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1589 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -2761 (-656 (-2 (|:| |irr| *3) (|:| -2567 (-576))))))) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-4217 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-940)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *6 (-112)) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) (-4217 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-940)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) (-4217 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-940)) (-5 *4 (-656 (-783))) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) (-4217 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-940)) (-5 *4 (-783)) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) (-4217 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-940)) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) (-4391 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-4391 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-4391 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-4391 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-4391 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1828 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1828 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1828 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1828 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1828 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-2953 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3856 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-2562 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3760 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-2183 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1865 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3895 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3108 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2304 (-576)) (|:| -2761 (-656 *3)))) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3778 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -1828 *4) (|:| -3634 (-576))))) (-4 *4 (-1264 (-576))) (-5 *2 (-783)) (-5 *1 (-454 *4)))) (-1939 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1939 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3357 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3357 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3841 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -1828 *4) (|:| -3634 (-576))))) (-4 *4 (-1264 (-576))) (-5 *2 (-749 (-783))) (-5 *1 (-454 *4)))) (-2872 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-576)) (|:| -2761 (-656 (-2 (|:| |irr| *4) (|:| -2567 (-576))))))) (-4 *4 (-1264 (-576))) (-5 *2 (-430 *4)) (-5 *1 (-454 *4))))) -(-10 -7 (-15 -2872 ((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -2761 (-656 (-2 (|:| |irr| |#1|) (|:| -2567 (-576)))))))) (-15 -3841 ((-749 (-783)) (-656 (-2 (|:| -1828 |#1|) (|:| -3634 (-576)))))) (-15 -3357 ((-940))) (-15 -3357 ((-940) (-940))) (-15 -1939 ((-940))) (-15 -1939 ((-940) (-940))) (-15 -3778 ((-783) (-656 (-2 (|:| -1828 |#1|) (|:| -3634 (-576)))))) (-15 -3108 ((-2 (|:| -2304 (-576)) (|:| -2761 (-656 |#1|))) |#1|)) (-15 -3895 ((-112))) (-15 -1865 ((-112) (-112))) (-15 -2183 ((-112))) (-15 -3760 ((-112) (-112))) (-15 -2562 ((-112) |#1|)) (-15 -3856 ((-112))) (-15 -2953 ((-112) (-112))) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -1828 ((-430 |#1|) |#1| (-783))) (-15 -1828 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -1828 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -1828 ((-430 |#1|) |#1| (-783) (-783))) (-15 -4391 ((-430 |#1|) |#1|)) (-15 -4391 ((-430 |#1|) |#1| (-783))) (-15 -4391 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -4391 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -4391 ((-430 |#1|) |#1| (-783) (-783))) (-15 -4217 ((-3 |#1| "failed") (-940) |#1|)) (-15 -4217 ((-3 |#1| "failed") (-940) |#1| (-783))) (-15 -4217 ((-3 |#1| "failed") (-940) |#1| (-656 (-783)))) (-15 -4217 ((-3 |#1| "failed") (-940) |#1| (-656 (-783)) (-783))) (-15 -4217 ((-3 |#1| "failed") (-940) |#1| (-656 (-783)) (-783) (-112))) (-15 -1589 ((-2 (|:| |contp| (-576)) (|:| -2761 (-656 (-2 (|:| |irr| |#1|) (|:| -2567 (-576)))))) |#1| (-112))) (-15 -3165 ((-2 (|:| |contp| (-576)) (|:| -2761 (-656 (-2 (|:| |irr| |#1|) (|:| -2567 (-576)))))) |#1| (-112) (-1123 (-783)) (-783)))) -((-3526 (((-576) |#2|) 52) (((-576) |#2| (-783)) 51)) (-1493 (((-576) |#2|) 64)) (-3907 ((|#3| |#2|) 26)) (-1381 ((|#3| |#2| (-940)) 15)) (-2437 ((|#3| |#2|) 16)) (-3492 ((|#3| |#2|) 9)) (-2327 ((|#3| |#2|) 10)) (-1496 ((|#3| |#2| (-940)) 71) ((|#3| |#2|) 34)) (-4160 (((-576) |#2|) 66))) -(((-455 |#1| |#2| |#3|) (-10 -7 (-15 -4160 ((-576) |#2|)) (-15 -1496 (|#3| |#2|)) (-15 -1496 (|#3| |#2| (-940))) (-15 -1493 ((-576) |#2|)) (-15 -3526 ((-576) |#2| (-783))) (-15 -3526 ((-576) |#2|)) (-15 -1381 (|#3| |#2| (-940))) (-15 -3907 (|#3| |#2|)) (-15 -3492 (|#3| |#2|)) (-15 -2327 (|#3| |#2|)) (-15 -2437 (|#3| |#2|))) (-1070) (-1264 |#1|) (-13 (-416) (-1059 |#1|) (-374) (-1223) (-294))) (T -455)) -((-2437 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) (-2327 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) (-3492 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) (-3907 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) (-1381 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-4 *5 (-1070)) (-4 *2 (-13 (-416) (-1059 *5) (-374) (-1223) (-294))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1264 *5)))) (-3526 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1264 *4)) (-4 *5 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))))) (-3526 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1264 *5)) (-4 *6 (-13 (-416) (-1059 *5) (-374) (-1223) (-294))))) (-1493 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1264 *4)) (-4 *5 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))))) (-1496 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-4 *5 (-1070)) (-4 *2 (-13 (-416) (-1059 *5) (-374) (-1223) (-294))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1264 *5)))) (-1496 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) (-4160 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1264 *4)) (-4 *5 (-13 (-416) (-1059 *4) (-374) (-1223) (-294)))))) -(-10 -7 (-15 -4160 ((-576) |#2|)) (-15 -1496 (|#3| |#2|)) (-15 -1496 (|#3| |#2| (-940))) (-15 -1493 ((-576) |#2|)) (-15 -3526 ((-576) |#2| (-783))) (-15 -3526 ((-576) |#2|)) (-15 -1381 (|#3| |#2| (-940))) (-15 -3907 (|#3| |#2|)) (-15 -3492 (|#3| |#2|)) (-15 -2327 (|#3| |#2|)) (-15 -2437 (|#3| |#2|))) -((-1834 ((|#2| (-1288 |#1|)) 42)) (-4179 ((|#2| |#2| |#1|) 58)) (-3541 ((|#2| |#2| |#1|) 49)) (-3836 ((|#2| |#2|) 44)) (-3592 (((-112) |#2|) 32)) (-2841 (((-656 |#2|) (-940) (-430 |#2|)) 21)) (-4217 ((|#2| (-940) (-430 |#2|)) 25)) (-3841 (((-749 (-783)) (-430 |#2|)) 29))) -(((-456 |#1| |#2|) (-10 -7 (-15 -3592 ((-112) |#2|)) (-15 -1834 (|#2| (-1288 |#1|))) (-15 -3836 (|#2| |#2|)) (-15 -3541 (|#2| |#2| |#1|)) (-15 -4179 (|#2| |#2| |#1|)) (-15 -3841 ((-749 (-783)) (-430 |#2|))) (-15 -4217 (|#2| (-940) (-430 |#2|))) (-15 -2841 ((-656 |#2|) (-940) (-430 |#2|)))) (-1070) (-1264 |#1|)) (T -456)) -((-2841 (*1 *2 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-430 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-1070)) (-5 *2 (-656 *6)) (-5 *1 (-456 *5 *6)))) (-4217 (*1 *2 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-430 *2)) (-4 *2 (-1264 *5)) (-5 *1 (-456 *5 *2)) (-4 *5 (-1070)))) (-3841 (*1 *2 *3) (-12 (-5 *3 (-430 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-1070)) (-5 *2 (-749 (-783))) (-5 *1 (-456 *4 *5)))) (-4179 (*1 *2 *2 *3) (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3)))) (-3541 (*1 *2 *2 *3) (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3)))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3)))) (-1834 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-1070)) (-4 *2 (-1264 *4)) (-5 *1 (-456 *4 *2)))) (-3592 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-5 *2 (-112)) (-5 *1 (-456 *4 *3)) (-4 *3 (-1264 *4))))) -(-10 -7 (-15 -3592 ((-112) |#2|)) (-15 -1834 (|#2| (-1288 |#1|))) (-15 -3836 (|#2| |#2|)) (-15 -3541 (|#2| |#2| |#1|)) (-15 -4179 (|#2| |#2| |#1|)) (-15 -3841 ((-749 (-783)) (-430 |#2|))) (-15 -4217 (|#2| (-940) (-430 |#2|))) (-15 -2841 ((-656 |#2|) (-940) (-430 |#2|)))) -((-4031 (((-783)) 59)) (-2744 (((-783)) 29 (|has| |#1| (-416))) (((-783) (-783)) 28 (|has| |#1| (-416)))) (-2363 (((-576) |#1|) 25 (|has| |#1| (-416)))) (-1682 (((-576) |#1|) 27 (|has| |#1| (-416)))) (-1402 (((-783)) 58) (((-783) (-783)) 57)) (-1959 ((|#1| (-783) (-576)) 37)) (-4144 (((-1293)) 61))) -(((-457 |#1|) (-10 -7 (-15 -1959 (|#1| (-783) (-576))) (-15 -1402 ((-783) (-783))) (-15 -1402 ((-783))) (-15 -4031 ((-783))) (-15 -4144 ((-1293))) (IF (|has| |#1| (-416)) (PROGN (-15 -1682 ((-576) |#1|)) (-15 -2363 ((-576) |#1|)) (-15 -2744 ((-783) (-783))) (-15 -2744 ((-783)))) |%noBranch|)) (-1070)) (T -457)) -((-2744 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070)))) (-2744 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070)))) (-2363 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070)))) (-1682 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070)))) (-4144 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-457 *3)) (-4 *3 (-1070)))) (-4031 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1070)))) (-1402 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1070)))) (-1402 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1070)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-576)) (-5 *1 (-457 *2)) (-4 *2 (-1070))))) -(-10 -7 (-15 -1959 (|#1| (-783) (-576))) (-15 -1402 ((-783) (-783))) (-15 -1402 ((-783))) (-15 -4031 ((-783))) (-15 -4144 ((-1293))) (IF (|has| |#1| (-416)) (PROGN (-15 -1682 ((-576) |#1|)) (-15 -2363 ((-576) |#1|)) (-15 -2744 ((-783) (-783))) (-15 -2744 ((-783)))) |%noBranch|)) -((-3069 (((-656 (-576)) (-576)) 76)) (-4249 (((-112) (-171 (-576))) 82)) (-1828 (((-430 (-171 (-576))) (-171 (-576))) 75))) -(((-458) (-10 -7 (-15 -1828 ((-430 (-171 (-576))) (-171 (-576)))) (-15 -3069 ((-656 (-576)) (-576))) (-15 -4249 ((-112) (-171 (-576)))))) (T -458)) -((-4249 (*1 *2 *3) (-12 (-5 *3 (-171 (-576))) (-5 *2 (-112)) (-5 *1 (-458)))) (-3069 (*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-458)) (-5 *3 (-576)))) (-1828 (*1 *2 *3) (-12 (-5 *2 (-430 (-171 (-576)))) (-5 *1 (-458)) (-5 *3 (-171 (-576)))))) -(-10 -7 (-15 -1828 ((-430 (-171 (-576))) (-171 (-576)))) (-15 -3069 ((-656 (-576)) (-576))) (-15 -4249 ((-112) (-171 (-576))))) -((-3379 ((|#4| |#4| (-656 |#4|)) 82)) (-3878 (((-656 |#4|) (-656 |#4|) (-1179) (-1179)) 22) (((-656 |#4|) (-656 |#4|) (-1179)) 21) (((-656 |#4|) (-656 |#4|)) 13))) -(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3379 (|#4| |#4| (-656 |#4|))) (-15 -3878 ((-656 |#4|) (-656 |#4|))) (-15 -3878 ((-656 |#4|) (-656 |#4|) (-1179))) (-15 -3878 ((-656 |#4|) (-656 |#4|) (-1179) (-1179)))) (-317) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -459)) -((-3878 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-459 *4 *5 *6 *7)))) (-3878 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-459 *4 *5 *6 *7)))) (-3878 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-459 *3 *4 *5 *6)))) (-3379 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-459 *4 *5 *6 *2))))) -(-10 -7 (-15 -3379 (|#4| |#4| (-656 |#4|))) (-15 -3878 ((-656 |#4|) (-656 |#4|))) (-15 -3878 ((-656 |#4|) (-656 |#4|) (-1179))) (-15 -3878 ((-656 |#4|) (-656 |#4|) (-1179) (-1179)))) -((-1755 (((-656 (-656 |#4|)) (-656 |#4|) (-112)) 89) (((-656 (-656 |#4|)) (-656 |#4|)) 88) (((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112)) 82) (((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|)) 83)) (-4400 (((-656 (-656 |#4|)) (-656 |#4|) (-112)) 55) (((-656 (-656 |#4|)) (-656 |#4|)) 77))) -(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4400 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -4400 ((-656 (-656 |#4|)) (-656 |#4|) (-112))) (-15 -1755 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|))) (-15 -1755 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112))) (-15 -1755 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -1755 ((-656 (-656 |#4|)) (-656 |#4|) (-112)))) (-13 (-317) (-148)) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -460)) -((-1755 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-1755 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-1755 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-1755 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-4400 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-4400 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) -(-10 -7 (-15 -4400 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -4400 ((-656 (-656 |#4|)) (-656 |#4|) (-112))) (-15 -1755 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|))) (-15 -1755 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112))) (-15 -1755 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -1755 ((-656 (-656 |#4|)) (-656 |#4|) (-112)))) -((-2124 (((-783) |#4|) 12)) (-1762 (((-656 (-2 (|:| |totdeg| (-783)) (|:| -3307 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -3307 |#4|)))) 39)) (-4408 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-1512 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-2980 ((|#4| |#4| (-656 |#4|)) 54)) (-1383 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|)) 96)) (-3010 (((-1293) |#4|) 59)) (-2723 (((-1293) (-656 |#4|)) 69)) (-3558 (((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576)) 66)) (-3726 (((-1293) (-576)) 110)) (-1453 (((-656 |#4|) (-656 |#4|)) 104)) (-3833 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -3307 |#4|)) |#4| (-783)) 31)) (-2617 (((-576) |#4|) 109)) (-2259 ((|#4| |#4|) 37)) (-1752 (((-656 |#4|) (-656 |#4|) (-576) (-576)) 74)) (-4383 (((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576)) 123)) (-2339 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-3376 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-2079 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-2734 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-3095 (((-112) |#2| |#2|) 75)) (-4314 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-1997 (((-112) |#2| |#2| |#2| |#2|) 80)) (-4044 ((|#4| |#4| (-656 |#4|)) 97))) -(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4044 (|#4| |#4| (-656 |#4|))) (-15 -2980 (|#4| |#4| (-656 |#4|))) (-15 -1752 ((-656 |#4|) (-656 |#4|) (-576) (-576))) (-15 -3376 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3095 ((-112) |#2| |#2|)) (-15 -1997 ((-112) |#2| |#2| |#2| |#2|)) (-15 -4314 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2734 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2079 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1383 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|))) (-15 -2259 (|#4| |#4|)) (-15 -1762 ((-656 (-2 (|:| |totdeg| (-783)) (|:| -3307 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -3307 |#4|))))) (-15 -1512 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4408 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1453 ((-656 |#4|) (-656 |#4|))) (-15 -2617 ((-576) |#4|)) (-15 -3010 ((-1293) |#4|)) (-15 -3558 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576))) (-15 -4383 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576))) (-15 -2723 ((-1293) (-656 |#4|))) (-15 -3726 ((-1293) (-576))) (-15 -2339 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3833 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -3307 |#4|)) |#4| (-783))) (-15 -2124 ((-783) |#4|))) (-464) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -461)) -((-2124 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-783)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6)))) (-3833 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-783)) (|:| -3307 *4))) (-5 *5 (-783)) (-4 *4 (-968 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-461 *6 *7 *8 *4)))) (-2339 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-805)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))) (-3726 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1293)) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6)))) (-2723 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1293)) (-5 *1 (-461 *4 *5 *6 *7)))) (-4383 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-805)) (-4 *4 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-861)) (-5 *1 (-461 *5 *6 *7 *4)))) (-3558 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-805)) (-4 *4 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-861)) (-5 *1 (-461 *5 *6 *7 *4)))) (-3010 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1293)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6)))) (-2617 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-576)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6)))) (-1453 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *6)))) (-4408 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-805)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *6)))) (-1512 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-805)) (-4 *2 (-968 *4 *5 *6)) (-5 *1 (-461 *4 *5 *6 *2)) (-4 *4 (-464)) (-4 *6 (-861)))) (-1762 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-656 (-2 (|:| |totdeg| (-783)) (|:| -3307 *3)))) (-5 *4 (-783)) (-4 *3 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-461 *5 *6 *7 *3)))) (-2259 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-968 *3 *4 *5)))) (-1383 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-461 *5 *6 *7 *3)))) (-2079 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-805)) (-4 *6 (-968 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-861)) (-5 *1 (-461 *4 *3 *5 *6)))) (-2734 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-805)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *6)))) (-4314 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-805)) (-4 *3 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *3)))) (-1997 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-968 *4 *3 *5)))) (-3095 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-968 *4 *3 *5)))) (-3376 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-805)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))) (-1752 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-576)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *7)))) (-2980 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *2)))) (-4044 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *2))))) -(-10 -7 (-15 -4044 (|#4| |#4| (-656 |#4|))) (-15 -2980 (|#4| |#4| (-656 |#4|))) (-15 -1752 ((-656 |#4|) (-656 |#4|) (-576) (-576))) (-15 -3376 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3095 ((-112) |#2| |#2|)) (-15 -1997 ((-112) |#2| |#2| |#2| |#2|)) (-15 -4314 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2734 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2079 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1383 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|))) (-15 -2259 (|#4| |#4|)) (-15 -1762 ((-656 (-2 (|:| |totdeg| (-783)) (|:| -3307 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -3307 |#4|))))) (-15 -1512 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4408 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1453 ((-656 |#4|) (-656 |#4|))) (-15 -2617 ((-576) |#4|)) (-15 -3010 ((-1293) |#4|)) (-15 -3558 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576))) (-15 -4383 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576))) (-15 -2723 ((-1293) (-656 |#4|))) (-15 -3726 ((-1293) (-576))) (-15 -2339 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3833 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -3307 |#4|)) |#4| (-783))) (-15 -2124 ((-783) |#4|))) -((-2432 ((|#4| |#4| (-656 |#4|)) 20 (|has| |#1| (-374)))) (-1456 (((-656 |#4|) (-656 |#4|) (-1179) (-1179)) 46) (((-656 |#4|) (-656 |#4|) (-1179)) 45) (((-656 |#4|) (-656 |#4|)) 34))) -(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1456 ((-656 |#4|) (-656 |#4|))) (-15 -1456 ((-656 |#4|) (-656 |#4|) (-1179))) (-15 -1456 ((-656 |#4|) (-656 |#4|) (-1179) (-1179))) (IF (|has| |#1| (-374)) (-15 -2432 (|#4| |#4| (-656 |#4|))) |%noBranch|)) (-464) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -462)) -((-2432 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-374)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-462 *4 *5 *6 *2)))) (-1456 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-462 *4 *5 *6 *7)))) (-1456 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-462 *4 *5 *6 *7)))) (-1456 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-462 *3 *4 *5 *6))))) -(-10 -7 (-15 -1456 ((-656 |#4|) (-656 |#4|))) (-15 -1456 ((-656 |#4|) (-656 |#4|) (-1179))) (-15 -1456 ((-656 |#4|) (-656 |#4|) (-1179) (-1179))) (IF (|has| |#1| (-374)) (-15 -2432 (|#4| |#4| (-656 |#4|))) |%noBranch|)) -((-3458 (($ $ $) 14) (($ (-656 $)) 21)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 46)) (-3498 (($ $ $) NIL) (($ (-656 $)) 22))) -(((-463 |#1|) (-10 -8 (-15 -1531 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|))) (-15 -3458 (|#1| (-656 |#1|))) (-15 -3458 (|#1| |#1| |#1|)) (-15 -3498 (|#1| (-656 |#1|))) (-15 -3498 (|#1| |#1| |#1|))) (-464)) (T -463)) -NIL -(-10 -8 (-15 -1531 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|))) (-15 -3458 (|#1| (-656 |#1|))) (-15 -3458 (|#1| |#1| |#1|)) (-15 -3498 (|#1| (-656 |#1|))) (-15 -3498 (|#1| |#1| |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 47)) (-2757 (($ $) 46)) (-3788 (((-112) $) 44)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-1561 (((-3 $ "failed") $) 37)) (-4193 (((-112) $) 35)) (-3458 (($ $ $) 52) (($ (-656 $)) 51)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-3476 (((-3 $ "failed") $ $) 48)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2672 (((-112) $ $) 45)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3499 (((-112)) 18)) (-3552 (((-112) (-112)) 19)) (-3448 (((-112)) 14)) (-1487 (((-112) (-112)) 15)) (-4382 (((-112)) 16)) (-3439 (((-112) (-112)) 17)) (-3011 (((-940) (-940)) 22) (((-940)) 21)) (-1660 (((-783) (-656 (-2 (|:| -1828 |#1|) (|:| -2683 (-576))))) 52)) (-3127 (((-940) (-940)) 24) (((-940)) 23)) (-2391 (((-2 (|:| -2173 (-576)) (|:| -4213 (-656 |#1|))) |#1|) 94)) (-2725 (((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -4213 (-656 (-2 (|:| |irr| |#1|) (|:| -3012 (-576))))))) 174)) (-2633 (((-2 (|:| |contp| (-576)) (|:| -4213 (-656 (-2 (|:| |irr| |#1|) (|:| -3012 (-576)))))) |#1| (-112)) 207)) (-2652 (((-430 |#1|) |#1| (-783) (-783)) 222) (((-430 |#1|) |#1| (-656 (-783)) (-783)) 219) (((-430 |#1|) |#1| (-656 (-783))) 221) (((-430 |#1|) |#1| (-783)) 220) (((-430 |#1|) |#1|) 218)) (-3493 (((-3 |#1| "failed") (-940) |#1| (-656 (-783)) (-783) (-112)) 224) (((-3 |#1| "failed") (-940) |#1| (-656 (-783)) (-783)) 225) (((-3 |#1| "failed") (-940) |#1| (-656 (-783))) 227) (((-3 |#1| "failed") (-940) |#1| (-783)) 226) (((-3 |#1| "failed") (-940) |#1|) 228)) (-1828 (((-430 |#1|) |#1| (-783) (-783)) 217) (((-430 |#1|) |#1| (-656 (-783)) (-783)) 213) (((-430 |#1|) |#1| (-656 (-783))) 215) (((-430 |#1|) |#1| (-783)) 214) (((-430 |#1|) |#1|) 212)) (-2957 (((-112) |#1|) 44)) (-4243 (((-749 (-783)) (-656 (-2 (|:| -1828 |#1|) (|:| -2683 (-576))))) 99)) (-1710 (((-2 (|:| |contp| (-576)) (|:| -4213 (-656 (-2 (|:| |irr| |#1|) (|:| -3012 (-576)))))) |#1| (-112) (-1123 (-783)) (-783)) 211))) +(((-454 |#1|) (-10 -7 (-15 -2725 ((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -4213 (-656 (-2 (|:| |irr| |#1|) (|:| -3012 (-576)))))))) (-15 -4243 ((-749 (-783)) (-656 (-2 (|:| -1828 |#1|) (|:| -2683 (-576)))))) (-15 -3127 ((-940))) (-15 -3127 ((-940) (-940))) (-15 -3011 ((-940))) (-15 -3011 ((-940) (-940))) (-15 -1660 ((-783) (-656 (-2 (|:| -1828 |#1|) (|:| -2683 (-576)))))) (-15 -2391 ((-2 (|:| -2173 (-576)) (|:| -4213 (-656 |#1|))) |#1|)) (-15 -3499 ((-112))) (-15 -3552 ((-112) (-112))) (-15 -3448 ((-112))) (-15 -1487 ((-112) (-112))) (-15 -2957 ((-112) |#1|)) (-15 -4382 ((-112))) (-15 -3439 ((-112) (-112))) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -1828 ((-430 |#1|) |#1| (-783))) (-15 -1828 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -1828 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -1828 ((-430 |#1|) |#1| (-783) (-783))) (-15 -2652 ((-430 |#1|) |#1|)) (-15 -2652 ((-430 |#1|) |#1| (-783))) (-15 -2652 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -2652 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -2652 ((-430 |#1|) |#1| (-783) (-783))) (-15 -3493 ((-3 |#1| "failed") (-940) |#1|)) (-15 -3493 ((-3 |#1| "failed") (-940) |#1| (-783))) (-15 -3493 ((-3 |#1| "failed") (-940) |#1| (-656 (-783)))) (-15 -3493 ((-3 |#1| "failed") (-940) |#1| (-656 (-783)) (-783))) (-15 -3493 ((-3 |#1| "failed") (-940) |#1| (-656 (-783)) (-783) (-112))) (-15 -2633 ((-2 (|:| |contp| (-576)) (|:| -4213 (-656 (-2 (|:| |irr| |#1|) (|:| -3012 (-576)))))) |#1| (-112))) (-15 -1710 ((-2 (|:| |contp| (-576)) (|:| -4213 (-656 (-2 (|:| |irr| |#1|) (|:| -3012 (-576)))))) |#1| (-112) (-1123 (-783)) (-783)))) (-1264 (-576))) (T -454)) +((-1710 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1123 (-783))) (-5 *6 (-783)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -4213 (-656 (-2 (|:| |irr| *3) (|:| -3012 (-576))))))) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-2633 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -4213 (-656 (-2 (|:| |irr| *3) (|:| -3012 (-576))))))) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3493 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-940)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *6 (-112)) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) (-3493 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-940)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) (-3493 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-940)) (-5 *4 (-656 (-783))) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) (-3493 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-940)) (-5 *4 (-783)) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) (-3493 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-940)) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) (-2652 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-2652 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-2652 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-2652 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-2652 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1828 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1828 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1828 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1828 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1828 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3439 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-4382 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-2957 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1487 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3448 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3552 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3499 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-2391 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2173 (-576)) (|:| -4213 (-656 *3)))) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1660 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -1828 *4) (|:| -2683 (-576))))) (-4 *4 (-1264 (-576))) (-5 *2 (-783)) (-5 *1 (-454 *4)))) (-3011 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3011 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3127 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3127 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-4243 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -1828 *4) (|:| -2683 (-576))))) (-4 *4 (-1264 (-576))) (-5 *2 (-749 (-783))) (-5 *1 (-454 *4)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-576)) (|:| -4213 (-656 (-2 (|:| |irr| *4) (|:| -3012 (-576))))))) (-4 *4 (-1264 (-576))) (-5 *2 (-430 *4)) (-5 *1 (-454 *4))))) +(-10 -7 (-15 -2725 ((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -4213 (-656 (-2 (|:| |irr| |#1|) (|:| -3012 (-576)))))))) (-15 -4243 ((-749 (-783)) (-656 (-2 (|:| -1828 |#1|) (|:| -2683 (-576)))))) (-15 -3127 ((-940))) (-15 -3127 ((-940) (-940))) (-15 -3011 ((-940))) (-15 -3011 ((-940) (-940))) (-15 -1660 ((-783) (-656 (-2 (|:| -1828 |#1|) (|:| -2683 (-576)))))) (-15 -2391 ((-2 (|:| -2173 (-576)) (|:| -4213 (-656 |#1|))) |#1|)) (-15 -3499 ((-112))) (-15 -3552 ((-112) (-112))) (-15 -3448 ((-112))) (-15 -1487 ((-112) (-112))) (-15 -2957 ((-112) |#1|)) (-15 -4382 ((-112))) (-15 -3439 ((-112) (-112))) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -1828 ((-430 |#1|) |#1| (-783))) (-15 -1828 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -1828 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -1828 ((-430 |#1|) |#1| (-783) (-783))) (-15 -2652 ((-430 |#1|) |#1|)) (-15 -2652 ((-430 |#1|) |#1| (-783))) (-15 -2652 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -2652 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -2652 ((-430 |#1|) |#1| (-783) (-783))) (-15 -3493 ((-3 |#1| "failed") (-940) |#1|)) (-15 -3493 ((-3 |#1| "failed") (-940) |#1| (-783))) (-15 -3493 ((-3 |#1| "failed") (-940) |#1| (-656 (-783)))) (-15 -3493 ((-3 |#1| "failed") (-940) |#1| (-656 (-783)) (-783))) (-15 -3493 ((-3 |#1| "failed") (-940) |#1| (-656 (-783)) (-783) (-112))) (-15 -2633 ((-2 (|:| |contp| (-576)) (|:| -4213 (-656 (-2 (|:| |irr| |#1|) (|:| -3012 (-576)))))) |#1| (-112))) (-15 -1710 ((-2 (|:| |contp| (-576)) (|:| -4213 (-656 (-2 (|:| |irr| |#1|) (|:| -3012 (-576)))))) |#1| (-112) (-1123 (-783)) (-783)))) +((-4188 (((-576) |#2|) 52) (((-576) |#2| (-783)) 51)) (-4172 (((-576) |#2|) 64)) (-3619 ((|#3| |#2|) 26)) (-2738 ((|#3| |#2| (-940)) 15)) (-2435 ((|#3| |#2|) 16)) (-1914 ((|#3| |#2|) 9)) (-2327 ((|#3| |#2|) 10)) (-4201 ((|#3| |#2| (-940)) 71) ((|#3| |#2|) 34)) (-4181 (((-576) |#2|) 66))) +(((-455 |#1| |#2| |#3|) (-10 -7 (-15 -4181 ((-576) |#2|)) (-15 -4201 (|#3| |#2|)) (-15 -4201 (|#3| |#2| (-940))) (-15 -4172 ((-576) |#2|)) (-15 -4188 ((-576) |#2| (-783))) (-15 -4188 ((-576) |#2|)) (-15 -2738 (|#3| |#2| (-940))) (-15 -3619 (|#3| |#2|)) (-15 -1914 (|#3| |#2|)) (-15 -2327 (|#3| |#2|)) (-15 -2435 (|#3| |#2|))) (-1070) (-1264 |#1|) (-13 (-416) (-1059 |#1|) (-374) (-1223) (-294))) (T -455)) +((-2435 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) (-2327 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) (-1914 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) (-3619 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) (-2738 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-4 *5 (-1070)) (-4 *2 (-13 (-416) (-1059 *5) (-374) (-1223) (-294))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1264 *5)))) (-4188 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1264 *4)) (-4 *5 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))))) (-4188 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1264 *5)) (-4 *6 (-13 (-416) (-1059 *5) (-374) (-1223) (-294))))) (-4172 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1264 *4)) (-4 *5 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))))) (-4201 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-4 *5 (-1070)) (-4 *2 (-13 (-416) (-1059 *5) (-374) (-1223) (-294))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1264 *5)))) (-4201 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) (-4181 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1264 *4)) (-4 *5 (-13 (-416) (-1059 *4) (-374) (-1223) (-294)))))) +(-10 -7 (-15 -4181 ((-576) |#2|)) (-15 -4201 (|#3| |#2|)) (-15 -4201 (|#3| |#2| (-940))) (-15 -4172 ((-576) |#2|)) (-15 -4188 ((-576) |#2| (-783))) (-15 -4188 ((-576) |#2|)) (-15 -2738 (|#3| |#2| (-940))) (-15 -3619 (|#3| |#2|)) (-15 -1914 (|#3| |#2|)) (-15 -2327 (|#3| |#2|)) (-15 -2435 (|#3| |#2|))) +((-3283 ((|#2| (-1288 |#1|)) 42)) (-4331 ((|#2| |#2| |#1|) 58)) (-4309 ((|#2| |#2| |#1|) 49)) (-3835 ((|#2| |#2|) 44)) (-3555 (((-112) |#2|) 32)) (-3725 (((-656 |#2|) (-940) (-430 |#2|)) 21)) (-3493 ((|#2| (-940) (-430 |#2|)) 25)) (-4243 (((-749 (-783)) (-430 |#2|)) 29))) +(((-456 |#1| |#2|) (-10 -7 (-15 -3555 ((-112) |#2|)) (-15 -3283 (|#2| (-1288 |#1|))) (-15 -3835 (|#2| |#2|)) (-15 -4309 (|#2| |#2| |#1|)) (-15 -4331 (|#2| |#2| |#1|)) (-15 -4243 ((-749 (-783)) (-430 |#2|))) (-15 -3493 (|#2| (-940) (-430 |#2|))) (-15 -3725 ((-656 |#2|) (-940) (-430 |#2|)))) (-1070) (-1264 |#1|)) (T -456)) +((-3725 (*1 *2 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-430 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-1070)) (-5 *2 (-656 *6)) (-5 *1 (-456 *5 *6)))) (-3493 (*1 *2 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-430 *2)) (-4 *2 (-1264 *5)) (-5 *1 (-456 *5 *2)) (-4 *5 (-1070)))) (-4243 (*1 *2 *3) (-12 (-5 *3 (-430 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-1070)) (-5 *2 (-749 (-783))) (-5 *1 (-456 *4 *5)))) (-4331 (*1 *2 *2 *3) (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3)))) (-4309 (*1 *2 *2 *3) (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3)))) (-3835 (*1 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3)))) (-3283 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-1070)) (-4 *2 (-1264 *4)) (-5 *1 (-456 *4 *2)))) (-3555 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-5 *2 (-112)) (-5 *1 (-456 *4 *3)) (-4 *3 (-1264 *4))))) +(-10 -7 (-15 -3555 ((-112) |#2|)) (-15 -3283 (|#2| (-1288 |#1|))) (-15 -3835 (|#2| |#2|)) (-15 -4309 (|#2| |#2| |#1|)) (-15 -4331 (|#2| |#2| |#1|)) (-15 -4243 ((-749 (-783)) (-430 |#2|))) (-15 -3493 (|#2| (-940) (-430 |#2|))) (-15 -3725 ((-656 |#2|) (-940) (-430 |#2|)))) +((-2186 (((-783)) 59)) (-4091 (((-783)) 29 (|has| |#1| (-416))) (((-783) (-783)) 28 (|has| |#1| (-416)))) (-1516 (((-576) |#1|) 25 (|has| |#1| (-416)))) (-2291 (((-576) |#1|) 27 (|has| |#1| (-416)))) (-3015 (((-783)) 58) (((-783) (-783)) 57)) (-3188 ((|#1| (-783) (-576)) 37)) (-2032 (((-1293)) 61))) +(((-457 |#1|) (-10 -7 (-15 -3188 (|#1| (-783) (-576))) (-15 -3015 ((-783) (-783))) (-15 -3015 ((-783))) (-15 -2186 ((-783))) (-15 -2032 ((-1293))) (IF (|has| |#1| (-416)) (PROGN (-15 -2291 ((-576) |#1|)) (-15 -1516 ((-576) |#1|)) (-15 -4091 ((-783) (-783))) (-15 -4091 ((-783)))) |%noBranch|)) (-1070)) (T -457)) +((-4091 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070)))) (-4091 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070)))) (-1516 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070)))) (-2291 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070)))) (-2032 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-457 *3)) (-4 *3 (-1070)))) (-2186 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1070)))) (-3015 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1070)))) (-3015 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1070)))) (-3188 (*1 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-576)) (-5 *1 (-457 *2)) (-4 *2 (-1070))))) +(-10 -7 (-15 -3188 (|#1| (-783) (-576))) (-15 -3015 ((-783) (-783))) (-15 -3015 ((-783))) (-15 -2186 ((-783))) (-15 -2032 ((-1293))) (IF (|has| |#1| (-416)) (PROGN (-15 -2291 ((-576) |#1|)) (-15 -1516 ((-576) |#1|)) (-15 -4091 ((-783) (-783))) (-15 -4091 ((-783)))) |%noBranch|)) +((-1995 (((-656 (-576)) (-576)) 76)) (-3833 (((-112) (-171 (-576))) 82)) (-1828 (((-430 (-171 (-576))) (-171 (-576))) 75))) +(((-458) (-10 -7 (-15 -1828 ((-430 (-171 (-576))) (-171 (-576)))) (-15 -1995 ((-656 (-576)) (-576))) (-15 -3833 ((-112) (-171 (-576)))))) (T -458)) +((-3833 (*1 *2 *3) (-12 (-5 *3 (-171 (-576))) (-5 *2 (-112)) (-5 *1 (-458)))) (-1995 (*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-458)) (-5 *3 (-576)))) (-1828 (*1 *2 *3) (-12 (-5 *2 (-430 (-171 (-576)))) (-5 *1 (-458)) (-5 *3 (-171 (-576)))))) +(-10 -7 (-15 -1828 ((-430 (-171 (-576))) (-171 (-576)))) (-15 -1995 ((-656 (-576)) (-576))) (-15 -3833 ((-112) (-171 (-576))))) +((-2048 ((|#4| |#4| (-656 |#4|)) 82)) (-1435 (((-656 |#4|) (-656 |#4|) (-1179) (-1179)) 22) (((-656 |#4|) (-656 |#4|) (-1179)) 21) (((-656 |#4|) (-656 |#4|)) 13))) +(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2048 (|#4| |#4| (-656 |#4|))) (-15 -1435 ((-656 |#4|) (-656 |#4|))) (-15 -1435 ((-656 |#4|) (-656 |#4|) (-1179))) (-15 -1435 ((-656 |#4|) (-656 |#4|) (-1179) (-1179)))) (-317) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -459)) +((-1435 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-459 *4 *5 *6 *7)))) (-1435 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-459 *4 *5 *6 *7)))) (-1435 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-459 *3 *4 *5 *6)))) (-2048 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-459 *4 *5 *6 *2))))) +(-10 -7 (-15 -2048 (|#4| |#4| (-656 |#4|))) (-15 -1435 ((-656 |#4|) (-656 |#4|))) (-15 -1435 ((-656 |#4|) (-656 |#4|) (-1179))) (-15 -1435 ((-656 |#4|) (-656 |#4|) (-1179) (-1179)))) +((-1806 (((-656 (-656 |#4|)) (-656 |#4|) (-112)) 89) (((-656 (-656 |#4|)) (-656 |#4|)) 88) (((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112)) 82) (((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|)) 83)) (-1548 (((-656 (-656 |#4|)) (-656 |#4|) (-112)) 55) (((-656 (-656 |#4|)) (-656 |#4|)) 77))) +(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1548 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -1548 ((-656 (-656 |#4|)) (-656 |#4|) (-112))) (-15 -1806 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|))) (-15 -1806 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112))) (-15 -1806 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -1806 ((-656 (-656 |#4|)) (-656 |#4|) (-112)))) (-13 (-317) (-148)) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -460)) +((-1806 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-1806 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-1806 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-1806 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-1548 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-1548 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) +(-10 -7 (-15 -1548 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -1548 ((-656 (-656 |#4|)) (-656 |#4|) (-112))) (-15 -1806 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|))) (-15 -1806 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112))) (-15 -1806 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -1806 ((-656 (-656 |#4|)) (-656 |#4|) (-112)))) +((-4161 (((-783) |#4|) 12)) (-1872 (((-656 (-2 (|:| |totdeg| (-783)) (|:| -3896 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -3896 |#4|)))) 39)) (-1630 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-4363 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-3692 ((|#4| |#4| (-656 |#4|)) 54)) (-2752 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|)) 96)) (-2669 (((-1293) |#4|) 59)) (-1910 (((-1293) (-656 |#4|)) 69)) (-1338 (((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576)) 66)) (-2346 (((-1293) (-576)) 110)) (-2410 (((-656 |#4|) (-656 |#4|)) 104)) (-4176 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -3896 |#4|)) |#4| (-783)) 31)) (-2202 (((-576) |#4|) 109)) (-2950 ((|#4| |#4|) 37)) (-1774 (((-656 |#4|) (-656 |#4|) (-576) (-576)) 74)) (-2580 (((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576)) 123)) (-2507 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-2019 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-1790 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-2005 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-2265 (((-112) |#2| |#2|) 75)) (-3204 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-2266 (((-112) |#2| |#2| |#2| |#2|) 80)) (-2284 ((|#4| |#4| (-656 |#4|)) 97))) +(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2284 (|#4| |#4| (-656 |#4|))) (-15 -3692 (|#4| |#4| (-656 |#4|))) (-15 -1774 ((-656 |#4|) (-656 |#4|) (-576) (-576))) (-15 -2019 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2265 ((-112) |#2| |#2|)) (-15 -2266 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3204 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2005 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1790 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2752 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|))) (-15 -2950 (|#4| |#4|)) (-15 -1872 ((-656 (-2 (|:| |totdeg| (-783)) (|:| -3896 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -3896 |#4|))))) (-15 -4363 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1630 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2410 ((-656 |#4|) (-656 |#4|))) (-15 -2202 ((-576) |#4|)) (-15 -2669 ((-1293) |#4|)) (-15 -1338 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576))) (-15 -2580 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576))) (-15 -1910 ((-1293) (-656 |#4|))) (-15 -2346 ((-1293) (-576))) (-15 -2507 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4176 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -3896 |#4|)) |#4| (-783))) (-15 -4161 ((-783) |#4|))) (-464) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -461)) +((-4161 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-783)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6)))) (-4176 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-783)) (|:| -3896 *4))) (-5 *5 (-783)) (-4 *4 (-968 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-461 *6 *7 *8 *4)))) (-2507 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-805)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))) (-2346 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1293)) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6)))) (-1910 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1293)) (-5 *1 (-461 *4 *5 *6 *7)))) (-2580 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-805)) (-4 *4 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-861)) (-5 *1 (-461 *5 *6 *7 *4)))) (-1338 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-805)) (-4 *4 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-861)) (-5 *1 (-461 *5 *6 *7 *4)))) (-2669 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1293)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6)))) (-2202 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-576)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6)))) (-2410 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *6)))) (-1630 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-805)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *6)))) (-4363 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-805)) (-4 *2 (-968 *4 *5 *6)) (-5 *1 (-461 *4 *5 *6 *2)) (-4 *4 (-464)) (-4 *6 (-861)))) (-1872 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-656 (-2 (|:| |totdeg| (-783)) (|:| -3896 *3)))) (-5 *4 (-783)) (-4 *3 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-461 *5 *6 *7 *3)))) (-2950 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-968 *3 *4 *5)))) (-2752 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-461 *5 *6 *7 *3)))) (-1790 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-805)) (-4 *6 (-968 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-861)) (-5 *1 (-461 *4 *3 *5 *6)))) (-2005 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-805)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *6)))) (-3204 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-805)) (-4 *3 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *3)))) (-2266 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-968 *4 *3 *5)))) (-2265 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-968 *4 *3 *5)))) (-2019 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-805)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))) (-1774 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-576)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *7)))) (-3692 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *2)))) (-2284 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *2))))) +(-10 -7 (-15 -2284 (|#4| |#4| (-656 |#4|))) (-15 -3692 (|#4| |#4| (-656 |#4|))) (-15 -1774 ((-656 |#4|) (-656 |#4|) (-576) (-576))) (-15 -2019 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2265 ((-112) |#2| |#2|)) (-15 -2266 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3204 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2005 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1790 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2752 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|))) (-15 -2950 (|#4| |#4|)) (-15 -1872 ((-656 (-2 (|:| |totdeg| (-783)) (|:| -3896 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -3896 |#4|))))) (-15 -4363 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1630 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2410 ((-656 |#4|) (-656 |#4|))) (-15 -2202 ((-576) |#4|)) (-15 -2669 ((-1293) |#4|)) (-15 -1338 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576))) (-15 -2580 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576))) (-15 -1910 ((-1293) (-656 |#4|))) (-15 -2346 ((-1293) (-576))) (-15 -2507 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4176 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -3896 |#4|)) |#4| (-783))) (-15 -4161 ((-783) |#4|))) +((-4137 ((|#4| |#4| (-656 |#4|)) 20 (|has| |#1| (-374)))) (-2445 (((-656 |#4|) (-656 |#4|) (-1179) (-1179)) 46) (((-656 |#4|) (-656 |#4|) (-1179)) 45) (((-656 |#4|) (-656 |#4|)) 34))) +(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2445 ((-656 |#4|) (-656 |#4|))) (-15 -2445 ((-656 |#4|) (-656 |#4|) (-1179))) (-15 -2445 ((-656 |#4|) (-656 |#4|) (-1179) (-1179))) (IF (|has| |#1| (-374)) (-15 -4137 (|#4| |#4| (-656 |#4|))) |%noBranch|)) (-464) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -462)) +((-4137 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-374)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-462 *4 *5 *6 *2)))) (-2445 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2445 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2445 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-462 *3 *4 *5 *6))))) +(-10 -7 (-15 -2445 ((-656 |#4|) (-656 |#4|))) (-15 -2445 ((-656 |#4|) (-656 |#4|) (-1179))) (-15 -2445 ((-656 |#4|) (-656 |#4|) (-1179) (-1179))) (IF (|has| |#1| (-374)) (-15 -4137 (|#4| |#4| (-656 |#4|))) |%noBranch|)) +((-3457 (($ $ $) 14) (($ (-656 $)) 21)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 46)) (-3497 (($ $ $) NIL) (($ (-656 $)) 22))) +(((-463 |#1|) (-10 -8 (-15 -3327 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|))) (-15 -3457 (|#1| (-656 |#1|))) (-15 -3457 (|#1| |#1| |#1|)) (-15 -3497 (|#1| (-656 |#1|))) (-15 -3497 (|#1| |#1| |#1|))) (-464)) (T -463)) +NIL +(-10 -8 (-15 -3327 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|))) (-15 -3457 (|#1| (-656 |#1|))) (-15 -3457 (|#1| |#1| |#1|)) (-15 -3497 (|#1| (-656 |#1|))) (-15 -3497 (|#1| |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-4195 (($ $) 46)) (-1760 (((-112) $) 44)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-3673 (((-3 $ "failed") $) 37)) (-1351 (((-112) $) 35)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3497 (($ $ $) 54) (($ (-656 $)) 53)) (-3475 (((-3 $ "failed") $ $) 48)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-1505 (((-112) $ $) 45)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-464) (-141)) (T -464)) -((-3498 (*1 *1 *1 *1) (-4 *1 (-464))) (-3498 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) (-3458 (*1 *1 *1 *1) (-4 *1 (-464))) (-3458 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) (-1531 (*1 *2 *2 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-464))))) -(-13 (-568) (-10 -8 (-15 -3498 ($ $ $)) (-15 -3498 ($ (-656 $))) (-15 -3458 ($ $ $)) (-15 -3458 ($ (-656 $))) (-15 -1531 ((-1193 $) (-1193 $) (-1193 $))))) +((-3497 (*1 *1 *1 *1) (-4 *1 (-464))) (-3497 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) (-3457 (*1 *1 *1 *1) (-4 *1 (-464))) (-3457 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) (-3327 (*1 *2 *2 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-464))))) +(-13 (-568) (-10 -8 (-15 -3497 ($ $ $)) (-15 -3497 ($ (-656 $))) (-15 -3457 ($ $ $)) (-15 -3457 ($ (-656 $))) (-15 -3327 ((-1193 $) (-1193 $) (-1193 $))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2778 (((-3 $ "failed")) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-4367 (((-3 $ "failed") $ $) NIL)) (-3210 (((-1288 (-701 (-419 (-971 |#1|)))) (-1288 $)) NIL) (((-1288 (-701 (-419 (-971 |#1|))))) NIL)) (-2385 (((-1288 $)) NIL)) (-3886 (($) NIL T CONST)) (-3251 (((-3 (-2 (|:| |particular| $) (|:| -1593 (-656 $))) "failed")) NIL)) (-3260 (((-3 $ "failed")) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-2191 (((-701 (-419 (-971 |#1|))) (-1288 $)) NIL) (((-701 (-419 (-971 |#1|)))) NIL)) (-3331 (((-419 (-971 |#1|)) $) NIL)) (-3352 (((-701 (-419 (-971 |#1|))) $ (-1288 $)) NIL) (((-701 (-419 (-971 |#1|))) $) NIL)) (-2454 (((-3 $ "failed") $) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-1979 (((-1193 (-971 (-419 (-971 |#1|))))) NIL (|has| (-419 (-971 |#1|)) (-374))) (((-1193 (-419 (-971 |#1|)))) 90 (|has| |#1| (-568)))) (-3377 (($ $ (-940)) NIL)) (-1738 (((-419 (-971 |#1|)) $) NIL)) (-3471 (((-1193 (-419 (-971 |#1|))) $) 88 (|has| (-419 (-971 |#1|)) (-568)))) (-2267 (((-419 (-971 |#1|)) (-1288 $)) NIL) (((-419 (-971 |#1|))) NIL)) (-2654 (((-1193 (-419 (-971 |#1|))) $) NIL)) (-2002 (((-112)) NIL)) (-4119 (($ (-1288 (-419 (-971 |#1|))) (-1288 $)) 114) (($ (-1288 (-419 (-971 |#1|)))) NIL)) (-1561 (((-3 $ "failed") $) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-3734 (((-940)) NIL)) (-1576 (((-112)) NIL)) (-4017 (($ $ (-940)) NIL)) (-2035 (((-112)) NIL)) (-1706 (((-112)) NIL)) (-1758 (((-112)) NIL)) (-3590 (((-3 (-2 (|:| |particular| $) (|:| -1593 (-656 $))) "failed")) NIL)) (-1778 (((-3 $ "failed")) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-1670 (((-701 (-419 (-971 |#1|))) (-1288 $)) NIL) (((-701 (-419 (-971 |#1|)))) NIL)) (-2756 (((-419 (-971 |#1|)) $) NIL)) (-2903 (((-701 (-419 (-971 |#1|))) $ (-1288 $)) NIL) (((-701 (-419 (-971 |#1|))) $) NIL)) (-2941 (((-3 $ "failed") $) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-3548 (((-1193 (-971 (-419 (-971 |#1|))))) NIL (|has| (-419 (-971 |#1|)) (-374))) (((-1193 (-419 (-971 |#1|)))) 89 (|has| |#1| (-568)))) (-1783 (($ $ (-940)) NIL)) (-3394 (((-419 (-971 |#1|)) $) NIL)) (-4164 (((-1193 (-419 (-971 |#1|))) $) 85 (|has| (-419 (-971 |#1|)) (-568)))) (-3814 (((-419 (-971 |#1|)) (-1288 $)) NIL) (((-419 (-971 |#1|))) NIL)) (-3145 (((-1193 (-419 (-971 |#1|))) $) NIL)) (-1707 (((-112)) NIL)) (-3699 (((-1179) $) NIL)) (-2083 (((-112)) NIL)) (-3897 (((-112)) NIL)) (-3998 (((-112)) NIL)) (-1450 (((-1141) $) NIL)) (-1779 (((-419 (-971 |#1|)) $ $) 76 (|has| |#1| (-568)))) (-1915 (((-419 (-971 |#1|)) $) 100 (|has| |#1| (-568)))) (-1387 (((-419 (-971 |#1|)) $) 104 (|has| |#1| (-568)))) (-4337 (((-1193 (-419 (-971 |#1|))) $) 94 (|has| |#1| (-568)))) (-3460 (((-419 (-971 |#1|))) 77 (|has| |#1| (-568)))) (-2995 (((-419 (-971 |#1|)) $ $) 69 (|has| |#1| (-568)))) (-3487 (((-419 (-971 |#1|)) $) 99 (|has| |#1| (-568)))) (-2600 (((-419 (-971 |#1|)) $) 103 (|has| |#1| (-568)))) (-3520 (((-1193 (-419 (-971 |#1|))) $) 93 (|has| |#1| (-568)))) (-2378 (((-419 (-971 |#1|))) 73 (|has| |#1| (-568)))) (-2633 (($) 110) (($ (-1197)) 118) (($ (-1288 (-1197))) 117) (($ (-1288 $)) 105) (($ (-1197) (-1288 $)) 116) (($ (-1288 (-1197)) (-1288 $)) 115)) (-2522 (((-112)) NIL)) (-2797 (((-419 (-971 |#1|)) $ (-576)) NIL)) (-4152 (((-1288 (-419 (-971 |#1|))) $ (-1288 $)) 107) (((-701 (-419 (-971 |#1|))) (-1288 $) (-1288 $)) NIL) (((-1288 (-419 (-971 |#1|))) $) 43) (((-701 (-419 (-971 |#1|))) (-1288 $)) NIL)) (-4172 (((-1288 (-419 (-971 |#1|))) $) NIL) (($ (-1288 (-419 (-971 |#1|)))) 40)) (-4034 (((-656 (-971 (-419 (-971 |#1|)))) (-1288 $)) NIL) (((-656 (-971 (-419 (-971 |#1|))))) NIL) (((-656 (-971 |#1|)) (-1288 $)) 108 (|has| |#1| (-568))) (((-656 (-971 |#1|))) 109 (|has| |#1| (-568)))) (-2076 (($ $ $) NIL)) (-2195 (((-112)) NIL)) (-3570 (((-876) $) NIL) (($ (-1288 (-419 (-971 |#1|)))) NIL)) (-4055 (((-112) $ $) NIL)) (-1593 (((-1288 $)) 65)) (-4208 (((-656 (-1288 (-419 (-971 |#1|))))) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-3790 (($ $ $ $) NIL)) (-1511 (((-112)) NIL)) (-3569 (($ (-701 (-419 (-971 |#1|))) $) NIL)) (-4064 (($ $ $) NIL)) (-3689 (((-112)) NIL)) (-3818 (((-112)) NIL)) (-4395 (((-112)) NIL)) (-2721 (($) NIL T CONST)) (-2925 (((-112) $ $) NIL)) (-3044 (($ $) NIL) (($ $ $) 106)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 61) (($ $ (-419 (-971 |#1|))) NIL) (($ (-419 (-971 |#1|)) $) NIL) (($ (-1163 |#2| (-419 (-971 |#1|))) $) NIL))) -(((-465 |#1| |#2| |#3| |#4|) (-13 (-429 (-419 (-971 |#1|))) (-660 (-1163 |#2| (-419 (-971 |#1|)))) (-10 -8 (-15 -3570 ($ (-1288 (-419 (-971 |#1|))))) (-15 -3590 ((-3 (-2 (|:| |particular| $) (|:| -1593 (-656 $))) "failed"))) (-15 -3251 ((-3 (-2 (|:| |particular| $) (|:| -1593 (-656 $))) "failed"))) (-15 -2633 ($)) (-15 -2633 ($ (-1197))) (-15 -2633 ($ (-1288 (-1197)))) (-15 -2633 ($ (-1288 $))) (-15 -2633 ($ (-1197) (-1288 $))) (-15 -2633 ($ (-1288 (-1197)) (-1288 $))) (IF (|has| |#1| (-568)) (PROGN (-15 -3548 ((-1193 (-419 (-971 |#1|))))) (-15 -3520 ((-1193 (-419 (-971 |#1|))) $)) (-15 -3487 ((-419 (-971 |#1|)) $)) (-15 -2600 ((-419 (-971 |#1|)) $)) (-15 -1979 ((-1193 (-419 (-971 |#1|))))) (-15 -4337 ((-1193 (-419 (-971 |#1|))) $)) (-15 -1915 ((-419 (-971 |#1|)) $)) (-15 -1387 ((-419 (-971 |#1|)) $)) (-15 -2995 ((-419 (-971 |#1|)) $ $)) (-15 -2378 ((-419 (-971 |#1|)))) (-15 -1779 ((-419 (-971 |#1|)) $ $)) (-15 -3460 ((-419 (-971 |#1|)))) (-15 -4034 ((-656 (-971 |#1|)) (-1288 $))) (-15 -4034 ((-656 (-971 |#1|))))) |%noBranch|))) (-174) (-940) (-656 (-1197)) (-1288 (-701 |#1|))) (T -465)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-1288 (-419 (-971 *3)))) (-4 *3 (-174)) (-14 *6 (-1288 (-701 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))))) (-3590 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -1593 (-656 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-3251 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -1593 (-656 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-2633 (*1 *1) (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-940)) (-14 *4 (-656 (-1197))) (-14 *5 (-1288 (-701 *2))))) (-2633 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 *2)) (-14 *6 (-1288 (-701 *3))))) (-2633 (*1 *1 *2) (-12 (-5 *2 (-1288 (-1197))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-2633 (*1 *1 *2) (-12 (-5 *2 (-1288 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-2633 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-940)) (-14 *6 (-656 *2)) (-14 *7 (-1288 (-701 *4))))) (-2633 (*1 *1 *2 *3) (-12 (-5 *2 (-1288 (-1197))) (-5 *3 (-1288 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-940)) (-14 *6 (-656 (-1197))) (-14 *7 (-1288 (-701 *4))))) (-3548 (*1 *2) (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-3520 (*1 *2 *1) (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-3487 (*1 *2 *1) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-2600 (*1 *2 *1) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-1979 (*1 *2) (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-4337 (*1 *2 *1) (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-1915 (*1 *2 *1) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-2995 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-2378 (*1 *2) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-1779 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-3460 (*1 *2) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-4034 (*1 *2 *3) (-12 (-5 *3 (-1288 (-465 *4 *5 *6 *7))) (-5 *2 (-656 (-971 *4))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *4 (-174)) (-14 *5 (-940)) (-14 *6 (-656 (-1197))) (-14 *7 (-1288 (-701 *4))))) (-4034 (*1 *2) (-12 (-5 *2 (-656 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) -(-13 (-429 (-419 (-971 |#1|))) (-660 (-1163 |#2| (-419 (-971 |#1|)))) (-10 -8 (-15 -3570 ($ (-1288 (-419 (-971 |#1|))))) (-15 -3590 ((-3 (-2 (|:| |particular| $) (|:| -1593 (-656 $))) "failed"))) (-15 -3251 ((-3 (-2 (|:| |particular| $) (|:| -1593 (-656 $))) "failed"))) (-15 -2633 ($)) (-15 -2633 ($ (-1197))) (-15 -2633 ($ (-1288 (-1197)))) (-15 -2633 ($ (-1288 $))) (-15 -2633 ($ (-1197) (-1288 $))) (-15 -2633 ($ (-1288 (-1197)) (-1288 $))) (IF (|has| |#1| (-568)) (PROGN (-15 -3548 ((-1193 (-419 (-971 |#1|))))) (-15 -3520 ((-1193 (-419 (-971 |#1|))) $)) (-15 -3487 ((-419 (-971 |#1|)) $)) (-15 -2600 ((-419 (-971 |#1|)) $)) (-15 -1979 ((-1193 (-419 (-971 |#1|))))) (-15 -4337 ((-1193 (-419 (-971 |#1|))) $)) (-15 -1915 ((-419 (-971 |#1|)) $)) (-15 -1387 ((-419 (-971 |#1|)) $)) (-15 -2995 ((-419 (-971 |#1|)) $ $)) (-15 -2378 ((-419 (-971 |#1|)))) (-15 -1779 ((-419 (-971 |#1|)) $ $)) (-15 -3460 ((-419 (-971 |#1|)))) (-15 -4034 ((-656 (-971 |#1|)) (-1288 $))) (-15 -4034 ((-656 (-971 |#1|))))) |%noBranch|))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 18)) (-1969 (((-656 (-878 |#1|)) $) 87)) (-1798 (((-1193 $) $ (-878 |#1|)) 52) (((-1193 |#2|) $) 138)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2757 (($ $) NIL (|has| |#2| (-568)))) (-3788 (((-112) $) NIL (|has| |#2| (-568)))) (-3543 (((-783) $) 27) (((-783) $ (-656 (-878 |#1|))) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3601 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-2487 (($ $) NIL (|has| |#2| (-464)))) (-3921 (((-430 $) $) NIL (|has| |#2| (-464)))) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) 50) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-878 |#1|) "failed") $) NIL)) (-2860 ((|#2| $) 48) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-878 |#1|) $) NIL)) (-3230 (($ $ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-4319 (($ $ (-656 (-576))) 93)) (-2114 (($ $) 80)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-3767 (($ $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-2103 (((-656 $) $) NIL)) (-4249 (((-112) $) NIL (|has| |#2| (-928)))) (-2431 (($ $ |#2| |#3| $) NIL)) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-4193 (((-112) $) NIL)) (-2217 (((-783) $) 65)) (-1955 (($ (-1193 |#2|) (-878 |#1|)) 143) (($ (-1193 $) (-878 |#1|)) 58)) (-1608 (((-656 $) $) NIL)) (-2823 (((-112) $) 68)) (-1945 (($ |#2| |#3|) 35) (($ $ (-878 |#1|) (-783)) 37) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-4130 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $ (-878 |#1|)) NIL)) (-3751 ((|#3| $) NIL) (((-783) $ (-878 |#1|)) 56) (((-656 (-783)) $ (-656 (-878 |#1|))) 63)) (-2999 (($ (-1 |#3| |#3|) $) NIL)) (-4117 (($ (-1 |#2| |#2|) $) NIL)) (-3721 (((-3 (-878 |#1|) "failed") $) 45)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-2081 (($ $) NIL)) (-2091 ((|#2| $) 47)) (-3458 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-3699 (((-1179) $) NIL)) (-1385 (((-3 (-656 $) "failed") $) NIL)) (-1690 (((-3 (-656 $) "failed") $) NIL)) (-2040 (((-3 (-2 (|:| |var| (-878 |#1|)) (|:| -3422 (-783))) "failed") $) NIL)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) 46)) (-2070 ((|#2| $) 136)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#2| (-464)))) (-3498 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) 149 (|has| |#2| (-464)))) (-4100 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#2| (-928)))) (-3476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3284 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-878 |#1|) |#2|) 100) (($ $ (-656 (-878 |#1|)) (-656 |#2|)) 106) (($ $ (-878 |#1|) $) 98) (($ $ (-656 (-878 |#1|)) (-656 $)) 124)) (-4352 (($ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-2775 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) 59)) (-3634 ((|#3| $) 79) (((-783) $ (-878 |#1|)) 42) (((-656 (-783)) $ (-656 (-878 |#1|))) 62)) (-4172 (((-907 (-390)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-878 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-2457 ((|#2| $) 145 (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928))))) (-3570 (((-876) $) 173) (($ (-576)) NIL) (($ |#2|) 99) (($ (-878 |#1|)) 39) (($ (-419 (-576))) NIL (-2760 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-1618 (((-656 |#2|) $) NIL)) (-3177 ((|#2| $ |#3|) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-4336 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#2| (-146))))) (-3996 (((-783)) NIL T CONST)) (-2541 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2721 (($) 22 T CONST)) (-2732 (($) 31 T CONST)) (-2020 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ |#2|) 76 (|has| |#2| (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) 131)) (** (($ $ (-940)) NIL) (($ $ (-783)) 129)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 36) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) 75) (($ $ |#2|) NIL))) -(((-466 |#1| |#2| |#3|) (-13 (-968 |#2| |#3| (-878 |#1|)) (-10 -8 (-15 -4319 ($ $ (-656 (-576)))))) (-656 (-1197)) (-1070) (-243 (-3503 |#1|) (-783))) (T -466)) -((-4319 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-14 *3 (-656 (-1197))) (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-243 (-3503 *3) (-783)))))) -(-13 (-968 |#2| |#3| (-878 |#1|)) (-10 -8 (-15 -4319 ($ $ (-656 (-576)))))) -((-3169 (((-112) |#1| (-656 |#2|)) 91)) (-1773 (((-3 (-1288 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|)) 100)) (-2068 (((-3 (-656 |#2|) "failed") |#2| |#1| (-1288 (-656 |#2|))) 102)) (-1765 ((|#2| |#2| |#1|) 35)) (-2726 (((-783) |#2| (-656 |#2|)) 26))) -(((-467 |#1| |#2|) (-10 -7 (-15 -1765 (|#2| |#2| |#1|)) (-15 -2726 ((-783) |#2| (-656 |#2|))) (-15 -1773 ((-3 (-1288 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|))) (-15 -2068 ((-3 (-656 |#2|) "failed") |#2| |#1| (-1288 (-656 |#2|)))) (-15 -3169 ((-112) |#1| (-656 |#2|)))) (-317) (-1264 |#1|)) (T -467)) -((-3169 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *5)) (-4 *5 (-1264 *3)) (-4 *3 (-317)) (-5 *2 (-112)) (-5 *1 (-467 *3 *5)))) (-2068 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1288 (-656 *3))) (-4 *4 (-317)) (-5 *2 (-656 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1264 *4)))) (-1773 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-317)) (-4 *6 (-1264 *4)) (-5 *2 (-1288 (-656 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-656 *6)))) (-2726 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-317)) (-5 *2 (-783)) (-5 *1 (-467 *5 *3)))) (-1765 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1264 *3))))) -(-10 -7 (-15 -1765 (|#2| |#2| |#1|)) (-15 -2726 ((-783) |#2| (-656 |#2|))) (-15 -1773 ((-3 (-1288 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|))) (-15 -2068 ((-3 (-656 |#2|) "failed") |#2| |#1| (-1288 (-656 |#2|)))) (-15 -3169 ((-112) |#1| (-656 |#2|)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-4346 (((-3 $ "failed")) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-2428 (((-3 $ "failed") $ $) NIL)) (-4142 (((-1288 (-701 (-419 (-971 |#1|)))) (-1288 $)) NIL) (((-1288 (-701 (-419 (-971 |#1|))))) NIL)) (-1717 (((-1288 $)) NIL)) (-3404 (($) NIL T CONST)) (-3320 (((-3 (-2 (|:| |particular| $) (|:| -2675 (-656 $))) "failed")) NIL)) (-3382 (((-3 $ "failed")) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-3535 (((-701 (-419 (-971 |#1|))) (-1288 $)) NIL) (((-701 (-419 (-971 |#1|)))) NIL)) (-2834 (((-419 (-971 |#1|)) $) NIL)) (-3068 (((-701 (-419 (-971 |#1|))) $ (-1288 $)) NIL) (((-701 (-419 (-971 |#1|))) $) NIL)) (-4339 (((-3 $ "failed") $) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-2064 (((-1193 (-971 (-419 (-971 |#1|))))) NIL (|has| (-419 (-971 |#1|)) (-374))) (((-1193 (-419 (-971 |#1|)))) 90 (|has| |#1| (-568)))) (-2029 (($ $ (-940)) NIL)) (-1641 (((-419 (-971 |#1|)) $) NIL)) (-1735 (((-1193 (-419 (-971 |#1|))) $) 88 (|has| (-419 (-971 |#1|)) (-568)))) (-3057 (((-419 (-971 |#1|)) (-1288 $)) NIL) (((-419 (-971 |#1|))) NIL)) (-2531 (((-1193 (-419 (-971 |#1|))) $) NIL)) (-2306 (((-112)) NIL)) (-1819 (($ (-1288 (-419 (-971 |#1|))) (-1288 $)) 114) (($ (-1288 (-419 (-971 |#1|)))) NIL)) (-3673 (((-3 $ "failed") $) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-3733 (((-940)) NIL)) (-3810 (((-112)) NIL)) (-3343 (($ $ (-940)) NIL)) (-1413 (((-112)) NIL)) (-2515 (((-112)) NIL)) (-1826 (((-112)) NIL)) (-3530 (((-3 (-2 (|:| |particular| $) (|:| -2675 (-656 $))) "failed")) NIL)) (-3995 (((-3 $ "failed")) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-2160 (((-701 (-419 (-971 |#1|))) (-1288 $)) NIL) (((-701 (-419 (-971 |#1|)))) NIL)) (-4185 (((-419 (-971 |#1|)) $) NIL)) (-3070 (((-701 (-419 (-971 |#1|))) $ (-1288 $)) NIL) (((-701 (-419 (-971 |#1|))) $) NIL)) (-3334 (((-3 $ "failed") $) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-4369 (((-1193 (-971 (-419 (-971 |#1|))))) NIL (|has| (-419 (-971 |#1|)) (-374))) (((-1193 (-419 (-971 |#1|)))) 89 (|has| |#1| (-568)))) (-4050 (($ $ (-940)) NIL)) (-2218 (((-419 (-971 |#1|)) $) NIL)) (-4218 (((-1193 (-419 (-971 |#1|))) $) 85 (|has| (-419 (-971 |#1|)) (-568)))) (-2004 (((-419 (-971 |#1|)) (-1288 $)) NIL) (((-419 (-971 |#1|))) NIL)) (-1528 (((-1193 (-419 (-971 |#1|))) $) NIL)) (-2524 (((-112)) NIL)) (-2046 (((-1179) $) NIL)) (-1821 (((-112)) NIL)) (-3514 (((-112)) NIL)) (-3175 (((-112)) NIL)) (-1450 (((-1141) $) NIL)) (-4006 (((-419 (-971 |#1|)) $ $) 76 (|has| |#1| (-568)))) (-2737 (((-419 (-971 |#1|)) $) 100 (|has| |#1| (-568)))) (-2332 (((-419 (-971 |#1|)) $) 104 (|has| |#1| (-568)))) (-2121 (((-1193 (-419 (-971 |#1|))) $) 94 (|has| |#1| (-568)))) (-1642 (((-419 (-971 |#1|))) 77 (|has| |#1| (-568)))) (-3828 (((-419 (-971 |#1|)) $ $) 69 (|has| |#1| (-568)))) (-1873 (((-419 (-971 |#1|)) $) 99 (|has| |#1| (-568)))) (-2055 (((-419 (-971 |#1|)) $) 103 (|has| |#1| (-568)))) (-4125 (((-1193 (-419 (-971 |#1|))) $) 93 (|has| |#1| (-568)))) (-1654 (((-419 (-971 |#1|))) 73 (|has| |#1| (-568)))) (-2347 (($) 110) (($ (-1197)) 118) (($ (-1288 (-1197))) 117) (($ (-1288 $)) 105) (($ (-1197) (-1288 $)) 116) (($ (-1288 (-1197)) (-1288 $)) 115)) (-3827 (((-112)) NIL)) (-2796 (((-419 (-971 |#1|)) $ (-576)) NIL)) (-4096 (((-1288 (-419 (-971 |#1|))) $ (-1288 $)) 107) (((-701 (-419 (-971 |#1|))) (-1288 $) (-1288 $)) NIL) (((-1288 (-419 (-971 |#1|))) $) 43) (((-701 (-419 (-971 |#1|))) (-1288 $)) NIL)) (-4171 (((-1288 (-419 (-971 |#1|))) $) NIL) (($ (-1288 (-419 (-971 |#1|)))) 40)) (-2220 (((-656 (-971 (-419 (-971 |#1|)))) (-1288 $)) NIL) (((-656 (-971 (-419 (-971 |#1|))))) NIL) (((-656 (-971 |#1|)) (-1288 $)) 108 (|has| |#1| (-568))) (((-656 (-971 |#1|))) 109 (|has| |#1| (-568)))) (-1758 (($ $ $) NIL)) (-3583 (((-112)) NIL)) (-3569 (((-876) $) NIL) (($ (-1288 (-419 (-971 |#1|)))) NIL)) (-2399 (((-112) $ $) NIL)) (-2675 (((-1288 $)) 65)) (-1484 (((-656 (-1288 (-419 (-971 |#1|))))) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-1783 (($ $ $ $) NIL)) (-4354 (((-112)) NIL)) (-3568 (($ (-701 (-419 (-971 |#1|))) $) NIL)) (-2487 (($ $ $) NIL)) (-3233 (((-112)) NIL)) (-4033 (((-112)) NIL)) (-2693 (((-112)) NIL)) (-2721 (($) NIL T CONST)) (-2924 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) 106)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 61) (($ $ (-419 (-971 |#1|))) NIL) (($ (-419 (-971 |#1|)) $) NIL) (($ (-1163 |#2| (-419 (-971 |#1|))) $) NIL))) +(((-465 |#1| |#2| |#3| |#4|) (-13 (-429 (-419 (-971 |#1|))) (-660 (-1163 |#2| (-419 (-971 |#1|)))) (-10 -8 (-15 -3569 ($ (-1288 (-419 (-971 |#1|))))) (-15 -3530 ((-3 (-2 (|:| |particular| $) (|:| -2675 (-656 $))) "failed"))) (-15 -3320 ((-3 (-2 (|:| |particular| $) (|:| -2675 (-656 $))) "failed"))) (-15 -2347 ($)) (-15 -2347 ($ (-1197))) (-15 -2347 ($ (-1288 (-1197)))) (-15 -2347 ($ (-1288 $))) (-15 -2347 ($ (-1197) (-1288 $))) (-15 -2347 ($ (-1288 (-1197)) (-1288 $))) (IF (|has| |#1| (-568)) (PROGN (-15 -4369 ((-1193 (-419 (-971 |#1|))))) (-15 -4125 ((-1193 (-419 (-971 |#1|))) $)) (-15 -1873 ((-419 (-971 |#1|)) $)) (-15 -2055 ((-419 (-971 |#1|)) $)) (-15 -2064 ((-1193 (-419 (-971 |#1|))))) (-15 -2121 ((-1193 (-419 (-971 |#1|))) $)) (-15 -2737 ((-419 (-971 |#1|)) $)) (-15 -2332 ((-419 (-971 |#1|)) $)) (-15 -3828 ((-419 (-971 |#1|)) $ $)) (-15 -1654 ((-419 (-971 |#1|)))) (-15 -4006 ((-419 (-971 |#1|)) $ $)) (-15 -1642 ((-419 (-971 |#1|)))) (-15 -2220 ((-656 (-971 |#1|)) (-1288 $))) (-15 -2220 ((-656 (-971 |#1|))))) |%noBranch|))) (-174) (-940) (-656 (-1197)) (-1288 (-701 |#1|))) (T -465)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1288 (-419 (-971 *3)))) (-4 *3 (-174)) (-14 *6 (-1288 (-701 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))))) (-3530 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -2675 (-656 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-3320 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -2675 (-656 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-2347 (*1 *1) (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-940)) (-14 *4 (-656 (-1197))) (-14 *5 (-1288 (-701 *2))))) (-2347 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 *2)) (-14 *6 (-1288 (-701 *3))))) (-2347 (*1 *1 *2) (-12 (-5 *2 (-1288 (-1197))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-2347 (*1 *1 *2) (-12 (-5 *2 (-1288 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-2347 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-940)) (-14 *6 (-656 *2)) (-14 *7 (-1288 (-701 *4))))) (-2347 (*1 *1 *2 *3) (-12 (-5 *2 (-1288 (-1197))) (-5 *3 (-1288 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-940)) (-14 *6 (-656 (-1197))) (-14 *7 (-1288 (-701 *4))))) (-4369 (*1 *2) (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-4125 (*1 *2 *1) (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-1873 (*1 *2 *1) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-2055 (*1 *2 *1) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-2064 (*1 *2) (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-2121 (*1 *2 *1) (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-2737 (*1 *2 *1) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-2332 (*1 *2 *1) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-3828 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-1654 (*1 *2) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-4006 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-1642 (*1 *2) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-2220 (*1 *2 *3) (-12 (-5 *3 (-1288 (-465 *4 *5 *6 *7))) (-5 *2 (-656 (-971 *4))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *4 (-174)) (-14 *5 (-940)) (-14 *6 (-656 (-1197))) (-14 *7 (-1288 (-701 *4))))) (-2220 (*1 *2) (-12 (-5 *2 (-656 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) +(-13 (-429 (-419 (-971 |#1|))) (-660 (-1163 |#2| (-419 (-971 |#1|)))) (-10 -8 (-15 -3569 ($ (-1288 (-419 (-971 |#1|))))) (-15 -3530 ((-3 (-2 (|:| |particular| $) (|:| -2675 (-656 $))) "failed"))) (-15 -3320 ((-3 (-2 (|:| |particular| $) (|:| -2675 (-656 $))) "failed"))) (-15 -2347 ($)) (-15 -2347 ($ (-1197))) (-15 -2347 ($ (-1288 (-1197)))) (-15 -2347 ($ (-1288 $))) (-15 -2347 ($ (-1197) (-1288 $))) (-15 -2347 ($ (-1288 (-1197)) (-1288 $))) (IF (|has| |#1| (-568)) (PROGN (-15 -4369 ((-1193 (-419 (-971 |#1|))))) (-15 -4125 ((-1193 (-419 (-971 |#1|))) $)) (-15 -1873 ((-419 (-971 |#1|)) $)) (-15 -2055 ((-419 (-971 |#1|)) $)) (-15 -2064 ((-1193 (-419 (-971 |#1|))))) (-15 -2121 ((-1193 (-419 (-971 |#1|))) $)) (-15 -2737 ((-419 (-971 |#1|)) $)) (-15 -2332 ((-419 (-971 |#1|)) $)) (-15 -3828 ((-419 (-971 |#1|)) $ $)) (-15 -1654 ((-419 (-971 |#1|)))) (-15 -4006 ((-419 (-971 |#1|)) $ $)) (-15 -1642 ((-419 (-971 |#1|)))) (-15 -2220 ((-656 (-971 |#1|)) (-1288 $))) (-15 -2220 ((-656 (-971 |#1|))))) |%noBranch|))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 18)) (-1969 (((-656 (-878 |#1|)) $) 87)) (-1797 (((-1193 $) $ (-878 |#1|)) 52) (((-1193 |#2|) $) 138)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-4195 (($ $) NIL (|has| |#2| (-568)))) (-1760 (((-112) $) NIL (|has| |#2| (-568)))) (-4329 (((-783) $) 27) (((-783) $ (-656 (-878 |#1|))) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3646 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3444 (($ $) NIL (|has| |#2| (-464)))) (-3760 (((-430 $) $) NIL (|has| |#2| (-464)))) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) 50) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-878 |#1|) "failed") $) NIL)) (-2859 ((|#2| $) 48) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-878 |#1|) $) NIL)) (-4334 (($ $ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-3244 (($ $ (-656 (-576))) 93)) (-2114 (($ $) 80)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1547 (($ $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-2103 (((-656 $) $) NIL)) (-3833 (((-112) $) NIL (|has| |#2| (-928)))) (-4124 (($ $ |#2| |#3| $) NIL)) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-1351 (((-112) $) NIL)) (-3799 (((-783) $) 65)) (-1956 (($ (-1193 |#2|) (-878 |#1|)) 143) (($ (-1193 $) (-878 |#1|)) 58)) (-2846 (((-656 $) $) NIL)) (-3538 (((-112) $) 68)) (-1944 (($ |#2| |#3|) 35) (($ $ (-878 |#1|) (-783)) 37) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-1915 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $ (-878 |#1|)) NIL)) (-2578 ((|#3| $) NIL) (((-783) $ (-878 |#1|)) 56) (((-656 (-783)) $ (-656 (-878 |#1|))) 63)) (-3878 (($ (-1 |#3| |#3|) $) NIL)) (-4116 (($ (-1 |#2| |#2|) $) NIL)) (-2289 (((-3 (-878 |#1|) "failed") $) 45)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-2081 (($ $) NIL)) (-2091 ((|#2| $) 47)) (-3457 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2046 (((-1179) $) NIL)) (-3845 (((-3 (-656 $) "failed") $) NIL)) (-2363 (((-3 (-656 $) "failed") $) NIL)) (-1452 (((-3 (-2 (|:| |var| (-878 |#1|)) (|:| -2508 (-783))) "failed") $) NIL)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) 46)) (-2070 ((|#2| $) 136)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#2| (-464)))) (-3497 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) 149 (|has| |#2| (-464)))) (-1644 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#2| (-928)))) (-3475 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3282 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-878 |#1|) |#2|) 100) (($ $ (-656 (-878 |#1|)) (-656 |#2|)) 106) (($ $ (-878 |#1|) $) 98) (($ $ (-656 (-878 |#1|)) (-656 $)) 124)) (-2269 (($ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-2774 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) 59)) (-2683 ((|#3| $) 79) (((-783) $ (-878 |#1|)) 42) (((-656 (-783)) $ (-656 (-878 |#1|))) 62)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-878 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-4370 ((|#2| $) 145 (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928))))) (-3569 (((-876) $) 173) (($ (-576)) NIL) (($ |#2|) 99) (($ (-878 |#1|)) 39) (($ (-419 (-576))) NIL (-2759 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-2937 (((-656 |#2|) $) NIL)) (-1822 ((|#2| $ |#3|) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-3390 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#2| (-146))))) (-3154 (((-783)) NIL T CONST)) (-2717 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2721 (($) 22 T CONST)) (-2731 (($) 31 T CONST)) (-2020 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ |#2|) 76 (|has| |#2| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 131)) (** (($ $ (-940)) NIL) (($ $ (-783)) 129)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 36) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) 75) (($ $ |#2|) NIL))) +(((-466 |#1| |#2| |#3|) (-13 (-968 |#2| |#3| (-878 |#1|)) (-10 -8 (-15 -3244 ($ $ (-656 (-576)))))) (-656 (-1197)) (-1070) (-243 (-3502 |#1|) (-783))) (T -466)) +((-3244 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-14 *3 (-656 (-1197))) (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-243 (-3502 *3) (-783)))))) +(-13 (-968 |#2| |#3| (-878 |#1|)) (-10 -8 (-15 -3244 ($ $ (-656 (-576)))))) +((-1749 (((-112) |#1| (-656 |#2|)) 91)) (-3951 (((-3 (-1288 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|)) 100)) (-1700 (((-3 (-656 |#2|) "failed") |#2| |#1| (-1288 (-656 |#2|))) 102)) (-1892 ((|#2| |#2| |#1|) 35)) (-1938 (((-783) |#2| (-656 |#2|)) 26))) +(((-467 |#1| |#2|) (-10 -7 (-15 -1892 (|#2| |#2| |#1|)) (-15 -1938 ((-783) |#2| (-656 |#2|))) (-15 -3951 ((-3 (-1288 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|))) (-15 -1700 ((-3 (-656 |#2|) "failed") |#2| |#1| (-1288 (-656 |#2|)))) (-15 -1749 ((-112) |#1| (-656 |#2|)))) (-317) (-1264 |#1|)) (T -467)) +((-1749 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *5)) (-4 *5 (-1264 *3)) (-4 *3 (-317)) (-5 *2 (-112)) (-5 *1 (-467 *3 *5)))) (-1700 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1288 (-656 *3))) (-4 *4 (-317)) (-5 *2 (-656 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1264 *4)))) (-3951 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-317)) (-4 *6 (-1264 *4)) (-5 *2 (-1288 (-656 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-656 *6)))) (-1938 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-317)) (-5 *2 (-783)) (-5 *1 (-467 *5 *3)))) (-1892 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1264 *3))))) +(-10 -7 (-15 -1892 (|#2| |#2| |#1|)) (-15 -1938 ((-783) |#2| (-656 |#2|))) (-15 -3951 ((-3 (-1288 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|))) (-15 -1700 ((-3 (-656 |#2|) "failed") |#2| |#1| (-1288 (-656 |#2|)))) (-15 -1749 ((-112) |#1| (-656 |#2|)))) ((-1828 (((-430 |#5|) |#5|) 24))) -(((-468 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1828 ((-430 |#5|) |#5|))) (-13 (-861) (-10 -8 (-15 -4172 ((-1197) $)) (-15 -3055 ((-3 $ "failed") (-1197))))) (-805) (-568) (-568) (-968 |#4| |#2| |#1|)) (T -468)) -((-1828 (*1 *2 *3) (-12 (-4 *4 (-13 (-861) (-10 -8 (-15 -4172 ((-1197) $)) (-15 -3055 ((-3 $ "failed") (-1197)))))) (-4 *5 (-805)) (-4 *7 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-568)) (-4 *3 (-968 *7 *5 *4))))) +(((-468 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1828 ((-430 |#5|) |#5|))) (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $)) (-15 -3054 ((-3 $ "failed") (-1197))))) (-805) (-568) (-568) (-968 |#4| |#2| |#1|)) (T -468)) +((-1828 (*1 *2 *3) (-12 (-4 *4 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $)) (-15 -3054 ((-3 $ "failed") (-1197)))))) (-4 *5 (-805)) (-4 *7 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-568)) (-4 *3 (-968 *7 *5 *4))))) (-10 -7 (-15 -1828 ((-430 |#5|) |#5|))) -((-1980 ((|#3|) 38)) (-1531 (((-1193 |#4|) (-1193 |#4|) (-1193 |#4|)) 34))) -(((-469 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1531 ((-1193 |#4|) (-1193 |#4|) (-1193 |#4|))) (-15 -1980 (|#3|))) (-805) (-861) (-928) (-968 |#3| |#1| |#2|)) (T -469)) -((-1980 (*1 *2) (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-928)) (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-968 *2 *3 *4)))) (-1531 (*1 *2 *2 *2) (-12 (-5 *2 (-1193 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-928)) (-5 *1 (-469 *3 *4 *5 *6))))) -(-10 -7 (-15 -1531 ((-1193 |#4|) (-1193 |#4|) (-1193 |#4|))) (-15 -1980 (|#3|))) +((-2074 ((|#3|) 38)) (-3327 (((-1193 |#4|) (-1193 |#4|) (-1193 |#4|)) 34))) +(((-469 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3327 ((-1193 |#4|) (-1193 |#4|) (-1193 |#4|))) (-15 -2074 (|#3|))) (-805) (-861) (-928) (-968 |#3| |#1| |#2|)) (T -469)) +((-2074 (*1 *2) (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-928)) (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-968 *2 *3 *4)))) (-3327 (*1 *2 *2 *2) (-12 (-5 *2 (-1193 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-928)) (-5 *1 (-469 *3 *4 *5 *6))))) +(-10 -7 (-15 -3327 ((-1193 |#4|) (-1193 |#4|) (-1193 |#4|))) (-15 -2074 (|#3|))) ((-1828 (((-430 (-1193 |#1|)) (-1193 |#1|)) 43))) (((-470 |#1|) (-10 -7 (-15 -1828 ((-430 (-1193 |#1|)) (-1193 |#1|)))) (-317)) (T -470)) ((-1828 (*1 *2 *3) (-12 (-4 *4 (-317)) (-5 *2 (-430 (-1193 *4))) (-5 *1 (-470 *4)) (-5 *3 (-1193 *4))))) (-10 -7 (-15 -1828 ((-430 (-1193 |#1|)) (-1193 |#1|)))) -((-2010 (((-52) |#2| (-1197) (-304 |#2|) (-1255 (-783))) 44) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-783))) 43) (((-52) |#2| (-1197) (-304 |#2|)) 36) (((-52) (-1 |#2| (-576)) (-304 |#2|)) 29)) (-3080 (((-52) |#2| (-1197) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576))) 88) (((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576))) 87) (((-52) |#2| (-1197) (-304 |#2|) (-1255 (-576))) 86) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-576))) 85) (((-52) |#2| (-1197) (-304 |#2|)) 80) (((-52) (-1 |#2| (-576)) (-304 |#2|)) 79)) (-2031 (((-52) |#2| (-1197) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576))) 74) (((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576))) 72)) (-2021 (((-52) |#2| (-1197) (-304 |#2|) (-1255 (-576))) 51) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-576))) 50))) -(((-471 |#1| |#2|) (-10 -7 (-15 -2010 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -2010 ((-52) |#2| (-1197) (-304 |#2|))) (-15 -2010 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-783)))) (-15 -2010 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-783)))) (-15 -2021 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-576)))) (-15 -2021 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-576)))) (-15 -2031 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576)))) (-15 -2031 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576)))) (-15 -3080 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -3080 ((-52) |#2| (-1197) (-304 |#2|))) (-15 -3080 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-576)))) (-15 -3080 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-576)))) (-15 -3080 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576)))) (-15 -3080 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576))))) (-13 (-568) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -471)) -((-3080 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-419 (-576)))) (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *8))) (-4 *8 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *8 *3)))) (-3080 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) (-5 *5 (-1255 (-419 (-576)))) (-5 *6 (-419 (-576))) (-4 *8 (-13 (-27) (-1223) (-442 *7))) (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *8)))) (-3080 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *7))) (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-3080 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1255 (-576))) (-4 *7 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-3080 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *3)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) (-4 *6 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *5 *6)))) (-2031 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-419 (-576)))) (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *8))) (-4 *8 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *8 *3)))) (-2031 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) (-5 *5 (-1255 (-419 (-576)))) (-5 *6 (-419 (-576))) (-4 *8 (-13 (-27) (-1223) (-442 *7))) (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *8)))) (-2021 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *7))) (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-2021 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1255 (-576))) (-4 *7 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-2010 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-783))) (-4 *3 (-13 (-27) (-1223) (-442 *7))) (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-2010 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1255 (-783))) (-4 *7 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-2010 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *3)))) (-2010 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) (-4 *6 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *5 *6))))) -(-10 -7 (-15 -2010 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -2010 ((-52) |#2| (-1197) (-304 |#2|))) (-15 -2010 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-783)))) (-15 -2010 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-783)))) (-15 -2021 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-576)))) (-15 -2021 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-576)))) (-15 -2031 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576)))) (-15 -2031 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576)))) (-15 -3080 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -3080 ((-52) |#2| (-1197) (-304 |#2|))) (-15 -3080 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-576)))) (-15 -3080 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-576)))) (-15 -3080 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576)))) (-15 -3080 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576))))) -((-1765 ((|#2| |#2| |#1|) 15)) (-1987 (((-656 |#2|) |#2| (-656 |#2|) |#1| (-940)) 82)) (-3908 (((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-940)) 72))) -(((-472 |#1| |#2|) (-10 -7 (-15 -3908 ((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-940))) (-15 -1987 ((-656 |#2|) |#2| (-656 |#2|) |#1| (-940))) (-15 -1765 (|#2| |#2| |#1|))) (-317) (-1264 |#1|)) (T -472)) -((-1765 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1264 *3)))) (-1987 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-656 *3)) (-5 *5 (-940)) (-4 *3 (-1264 *4)) (-4 *4 (-317)) (-5 *1 (-472 *4 *3)))) (-3908 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-940)) (-4 *5 (-317)) (-4 *3 (-1264 *5)) (-5 *2 (-2 (|:| |plist| (-656 *3)) (|:| |modulo| *5))) (-5 *1 (-472 *5 *3)) (-5 *4 (-656 *3))))) -(-10 -7 (-15 -3908 ((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-940))) (-15 -1987 ((-656 |#2|) |#2| (-656 |#2|) |#1| (-940))) (-15 -1765 (|#2| |#2| |#1|))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 28)) (-2052 (($ |#3|) 25)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-2114 (($ $) 32)) (-1814 (($ |#2| |#4| $) 33)) (-1945 (($ |#2| (-725 |#3| |#4| |#5|)) 24)) (-2081 (((-725 |#3| |#4| |#5|) $) 15)) (-1353 ((|#3| $) 19)) (-4369 ((|#4| $) 17)) (-2091 ((|#2| $) 29)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-3279 (($ |#2| |#3| |#4|) 26)) (-4055 (((-112) $ $) NIL)) (-2721 (($) 36 T CONST)) (-2925 (((-112) $ $) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) 34)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-473 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-729 |#6|) (-729 |#2|) (-10 -8 (-15 -2091 (|#2| $)) (-15 -2081 ((-725 |#3| |#4| |#5|) $)) (-15 -4369 (|#4| $)) (-15 -1353 (|#3| $)) (-15 -2114 ($ $)) (-15 -1945 ($ |#2| (-725 |#3| |#4| |#5|))) (-15 -2052 ($ |#3|)) (-15 -3279 ($ |#2| |#3| |#4|)) (-15 -1814 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-656 (-1197)) (-174) (-861) (-243 (-3503 |#1|) (-783)) (-1 (-112) (-2 (|:| -3224 |#3|) (|:| -3422 |#4|)) (-2 (|:| -3224 |#3|) (|:| -3422 |#4|))) (-968 |#2| |#4| (-878 |#1|))) (T -473)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) (-4 *6 (-243 (-3503 *3) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -3224 *5) (|:| -3422 *6)) (-2 (|:| -3224 *5) (|:| -3422 *6)))) (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-861)) (-4 *2 (-968 *4 *6 (-878 *3))))) (-2091 (*1 *2 *1) (-12 (-14 *3 (-656 (-1197))) (-4 *5 (-243 (-3503 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -3224 *4) (|:| -3422 *5)) (-2 (|:| -3224 *4) (|:| -3422 *5)))) (-4 *2 (-174)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-861)) (-4 *7 (-968 *2 *5 (-878 *3))))) (-2081 (*1 *2 *1) (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) (-4 *6 (-243 (-3503 *3) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -3224 *5) (|:| -3422 *6)) (-2 (|:| -3224 *5) (|:| -3422 *6)))) (-5 *2 (-725 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) (-4 *5 (-861)) (-4 *8 (-968 *4 *6 (-878 *3))))) (-4369 (*1 *2 *1) (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -3224 *5) (|:| -3422 *2)) (-2 (|:| -3224 *5) (|:| -3422 *2)))) (-4 *2 (-243 (-3503 *3) (-783))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) (-4 *5 (-861)) (-4 *7 (-968 *4 *2 (-878 *3))))) (-1353 (*1 *2 *1) (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) (-4 *5 (-243 (-3503 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -3224 *2) (|:| -3422 *5)) (-2 (|:| -3224 *2) (|:| -3422 *5)))) (-4 *2 (-861)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *7 (-968 *4 *5 (-878 *3))))) (-2114 (*1 *1 *1) (-12 (-14 *2 (-656 (-1197))) (-4 *3 (-174)) (-4 *5 (-243 (-3503 *2) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -3224 *4) (|:| -3422 *5)) (-2 (|:| -3224 *4) (|:| -3422 *5)))) (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-861)) (-4 *7 (-968 *3 *5 (-878 *2))))) (-1945 (*1 *1 *2 *3) (-12 (-5 *3 (-725 *5 *6 *7)) (-4 *5 (-861)) (-4 *6 (-243 (-3503 *4) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -3224 *5) (|:| -3422 *6)) (-2 (|:| -3224 *5) (|:| -3422 *6)))) (-14 *4 (-656 (-1197))) (-4 *2 (-174)) (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) (-4 *8 (-968 *2 *6 (-878 *4))))) (-2052 (*1 *1 *2) (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) (-4 *5 (-243 (-3503 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -3224 *2) (|:| -3422 *5)) (-2 (|:| -3224 *2) (|:| -3422 *5)))) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-861)) (-4 *7 (-968 *4 *5 (-878 *3))))) (-3279 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-656 (-1197))) (-4 *2 (-174)) (-4 *4 (-243 (-3503 *5) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -3224 *3) (|:| -3422 *4)) (-2 (|:| -3224 *3) (|:| -3422 *4)))) (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-861)) (-4 *7 (-968 *2 *4 (-878 *5))))) (-1814 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-656 (-1197))) (-4 *2 (-174)) (-4 *3 (-243 (-3503 *4) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -3224 *5) (|:| -3422 *3)) (-2 (|:| -3224 *5) (|:| -3422 *3)))) (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-861)) (-4 *7 (-968 *2 *3 (-878 *4)))))) -(-13 (-729 |#6|) (-729 |#2|) (-10 -8 (-15 -2091 (|#2| $)) (-15 -2081 ((-725 |#3| |#4| |#5|) $)) (-15 -4369 (|#4| $)) (-15 -1353 (|#3| $)) (-15 -2114 ($ $)) (-15 -1945 ($ |#2| (-725 |#3| |#4| |#5|))) (-15 -2052 ($ |#3|)) (-15 -3279 ($ |#2| |#3| |#4|)) (-15 -1814 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-4174 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) -(((-474 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4174 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-805) (-861) (-568) (-968 |#3| |#1| |#2|) (-13 (-1059 (-419 (-576))) (-374) (-10 -8 (-15 -3570 ($ |#4|)) (-15 -1570 (|#4| $)) (-15 -1581 (|#4| $))))) (T -474)) -((-4174 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-861)) (-4 *5 (-805)) (-4 *6 (-568)) (-4 *7 (-968 *6 *5 *3)) (-5 *1 (-474 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1059 (-419 (-576))) (-374) (-10 -8 (-15 -3570 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $)))))))) -(-10 -7 (-15 -4174 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-3489 (((-112) $ $) NIL)) (-1969 (((-656 |#3|) $) 41)) (-1807 (((-112) $) NIL)) (-4026 (((-112) $) NIL (|has| |#1| (-568)))) (-1795 (((-2 (|:| |under| $) (|:| -2443 $) (|:| |upper| $)) $ |#3|) NIL)) (-1808 (((-112) $ (-783)) NIL)) (-1974 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465)))) (-3886 (($) NIL T CONST)) (-3713 (((-112) $) NIL (|has| |#1| (-568)))) (-2813 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3812 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1884 (((-112) $) NIL (|has| |#1| (-568)))) (-2311 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-4376 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) 49)) (-2860 (($ (-656 |#4|)) NIL)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121))))) (-3946 (($ |#4| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465)))) (-3624 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3686 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4465))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4465)))) (-3966 (((-656 |#4|) $) 18 (|has| $ (-6 -4465)))) (-2620 ((|#3| $) 47)) (-3870 (((-112) $ (-783)) NIL)) (-2014 (((-656 |#4|) $) 14 (|has| $ (-6 -4465)))) (-1612 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121))))) (-4323 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#4| |#4|) $) 21)) (-2234 (((-656 |#3|) $) NIL)) (-2106 (((-112) |#3| $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL)) (-2280 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-1450 (((-1141) $) NIL)) (-1541 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4320 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) 39)) (-4225 (($) 17)) (-1460 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) 16)) (-4172 (((-548) $) NIL (|has| |#4| (-626 (-548)))) (($ (-656 |#4|)) 51)) (-3582 (($ (-656 |#4|)) 13)) (-3118 (($ $ |#3|) NIL)) (-2637 (($ $ |#3|) NIL)) (-3317 (($ $ |#3|) NIL)) (-3570 (((-876) $) 38) (((-656 |#4|) $) 50)) (-4055 (((-112) $ $) NIL)) (-3321 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 30)) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-475 |#1| |#2| |#3| |#4|) (-13 (-997 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4172 ($ (-656 |#4|))) (-6 -4465) (-6 -4466))) (-1070) (-805) (-861) (-1086 |#1| |#2| |#3|)) (T -475)) -((-4172 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-475 *3 *4 *5 *6))))) -(-13 (-997 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4172 ($ (-656 |#4|))) (-6 -4465) (-6 -4466))) -((-2721 (($) 11)) (-2732 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-476 |#1| |#2| |#3|) (-10 -8 (-15 -2732 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2721 (|#1|))) (-477 |#2| |#3|) (-174) (-23)) (T -476)) -NIL -(-10 -8 (-15 -2732 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2721 (|#1|))) -((-3489 (((-112) $ $) 7)) (-1572 (((-3 |#1| "failed") $) 27)) (-2860 ((|#1| $) 28)) (-1940 (($ $ $) 24)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3634 ((|#2| $) 20)) (-3570 (((-876) $) 12) (($ |#1|) 26)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2732 (($) 25 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 16) (($ $ $) 14)) (-3030 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +((-2010 (((-52) |#2| (-1197) (-304 |#2|) (-1255 (-783))) 44) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-783))) 43) (((-52) |#2| (-1197) (-304 |#2|)) 36) (((-52) (-1 |#2| (-576)) (-304 |#2|)) 29)) (-3079 (((-52) |#2| (-1197) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576))) 88) (((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576))) 87) (((-52) |#2| (-1197) (-304 |#2|) (-1255 (-576))) 86) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-576))) 85) (((-52) |#2| (-1197) (-304 |#2|)) 80) (((-52) (-1 |#2| (-576)) (-304 |#2|)) 79)) (-2031 (((-52) |#2| (-1197) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576))) 74) (((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576))) 72)) (-2021 (((-52) |#2| (-1197) (-304 |#2|) (-1255 (-576))) 51) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-576))) 50))) +(((-471 |#1| |#2|) (-10 -7 (-15 -2010 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -2010 ((-52) |#2| (-1197) (-304 |#2|))) (-15 -2010 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-783)))) (-15 -2010 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-783)))) (-15 -2021 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-576)))) (-15 -2021 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-576)))) (-15 -2031 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576)))) (-15 -2031 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576)))) (-15 -3079 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -3079 ((-52) |#2| (-1197) (-304 |#2|))) (-15 -3079 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-576)))) (-15 -3079 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-576)))) (-15 -3079 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576)))) (-15 -3079 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576))))) (-13 (-568) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -471)) +((-3079 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-419 (-576)))) (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *8))) (-4 *8 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *8 *3)))) (-3079 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) (-5 *5 (-1255 (-419 (-576)))) (-5 *6 (-419 (-576))) (-4 *8 (-13 (-27) (-1223) (-442 *7))) (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *8)))) (-3079 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *7))) (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-3079 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1255 (-576))) (-4 *7 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-3079 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *3)))) (-3079 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) (-4 *6 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *5 *6)))) (-2031 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-419 (-576)))) (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *8))) (-4 *8 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *8 *3)))) (-2031 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) (-5 *5 (-1255 (-419 (-576)))) (-5 *6 (-419 (-576))) (-4 *8 (-13 (-27) (-1223) (-442 *7))) (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *8)))) (-2021 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *7))) (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-2021 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1255 (-576))) (-4 *7 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-2010 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-783))) (-4 *3 (-13 (-27) (-1223) (-442 *7))) (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-2010 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1255 (-783))) (-4 *7 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-2010 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *3)))) (-2010 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) (-4 *6 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *5 *6))))) +(-10 -7 (-15 -2010 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -2010 ((-52) |#2| (-1197) (-304 |#2|))) (-15 -2010 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-783)))) (-15 -2010 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-783)))) (-15 -2021 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-576)))) (-15 -2021 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-576)))) (-15 -2031 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576)))) (-15 -2031 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576)))) (-15 -3079 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -3079 ((-52) |#2| (-1197) (-304 |#2|))) (-15 -3079 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-576)))) (-15 -3079 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-576)))) (-15 -3079 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576)))) (-15 -3079 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576))))) +((-1892 ((|#2| |#2| |#1|) 15)) (-2155 (((-656 |#2|) |#2| (-656 |#2|) |#1| (-940)) 82)) (-3628 (((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-940)) 72))) +(((-472 |#1| |#2|) (-10 -7 (-15 -3628 ((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-940))) (-15 -2155 ((-656 |#2|) |#2| (-656 |#2|) |#1| (-940))) (-15 -1892 (|#2| |#2| |#1|))) (-317) (-1264 |#1|)) (T -472)) +((-1892 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1264 *3)))) (-2155 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-656 *3)) (-5 *5 (-940)) (-4 *3 (-1264 *4)) (-4 *4 (-317)) (-5 *1 (-472 *4 *3)))) (-3628 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-940)) (-4 *5 (-317)) (-4 *3 (-1264 *5)) (-5 *2 (-2 (|:| |plist| (-656 *3)) (|:| |modulo| *5))) (-5 *1 (-472 *5 *3)) (-5 *4 (-656 *3))))) +(-10 -7 (-15 -3628 ((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-940))) (-15 -2155 ((-656 |#2|) |#2| (-656 |#2|) |#1| (-940))) (-15 -1892 (|#2| |#2| |#1|))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 28)) (-1545 (($ |#3|) 25)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-2114 (($ $) 32)) (-4328 (($ |#2| |#4| $) 33)) (-1944 (($ |#2| (-725 |#3| |#4| |#5|)) 24)) (-2081 (((-725 |#3| |#4| |#5|) $) 15)) (-1364 ((|#3| $) 19)) (-2450 ((|#4| $) 17)) (-2091 ((|#2| $) 29)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-3594 (($ |#2| |#3| |#4|) 26)) (-2399 (((-112) $ $) NIL)) (-2721 (($) 36 T CONST)) (-2924 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 34)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-473 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-729 |#6|) (-729 |#2|) (-10 -8 (-15 -2091 (|#2| $)) (-15 -2081 ((-725 |#3| |#4| |#5|) $)) (-15 -2450 (|#4| $)) (-15 -1364 (|#3| $)) (-15 -2114 ($ $)) (-15 -1944 ($ |#2| (-725 |#3| |#4| |#5|))) (-15 -1545 ($ |#3|)) (-15 -3594 ($ |#2| |#3| |#4|)) (-15 -4328 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-656 (-1197)) (-174) (-861) (-243 (-3502 |#1|) (-783)) (-1 (-112) (-2 (|:| -3223 |#3|) (|:| -2508 |#4|)) (-2 (|:| -3223 |#3|) (|:| -2508 |#4|))) (-968 |#2| |#4| (-878 |#1|))) (T -473)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) (-4 *6 (-243 (-3502 *3) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -3223 *5) (|:| -2508 *6)) (-2 (|:| -3223 *5) (|:| -2508 *6)))) (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-861)) (-4 *2 (-968 *4 *6 (-878 *3))))) (-2091 (*1 *2 *1) (-12 (-14 *3 (-656 (-1197))) (-4 *5 (-243 (-3502 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -3223 *4) (|:| -2508 *5)) (-2 (|:| -3223 *4) (|:| -2508 *5)))) (-4 *2 (-174)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-861)) (-4 *7 (-968 *2 *5 (-878 *3))))) (-2081 (*1 *2 *1) (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) (-4 *6 (-243 (-3502 *3) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -3223 *5) (|:| -2508 *6)) (-2 (|:| -3223 *5) (|:| -2508 *6)))) (-5 *2 (-725 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) (-4 *5 (-861)) (-4 *8 (-968 *4 *6 (-878 *3))))) (-2450 (*1 *2 *1) (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -3223 *5) (|:| -2508 *2)) (-2 (|:| -3223 *5) (|:| -2508 *2)))) (-4 *2 (-243 (-3502 *3) (-783))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) (-4 *5 (-861)) (-4 *7 (-968 *4 *2 (-878 *3))))) (-1364 (*1 *2 *1) (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) (-4 *5 (-243 (-3502 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -3223 *2) (|:| -2508 *5)) (-2 (|:| -3223 *2) (|:| -2508 *5)))) (-4 *2 (-861)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *7 (-968 *4 *5 (-878 *3))))) (-2114 (*1 *1 *1) (-12 (-14 *2 (-656 (-1197))) (-4 *3 (-174)) (-4 *5 (-243 (-3502 *2) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -3223 *4) (|:| -2508 *5)) (-2 (|:| -3223 *4) (|:| -2508 *5)))) (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-861)) (-4 *7 (-968 *3 *5 (-878 *2))))) (-1944 (*1 *1 *2 *3) (-12 (-5 *3 (-725 *5 *6 *7)) (-4 *5 (-861)) (-4 *6 (-243 (-3502 *4) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -3223 *5) (|:| -2508 *6)) (-2 (|:| -3223 *5) (|:| -2508 *6)))) (-14 *4 (-656 (-1197))) (-4 *2 (-174)) (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) (-4 *8 (-968 *2 *6 (-878 *4))))) (-1545 (*1 *1 *2) (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) (-4 *5 (-243 (-3502 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -3223 *2) (|:| -2508 *5)) (-2 (|:| -3223 *2) (|:| -2508 *5)))) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-861)) (-4 *7 (-968 *4 *5 (-878 *3))))) (-3594 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-656 (-1197))) (-4 *2 (-174)) (-4 *4 (-243 (-3502 *5) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -3223 *3) (|:| -2508 *4)) (-2 (|:| -3223 *3) (|:| -2508 *4)))) (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-861)) (-4 *7 (-968 *2 *4 (-878 *5))))) (-4328 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-656 (-1197))) (-4 *2 (-174)) (-4 *3 (-243 (-3502 *4) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -3223 *5) (|:| -2508 *3)) (-2 (|:| -3223 *5) (|:| -2508 *3)))) (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-861)) (-4 *7 (-968 *2 *3 (-878 *4)))))) +(-13 (-729 |#6|) (-729 |#2|) (-10 -8 (-15 -2091 (|#2| $)) (-15 -2081 ((-725 |#3| |#4| |#5|) $)) (-15 -2450 (|#4| $)) (-15 -1364 (|#3| $)) (-15 -2114 ($ $)) (-15 -1944 ($ |#2| (-725 |#3| |#4| |#5|))) (-15 -1545 ($ |#3|)) (-15 -3594 ($ |#2| |#3| |#4|)) (-15 -4328 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-4288 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) +(((-474 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4288 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-805) (-861) (-568) (-968 |#3| |#1| |#2|) (-13 (-1059 (-419 (-576))) (-374) (-10 -8 (-15 -3569 ($ |#4|)) (-15 -1570 (|#4| $)) (-15 -1581 (|#4| $))))) (T -474)) +((-4288 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-861)) (-4 *5 (-805)) (-4 *6 (-568)) (-4 *7 (-968 *6 *5 *3)) (-5 *1 (-474 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1059 (-419 (-576))) (-374) (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $)))))))) +(-10 -7 (-15 -4288 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-3488 (((-112) $ $) NIL)) (-1969 (((-656 |#3|) $) 41)) (-4255 (((-112) $) NIL)) (-2136 (((-112) $) NIL (|has| |#1| (-568)))) (-1795 (((-2 (|:| |under| $) (|:| -4236 $) (|:| |upper| $)) $ |#3|) NIL)) (-4264 (((-112) $ (-783)) NIL)) (-1974 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3404 (($) NIL T CONST)) (-2203 (((-112) $) NIL (|has| |#1| (-568)))) (-3438 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1990 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3740 (((-112) $) NIL (|has| |#1| (-568)))) (-2239 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2514 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) 49)) (-2859 (($ (-656 |#4|)) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-3945 (($ |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3891 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3685 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4464)))) (-3965 (((-656 |#4|) $) 18 (|has| $ (-6 -4464)))) (-2235 ((|#3| $) 47)) (-1368 (((-112) $ (-783)) NIL)) (-2425 (((-656 |#4|) $) 14 (|has| $ (-6 -4464)))) (-2885 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-4326 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#4| |#4|) $) 21)) (-2666 (((-656 |#3|) $) NIL)) (-4001 (((-112) |#3| $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL)) (-3196 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-1450 (((-1141) $) NIL)) (-3434 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3252 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) 39)) (-3579 (($) 17)) (-1460 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) 16)) (-4171 (((-548) $) NIL (|has| |#4| (-626 (-548)))) (($ (-656 |#4|)) 51)) (-3581 (($ (-656 |#4|)) 13)) (-2479 (($ $ |#3|) NIL)) (-2394 (($ $ |#3|) NIL)) (-2665 (($ $ |#3|) NIL)) (-3569 (((-876) $) 38) (((-656 |#4|) $) 50)) (-2399 (((-112) $ $) NIL)) (-2708 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 30)) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-475 |#1| |#2| |#3| |#4|) (-13 (-997 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4171 ($ (-656 |#4|))) (-6 -4464) (-6 -4465))) (-1070) (-805) (-861) (-1086 |#1| |#2| |#3|)) (T -475)) +((-4171 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-475 *3 *4 *5 *6))))) +(-13 (-997 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4171 ($ (-656 |#4|))) (-6 -4464) (-6 -4465))) +((-2721 (($) 11)) (-2731 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-476 |#1| |#2| |#3|) (-10 -8 (-15 -2731 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2721 (|#1|))) (-477 |#2| |#3|) (-174) (-23)) (T -476)) +NIL +(-10 -8 (-15 -2731 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2721 (|#1|))) +((-3488 (((-112) $ $) 7)) (-1572 (((-3 |#1| "failed") $) 27)) (-2859 ((|#1| $) 28)) (-3023 (($ $ $) 24)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2683 ((|#2| $) 20)) (-3569 (((-876) $) 12) (($ |#1|) 26)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2731 (($) 25 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 16) (($ $ $) 14)) (-3029 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) (((-477 |#1| |#2|) (-141) (-174) (-23)) (T -477)) -((-2732 (*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-1940 (*1 *1 *1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) -(-13 (-482 |t#1| |t#2|) (-1059 |t#1|) (-10 -8 (-15 (-2732) ($) -1480) (-15 -1940 ($ $ $)))) +((-2731 (*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3023 (*1 *1 *1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) +(-13 (-482 |t#1| |t#2|) (-1059 |t#1|) (-10 -8 (-15 (-2731) ($) -1480) (-15 -3023 ($ $ $)))) (((-102) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-482 |#1| |#2|) . T) ((-1059 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-3207 (((-1288 (-1288 (-576))) (-1288 (-1288 (-576))) (-940)) 26)) (-4132 (((-1288 (-1288 (-576))) (-940)) 21))) -(((-478) (-10 -7 (-15 -3207 ((-1288 (-1288 (-576))) (-1288 (-1288 (-576))) (-940))) (-15 -4132 ((-1288 (-1288 (-576))) (-940))))) (T -478)) -((-4132 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1288 (-1288 (-576)))) (-5 *1 (-478)))) (-3207 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 (-1288 (-576)))) (-5 *3 (-940)) (-5 *1 (-478))))) -(-10 -7 (-15 -3207 ((-1288 (-1288 (-576))) (-1288 (-1288 (-576))) (-940))) (-15 -4132 ((-1288 (-1288 (-576))) (-940)))) -((-2224 (((-576) (-576)) 32) (((-576)) 24)) (-3962 (((-576) (-576)) 28) (((-576)) 20)) (-2323 (((-576) (-576)) 30) (((-576)) 22)) (-4125 (((-112) (-112)) 14) (((-112)) 12)) (-2120 (((-112) (-112)) 13) (((-112)) 11)) (-3571 (((-112) (-112)) 26) (((-112)) 17))) -(((-479) (-10 -7 (-15 -2120 ((-112))) (-15 -4125 ((-112))) (-15 -2120 ((-112) (-112))) (-15 -4125 ((-112) (-112))) (-15 -3571 ((-112))) (-15 -2323 ((-576))) (-15 -3962 ((-576))) (-15 -2224 ((-576))) (-15 -3571 ((-112) (-112))) (-15 -2323 ((-576) (-576))) (-15 -3962 ((-576) (-576))) (-15 -2224 ((-576) (-576))))) (T -479)) -((-2224 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-3962 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2323 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-3571 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-2224 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-3962 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2323 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-3571 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-4125 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-2120 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-4125 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-2120 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) -(-10 -7 (-15 -2120 ((-112))) (-15 -4125 ((-112))) (-15 -2120 ((-112) (-112))) (-15 -4125 ((-112) (-112))) (-15 -3571 ((-112))) (-15 -2323 ((-576))) (-15 -3962 ((-576))) (-15 -2224 ((-576))) (-15 -3571 ((-112) (-112))) (-15 -2323 ((-576) (-576))) (-15 -3962 ((-576) (-576))) (-15 -2224 ((-576) (-576)))) -((-3489 (((-112) $ $) NIL)) (-2328 (((-656 (-390)) $) 34) (((-656 (-390)) $ (-656 (-390))) 146)) (-2417 (((-656 (-1115 (-390))) $) 16) (((-656 (-1115 (-390))) $ (-656 (-1115 (-390)))) 142)) (-3646 (((-656 (-656 (-962 (-227)))) (-656 (-656 (-962 (-227)))) (-656 (-888))) 58)) (-3594 (((-656 (-656 (-962 (-227)))) $) 137)) (-3043 (((-1293) $ (-962 (-227)) (-888)) 163)) (-2368 (($ $) 136) (($ (-656 (-656 (-962 (-227))))) 149) (($ (-656 (-656 (-962 (-227)))) (-656 (-888)) (-656 (-888)) (-656 (-940))) 148) (($ (-656 (-656 (-962 (-227)))) (-656 (-888)) (-656 (-888)) (-656 (-940)) (-656 (-270))) 150)) (-3699 (((-1179) $) NIL)) (-4301 (((-576) $) 110)) (-1450 (((-1141) $) NIL)) (-3648 (($) 147)) (-2134 (((-656 (-227)) (-656 (-656 (-962 (-227))))) 89)) (-1463 (((-1293) $ (-656 (-962 (-227))) (-888) (-888) (-940)) 155) (((-1293) $ (-962 (-227))) 157) (((-1293) $ (-962 (-227)) (-888) (-888) (-940)) 156)) (-3570 (((-876) $) 169) (($ (-656 (-656 (-962 (-227))))) 164)) (-4055 (((-112) $ $) NIL)) (-1780 (((-1293) $ (-962 (-227))) 162)) (-2925 (((-112) $ $) NIL))) -(((-480) (-13 (-1121) (-10 -8 (-15 -3648 ($)) (-15 -2368 ($ $)) (-15 -2368 ($ (-656 (-656 (-962 (-227)))))) (-15 -2368 ($ (-656 (-656 (-962 (-227)))) (-656 (-888)) (-656 (-888)) (-656 (-940)))) (-15 -2368 ($ (-656 (-656 (-962 (-227)))) (-656 (-888)) (-656 (-888)) (-656 (-940)) (-656 (-270)))) (-15 -3594 ((-656 (-656 (-962 (-227)))) $)) (-15 -4301 ((-576) $)) (-15 -2417 ((-656 (-1115 (-390))) $)) (-15 -2417 ((-656 (-1115 (-390))) $ (-656 (-1115 (-390))))) (-15 -2328 ((-656 (-390)) $)) (-15 -2328 ((-656 (-390)) $ (-656 (-390)))) (-15 -1463 ((-1293) $ (-656 (-962 (-227))) (-888) (-888) (-940))) (-15 -1463 ((-1293) $ (-962 (-227)))) (-15 -1463 ((-1293) $ (-962 (-227)) (-888) (-888) (-940))) (-15 -1780 ((-1293) $ (-962 (-227)))) (-15 -3043 ((-1293) $ (-962 (-227)) (-888))) (-15 -3570 ($ (-656 (-656 (-962 (-227)))))) (-15 -3570 ((-876) $)) (-15 -3646 ((-656 (-656 (-962 (-227)))) (-656 (-656 (-962 (-227)))) (-656 (-888)))) (-15 -2134 ((-656 (-227)) (-656 (-656 (-962 (-227))))))))) (T -480)) -((-3570 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-480)))) (-3648 (*1 *1) (-5 *1 (-480))) (-2368 (*1 *1 *1) (-5 *1 (-480))) (-2368 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-480)))) (-2368 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *3 (-656 (-888))) (-5 *4 (-656 (-940))) (-5 *1 (-480)))) (-2368 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *3 (-656 (-888))) (-5 *4 (-656 (-940))) (-5 *5 (-656 (-270))) (-5 *1 (-480)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-480)))) (-4301 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-480)))) (-2417 (*1 *2 *1) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-480)))) (-2417 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-480)))) (-2328 (*1 *2 *1) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) (-2328 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) (-1463 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-656 (-962 (-227)))) (-5 *4 (-888)) (-5 *5 (-940)) (-5 *2 (-1293)) (-5 *1 (-480)))) (-1463 (*1 *2 *1 *3) (-12 (-5 *3 (-962 (-227))) (-5 *2 (-1293)) (-5 *1 (-480)))) (-1463 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-962 (-227))) (-5 *4 (-888)) (-5 *5 (-940)) (-5 *2 (-1293)) (-5 *1 (-480)))) (-1780 (*1 *2 *1 *3) (-12 (-5 *3 (-962 (-227))) (-5 *2 (-1293)) (-5 *1 (-480)))) (-3043 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-962 (-227))) (-5 *4 (-888)) (-5 *2 (-1293)) (-5 *1 (-480)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-480)))) (-3646 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *3 (-656 (-888))) (-5 *1 (-480)))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *2 (-656 (-227))) (-5 *1 (-480))))) -(-13 (-1121) (-10 -8 (-15 -3648 ($)) (-15 -2368 ($ $)) (-15 -2368 ($ (-656 (-656 (-962 (-227)))))) (-15 -2368 ($ (-656 (-656 (-962 (-227)))) (-656 (-888)) (-656 (-888)) (-656 (-940)))) (-15 -2368 ($ (-656 (-656 (-962 (-227)))) (-656 (-888)) (-656 (-888)) (-656 (-940)) (-656 (-270)))) (-15 -3594 ((-656 (-656 (-962 (-227)))) $)) (-15 -4301 ((-576) $)) (-15 -2417 ((-656 (-1115 (-390))) $)) (-15 -2417 ((-656 (-1115 (-390))) $ (-656 (-1115 (-390))))) (-15 -2328 ((-656 (-390)) $)) (-15 -2328 ((-656 (-390)) $ (-656 (-390)))) (-15 -1463 ((-1293) $ (-656 (-962 (-227))) (-888) (-888) (-940))) (-15 -1463 ((-1293) $ (-962 (-227)))) (-15 -1463 ((-1293) $ (-962 (-227)) (-888) (-888) (-940))) (-15 -1780 ((-1293) $ (-962 (-227)))) (-15 -3043 ((-1293) $ (-962 (-227)) (-888))) (-15 -3570 ($ (-656 (-656 (-962 (-227)))))) (-15 -3570 ((-876) $)) (-15 -3646 ((-656 (-656 (-962 (-227)))) (-656 (-656 (-962 (-227)))) (-656 (-888)))) (-15 -2134 ((-656 (-227)) (-656 (-656 (-962 (-227)))))))) -((-3044 (($ $) NIL) (($ $ $) 11))) -(((-481 |#1| |#2| |#3|) (-10 -8 (-15 -3044 (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1|))) (-482 |#2| |#3|) (-174) (-23)) (T -481)) -NIL -(-10 -8 (-15 -3044 (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1|))) -((-3489 (((-112) $ $) 7)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3634 ((|#2| $) 20)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 16) (($ $ $) 14)) (-3030 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +((-4109 (((-1288 (-1288 (-576))) (-1288 (-1288 (-576))) (-940)) 26)) (-1935 (((-1288 (-1288 (-576))) (-940)) 21))) +(((-478) (-10 -7 (-15 -4109 ((-1288 (-1288 (-576))) (-1288 (-1288 (-576))) (-940))) (-15 -1935 ((-1288 (-1288 (-576))) (-940))))) (T -478)) +((-1935 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1288 (-1288 (-576)))) (-5 *1 (-478)))) (-4109 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 (-1288 (-576)))) (-5 *3 (-940)) (-5 *1 (-478))))) +(-10 -7 (-15 -4109 ((-1288 (-1288 (-576))) (-1288 (-1288 (-576))) (-940))) (-15 -1935 ((-1288 (-1288 (-576))) (-940)))) +((-3884 (((-576) (-576)) 32) (((-576)) 24)) (-2837 (((-576) (-576)) 28) (((-576)) 20)) (-2375 (((-576) (-576)) 30) (((-576)) 22)) (-1885 (((-112) (-112)) 14) (((-112)) 12)) (-4118 (((-112) (-112)) 13) (((-112)) 11)) (-3335 (((-112) (-112)) 26) (((-112)) 17))) +(((-479) (-10 -7 (-15 -4118 ((-112))) (-15 -1885 ((-112))) (-15 -4118 ((-112) (-112))) (-15 -1885 ((-112) (-112))) (-15 -3335 ((-112))) (-15 -2375 ((-576))) (-15 -2837 ((-576))) (-15 -3884 ((-576))) (-15 -3335 ((-112) (-112))) (-15 -2375 ((-576) (-576))) (-15 -2837 ((-576) (-576))) (-15 -3884 ((-576) (-576))))) (T -479)) +((-3884 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2837 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2375 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-3335 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-3884 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2837 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2375 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-3335 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-1885 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-4118 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-1885 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-4118 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) +(-10 -7 (-15 -4118 ((-112))) (-15 -1885 ((-112))) (-15 -4118 ((-112) (-112))) (-15 -1885 ((-112) (-112))) (-15 -3335 ((-112))) (-15 -2375 ((-576))) (-15 -2837 ((-576))) (-15 -3884 ((-576))) (-15 -3335 ((-112) (-112))) (-15 -2375 ((-576) (-576))) (-15 -2837 ((-576) (-576))) (-15 -3884 ((-576) (-576)))) +((-3488 (((-112) $ $) NIL)) (-2328 (((-656 (-390)) $) 34) (((-656 (-390)) $ (-656 (-390))) 146)) (-3996 (((-656 (-1115 (-390))) $) 16) (((-656 (-1115 (-390))) $ (-656 (-1115 (-390)))) 142)) (-2793 (((-656 (-656 (-962 (-227)))) (-656 (-656 (-962 (-227)))) (-656 (-888))) 58)) (-3565 (((-656 (-656 (-962 (-227)))) $) 137)) (-3042 (((-1293) $ (-962 (-227)) (-888)) 163)) (-1561 (($ $) 136) (($ (-656 (-656 (-962 (-227))))) 149) (($ (-656 (-656 (-962 (-227)))) (-656 (-888)) (-656 (-888)) (-656 (-940))) 148) (($ (-656 (-656 (-962 (-227)))) (-656 (-888)) (-656 (-888)) (-656 (-940)) (-656 (-270))) 150)) (-2046 (((-1179) $) NIL)) (-4300 (((-576) $) 110)) (-1450 (((-1141) $) NIL)) (-2818 (($) 147)) (-4251 (((-656 (-227)) (-656 (-656 (-962 (-227))))) 89)) (-3870 (((-1293) $ (-656 (-962 (-227))) (-888) (-888) (-940)) 155) (((-1293) $ (-962 (-227))) 157) (((-1293) $ (-962 (-227)) (-888) (-888) (-940)) 156)) (-3569 (((-876) $) 169) (($ (-656 (-656 (-962 (-227))))) 164)) (-2399 (((-112) $ $) NIL)) (-4014 (((-1293) $ (-962 (-227))) 162)) (-2924 (((-112) $ $) NIL))) +(((-480) (-13 (-1121) (-10 -8 (-15 -2818 ($)) (-15 -1561 ($ $)) (-15 -1561 ($ (-656 (-656 (-962 (-227)))))) (-15 -1561 ($ (-656 (-656 (-962 (-227)))) (-656 (-888)) (-656 (-888)) (-656 (-940)))) (-15 -1561 ($ (-656 (-656 (-962 (-227)))) (-656 (-888)) (-656 (-888)) (-656 (-940)) (-656 (-270)))) (-15 -3565 ((-656 (-656 (-962 (-227)))) $)) (-15 -4300 ((-576) $)) (-15 -3996 ((-656 (-1115 (-390))) $)) (-15 -3996 ((-656 (-1115 (-390))) $ (-656 (-1115 (-390))))) (-15 -2328 ((-656 (-390)) $)) (-15 -2328 ((-656 (-390)) $ (-656 (-390)))) (-15 -3870 ((-1293) $ (-656 (-962 (-227))) (-888) (-888) (-940))) (-15 -3870 ((-1293) $ (-962 (-227)))) (-15 -3870 ((-1293) $ (-962 (-227)) (-888) (-888) (-940))) (-15 -4014 ((-1293) $ (-962 (-227)))) (-15 -3042 ((-1293) $ (-962 (-227)) (-888))) (-15 -3569 ($ (-656 (-656 (-962 (-227)))))) (-15 -3569 ((-876) $)) (-15 -2793 ((-656 (-656 (-962 (-227)))) (-656 (-656 (-962 (-227)))) (-656 (-888)))) (-15 -4251 ((-656 (-227)) (-656 (-656 (-962 (-227))))))))) (T -480)) +((-3569 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-480)))) (-2818 (*1 *1) (-5 *1 (-480))) (-1561 (*1 *1 *1) (-5 *1 (-480))) (-1561 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-480)))) (-1561 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *3 (-656 (-888))) (-5 *4 (-656 (-940))) (-5 *1 (-480)))) (-1561 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *3 (-656 (-888))) (-5 *4 (-656 (-940))) (-5 *5 (-656 (-270))) (-5 *1 (-480)))) (-3565 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-480)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-480)))) (-3996 (*1 *2 *1) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-480)))) (-3996 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-480)))) (-2328 (*1 *2 *1) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) (-2328 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) (-3870 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-656 (-962 (-227)))) (-5 *4 (-888)) (-5 *5 (-940)) (-5 *2 (-1293)) (-5 *1 (-480)))) (-3870 (*1 *2 *1 *3) (-12 (-5 *3 (-962 (-227))) (-5 *2 (-1293)) (-5 *1 (-480)))) (-3870 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-962 (-227))) (-5 *4 (-888)) (-5 *5 (-940)) (-5 *2 (-1293)) (-5 *1 (-480)))) (-4014 (*1 *2 *1 *3) (-12 (-5 *3 (-962 (-227))) (-5 *2 (-1293)) (-5 *1 (-480)))) (-3042 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-962 (-227))) (-5 *4 (-888)) (-5 *2 (-1293)) (-5 *1 (-480)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-480)))) (-2793 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *3 (-656 (-888))) (-5 *1 (-480)))) (-4251 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *2 (-656 (-227))) (-5 *1 (-480))))) +(-13 (-1121) (-10 -8 (-15 -2818 ($)) (-15 -1561 ($ $)) (-15 -1561 ($ (-656 (-656 (-962 (-227)))))) (-15 -1561 ($ (-656 (-656 (-962 (-227)))) (-656 (-888)) (-656 (-888)) (-656 (-940)))) (-15 -1561 ($ (-656 (-656 (-962 (-227)))) (-656 (-888)) (-656 (-888)) (-656 (-940)) (-656 (-270)))) (-15 -3565 ((-656 (-656 (-962 (-227)))) $)) (-15 -4300 ((-576) $)) (-15 -3996 ((-656 (-1115 (-390))) $)) (-15 -3996 ((-656 (-1115 (-390))) $ (-656 (-1115 (-390))))) (-15 -2328 ((-656 (-390)) $)) (-15 -2328 ((-656 (-390)) $ (-656 (-390)))) (-15 -3870 ((-1293) $ (-656 (-962 (-227))) (-888) (-888) (-940))) (-15 -3870 ((-1293) $ (-962 (-227)))) (-15 -3870 ((-1293) $ (-962 (-227)) (-888) (-888) (-940))) (-15 -4014 ((-1293) $ (-962 (-227)))) (-15 -3042 ((-1293) $ (-962 (-227)) (-888))) (-15 -3569 ($ (-656 (-656 (-962 (-227)))))) (-15 -3569 ((-876) $)) (-15 -2793 ((-656 (-656 (-962 (-227)))) (-656 (-656 (-962 (-227)))) (-656 (-888)))) (-15 -4251 ((-656 (-227)) (-656 (-656 (-962 (-227)))))))) +((-3043 (($ $) NIL) (($ $ $) 11))) +(((-481 |#1| |#2| |#3|) (-10 -8 (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|))) (-482 |#2| |#3|) (-174) (-23)) (T -481)) +NIL +(-10 -8 (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2683 ((|#2| $) 20)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 16) (($ $ $) 14)) (-3029 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) (((-482 |#1| |#2|) (-141) (-174) (-23)) (T -482)) -((-3634 (*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-2721 (*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3044 (*1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3030 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3044 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) -(-13 (-1121) (-10 -8 (-15 -3634 (|t#2| $)) (-15 (-2721) ($) -1480) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3044 ($ $)) (-15 -3030 ($ $ $)) (-15 -3044 ($ $ $)))) +((-2683 (*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-2721 (*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3043 (*1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3029 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3043 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) +(-13 (-1121) (-10 -8 (-15 -2683 (|t#2| $)) (-15 (-2721) ($) -1480) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3043 ($ $)) (-15 -3029 ($ $ $)) (-15 -3043 ($ $ $)))) (((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-3084 (((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-878 |#1|))) 134)) (-2305 (((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-878 |#1|))) 131)) (-2652 (((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-878 |#1|))) 86))) -(((-483 |#1| |#2| |#3|) (-10 -7 (-15 -2305 ((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-878 |#1|)))) (-15 -3084 ((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-878 |#1|)))) (-15 -2652 ((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-878 |#1|))))) (-656 (-1197)) (-464) (-464)) (T -483)) -((-2652 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-878 *5))) (-14 *5 (-656 (-1197))) (-4 *6 (-464)) (-5 *2 (-2 (|:| |dpolys| (-656 (-253 *5 *6))) (|:| |coords| (-656 (-576))))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464)))) (-3084 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-656 (-878 *4))) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) (-4 *6 (-464)))) (-2305 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-878 *5))) (-14 *5 (-656 (-1197))) (-4 *6 (-464)) (-5 *2 (-656 (-656 (-253 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464))))) -(-10 -7 (-15 -2305 ((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-878 |#1|)))) (-15 -3084 ((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-878 |#1|)))) (-15 -2652 ((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-878 |#1|))))) -((-1561 (((-3 $ "failed") $) 11)) (-2314 (($ $ $) 23)) (-2076 (($ $ $) 24)) (-3057 (($ $ $) 9)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 22))) -(((-484 |#1|) (-10 -8 (-15 -2076 (|#1| |#1| |#1|)) (-15 -2314 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3057 (|#1| |#1| |#1|)) (-15 -1561 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940)))) (-485)) (T -484)) -NIL -(-10 -8 (-15 -2076 (|#1| |#1| |#1|)) (-15 -2314 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3057 (|#1| |#1| |#1|)) (-15 -1561 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940)))) -((-3489 (((-112) $ $) 7)) (-3886 (($) 19 T CONST)) (-1561 (((-3 $ "failed") $) 16)) (-4193 (((-112) $) 18)) (-3699 (((-1179) $) 10)) (-2050 (($ $) 25)) (-1450 (((-1141) $) 11)) (-2314 (($ $ $) 22)) (-2076 (($ $ $) 21)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2732 (($) 20 T CONST)) (-2925 (((-112) $ $) 8)) (-3057 (($ $ $) 24)) (** (($ $ (-940)) 14) (($ $ (-783)) 17) (($ $ (-576)) 23)) (* (($ $ $) 15))) +((-2138 (((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-878 |#1|))) 134)) (-2184 (((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-878 |#1|))) 131)) (-2521 (((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-878 |#1|))) 86))) +(((-483 |#1| |#2| |#3|) (-10 -7 (-15 -2184 ((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-878 |#1|)))) (-15 -2138 ((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-878 |#1|)))) (-15 -2521 ((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-878 |#1|))))) (-656 (-1197)) (-464) (-464)) (T -483)) +((-2521 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-878 *5))) (-14 *5 (-656 (-1197))) (-4 *6 (-464)) (-5 *2 (-2 (|:| |dpolys| (-656 (-253 *5 *6))) (|:| |coords| (-656 (-576))))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464)))) (-2138 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-656 (-878 *4))) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) (-4 *6 (-464)))) (-2184 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-878 *5))) (-14 *5 (-656 (-1197))) (-4 *6 (-464)) (-5 *2 (-656 (-656 (-253 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464))))) +(-10 -7 (-15 -2184 ((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-878 |#1|)))) (-15 -2138 ((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-878 |#1|)))) (-15 -2521 ((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-878 |#1|))))) +((-3673 (((-3 $ "failed") $) 11)) (-2272 (($ $ $) 23)) (-1758 (($ $ $) 24)) (-3056 (($ $ $) 9)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 22))) +(((-484 |#1|) (-10 -8 (-15 -1758 (|#1| |#1| |#1|)) (-15 -2272 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3056 (|#1| |#1| |#1|)) (-15 -3673 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940)))) (-485)) (T -484)) +NIL +(-10 -8 (-15 -1758 (|#1| |#1| |#1|)) (-15 -2272 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3056 (|#1| |#1| |#1|)) (-15 -3673 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940)))) +((-3488 (((-112) $ $) 7)) (-3404 (($) 19 T CONST)) (-3673 (((-3 $ "failed") $) 16)) (-1351 (((-112) $) 18)) (-2046 (((-1179) $) 10)) (-2050 (($ $) 25)) (-1450 (((-1141) $) 11)) (-2272 (($ $ $) 22)) (-1758 (($ $ $) 21)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2731 (($) 20 T CONST)) (-2924 (((-112) $ $) 8)) (-3056 (($ $ $) 24)) (** (($ $ (-940)) 14) (($ $ (-783)) 17) (($ $ (-576)) 23)) (* (($ $ $) 15))) (((-485) (-141)) (T -485)) -((-2050 (*1 *1 *1) (-4 *1 (-485))) (-3057 (*1 *1 *1 *1) (-4 *1 (-485))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-576)))) (-2314 (*1 *1 *1 *1) (-4 *1 (-485))) (-2076 (*1 *1 *1 *1) (-4 *1 (-485)))) -(-13 (-738) (-10 -8 (-15 -2050 ($ $)) (-15 -3057 ($ $ $)) (-15 ** ($ $ (-576))) (-6 -4462) (-15 -2314 ($ $ $)) (-15 -2076 ($ $ $)))) +((-2050 (*1 *1 *1) (-4 *1 (-485))) (-3056 (*1 *1 *1 *1) (-4 *1 (-485))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-576)))) (-2272 (*1 *1 *1 *1) (-4 *1 (-485))) (-1758 (*1 *1 *1 *1) (-4 *1 (-485)))) +(-13 (-738) (-10 -8 (-15 -2050 ($ $)) (-15 -3056 ($ $ $)) (-15 ** ($ $ (-576))) (-6 -4461) (-15 -2272 ($ $ $)) (-15 -1758 ($ $ $)))) (((-102) . T) ((-625 (-876)) . T) ((-738) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-1969 (((-656 (-1103)) $) NIL)) (-3055 (((-1197) $) 18)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2757 (($ $) NIL (|has| |#1| (-568)))) (-3788 (((-112) $) NIL (|has| |#1| (-568)))) (-2326 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-3669 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-4025 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3901 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL (|has| |#1| (-374)))) (-3921 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1839 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4016 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4006 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3877 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3080 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-4050 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($) NIL T CONST)) (-3429 (($ $ $) NIL (|has| |#1| (-374)))) (-2114 (($ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-3441 (($ $ $) NIL (|has| |#1| (-374)))) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-4249 (((-112) $) NIL (|has| |#1| (-374)))) (-1424 (((-112) $) NIL)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3917 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-4193 (((-112) $) NIL)) (-2121 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4116 (($ $ (-940)) NIL) (($ $ (-419 (-576))) NIL)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2823 (((-112) $) NIL)) (-1945 (($ |#1| (-419 (-576))) NIL) (($ $ (-1103) (-419 (-576))) NIL) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) NIL)) (-4117 (($ (-1 |#1| |#1|) $) 25)) (-3745 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-3458 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL (|has| |#1| (-374)))) (-1491 (($ $) 29 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 35 (-2760 (-12 (|has| |#1| (-15 -1491 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 30 (|has| |#1| (-38 (-419 (-576)))))) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| |#1| (-374)))) (-1749 (($ $ (-419 (-576))) NIL)) (-3476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4104 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3284 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-1967 (((-783) $) NIL (|has| |#1| (-374)))) (-2797 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1133)))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#1| (-374)))) (-2775 (($ $ (-1197)) 28 (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1284 |#2|)) 16)) (-3634 (((-419 (-576)) $) NIL)) (-4061 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3930 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4037 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4014 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3889 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3126 (($ $) NIL)) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1284 |#2|)) NIL) (($ (-1273 |#1| |#2| |#3|)) 9) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-3177 ((|#1| $ (-419 (-576))) NIL)) (-4336 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3996 (((-783)) NIL T CONST)) (-2396 ((|#1| $) 21)) (-4055 (((-112) $ $) NIL)) (-2791 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3961 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2672 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4071 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2815 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3983 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4166 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3570 (|#1| (-1197))))))) (-4388 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3995 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2803 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3974 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4083 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3951 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2020 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1284 |#2|)) NIL)) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3044 (($ $) NIL) (($ $ $) 27)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-486 |#1| |#2| |#3|) (-13 (-1269 |#1|) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3570 ($ (-1284 |#2|))) (-15 -3570 ($ (-1273 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1491 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -486)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-1070)) (-14 *5 *3))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-1273 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-1197)) (-14 *5 *3) (-5 *1 (-486 *3 *4 *5)))) (-1491 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) -(-13 (-1269 |#1|) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3570 ($ (-1284 |#2|))) (-15 -3570 ($ (-1273 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1491 ($ $ (-1284 |#2|))) |%noBranch|))) -((-3489 (((-112) $ $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-4128 (($) NIL) (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-2047 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4466)))) (-1808 (((-112) $ (-783)) NIL)) (-3756 ((|#2| $ |#1| |#2|) 18)) (-2300 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-2197 (((-3 |#2| "failed") |#1| $) 19)) (-3886 (($) NIL T CONST)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121))))) (-1671 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (|has| $ (-6 -4465))) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-3 |#2| "failed") |#1| $) 16)) (-3946 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-3686 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4465))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-4335 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4466)))) (-4274 ((|#2| $ |#1|) NIL)) (-3966 (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-656 |#2|) $) NIL (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) NIL)) (-2924 ((|#1| $) NIL (|has| |#1| (-861)))) (-2014 (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-656 |#2|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-2137 ((|#1| $) NIL (|has| |#1| (-861)))) (-4323 (($ (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3203 (((-656 |#1|) $) NIL)) (-4008 (((-112) |#1| $) NIL)) (-1597 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL)) (-1901 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL)) (-4234 (((-656 |#1|) $) NIL)) (-3354 (((-112) |#1| $) NIL)) (-1450 (((-1141) $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3581 ((|#2| $) NIL (|has| |#1| (-861)))) (-1541 (((-3 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL)) (-4046 (($ $ |#2|) NIL (|has| $ (-6 -4466)))) (-3449 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL)) (-4320 (((-112) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-2281 (((-656 |#2|) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2271 (($) NIL) (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-783) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4172 (((-548) $) NIL (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-626 (-548))))) (-3582 (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-3570 (((-876) $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-4055 (((-112) $ $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3943 (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-3321 (((-112) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-1969 (((-656 (-1103)) $) NIL)) (-3054 (((-1197) $) 18)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4195 (($ $) NIL (|has| |#1| (-568)))) (-1760 (((-112) $) NIL (|has| |#1| (-568)))) (-2408 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-3064 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-4024 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL (|has| |#1| (-374)))) (-3760 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1840 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3330 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4005 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3079 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-4049 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3404 (($) NIL T CONST)) (-3428 (($ $ $) NIL (|has| |#1| (-374)))) (-2114 (($ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-3440 (($ $ $) NIL (|has| |#1| (-374)))) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3833 (((-112) $) NIL (|has| |#1| (-374)))) (-2116 (((-112) $) NIL)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3726 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-1351 (((-112) $) NIL)) (-4131 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1800 (($ $ (-940)) NIL) (($ $ (-419 (-576))) NIL)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3538 (((-112) $) NIL)) (-1944 (($ |#1| (-419 (-576))) NIL) (($ $ (-1103) (-419 (-576))) NIL) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) NIL)) (-4116 (($ (-1 |#1| |#1|) $) 25)) (-3744 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL (|has| |#1| (-374)))) (-4160 (($ $) 29 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 35 (-2759 (-12 (|has| |#1| (-15 -4160 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 30 (|has| |#1| (-38 (-419 (-576)))))) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3497 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-1743 (($ $ (-419 (-576))) NIL)) (-3475 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4103 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3282 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-1979 (((-783) $) NIL (|has| |#1| (-374)))) (-2796 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1133)))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#1| (-374)))) (-2774 (($ $ (-1197)) 28 (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1284 |#2|)) 16)) (-2683 (((-419 (-576)) $) NIL)) (-4060 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2539 (($ $) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1284 |#2|)) NIL) (($ (-1273 |#1| |#2| |#3|)) 9) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-1822 ((|#1| $ (-419 (-576))) NIL)) (-3390 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3154 (((-783)) NIL T CONST)) (-2396 ((|#1| $) 21)) (-2399 (((-112) $ $) NIL)) (-2790 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1505 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2020 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1284 |#2|)) NIL)) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) 27)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-486 |#1| |#2| |#3|) (-13 (-1269 |#1|) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3569 ($ (-1284 |#2|))) (-15 -3569 ($ (-1273 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4160 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -486)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-1070)) (-14 *5 *3))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-1273 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-1197)) (-14 *5 *3) (-5 *1 (-486 *3 *4 *5)))) (-4160 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) +(-13 (-1269 |#1|) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3569 ($ (-1284 |#2|))) (-15 -3569 ($ (-1273 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4160 ($ $ (-1284 |#2|))) |%noBranch|))) +((-3488 (((-112) $ $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102)) (|has| |#2| (-102))))) (-4127 (($) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-1512 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4465)))) (-4264 (((-112) $ (-783)) NIL)) (-3755 ((|#2| $ |#1| |#2|) 18)) (-2123 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-1974 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2198 (((-3 |#2| "failed") |#1| $) 19)) (-3404 (($) NIL T CONST)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121))))) (-2172 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) 16)) (-3945 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#2| $ |#1|) NIL)) (-3965 (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) NIL)) (-3281 ((|#1| $) NIL (|has| |#1| (-861)))) (-2425 (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-4280 ((|#1| $) NIL (|has| |#1| (-861)))) (-4326 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4465))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3200 (((-656 |#1|) $) NIL)) (-3259 (((-112) |#1| $) NIL)) (-2722 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL)) (-2597 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL)) (-3669 (((-656 |#1|) $) NIL)) (-3090 (((-112) |#1| $) NIL)) (-1450 (((-1141) $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3580 ((|#2| $) NIL (|has| |#1| (-861)))) (-3434 (((-3 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) "failed") (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL)) (-2304 (($ $ |#2|) NIL (|has| $ (-6 -4465)))) (-1541 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL)) (-3252 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-3207 (((-656 |#2|) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3101 (($) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-3569 (((-876) $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-2399 (((-112) $ $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102)) (|has| |#2| (-102))))) (-3972 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-2708 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102)) (|has| |#2| (-102))))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) (((-487 |#1| |#2| |#3| |#4|) (-1214 |#1| |#2|) (-1121) (-1121) (-1214 |#1| |#2|) |#2|) (T -487)) NIL (-1214 |#1| |#2|) -((-3489 (((-112) $ $) NIL)) (-1788 (((-656 (-2 (|:| -1958 $) (|:| -3257 (-656 |#4|)))) (-656 |#4|)) NIL)) (-3603 (((-656 $) (-656 |#4|)) NIL)) (-1969 (((-656 |#3|) $) NIL)) (-1807 (((-112) $) NIL)) (-4026 (((-112) $) NIL (|has| |#1| (-568)))) (-1613 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1377 ((|#4| |#4| $) NIL)) (-1795 (((-2 (|:| |under| $) (|:| -2443 $) (|:| |upper| $)) $ |#3|) NIL)) (-1808 (((-112) $ (-783)) NIL)) (-1974 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3886 (($) NIL T CONST)) (-3713 (((-112) $) 29 (|has| |#1| (-568)))) (-2813 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3812 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1884 (((-112) $) NIL (|has| |#1| (-568)))) (-3388 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2311 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-4376 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2860 (($ (-656 |#4|)) NIL)) (-3593 (((-3 $ "failed") $) 45)) (-3994 ((|#4| |#4| $) NIL)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121))))) (-3946 (($ |#4| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465)))) (-3624 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3439 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2737 ((|#4| |#4| $) NIL)) (-3686 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4465))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4465))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4405 (((-2 (|:| -1958 (-656 |#4|)) (|:| -3257 (-656 |#4|))) $) NIL)) (-3966 (((-656 |#4|) $) 18 (|has| $ (-6 -4465)))) (-3186 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2620 ((|#3| $) 38)) (-3870 (((-112) $ (-783)) NIL)) (-2014 (((-656 |#4|) $) 19 (|has| $ (-6 -4465)))) (-1612 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121))))) (-4323 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#4| |#4|) $) 23)) (-2234 (((-656 |#3|) $) NIL)) (-2106 (((-112) |#3| $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL)) (-3969 (((-3 |#4| "failed") $) 42)) (-4275 (((-656 |#4|) $) NIL)) (-1603 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3909 ((|#4| |#4| $) NIL)) (-1438 (((-112) $ $) NIL)) (-2280 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3579 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1522 ((|#4| |#4| $) NIL)) (-1450 (((-1141) $) NIL)) (-3581 (((-3 |#4| "failed") $) 40)) (-1541 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3384 (((-3 $ "failed") $ |#4|) 58)) (-1749 (($ $ |#4|) NIL)) (-4320 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) 17)) (-4225 (($) 14)) (-3634 (((-783) $) NIL)) (-1460 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) 13)) (-4172 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-3582 (($ (-656 |#4|)) 22)) (-3118 (($ $ |#3|) 52)) (-2637 (($ $ |#3|) 54)) (-1584 (($ $) NIL)) (-3317 (($ $ |#3|) NIL)) (-3570 (((-876) $) 35) (((-656 |#4|) $) 46)) (-3891 (((-783) $) NIL (|has| |#3| (-379)))) (-4055 (((-112) $ $) NIL)) (-3765 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2833 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-3321 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465)))) (-1583 (((-656 |#3|) $) NIL)) (-3419 (((-112) |#3| $) NIL)) (-2925 (((-112) $ $) NIL)) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) NIL)) (-4093 (((-656 (-2 (|:| -1958 $) (|:| -3256 (-656 |#4|)))) (-656 |#4|)) NIL)) (-3668 (((-656 $) (-656 |#4|)) NIL)) (-1969 (((-656 |#3|) $) NIL)) (-4255 (((-112) $) NIL)) (-2136 (((-112) $) NIL (|has| |#1| (-568)))) (-2899 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3798 ((|#4| |#4| $) NIL)) (-1795 (((-2 (|:| |under| $) (|:| -4236 $) (|:| |upper| $)) $ |#3|) NIL)) (-4264 (((-112) $ (-783)) NIL)) (-1974 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3404 (($) NIL T CONST)) (-2203 (((-112) $) 29 (|has| |#1| (-568)))) (-3438 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1990 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3740 (((-112) $) NIL (|has| |#1| (-568)))) (-2149 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2239 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2514 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2859 (($ (-656 |#4|)) NIL)) (-3592 (((-3 $ "failed") $) 45)) (-3142 ((|#4| |#4| $) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-3945 (($ |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3891 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-1483 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4022 ((|#4| |#4| $) NIL)) (-3685 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4464))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1599 (((-2 (|:| -1958 (-656 |#4|)) (|:| -3256 (-656 |#4|))) $) NIL)) (-3965 (((-656 |#4|) $) 18 (|has| $ (-6 -4464)))) (-1918 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2235 ((|#3| $) 38)) (-1368 (((-112) $ (-783)) NIL)) (-2425 (((-656 |#4|) $) 19 (|has| $ (-6 -4464)))) (-2885 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-4326 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#4| |#4|) $) 23)) (-2666 (((-656 |#3|) $) NIL)) (-4001 (((-112) |#3| $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL)) (-3968 (((-3 |#4| "failed") $) 42)) (-2795 (((-656 |#4|) $) NIL)) (-2785 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3640 ((|#4| |#4| $) NIL)) (-2264 (((-112) $ $) NIL)) (-3196 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3420 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3235 ((|#4| |#4| $) NIL)) (-1450 (((-1141) $) NIL)) (-3580 (((-3 |#4| "failed") $) 40)) (-3434 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2101 (((-3 $ "failed") $ |#4|) 58)) (-1743 (($ $ |#4|) NIL)) (-3252 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) 17)) (-3579 (($) 14)) (-2683 (((-783) $) NIL)) (-1460 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) 13)) (-4171 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-3581 (($ (-656 |#4|)) 22)) (-2479 (($ $ |#3|) 52)) (-2394 (($ $ |#3|) 54)) (-2582 (($ $) NIL)) (-2665 (($ $ |#3|) NIL)) (-3569 (((-876) $) 35) (((-656 |#4|) $) 46)) (-3451 (((-783) $) NIL (|has| |#3| (-379)))) (-2399 (((-112) $ $) NIL)) (-1530 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3653 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-2708 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-2572 (((-656 |#3|) $) NIL)) (-2476 (((-112) |#3| $) NIL)) (-2924 (((-112) $ $) NIL)) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) (((-488 |#1| |#2| |#3| |#4|) (-1231 |#1| |#2| |#3| |#4|) (-568) (-805) (-861) (-1086 |#1| |#2| |#3|)) (T -488)) NIL (-1231 |#1| |#2| |#3| |#4|) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-4016 (((-112) $ $) NIL)) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-2860 (((-576) $) NIL) (((-419 (-576)) $) NIL)) (-3429 (($ $ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-4249 (((-112) $) NIL)) (-1600 (($) 17)) (-4193 (((-112) $) NIL)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1828 (((-430 $) $) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1967 (((-783) $) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-4172 (((-390) $) 21) (((-227) $) 24) (((-419 (-1193 (-576))) $) 18) (((-548) $) 53)) (-3570 (((-876) $) 51) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (((-227) $) 23) (((-390) $) 20)) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL)) (-2721 (($) 37 T CONST)) (-2732 (($) 8 T CONST)) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ $) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3330 (((-112) $ $) NIL)) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-2859 (((-576) $) NIL) (((-419 (-576)) $) NIL)) (-3428 (($ $ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3833 (((-112) $) NIL)) (-1600 (($) 17)) (-1351 (((-112) $) NIL)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1828 (((-430 $) $) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1979 (((-783) $) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-4171 (((-390) $) 21) (((-227) $) 24) (((-419 (-1193 (-576))) $) 18) (((-548) $) 53)) (-3569 (((-876) $) 51) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (((-227) $) 23) (((-390) $) 20)) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL)) (-2721 (($) 37 T CONST)) (-2731 (($) 8 T CONST)) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) (((-489) (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))) (-1043) (-625 (-227)) (-625 (-390)) (-626 (-419 (-1193 (-576)))) (-626 (-548)) (-10 -8 (-15 -1600 ($))))) (T -489)) ((-1600 (*1 *1) (-5 *1 (-489)))) (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))) (-1043) (-625 (-227)) (-625 (-390)) (-626 (-419 (-1193 (-576)))) (-626 (-548)) (-10 -8 (-15 -1600 ($)))) -((-3489 (((-112) $ $) NIL)) (-1669 (((-1156) $) 11)) (-1657 (((-1156) $) 9)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 17) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-1669 (((-1156) $) 11)) (-1657 (((-1156) $) 9)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 17) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) (((-490) (-13 (-1104) (-10 -8 (-15 -1657 ((-1156) $)) (-15 -1669 ((-1156) $))))) (T -490)) ((-1657 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-490)))) (-1669 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-490))))) (-13 (-1104) (-10 -8 (-15 -1657 ((-1156) $)) (-15 -1669 ((-1156) $)))) -((-3489 (((-112) $ $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-4128 (($) NIL) (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-2047 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4466)))) (-1808 (((-112) $ (-783)) NIL)) (-3756 ((|#2| $ |#1| |#2|) 16)) (-2300 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-2197 (((-3 |#2| "failed") |#1| $) 20)) (-3886 (($) NIL T CONST)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121))))) (-1671 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (|has| $ (-6 -4465))) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-3 |#2| "failed") |#1| $) 18)) (-3946 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-3686 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4465))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-4335 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4466)))) (-4274 ((|#2| $ |#1|) NIL)) (-3966 (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-656 |#2|) $) NIL (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) NIL)) (-2924 ((|#1| $) NIL (|has| |#1| (-861)))) (-2014 (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-656 |#2|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-2137 ((|#1| $) NIL (|has| |#1| (-861)))) (-4323 (($ (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3203 (((-656 |#1|) $) 13)) (-4008 (((-112) |#1| $) NIL)) (-1597 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL)) (-1901 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL)) (-4234 (((-656 |#1|) $) NIL)) (-3354 (((-112) |#1| $) NIL)) (-1450 (((-1141) $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3581 ((|#2| $) NIL (|has| |#1| (-861)))) (-1541 (((-3 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL)) (-4046 (($ $ |#2|) NIL (|has| $ (-6 -4466)))) (-3449 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL)) (-4320 (((-112) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-2281 (((-656 |#2|) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) 19)) (-2797 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2271 (($) NIL) (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-783) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4172 (((-548) $) NIL (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-626 (-548))))) (-3582 (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-3570 (((-876) $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-4055 (((-112) $ $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3943 (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-3321 (((-112) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 11 (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3503 (((-783) $) 15 (|has| $ (-6 -4465))))) -(((-491 |#1| |#2| |#3|) (-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4465))) (-1121) (-1121) (-1179)) (T -491)) -NIL -(-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4465))) -((-4062 (((-576) (-576) (-576)) 19)) (-4423 (((-112) (-576) (-576) (-576) (-576)) 28)) (-4354 (((-1288 (-656 (-576))) (-783) (-783)) 41))) -(((-492) (-10 -7 (-15 -4062 ((-576) (-576) (-576))) (-15 -4423 ((-112) (-576) (-576) (-576) (-576))) (-15 -4354 ((-1288 (-656 (-576))) (-783) (-783))))) (T -492)) -((-4354 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1288 (-656 (-576)))) (-5 *1 (-492)))) (-4423 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-492)))) (-4062 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-492))))) -(-10 -7 (-15 -4062 ((-576) (-576) (-576))) (-15 -4423 ((-112) (-576) (-576) (-576) (-576))) (-15 -4354 ((-1288 (-656 (-576))) (-783) (-783)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-1969 (((-656 (-878 |#1|)) $) NIL)) (-1798 (((-1193 $) $ (-878 |#1|)) NIL) (((-1193 |#2|) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2757 (($ $) NIL (|has| |#2| (-568)))) (-3788 (((-112) $) NIL (|has| |#2| (-568)))) (-3543 (((-783) $) NIL) (((-783) $ (-656 (-878 |#1|))) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3601 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-2487 (($ $) NIL (|has| |#2| (-464)))) (-3921 (((-430 $) $) NIL (|has| |#2| (-464)))) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-878 |#1|) "failed") $) NIL)) (-2860 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-878 |#1|) $) NIL)) (-3230 (($ $ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-4319 (($ $ (-656 (-576))) NIL)) (-2114 (($ $) NIL)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-3767 (($ $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-2103 (((-656 $) $) NIL)) (-4249 (((-112) $) NIL (|has| |#2| (-928)))) (-2431 (($ $ |#2| (-494 (-3503 |#1|) (-783)) $) NIL)) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-4193 (((-112) $) NIL)) (-2217 (((-783) $) NIL)) (-1955 (($ (-1193 |#2|) (-878 |#1|)) NIL) (($ (-1193 $) (-878 |#1|)) NIL)) (-1608 (((-656 $) $) NIL)) (-2823 (((-112) $) NIL)) (-1945 (($ |#2| (-494 (-3503 |#1|) (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-4130 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $ (-878 |#1|)) NIL)) (-3751 (((-494 (-3503 |#1|) (-783)) $) NIL) (((-783) $ (-878 |#1|)) NIL) (((-656 (-783)) $ (-656 (-878 |#1|))) NIL)) (-2999 (($ (-1 (-494 (-3503 |#1|) (-783)) (-494 (-3503 |#1|) (-783))) $) NIL)) (-4117 (($ (-1 |#2| |#2|) $) NIL)) (-3721 (((-3 (-878 |#1|) "failed") $) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-2081 (($ $) NIL)) (-2091 ((|#2| $) NIL)) (-3458 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-3699 (((-1179) $) NIL)) (-1385 (((-3 (-656 $) "failed") $) NIL)) (-1690 (((-3 (-656 $) "failed") $) NIL)) (-2040 (((-3 (-2 (|:| |var| (-878 |#1|)) (|:| -3422 (-783))) "failed") $) NIL)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) NIL)) (-2070 ((|#2| $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#2| (-464)))) (-3498 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-4100 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#2| (-928)))) (-3476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3284 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-878 |#1|) |#2|) NIL) (($ $ (-656 (-878 |#1|)) (-656 |#2|)) NIL) (($ $ (-878 |#1|) $) NIL) (($ $ (-656 (-878 |#1|)) (-656 $)) NIL)) (-4352 (($ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-2775 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-3634 (((-494 (-3503 |#1|) (-783)) $) NIL) (((-783) $ (-878 |#1|)) NIL) (((-656 (-783)) $ (-656 (-878 |#1|))) NIL)) (-4172 (((-907 (-390)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-878 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-2457 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928))))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-878 |#1|)) NIL) (($ (-419 (-576))) NIL (-2760 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-1618 (((-656 |#2|) $) NIL)) (-3177 ((|#2| $ (-494 (-3503 |#1|) (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-4336 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#2| (-146))))) (-3996 (((-783)) NIL T CONST)) (-2541 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2020 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-493 |#1| |#2|) (-13 (-968 |#2| (-494 (-3503 |#1|) (-783)) (-878 |#1|)) (-10 -8 (-15 -4319 ($ $ (-656 (-576)))))) (-656 (-1197)) (-1070)) (T -493)) -((-4319 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-493 *3 *4)) (-14 *3 (-656 (-1197))) (-4 *4 (-1070))))) -(-13 (-968 |#2| (-494 (-3503 |#1|) (-783)) (-878 |#1|)) (-10 -8 (-15 -4319 ($ $ (-656 (-576)))))) -((-3489 (((-112) $ $) NIL (|has| |#2| (-102)))) (-4308 (((-112) $) NIL (|has| |#2| (-23)))) (-2052 (($ (-940)) NIL (|has| |#2| (-1070)))) (-2047 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4466)))) (-2324 (($ $ $) NIL (|has| |#2| (-805)))) (-4367 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-1808 (((-112) $ (-783)) NIL)) (-2098 (((-783)) NIL (|has| |#2| (-379)))) (-3756 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4466)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1121)))) (-2860 (((-576) $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) ((|#2| $) NIL (|has| |#2| (-1121)))) (-2204 (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL (|has| |#2| (-1070))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1070)))) (-1561 (((-3 $ "failed") $) NIL (|has| |#2| (-1070)))) (-1836 (($) NIL (|has| |#2| (-379)))) (-4335 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4466)))) (-4274 ((|#2| $ (-576)) 11)) (-3966 (((-656 |#2|) $) NIL (|has| $ (-6 -4465)))) (-4193 (((-112) $) NIL (|has| |#2| (-1070)))) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-576) $) NIL (|has| (-576) (-861)))) (-3125 (($ $ $) NIL (|has| |#2| (-861)))) (-2014 (((-656 |#2|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-2137 (((-576) $) NIL (|has| (-576) (-861)))) (-3133 (($ $ $) NIL (|has| |#2| (-861)))) (-4323 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#2| |#2|) $) NIL)) (-4401 (((-940) $) NIL (|has| |#2| (-379)))) (-1330 (((-112) $ (-783)) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL (|has| |#2| (-1070))) (((-701 |#2|) (-1288 $)) NIL (|has| |#2| (-1070)))) (-3699 (((-1179) $) NIL (|has| |#2| (-1121)))) (-4234 (((-656 (-576)) $) NIL)) (-3354 (((-112) (-576) $) NIL)) (-3224 (($ (-940)) NIL (|has| |#2| (-379)))) (-1450 (((-1141) $) NIL (|has| |#2| (-1121)))) (-3581 ((|#2| $) NIL (|has| (-576) (-861)))) (-4046 (($ $ |#2|) NIL (|has| $ (-6 -4466)))) (-4320 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-2281 (((-656 |#2|) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL)) (-2118 ((|#2| $ $) NIL (|has| |#2| (-1070)))) (-1872 (($ (-1288 |#2|)) NIL)) (-2003 (((-135)) NIL (|has| |#2| (-374)))) (-2775 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1070)))) (-1460 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-1870 (($ $) NIL)) (-3570 (((-1288 |#2|) $) NIL) (($ (-576)) NIL (-2760 (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (($ |#2|) NIL (|has| |#2| (-1121))) (((-876) $) NIL (|has| |#2| (-625 (-876))))) (-3996 (((-783)) NIL (|has| |#2| (-1070)) CONST)) (-4055 (((-112) $ $) NIL (|has| |#2| (-102)))) (-3321 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465)))) (-2721 (($) NIL (|has| |#2| (-23)) CONST)) (-2732 (($) NIL (|has| |#2| (-1070)) CONST)) (-2020 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1070)))) (-2992 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2964 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2925 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2950 (((-112) $ $) 17 (|has| |#2| (-861)))) (-3057 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3044 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-3030 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1070))) (($ $ (-940)) NIL (|has| |#2| (-1070)))) (* (($ $ $) NIL (|has| |#2| (-1070))) (($ $ |#2|) NIL (|has| |#2| (-738))) (($ |#2| $) NIL (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-940) $) NIL (|has| |#2| (-25)))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102)) (|has| |#2| (-102))))) (-4127 (($) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-1512 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4465)))) (-4264 (((-112) $ (-783)) NIL)) (-3755 ((|#2| $ |#1| |#2|) 16)) (-2123 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-1974 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2198 (((-3 |#2| "failed") |#1| $) 20)) (-3404 (($) NIL T CONST)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121))))) (-2172 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) 18)) (-3945 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#2| $ |#1|) NIL)) (-3965 (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) NIL)) (-3281 ((|#1| $) NIL (|has| |#1| (-861)))) (-2425 (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-4280 ((|#1| $) NIL (|has| |#1| (-861)))) (-4326 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4465))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3200 (((-656 |#1|) $) 13)) (-3259 (((-112) |#1| $) NIL)) (-2722 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL)) (-2597 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL)) (-3669 (((-656 |#1|) $) NIL)) (-3090 (((-112) |#1| $) NIL)) (-1450 (((-1141) $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3580 ((|#2| $) NIL (|has| |#1| (-861)))) (-3434 (((-3 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) "failed") (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL)) (-2304 (($ $ |#2|) NIL (|has| $ (-6 -4465)))) (-1541 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL)) (-3252 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-3207 (((-656 |#2|) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) 19)) (-2796 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3101 (($) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-3569 (((-876) $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-2399 (((-112) $ $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102)) (|has| |#2| (-102))))) (-3972 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-2708 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 11 (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102)) (|has| |#2| (-102))))) (-3502 (((-783) $) 15 (|has| $ (-6 -4464))))) +(((-491 |#1| |#2| |#3|) (-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4464))) (-1121) (-1121) (-1179)) (T -491)) +NIL +(-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4464))) +((-2467 (((-576) (-576) (-576)) 19)) (-1773 (((-112) (-576) (-576) (-576) (-576)) 28)) (-4353 (((-1288 (-656 (-576))) (-783) (-783)) 41))) +(((-492) (-10 -7 (-15 -2467 ((-576) (-576) (-576))) (-15 -1773 ((-112) (-576) (-576) (-576) (-576))) (-15 -4353 ((-1288 (-656 (-576))) (-783) (-783))))) (T -492)) +((-4353 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1288 (-656 (-576)))) (-5 *1 (-492)))) (-1773 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-492)))) (-2467 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-492))))) +(-10 -7 (-15 -2467 ((-576) (-576) (-576))) (-15 -1773 ((-112) (-576) (-576) (-576) (-576))) (-15 -4353 ((-1288 (-656 (-576))) (-783) (-783)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-1969 (((-656 (-878 |#1|)) $) NIL)) (-1797 (((-1193 $) $ (-878 |#1|)) NIL) (((-1193 |#2|) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-4195 (($ $) NIL (|has| |#2| (-568)))) (-1760 (((-112) $) NIL (|has| |#2| (-568)))) (-4329 (((-783) $) NIL) (((-783) $ (-656 (-878 |#1|))) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3646 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3444 (($ $) NIL (|has| |#2| (-464)))) (-3760 (((-430 $) $) NIL (|has| |#2| (-464)))) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-878 |#1|) "failed") $) NIL)) (-2859 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-878 |#1|) $) NIL)) (-4334 (($ $ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-3244 (($ $ (-656 (-576))) NIL)) (-2114 (($ $) NIL)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1547 (($ $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-2103 (((-656 $) $) NIL)) (-3833 (((-112) $) NIL (|has| |#2| (-928)))) (-4124 (($ $ |#2| (-494 (-3502 |#1|) (-783)) $) NIL)) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-1351 (((-112) $) NIL)) (-3799 (((-783) $) NIL)) (-1956 (($ (-1193 |#2|) (-878 |#1|)) NIL) (($ (-1193 $) (-878 |#1|)) NIL)) (-2846 (((-656 $) $) NIL)) (-3538 (((-112) $) NIL)) (-1944 (($ |#2| (-494 (-3502 |#1|) (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-1915 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $ (-878 |#1|)) NIL)) (-2578 (((-494 (-3502 |#1|) (-783)) $) NIL) (((-783) $ (-878 |#1|)) NIL) (((-656 (-783)) $ (-656 (-878 |#1|))) NIL)) (-3878 (($ (-1 (-494 (-3502 |#1|) (-783)) (-494 (-3502 |#1|) (-783))) $) NIL)) (-4116 (($ (-1 |#2| |#2|) $) NIL)) (-2289 (((-3 (-878 |#1|) "failed") $) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-2081 (($ $) NIL)) (-2091 ((|#2| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2046 (((-1179) $) NIL)) (-3845 (((-3 (-656 $) "failed") $) NIL)) (-2363 (((-3 (-656 $) "failed") $) NIL)) (-1452 (((-3 (-2 (|:| |var| (-878 |#1|)) (|:| -2508 (-783))) "failed") $) NIL)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) NIL)) (-2070 ((|#2| $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#2| (-464)))) (-3497 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-1644 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#2| (-928)))) (-3475 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3282 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-878 |#1|) |#2|) NIL) (($ $ (-656 (-878 |#1|)) (-656 |#2|)) NIL) (($ $ (-878 |#1|) $) NIL) (($ $ (-656 (-878 |#1|)) (-656 $)) NIL)) (-2269 (($ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-2774 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-2683 (((-494 (-3502 |#1|) (-783)) $) NIL) (((-783) $ (-878 |#1|)) NIL) (((-656 (-783)) $ (-656 (-878 |#1|))) NIL)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-878 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-4370 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-878 |#1|)) NIL) (($ (-419 (-576))) NIL (-2759 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-2937 (((-656 |#2|) $) NIL)) (-1822 ((|#2| $ (-494 (-3502 |#1|) (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-3390 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#2| (-146))))) (-3154 (((-783)) NIL T CONST)) (-2717 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2020 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-493 |#1| |#2|) (-13 (-968 |#2| (-494 (-3502 |#1|) (-783)) (-878 |#1|)) (-10 -8 (-15 -3244 ($ $ (-656 (-576)))))) (-656 (-1197)) (-1070)) (T -493)) +((-3244 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-493 *3 *4)) (-14 *3 (-656 (-1197))) (-4 *4 (-1070))))) +(-13 (-968 |#2| (-494 (-3502 |#1|) (-783)) (-878 |#1|)) (-10 -8 (-15 -3244 ($ $ (-656 (-576)))))) +((-3488 (((-112) $ $) NIL (|has| |#2| (-102)))) (-3135 (((-112) $) NIL (|has| |#2| (-23)))) (-1545 (($ (-940)) NIL (|has| |#2| (-1070)))) (-1512 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2386 (($ $ $) NIL (|has| |#2| (-805)))) (-2428 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-4264 (((-112) $ (-783)) NIL)) (-2098 (((-783)) NIL (|has| |#2| (-379)))) (-3755 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4465)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1121)))) (-2859 (((-576) $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) ((|#2| $) NIL (|has| |#2| (-1121)))) (-3674 (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL (|has| |#2| (-1070))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1070)))) (-3673 (((-3 $ "failed") $) NIL (|has| |#2| (-1070)))) (-1836 (($) NIL (|has| |#2| (-379)))) (-4332 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#2| $ (-576)) 11)) (-3965 (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-1351 (((-112) $) NIL (|has| |#2| (-1070)))) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#2| (-861)))) (-2425 (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-4280 (((-576) $) NIL (|has| (-576) (-861)))) (-1441 (($ $ $) NIL (|has| |#2| (-861)))) (-4326 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#2| |#2|) $) NIL)) (-1558 (((-940) $) NIL (|has| |#2| (-379)))) (-2883 (((-112) $ (-783)) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL (|has| |#2| (-1070))) (((-701 |#2|) (-1288 $)) NIL (|has| |#2| (-1070)))) (-2046 (((-1179) $) NIL (|has| |#2| (-1121)))) (-3669 (((-656 (-576)) $) NIL)) (-3090 (((-112) (-576) $) NIL)) (-3223 (($ (-940)) NIL (|has| |#2| (-379)))) (-1450 (((-1141) $) NIL (|has| |#2| (-1121)))) (-3580 ((|#2| $) NIL (|has| (-576) (-861)))) (-2304 (($ $ |#2|) NIL (|has| $ (-6 -4465)))) (-3252 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-3207 (((-656 |#2|) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL)) (-4099 ((|#2| $ $) NIL (|has| |#2| (-1070)))) (-1871 (($ (-1288 |#2|)) NIL)) (-2319 (((-135)) NIL (|has| |#2| (-374)))) (-2774 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1070)))) (-1460 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1870 (($ $) NIL)) (-3569 (((-1288 |#2|) $) NIL) (($ (-576)) NIL (-2759 (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (($ |#2|) NIL (|has| |#2| (-1121))) (((-876) $) NIL (|has| |#2| (-625 (-876))))) (-3154 (((-783)) NIL (|has| |#2| (-1070)) CONST)) (-2399 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2708 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2721 (($) NIL (|has| |#2| (-23)) CONST)) (-2731 (($) NIL (|has| |#2| (-1070)) CONST)) (-2020 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1070)))) (-2990 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2924 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2949 (((-112) $ $) 17 (|has| |#2| (-861)))) (-3056 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3043 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-3029 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1070))) (($ $ (-940)) NIL (|has| |#2| (-1070)))) (* (($ $ $) NIL (|has| |#2| (-1070))) (($ $ |#2|) NIL (|has| |#2| (-738))) (($ |#2| $) NIL (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-940) $) NIL (|has| |#2| (-25)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) (((-494 |#1| |#2|) (-243 |#1| |#2|) (-783) (-805)) (T -494)) NIL (-243 |#1| |#2|) -((-3489 (((-112) $ $) NIL)) (-2092 (((-656 (-890)) $) 15)) (-2629 (((-518) $) 13)) (-3699 (((-1179) $) NIL)) (-3504 (($ (-518) (-656 (-890))) 11)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 22) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-495) (-13 (-1104) (-10 -8 (-15 -3504 ($ (-518) (-656 (-890)))) (-15 -2629 ((-518) $)) (-15 -2092 ((-656 (-890)) $))))) (T -495)) -((-3504 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-890))) (-5 *1 (-495)))) (-2629 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495)))) (-2092 (*1 *2 *1) (-12 (-5 *2 (-656 (-890))) (-5 *1 (-495))))) -(-13 (-1104) (-10 -8 (-15 -3504 ($ (-518) (-656 (-890)))) (-15 -2629 ((-518) $)) (-15 -2092 ((-656 (-890)) $)))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1808 (((-112) $ (-783)) NIL)) (-3886 (($) NIL T CONST)) (-3966 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) NIL)) (-2453 (($ $ $) 48)) (-3391 (($ $ $) 47)) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3133 ((|#1| $) 40)) (-4323 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1597 ((|#1| $) 41)) (-1901 (($ |#1| $) 18)) (-3522 (($ (-656 |#1|)) 19)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3449 ((|#1| $) 34)) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) 11)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3570 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3943 (($ (-656 |#1|)) 45)) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3503 (((-783) $) 29 (|has| $ (-6 -4465))))) -(((-496 |#1|) (-13 (-989 |#1|) (-10 -8 (-15 -3522 ($ (-656 |#1|))))) (-861)) (T -496)) -((-3522 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-496 *3))))) -(-13 (-989 |#1|) (-10 -8 (-15 -3522 ($ (-656 |#1|))))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-3686 (($ $) 71)) (-4340 (((-112) $) NIL)) (-3699 (((-1179) $) NIL)) (-4145 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 45)) (-1450 (((-1141) $) NIL)) (-4129 (((-3 |#4| "failed") $) 117)) (-2043 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-576)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-1508 (((-2 (|:| -3099 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-3570 (((-876) $) 110)) (-4055 (((-112) $ $) NIL)) (-2721 (($) 32 T CONST)) (-2925 (((-112) $ $) 121)) (-3044 (($ $) 77) (($ $ $) NIL)) (-3030 (($ $ $) 72)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 78))) +((-3488 (((-112) $ $) NIL)) (-2092 (((-656 (-890)) $) 15)) (-2628 (((-518) $) 13)) (-2046 (((-1179) $) NIL)) (-3983 (($ (-518) (-656 (-890))) 11)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 22) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-495) (-13 (-1104) (-10 -8 (-15 -3983 ($ (-518) (-656 (-890)))) (-15 -2628 ((-518) $)) (-15 -2092 ((-656 (-890)) $))))) (T -495)) +((-3983 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-890))) (-5 *1 (-495)))) (-2628 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495)))) (-2092 (*1 *2 *1) (-12 (-5 *2 (-656 (-890))) (-5 *1 (-495))))) +(-13 (-1104) (-10 -8 (-15 -3983 ($ (-518) (-656 (-890)))) (-15 -2628 ((-518) $)) (-15 -2092 ((-656 (-890)) $)))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4264 (((-112) $ (-783)) NIL)) (-3404 (($) NIL T CONST)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) NIL)) (-4330 (($ $ $) 48)) (-2185 (($ $ $) 47)) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1441 ((|#1| $) 40)) (-4326 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2722 ((|#1| $) 41)) (-2597 (($ |#1| $) 18)) (-4146 (($ (-656 |#1|)) 19)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-1541 ((|#1| $) 34)) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) 11)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3972 (($ (-656 |#1|)) 45)) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3502 (((-783) $) 29 (|has| $ (-6 -4464))))) +(((-496 |#1|) (-13 (-989 |#1|) (-10 -8 (-15 -4146 ($ (-656 |#1|))))) (-861)) (T -496)) +((-4146 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-496 *3))))) +(-13 (-989 |#1|) (-10 -8 (-15 -4146 ($ (-656 |#1|))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-3685 (($ $) 71)) (-2158 (((-112) $) NIL)) (-2046 (((-1179) $) NIL)) (-2041 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 45)) (-1450 (((-1141) $) NIL)) (-4128 (((-3 |#4| "failed") $) 117)) (-1476 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-576)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-4323 (((-2 (|:| -3099 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-3569 (((-876) $) 110)) (-2399 (((-112) $ $) NIL)) (-2721 (($) 32 T CONST)) (-2924 (((-112) $ $) 121)) (-3043 (($ $) 77) (($ $ $) NIL)) (-3029 (($ $ $) 72)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 78))) (((-497 |#1| |#2| |#3| |#4|) (-346 |#1| |#2| |#3| |#4|) (-374) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -497)) NIL (-346 |#1| |#2| |#3| |#4|) -((-4165 (((-576) (-656 (-576))) 53)) (-1678 ((|#1| (-656 |#1|)) 94)) (-2659 (((-656 |#1|) (-656 |#1|)) 95)) (-2542 (((-656 |#1|) (-656 |#1|)) 97)) (-3498 ((|#1| (-656 |#1|)) 96)) (-2457 (((-656 (-576)) (-656 |#1|)) 56))) -(((-498 |#1|) (-10 -7 (-15 -3498 (|#1| (-656 |#1|))) (-15 -1678 (|#1| (-656 |#1|))) (-15 -2542 ((-656 |#1|) (-656 |#1|))) (-15 -2659 ((-656 |#1|) (-656 |#1|))) (-15 -2457 ((-656 (-576)) (-656 |#1|))) (-15 -4165 ((-576) (-656 (-576))))) (-1264 (-576))) (T -498)) -((-4165 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-576)) (-5 *1 (-498 *4)) (-4 *4 (-1264 *2)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1264 (-576))) (-5 *2 (-656 (-576))) (-5 *1 (-498 *4)))) (-2659 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1264 (-576))) (-5 *1 (-498 *3)))) (-2542 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1264 (-576))) (-5 *1 (-498 *3)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1264 (-576))))) (-3498 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1264 (-576)))))) -(-10 -7 (-15 -3498 (|#1| (-656 |#1|))) (-15 -1678 (|#1| (-656 |#1|))) (-15 -2542 ((-656 |#1|) (-656 |#1|))) (-15 -2659 ((-656 |#1|) (-656 |#1|))) (-15 -2457 ((-656 (-576)) (-656 |#1|))) (-15 -4165 ((-576) (-656 (-576))))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2575 (((-576) $) NIL (|has| (-576) (-317)))) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3601 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-4016 (((-112) $ $) NIL)) (-3308 (((-576) $) NIL (|has| (-576) (-832)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| (-576) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1059 (-576))))) (-2860 (((-576) $) NIL) (((-1197) $) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-576) (-1059 (-576)))) (((-576) $) NIL (|has| (-576) (-1059 (-576))))) (-3429 (($ $ $) NIL)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-576) (-557)))) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-4249 (((-112) $) NIL)) (-2087 (((-112) $) NIL (|has| (-576) (-832)))) (-1840 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-576) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-576) (-901 (-390))))) (-4193 (((-112) $) NIL)) (-2171 (($ $) NIL)) (-1570 (((-576) $) NIL)) (-2240 (((-3 $ "failed") $) NIL (|has| (-576) (-1173)))) (-1634 (((-112) $) NIL (|has| (-576) (-832)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3125 (($ $ $) NIL (|has| (-576) (-861)))) (-3133 (($ $ $) NIL (|has| (-576) (-861)))) (-4117 (($ (-1 (-576) (-576)) $) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3540 (($) NIL (|has| (-576) (-1173)) CONST)) (-1882 (($ (-419 (-576))) 9)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2393 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-2443 (((-576) $) NIL (|has| (-576) (-557)))) (-4100 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-1828 (((-430 $) $) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3284 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1197)) (-656 (-576))) NIL (|has| (-576) (-526 (-1197) (-576)))) (($ $ (-1197) (-576)) NIL (|has| (-576) (-526 (-1197) (-576))))) (-1967 (((-783) $) NIL)) (-2797 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-2775 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-2143 (($ $) NIL)) (-1581 (((-576) $) NIL)) (-4172 (((-907 (-576)) $) NIL (|has| (-576) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-576) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1043))) (((-227) $) NIL (|has| (-576) (-1043)))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-928))))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1197)) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL) (((-1025 16) $) 10)) (-4336 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| $ (-146)) (|has| (-576) (-928))) (|has| (-576) (-146))))) (-3996 (((-783)) NIL T CONST)) (-4118 (((-576) $) NIL (|has| (-576) (-557)))) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL)) (-2122 (($ $) NIL (|has| (-576) (-832)))) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2020 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-2992 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2964 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2950 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3057 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) -(((-499) (-13 (-1013 (-576)) (-625 (-419 (-576))) (-625 (-1025 16)) (-10 -8 (-15 -2393 ((-419 (-576)) $)) (-15 -1882 ($ (-419 (-576))))))) (T -499)) -((-2393 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499)))) (-1882 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499))))) -(-13 (-1013 (-576)) (-625 (-419 (-576))) (-625 (-1025 16)) (-10 -8 (-15 -2393 ((-419 (-576)) $)) (-15 -1882 ($ (-419 (-576)))))) -((-2014 (((-656 |#2|) $) 31)) (-1612 (((-112) |#2| $) 39)) (-4320 (((-112) (-1 (-112) |#2|) $) 26)) (-3284 (($ $ (-656 (-304 |#2|))) 13) (($ $ (-304 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-656 |#2|) (-656 |#2|)) NIL)) (-1460 (((-783) (-1 (-112) |#2|) $) 30) (((-783) |#2| $) 37)) (-3570 (((-876) $) 45)) (-3321 (((-112) (-1 (-112) |#2|) $) 23)) (-2925 (((-112) $ $) 35)) (-3503 (((-783) $) 18))) -(((-500 |#1| |#2|) (-10 -8 (-15 -2925 ((-112) |#1| |#1|)) (-15 -3570 ((-876) |#1|)) (-15 -3284 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -3284 (|#1| |#1| |#2| |#2|)) (-15 -3284 (|#1| |#1| (-304 |#2|))) (-15 -3284 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -1612 ((-112) |#2| |#1|)) (-15 -1460 ((-783) |#2| |#1|)) (-15 -2014 ((-656 |#2|) |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -4320 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3321 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3503 ((-783) |#1|))) (-501 |#2|) (-1238)) (T -500)) -NIL -(-10 -8 (-15 -2925 ((-112) |#1| |#1|)) (-15 -3570 ((-876) |#1|)) (-15 -3284 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -3284 (|#1| |#1| |#2| |#2|)) (-15 -3284 (|#1| |#1| (-304 |#2|))) (-15 -3284 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -1612 ((-112) |#2| |#1|)) (-15 -1460 ((-783) |#2| |#1|)) (-15 -2014 ((-656 |#2|) |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -4320 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3321 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3503 ((-783) |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1808 (((-112) $ (-783)) 8)) (-3886 (($) 7 T CONST)) (-3966 (((-656 |#1|) $) 31 (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) 9)) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-4323 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 36)) (-1330 (((-112) $ (-783)) 10)) (-3699 (((-1179) $) 23 (|has| |#1| (-1121)))) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 13)) (-3570 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-4228 (((-576) (-656 (-576))) 53)) (-2249 ((|#1| (-656 |#1|)) 94)) (-2569 (((-656 |#1|) (-656 |#1|)) 95)) (-2729 (((-656 |#1|) (-656 |#1|)) 97)) (-3497 ((|#1| (-656 |#1|)) 96)) (-4370 (((-656 (-576)) (-656 |#1|)) 56))) +(((-498 |#1|) (-10 -7 (-15 -3497 (|#1| (-656 |#1|))) (-15 -2249 (|#1| (-656 |#1|))) (-15 -2729 ((-656 |#1|) (-656 |#1|))) (-15 -2569 ((-656 |#1|) (-656 |#1|))) (-15 -4370 ((-656 (-576)) (-656 |#1|))) (-15 -4228 ((-576) (-656 (-576))))) (-1264 (-576))) (T -498)) +((-4228 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-576)) (-5 *1 (-498 *4)) (-4 *4 (-1264 *2)))) (-4370 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1264 (-576))) (-5 *2 (-656 (-576))) (-5 *1 (-498 *4)))) (-2569 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1264 (-576))) (-5 *1 (-498 *3)))) (-2729 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1264 (-576))) (-5 *1 (-498 *3)))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1264 (-576))))) (-3497 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1264 (-576)))))) +(-10 -7 (-15 -3497 (|#1| (-656 |#1|))) (-15 -2249 (|#1| (-656 |#1|))) (-15 -2729 ((-656 |#1|) (-656 |#1|))) (-15 -2569 ((-656 |#1|) (-656 |#1|))) (-15 -4370 ((-656 (-576)) (-656 |#1|))) (-15 -4228 ((-576) (-656 (-576))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-3110 (((-576) $) NIL (|has| (-576) (-317)))) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3646 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-3330 (((-112) $ $) NIL)) (-3906 (((-576) $) NIL (|has| (-576) (-832)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| (-576) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1059 (-576))))) (-2859 (((-576) $) NIL) (((-1197) $) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-576) (-1059 (-576)))) (((-576) $) NIL (|has| (-576) (-1059 (-576))))) (-3428 (($ $ $) NIL)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-576) (-557)))) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3833 (((-112) $) NIL)) (-1866 (((-112) $) NIL (|has| (-576) (-832)))) (-3325 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-576) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-576) (-901 (-390))))) (-1351 (((-112) $) NIL)) (-3328 (($ $) NIL)) (-1570 (((-576) $) NIL)) (-2734 (((-3 $ "failed") $) NIL (|has| (-576) (-1173)))) (-3137 (((-112) $) NIL (|has| (-576) (-832)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3124 (($ $ $) NIL (|has| (-576) (-861)))) (-1441 (($ $ $) NIL (|has| (-576) (-861)))) (-4116 (($ (-1 (-576) (-576)) $) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3539 (($) NIL (|has| (-576) (-1173)) CONST)) (-3717 (($ (-419 (-576))) 9)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1788 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-4236 (((-576) $) NIL (|has| (-576) (-557)))) (-1644 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-1828 (((-430 $) $) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3282 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1197)) (-656 (-576))) NIL (|has| (-576) (-526 (-1197) (-576)))) (($ $ (-1197) (-576)) NIL (|has| (-576) (-526 (-1197) (-576))))) (-1979 (((-783) $) NIL)) (-2796 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-2774 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-4325 (($ $) NIL)) (-1581 (((-576) $) NIL)) (-4171 (((-907 (-576)) $) NIL (|has| (-576) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-576) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1043))) (((-227) $) NIL (|has| (-576) (-1043)))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1197)) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL) (((-1025 16) $) 10)) (-3390 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| $ (-146)) (|has| (-576) (-928))) (|has| (-576) (-146))))) (-3154 (((-783)) NIL T CONST)) (-1810 (((-576) $) NIL (|has| (-576) (-557)))) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL)) (-4143 (($ $) NIL (|has| (-576) (-832)))) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2020 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-2990 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2962 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2949 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3056 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) +(((-499) (-13 (-1013 (-576)) (-625 (-419 (-576))) (-625 (-1025 16)) (-10 -8 (-15 -1788 ((-419 (-576)) $)) (-15 -3717 ($ (-419 (-576))))))) (T -499)) +((-1788 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499)))) (-3717 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499))))) +(-13 (-1013 (-576)) (-625 (-419 (-576))) (-625 (-1025 16)) (-10 -8 (-15 -1788 ((-419 (-576)) $)) (-15 -3717 ($ (-419 (-576)))))) +((-2425 (((-656 |#2|) $) 31)) (-2885 (((-112) |#2| $) 39)) (-3252 (((-112) (-1 (-112) |#2|) $) 26)) (-3282 (($ $ (-656 (-304 |#2|))) 13) (($ $ (-304 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-656 |#2|) (-656 |#2|)) NIL)) (-1460 (((-783) (-1 (-112) |#2|) $) 30) (((-783) |#2| $) 37)) (-3569 (((-876) $) 45)) (-2708 (((-112) (-1 (-112) |#2|) $) 23)) (-2924 (((-112) $ $) 35)) (-3502 (((-783) $) 18))) +(((-500 |#1| |#2|) (-10 -8 (-15 -2924 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -3282 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -3282 (|#1| |#1| |#2| |#2|)) (-15 -3282 (|#1| |#1| (-304 |#2|))) (-15 -3282 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -2885 ((-112) |#2| |#1|)) (-15 -1460 ((-783) |#2| |#1|)) (-15 -2425 ((-656 |#2|) |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3252 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2708 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3502 ((-783) |#1|))) (-501 |#2|) (-1238)) (T -500)) +NIL +(-10 -8 (-15 -2924 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -3282 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -3282 (|#1| |#1| |#2| |#2|)) (-15 -3282 (|#1| |#1| (-304 |#2|))) (-15 -3282 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -2885 ((-112) |#2| |#1|)) (-15 -1460 ((-783) |#2| |#1|)) (-15 -2425 ((-656 |#2|) |#1|)) (-15 -1460 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3252 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2708 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3502 ((-783) |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4264 (((-112) $ (-783)) 8)) (-3404 (($) 7 T CONST)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) 9)) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4326 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-2883 (((-112) $ (-783)) 10)) (-2046 (((-1179) $) 23 (|has| |#1| (-1121)))) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-501 |#1|) (-141) (-1238)) (T -501)) -((-4117 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1238)))) (-4323 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4466)) (-4 *1 (-501 *3)) (-4 *3 (-1238)))) (-3321 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4465)) (-4 *1 (-501 *4)) (-4 *4 (-1238)) (-5 *2 (-112)))) (-4320 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4465)) (-4 *1 (-501 *4)) (-4 *4 (-1238)) (-5 *2 (-112)))) (-1460 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4465)) (-4 *1 (-501 *4)) (-4 *4 (-1238)) (-5 *2 (-783)))) (-3966 (*1 *2 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) (-5 *2 (-656 *3)))) (-2014 (*1 *2 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) (-5 *2 (-656 *3)))) (-1460 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-783)))) (-1612 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-112))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-625 (-876))) (-6 (-625 (-876))) |%noBranch|) (IF (|has| |t#1| (-102)) (-6 (-102)) |%noBranch|) (IF (|has| |t#1| (-1121)) (-6 (-1121)) |%noBranch|) (IF (|has| |t#1| (-1121)) (IF (|has| |t#1| (-319 |t#1|)) (-6 (-319 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4117 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4466)) (-15 -4323 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4465)) (PROGN (-15 -3321 ((-112) (-1 (-112) |t#1|) $)) (-15 -4320 ((-112) (-1 (-112) |t#1|) $)) (-15 -1460 ((-783) (-1 (-112) |t#1|) $)) (-15 -3966 ((-656 |t#1|) $)) (-15 -2014 ((-656 |t#1|) $)) (IF (|has| |t#1| (-1121)) (PROGN (-15 -1460 ((-783) |t#1| $)) (-15 -1612 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -2760 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2760 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-3570 ((|#1| $) 6) (($ |#1|) 9))) +((-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1238)))) (-4326 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4465)) (-4 *1 (-501 *3)) (-4 *3 (-1238)))) (-2708 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4464)) (-4 *1 (-501 *4)) (-4 *4 (-1238)) (-5 *2 (-112)))) (-3252 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4464)) (-4 *1 (-501 *4)) (-4 *4 (-1238)) (-5 *2 (-112)))) (-1460 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4464)) (-4 *1 (-501 *4)) (-4 *4 (-1238)) (-5 *2 (-783)))) (-3965 (*1 *2 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) (-5 *2 (-656 *3)))) (-2425 (*1 *2 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) (-5 *2 (-656 *3)))) (-1460 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-783)))) (-2885 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-112))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-625 (-876))) (-6 (-625 (-876))) |%noBranch|) (IF (|has| |t#1| (-102)) (-6 (-102)) |%noBranch|) (IF (|has| |t#1| (-1121)) (-6 (-1121)) |%noBranch|) (IF (|has| |t#1| (-1121)) (IF (|has| |t#1| (-319 |t#1|)) (-6 (-319 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4116 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4465)) (-15 -4326 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4464)) (PROGN (-15 -2708 ((-112) (-1 (-112) |t#1|) $)) (-15 -3252 ((-112) (-1 (-112) |t#1|) $)) (-15 -1460 ((-783) (-1 (-112) |t#1|) $)) (-15 -3965 ((-656 |t#1|) $)) (-15 -2425 ((-656 |t#1|) $)) (IF (|has| |t#1| (-1121)) (PROGN (-15 -1460 ((-783) |t#1| $)) (-15 -2885 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -2759 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2759 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-3569 ((|#1| $) 6) (($ |#1|) 9))) (((-502 |#1|) (-141) (-1238)) (T -502)) NIL (-13 (-625 |t#1|) (-628 |t#1|)) (((-628 |#1|) . T) ((-625 |#1|) . T)) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1586 (($ (-1179)) 8)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 15) (((-1179) $) 12)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 11))) -(((-503) (-13 (-1121) (-625 (-1179)) (-10 -8 (-15 -1586 ($ (-1179)))))) (T -503)) -((-1586 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-503))))) -(-13 (-1121) (-625 (-1179)) (-10 -8 (-15 -1586 ($ (-1179))))) -((-4025 (($ $) 15)) (-4006 (($ $) 24)) (-4050 (($ $) 12)) (-4061 (($ $) 10)) (-4037 (($ $) 17)) (-4014 (($ $) 22))) -(((-504 |#1|) (-10 -8 (-15 -4014 (|#1| |#1|)) (-15 -4037 (|#1| |#1|)) (-15 -4061 (|#1| |#1|)) (-15 -4050 (|#1| |#1|)) (-15 -4006 (|#1| |#1|)) (-15 -4025 (|#1| |#1|))) (-505)) (T -504)) -NIL -(-10 -8 (-15 -4014 (|#1| |#1|)) (-15 -4037 (|#1| |#1|)) (-15 -4061 (|#1| |#1|)) (-15 -4050 (|#1| |#1|)) (-15 -4006 (|#1| |#1|)) (-15 -4025 (|#1| |#1|))) -((-4025 (($ $) 11)) (-4006 (($ $) 10)) (-4050 (($ $) 9)) (-4061 (($ $) 8)) (-4037 (($ $) 7)) (-4014 (($ $) 6))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-2602 (($ (-1179)) 8)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 15) (((-1179) $) 12)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 11))) +(((-503) (-13 (-1121) (-625 (-1179)) (-10 -8 (-15 -2602 ($ (-1179)))))) (T -503)) +((-2602 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-503))))) +(-13 (-1121) (-625 (-1179)) (-10 -8 (-15 -2602 ($ (-1179))))) +((-4024 (($ $) 15)) (-4005 (($ $) 24)) (-4049 (($ $) 12)) (-4060 (($ $) 10)) (-4036 (($ $) 17)) (-4013 (($ $) 22))) +(((-504 |#1|) (-10 -8 (-15 -4013 (|#1| |#1|)) (-15 -4036 (|#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 -4049 (|#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -4024 (|#1| |#1|))) (-505)) (T -504)) +NIL +(-10 -8 (-15 -4013 (|#1| |#1|)) (-15 -4036 (|#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 -4049 (|#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -4024 (|#1| |#1|))) +((-4024 (($ $) 11)) (-4005 (($ $) 10)) (-4049 (($ $) 9)) (-4060 (($ $) 8)) (-4036 (($ $) 7)) (-4013 (($ $) 6))) (((-505) (-141)) (T -505)) -((-4025 (*1 *1 *1) (-4 *1 (-505))) (-4006 (*1 *1 *1) (-4 *1 (-505))) (-4050 (*1 *1 *1) (-4 *1 (-505))) (-4061 (*1 *1 *1) (-4 *1 (-505))) (-4037 (*1 *1 *1) (-4 *1 (-505))) (-4014 (*1 *1 *1) (-4 *1 (-505)))) -(-13 (-10 -8 (-15 -4014 ($ $)) (-15 -4037 ($ $)) (-15 -4061 ($ $)) (-15 -4050 ($ $)) (-15 -4006 ($ $)) (-15 -4025 ($ $)))) +((-4024 (*1 *1 *1) (-4 *1 (-505))) (-4005 (*1 *1 *1) (-4 *1 (-505))) (-4049 (*1 *1 *1) (-4 *1 (-505))) (-4060 (*1 *1 *1) (-4 *1 (-505))) (-4036 (*1 *1 *1) (-4 *1 (-505))) (-4013 (*1 *1 *1) (-4 *1 (-505)))) +(-13 (-10 -8 (-15 -4013 ($ $)) (-15 -4036 ($ $)) (-15 -4060 ($ $)) (-15 -4049 ($ $)) (-15 -4005 ($ $)) (-15 -4024 ($ $)))) ((-1828 (((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)) 54))) (((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1828 ((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)))) (-374) (-1264 |#1|) (-13 (-374) (-148) (-736 |#1| |#2|)) (-1264 |#3|)) (T -506)) ((-1828 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) (-4 *7 (-13 (-374) (-148) (-736 *5 *6))) (-5 *2 (-430 *3)) (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1264 *7))))) (-10 -7 (-15 -1828 ((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)))) -((-3489 (((-112) $ $) NIL)) (-3052 (((-656 $) (-1193 $) (-1197)) NIL) (((-656 $) (-1193 $)) NIL) (((-656 $) (-971 $)) NIL)) (-3346 (($ (-1193 $) (-1197)) NIL) (($ (-1193 $)) NIL) (($ (-971 $)) NIL)) (-4308 (((-112) $) 39)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-4372 (((-112) $ $) 73)) (-3988 (((-656 (-624 $)) $) 50)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3428 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-1839 (($ $) NIL)) (-4016 (((-112) $ $) NIL)) (-3886 (($) NIL T CONST)) (-1796 (((-656 $) (-1193 $) (-1197)) NIL) (((-656 $) (-1193 $)) NIL) (((-656 $) (-971 $)) NIL)) (-2607 (($ (-1193 $) (-1197)) NIL) (($ (-1193 $)) NIL) (($ (-971 $)) NIL)) (-1572 (((-3 (-624 $) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-2860 (((-624 $) $) NIL) (((-576) $) NIL) (((-419 (-576)) $) 55)) (-3429 (($ $ $) NIL)) (-2204 (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2590 (-701 (-419 (-576)))) (|:| |vec| (-1288 (-419 (-576))))) (-701 $) (-1288 $)) NIL) (((-701 (-419 (-576))) (-701 $)) NIL)) (-3686 (($ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-4249 (((-112) $) NIL)) (-2236 (($ $) NIL) (($ (-656 $)) NIL)) (-3545 (((-656 (-115)) $) NIL)) (-1777 (((-115) (-115)) NIL)) (-4193 (((-112) $) 42)) (-2946 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-1570 (((-1146 (-576) (-624 $)) $) 37)) (-2121 (($ $ (-576)) NIL)) (-1381 (((-1193 $) (-1193 $) (-624 $)) 87) (((-1193 $) (-1193 $) (-656 (-624 $))) 62) (($ $ (-624 $)) 76) (($ $ (-656 (-624 $))) 77)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3971 (((-1193 $) (-624 $)) 74 (|has| $ (-1070)))) (-4117 (($ (-1 $ $) (-624 $)) NIL)) (-2608 (((-3 (-624 $) "failed") $) NIL)) (-3913 (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL) (((-2 (|:| -2590 (-701 (-419 (-576)))) (|:| |vec| (-1288 (-419 (-576))))) (-1288 $) $) NIL) (((-701 (-419 (-576))) (-1288 $)) NIL)) (-3458 (($ (-656 $)) NIL) (($ $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1763 (((-656 (-624 $)) $) NIL)) (-1640 (($ (-115) $) NIL) (($ (-115) (-656 $)) NIL)) (-1322 (((-112) $ (-115)) NIL) (((-112) $ (-1197)) NIL)) (-2050 (($ $) NIL)) (-2327 (((-783) $) NIL)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1726 (((-112) $ $) NIL) (((-112) $ (-1197)) NIL)) (-1828 (((-430 $) $) NIL)) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3644 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-3284 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1197) (-1 $ (-656 $))) NIL) (($ $ (-1197) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-1967 (((-783) $) NIL)) (-2797 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-3496 (($ $) NIL) (($ $ $) NIL)) (-2775 (($ $) 36) (($ $ (-783)) NIL)) (-1581 (((-1146 (-576) (-624 $)) $) 20)) (-3867 (($ $) NIL (|has| $ (-1070)))) (-4172 (((-390) $) 101) (((-227) $) 109) (((-171 (-390)) $) 117)) (-3570 (((-876) $) NIL) (($ (-624 $)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-1146 (-576) (-624 $))) 21)) (-3996 (((-783)) NIL T CONST)) (-3681 (($ $) NIL) (($ (-656 $)) NIL)) (-2468 (((-112) (-115)) 93)) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL)) (-2721 (($) 10 T CONST)) (-2732 (($) 22 T CONST)) (-2020 (($ $) NIL) (($ $ (-783)) NIL)) (-2925 (((-112) $ $) 24)) (-3057 (($ $ $) 44)) (-3044 (($ $ $) NIL) (($ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-419 (-576))) NIL) (($ $ (-576)) 48) (($ $ (-783)) NIL) (($ $ (-940)) NIL)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ $) 27) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-940) $) NIL))) -(((-507) (-13 (-312) (-27) (-1059 (-576)) (-1059 (-419 (-576))) (-651 (-576)) (-1043) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -3570 ($ (-1146 (-576) (-624 $)))) (-15 -1570 ((-1146 (-576) (-624 $)) $)) (-15 -1581 ((-1146 (-576) (-624 $)) $)) (-15 -3686 ($ $)) (-15 -4372 ((-112) $ $)) (-15 -1381 ((-1193 $) (-1193 $) (-624 $))) (-15 -1381 ((-1193 $) (-1193 $) (-656 (-624 $)))) (-15 -1381 ($ $ (-624 $))) (-15 -1381 ($ $ (-656 (-624 $))))))) (T -507)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-1146 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-1570 (*1 *2 *1) (-12 (-5 *2 (-1146 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-1581 (*1 *2 *1) (-12 (-5 *2 (-1146 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-3686 (*1 *1 *1) (-5 *1 (-507))) (-4372 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-507)))) (-1381 (*1 *2 *2 *3) (-12 (-5 *2 (-1193 (-507))) (-5 *3 (-624 (-507))) (-5 *1 (-507)))) (-1381 (*1 *2 *2 *3) (-12 (-5 *2 (-1193 (-507))) (-5 *3 (-656 (-624 (-507)))) (-5 *1 (-507)))) (-1381 (*1 *1 *1 *2) (-12 (-5 *2 (-624 (-507))) (-5 *1 (-507)))) (-1381 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-507)))) (-5 *1 (-507))))) -(-13 (-312) (-27) (-1059 (-576)) (-1059 (-419 (-576))) (-651 (-576)) (-1043) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -3570 ($ (-1146 (-576) (-624 $)))) (-15 -1570 ((-1146 (-576) (-624 $)) $)) (-15 -1581 ((-1146 (-576) (-624 $)) $)) (-15 -3686 ($ $)) (-15 -4372 ((-112) $ $)) (-15 -1381 ((-1193 $) (-1193 $) (-624 $))) (-15 -1381 ((-1193 $) (-1193 $) (-656 (-624 $)))) (-15 -1381 ($ $ (-624 $))) (-15 -1381 ($ $ (-656 (-624 $)))))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2047 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4466)))) (-1710 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-4298 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4466))) (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-861))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-1808 (((-112) $ (-783)) NIL)) (-3756 ((|#1| $ (-576) |#1|) 44 (|has| $ (-6 -4466))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4466)))) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3886 (($) NIL T CONST)) (-3990 (($ $) NIL (|has| $ (-6 -4466)))) (-3836 (($ $) NIL)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3946 (($ |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4335 ((|#1| $ (-576) |#1|) 39 (|has| $ (-6 -4466)))) (-4274 ((|#1| $ (-576)) 38)) (-3660 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-3966 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-4141 (($ (-783) |#1|) 21)) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-576) $) 17 (|has| (-576) (-861)))) (-3125 (($ $ $) NIL (|has| |#1| (-861)))) (-3391 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2137 (((-576) $) 41 (|has| (-576) (-861)))) (-3133 (($ $ $) NIL (|has| |#1| (-861)))) (-4323 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 32) (($ (-1 |#1| |#1| |#1|) $ $) 35)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2176 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-4234 (((-656 (-576)) $) NIL)) (-3354 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3581 ((|#1| $) NIL (|has| (-576) (-861)))) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4046 (($ $ |#1|) 15 (|has| $ (-6 -4466)))) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2281 (((-656 |#1|) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) 19)) (-2797 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 43) (($ $ (-1255 (-576))) NIL)) (-3466 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3025 (($ $ $ (-576)) NIL (|has| $ (-6 -4466)))) (-1870 (($ $) 13)) (-4172 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) 24)) (-1615 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3570 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2992 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2950 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3503 (((-783) $) 11 (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) NIL)) (-3119 (((-656 $) (-1193 $) (-1197)) NIL) (((-656 $) (-1193 $)) NIL) (((-656 $) (-971 $)) NIL)) (-2992 (($ (-1193 $) (-1197)) NIL) (($ (-1193 $)) NIL) (($ (-971 $)) NIL)) (-3135 (((-112) $) 39)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-2483 (((-112) $ $) 73)) (-3987 (((-656 (-624 $)) $) 50)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3427 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-1840 (($ $) NIL)) (-3330 (((-112) $ $) NIL)) (-3404 (($) NIL T CONST)) (-4166 (((-656 $) (-1193 $) (-1197)) NIL) (((-656 $) (-1193 $)) NIL) (((-656 $) (-971 $)) NIL)) (-2108 (($ (-1193 $) (-1197)) NIL) (($ (-1193 $)) NIL) (($ (-971 $)) NIL)) (-1572 (((-3 (-624 $) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-2859 (((-624 $) $) NIL) (((-576) $) NIL) (((-419 (-576)) $) 55)) (-3428 (($ $ $) NIL)) (-3674 (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3232 (-701 (-419 (-576)))) (|:| |vec| (-1288 (-419 (-576))))) (-701 $) (-1288 $)) NIL) (((-701 (-419 (-576))) (-701 $)) NIL)) (-3685 (($ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3833 (((-112) $) NIL)) (-2687 (($ $) NIL) (($ (-656 $)) NIL)) (-4348 (((-656 (-115)) $) NIL)) (-1776 (((-115) (-115)) NIL)) (-1351 (((-112) $) 42)) (-3376 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-1570 (((-1146 (-576) (-624 $)) $) 37)) (-4131 (($ $ (-576)) NIL)) (-2738 (((-1193 $) (-1193 $) (-624 $)) 87) (((-1193 $) (-1193 $) (-656 (-624 $))) 62) (($ $ (-624 $)) 76) (($ $ (-656 (-624 $))) 77)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2913 (((-1193 $) (-624 $)) 74 (|has| $ (-1070)))) (-4116 (($ (-1 $ $) (-624 $)) NIL)) (-2119 (((-3 (-624 $) "failed") $) NIL)) (-3676 (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL) (((-2 (|:| -3232 (-701 (-419 (-576)))) (|:| |vec| (-1288 (-419 (-576))))) (-1288 $) $) NIL) (((-701 (-419 (-576))) (-1288 $)) NIL)) (-3457 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1763 (((-656 (-624 $)) $) NIL)) (-1640 (($ (-115) $) NIL) (($ (-115) (-656 $)) NIL)) (-2808 (((-112) $ (-115)) NIL) (((-112) $ (-1197)) NIL)) (-2050 (($ $) NIL)) (-2327 (((-783) $) NIL)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1523 (((-112) $ $) NIL) (((-112) $ (-1197)) NIL)) (-1828 (((-430 $) $) NIL)) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2768 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-3282 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1197) (-1 $ (-656 $))) NIL) (($ $ (-1197) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-1979 (((-783) $) NIL)) (-2796 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-1954 (($ $) NIL) (($ $ $) NIL)) (-2774 (($ $) 36) (($ $ (-783)) NIL)) (-1581 (((-1146 (-576) (-624 $)) $) 20)) (-1346 (($ $) NIL (|has| $ (-1070)))) (-4171 (((-390) $) 101) (((-227) $) 109) (((-171 (-390)) $) 117)) (-3569 (((-876) $) NIL) (($ (-624 $)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-1146 (-576) (-624 $))) 21)) (-3154 (((-783)) NIL T CONST)) (-3680 (($ $) NIL) (($ (-656 $)) NIL)) (-1349 (((-112) (-115)) 93)) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL)) (-2721 (($) 10 T CONST)) (-2731 (($) 22 T CONST)) (-2020 (($ $) NIL) (($ $ (-783)) NIL)) (-2924 (((-112) $ $) 24)) (-3056 (($ $ $) 44)) (-3043 (($ $ $) NIL) (($ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-419 (-576))) NIL) (($ $ (-576)) 48) (($ $ (-783)) NIL) (($ $ (-940)) NIL)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ $) 27) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-940) $) NIL))) +(((-507) (-13 (-312) (-27) (-1059 (-576)) (-1059 (-419 (-576))) (-651 (-576)) (-1043) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -3569 ($ (-1146 (-576) (-624 $)))) (-15 -1570 ((-1146 (-576) (-624 $)) $)) (-15 -1581 ((-1146 (-576) (-624 $)) $)) (-15 -3685 ($ $)) (-15 -2483 ((-112) $ $)) (-15 -2738 ((-1193 $) (-1193 $) (-624 $))) (-15 -2738 ((-1193 $) (-1193 $) (-656 (-624 $)))) (-15 -2738 ($ $ (-624 $))) (-15 -2738 ($ $ (-656 (-624 $))))))) (T -507)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1146 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-1570 (*1 *2 *1) (-12 (-5 *2 (-1146 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-1581 (*1 *2 *1) (-12 (-5 *2 (-1146 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-3685 (*1 *1 *1) (-5 *1 (-507))) (-2483 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-507)))) (-2738 (*1 *2 *2 *3) (-12 (-5 *2 (-1193 (-507))) (-5 *3 (-624 (-507))) (-5 *1 (-507)))) (-2738 (*1 *2 *2 *3) (-12 (-5 *2 (-1193 (-507))) (-5 *3 (-656 (-624 (-507)))) (-5 *1 (-507)))) (-2738 (*1 *1 *1 *2) (-12 (-5 *2 (-624 (-507))) (-5 *1 (-507)))) (-2738 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-507)))) (-5 *1 (-507))))) +(-13 (-312) (-27) (-1059 (-576)) (-1059 (-419 (-576))) (-651 (-576)) (-1043) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -3569 ($ (-1146 (-576) (-624 $)))) (-15 -1570 ((-1146 (-576) (-624 $)) $)) (-15 -1581 ((-1146 (-576) (-624 $)) $)) (-15 -3685 ($ $)) (-15 -2483 ((-112) $ $)) (-15 -2738 ((-1193 $) (-1193 $) (-624 $))) (-15 -2738 ((-1193 $) (-1193 $) (-656 (-624 $)))) (-15 -2738 ($ $ (-624 $))) (-15 -2738 ($ $ (-656 (-624 $)))))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1512 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-1390 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-3039 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-4264 (((-112) $ (-783)) NIL)) (-3755 ((|#1| $ (-576) |#1|) 44 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3404 (($) NIL T CONST)) (-3092 (($ $) NIL (|has| $ (-6 -4465)))) (-3835 (($ $) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3945 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) 39 (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) 38)) (-3659 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-4140 (($ (-783) |#1|) 21)) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-576) $) 17 (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-2185 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4280 (((-576) $) 41 (|has| (-576) (-861)))) (-1441 (($ $ $) NIL (|has| |#1| (-861)))) (-4326 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 32) (($ (-1 |#1| |#1| |#1|) $ $) 35)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2176 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3669 (((-656 (-576)) $) NIL)) (-3090 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3580 ((|#1| $) NIL (|has| (-576) (-861)))) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2304 (($ $ |#1|) 15 (|has| $ (-6 -4465)))) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3207 (((-656 |#1|) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) 19)) (-2796 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 43) (($ $ (-1255 (-576))) NIL)) (-3465 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2840 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) 13)) (-4171 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 24)) (-1615 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2924 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2949 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3502 (((-783) $) 11 (|has| $ (-6 -4464))))) (((-508 |#1| |#2|) (-19 |#1|) (-1238) (-576)) (T -508)) NIL (-19 |#1|) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1808 (((-112) $ (-783)) NIL)) (-3756 ((|#1| $ (-576) (-576) |#1|) NIL)) (-1631 (($ $ (-576) (-508 |#1| |#3|)) NIL)) (-4436 (($ $ (-576) (-508 |#1| |#2|)) NIL)) (-3886 (($) NIL T CONST)) (-4093 (((-508 |#1| |#3|) $ (-576)) NIL)) (-4335 ((|#1| $ (-576) (-576) |#1|) NIL)) (-4274 ((|#1| $ (-576) (-576)) NIL)) (-3966 (((-656 |#1|) $) NIL)) (-1689 (((-783) $) NIL)) (-4141 (($ (-783) (-783) |#1|) NIL)) (-1699 (((-783) $) NIL)) (-3870 (((-112) $ (-783)) NIL)) (-4267 (((-576) $) NIL)) (-1952 (((-576) $) NIL)) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3900 (((-576) $) NIL)) (-2569 (((-576) $) NIL)) (-4323 (($ (-1 |#1| |#1|) $) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4046 (($ $ |#1|) NIL)) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-2129 (((-508 |#1| |#2|) $ (-576)) NIL)) (-3570 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4264 (((-112) $ (-783)) NIL)) (-3755 ((|#1| $ (-576) (-576) |#1|) NIL)) (-3100 (($ $ (-576) (-508 |#1| |#3|)) NIL)) (-1891 (($ $ (-576) (-508 |#1| |#2|)) NIL)) (-3404 (($) NIL T CONST)) (-1575 (((-508 |#1| |#3|) $ (-576)) NIL)) (-4332 ((|#1| $ (-576) (-576) |#1|) NIL)) (-4272 ((|#1| $ (-576) (-576)) NIL)) (-3965 (((-656 |#1|) $) NIL)) (-1689 (((-783) $) NIL)) (-4140 (($ (-783) (-783) |#1|) NIL)) (-1699 (((-783) $) NIL)) (-1368 (((-112) $ (-783)) NIL)) (-4017 (((-576) $) NIL)) (-3144 (((-576) $) NIL)) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3550 (((-576) $) NIL)) (-3037 (((-576) $) NIL)) (-4326 (($ (-1 |#1| |#1|) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-2304 (($ $ |#1|) NIL)) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-4203 (((-508 |#1| |#2|) $ (-576)) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) (((-509 |#1| |#2| |#3|) (-57 |#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) (-1238) (-576) (-576)) (T -509)) NIL (-57 |#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) -((-3442 (((-656 (-2 (|:| -1593 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -1593 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783)) 32)) (-3600 (((-656 (-1193 |#1|)) |#1| (-783) (-783) (-783)) 43)) (-3372 (((-2 (|:| -1593 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -1593 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)) 107))) -(((-510 |#1| |#2| |#3|) (-10 -7 (-15 -3600 ((-656 (-1193 |#1|)) |#1| (-783) (-783) (-783))) (-15 -3442 ((-656 (-2 (|:| -1593 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -1593 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783))) (-15 -3372 ((-2 (|:| -1593 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -1593 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)))) (-360) (-1264 |#1|) (-1264 |#2|)) (T -510)) -((-3372 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-2 (|:| -1593 (-701 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-701 *7))))) (-5 *5 (-783)) (-4 *8 (-1264 *7)) (-4 *7 (-1264 *6)) (-4 *6 (-360)) (-5 *2 (-2 (|:| -1593 (-701 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-701 *7)))) (-5 *1 (-510 *6 *7 *8)))) (-3442 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-4 *5 (-360)) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-2 (|:| -1593 (-701 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-701 *6))))) (-5 *1 (-510 *5 *6 *7)) (-5 *3 (-2 (|:| -1593 (-701 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-701 *6)))) (-4 *7 (-1264 *6)))) (-3600 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-783)) (-4 *3 (-360)) (-4 *5 (-1264 *3)) (-5 *2 (-656 (-1193 *3))) (-5 *1 (-510 *3 *5 *6)) (-4 *6 (-1264 *5))))) -(-10 -7 (-15 -3600 ((-656 (-1193 |#1|)) |#1| (-783) (-783) (-783))) (-15 -3442 ((-656 (-2 (|:| -1593 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -1593 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783))) (-15 -3372 ((-2 (|:| -1593 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -1593 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)))) -((-4053 (((-2 (|:| -1593 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -1593 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -1593 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))) 70)) (-1873 ((|#1| (-701 |#1|) |#1| (-783)) 24)) (-1960 (((-783) (-783) (-783)) 34)) (-2662 (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 50)) (-1604 (((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|) 58) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 55)) (-2095 ((|#1| (-701 |#1|) (-701 |#1|) |#1| (-576)) 28)) (-3367 ((|#1| (-701 |#1|)) 18))) -(((-511 |#1| |#2| |#3|) (-10 -7 (-15 -3367 (|#1| (-701 |#1|))) (-15 -1873 (|#1| (-701 |#1|) |#1| (-783))) (-15 -2095 (|#1| (-701 |#1|) (-701 |#1|) |#1| (-576))) (-15 -1960 ((-783) (-783) (-783))) (-15 -1604 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1604 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -2662 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -4053 ((-2 (|:| -1593 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -1593 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -1593 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))))) (-13 (-317) (-10 -8 (-15 -3921 ((-430 $) $)))) (-1264 |#1|) (-421 |#1| |#2|)) (T -511)) -((-4053 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1593 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-4 *3 (-13 (-317) (-10 -8 (-15 -3921 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-2662 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -3921 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-1604 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -3921 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-1604 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -3921 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-1960 (*1 *2 *2 *2) (-12 (-5 *2 (-783)) (-4 *3 (-13 (-317) (-10 -8 (-15 -3921 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-2095 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-701 *2)) (-5 *4 (-576)) (-4 *2 (-13 (-317) (-10 -8 (-15 -3921 ((-430 $) $))))) (-4 *5 (-1264 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))) (-1873 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-701 *2)) (-5 *4 (-783)) (-4 *2 (-13 (-317) (-10 -8 (-15 -3921 ((-430 $) $))))) (-4 *5 (-1264 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-701 *2)) (-4 *4 (-1264 *2)) (-4 *2 (-13 (-317) (-10 -8 (-15 -3921 ((-430 $) $))))) (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-421 *2 *4))))) -(-10 -7 (-15 -3367 (|#1| (-701 |#1|))) (-15 -1873 (|#1| (-701 |#1|) |#1| (-783))) (-15 -2095 (|#1| (-701 |#1|) (-701 |#1|) |#1| (-576))) (-15 -1960 ((-783) (-783) (-783))) (-15 -1604 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1604 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -2662 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -4053 ((-2 (|:| -1593 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -1593 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -1593 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))))) -((-3489 (((-112) $ $) NIL)) (-3517 (($ $) NIL)) (-2695 (($ $ $) 40)) (-2047 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4466)))) (-1710 (((-112) $) NIL (|has| (-112) (-861))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-4298 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-112) (-861)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4466)))) (-1795 (($ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1808 (((-112) $ (-783)) NIL)) (-3756 (((-112) $ (-1255 (-576)) (-112)) NIL (|has| $ (-6 -4466))) (((-112) $ (-576) (-112)) 42 (|has| $ (-6 -4466)))) (-1974 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4465)))) (-3886 (($) NIL T CONST)) (-3990 (($ $) NIL (|has| $ (-6 -4466)))) (-3836 (($ $) NIL)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-112) (-1121))))) (-3946 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4465))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-112) (-1121))))) (-3686 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4465)) (|has| (-112) (-1121))))) (-4335 (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4466)))) (-4274 (((-112) $ (-576)) NIL)) (-3660 (((-576) (-112) $ (-576)) NIL (|has| (-112) (-1121))) (((-576) (-112) $) NIL (|has| (-112) (-1121))) (((-576) (-1 (-112) (-112)) $) NIL)) (-3966 (((-656 (-112)) $) NIL (|has| $ (-6 -4465)))) (-2686 (($ $ $) 38)) (-2663 (($ $) NIL)) (-3073 (($ $ $) NIL)) (-4141 (($ (-783) (-112)) 27)) (-1912 (($ $ $) NIL)) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-576) $) 8 (|has| (-576) (-861)))) (-3125 (($ $ $) NIL)) (-3391 (($ $ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2014 (((-656 (-112)) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-112) (-1121))))) (-2137 (((-576) $) NIL (|has| (-576) (-861)))) (-3133 (($ $ $) NIL)) (-4323 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL)) (-2176 (($ $ $ (-576)) NIL) (($ (-112) $ (-576)) NIL)) (-4234 (((-656 (-576)) $) NIL)) (-3354 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL)) (-3581 (((-112) $) NIL (|has| (-576) (-861)))) (-1541 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-4046 (($ $ (-112)) NIL (|has| $ (-6 -4466)))) (-4320 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-112)) (-656 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-304 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-656 (-304 (-112)))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-112) (-1121))))) (-2281 (((-656 (-112)) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) 28)) (-2797 (($ $ (-1255 (-576))) NIL) (((-112) $ (-576)) 22) (((-112) $ (-576) (-112)) NIL)) (-3466 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-1460 (((-783) (-112) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-112) (-1121)))) (((-783) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4465)))) (-3025 (($ $ $ (-576)) NIL (|has| $ (-6 -4466)))) (-1870 (($ $) 29)) (-4172 (((-548) $) NIL (|has| (-112) (-626 (-548))))) (-3582 (($ (-656 (-112))) NIL)) (-1615 (($ (-656 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3570 (((-876) $) 26)) (-4055 (((-112) $ $) NIL)) (-3321 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4465)))) (-2675 (($ $ $) 36)) (-3563 (($ $ $) NIL)) (-3869 (($ $ $) 45)) (-3882 (($ $) 43)) (-3857 (($ $ $) 44)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 30)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) 31)) (-3552 (($ $ $) NIL)) (-3503 (((-783) $) 13 (|has| $ (-6 -4465))))) -(((-512 |#1|) (-13 (-124) (-10 -8 (-15 -3882 ($ $)) (-15 -3869 ($ $ $)) (-15 -3857 ($ $ $)))) (-576)) (T -512)) -((-3882 (*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) (-3869 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) (-3857 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576))))) -(-13 (-124) (-10 -8 (-15 -3882 ($ $)) (-15 -3869 ($ $ $)) (-15 -3857 ($ $ $)))) -((-1552 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1193 |#4|)) 35)) (-3972 (((-1193 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1193 |#4|)) 22)) (-2635 (((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1193 |#4|))) 46)) (-4010 (((-1193 (-1193 |#4|)) (-1 |#4| |#1|) |#3|) 55))) -(((-513 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3972 (|#2| (-1 |#1| |#4|) (-1193 |#4|))) (-15 -3972 ((-1193 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1552 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1193 |#4|))) (-15 -2635 ((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1193 |#4|)))) (-15 -4010 ((-1193 (-1193 |#4|)) (-1 |#4| |#1|) |#3|))) (-1070) (-1264 |#1|) (-1264 |#2|) (-1070)) (T -513)) -((-4010 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1070)) (-4 *7 (-1070)) (-4 *6 (-1264 *5)) (-5 *2 (-1193 (-1193 *7))) (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1264 *6)))) (-2635 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-701 (-1193 *8))) (-4 *5 (-1070)) (-4 *8 (-1070)) (-4 *6 (-1264 *5)) (-5 *2 (-701 *6)) (-5 *1 (-513 *5 *6 *7 *8)) (-4 *7 (-1264 *6)))) (-1552 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1193 *7)) (-4 *5 (-1070)) (-4 *7 (-1070)) (-4 *2 (-1264 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1264 *2)))) (-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1070)) (-4 *7 (-1070)) (-4 *4 (-1264 *5)) (-5 *2 (-1193 *7)) (-5 *1 (-513 *5 *4 *6 *7)) (-4 *6 (-1264 *4)))) (-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1193 *7)) (-4 *5 (-1070)) (-4 *7 (-1070)) (-4 *2 (-1264 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1264 *2))))) -(-10 -7 (-15 -3972 (|#2| (-1 |#1| |#4|) (-1193 |#4|))) (-15 -3972 ((-1193 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1552 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1193 |#4|))) (-15 -2635 ((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1193 |#4|)))) (-15 -4010 ((-1193 (-1193 |#4|)) (-1 |#4| |#1|) |#3|))) -((-3489 (((-112) $ $) NIL)) (-3125 (($ $ $) NIL)) (-3133 (($ $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3420 (((-1293) $) 25)) (-2797 (((-1179) $ (-1197)) 30)) (-1977 (((-1293) $) 17)) (-3570 (((-876) $) 27) (($ (-1179)) 26)) (-4055 (((-112) $ $) NIL)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 11)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) 9))) -(((-514) (-13 (-861) (-10 -8 (-15 -2797 ((-1179) $ (-1197))) (-15 -1977 ((-1293) $)) (-15 -3420 ((-1293) $)) (-15 -3570 ($ (-1179)))))) (T -514)) -((-2797 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1179)) (-5 *1 (-514)))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-514)))) (-3420 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-514)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-514))))) -(-13 (-861) (-10 -8 (-15 -2797 ((-1179) $ (-1197))) (-15 -1977 ((-1293) $)) (-15 -3420 ((-1293) $)) (-15 -3570 ($ (-1179))))) -((-2435 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4173 ((|#1| |#4|) 10)) (-2206 ((|#3| |#4|) 17))) -(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4173 (|#1| |#4|)) (-15 -2206 (|#3| |#4|)) (-15 -2435 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-568) (-1013 |#1|) (-384 |#1|) (-384 |#2|)) (T -515)) -((-2435 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-384 *4)) (-4 *3 (-384 *5)))) (-2206 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) (-4 *2 (-384 *4)) (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-384 *5)))) (-4173 (*1 *2 *3) (-12 (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-515 *2 *4 *5 *3)) (-4 *5 (-384 *2)) (-4 *3 (-384 *4))))) -(-10 -7 (-15 -4173 (|#1| |#4|)) (-15 -2206 (|#3| |#4|)) (-15 -2435 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-3489 (((-112) $ $) NIL)) (-1374 (((-112) $ (-656 |#3|)) 126) (((-112) $) 127)) (-4308 (((-112) $) 178)) (-4439 (($ $ |#4|) 117) (($ $ |#4| (-656 |#3|)) 121)) (-1348 (((-1186 (-656 (-971 |#1|)) (-656 (-304 (-971 |#1|)))) (-656 |#4|)) 171 (|has| |#3| (-626 (-1197))))) (-2715 (($ $ $) 107) (($ $ |#4|) 105)) (-4193 (((-112) $) 177)) (-3992 (($ $) 131)) (-3699 (((-1179) $) NIL)) (-3285 (($ $ $) 99) (($ (-656 $)) 101)) (-1735 (((-112) |#4| $) 129)) (-1748 (((-112) $ $) 82)) (-4145 (($ (-656 |#4|)) 106)) (-1450 (((-1141) $) NIL)) (-1548 (($ (-656 |#4|)) 175)) (-1452 (((-112) $) 176)) (-1456 (($ $) 85)) (-3225 (((-656 |#4|) $) 73)) (-3657 (((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|)) NIL)) (-2939 (((-112) |#4| $) 89)) (-2003 (((-576) $ (-656 |#3|)) 133) (((-576) $) 134)) (-3570 (((-876) $) 174) (($ (-656 |#4|)) 102)) (-4055 (((-112) $ $) NIL)) (-1525 (($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $))) NIL)) (-2925 (((-112) $ $) 84)) (-3030 (($ $ $) 109)) (** (($ $ (-783)) 115)) (* (($ $ $) 113))) -(((-516 |#1| |#2| |#3| |#4|) (-13 (-1121) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 -3030 ($ $ $)) (-15 -4193 ((-112) $)) (-15 -4308 ((-112) $)) (-15 -2939 ((-112) |#4| $)) (-15 -1748 ((-112) $ $)) (-15 -1735 ((-112) |#4| $)) (-15 -1374 ((-112) $ (-656 |#3|))) (-15 -1374 ((-112) $)) (-15 -3285 ($ $ $)) (-15 -3285 ($ (-656 $))) (-15 -2715 ($ $ $)) (-15 -2715 ($ $ |#4|)) (-15 -1456 ($ $)) (-15 -3657 ((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|))) (-15 -1525 ($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)))) (-15 -2003 ((-576) $ (-656 |#3|))) (-15 -2003 ((-576) $)) (-15 -3992 ($ $)) (-15 -4145 ($ (-656 |#4|))) (-15 -1548 ($ (-656 |#4|))) (-15 -1452 ((-112) $)) (-15 -3225 ((-656 |#4|) $)) (-15 -3570 ($ (-656 |#4|))) (-15 -4439 ($ $ |#4|)) (-15 -4439 ($ $ |#4| (-656 |#3|))) (IF (|has| |#3| (-626 (-1197))) (-15 -1348 ((-1186 (-656 (-971 |#1|)) (-656 (-304 (-971 |#1|)))) (-656 |#4|))) |%noBranch|))) (-374) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -516)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-3030 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-4193 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-4308 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-2939 (*1 *2 *3 *1) (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6)))) (-1748 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-1735 (*1 *2 *3 *1) (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6)))) (-1374 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6)))) (-1374 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-3285 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-3285 (*1 *1 *2) (-12 (-5 *2 (-656 (-516 *3 *4 *5 *6))) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-2715 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-2715 (*1 *1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-968 *3 *4 *5)))) (-1456 (*1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-3657 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-2 (|:| |mval| (-701 *4)) (|:| |invmval| (-701 *4)) (|:| |genIdeal| (-516 *4 *5 *6 *7)))) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6)))) (-1525 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-701 *3)) (|:| |invmval| (-701 *3)) (|:| |genIdeal| (-516 *3 *4 *5 *6)))) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-2003 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-576)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6)))) (-2003 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-576)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-3992 (*1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-4145 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)))) (-1548 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)))) (-1452 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-3225 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *6)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)))) (-4439 (*1 *1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-968 *3 *4 *5)))) (-4439 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-968 *4 *5 *6)))) (-1348 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *5 *6)) (-4 *6 (-626 (-1197))) (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1186 (-656 (-971 *4)) (-656 (-304 (-971 *4))))) (-5 *1 (-516 *4 *5 *6 *7))))) -(-13 (-1121) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 -3030 ($ $ $)) (-15 -4193 ((-112) $)) (-15 -4308 ((-112) $)) (-15 -2939 ((-112) |#4| $)) (-15 -1748 ((-112) $ $)) (-15 -1735 ((-112) |#4| $)) (-15 -1374 ((-112) $ (-656 |#3|))) (-15 -1374 ((-112) $)) (-15 -3285 ($ $ $)) (-15 -3285 ($ (-656 $))) (-15 -2715 ($ $ $)) (-15 -2715 ($ $ |#4|)) (-15 -1456 ($ $)) (-15 -3657 ((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|))) (-15 -1525 ($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)))) (-15 -2003 ((-576) $ (-656 |#3|))) (-15 -2003 ((-576) $)) (-15 -3992 ($ $)) (-15 -4145 ($ (-656 |#4|))) (-15 -1548 ($ (-656 |#4|))) (-15 -1452 ((-112) $)) (-15 -3225 ((-656 |#4|) $)) (-15 -3570 ($ (-656 |#4|))) (-15 -4439 ($ $ |#4|)) (-15 -4439 ($ $ |#4| (-656 |#3|))) (IF (|has| |#3| (-626 (-1197))) (-15 -1348 ((-1186 (-656 (-971 |#1|)) (-656 (-304 (-971 |#1|)))) (-656 |#4|))) |%noBranch|))) -((-4096 (((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) 176)) (-1743 (((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) 177)) (-2557 (((-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) 129)) (-4249 (((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) NIL)) (-2065 (((-656 (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) 179)) (-4226 (((-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-878 |#1|))) 195))) -(((-517 |#1| |#2|) (-10 -7 (-15 -4096 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -1743 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -4249 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2557 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2065 ((-656 (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -4226 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-878 |#1|))))) (-656 (-1197)) (-783)) (T -517)) -((-4226 (*1 *2 *2 *3) (-12 (-5 *2 (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) (-253 *4 (-419 (-576))))) (-5 *3 (-656 (-878 *4))) (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *1 (-517 *4 *5)))) (-2065 (*1 *2 *3) (-12 (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-656 (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) (-253 *4 (-419 (-576)))))) (-5 *1 (-517 *4 *5)) (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) (-253 *4 (-419 (-576))))))) (-2557 (*1 *2 *2) (-12 (-5 *2 (-516 (-419 (-576)) (-245 *4 (-783)) (-878 *3) (-253 *3 (-419 (-576))))) (-14 *3 (-656 (-1197))) (-14 *4 (-783)) (-5 *1 (-517 *3 *4)))) (-4249 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5)))) (-1743 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5)))) (-4096 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5))))) -(-10 -7 (-15 -4096 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -1743 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -4249 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2557 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2065 ((-656 (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -4226 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-878 |#1|))))) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1892 (($) 6)) (-3570 (((-876) $) 12) (((-1197) $) 10)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 8))) -(((-518) (-13 (-1121) (-625 (-1197)) (-10 -8 (-15 -1892 ($))))) (T -518)) -((-1892 (*1 *1) (-5 *1 (-518)))) -(-13 (-1121) (-625 (-1197)) (-10 -8 (-15 -1892 ($)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-3669 (((-656 (-887 |#2| |#1|)) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-1945 (($ |#1| |#2|) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-2278 ((|#2| $) NIL)) (-2091 ((|#1| $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2721 (($) 12 T CONST)) (-2925 (((-112) $ $) NIL)) (-3044 (($ $) 11) (($ $ $) 35)) (-3030 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 21))) -(((-519 |#1| |#2|) (-13 (-21) (-521 |#1| |#2|)) (-21) (-861)) (T -519)) -NIL -(-13 (-21) (-521 |#1| |#2|)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 17)) (-3669 (((-656 (-887 |#2| |#1|)) $) 14)) (-3886 (($) NIL T CONST)) (-2114 (($ $) 45)) (-1945 (($ |#1| |#2|) 42)) (-4117 (($ (-1 |#1| |#1|) $) 44)) (-2278 ((|#2| $) NIL)) (-2091 ((|#1| $) 46)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3582 (($ (-656 (-887 |#1| |#2|))) 51)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2721 (($) 13 T CONST)) (-2925 (((-112) $ $) NIL)) (-3030 (($ $ $) 32)) (* (($ (-940) $) NIL) (($ (-783) $) 41))) -(((-520 |#1| |#2|) (-13 (-23) (-521 |#1| |#2|) (-10 -8 (-15 -3582 ($ (-656 (-887 |#1| |#2|)))))) (-23) (-861)) (T -520)) -((-3582 (*1 *1 *2) (-12 (-5 *2 (-656 (-887 *3 *4))) (-4 *3 (-23)) (-4 *4 (-861)) (-5 *1 (-520 *3 *4))))) -(-13 (-23) (-521 |#1| |#2|) (-10 -8 (-15 -3582 ($ (-656 (-887 |#1| |#2|)))))) -((-3489 (((-112) $ $) 7)) (-3669 (((-656 (-887 |#2| |#1|)) $) 14)) (-2114 (($ $) 15)) (-1945 (($ |#1| |#2|) 18)) (-4117 (($ (-1 |#1| |#1|) $) 19)) (-2278 ((|#2| $) 16)) (-2091 ((|#1| $) 17)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2925 (((-112) $ $) 8))) +((-1499 (((-656 (-2 (|:| -2675 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -2675 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783)) 32)) (-3632 (((-656 (-1193 |#1|)) |#1| (-783) (-783) (-783)) 43)) (-3258 (((-2 (|:| -2675 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -2675 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)) 107))) +(((-510 |#1| |#2| |#3|) (-10 -7 (-15 -3632 ((-656 (-1193 |#1|)) |#1| (-783) (-783) (-783))) (-15 -1499 ((-656 (-2 (|:| -2675 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -2675 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783))) (-15 -3258 ((-2 (|:| -2675 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -2675 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)))) (-360) (-1264 |#1|) (-1264 |#2|)) (T -510)) +((-3258 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-2 (|:| -2675 (-701 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-701 *7))))) (-5 *5 (-783)) (-4 *8 (-1264 *7)) (-4 *7 (-1264 *6)) (-4 *6 (-360)) (-5 *2 (-2 (|:| -2675 (-701 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-701 *7)))) (-5 *1 (-510 *6 *7 *8)))) (-1499 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-4 *5 (-360)) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-2 (|:| -2675 (-701 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-701 *6))))) (-5 *1 (-510 *5 *6 *7)) (-5 *3 (-2 (|:| -2675 (-701 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-701 *6)))) (-4 *7 (-1264 *6)))) (-3632 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-783)) (-4 *3 (-360)) (-4 *5 (-1264 *3)) (-5 *2 (-656 (-1193 *3))) (-5 *1 (-510 *3 *5 *6)) (-4 *6 (-1264 *5))))) +(-10 -7 (-15 -3632 ((-656 (-1193 |#1|)) |#1| (-783) (-783) (-783))) (-15 -1499 ((-656 (-2 (|:| -2675 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -2675 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783))) (-15 -3258 ((-2 (|:| -2675 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -2675 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)))) +((-2377 (((-2 (|:| -2675 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -2675 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -2675 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))) 70)) (-3620 ((|#1| (-701 |#1|) |#1| (-783)) 24)) (-3199 (((-783) (-783) (-783)) 34)) (-2599 (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 50)) (-2797 (((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|) 58) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 55)) (-1928 ((|#1| (-701 |#1|) (-701 |#1|) |#1| (-576)) 28)) (-3216 ((|#1| (-701 |#1|)) 18))) +(((-511 |#1| |#2| |#3|) (-10 -7 (-15 -3216 (|#1| (-701 |#1|))) (-15 -3620 (|#1| (-701 |#1|) |#1| (-783))) (-15 -1928 (|#1| (-701 |#1|) (-701 |#1|) |#1| (-576))) (-15 -3199 ((-783) (-783) (-783))) (-15 -2797 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2797 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -2599 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2377 ((-2 (|:| -2675 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -2675 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -2675 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))))) (-13 (-317) (-10 -8 (-15 -3760 ((-430 $) $)))) (-1264 |#1|) (-421 |#1| |#2|)) (T -511)) +((-2377 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2675 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-4 *3 (-13 (-317) (-10 -8 (-15 -3760 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-2599 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -3760 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-2797 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -3760 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-2797 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -3760 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-3199 (*1 *2 *2 *2) (-12 (-5 *2 (-783)) (-4 *3 (-13 (-317) (-10 -8 (-15 -3760 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-1928 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-701 *2)) (-5 *4 (-576)) (-4 *2 (-13 (-317) (-10 -8 (-15 -3760 ((-430 $) $))))) (-4 *5 (-1264 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))) (-3620 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-701 *2)) (-5 *4 (-783)) (-4 *2 (-13 (-317) (-10 -8 (-15 -3760 ((-430 $) $))))) (-4 *5 (-1264 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-701 *2)) (-4 *4 (-1264 *2)) (-4 *2 (-13 (-317) (-10 -8 (-15 -3760 ((-430 $) $))))) (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-421 *2 *4))))) +(-10 -7 (-15 -3216 (|#1| (-701 |#1|))) (-15 -3620 (|#1| (-701 |#1|) |#1| (-783))) (-15 -1928 (|#1| (-701 |#1|) (-701 |#1|) |#1| (-576))) (-15 -3199 ((-783) (-783) (-783))) (-15 -2797 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2797 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -2599 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2377 ((-2 (|:| -2675 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -2675 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -2675 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))))) +((-3488 (((-112) $ $) NIL)) (-3516 (($ $) NIL)) (-2694 (($ $ $) 40)) (-1512 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-1390 (((-112) $) NIL (|has| (-112) (-861))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3039 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-112) (-861)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4465)))) (-1795 (($ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-4264 (((-112) $ (-783)) NIL)) (-3755 (((-112) $ (-1255 (-576)) (-112)) NIL (|has| $ (-6 -4465))) (((-112) $ (-576) (-112)) 42 (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-3404 (($) NIL T CONST)) (-3092 (($ $) NIL (|has| $ (-6 -4465)))) (-3835 (($ $) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-3945 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-3685 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-4332 (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4465)))) (-4272 (((-112) $ (-576)) NIL)) (-3659 (((-576) (-112) $ (-576)) NIL (|has| (-112) (-1121))) (((-576) (-112) $) NIL (|has| (-112) (-1121))) (((-576) (-1 (-112) (-112)) $) NIL)) (-3965 (((-656 (-112)) $) NIL (|has| $ (-6 -4464)))) (-2685 (($ $ $) 38)) (-2663 (($ $) NIL)) (-2035 (($ $ $) NIL)) (-4140 (($ (-783) (-112)) 27)) (-2700 (($ $ $) NIL)) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-576) $) 8 (|has| (-576) (-861)))) (-3124 (($ $ $) NIL)) (-2185 (($ $ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2425 (((-656 (-112)) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-4280 (((-576) $) NIL (|has| (-576) (-861)))) (-1441 (($ $ $) NIL)) (-4326 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL)) (-2176 (($ $ $ (-576)) NIL) (($ (-112) $ (-576)) NIL)) (-3669 (((-656 (-576)) $) NIL)) (-3090 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL)) (-3580 (((-112) $) NIL (|has| (-576) (-861)))) (-3434 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2304 (($ $ (-112)) NIL (|has| $ (-6 -4465)))) (-3252 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-112)) (-656 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-304 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-656 (-304 (-112)))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-3207 (((-656 (-112)) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) 28)) (-2796 (($ $ (-1255 (-576))) NIL) (((-112) $ (-576)) 22) (((-112) $ (-576) (-112)) NIL)) (-3465 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-1460 (((-783) (-112) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121)))) (((-783) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-2840 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) 29)) (-4171 (((-548) $) NIL (|has| (-112) (-626 (-548))))) (-3581 (($ (-656 (-112))) NIL)) (-1615 (($ (-656 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3569 (((-876) $) 26)) (-2399 (((-112) $ $) NIL)) (-2708 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-2674 (($ $ $) 36)) (-3562 (($ $ $) NIL)) (-3868 (($ $ $) 45)) (-3881 (($ $) 43)) (-3856 (($ $ $) 44)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 30)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) 31)) (-3551 (($ $ $) NIL)) (-3502 (((-783) $) 13 (|has| $ (-6 -4464))))) +(((-512 |#1|) (-13 (-124) (-10 -8 (-15 -3881 ($ $)) (-15 -3868 ($ $ $)) (-15 -3856 ($ $ $)))) (-576)) (T -512)) +((-3881 (*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) (-3868 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) (-3856 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576))))) +(-13 (-124) (-10 -8 (-15 -3881 ($ $)) (-15 -3868 ($ $ $)) (-15 -3856 ($ $ $)))) +((-3570 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1193 |#4|)) 35)) (-2927 (((-1193 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1193 |#4|)) 22)) (-2371 (((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1193 |#4|))) 46)) (-3280 (((-1193 (-1193 |#4|)) (-1 |#4| |#1|) |#3|) 55))) +(((-513 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2927 (|#2| (-1 |#1| |#4|) (-1193 |#4|))) (-15 -2927 ((-1193 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3570 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1193 |#4|))) (-15 -2371 ((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1193 |#4|)))) (-15 -3280 ((-1193 (-1193 |#4|)) (-1 |#4| |#1|) |#3|))) (-1070) (-1264 |#1|) (-1264 |#2|) (-1070)) (T -513)) +((-3280 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1070)) (-4 *7 (-1070)) (-4 *6 (-1264 *5)) (-5 *2 (-1193 (-1193 *7))) (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1264 *6)))) (-2371 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-701 (-1193 *8))) (-4 *5 (-1070)) (-4 *8 (-1070)) (-4 *6 (-1264 *5)) (-5 *2 (-701 *6)) (-5 *1 (-513 *5 *6 *7 *8)) (-4 *7 (-1264 *6)))) (-3570 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1193 *7)) (-4 *5 (-1070)) (-4 *7 (-1070)) (-4 *2 (-1264 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1264 *2)))) (-2927 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1070)) (-4 *7 (-1070)) (-4 *4 (-1264 *5)) (-5 *2 (-1193 *7)) (-5 *1 (-513 *5 *4 *6 *7)) (-4 *6 (-1264 *4)))) (-2927 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1193 *7)) (-4 *5 (-1070)) (-4 *7 (-1070)) (-4 *2 (-1264 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1264 *2))))) +(-10 -7 (-15 -2927 (|#2| (-1 |#1| |#4|) (-1193 |#4|))) (-15 -2927 ((-1193 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3570 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1193 |#4|))) (-15 -2371 ((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1193 |#4|)))) (-15 -3280 ((-1193 (-1193 |#4|)) (-1 |#4| |#1|) |#3|))) +((-3488 (((-112) $ $) NIL)) (-3124 (($ $ $) NIL)) (-1441 (($ $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2486 (((-1293) $) 25)) (-2796 (((-1179) $ (-1197)) 30)) (-1977 (((-1293) $) 17)) (-3569 (((-876) $) 27) (($ (-1179)) 26)) (-2399 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 11)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) 9))) +(((-514) (-13 (-861) (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1977 ((-1293) $)) (-15 -2486 ((-1293) $)) (-15 -3569 ($ (-1179)))))) (T -514)) +((-2796 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1179)) (-5 *1 (-514)))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-514)))) (-2486 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-514)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-514))))) +(-13 (-861) (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1977 ((-1293) $)) (-15 -2486 ((-1293) $)) (-15 -3569 ($ (-1179))))) +((-4169 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4277 ((|#1| |#4|) 10)) (-3689 ((|#3| |#4|) 17))) +(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4277 (|#1| |#4|)) (-15 -3689 (|#3| |#4|)) (-15 -4169 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-568) (-1013 |#1|) (-384 |#1|) (-384 |#2|)) (T -515)) +((-4169 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-384 *4)) (-4 *3 (-384 *5)))) (-3689 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) (-4 *2 (-384 *4)) (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-384 *5)))) (-4277 (*1 *2 *3) (-12 (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-515 *2 *4 *5 *3)) (-4 *5 (-384 *2)) (-4 *3 (-384 *4))))) +(-10 -7 (-15 -4277 (|#1| |#4|)) (-15 -3689 (|#3| |#4|)) (-15 -4169 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-3488 (((-112) $ $) NIL)) (-3197 (((-112) $ (-656 |#3|)) 126) (((-112) $) 127)) (-3135 (((-112) $) 178)) (-1911 (($ $ |#4|) 117) (($ $ |#4| (-656 |#3|)) 121)) (-4054 (((-1186 (-656 (-971 |#1|)) (-656 (-304 (-971 |#1|)))) (-656 |#4|)) 171 (|has| |#3| (-626 (-1197))))) (-1855 (($ $ $) 107) (($ $ |#4|) 105)) (-1351 (((-112) $) 177)) (-3117 (($ $) 131)) (-2046 (((-1179) $) NIL)) (-3651 (($ $ $) 99) (($ (-656 $)) 101)) (-1611 (((-112) |#4| $) 129)) (-1734 (((-112) $ $) 82)) (-2041 (($ (-656 |#4|)) 106)) (-1450 (((-1141) $) NIL)) (-3522 (($ (-656 |#4|)) 175)) (-2400 (((-112) $) 176)) (-2445 (($ $) 85)) (-4281 (((-656 |#4|) $) 73)) (-2919 (((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|)) NIL)) (-3314 (((-112) |#4| $) 89)) (-2319 (((-576) $ (-656 |#3|)) 133) (((-576) $) 134)) (-3569 (((-876) $) 174) (($ (-656 |#4|)) 102)) (-2399 (((-112) $ $) NIL)) (-3267 (($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $))) NIL)) (-2924 (((-112) $ $) 84)) (-3029 (($ $ $) 109)) (** (($ $ (-783)) 115)) (* (($ $ $) 113))) +(((-516 |#1| |#2| |#3| |#4|) (-13 (-1121) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 -3029 ($ $ $)) (-15 -1351 ((-112) $)) (-15 -3135 ((-112) $)) (-15 -3314 ((-112) |#4| $)) (-15 -1734 ((-112) $ $)) (-15 -1611 ((-112) |#4| $)) (-15 -3197 ((-112) $ (-656 |#3|))) (-15 -3197 ((-112) $)) (-15 -3651 ($ $ $)) (-15 -3651 ($ (-656 $))) (-15 -1855 ($ $ $)) (-15 -1855 ($ $ |#4|)) (-15 -2445 ($ $)) (-15 -2919 ((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|))) (-15 -3267 ($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)))) (-15 -2319 ((-576) $ (-656 |#3|))) (-15 -2319 ((-576) $)) (-15 -3117 ($ $)) (-15 -2041 ($ (-656 |#4|))) (-15 -3522 ($ (-656 |#4|))) (-15 -2400 ((-112) $)) (-15 -4281 ((-656 |#4|) $)) (-15 -3569 ($ (-656 |#4|))) (-15 -1911 ($ $ |#4|)) (-15 -1911 ($ $ |#4| (-656 |#3|))) (IF (|has| |#3| (-626 (-1197))) (-15 -4054 ((-1186 (-656 (-971 |#1|)) (-656 (-304 (-971 |#1|)))) (-656 |#4|))) |%noBranch|))) (-374) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -516)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-3029 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-1351 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-3135 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-3314 (*1 *2 *3 *1) (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6)))) (-1734 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-1611 (*1 *2 *3 *1) (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6)))) (-3197 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6)))) (-3197 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-3651 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-3651 (*1 *1 *2) (-12 (-5 *2 (-656 (-516 *3 *4 *5 *6))) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-1855 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-1855 (*1 *1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-968 *3 *4 *5)))) (-2445 (*1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-2919 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-2 (|:| |mval| (-701 *4)) (|:| |invmval| (-701 *4)) (|:| |genIdeal| (-516 *4 *5 *6 *7)))) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6)))) (-3267 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-701 *3)) (|:| |invmval| (-701 *3)) (|:| |genIdeal| (-516 *3 *4 *5 *6)))) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-2319 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-576)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6)))) (-2319 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-576)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-3117 (*1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-2041 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)))) (-3522 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2400 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-4281 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *6)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)))) (-1911 (*1 *1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-968 *3 *4 *5)))) (-1911 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-968 *4 *5 *6)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *5 *6)) (-4 *6 (-626 (-1197))) (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1186 (-656 (-971 *4)) (-656 (-304 (-971 *4))))) (-5 *1 (-516 *4 *5 *6 *7))))) +(-13 (-1121) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 -3029 ($ $ $)) (-15 -1351 ((-112) $)) (-15 -3135 ((-112) $)) (-15 -3314 ((-112) |#4| $)) (-15 -1734 ((-112) $ $)) (-15 -1611 ((-112) |#4| $)) (-15 -3197 ((-112) $ (-656 |#3|))) (-15 -3197 ((-112) $)) (-15 -3651 ($ $ $)) (-15 -3651 ($ (-656 $))) (-15 -1855 ($ $ $)) (-15 -1855 ($ $ |#4|)) (-15 -2445 ($ $)) (-15 -2919 ((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|))) (-15 -3267 ($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)))) (-15 -2319 ((-576) $ (-656 |#3|))) (-15 -2319 ((-576) $)) (-15 -3117 ($ $)) (-15 -2041 ($ (-656 |#4|))) (-15 -3522 ($ (-656 |#4|))) (-15 -2400 ((-112) $)) (-15 -4281 ((-656 |#4|) $)) (-15 -3569 ($ (-656 |#4|))) (-15 -1911 ($ $ |#4|)) (-15 -1911 ($ $ |#4| (-656 |#3|))) (IF (|has| |#3| (-626 (-1197))) (-15 -4054 ((-1186 (-656 (-971 |#1|)) (-656 (-304 (-971 |#1|)))) (-656 |#4|))) |%noBranch|))) +((-1604 (((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) 176)) (-1695 (((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) 177)) (-2559 (((-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) 129)) (-3833 (((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) NIL)) (-1670 (((-656 (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) 179)) (-3591 (((-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-878 |#1|))) 195))) +(((-517 |#1| |#2|) (-10 -7 (-15 -1604 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -1695 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -3833 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2559 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -1670 ((-656 (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -3591 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-878 |#1|))))) (-656 (-1197)) (-783)) (T -517)) +((-3591 (*1 *2 *2 *3) (-12 (-5 *2 (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) (-253 *4 (-419 (-576))))) (-5 *3 (-656 (-878 *4))) (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *1 (-517 *4 *5)))) (-1670 (*1 *2 *3) (-12 (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-656 (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) (-253 *4 (-419 (-576)))))) (-5 *1 (-517 *4 *5)) (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) (-253 *4 (-419 (-576))))))) (-2559 (*1 *2 *2) (-12 (-5 *2 (-516 (-419 (-576)) (-245 *4 (-783)) (-878 *3) (-253 *3 (-419 (-576))))) (-14 *3 (-656 (-1197))) (-14 *4 (-783)) (-5 *1 (-517 *3 *4)))) (-3833 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5)))) (-1695 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5)))) (-1604 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5))))) +(-10 -7 (-15 -1604 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -1695 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -3833 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2559 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -1670 ((-656 (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -3591 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-878 |#1|))))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3816 (($) 6)) (-3569 (((-876) $) 12) (((-1197) $) 10)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 8))) +(((-518) (-13 (-1121) (-625 (-1197)) (-10 -8 (-15 -3816 ($))))) (T -518)) +((-3816 (*1 *1) (-5 *1 (-518)))) +(-13 (-1121) (-625 (-1197)) (-10 -8 (-15 -3816 ($)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-3064 (((-656 (-887 |#2| |#1|)) $) 12)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-1944 (($ |#1| |#2|) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3173 ((|#2| $) NIL)) (-2091 ((|#1| $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3581 (($ (-656 (-887 |#1| |#2|))) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2721 (($) 16 T CONST)) (-2924 (((-112) $ $) NIL)) (-3043 (($ $) 15) (($ $ $) 39)) (-3029 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 26))) +(((-519 |#1| |#2|) (-13 (-21) (-521 |#1| |#2|) (-10 -8 (-15 -3581 ($ (-656 (-887 |#1| |#2|)))))) (-21) (-861)) (T -519)) +((-3581 (*1 *1 *2) (-12 (-5 *2 (-656 (-887 *3 *4))) (-4 *3 (-21)) (-4 *4 (-861)) (-5 *1 (-519 *3 *4))))) +(-13 (-21) (-521 |#1| |#2|) (-10 -8 (-15 -3581 ($ (-656 (-887 |#1| |#2|)))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 17)) (-3064 (((-656 (-887 |#2| |#1|)) $) 14)) (-3404 (($) NIL T CONST)) (-2114 (($ $) 45)) (-1944 (($ |#1| |#2|) 42)) (-4116 (($ (-1 |#1| |#1|) $) 44)) (-3173 ((|#2| $) NIL)) (-2091 ((|#1| $) 46)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2721 (($) 13 T CONST)) (-2924 (((-112) $ $) NIL)) (-3029 (($ $ $) 32)) (* (($ (-940) $) NIL) (($ (-783) $) 41))) +(((-520 |#1| |#2|) (-13 (-23) (-521 |#1| |#2|)) (-23) (-861)) (T -520)) +NIL +(-13 (-23) (-521 |#1| |#2|)) +((-3488 (((-112) $ $) 7)) (-3064 (((-656 (-887 |#2| |#1|)) $) 14)) (-2114 (($ $) 15)) (-1944 (($ |#1| |#2|) 18)) (-4116 (($ (-1 |#1| |#1|) $) 19)) (-3173 ((|#2| $) 16)) (-2091 ((|#1| $) 17)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2924 (((-112) $ $) 8))) (((-521 |#1| |#2|) (-141) (-1121) (-861)) (T -521)) -((-4117 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-861)))) (-1945 (*1 *1 *2 *3) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-861)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-861)) (-4 *2 (-1121)))) (-2278 (*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-861)))) (-2114 (*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-861)))) (-3669 (*1 *2 *1) (-12 (-4 *1 (-521 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-861)) (-5 *2 (-656 (-887 *4 *3)))))) -(-13 (-1121) (-10 -8 (-15 -4117 ($ (-1 |t#1| |t#1|) $)) (-15 -1945 ($ |t#1| |t#2|)) (-15 -2091 (|t#1| $)) (-15 -2278 (|t#2| $)) (-15 -2114 ($ $)) (-15 -3669 ((-656 (-887 |t#2| |t#1|)) $)))) +((-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-861)))) (-1944 (*1 *1 *2 *3) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-861)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-861)) (-4 *2 (-1121)))) (-3173 (*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-861)))) (-2114 (*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-861)))) (-3064 (*1 *2 *1) (-12 (-4 *1 (-521 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-861)) (-5 *2 (-656 (-887 *4 *3)))))) +(-13 (-1121) (-10 -8 (-15 -4116 ($ (-1 |t#1| |t#1|) $)) (-15 -1944 ($ |t#1| |t#2|)) (-15 -2091 (|t#1| $)) (-15 -3173 (|t#2| $)) (-15 -2114 ($ $)) (-15 -3064 ((-656 (-887 |t#2| |t#1|)) $)))) (((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-3669 (((-656 (-887 |#2| |#1|)) $) NIL)) (-3886 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-1945 (($ |#1| |#2|) NIL)) (-3125 (($ $ $) NIL)) (-3133 (($ $ $) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-2278 ((|#2| $) NIL)) (-2091 ((|#1| $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2721 (($) NIL T CONST)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) 22)) (-3030 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-3064 (((-656 (-887 |#2| |#1|)) $) NIL)) (-3404 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-1944 (($ |#1| |#2|) NIL)) (-3124 (($ $ $) NIL)) (-1441 (($ $ $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3173 ((|#2| $) NIL)) (-2091 ((|#1| $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2721 (($) NIL T CONST)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) 22)) (-3029 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL))) (((-522 |#1| |#2|) (-13 (-804) (-521 |#1| |#2|)) (-804) (-861)) (T -522)) NIL (-13 (-804) (-521 |#1| |#2|)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-3669 (((-656 (-887 |#2| |#1|)) $) NIL)) (-2324 (($ $ $) 23)) (-4367 (((-3 $ "failed") $ $) 19)) (-3886 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-1945 (($ |#1| |#2|) NIL)) (-3125 (($ $ $) NIL)) (-3133 (($ $ $) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-2278 ((|#2| $) NIL)) (-2091 ((|#1| $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2721 (($) NIL T CONST)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) NIL)) (-3030 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-3064 (((-656 (-887 |#2| |#1|)) $) NIL)) (-2386 (($ $ $) 23)) (-2428 (((-3 $ "failed") $ $) 19)) (-3404 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-1944 (($ |#1| |#2|) NIL)) (-3124 (($ $ $) NIL)) (-1441 (($ $ $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3173 ((|#2| $) NIL)) (-2091 ((|#1| $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2721 (($) NIL T CONST)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) NIL)) (-3029 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL))) (((-523 |#1| |#2|) (-13 (-805) (-521 |#1| |#2|)) (-805) (-861)) (T -523)) NIL (-13 (-805) (-521 |#1| |#2|)) -((-3489 (((-112) $ $) NIL)) (-3669 (((-656 (-887 |#2| |#1|)) $) 39)) (-2114 (($ $) 34)) (-1945 (($ |#1| |#2|) 30)) (-4117 (($ (-1 |#1| |#1|) $) 32)) (-2278 ((|#2| $) 38)) (-2091 ((|#1| $) 37)) (-3699 (((-1179) $) NIL)) (-3412 (($ (-656 (-887 |#2| |#1|))) 43)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 28)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 21))) -(((-524 |#1| |#2|) (-13 (-521 |#1| |#2|) (-10 -8 (-15 -3412 ($ (-656 (-887 |#2| |#1|)))))) (-1121) (-861)) (T -524)) -((-3412 (*1 *1 *2) (-12 (-5 *2 (-656 (-887 *4 *3))) (-4 *3 (-1121)) (-4 *4 (-861)) (-5 *1 (-524 *3 *4))))) -(-13 (-521 |#1| |#2|) (-10 -8 (-15 -3412 ($ (-656 (-887 |#2| |#1|)))))) -((-3284 (($ $ (-656 |#2|) (-656 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-525 |#1| |#2| |#3|) (-10 -8 (-15 -3284 (|#1| |#1| |#2| |#3|)) (-15 -3284 (|#1| |#1| (-656 |#2|) (-656 |#3|)))) (-526 |#2| |#3|) (-1121) (-1238)) (T -525)) -NIL -(-10 -8 (-15 -3284 (|#1| |#1| |#2| |#3|)) (-15 -3284 (|#1| |#1| (-656 |#2|) (-656 |#3|)))) -((-3284 (($ $ (-656 |#1|) (-656 |#2|)) 7) (($ $ |#1| |#2|) 6))) +((-3488 (((-112) $ $) NIL)) (-3064 (((-656 (-887 |#2| |#1|)) $) 39)) (-2114 (($ $) 34)) (-1944 (($ |#1| |#2|) 30)) (-4116 (($ (-1 |#1| |#1|) $) 32)) (-3173 ((|#2| $) 38)) (-2091 ((|#1| $) 37)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 28)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 21))) +(((-524 |#1| |#2|) (-521 |#1| |#2|) (-1121) (-861)) (T -524)) +NIL +(-521 |#1| |#2|) +((-3282 (($ $ (-656 |#2|) (-656 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-525 |#1| |#2| |#3|) (-10 -8 (-15 -3282 (|#1| |#1| |#2| |#3|)) (-15 -3282 (|#1| |#1| (-656 |#2|) (-656 |#3|)))) (-526 |#2| |#3|) (-1121) (-1238)) (T -525)) +NIL +(-10 -8 (-15 -3282 (|#1| |#1| |#2| |#3|)) (-15 -3282 (|#1| |#1| (-656 |#2|) (-656 |#3|)))) +((-3282 (($ $ (-656 |#1|) (-656 |#2|)) 7) (($ $ |#1| |#2|) 6))) (((-526 |#1| |#2|) (-141) (-1121) (-1238)) (T -526)) -((-3284 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *5)) (-4 *1 (-526 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1238)))) (-3284 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1238))))) -(-13 (-10 -8 (-15 -3284 ($ $ |t#1| |t#2|)) (-15 -3284 ($ $ (-656 |t#1|) (-656 |t#2|))))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 17)) (-3669 (((-656 (-2 (|:| |gen| |#1|) (|:| -4104 |#2|))) $) 19)) (-4367 (((-3 $ "failed") $ $) NIL)) (-2098 (((-783) $) NIL)) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2860 ((|#1| $) NIL)) (-4276 ((|#1| $ (-576)) 24)) (-3053 ((|#2| $ (-576)) 22)) (-3310 (($ (-1 |#1| |#1|) $) 48)) (-2231 (($ (-1 |#2| |#2|) $) 45)) (-3699 (((-1179) $) NIL)) (-2707 (($ $ $) 55 (|has| |#2| (-804)))) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 44) (($ |#1|) NIL)) (-3177 ((|#2| |#1| $) 51)) (-4055 (((-112) $ $) NIL)) (-2721 (($) 11 T CONST)) (-2925 (((-112) $ $) 30)) (-3030 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-940) $) NIL) (($ (-783) $) 37) (($ |#2| |#1|) 32))) +((-3282 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *5)) (-4 *1 (-526 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1238)))) (-3282 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1238))))) +(-13 (-10 -8 (-15 -3282 ($ $ |t#1| |t#2|)) (-15 -3282 ($ $ (-656 |t#1|) (-656 |t#2|))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 17)) (-3064 (((-656 (-2 (|:| |gen| |#1|) (|:| -4103 |#2|))) $) 19)) (-2428 (((-3 $ "failed") $ $) NIL)) (-2098 (((-783) $) NIL)) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2859 ((|#1| $) NIL)) (-2807 ((|#1| $ (-576)) 24)) (-3131 ((|#2| $ (-576)) 22)) (-3925 (($ (-1 |#1| |#1|) $) 48)) (-2645 (($ (-1 |#2| |#2|) $) 45)) (-2046 (((-1179) $) NIL)) (-1792 (($ $ $) 55 (|has| |#2| (-804)))) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 44) (($ |#1|) NIL)) (-1822 ((|#2| |#1| $) 51)) (-2399 (((-112) $ $) NIL)) (-2721 (($) 11 T CONST)) (-2924 (((-112) $ $) 30)) (-3029 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-940) $) NIL) (($ (-783) $) 37) (($ |#2| |#1|) 32))) (((-527 |#1| |#2| |#3|) (-333 |#1| |#2|) (-1121) (-132) |#2|) (T -527)) NIL (-333 |#1| |#2|) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2047 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4466)))) (-1710 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-4298 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4466))) (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-861))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-1808 (((-112) $ (-783)) NIL)) (-3710 (((-112) (-112)) 32)) (-3756 ((|#1| $ (-576) |#1|) 42 (|has| $ (-6 -4466))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4466)))) (-2300 (($ (-1 (-112) |#1|) $) 77)) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3886 (($) NIL T CONST)) (-3990 (($ $) NIL (|has| $ (-6 -4466)))) (-3836 (($ $) NIL)) (-1703 (($ $) 81 (|has| |#1| (-1121)))) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1671 (($ |#1| $) NIL (|has| |#1| (-1121))) (($ (-1 (-112) |#1|) $) 64)) (-3946 (($ |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4335 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4466)))) (-4274 ((|#1| $ (-576)) NIL)) (-3660 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-3474 (($ $ (-576)) 19)) (-3138 (((-783) $) 13)) (-3966 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-4141 (($ (-783) |#1|) 31)) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-576) $) 29 (|has| (-576) (-861)))) (-3125 (($ $ $) NIL (|has| |#1| (-861)))) (-2453 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 55)) (-3391 (($ (-1 (-112) |#1| |#1|) $ $) 56) (($ $ $) NIL (|has| |#1| (-861)))) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2137 (((-576) $) 28 (|has| (-576) (-861)))) (-3133 (($ $ $) NIL (|has| |#1| (-861)))) (-4323 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1901 (($ $ $ (-576)) 73) (($ |#1| $ (-576)) 57)) (-2176 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-4234 (((-656 (-576)) $) NIL)) (-3354 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3434 (($ (-656 |#1|)) 43)) (-3581 ((|#1| $) NIL (|has| (-576) (-861)))) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4046 (($ $ |#1|) 24 (|has| $ (-6 -4466)))) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 60)) (-3845 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2281 (((-656 |#1|) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) 21)) (-2797 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 53) (($ $ (-1255 (-576))) NIL)) (-2161 (($ $ (-1255 (-576))) 71) (($ $ (-576)) 65)) (-3466 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3025 (($ $ $ (-576)) 61 (|has| $ (-6 -4466)))) (-1870 (($ $) 51)) (-4172 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) NIL)) (-2974 (($ $ $) 62) (($ $ |#1|) 59)) (-1615 (($ $ |#1|) NIL) (($ |#1| $) 58) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3570 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2992 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2950 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3503 (((-783) $) 22 (|has| $ (-6 -4465))))) -(((-528 |#1| |#2|) (-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -3434 ($ (-656 |#1|))) (-15 -3138 ((-783) $)) (-15 -3474 ($ $ (-576))) (-15 -3710 ((-112) (-112))))) (-1238) (-576)) (T -528)) -((-3434 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-528 *3 *4)) (-14 *4 (-576)))) (-3138 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) (-14 *4 (-576)))) (-3474 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) (-14 *4 *2))) (-3710 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) (-14 *4 (-576))))) -(-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -3434 ($ (-656 |#1|))) (-15 -3138 ((-783) $)) (-15 -3474 ($ $ (-576))) (-15 -3710 ((-112) (-112))))) -((-3489 (((-112) $ $) NIL)) (-4075 (((-1156) $) 11)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1607 (((-1156) $) 13)) (-3987 (((-1156) $) 9)) (-3570 (((-876) $) 19) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-529) (-13 (-1104) (-10 -8 (-15 -3987 ((-1156) $)) (-15 -4075 ((-1156) $)) (-15 -1607 ((-1156) $))))) (T -529)) -((-3987 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529)))) (-4075 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529)))) (-1607 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529))))) -(-13 (-1104) (-10 -8 (-15 -3987 ((-1156) $)) (-15 -4075 ((-1156) $)) (-15 -1607 ((-1156) $)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-2441 (((-112) $) NIL)) (-2664 (((-783)) NIL)) (-2210 (((-593 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-593 |#1|) (-379)))) (-4183 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-593 |#1|) (-379)))) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-4016 (((-112) $ $) NIL)) (-2098 (((-783)) NIL (|has| (-593 |#1|) (-379)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-593 |#1|) "failed") $) NIL)) (-2860 (((-593 |#1|) $) NIL)) (-4119 (($ (-1288 (-593 |#1|))) NIL)) (-2554 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-593 |#1|) (-379)))) (-3429 (($ $ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-593 |#1|) (-379)))) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-2005 (($) NIL (|has| (-593 |#1|) (-379)))) (-4090 (((-112) $) NIL (|has| (-593 |#1|) (-379)))) (-2910 (($ $ (-783)) NIL (-2760 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379)))) (($ $) NIL (-2760 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-4249 (((-112) $) NIL)) (-3917 (((-940) $) NIL (|has| (-593 |#1|) (-379))) (((-845 (-940)) $) NIL (-2760 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-4193 (((-112) $) NIL)) (-4263 (($) NIL (|has| (-593 |#1|) (-379)))) (-1536 (((-112) $) NIL (|has| (-593 |#1|) (-379)))) (-1381 (((-593 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-593 |#1|) (-379)))) (-2240 (((-3 $ "failed") $) NIL (|has| (-593 |#1|) (-379)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2731 (((-1193 (-593 |#1|)) $) NIL) (((-1193 $) $ (-940)) NIL (|has| (-593 |#1|) (-379)))) (-4401 (((-940) $) NIL (|has| (-593 |#1|) (-379)))) (-1938 (((-1193 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-379)))) (-2512 (((-1193 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-379))) (((-3 (-1193 (-593 |#1|)) "failed") $ $) NIL (|has| (-593 |#1|) (-379)))) (-1649 (($ $ (-1193 (-593 |#1|))) NIL (|has| (-593 |#1|) (-379)))) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3540 (($) NIL (|has| (-593 |#1|) (-379)) CONST)) (-3224 (($ (-940)) NIL (|has| (-593 |#1|) (-379)))) (-2844 (((-112) $) NIL)) (-1450 (((-1141) $) NIL)) (-4129 (($) NIL (|has| (-593 |#1|) (-379)))) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2406 (((-656 (-2 (|:| -1828 (-576)) (|:| -3422 (-576))))) NIL (|has| (-593 |#1|) (-379)))) (-1828 (((-430 $) $) NIL)) (-2301 (((-845 (-940))) NIL) (((-940)) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1967 (((-783) $) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-3793 (((-783) $) NIL (|has| (-593 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-2760 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-2003 (((-135)) NIL)) (-2775 (($ $ (-783)) NIL (|has| (-593 |#1|) (-379))) (($ $) NIL (|has| (-593 |#1|) (-379)))) (-3634 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-3867 (((-1193 (-593 |#1|))) NIL)) (-1535 (($) NIL (|has| (-593 |#1|) (-379)))) (-2532 (($) NIL (|has| (-593 |#1|) (-379)))) (-4152 (((-1288 (-593 |#1|)) $) NIL) (((-701 (-593 |#1|)) (-1288 $)) NIL)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| (-593 |#1|) (-379)))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-593 |#1|)) NIL)) (-4336 (($ $) NIL (|has| (-593 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2760 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-1593 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-2672 (((-112) $ $) NIL)) (-3419 (((-112) $) NIL)) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-3051 (($ $) NIL (|has| (-593 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-593 |#1|) (-379)))) (-2020 (($ $ (-783)) NIL (|has| (-593 |#1|) (-379))) (($ $) NIL (|has| (-593 |#1|) (-379)))) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ $) NIL) (($ $ (-593 |#1|)) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-593 |#1|)) NIL) (($ (-593 |#1|) $) NIL))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1512 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-1390 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-3039 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-4264 (((-112) $ (-783)) NIL)) (-2168 (((-112) (-112)) 32)) (-3755 ((|#1| $ (-576) |#1|) 42 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465)))) (-2123 (($ (-1 (-112) |#1|) $) 77)) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3404 (($) NIL T CONST)) (-3092 (($ $) NIL (|has| $ (-6 -4465)))) (-3835 (($ $) NIL)) (-2495 (($ $) 81 (|has| |#1| (-1121)))) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2172 (($ |#1| $) NIL (|has| |#1| (-1121))) (($ (-1 (-112) |#1|) $) 64)) (-3945 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) NIL)) (-3659 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-1765 (($ $ (-576)) 19)) (-1477 (((-783) $) 13)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-4140 (($ (-783) |#1|) 31)) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-576) $) 29 (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-4330 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 55)) (-2185 (($ (-1 (-112) |#1| |#1|) $ $) 56) (($ $ $) NIL (|has| |#1| (-861)))) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4280 (((-576) $) 28 (|has| (-576) (-861)))) (-1441 (($ $ $) NIL (|has| |#1| (-861)))) (-4326 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2597 (($ $ $ (-576)) 73) (($ |#1| $ (-576)) 57)) (-2176 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3669 (((-656 (-576)) $) NIL)) (-3090 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-2604 (($ (-656 |#1|)) 43)) (-3580 ((|#1| $) NIL (|has| (-576) (-861)))) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2304 (($ $ |#1|) 24 (|has| $ (-6 -4465)))) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 60)) (-4282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3207 (((-656 |#1|) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) 21)) (-2796 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 53) (($ $ (-1255 (-576))) NIL)) (-1352 (($ $ (-1255 (-576))) 71) (($ $ (-576)) 65)) (-3465 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2840 (($ $ $ (-576)) 61 (|has| $ (-6 -4465)))) (-1870 (($ $) 51)) (-4171 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) NIL)) (-3631 (($ $ $) 62) (($ $ |#1|) 59)) (-1615 (($ $ |#1|) NIL) (($ |#1| $) 58) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2924 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2949 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3502 (((-783) $) 22 (|has| $ (-6 -4464))))) +(((-528 |#1| |#2|) (-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -2604 ($ (-656 |#1|))) (-15 -1477 ((-783) $)) (-15 -1765 ($ $ (-576))) (-15 -2168 ((-112) (-112))))) (-1238) (-576)) (T -528)) +((-2604 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-528 *3 *4)) (-14 *4 (-576)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) (-14 *4 (-576)))) (-1765 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) (-14 *4 *2))) (-2168 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) (-14 *4 (-576))))) +(-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -2604 ($ (-656 |#1|))) (-15 -1477 ((-783) $)) (-15 -1765 ($ $ (-576))) (-15 -2168 ((-112) (-112))))) +((-3488 (((-112) $ $) NIL)) (-2586 (((-1156) $) 11)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2833 (((-1156) $) 13)) (-3986 (((-1156) $) 9)) (-3569 (((-876) $) 19) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-529) (-13 (-1104) (-10 -8 (-15 -3986 ((-1156) $)) (-15 -2586 ((-1156) $)) (-15 -2833 ((-1156) $))))) (T -529)) +((-3986 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529)))) (-2586 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529)))) (-2833 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529))))) +(-13 (-1104) (-10 -8 (-15 -3986 ((-1156) $)) (-15 -2586 ((-1156) $)) (-15 -2833 ((-1156) $)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-4217 (((-112) $) NIL)) (-2611 (((-783)) NIL)) (-2210 (((-593 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-593 |#1|) (-379)))) (-4371 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-593 |#1|) (-379)))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3330 (((-112) $ $) NIL)) (-2098 (((-783)) NIL (|has| (-593 |#1|) (-379)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-593 |#1|) "failed") $) NIL)) (-2859 (((-593 |#1|) $) NIL)) (-1819 (($ (-1288 (-593 |#1|))) NIL)) (-2868 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-593 |#1|) (-379)))) (-3428 (($ $ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-593 |#1|) (-379)))) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-2345 (($) NIL (|has| (-593 |#1|) (-379)))) (-1543 (((-112) $) NIL (|has| (-593 |#1|) (-379)))) (-3153 (($ $ (-783)) NIL (-2759 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379)))) (($ $) NIL (-2759 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-3833 (((-112) $) NIL)) (-3726 (((-940) $) NIL (|has| (-593 |#1|) (-379))) (((-845 (-940)) $) NIL (-2759 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-1351 (((-112) $) NIL)) (-3975 (($) NIL (|has| (-593 |#1|) (-379)))) (-3381 (((-112) $) NIL (|has| (-593 |#1|) (-379)))) (-2738 (((-593 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-593 |#1|) (-379)))) (-2734 (((-3 $ "failed") $) NIL (|has| (-593 |#1|) (-379)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1989 (((-1193 (-593 |#1|)) $) NIL) (((-1193 $) $ (-940)) NIL (|has| (-593 |#1|) (-379)))) (-1558 (((-940) $) NIL (|has| (-593 |#1|) (-379)))) (-2997 (((-1193 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-379)))) (-3720 (((-1193 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-379))) (((-3 (-1193 (-593 |#1|)) "failed") $ $) NIL (|has| (-593 |#1|) (-379)))) (-1999 (($ $ (-1193 (-593 |#1|))) NIL (|has| (-593 |#1|) (-379)))) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3539 (($) NIL (|has| (-593 |#1|) (-379)) CONST)) (-3223 (($ (-940)) NIL (|has| (-593 |#1|) (-379)))) (-3759 (((-112) $) NIL)) (-1450 (((-1141) $) NIL)) (-4128 (($) NIL (|has| (-593 |#1|) (-379)))) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1913 (((-656 (-2 (|:| -1828 (-576)) (|:| -2508 (-576))))) NIL (|has| (-593 |#1|) (-379)))) (-1828 (((-430 $) $) NIL)) (-2135 (((-845 (-940))) NIL) (((-940)) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1979 (((-783) $) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-1813 (((-783) $) NIL (|has| (-593 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-2759 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-2319 (((-135)) NIL)) (-2774 (($ $ (-783)) NIL (|has| (-593 |#1|) (-379))) (($ $) NIL (|has| (-593 |#1|) (-379)))) (-2683 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-1346 (((-1193 (-593 |#1|))) NIL)) (-3371 (($) NIL (|has| (-593 |#1|) (-379)))) (-3931 (($) NIL (|has| (-593 |#1|) (-379)))) (-4096 (((-1288 (-593 |#1|)) $) NIL) (((-701 (-593 |#1|)) (-1288 $)) NIL)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| (-593 |#1|) (-379)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-593 |#1|)) NIL)) (-3390 (($ $) NIL (|has| (-593 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2759 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-2675 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-1505 (((-112) $ $) NIL)) (-2476 (((-112) $) NIL)) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-3108 (($ $) NIL (|has| (-593 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-593 |#1|) (-379)))) (-2020 (($ $ (-783)) NIL (|has| (-593 |#1|) (-379))) (($ $) NIL (|has| (-593 |#1|) (-379)))) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL) (($ $ (-593 |#1|)) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-593 |#1|)) NIL) (($ (-593 |#1|) $) NIL))) (((-530 |#1| |#2|) (-339 (-593 |#1|)) (-940) (-940)) (T -530)) NIL (-339 (-593 |#1|)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1808 (((-112) $ (-783)) NIL)) (-3756 ((|#1| $ (-576) (-576) |#1|) 51)) (-1631 (($ $ (-576) |#4|) NIL)) (-4436 (($ $ (-576) |#5|) NIL)) (-3886 (($) NIL T CONST)) (-4093 ((|#4| $ (-576)) NIL)) (-4335 ((|#1| $ (-576) (-576) |#1|) 50)) (-4274 ((|#1| $ (-576) (-576)) 45)) (-3966 (((-656 |#1|) $) NIL)) (-1689 (((-783) $) 33)) (-4141 (($ (-783) (-783) |#1|) 30)) (-1699 (((-783) $) 38)) (-3870 (((-112) $ (-783)) NIL)) (-4267 (((-576) $) 31)) (-1952 (((-576) $) 32)) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3900 (((-576) $) 37)) (-2569 (((-576) $) 39)) (-4323 (($ (-1 |#1| |#1|) $) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) 55 (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4046 (($ $ |#1|) NIL)) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) 14)) (-4225 (($) 16)) (-2797 ((|#1| $ (-576) (-576)) 48) ((|#1| $ (-576) (-576) |#1|) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-2129 ((|#5| $ (-576)) NIL)) (-3570 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4264 (((-112) $ (-783)) NIL)) (-3755 ((|#1| $ (-576) (-576) |#1|) 51)) (-3100 (($ $ (-576) |#4|) NIL)) (-1891 (($ $ (-576) |#5|) NIL)) (-3404 (($) NIL T CONST)) (-1575 ((|#4| $ (-576)) NIL)) (-4332 ((|#1| $ (-576) (-576) |#1|) 50)) (-4272 ((|#1| $ (-576) (-576)) 45)) (-3965 (((-656 |#1|) $) NIL)) (-1689 (((-783) $) 33)) (-4140 (($ (-783) (-783) |#1|) 30)) (-1699 (((-783) $) 38)) (-1368 (((-112) $ (-783)) NIL)) (-4017 (((-576) $) 31)) (-3144 (((-576) $) 32)) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3550 (((-576) $) 37)) (-3037 (((-576) $) 39)) (-4326 (($ (-1 |#1| |#1|) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) 55 (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-2304 (($ $ |#1|) NIL)) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) 14)) (-3579 (($) 16)) (-2796 ((|#1| $ (-576) (-576)) 48) ((|#1| $ (-576) (-576) |#1|) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-4203 ((|#5| $ (-576)) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) (((-531 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1238) (-576) (-576) (-384 |#1|) (-384 |#1|)) (T -531)) NIL (-57 |#1| |#4| |#5|) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3106 ((|#1| $) NIL)) (-2898 ((|#1| $) NIL)) (-4426 (($ $) NIL)) (-2047 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4466)))) (-2587 (($ $ (-576)) 70 (|has| $ (-6 -4466)))) (-1710 (((-112) $) NIL (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-4298 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-861)))) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4466)))) (-1795 (($ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1808 (((-112) $ (-783)) NIL)) (-2647 ((|#1| $ |#1|) NIL (|has| $ (-6 -4466)))) (-4364 (($ $ $) 23 (|has| $ (-6 -4466)))) (-2297 ((|#1| $ |#1|) NIL (|has| $ (-6 -4466)))) (-1350 ((|#1| $ |#1|) 21 (|has| $ (-6 -4466)))) (-3756 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4466))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4466))) (($ $ "rest" $) 24 (|has| $ (-6 -4466))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4466))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4466))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4466)))) (-1894 (($ $ (-656 $)) NIL (|has| $ (-6 -4466)))) (-2300 (($ (-1 (-112) |#1|) $) NIL)) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2883 ((|#1| $) NIL)) (-3886 (($) NIL T CONST)) (-3990 (($ $) 28 (|has| $ (-6 -4466)))) (-3836 (($ $) 29)) (-3593 (($ $) 18) (($ $ (-783)) 32)) (-1703 (($ $) 62 (|has| |#1| (-1121)))) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1671 (($ |#1| $) NIL (|has| |#1| (-1121))) (($ (-1 (-112) |#1|) $) NIL)) (-3946 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-4335 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4466)))) (-4274 ((|#1| $ (-576)) NIL)) (-4419 (((-112) $) NIL)) (-3660 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121))) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) (-1 (-112) |#1|) $) NIL)) (-3966 (((-656 |#1|) $) 27 (|has| $ (-6 -4465)))) (-2387 (((-656 $) $) NIL)) (-3295 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-4141 (($ (-783) |#1|) NIL)) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-576) $) 31 (|has| (-576) (-861)))) (-3125 (($ $ $) NIL (|has| |#1| (-861)))) (-2453 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 65)) (-3391 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2137 (((-576) $) NIL (|has| (-576) (-861)))) (-3133 (($ $ $) NIL (|has| |#1| (-861)))) (-4323 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1650 (($ |#1|) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-2353 (((-656 |#1|) $) NIL)) (-3443 (((-112) $) NIL)) (-3699 (((-1179) $) 58 (|has| |#1| (-1121)))) (-3969 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-1901 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2176 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-4234 (((-656 (-576)) $) NIL)) (-3354 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3581 ((|#1| $) 13) (($ $ (-783)) NIL)) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4046 (($ $ |#1|) NIL (|has| $ (-6 -4466)))) (-3166 (((-112) $) NIL)) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 12)) (-3845 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2281 (((-656 |#1|) $) NIL)) (-3973 (((-112) $) 17)) (-4225 (($) 16)) (-2797 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1255 (-576))) NIL) ((|#1| $ (-576)) NIL) ((|#1| $ (-576) |#1|) NIL)) (-2789 (((-576) $ $) NIL)) (-2161 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-3466 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-3617 (((-112) $) 35)) (-2934 (($ $) NIL)) (-3852 (($ $) NIL (|has| $ (-6 -4466)))) (-2687 (((-783) $) NIL)) (-3369 (($ $) 40)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3025 (($ $ $ (-576)) NIL (|has| $ (-6 -4466)))) (-1870 (($ $) 36)) (-4172 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) 26)) (-2974 (($ $ $) 61) (($ $ |#1|) NIL)) (-1615 (($ $ $) NIL) (($ |#1| $) 10) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-3570 (((-876) $) 50 (|has| |#1| (-625 (-876))))) (-2902 (((-656 $) $) NIL)) (-2621 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2992 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2925 (((-112) $ $) 54 (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2950 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3503 (((-783) $) 9 (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3104 ((|#1| $) NIL)) (-2898 ((|#1| $) NIL)) (-4424 (($ $) NIL)) (-1512 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-3203 (($ $ (-576)) 70 (|has| $ (-6 -4465)))) (-1390 (((-112) $) NIL (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3039 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861)))) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4465)))) (-1795 (($ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-4264 (((-112) $ (-783)) NIL)) (-2482 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-2395 (($ $ $) 23 (|has| $ (-6 -4465)))) (-2089 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-1336 ((|#1| $ |#1|) 21 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4465))) (($ $ "rest" $) 24 (|has| $ (-6 -4465))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-3829 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-2123 (($ (-1 (-112) |#1|) $) NIL)) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2882 ((|#1| $) NIL)) (-3404 (($) NIL T CONST)) (-3092 (($ $) 28 (|has| $ (-6 -4465)))) (-3835 (($ $) 29)) (-3592 (($ $) 18) (($ $ (-783)) 32)) (-2495 (($ $) 62 (|has| |#1| (-1121)))) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2172 (($ |#1| $) NIL (|has| |#1| (-1121))) (($ (-1 (-112) |#1|) $) NIL)) (-3945 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4332 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) NIL)) (-1742 (((-112) $) NIL)) (-3659 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121))) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) (-1 (-112) |#1|) $) NIL)) (-3965 (((-656 |#1|) $) 27 (|has| $ (-6 -4464)))) (-1736 (((-656 $) $) NIL)) (-3768 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-4140 (($ (-783) |#1|) NIL)) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-576) $) 31 (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-4330 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 65)) (-2185 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4280 (((-576) $) NIL (|has| (-576) (-861)))) (-1441 (($ $ $) NIL (|has| |#1| (-861)))) (-4326 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1649 (($ |#1|) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2353 (((-656 |#1|) $) NIL)) (-1508 (((-112) $) NIL)) (-2046 (((-1179) $) 58 (|has| |#1| (-1121)))) (-3968 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2597 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2176 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3669 (((-656 (-576)) $) NIL)) (-3090 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3580 ((|#1| $) 13) (($ $ (-783)) NIL)) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2304 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-1721 (((-112) $) NIL)) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 12)) (-4282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3207 (((-656 |#1|) $) NIL)) (-2940 (((-112) $) 17)) (-3579 (($) 16)) (-2796 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1255 (-576))) NIL) ((|#1| $ (-576)) NIL) ((|#1| $ (-576) |#1|) NIL)) (-1335 (((-576) $ $) NIL)) (-1352 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-3465 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-3806 (((-112) $) 35)) (-3262 (($ $) NIL)) (-4347 (($ $) NIL (|has| $ (-6 -4465)))) (-1619 (((-783) $) NIL)) (-3237 (($ $) 40)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2840 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) 36)) (-4171 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 26)) (-3631 (($ $ $) 61) (($ $ |#1|) NIL)) (-1615 (($ $ $) NIL) (($ |#1| $) 10) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-3569 (((-876) $) 50 (|has| |#1| (-625 (-876))))) (-3059 (((-656 $) $) NIL)) (-2247 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2924 (((-112) $ $) 54 (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2949 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3502 (((-783) $) 9 (|has| $ (-6 -4464))))) (((-532 |#1| |#2|) (-678 |#1|) (-1238) (-576)) (T -532)) NIL (-678 |#1|) -((-2030 ((|#4| |#4|) 38)) (-3734 (((-783) |#4|) 44)) (-1394 (((-783) |#4|) 45)) (-2196 (((-656 |#3|) |#4|) 55 (|has| |#3| (-6 -4466)))) (-2807 (((-3 |#4| "failed") |#4|) 67)) (-3156 ((|#4| |#4|) 59)) (-4223 ((|#1| |#4|) 58))) -(((-533 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2030 (|#4| |#4|)) (-15 -3734 ((-783) |#4|)) (-15 -1394 ((-783) |#4|)) (IF (|has| |#3| (-6 -4466)) (-15 -2196 ((-656 |#3|) |#4|)) |%noBranch|) (-15 -4223 (|#1| |#4|)) (-15 -3156 (|#4| |#4|)) (-15 -2807 ((-3 |#4| "failed") |#4|))) (-374) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -533)) -((-2807 (*1 *2 *2) (|partial| -12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3156 (*1 *2 *2) (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-4223 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-374)) (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) (-2196 (*1 *2 *3) (-12 (|has| *6 (-6 -4466)) (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-1394 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-2030 (*1 *2 *2) (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(-10 -7 (-15 -2030 (|#4| |#4|)) (-15 -3734 ((-783) |#4|)) (-15 -1394 ((-783) |#4|)) (IF (|has| |#3| (-6 -4466)) (-15 -2196 ((-656 |#3|) |#4|)) |%noBranch|) (-15 -4223 (|#1| |#4|)) (-15 -3156 (|#4| |#4|)) (-15 -2807 ((-3 |#4| "failed") |#4|))) -((-2030 ((|#8| |#4|) 20)) (-2196 (((-656 |#3|) |#4|) 29 (|has| |#7| (-6 -4466)))) (-2807 (((-3 |#8| "failed") |#4|) 23))) -(((-534 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2030 (|#8| |#4|)) (-15 -2807 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4466)) (-15 -2196 ((-656 |#3|) |#4|)) |%noBranch|)) (-568) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|) (-1013 |#1|) (-384 |#5|) (-384 |#5|) (-699 |#5| |#6| |#7|)) (T -534)) -((-2196 (*1 *2 *3) (-12 (|has| *9 (-6 -4466)) (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1013 *4)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7)) (-5 *2 (-656 *6)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-699 *4 *5 *6)) (-4 *10 (-699 *7 *8 *9)))) (-2807 (*1 *2 *3) (|partial| -12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1013 *4)) (-4 *2 (-699 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) (-2030 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1013 *4)) (-4 *2 (-699 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7))))) -(-10 -7 (-15 -2030 (|#8| |#4|)) (-15 -2807 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4466)) (-15 -2196 ((-656 |#3|) |#4|)) |%noBranch|)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3832 (($ (-783) (-783)) NIL)) (-3430 (($ $ $) NIL)) (-3244 (($ (-614 |#1| |#3|)) NIL) (($ $) NIL)) (-2283 (((-112) $) NIL)) (-2873 (($ $ (-576) (-576)) 21)) (-4112 (($ $ (-576) (-576)) NIL)) (-1644 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-3395 (($ $) NIL)) (-3240 (((-112) $) NIL)) (-1808 (((-112) $ (-783)) NIL)) (-2515 (($ $ (-576) (-576) $) NIL)) (-3756 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-1631 (($ $ (-576) (-614 |#1| |#3|)) NIL)) (-4436 (($ $ (-576) (-614 |#1| |#2|)) NIL)) (-1787 (($ (-783) |#1|) NIL)) (-3886 (($) NIL T CONST)) (-2030 (($ $) 30 (|has| |#1| (-317)))) (-4093 (((-614 |#1| |#3|) $ (-576)) NIL)) (-3734 (((-783) $) 33 (|has| |#1| (-568)))) (-4335 ((|#1| $ (-576) (-576) |#1|) NIL)) (-4274 ((|#1| $ (-576) (-576)) NIL)) (-3966 (((-656 |#1|) $) NIL)) (-1394 (((-783) $) 35 (|has| |#1| (-568)))) (-2196 (((-656 (-614 |#1| |#2|)) $) 38 (|has| |#1| (-568)))) (-1689 (((-783) $) NIL)) (-4141 (($ (-783) (-783) |#1|) NIL)) (-1699 (((-783) $) NIL)) (-3870 (((-112) $ (-783)) NIL)) (-2471 ((|#1| $) 28 (|has| |#1| (-6 (-4467 "*"))))) (-4267 (((-576) $) 10)) (-1952 (((-576) $) NIL)) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3900 (((-576) $) 13)) (-2569 (((-576) $) NIL)) (-2467 (($ (-656 (-656 |#1|))) NIL) (($ (-783) (-783) (-1 |#1| (-576) (-576))) NIL)) (-4323 (($ (-1 |#1| |#1|) $) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1907 (((-656 (-656 |#1|)) $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2807 (((-3 $ "failed") $) 42 (|has| |#1| (-374)))) (-2948 (($ $ $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4046 (($ $ |#1|) NIL)) (-3476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-2784 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL)) (-4002 (((-112) $) NIL)) (-4223 ((|#1| $) 26 (|has| |#1| (-6 (-4467 "*"))))) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-2129 (((-614 |#1| |#2|) $ (-576)) NIL)) (-3570 (($ (-614 |#1| |#2|)) NIL) (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3830 (((-112) $) NIL)) (-2925 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3057 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3044 (($ $ $) NIL) (($ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-614 |#1| |#2|) $ (-614 |#1| |#2|)) NIL) (((-614 |#1| |#3|) (-614 |#1| |#3|) $) NIL)) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) +((-2548 ((|#4| |#4|) 38)) (-3733 (((-783) |#4|) 44)) (-1768 (((-783) |#4|) 45)) (-3595 (((-656 |#3|) |#4|) 55 (|has| |#3| (-6 -4465)))) (-3375 (((-3 |#4| "failed") |#4|) 67)) (-1626 ((|#4| |#4|) 59)) (-3556 ((|#1| |#4|) 58))) +(((-533 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2548 (|#4| |#4|)) (-15 -3733 ((-783) |#4|)) (-15 -1768 ((-783) |#4|)) (IF (|has| |#3| (-6 -4465)) (-15 -3595 ((-656 |#3|) |#4|)) |%noBranch|) (-15 -3556 (|#1| |#4|)) (-15 -1626 (|#4| |#4|)) (-15 -3375 ((-3 |#4| "failed") |#4|))) (-374) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -533)) +((-3375 (*1 *2 *2) (|partial| -12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-1626 (*1 *2 *2) (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3556 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-374)) (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) (-3595 (*1 *2 *3) (-12 (|has| *6 (-6 -4465)) (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-1768 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-2548 (*1 *2 *2) (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) +(-10 -7 (-15 -2548 (|#4| |#4|)) (-15 -3733 ((-783) |#4|)) (-15 -1768 ((-783) |#4|)) (IF (|has| |#3| (-6 -4465)) (-15 -3595 ((-656 |#3|) |#4|)) |%noBranch|) (-15 -3556 (|#1| |#4|)) (-15 -1626 (|#4| |#4|)) (-15 -3375 ((-3 |#4| "failed") |#4|))) +((-2548 ((|#8| |#4|) 20)) (-3595 (((-656 |#3|) |#4|) 29 (|has| |#7| (-6 -4465)))) (-3375 (((-3 |#8| "failed") |#4|) 23))) +(((-534 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2548 (|#8| |#4|)) (-15 -3375 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4465)) (-15 -3595 ((-656 |#3|) |#4|)) |%noBranch|)) (-568) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|) (-1013 |#1|) (-384 |#5|) (-384 |#5|) (-699 |#5| |#6| |#7|)) (T -534)) +((-3595 (*1 *2 *3) (-12 (|has| *9 (-6 -4465)) (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1013 *4)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7)) (-5 *2 (-656 *6)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-699 *4 *5 *6)) (-4 *10 (-699 *7 *8 *9)))) (-3375 (*1 *2 *3) (|partial| -12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1013 *4)) (-4 *2 (-699 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) (-2548 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1013 *4)) (-4 *2 (-699 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7))))) +(-10 -7 (-15 -2548 (|#8| |#4|)) (-15 -3375 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4465)) (-15 -3595 ((-656 |#3|) |#4|)) |%noBranch|)) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3831 (($ (-783) (-783)) NIL)) (-2564 (($ $ $) NIL)) (-1354 (($ (-614 |#1| |#3|)) NIL) (($ $) NIL)) (-3226 (((-112) $) NIL)) (-2736 (($ $ (-576) (-576)) 21)) (-1756 (($ $ (-576) (-576)) NIL)) (-1965 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-2228 (($ $) NIL)) (-4434 (((-112) $) NIL)) (-4264 (((-112) $ (-783)) NIL)) (-3752 (($ $ (-576) (-576) $) NIL)) (-3755 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-3100 (($ $ (-576) (-614 |#1| |#3|)) NIL)) (-1891 (($ $ (-576) (-614 |#1| |#2|)) NIL)) (-4083 (($ (-783) |#1|) NIL)) (-3404 (($) NIL T CONST)) (-2548 (($ $) 30 (|has| |#1| (-317)))) (-1575 (((-614 |#1| |#3|) $ (-576)) NIL)) (-3733 (((-783) $) 33 (|has| |#1| (-568)))) (-4332 ((|#1| $ (-576) (-576) |#1|) NIL)) (-4272 ((|#1| $ (-576) (-576)) NIL)) (-3965 (((-656 |#1|) $) NIL)) (-1768 (((-783) $) 35 (|has| |#1| (-568)))) (-3595 (((-656 (-614 |#1| |#2|)) $) 38 (|has| |#1| (-568)))) (-1689 (((-783) $) NIL)) (-4140 (($ (-783) (-783) |#1|) NIL)) (-1699 (((-783) $) NIL)) (-1368 (((-112) $ (-783)) NIL)) (-1381 ((|#1| $) 28 (|has| |#1| (-6 (-4466 "*"))))) (-4017 (((-576) $) 10)) (-3144 (((-576) $) NIL)) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3550 (((-576) $) 13)) (-3037 (((-576) $) NIL)) (-2466 (($ (-656 (-656 |#1|))) NIL) (($ (-783) (-783) (-1 |#1| (-576) (-576))) NIL)) (-4326 (($ (-1 |#1| |#1|) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2650 (((-656 (-656 |#1|)) $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3375 (((-3 $ "failed") $) 42 (|has| |#1| (-374)))) (-3397 (($ $ $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-2304 (($ $ |#1|) NIL)) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-4406 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL)) (-3218 (((-112) $) NIL)) (-3556 ((|#1| $) 26 (|has| |#1| (-6 (-4466 "*"))))) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-4203 (((-614 |#1| |#2|) $ (-576)) NIL)) (-3569 (($ (-614 |#1| |#2|)) NIL) (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-4155 (((-112) $) NIL)) (-2924 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $ $) NIL) (($ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-614 |#1| |#2|) $ (-614 |#1| |#2|)) NIL) (((-614 |#1| |#3|) (-614 |#1| |#3|) $) NIL)) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) (((-535 |#1| |#2| |#3|) (-699 |#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) (-1070) (-576) (-576)) (T -535)) NIL (-699 |#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1359 (((-656 (-1237)) $) 13)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 19) (($ (-1202)) NIL) (((-1202) $) NIL) (($ (-656 (-1237))) 11)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-536) (-13 (-1104) (-10 -8 (-15 -3570 ($ (-656 (-1237)))) (-15 -1359 ((-656 (-1237)) $))))) (T -536)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-536)))) (-1359 (*1 *2 *1) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-536))))) -(-13 (-1104) (-10 -8 (-15 -3570 ($ (-656 (-1237)))) (-15 -1359 ((-656 (-1237)) $)))) -((-3489 (((-112) $ $) NIL)) (-4134 (((-1156) $) 14)) (-3699 (((-1179) $) NIL)) (-3861 (((-518) $) 11)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 21) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-537) (-13 (-1104) (-10 -8 (-15 -3861 ((-518) $)) (-15 -4134 ((-1156) $))))) (T -537)) -((-3861 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-537))))) -(-13 (-1104) (-10 -8 (-15 -3861 ((-518) $)) (-15 -4134 ((-1156) $)))) -((-1436 (((-703 (-1246)) $) 15)) (-2362 (((-703 (-1244)) $) 38)) (-4205 (((-703 (-1243)) $) 29)) (-1729 (((-703 (-561)) $) 12)) (-1833 (((-703 (-559)) $) 42)) (-3918 (((-703 (-558)) $) 33)) (-4261 (((-783) $ (-129)) 54))) -(((-538 |#1|) (-10 -8 (-15 -4261 ((-783) |#1| (-129))) (-15 -2362 ((-703 (-1244)) |#1|)) (-15 -1833 ((-703 (-559)) |#1|)) (-15 -4205 ((-703 (-1243)) |#1|)) (-15 -3918 ((-703 (-558)) |#1|)) (-15 -1436 ((-703 (-1246)) |#1|)) (-15 -1729 ((-703 (-561)) |#1|))) (-539)) (T -538)) -NIL -(-10 -8 (-15 -4261 ((-783) |#1| (-129))) (-15 -2362 ((-703 (-1244)) |#1|)) (-15 -1833 ((-703 (-559)) |#1|)) (-15 -4205 ((-703 (-1243)) |#1|)) (-15 -3918 ((-703 (-558)) |#1|)) (-15 -1436 ((-703 (-1246)) |#1|)) (-15 -1729 ((-703 (-561)) |#1|))) -((-1436 (((-703 (-1246)) $) 12)) (-2362 (((-703 (-1244)) $) 8)) (-4205 (((-703 (-1243)) $) 10)) (-1729 (((-703 (-561)) $) 13)) (-1833 (((-703 (-559)) $) 9)) (-3918 (((-703 (-558)) $) 11)) (-4261 (((-783) $ (-129)) 7)) (-3578 (((-703 (-130)) $) 14)) (-3423 (($ $) 6))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1406 (((-656 (-1237)) $) 13)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 19) (($ (-1202)) NIL) (((-1202) $) NIL) (($ (-656 (-1237))) 11)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-536) (-13 (-1104) (-10 -8 (-15 -3569 ($ (-656 (-1237)))) (-15 -1406 ((-656 (-1237)) $))))) (T -536)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-536)))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-536))))) +(-13 (-1104) (-10 -8 (-15 -3569 ($ (-656 (-1237)))) (-15 -1406 ((-656 (-1237)) $)))) +((-3488 (((-112) $ $) NIL)) (-1957 (((-1156) $) 14)) (-2046 (((-1179) $) NIL)) (-4425 (((-518) $) 11)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 21) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-537) (-13 (-1104) (-10 -8 (-15 -4425 ((-518) $)) (-15 -1957 ((-1156) $))))) (T -537)) +((-4425 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537)))) (-1957 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-537))))) +(-13 (-1104) (-10 -8 (-15 -4425 ((-518) $)) (-15 -1957 ((-1156) $)))) +((-2242 (((-703 (-1246)) $) 15)) (-1507 (((-703 (-1244)) $) 38)) (-1459 (((-703 (-1243)) $) 29)) (-1549 (((-703 (-561)) $) 12)) (-3272 (((-703 (-559)) $) 42)) (-3737 (((-703 (-558)) $) 33)) (-3954 (((-783) $ (-129)) 54))) +(((-538 |#1|) (-10 -8 (-15 -3954 ((-783) |#1| (-129))) (-15 -1507 ((-703 (-1244)) |#1|)) (-15 -3272 ((-703 (-559)) |#1|)) (-15 -1459 ((-703 (-1243)) |#1|)) (-15 -3737 ((-703 (-558)) |#1|)) (-15 -2242 ((-703 (-1246)) |#1|)) (-15 -1549 ((-703 (-561)) |#1|))) (-539)) (T -538)) +NIL +(-10 -8 (-15 -3954 ((-783) |#1| (-129))) (-15 -1507 ((-703 (-1244)) |#1|)) (-15 -3272 ((-703 (-559)) |#1|)) (-15 -1459 ((-703 (-1243)) |#1|)) (-15 -3737 ((-703 (-558)) |#1|)) (-15 -2242 ((-703 (-1246)) |#1|)) (-15 -1549 ((-703 (-561)) |#1|))) +((-2242 (((-703 (-1246)) $) 12)) (-1507 (((-703 (-1244)) $) 8)) (-1459 (((-703 (-1243)) $) 10)) (-1549 (((-703 (-561)) $) 13)) (-3272 (((-703 (-559)) $) 9)) (-3737 (((-703 (-558)) $) 11)) (-3954 (((-783) $ (-129)) 7)) (-3409 (((-703 (-130)) $) 14)) (-2516 (($ $) 6))) (((-539) (-141)) (T -539)) -((-3578 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-130))))) (-1729 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-561))))) (-1436 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1246))))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-558))))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1243))))) (-1833 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-559))))) (-2362 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1244))))) (-4261 (*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-129)) (-5 *2 (-783))))) -(-13 (-175) (-10 -8 (-15 -3578 ((-703 (-130)) $)) (-15 -1729 ((-703 (-561)) $)) (-15 -1436 ((-703 (-1246)) $)) (-15 -3918 ((-703 (-558)) $)) (-15 -4205 ((-703 (-1243)) $)) (-15 -1833 ((-703 (-559)) $)) (-15 -2362 ((-703 (-1244)) $)) (-15 -4261 ((-783) $ (-129))))) +((-3409 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-130))))) (-1549 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-561))))) (-2242 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1246))))) (-3737 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-558))))) (-1459 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1243))))) (-3272 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-559))))) (-1507 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1244))))) (-3954 (*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-129)) (-5 *2 (-783))))) +(-13 (-175) (-10 -8 (-15 -3409 ((-703 (-130)) $)) (-15 -1549 ((-703 (-561)) $)) (-15 -2242 ((-703 (-1246)) $)) (-15 -3737 ((-703 (-558)) $)) (-15 -1459 ((-703 (-1243)) $)) (-15 -3272 ((-703 (-559)) $)) (-15 -1507 ((-703 (-1244)) $)) (-15 -3954 ((-783) $ (-129))))) (((-175) . T)) -((-2855 (((-1193 |#1|) (-783)) 115)) (-2210 (((-1288 |#1|) (-1288 |#1|) (-940)) 108)) (-3595 (((-1293) (-1288 (-656 (-2 (|:| -3106 |#1|) (|:| -3224 (-1141))))) |#1|) 123)) (-2738 (((-1288 |#1|) (-1288 |#1|) (-783)) 53)) (-1836 (((-1288 |#1|) (-940)) 110)) (-1705 (((-1288 |#1|) (-1288 |#1|) (-576)) 30)) (-3307 (((-1193 |#1|) (-1288 |#1|)) 116)) (-4263 (((-1288 |#1|) (-940)) 137)) (-1536 (((-112) (-1288 |#1|)) 120)) (-1381 (((-1288 |#1|) (-1288 |#1|) (-940)) 100)) (-2731 (((-1193 |#1|) (-1288 |#1|)) 131)) (-4401 (((-940) (-1288 |#1|)) 96)) (-2050 (((-1288 |#1|) (-1288 |#1|)) 38)) (-3224 (((-1288 |#1|) (-940) (-940)) 140)) (-4063 (((-1288 |#1|) (-1288 |#1|) (-1141) (-1141)) 29)) (-1513 (((-1288 |#1|) (-1288 |#1|) (-783) (-1141)) 54)) (-1593 (((-1288 (-1288 |#1|)) (-940)) 136)) (-3057 (((-1288 |#1|) (-1288 |#1|) (-1288 |#1|)) 121)) (** (((-1288 |#1|) (-1288 |#1|) (-576)) 67)) (* (((-1288 |#1|) (-1288 |#1|) (-1288 |#1|)) 31))) -(((-540 |#1|) (-10 -7 (-15 -3595 ((-1293) (-1288 (-656 (-2 (|:| -3106 |#1|) (|:| -3224 (-1141))))) |#1|)) (-15 -1836 ((-1288 |#1|) (-940))) (-15 -3224 ((-1288 |#1|) (-940) (-940))) (-15 -3307 ((-1193 |#1|) (-1288 |#1|))) (-15 -2855 ((-1193 |#1|) (-783))) (-15 -1513 ((-1288 |#1|) (-1288 |#1|) (-783) (-1141))) (-15 -2738 ((-1288 |#1|) (-1288 |#1|) (-783))) (-15 -4063 ((-1288 |#1|) (-1288 |#1|) (-1141) (-1141))) (-15 -1705 ((-1288 |#1|) (-1288 |#1|) (-576))) (-15 ** ((-1288 |#1|) (-1288 |#1|) (-576))) (-15 * ((-1288 |#1|) (-1288 |#1|) (-1288 |#1|))) (-15 -3057 ((-1288 |#1|) (-1288 |#1|) (-1288 |#1|))) (-15 -1381 ((-1288 |#1|) (-1288 |#1|) (-940))) (-15 -2210 ((-1288 |#1|) (-1288 |#1|) (-940))) (-15 -2050 ((-1288 |#1|) (-1288 |#1|))) (-15 -4401 ((-940) (-1288 |#1|))) (-15 -1536 ((-112) (-1288 |#1|))) (-15 -1593 ((-1288 (-1288 |#1|)) (-940))) (-15 -4263 ((-1288 |#1|) (-940))) (-15 -2731 ((-1193 |#1|) (-1288 |#1|)))) (-360)) (T -540)) -((-2731 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-1193 *4)) (-5 *1 (-540 *4)))) (-4263 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1288 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-1593 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1288 (-1288 *4))) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-1536 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-540 *4)))) (-4401 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-940)) (-5 *1 (-540 *4)))) (-2050 (*1 *2 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (-2210 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-940)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-1381 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-940)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-3057 (*1 *2 *2 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-576)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-1705 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-576)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-4063 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1141)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-2738 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-1513 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1288 *5)) (-5 *3 (-783)) (-5 *4 (-1141)) (-4 *5 (-360)) (-5 *1 (-540 *5)))) (-2855 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1193 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-3307 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-1193 *4)) (-5 *1 (-540 *4)))) (-3224 (*1 *2 *3 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1288 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-1836 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1288 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-3595 (*1 *2 *3 *4) (-12 (-5 *3 (-1288 (-656 (-2 (|:| -3106 *4) (|:| -3224 (-1141)))))) (-4 *4 (-360)) (-5 *2 (-1293)) (-5 *1 (-540 *4))))) -(-10 -7 (-15 -3595 ((-1293) (-1288 (-656 (-2 (|:| -3106 |#1|) (|:| -3224 (-1141))))) |#1|)) (-15 -1836 ((-1288 |#1|) (-940))) (-15 -3224 ((-1288 |#1|) (-940) (-940))) (-15 -3307 ((-1193 |#1|) (-1288 |#1|))) (-15 -2855 ((-1193 |#1|) (-783))) (-15 -1513 ((-1288 |#1|) (-1288 |#1|) (-783) (-1141))) (-15 -2738 ((-1288 |#1|) (-1288 |#1|) (-783))) (-15 -4063 ((-1288 |#1|) (-1288 |#1|) (-1141) (-1141))) (-15 -1705 ((-1288 |#1|) (-1288 |#1|) (-576))) (-15 ** ((-1288 |#1|) (-1288 |#1|) (-576))) (-15 * ((-1288 |#1|) (-1288 |#1|) (-1288 |#1|))) (-15 -3057 ((-1288 |#1|) (-1288 |#1|) (-1288 |#1|))) (-15 -1381 ((-1288 |#1|) (-1288 |#1|) (-940))) (-15 -2210 ((-1288 |#1|) (-1288 |#1|) (-940))) (-15 -2050 ((-1288 |#1|) (-1288 |#1|))) (-15 -4401 ((-940) (-1288 |#1|))) (-15 -1536 ((-112) (-1288 |#1|))) (-15 -1593 ((-1288 (-1288 |#1|)) (-940))) (-15 -4263 ((-1288 |#1|) (-940))) (-15 -2731 ((-1193 |#1|) (-1288 |#1|)))) -((-1436 (((-703 (-1246)) $) NIL)) (-2362 (((-703 (-1244)) $) NIL)) (-4205 (((-703 (-1243)) $) NIL)) (-1729 (((-703 (-561)) $) NIL)) (-1833 (((-703 (-559)) $) NIL)) (-3918 (((-703 (-558)) $) NIL)) (-4261 (((-783) $ (-129)) NIL)) (-3578 (((-703 (-130)) $) 26)) (-1926 (((-1141) $ (-1141)) 31)) (-3660 (((-1141) $) 30)) (-2105 (((-112) $) 20)) (-2753 (($ (-400)) 14) (($ (-1179)) 16)) (-2525 (((-112) $) 27)) (-3570 (((-876) $) 34)) (-3423 (($ $) 28))) -(((-541) (-13 (-539) (-625 (-876)) (-10 -8 (-15 -2753 ($ (-400))) (-15 -2753 ($ (-1179))) (-15 -2525 ((-112) $)) (-15 -2105 ((-112) $)) (-15 -3660 ((-1141) $)) (-15 -1926 ((-1141) $ (-1141)))))) (T -541)) -((-2753 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-541)))) (-2753 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-541)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) (-2105 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) (-3660 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-541)))) (-1926 (*1 *2 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-541))))) -(-13 (-539) (-625 (-876)) (-10 -8 (-15 -2753 ($ (-400))) (-15 -2753 ($ (-1179))) (-15 -2525 ((-112) $)) (-15 -2105 ((-112) $)) (-15 -3660 ((-1141) $)) (-15 -1926 ((-1141) $ (-1141))))) -((-4373 (((-1 |#1| |#1|) |#1|) 11)) (-3444 (((-1 |#1| |#1|)) 10))) -(((-542 |#1|) (-10 -7 (-15 -3444 ((-1 |#1| |#1|))) (-15 -4373 ((-1 |#1| |#1|) |#1|))) (-13 (-738) (-25))) (T -542)) -((-4373 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25))))) (-3444 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25)))))) -(-10 -7 (-15 -3444 ((-1 |#1| |#1|))) (-15 -4373 ((-1 |#1| |#1|) |#1|))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-3669 (((-656 (-887 |#1| (-783))) $) NIL)) (-2324 (($ $ $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-1945 (($ (-783) |#1|) NIL)) (-3125 (($ $ $) NIL)) (-3133 (($ $ $) NIL)) (-4117 (($ (-1 (-783) (-783)) $) NIL)) (-2278 ((|#1| $) NIL)) (-2091 (((-783) $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 27)) (-4055 (((-112) $ $) NIL)) (-2721 (($) NIL T CONST)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) NIL)) (-3030 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL))) +((-3875 (((-1193 |#1|) (-783)) 115)) (-2210 (((-1288 |#1|) (-1288 |#1|) (-940)) 108)) (-3577 (((-1293) (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))) |#1|) 123)) (-4034 (((-1288 |#1|) (-1288 |#1|) (-783)) 53)) (-1836 (((-1288 |#1|) (-940)) 110)) (-2506 (((-1288 |#1|) (-1288 |#1|) (-576)) 30)) (-3896 (((-1193 |#1|) (-1288 |#1|)) 116)) (-3975 (((-1288 |#1|) (-940)) 137)) (-3381 (((-112) (-1288 |#1|)) 120)) (-2738 (((-1288 |#1|) (-1288 |#1|) (-940)) 100)) (-1989 (((-1193 |#1|) (-1288 |#1|)) 131)) (-1558 (((-940) (-1288 |#1|)) 96)) (-2050 (((-1288 |#1|) (-1288 |#1|)) 38)) (-3223 (((-1288 |#1|) (-940) (-940)) 140)) (-2477 (((-1288 |#1|) (-1288 |#1|) (-1141) (-1141)) 29)) (-4373 (((-1288 |#1|) (-1288 |#1|) (-783) (-1141)) 54)) (-2675 (((-1288 (-1288 |#1|)) (-940)) 136)) (-3056 (((-1288 |#1|) (-1288 |#1|) (-1288 |#1|)) 121)) (** (((-1288 |#1|) (-1288 |#1|) (-576)) 67)) (* (((-1288 |#1|) (-1288 |#1|) (-1288 |#1|)) 31))) +(((-540 |#1|) (-10 -7 (-15 -3577 ((-1293) (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))) |#1|)) (-15 -1836 ((-1288 |#1|) (-940))) (-15 -3223 ((-1288 |#1|) (-940) (-940))) (-15 -3896 ((-1193 |#1|) (-1288 |#1|))) (-15 -3875 ((-1193 |#1|) (-783))) (-15 -4373 ((-1288 |#1|) (-1288 |#1|) (-783) (-1141))) (-15 -4034 ((-1288 |#1|) (-1288 |#1|) (-783))) (-15 -2477 ((-1288 |#1|) (-1288 |#1|) (-1141) (-1141))) (-15 -2506 ((-1288 |#1|) (-1288 |#1|) (-576))) (-15 ** ((-1288 |#1|) (-1288 |#1|) (-576))) (-15 * ((-1288 |#1|) (-1288 |#1|) (-1288 |#1|))) (-15 -3056 ((-1288 |#1|) (-1288 |#1|) (-1288 |#1|))) (-15 -2738 ((-1288 |#1|) (-1288 |#1|) (-940))) (-15 -2210 ((-1288 |#1|) (-1288 |#1|) (-940))) (-15 -2050 ((-1288 |#1|) (-1288 |#1|))) (-15 -1558 ((-940) (-1288 |#1|))) (-15 -3381 ((-112) (-1288 |#1|))) (-15 -2675 ((-1288 (-1288 |#1|)) (-940))) (-15 -3975 ((-1288 |#1|) (-940))) (-15 -1989 ((-1193 |#1|) (-1288 |#1|)))) (-360)) (T -540)) +((-1989 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-1193 *4)) (-5 *1 (-540 *4)))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1288 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-2675 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1288 (-1288 *4))) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-540 *4)))) (-1558 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-940)) (-5 *1 (-540 *4)))) (-2050 (*1 *2 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (-2210 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-940)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-2738 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-940)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-3056 (*1 *2 *2 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-576)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-2506 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-576)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-2477 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1141)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-4034 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-4373 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1288 *5)) (-5 *3 (-783)) (-5 *4 (-1141)) (-4 *5 (-360)) (-5 *1 (-540 *5)))) (-3875 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1193 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-3896 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-1193 *4)) (-5 *1 (-540 *4)))) (-3223 (*1 *2 *3 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1288 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-1836 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1288 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-3577 (*1 *2 *3 *4) (-12 (-5 *3 (-1288 (-656 (-2 (|:| -3104 *4) (|:| -3223 (-1141)))))) (-4 *4 (-360)) (-5 *2 (-1293)) (-5 *1 (-540 *4))))) +(-10 -7 (-15 -3577 ((-1293) (-1288 (-656 (-2 (|:| -3104 |#1|) (|:| -3223 (-1141))))) |#1|)) (-15 -1836 ((-1288 |#1|) (-940))) (-15 -3223 ((-1288 |#1|) (-940) (-940))) (-15 -3896 ((-1193 |#1|) (-1288 |#1|))) (-15 -3875 ((-1193 |#1|) (-783))) (-15 -4373 ((-1288 |#1|) (-1288 |#1|) (-783) (-1141))) (-15 -4034 ((-1288 |#1|) (-1288 |#1|) (-783))) (-15 -2477 ((-1288 |#1|) (-1288 |#1|) (-1141) (-1141))) (-15 -2506 ((-1288 |#1|) (-1288 |#1|) (-576))) (-15 ** ((-1288 |#1|) (-1288 |#1|) (-576))) (-15 * ((-1288 |#1|) (-1288 |#1|) (-1288 |#1|))) (-15 -3056 ((-1288 |#1|) (-1288 |#1|) (-1288 |#1|))) (-15 -2738 ((-1288 |#1|) (-1288 |#1|) (-940))) (-15 -2210 ((-1288 |#1|) (-1288 |#1|) (-940))) (-15 -2050 ((-1288 |#1|) (-1288 |#1|))) (-15 -1558 ((-940) (-1288 |#1|))) (-15 -3381 ((-112) (-1288 |#1|))) (-15 -2675 ((-1288 (-1288 |#1|)) (-940))) (-15 -3975 ((-1288 |#1|) (-940))) (-15 -1989 ((-1193 |#1|) (-1288 |#1|)))) +((-2242 (((-703 (-1246)) $) NIL)) (-1507 (((-703 (-1244)) $) NIL)) (-1459 (((-703 (-1243)) $) NIL)) (-1549 (((-703 (-561)) $) NIL)) (-3272 (((-703 (-559)) $) NIL)) (-3737 (((-703 (-558)) $) NIL)) (-3954 (((-783) $ (-129)) NIL)) (-3409 (((-703 (-130)) $) 26)) (-2853 (((-1141) $ (-1141)) 31)) (-3659 (((-1141) $) 30)) (-3991 (((-112) $) 20)) (-4154 (($ (-400)) 14) (($ (-1179)) 16)) (-3866 (((-112) $) 27)) (-3569 (((-876) $) 34)) (-2516 (($ $) 28))) +(((-541) (-13 (-539) (-625 (-876)) (-10 -8 (-15 -4154 ($ (-400))) (-15 -4154 ($ (-1179))) (-15 -3866 ((-112) $)) (-15 -3991 ((-112) $)) (-15 -3659 ((-1141) $)) (-15 -2853 ((-1141) $ (-1141)))))) (T -541)) +((-4154 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-541)))) (-4154 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-541)))) (-3866 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) (-3991 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) (-3659 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-541)))) (-2853 (*1 *2 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-541))))) +(-13 (-539) (-625 (-876)) (-10 -8 (-15 -4154 ($ (-400))) (-15 -4154 ($ (-1179))) (-15 -3866 ((-112) $)) (-15 -3991 ((-112) $)) (-15 -3659 ((-1141) $)) (-15 -2853 ((-1141) $ (-1141))))) +((-4372 (((-1 |#1| |#1|) |#1|) 11)) (-1517 (((-1 |#1| |#1|)) 10))) +(((-542 |#1|) (-10 -7 (-15 -1517 ((-1 |#1| |#1|))) (-15 -4372 ((-1 |#1| |#1|) |#1|))) (-13 (-738) (-25))) (T -542)) +((-4372 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25))))) (-1517 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25)))))) +(-10 -7 (-15 -1517 ((-1 |#1| |#1|))) (-15 -4372 ((-1 |#1| |#1|) |#1|))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-3064 (((-656 (-887 |#1| (-783))) $) NIL)) (-2386 (($ $ $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-1944 (($ (-783) |#1|) NIL)) (-3124 (($ $ $) NIL)) (-1441 (($ $ $) NIL)) (-4116 (($ (-1 (-783) (-783)) $) NIL)) (-3173 ((|#1| $) NIL)) (-2091 (((-783) $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 27)) (-2399 (((-112) $ $) NIL)) (-2721 (($) NIL T CONST)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) NIL)) (-3029 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL))) (((-543 |#1|) (-13 (-805) (-521 (-783) |#1|)) (-861)) (T -543)) NIL (-13 (-805) (-521 (-783) |#1|)) -((-2510 (((-656 |#2|) (-1193 |#1|) |#3|) 98)) (-1577 (((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1193 |#1|)) (-1193 |#1|))) 114)) (-3157 (((-1193 |#1|) (-701 |#1|)) 110))) -(((-544 |#1| |#2| |#3|) (-10 -7 (-15 -3157 ((-1193 |#1|) (-701 |#1|))) (-15 -2510 ((-656 |#2|) (-1193 |#1|) |#3|)) (-15 -1577 ((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1193 |#1|)) (-1193 |#1|))))) (-374) (-374) (-13 (-374) (-860))) (T -544)) -((-1577 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *6)) (-5 *5 (-1 (-430 (-1193 *6)) (-1193 *6))) (-4 *6 (-374)) (-5 *2 (-656 (-2 (|:| |outval| *7) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 *7)))))) (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-374)) (-4 *4 (-13 (-374) (-860))))) (-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *5)) (-4 *5 (-374)) (-5 *2 (-656 *6)) (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))) (-3157 (*1 *2 *3) (-12 (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *2 (-1193 *4)) (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-374)) (-4 *6 (-13 (-374) (-860)))))) -(-10 -7 (-15 -3157 ((-1193 |#1|) (-701 |#1|))) (-15 -2510 ((-656 |#2|) (-1193 |#1|) |#3|)) (-15 -1577 ((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1193 |#1|)) (-1193 |#1|))))) -((-3431 (((-703 (-1246)) $ (-1246)) NIL)) (-3559 (((-703 (-561)) $ (-561)) NIL)) (-3000 (((-783) $ (-129)) 39)) (-4175 (((-703 (-130)) $ (-130)) 40)) (-1436 (((-703 (-1246)) $) NIL)) (-2362 (((-703 (-1244)) $) NIL)) (-4205 (((-703 (-1243)) $) NIL)) (-1729 (((-703 (-561)) $) NIL)) (-1833 (((-703 (-559)) $) NIL)) (-3918 (((-703 (-558)) $) NIL)) (-4261 (((-783) $ (-129)) 35)) (-3578 (((-703 (-130)) $) 37)) (-1398 (((-112) $) 27)) (-2372 (((-703 $) (-591) (-973)) 18) (((-703 $) (-503) (-973)) 24)) (-3570 (((-876) $) 48)) (-3423 (($ $) 42))) -(((-545) (-13 (-779 (-591)) (-625 (-876)) (-10 -8 (-15 -2372 ((-703 $) (-503) (-973)))))) (T -545)) -((-2372 (*1 *2 *3 *4) (-12 (-5 *3 (-503)) (-5 *4 (-973)) (-5 *2 (-703 (-545))) (-5 *1 (-545))))) -(-13 (-779 (-591)) (-625 (-876)) (-10 -8 (-15 -2372 ((-703 $) (-503) (-973))))) -((-2955 (((-855 (-576))) 12)) (-2970 (((-855 (-576))) 14)) (-1610 (((-845 (-576))) 9))) -(((-546) (-10 -7 (-15 -1610 ((-845 (-576)))) (-15 -2955 ((-855 (-576)))) (-15 -2970 ((-855 (-576)))))) (T -546)) -((-2970 (*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) (-2955 (*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) (-1610 (*1 *2) (-12 (-5 *2 (-845 (-576))) (-5 *1 (-546))))) -(-10 -7 (-15 -1610 ((-845 (-576)))) (-15 -2955 ((-855 (-576)))) (-15 -2970 ((-855 (-576))))) -((-4437 (((-548) (-1197)) 15)) (-3311 ((|#1| (-548)) 20))) -(((-547 |#1|) (-10 -7 (-15 -4437 ((-548) (-1197))) (-15 -3311 (|#1| (-548)))) (-1238)) (T -547)) -((-3311 (*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-547 *2)) (-4 *2 (-1238)))) (-4437 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-548)) (-5 *1 (-547 *4)) (-4 *4 (-1238))))) -(-10 -7 (-15 -4437 ((-548) (-1197))) (-15 -3311 (|#1| (-548)))) -((-3489 (((-112) $ $) NIL)) (-2019 (((-1179) $) 55)) (-2820 (((-112) $) 51)) (-3110 (((-1197) $) 52)) (-1501 (((-112) $) 49)) (-1327 (((-1179) $) 50)) (-4332 (($ (-1179)) 56)) (-1335 (((-112) $) NIL)) (-2711 (((-112) $) NIL)) (-1929 (((-112) $) NIL)) (-3699 (((-1179) $) NIL)) (-3728 (($ $ (-656 (-1197))) 21)) (-3311 (((-52) $) 23)) (-1421 (((-112) $) NIL)) (-3135 (((-576) $) NIL)) (-1450 (((-1141) $) NIL)) (-3341 (($ $ (-656 (-1197)) (-1197)) 73)) (-2153 (((-112) $) NIL)) (-3045 (((-227) $) NIL)) (-2253 (($ $) 44)) (-3004 (((-876) $) NIL)) (-4027 (((-112) $ $) NIL)) (-2797 (($ $ (-576)) NIL) (($ $ (-656 (-576))) NIL)) (-1905 (((-656 $) $) 30)) (-2418 (((-1197) (-656 $)) 57)) (-4172 (($ (-1179)) NIL) (($ (-1197)) 19) (($ (-576)) 8) (($ (-227)) 28) (($ (-876)) NIL) (($ (-656 $)) 65) (((-1125) $) 12) (($ (-1125)) 13)) (-4149 (((-1197) (-1197) (-656 $)) 60)) (-3570 (((-876) $) 54)) (-2869 (($ $) 59)) (-4353 (($ $) 58)) (-3445 (($ $ (-656 $)) 66)) (-4055 (((-112) $ $) NIL)) (-2727 (((-112) $) 29)) (-2721 (($) 9 T CONST)) (-2732 (($) 11 T CONST)) (-2925 (((-112) $ $) 74)) (-3057 (($ $ $) 82)) (-3030 (($ $ $) 75)) (** (($ $ (-783)) 81) (($ $ (-576)) 80)) (* (($ $ $) 76)) (-3503 (((-576) $) NIL))) -(((-548) (-13 (-1124 (-1179) (-1197) (-576) (-227) (-876)) (-626 (-1125)) (-10 -8 (-15 -3311 ((-52) $)) (-15 -4172 ($ (-1125))) (-15 -3445 ($ $ (-656 $))) (-15 -3341 ($ $ (-656 (-1197)) (-1197))) (-15 -3728 ($ $ (-656 (-1197)))) (-15 -3030 ($ $ $)) (-15 * ($ $ $)) (-15 -3057 ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ (-576))) (-15 0 ($) -1480) (-15 1 ($) -1480) (-15 -2253 ($ $)) (-15 -2019 ((-1179) $)) (-15 -4332 ($ (-1179))) (-15 -2418 ((-1197) (-656 $))) (-15 -4149 ((-1197) (-1197) (-656 $)))))) (T -548)) -((-3311 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-548)))) (-4172 (*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-548)))) (-3445 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-548))) (-5 *1 (-548)))) (-3341 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-1197)) (-5 *1 (-548)))) (-3728 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-548)))) (-3030 (*1 *1 *1 *1) (-5 *1 (-548))) (* (*1 *1 *1 *1) (-5 *1 (-548))) (-3057 (*1 *1 *1 *1) (-5 *1 (-548))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-548)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-548)))) (-2721 (*1 *1) (-5 *1 (-548))) (-2732 (*1 *1) (-5 *1 (-548))) (-2253 (*1 *1 *1) (-5 *1 (-548))) (-2019 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-548)))) (-4332 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-548)))) (-2418 (*1 *2 *3) (-12 (-5 *3 (-656 (-548))) (-5 *2 (-1197)) (-5 *1 (-548)))) (-4149 (*1 *2 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-548))) (-5 *1 (-548))))) -(-13 (-1124 (-1179) (-1197) (-576) (-227) (-876)) (-626 (-1125)) (-10 -8 (-15 -3311 ((-52) $)) (-15 -4172 ($ (-1125))) (-15 -3445 ($ $ (-656 $))) (-15 -3341 ($ $ (-656 (-1197)) (-1197))) (-15 -3728 ($ $ (-656 (-1197)))) (-15 -3030 ($ $ $)) (-15 * ($ $ $)) (-15 -3057 ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ (-576))) (-15 (-2721) ($) -1480) (-15 (-2732) ($) -1480) (-15 -2253 ($ $)) (-15 -2019 ((-1179) $)) (-15 -4332 ($ (-1179))) (-15 -2418 ((-1197) (-656 $))) (-15 -4149 ((-1197) (-1197) (-656 $))))) -((-1356 ((|#2| |#2|) 17)) (-2850 ((|#2| |#2|) 13)) (-2966 ((|#2| |#2| (-576) (-576)) 20)) (-3217 ((|#2| |#2|) 15))) -(((-549 |#1| |#2|) (-10 -7 (-15 -2850 (|#2| |#2|)) (-15 -3217 (|#2| |#2|)) (-15 -1356 (|#2| |#2|)) (-15 -2966 (|#2| |#2| (-576) (-576)))) (-13 (-568) (-148)) (-1279 |#1|)) (T -549)) -((-2966 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-549 *4 *2)) (-4 *2 (-1279 *4)))) (-1356 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1279 *3)))) (-3217 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1279 *3)))) (-2850 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1279 *3))))) -(-10 -7 (-15 -2850 (|#2| |#2|)) (-15 -3217 (|#2| |#2|)) (-15 -1356 (|#2| |#2|)) (-15 -2966 (|#2| |#2| (-576) (-576)))) -((-2547 (((-656 (-304 (-971 |#2|))) (-656 |#2|) (-656 (-1197))) 32)) (-4111 (((-656 |#2|) (-971 |#1|) |#3|) 54) (((-656 |#2|) (-1193 |#1|) |#3|) 53)) (-2926 (((-656 (-656 |#2|)) (-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197)) |#3|) 106))) -(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -4111 ((-656 |#2|) (-1193 |#1|) |#3|)) (-15 -4111 ((-656 |#2|) (-971 |#1|) |#3|)) (-15 -2926 ((-656 (-656 |#2|)) (-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197)) |#3|)) (-15 -2547 ((-656 (-304 (-971 |#2|))) (-656 |#2|) (-656 (-1197))))) (-464) (-374) (-13 (-374) (-860))) (T -550)) -((-2547 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1197))) (-4 *6 (-374)) (-5 *2 (-656 (-304 (-971 *6)))) (-5 *1 (-550 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-13 (-374) (-860))))) (-2926 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-656 (-971 *6))) (-5 *4 (-656 (-1197))) (-4 *6 (-464)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-374)) (-4 *5 (-13 (-374) (-860))))) (-4111 (*1 *2 *3 *4) (-12 (-5 *3 (-971 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))) (-4111 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860)))))) -(-10 -7 (-15 -4111 ((-656 |#2|) (-1193 |#1|) |#3|)) (-15 -4111 ((-656 |#2|) (-971 |#1|) |#3|)) (-15 -2926 ((-656 (-656 |#2|)) (-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197)) |#3|)) (-15 -2547 ((-656 (-304 (-971 |#2|))) (-656 |#2|) (-656 (-1197))))) -((-1765 ((|#2| |#2| |#1|) 17)) (-3551 ((|#2| (-656 |#2|)) 31)) (-2369 ((|#2| (-656 |#2|)) 52))) -(((-551 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3551 (|#2| (-656 |#2|))) (-15 -2369 (|#2| (-656 |#2|))) (-15 -1765 (|#2| |#2| |#1|))) (-317) (-1264 |#1|) |#1| (-1 |#1| |#1| (-783))) (T -551)) -((-1765 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-783))) (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1264 *3)))) (-2369 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783))))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783)))))) -(-10 -7 (-15 -3551 (|#2| (-656 |#2|))) (-15 -2369 (|#2| (-656 |#2|))) (-15 -1765 (|#2| |#2| |#1|))) +((-3694 (((-656 |#2|) (-1193 |#1|) |#3|) 98)) (-3821 (((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1193 |#1|)) (-1193 |#1|))) 114)) (-1635 (((-1193 |#1|) (-701 |#1|)) 110))) +(((-544 |#1| |#2| |#3|) (-10 -7 (-15 -1635 ((-1193 |#1|) (-701 |#1|))) (-15 -3694 ((-656 |#2|) (-1193 |#1|) |#3|)) (-15 -3821 ((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1193 |#1|)) (-1193 |#1|))))) (-374) (-374) (-13 (-374) (-860))) (T -544)) +((-3821 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *6)) (-5 *5 (-1 (-430 (-1193 *6)) (-1193 *6))) (-4 *6 (-374)) (-5 *2 (-656 (-2 (|:| |outval| *7) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 *7)))))) (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-374)) (-4 *4 (-13 (-374) (-860))))) (-3694 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *5)) (-4 *5 (-374)) (-5 *2 (-656 *6)) (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))) (-1635 (*1 *2 *3) (-12 (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *2 (-1193 *4)) (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-374)) (-4 *6 (-13 (-374) (-860)))))) +(-10 -7 (-15 -1635 ((-1193 |#1|) (-701 |#1|))) (-15 -3694 ((-656 |#2|) (-1193 |#1|) |#3|)) (-15 -3821 ((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1193 |#1|)) (-1193 |#1|))))) +((-2574 (((-703 (-1246)) $ (-1246)) NIL)) (-1350 (((-703 (-561)) $ (-561)) NIL)) (-3890 (((-783) $ (-129)) 39)) (-4299 (((-703 (-130)) $ (-130)) 40)) (-2242 (((-703 (-1246)) $) NIL)) (-1507 (((-703 (-1244)) $) NIL)) (-1459 (((-703 (-1243)) $) NIL)) (-1549 (((-703 (-561)) $) NIL)) (-3272 (((-703 (-559)) $) NIL)) (-3737 (((-703 (-558)) $) NIL)) (-3954 (((-783) $ (-129)) 35)) (-3409 (((-703 (-130)) $) 37)) (-3716 (((-112) $) 27)) (-1603 (((-703 $) (-591) (-973)) 18) (((-703 $) (-503) (-973)) 24)) (-3569 (((-876) $) 48)) (-2516 (($ $) 42))) +(((-545) (-13 (-779 (-591)) (-625 (-876)) (-10 -8 (-15 -1603 ((-703 $) (-503) (-973)))))) (T -545)) +((-1603 (*1 *2 *3 *4) (-12 (-5 *3 (-503)) (-5 *4 (-973)) (-5 *2 (-703 (-545))) (-5 *1 (-545))))) +(-13 (-779 (-591)) (-625 (-876)) (-10 -8 (-15 -1603 ((-703 $) (-503) (-973))))) +((-2954 (((-855 (-576))) 12)) (-2969 (((-855 (-576))) 14)) (-1610 (((-845 (-576))) 9))) +(((-546) (-10 -7 (-15 -1610 ((-845 (-576)))) (-15 -2954 ((-855 (-576)))) (-15 -2969 ((-855 (-576)))))) (T -546)) +((-2969 (*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) (-2954 (*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) (-1610 (*1 *2) (-12 (-5 *2 (-845 (-576))) (-5 *1 (-546))))) +(-10 -7 (-15 -1610 ((-845 (-576)))) (-15 -2954 ((-855 (-576)))) (-15 -2969 ((-855 (-576))))) +((-1901 (((-548) (-1197)) 15)) (-3312 ((|#1| (-548)) 20))) +(((-547 |#1|) (-10 -7 (-15 -1901 ((-548) (-1197))) (-15 -3312 (|#1| (-548)))) (-1238)) (T -547)) +((-3312 (*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-547 *2)) (-4 *2 (-1238)))) (-1901 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-548)) (-5 *1 (-547 *4)) (-4 *4 (-1238))))) +(-10 -7 (-15 -1901 ((-548) (-1197))) (-15 -3312 (|#1| (-548)))) +((-3488 (((-112) $ $) NIL)) (-2469 (((-1179) $) 55)) (-3500 (((-112) $) 51)) (-3109 (((-1197) $) 52)) (-4250 (((-112) $) 49)) (-1328 (((-1179) $) 50)) (-3359 (($ (-1179)) 56)) (-2947 (((-112) $) NIL)) (-1824 (((-112) $) NIL)) (-2879 (((-112) $) NIL)) (-2046 (((-1179) $) NIL)) (-3727 (($ $ (-656 (-1197))) 21)) (-3312 (((-52) $) 23)) (-2082 (((-112) $) NIL)) (-3132 (((-576) $) NIL)) (-1450 (((-1141) $) NIL)) (-3339 (($ $ (-656 (-1197)) (-1197)) 73)) (-4404 (((-112) $) NIL)) (-3044 (((-227) $) NIL)) (-2253 (($ $) 44)) (-3003 (((-876) $) NIL)) (-4026 (((-112) $ $) NIL)) (-2796 (($ $ (-576)) NIL) (($ $ (-656 (-576))) NIL)) (-1903 (((-656 $) $) 30)) (-2417 (((-1197) (-656 $)) 57)) (-4171 (($ (-1179)) NIL) (($ (-1197)) 19) (($ (-576)) 8) (($ (-227)) 28) (($ (-876)) NIL) (($ (-656 $)) 65) (((-1125) $) 12) (($ (-1125)) 13)) (-4148 (((-1197) (-1197) (-656 $)) 60)) (-3569 (((-876) $) 54)) (-4004 (($ $) 59)) (-2280 (($ $) 58)) (-1525 (($ $ (-656 $)) 66)) (-2399 (((-112) $ $) NIL)) (-1950 (((-112) $) 29)) (-2721 (($) 9 T CONST)) (-2731 (($) 11 T CONST)) (-2924 (((-112) $ $) 74)) (-3056 (($ $ $) 82)) (-3029 (($ $ $) 75)) (** (($ $ (-783)) 81) (($ $ (-576)) 80)) (* (($ $ $) 76)) (-3502 (((-576) $) NIL))) +(((-548) (-13 (-1124 (-1179) (-1197) (-576) (-227) (-876)) (-626 (-1125)) (-10 -8 (-15 -3312 ((-52) $)) (-15 -4171 ($ (-1125))) (-15 -1525 ($ $ (-656 $))) (-15 -3339 ($ $ (-656 (-1197)) (-1197))) (-15 -3727 ($ $ (-656 (-1197)))) (-15 -3029 ($ $ $)) (-15 * ($ $ $)) (-15 -3056 ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ (-576))) (-15 0 ($) -1480) (-15 1 ($) -1480) (-15 -2253 ($ $)) (-15 -2469 ((-1179) $)) (-15 -3359 ($ (-1179))) (-15 -2417 ((-1197) (-656 $))) (-15 -4148 ((-1197) (-1197) (-656 $)))))) (T -548)) +((-3312 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-548)))) (-4171 (*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-548)))) (-1525 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-548))) (-5 *1 (-548)))) (-3339 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-1197)) (-5 *1 (-548)))) (-3727 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-548)))) (-3029 (*1 *1 *1 *1) (-5 *1 (-548))) (* (*1 *1 *1 *1) (-5 *1 (-548))) (-3056 (*1 *1 *1 *1) (-5 *1 (-548))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-548)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-548)))) (-2721 (*1 *1) (-5 *1 (-548))) (-2731 (*1 *1) (-5 *1 (-548))) (-2253 (*1 *1 *1) (-5 *1 (-548))) (-2469 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-548)))) (-3359 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-548)))) (-2417 (*1 *2 *3) (-12 (-5 *3 (-656 (-548))) (-5 *2 (-1197)) (-5 *1 (-548)))) (-4148 (*1 *2 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-548))) (-5 *1 (-548))))) +(-13 (-1124 (-1179) (-1197) (-576) (-227) (-876)) (-626 (-1125)) (-10 -8 (-15 -3312 ((-52) $)) (-15 -4171 ($ (-1125))) (-15 -1525 ($ $ (-656 $))) (-15 -3339 ($ $ (-656 (-1197)) (-1197))) (-15 -3727 ($ $ (-656 (-1197)))) (-15 -3029 ($ $ $)) (-15 * ($ $ $)) (-15 -3056 ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ (-576))) (-15 (-2721) ($) -1480) (-15 (-2731) ($) -1480) (-15 -2253 ($ $)) (-15 -2469 ((-1179) $)) (-15 -3359 ($ (-1179))) (-15 -2417 ((-1197) (-656 $))) (-15 -4148 ((-1197) (-1197) (-656 $))))) +((-1399 ((|#2| |#2|) 17)) (-3824 ((|#2| |#2|) 13)) (-3564 ((|#2| |#2| (-576) (-576)) 20)) (-4212 ((|#2| |#2|) 15))) +(((-549 |#1| |#2|) (-10 -7 (-15 -3824 (|#2| |#2|)) (-15 -4212 (|#2| |#2|)) (-15 -1399 (|#2| |#2|)) (-15 -3564 (|#2| |#2| (-576) (-576)))) (-13 (-568) (-148)) (-1279 |#1|)) (T -549)) +((-3564 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-549 *4 *2)) (-4 *2 (-1279 *4)))) (-1399 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1279 *3)))) (-4212 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1279 *3)))) (-3824 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1279 *3))))) +(-10 -7 (-15 -3824 (|#2| |#2|)) (-15 -4212 (|#2| |#2|)) (-15 -1399 (|#2| |#2|)) (-15 -3564 (|#2| |#2| (-576) (-576)))) +((-2794 (((-656 (-304 (-971 |#2|))) (-656 |#2|) (-656 (-1197))) 32)) (-1746 (((-656 |#2|) (-971 |#1|) |#3|) 54) (((-656 |#2|) (-1193 |#1|) |#3|) 53)) (-3289 (((-656 (-656 |#2|)) (-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197)) |#3|) 106))) +(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -1746 ((-656 |#2|) (-1193 |#1|) |#3|)) (-15 -1746 ((-656 |#2|) (-971 |#1|) |#3|)) (-15 -3289 ((-656 (-656 |#2|)) (-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197)) |#3|)) (-15 -2794 ((-656 (-304 (-971 |#2|))) (-656 |#2|) (-656 (-1197))))) (-464) (-374) (-13 (-374) (-860))) (T -550)) +((-2794 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1197))) (-4 *6 (-374)) (-5 *2 (-656 (-304 (-971 *6)))) (-5 *1 (-550 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-13 (-374) (-860))))) (-3289 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-656 (-971 *6))) (-5 *4 (-656 (-1197))) (-4 *6 (-464)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-374)) (-4 *5 (-13 (-374) (-860))))) (-1746 (*1 *2 *3 *4) (-12 (-5 *3 (-971 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))) (-1746 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860)))))) +(-10 -7 (-15 -1746 ((-656 |#2|) (-1193 |#1|) |#3|)) (-15 -1746 ((-656 |#2|) (-971 |#1|) |#3|)) (-15 -3289 ((-656 (-656 |#2|)) (-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197)) |#3|)) (-15 -2794 ((-656 (-304 (-971 |#2|))) (-656 |#2|) (-656 (-1197))))) +((-1892 ((|#2| |#2| |#1|) 17)) (-4400 ((|#2| (-656 |#2|)) 31)) (-1573 ((|#2| (-656 |#2|)) 52))) +(((-551 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4400 (|#2| (-656 |#2|))) (-15 -1573 (|#2| (-656 |#2|))) (-15 -1892 (|#2| |#2| |#1|))) (-317) (-1264 |#1|) |#1| (-1 |#1| |#1| (-783))) (T -551)) +((-1892 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-783))) (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1264 *3)))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783))))) (-4400 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783)))))) +(-10 -7 (-15 -4400 (|#2| (-656 |#2|))) (-15 -1573 (|#2| (-656 |#2|))) (-15 -1892 (|#2| |#2| |#1|))) ((-1828 (((-430 (-1193 |#4|)) (-1193 |#4|) (-1 (-430 (-1193 |#3|)) (-1193 |#3|))) 89) (((-430 |#4|) |#4| (-1 (-430 (-1193 |#3|)) (-1193 |#3|))) 210))) (((-552 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1828 ((-430 |#4|) |#4| (-1 (-430 (-1193 |#3|)) (-1193 |#3|)))) (-15 -1828 ((-430 (-1193 |#4|)) (-1193 |#4|) (-1 (-430 (-1193 |#3|)) (-1193 |#3|))))) (-861) (-805) (-13 (-317) (-148)) (-968 |#3| |#2| |#1|)) (T -552)) ((-1828 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 (-1193 *7)) (-1193 *7))) (-4 *7 (-13 (-317) (-148))) (-4 *5 (-861)) (-4 *6 (-805)) (-4 *8 (-968 *7 *6 *5)) (-5 *2 (-430 (-1193 *8))) (-5 *1 (-552 *5 *6 *7 *8)) (-5 *3 (-1193 *8)))) (-1828 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 (-1193 *7)) (-1193 *7))) (-4 *7 (-13 (-317) (-148))) (-4 *5 (-861)) (-4 *6 (-805)) (-5 *2 (-430 *3)) (-5 *1 (-552 *5 *6 *7 *3)) (-4 *3 (-968 *7 *6 *5))))) (-10 -7 (-15 -1828 ((-430 |#4|) |#4| (-1 (-430 (-1193 |#3|)) (-1193 |#3|)))) (-15 -1828 ((-430 (-1193 |#4|)) (-1193 |#4|) (-1 (-430 (-1193 |#3|)) (-1193 |#3|))))) -((-1356 ((|#4| |#4|) 74)) (-2850 ((|#4| |#4|) 70)) (-2966 ((|#4| |#4| (-576) (-576)) 76)) (-3217 ((|#4| |#4|) 72))) -(((-553 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2850 (|#4| |#4|)) (-15 -3217 (|#4| |#4|)) (-15 -1356 (|#4| |#4|)) (-15 -2966 (|#4| |#4| (-576) (-576)))) (-13 (-374) (-379) (-626 (-576))) (-1264 |#1|) (-736 |#1| |#2|) (-1279 |#3|)) (T -553)) -((-2966 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) (-4 *5 (-1264 *4)) (-4 *6 (-736 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) (-4 *2 (-1279 *6)))) (-1356 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1264 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1279 *5)))) (-3217 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1264 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1279 *5)))) (-2850 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1264 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1279 *5))))) -(-10 -7 (-15 -2850 (|#4| |#4|)) (-15 -3217 (|#4| |#4|)) (-15 -1356 (|#4| |#4|)) (-15 -2966 (|#4| |#4| (-576) (-576)))) -((-1356 ((|#2| |#2|) 27)) (-2850 ((|#2| |#2|) 23)) (-2966 ((|#2| |#2| (-576) (-576)) 29)) (-3217 ((|#2| |#2|) 25))) -(((-554 |#1| |#2|) (-10 -7 (-15 -2850 (|#2| |#2|)) (-15 -3217 (|#2| |#2|)) (-15 -1356 (|#2| |#2|)) (-15 -2966 (|#2| |#2| (-576) (-576)))) (-13 (-374) (-379) (-626 (-576))) (-1279 |#1|)) (T -554)) -((-2966 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) (-5 *1 (-554 *4 *2)) (-4 *2 (-1279 *4)))) (-1356 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1279 *3)))) (-3217 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1279 *3)))) (-2850 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1279 *3))))) -(-10 -7 (-15 -2850 (|#2| |#2|)) (-15 -3217 (|#2| |#2|)) (-15 -1356 (|#2| |#2|)) (-15 -2966 (|#2| |#2| (-576) (-576)))) -((-2178 (((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)) 18) (((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|)) 14) (((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|)) 32))) -(((-555 |#1| |#2|) (-10 -7 (-15 -2178 ((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -2178 ((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -2178 ((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)))) (-1070) (-1264 |#1|)) (T -555)) -((-2178 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1264 *4)))) (-2178 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1264 *4)))) (-2178 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-576) "failed") *5)) (-4 *5 (-1070)) (-5 *2 (-576)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1264 *5))))) -(-10 -7 (-15 -2178 ((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -2178 ((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -2178 ((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)))) -((-3475 (($ $ $) 84)) (-3921 (((-430 $) $) 52)) (-1572 (((-3 (-576) "failed") $) 64)) (-2860 (((-576) $) 42)) (-3104 (((-3 (-419 (-576)) "failed") $) 79)) (-2545 (((-112) $) 26)) (-2568 (((-419 (-576)) $) 77)) (-4249 (((-112) $) 55)) (-3271 (($ $ $ $) 92)) (-2087 (((-112) $) 17)) (-1432 (($ $ $) 62)) (-1840 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 74)) (-2240 (((-3 $ "failed") $) 69)) (-2242 (($ $) 24)) (-3893 (($ $ $) 90)) (-3540 (($) 65)) (-1803 (($ $) 58)) (-1828 (((-430 $) $) 50)) (-3644 (((-112) $) 15)) (-1967 (((-783) $) 32)) (-2775 (($ $) 11) (($ $ (-783)) NIL)) (-1870 (($ $) 18)) (-4172 (((-576) $) NIL) (((-548) $) 41) (((-907 (-576)) $) 45) (((-390) $) 35) (((-227) $) 38)) (-3996 (((-783)) 9)) (-3586 (((-112) $ $) 21)) (-2979 (($ $ $) 60))) -(((-556 |#1|) (-10 -8 (-15 -3893 (|#1| |#1| |#1|)) (-15 -3271 (|#1| |#1| |#1| |#1|)) (-15 -2242 (|#1| |#1|)) (-15 -1870 (|#1| |#1|)) (-15 -3104 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2568 ((-419 (-576)) |#1|)) (-15 -2545 ((-112) |#1|)) (-15 -3475 (|#1| |#1| |#1|)) (-15 -3586 ((-112) |#1| |#1|)) (-15 -3644 ((-112) |#1|)) (-15 -3540 (|#1|)) (-15 -2240 ((-3 |#1| "failed") |#1|)) (-15 -4172 ((-227) |#1|)) (-15 -4172 ((-390) |#1|)) (-15 -1432 (|#1| |#1| |#1|)) (-15 -1803 (|#1| |#1|)) (-15 -2979 (|#1| |#1| |#1|)) (-15 -1840 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -4172 ((-907 (-576)) |#1|)) (-15 -4172 ((-548) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2860 ((-576) |#1|)) (-15 -4172 ((-576) |#1|)) (-15 -2775 (|#1| |#1| (-783))) (-15 -2775 (|#1| |#1|)) (-15 -2087 ((-112) |#1|)) (-15 -1967 ((-783) |#1|)) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -3921 ((-430 |#1|) |#1|)) (-15 -4249 ((-112) |#1|)) (-15 -3996 ((-783)))) (-557)) (T -556)) -((-3996 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-556 *3)) (-4 *3 (-557))))) -(-10 -8 (-15 -3893 (|#1| |#1| |#1|)) (-15 -3271 (|#1| |#1| |#1| |#1|)) (-15 -2242 (|#1| |#1|)) (-15 -1870 (|#1| |#1|)) (-15 -3104 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2568 ((-419 (-576)) |#1|)) (-15 -2545 ((-112) |#1|)) (-15 -3475 (|#1| |#1| |#1|)) (-15 -3586 ((-112) |#1| |#1|)) (-15 -3644 ((-112) |#1|)) (-15 -3540 (|#1|)) (-15 -2240 ((-3 |#1| "failed") |#1|)) (-15 -4172 ((-227) |#1|)) (-15 -4172 ((-390) |#1|)) (-15 -1432 (|#1| |#1| |#1|)) (-15 -1803 (|#1| |#1|)) (-15 -2979 (|#1| |#1| |#1|)) (-15 -1840 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -4172 ((-907 (-576)) |#1|)) (-15 -4172 ((-548) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2860 ((-576) |#1|)) (-15 -4172 ((-576) |#1|)) (-15 -2775 (|#1| |#1| (-783))) (-15 -2775 (|#1| |#1|)) (-15 -2087 ((-112) |#1|)) (-15 -1967 ((-783) |#1|)) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -3921 ((-430 |#1|) |#1|)) (-15 -4249 ((-112) |#1|)) (-15 -3996 ((-783)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 47)) (-2757 (($ $) 46)) (-3788 (((-112) $) 44)) (-3475 (($ $ $) 93)) (-4367 (((-3 $ "failed") $ $) 20)) (-4417 (($ $ $ $) 82)) (-2487 (($ $) 57)) (-3921 (((-430 $) $) 58)) (-4016 (((-112) $ $) 136)) (-3308 (((-576) $) 125)) (-2745 (($ $ $) 96)) (-3886 (($) 18 T CONST)) (-1572 (((-3 (-576) "failed") $) 117)) (-2860 (((-576) $) 118)) (-3429 (($ $ $) 140)) (-2204 (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 115) (((-701 (-576)) (-701 $)) 114)) (-1561 (((-3 $ "failed") $) 37)) (-3104 (((-3 (-419 (-576)) "failed") $) 90)) (-2545 (((-112) $) 92)) (-2568 (((-419 (-576)) $) 91)) (-1836 (($) 89) (($ $) 88)) (-3441 (($ $ $) 139)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) 134)) (-4249 (((-112) $) 59)) (-3271 (($ $ $ $) 80)) (-3941 (($ $ $) 94)) (-2087 (((-112) $) 127)) (-1432 (($ $ $) 105)) (-1840 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 108)) (-4193 (((-112) $) 35)) (-2946 (((-112) $) 100)) (-2240 (((-3 $ "failed") $) 102)) (-1634 (((-112) $) 126)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) 143)) (-4379 (($ $ $ $) 81)) (-3125 (($ $ $) 133)) (-3133 (($ $ $) 132)) (-2242 (($ $) 84)) (-2437 (($ $) 97)) (-3913 (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 113) (((-701 (-576)) (-1288 $)) 112)) (-3458 (($ $ $) 52) (($ (-656 $)) 51)) (-3699 (((-1179) $) 10)) (-3893 (($ $ $) 79)) (-3540 (($) 101 T CONST)) (-1373 (($ $) 86)) (-1450 (((-1141) $) 11)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-1803 (($ $) 106)) (-1828 (((-430 $) $) 56)) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 142) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 141)) (-3476 (((-3 $ "failed") $ $) 48)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) 135)) (-3644 (((-112) $) 99)) (-1967 (((-783) $) 137)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 138)) (-2775 (($ $) 123) (($ $ (-783)) 121)) (-1806 (($ $) 85)) (-1870 (($ $) 87)) (-4172 (((-576) $) 119) (((-548) $) 110) (((-907 (-576)) $) 109) (((-390) $) 104) (((-227) $) 103)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 116)) (-3996 (((-783)) 32 T CONST)) (-3586 (((-112) $ $) 95)) (-2979 (($ $ $) 107)) (-4055 (((-112) $ $) 6)) (-3516 (($) 98)) (-2672 (((-112) $ $) 45)) (-1701 (($ $ $ $) 83)) (-2122 (($ $) 124)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2020 (($ $) 122) (($ $ (-783)) 120)) (-2992 (((-112) $ $) 131)) (-2964 (((-112) $ $) 129)) (-2925 (((-112) $ $) 8)) (-2978 (((-112) $ $) 130)) (-2950 (((-112) $ $) 128)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-576) $) 111))) +((-1399 ((|#4| |#4|) 74)) (-3824 ((|#4| |#4|) 70)) (-3564 ((|#4| |#4| (-576) (-576)) 76)) (-4212 ((|#4| |#4|) 72))) +(((-553 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3824 (|#4| |#4|)) (-15 -4212 (|#4| |#4|)) (-15 -1399 (|#4| |#4|)) (-15 -3564 (|#4| |#4| (-576) (-576)))) (-13 (-374) (-379) (-626 (-576))) (-1264 |#1|) (-736 |#1| |#2|) (-1279 |#3|)) (T -553)) +((-3564 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) (-4 *5 (-1264 *4)) (-4 *6 (-736 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) (-4 *2 (-1279 *6)))) (-1399 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1264 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1279 *5)))) (-4212 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1264 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1279 *5)))) (-3824 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1264 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1279 *5))))) +(-10 -7 (-15 -3824 (|#4| |#4|)) (-15 -4212 (|#4| |#4|)) (-15 -1399 (|#4| |#4|)) (-15 -3564 (|#4| |#4| (-576) (-576)))) +((-1399 ((|#2| |#2|) 27)) (-3824 ((|#2| |#2|) 23)) (-3564 ((|#2| |#2| (-576) (-576)) 29)) (-4212 ((|#2| |#2|) 25))) +(((-554 |#1| |#2|) (-10 -7 (-15 -3824 (|#2| |#2|)) (-15 -4212 (|#2| |#2|)) (-15 -1399 (|#2| |#2|)) (-15 -3564 (|#2| |#2| (-576) (-576)))) (-13 (-374) (-379) (-626 (-576))) (-1279 |#1|)) (T -554)) +((-3564 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) (-5 *1 (-554 *4 *2)) (-4 *2 (-1279 *4)))) (-1399 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1279 *3)))) (-4212 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1279 *3)))) (-3824 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1279 *3))))) +(-10 -7 (-15 -3824 (|#2| |#2|)) (-15 -4212 (|#2| |#2|)) (-15 -1399 (|#2| |#2|)) (-15 -3564 (|#2| |#2| (-576) (-576)))) +((-3392 (((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)) 18) (((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|)) 14) (((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|)) 32))) +(((-555 |#1| |#2|) (-10 -7 (-15 -3392 ((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -3392 ((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -3392 ((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)))) (-1070) (-1264 |#1|)) (T -555)) +((-3392 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1264 *4)))) (-3392 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1264 *4)))) (-3392 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-576) "failed") *5)) (-4 *5 (-1070)) (-5 *2 (-576)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1264 *5))))) +(-10 -7 (-15 -3392 ((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -3392 ((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -3392 ((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)))) +((-1775 (($ $ $) 84)) (-3760 (((-430 $) $) 52)) (-1572 (((-3 (-576) "failed") $) 64)) (-2859 (((-576) $) 42)) (-2358 (((-3 (-419 (-576)) "failed") $) 79)) (-2769 (((-112) $) 26)) (-3025 (((-419 (-576)) $) 77)) (-3833 (((-112) $) 55)) (-3495 (($ $ $ $) 92)) (-1866 (((-112) $) 17)) (-2199 (($ $ $) 62)) (-3325 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 74)) (-2734 (((-3 $ "failed") $) 69)) (-2243 (($ $) 24)) (-3473 (($ $ $) 90)) (-3539 (($) 65)) (-4225 (($ $) 58)) (-1828 (((-430 $) $) 50)) (-2768 (((-112) $) 15)) (-1979 (((-783) $) 32)) (-2774 (($ $) 11) (($ $ (-783)) NIL)) (-1870 (($ $) 18)) (-4171 (((-576) $) NIL) (((-548) $) 41) (((-907 (-576)) $) 45) (((-390) $) 35) (((-227) $) 38)) (-3154 (((-783)) 9)) (-3479 (((-112) $ $) 21)) (-3679 (($ $ $) 60))) +(((-556 |#1|) (-10 -8 (-15 -3473 (|#1| |#1| |#1|)) (-15 -3495 (|#1| |#1| |#1| |#1|)) (-15 -2243 (|#1| |#1|)) (-15 -1870 (|#1| |#1|)) (-15 -2358 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3025 ((-419 (-576)) |#1|)) (-15 -2769 ((-112) |#1|)) (-15 -1775 (|#1| |#1| |#1|)) (-15 -3479 ((-112) |#1| |#1|)) (-15 -2768 ((-112) |#1|)) (-15 -3539 (|#1|)) (-15 -2734 ((-3 |#1| "failed") |#1|)) (-15 -4171 ((-227) |#1|)) (-15 -4171 ((-390) |#1|)) (-15 -2199 (|#1| |#1| |#1|)) (-15 -4225 (|#1| |#1|)) (-15 -3679 (|#1| |#1| |#1|)) (-15 -3325 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -4171 ((-907 (-576)) |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -4171 ((-576) |#1|)) (-15 -2774 (|#1| |#1| (-783))) (-15 -2774 (|#1| |#1|)) (-15 -1866 ((-112) |#1|)) (-15 -1979 ((-783) |#1|)) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -3760 ((-430 |#1|) |#1|)) (-15 -3833 ((-112) |#1|)) (-15 -3154 ((-783)))) (-557)) (T -556)) +((-3154 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-556 *3)) (-4 *3 (-557))))) +(-10 -8 (-15 -3473 (|#1| |#1| |#1|)) (-15 -3495 (|#1| |#1| |#1| |#1|)) (-15 -2243 (|#1| |#1|)) (-15 -1870 (|#1| |#1|)) (-15 -2358 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3025 ((-419 (-576)) |#1|)) (-15 -2769 ((-112) |#1|)) (-15 -1775 (|#1| |#1| |#1|)) (-15 -3479 ((-112) |#1| |#1|)) (-15 -2768 ((-112) |#1|)) (-15 -3539 (|#1|)) (-15 -2734 ((-3 |#1| "failed") |#1|)) (-15 -4171 ((-227) |#1|)) (-15 -4171 ((-390) |#1|)) (-15 -2199 (|#1| |#1| |#1|)) (-15 -4225 (|#1| |#1|)) (-15 -3679 (|#1| |#1| |#1|)) (-15 -3325 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -4171 ((-907 (-576)) |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -4171 ((-576) |#1|)) (-15 -2774 (|#1| |#1| (-783))) (-15 -2774 (|#1| |#1|)) (-15 -1866 ((-112) |#1|)) (-15 -1979 ((-783) |#1|)) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -3760 ((-430 |#1|) |#1|)) (-15 -3833 ((-112) |#1|)) (-15 -3154 ((-783)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-4195 (($ $) 46)) (-1760 (((-112) $) 44)) (-1775 (($ $ $) 93)) (-2428 (((-3 $ "failed") $ $) 20)) (-1724 (($ $ $ $) 82)) (-3444 (($ $) 57)) (-3760 (((-430 $) $) 58)) (-3330 (((-112) $ $) 136)) (-3906 (((-576) $) 125)) (-2743 (($ $ $) 96)) (-3404 (($) 18 T CONST)) (-1572 (((-3 (-576) "failed") $) 117)) (-2859 (((-576) $) 118)) (-3428 (($ $ $) 140)) (-3674 (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 115) (((-701 (-576)) (-701 $)) 114)) (-3673 (((-3 $ "failed") $) 37)) (-2358 (((-3 (-419 (-576)) "failed") $) 90)) (-2769 (((-112) $) 92)) (-3025 (((-419 (-576)) $) 91)) (-1836 (($) 89) (($ $) 88)) (-3440 (($ $ $) 139)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) 134)) (-3833 (((-112) $) 59)) (-3495 (($ $ $ $) 80)) (-3948 (($ $ $) 94)) (-1866 (((-112) $) 127)) (-2199 (($ $ $) 105)) (-3325 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 108)) (-1351 (((-112) $) 35)) (-3376 (((-112) $) 100)) (-2734 (((-3 $ "failed") $) 102)) (-3137 (((-112) $) 126)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) 143)) (-2542 (($ $ $ $) 81)) (-3124 (($ $ $) 133)) (-1441 (($ $ $) 132)) (-2243 (($ $) 84)) (-2435 (($ $) 97)) (-3676 (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 113) (((-701 (-576)) (-1288 $)) 112)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-2046 (((-1179) $) 10)) (-3473 (($ $ $) 79)) (-3539 (($) 101 T CONST)) (-1373 (($ $) 86)) (-1450 (((-1141) $) 11)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3497 (($ $ $) 54) (($ (-656 $)) 53)) (-4225 (($ $) 106)) (-1828 (((-430 $) $) 56)) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 142) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 141)) (-3475 (((-3 $ "failed") $ $) 48)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) 135)) (-2768 (((-112) $) 99)) (-1979 (((-783) $) 137)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 138)) (-2774 (($ $) 123) (($ $ (-783)) 121)) (-1807 (($ $) 85)) (-1870 (($ $) 87)) (-4171 (((-576) $) 119) (((-548) $) 110) (((-907 (-576)) $) 109) (((-390) $) 104) (((-227) $) 103)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 116)) (-3154 (((-783)) 32 T CONST)) (-3479 (((-112) $ $) 95)) (-3679 (($ $ $) 107)) (-2399 (((-112) $ $) 6)) (-3515 (($) 98)) (-1505 (((-112) $ $) 45)) (-2474 (($ $ $ $) 83)) (-4143 (($ $) 124)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2020 (($ $) 122) (($ $ (-783)) 120)) (-2990 (((-112) $ $) 131)) (-2962 (((-112) $ $) 129)) (-2924 (((-112) $ $) 8)) (-2978 (((-112) $ $) 130)) (-2949 (((-112) $ $) 128)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-576) $) 111))) (((-557) (-141)) (T -557)) -((-2946 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-3516 (*1 *1) (-4 *1 (-557))) (-2437 (*1 *1 *1) (-4 *1 (-557))) (-2745 (*1 *1 *1 *1) (-4 *1 (-557))) (-3586 (*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-3941 (*1 *1 *1 *1) (-4 *1 (-557))) (-3475 (*1 *1 *1 *1) (-4 *1 (-557))) (-2545 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-2568 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) (-3104 (*1 *2 *1) (|partial| -12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) (-1836 (*1 *1) (-4 *1 (-557))) (-1836 (*1 *1 *1) (-4 *1 (-557))) (-1870 (*1 *1 *1) (-4 *1 (-557))) (-1373 (*1 *1 *1) (-4 *1 (-557))) (-1806 (*1 *1 *1) (-4 *1 (-557))) (-2242 (*1 *1 *1) (-4 *1 (-557))) (-1701 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-4417 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-4379 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-3271 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-3893 (*1 *1 *1 *1) (-4 *1 (-557)))) -(-13 (-1242) (-317) (-832) (-238) (-626 (-576)) (-1059 (-576)) (-651 (-576)) (-626 (-548)) (-626 (-907 (-576))) (-901 (-576)) (-144) (-1043) (-148) (-1173) (-10 -8 (-15 -2946 ((-112) $)) (-15 -3644 ((-112) $)) (-6 -4464) (-15 -3516 ($)) (-15 -2437 ($ $)) (-15 -2745 ($ $ $)) (-15 -3586 ((-112) $ $)) (-15 -3941 ($ $ $)) (-15 -3475 ($ $ $)) (-15 -2545 ((-112) $)) (-15 -2568 ((-419 (-576)) $)) (-15 -3104 ((-3 (-419 (-576)) "failed") $)) (-15 -1836 ($)) (-15 -1836 ($ $)) (-15 -1870 ($ $)) (-15 -1373 ($ $)) (-15 -1806 ($ $)) (-15 -2242 ($ $)) (-15 -1701 ($ $ $ $)) (-15 -4417 ($ $ $ $)) (-15 -4379 ($ $ $ $)) (-15 -3271 ($ $ $ $)) (-15 -3893 ($ $ $)) (-6 -4463))) +((-3376 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-2768 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-3515 (*1 *1) (-4 *1 (-557))) (-2435 (*1 *1 *1) (-4 *1 (-557))) (-2743 (*1 *1 *1 *1) (-4 *1 (-557))) (-3479 (*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-3948 (*1 *1 *1 *1) (-4 *1 (-557))) (-1775 (*1 *1 *1 *1) (-4 *1 (-557))) (-2769 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) (-2358 (*1 *2 *1) (|partial| -12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) (-1836 (*1 *1) (-4 *1 (-557))) (-1836 (*1 *1 *1) (-4 *1 (-557))) (-1870 (*1 *1 *1) (-4 *1 (-557))) (-1373 (*1 *1 *1) (-4 *1 (-557))) (-1807 (*1 *1 *1) (-4 *1 (-557))) (-2243 (*1 *1 *1) (-4 *1 (-557))) (-2474 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-1724 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2542 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-3495 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-3473 (*1 *1 *1 *1) (-4 *1 (-557)))) +(-13 (-1242) (-317) (-832) (-238) (-626 (-576)) (-1059 (-576)) (-651 (-576)) (-626 (-548)) (-626 (-907 (-576))) (-901 (-576)) (-144) (-1043) (-148) (-1173) (-10 -8 (-15 -3376 ((-112) $)) (-15 -2768 ((-112) $)) (-6 -4463) (-15 -3515 ($)) (-15 -2435 ($ $)) (-15 -2743 ($ $ $)) (-15 -3479 ((-112) $ $)) (-15 -3948 ($ $ $)) (-15 -1775 ($ $ $)) (-15 -2769 ((-112) $)) (-15 -3025 ((-419 (-576)) $)) (-15 -2358 ((-3 (-419 (-576)) "failed") $)) (-15 -1836 ($)) (-15 -1836 ($ $)) (-15 -1870 ($ $)) (-15 -1373 ($ $)) (-15 -1807 ($ $)) (-15 -2243 ($ $)) (-15 -2474 ($ $ $ $)) (-15 -1724 ($ $ $ $)) (-15 -2542 ($ $ $ $)) (-15 -3495 ($ $ $ $)) (-15 -3473 ($ $ $)) (-6 -4462))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-144) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-548)) . T) ((-626 (-576)) . T) ((-626 (-907 (-576))) . T) ((-234 $) . T) ((-238) . T) ((-237) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0=(-576)) . T) ((-660 $) . T) ((-652 $) . T) ((-651 #0#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-832) . T) ((-860) . T) ((-861) . T) ((-864) . T) ((-901 (-576)) . T) ((-939) . T) ((-1043) . T) ((-1059 (-576)) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) . T) ((-1238) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL)) (-2098 (((-783)) NIL)) (-3886 (($) NIL T CONST)) (-1836 (($) NIL)) (-3125 (($ $ $) NIL) (($) NIL T CONST)) (-3133 (($ $ $) NIL) (($) NIL T CONST)) (-4401 (((-940) $) NIL)) (-3699 (((-1179) $) NIL)) (-3224 (($ (-940)) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) NIL))) -(((-558) (-13 (-856) (-10 -8 (-15 -3886 ($) -1480)))) (T -558)) -((-3886 (*1 *1) (-5 *1 (-558)))) -(-13 (-856) (-10 -8 (-15 -3886 ($) -1480))) +((-3488 (((-112) $ $) NIL)) (-2098 (((-783)) NIL)) (-3404 (($) NIL T CONST)) (-1836 (($) NIL)) (-3124 (($ $ $) NIL) (($) NIL T CONST)) (-1441 (($ $ $) NIL) (($) NIL T CONST)) (-1558 (((-940) $) NIL)) (-2046 (((-1179) $) NIL)) (-3223 (($ (-940)) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) NIL))) +(((-558) (-13 (-856) (-10 -8 (-15 -3404 ($) -1480)))) (T -558)) +((-3404 (*1 *1) (-5 *1 (-558)))) +(-13 (-856) (-10 -8 (-15 -3404 ($) -1480))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16))) -((-3489 (((-112) $ $) NIL)) (-2098 (((-783)) NIL)) (-3886 (($) NIL T CONST)) (-1836 (($) NIL)) (-3125 (($ $ $) NIL) (($) NIL T CONST)) (-3133 (($ $ $) NIL) (($) NIL T CONST)) (-4401 (((-940) $) NIL)) (-3699 (((-1179) $) NIL)) (-3224 (($ (-940)) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) NIL))) -(((-559) (-13 (-856) (-10 -8 (-15 -3886 ($) -1480)))) (T -559)) -((-3886 (*1 *1) (-5 *1 (-559)))) -(-13 (-856) (-10 -8 (-15 -3886 ($) -1480))) +((-3488 (((-112) $ $) NIL)) (-2098 (((-783)) NIL)) (-3404 (($) NIL T CONST)) (-1836 (($) NIL)) (-3124 (($ $ $) NIL) (($) NIL T CONST)) (-1441 (($ $ $) NIL) (($) NIL T CONST)) (-1558 (((-940) $) NIL)) (-2046 (((-1179) $) NIL)) (-3223 (($ (-940)) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) NIL))) +(((-559) (-13 (-856) (-10 -8 (-15 -3404 ($) -1480)))) (T -559)) +((-3404 (*1 *1) (-5 *1 (-559)))) +(-13 (-856) (-10 -8 (-15 -3404 ($) -1480))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32))) -((-3489 (((-112) $ $) NIL)) (-2098 (((-783)) NIL)) (-3886 (($) NIL T CONST)) (-1836 (($) NIL)) (-3125 (($ $ $) NIL) (($) NIL T CONST)) (-3133 (($ $ $) NIL) (($) NIL T CONST)) (-4401 (((-940) $) NIL)) (-3699 (((-1179) $) NIL)) (-3224 (($ (-940)) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) NIL))) -(((-560) (-13 (-856) (-10 -8 (-15 -3886 ($) -1480)))) (T -560)) -((-3886 (*1 *1) (-5 *1 (-560)))) -(-13 (-856) (-10 -8 (-15 -3886 ($) -1480))) +((-3488 (((-112) $ $) NIL)) (-2098 (((-783)) NIL)) (-3404 (($) NIL T CONST)) (-1836 (($) NIL)) (-3124 (($ $ $) NIL) (($) NIL T CONST)) (-1441 (($ $ $) NIL) (($) NIL T CONST)) (-1558 (((-940) $) NIL)) (-2046 (((-1179) $) NIL)) (-3223 (($ (-940)) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) NIL))) +(((-560) (-13 (-856) (-10 -8 (-15 -3404 ($) -1480)))) (T -560)) +((-3404 (*1 *1) (-5 *1 (-560)))) +(-13 (-856) (-10 -8 (-15 -3404 ($) -1480))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64))) -((-3489 (((-112) $ $) NIL)) (-2098 (((-783)) NIL)) (-3886 (($) NIL T CONST)) (-1836 (($) NIL)) (-3125 (($ $ $) NIL) (($) NIL T CONST)) (-3133 (($ $ $) NIL) (($) NIL T CONST)) (-4401 (((-940) $) NIL)) (-3699 (((-1179) $) NIL)) (-3224 (($ (-940)) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) NIL))) -(((-561) (-13 (-856) (-10 -8 (-15 -3886 ($) -1480)))) (T -561)) -((-3886 (*1 *1) (-5 *1 (-561)))) -(-13 (-856) (-10 -8 (-15 -3886 ($) -1480))) +((-3488 (((-112) $ $) NIL)) (-2098 (((-783)) NIL)) (-3404 (($) NIL T CONST)) (-1836 (($) NIL)) (-3124 (($ $ $) NIL) (($) NIL T CONST)) (-1441 (($ $ $) NIL) (($) NIL T CONST)) (-1558 (((-940) $) NIL)) (-2046 (((-1179) $) NIL)) (-3223 (($ (-940)) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) NIL))) +(((-561) (-13 (-856) (-10 -8 (-15 -3404 ($) -1480)))) (T -561)) +((-3404 (*1 *1) (-5 *1 (-561)))) +(-13 (-856) (-10 -8 (-15 -3404 ($) -1480))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8))) -((-3489 (((-112) $ $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-4128 (($) NIL) (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-2047 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4466)))) (-1808 (((-112) $ (-783)) NIL)) (-3756 ((|#2| $ |#1| |#2|) NIL)) (-2300 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-2197 (((-3 |#2| "failed") |#1| $) NIL)) (-3886 (($) NIL T CONST)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121))))) (-1671 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (|has| $ (-6 -4465))) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-3 |#2| "failed") |#1| $) NIL)) (-3946 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-3686 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4465))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-4335 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4466)))) (-4274 ((|#2| $ |#1|) NIL)) (-3966 (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-656 |#2|) $) NIL (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) NIL)) (-2924 ((|#1| $) NIL (|has| |#1| (-861)))) (-2014 (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-656 |#2|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-2137 ((|#1| $) NIL (|has| |#1| (-861)))) (-4323 (($ (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3203 (((-656 |#1|) $) NIL)) (-4008 (((-112) |#1| $) NIL)) (-1597 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL)) (-1901 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL)) (-4234 (((-656 |#1|) $) NIL)) (-3354 (((-112) |#1| $) NIL)) (-1450 (((-1141) $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3581 ((|#2| $) NIL (|has| |#1| (-861)))) (-1541 (((-3 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL)) (-4046 (($ $ |#2|) NIL (|has| $ (-6 -4466)))) (-3449 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL)) (-4320 (((-112) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-2281 (((-656 |#2|) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2271 (($) NIL) (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-783) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4172 (((-548) $) NIL (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-626 (-548))))) (-3582 (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-3570 (((-876) $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-4055 (((-112) $ $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3943 (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-3321 (((-112) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-562 |#1| |#2| |#3|) (-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4465))) (-1121) (-1121) (-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4465)))) (T -562)) -NIL -(-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4465))) -((-2616 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1193 |#2|) (-1193 |#2|))) 50))) -(((-563 |#1| |#2|) (-10 -7 (-15 -2616 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1193 |#2|) (-1193 |#2|))))) (-568) (-13 (-27) (-442 |#1|))) (T -563)) -((-2616 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-1 (-1193 *3) (-1193 *3))) (-4 *3 (-13 (-27) (-442 *6))) (-4 *6 (-568)) (-5 *2 (-598 *3)) (-5 *1 (-563 *6 *3))))) -(-10 -7 (-15 -2616 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1193 |#2|) (-1193 |#2|))))) -((-1995 (((-598 |#5|) |#5| (-1 |#3| |#3|)) 216)) (-2945 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212)) (-3633 (((-598 |#5|) |#5| (-1 |#3| |#3|)) 220))) -(((-564 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3633 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1995 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2945 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-568) (-1059 (-576))) (-13 (-27) (-442 |#1|)) (-1264 |#2|) (-1264 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -564)) -((-2945 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-27) (-442 *4))) (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *7 (-1264 (-419 *6))) (-5 *1 (-564 *4 *5 *6 *7 *2)) (-4 *2 (-353 *5 *6 *7)))) (-1995 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1264 *6)) (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)))) (-4 *8 (-1264 (-419 *7))) (-5 *2 (-598 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8)))) (-3633 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1264 *6)) (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)))) (-4 *8 (-1264 (-419 *7))) (-5 *2 (-598 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) -(-10 -7 (-15 -3633 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1995 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2945 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-2470 (((-112) (-576) (-576)) 12)) (-1947 (((-576) (-576)) 7)) (-2484 (((-576) (-576) (-576)) 10))) -(((-565) (-10 -7 (-15 -1947 ((-576) (-576))) (-15 -2484 ((-576) (-576) (-576))) (-15 -2470 ((-112) (-576) (-576))))) (T -565)) -((-2470 (*1 *2 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-565)))) (-2484 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565)))) (-1947 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) -(-10 -7 (-15 -1947 ((-576) (-576))) (-15 -2484 ((-576) (-576) (-576))) (-15 -2470 ((-112) (-576) (-576)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-3361 ((|#1| $) 68)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 47)) (-2757 (($ $) 46)) (-3788 (((-112) $) 44)) (-4025 (($ $) 98)) (-3901 (($ $) 81)) (-2324 ((|#1| $) 69)) (-4367 (((-3 $ "failed") $ $) 20)) (-1839 (($ $) 80)) (-4006 (($ $) 97)) (-3877 (($ $) 82)) (-4050 (($ $) 96)) (-3920 (($ $) 83)) (-3886 (($) 18 T CONST)) (-1572 (((-3 (-576) "failed") $) 76)) (-2860 (((-576) $) 77)) (-1561 (((-3 $ "failed") $) 37)) (-2168 (($ |#1| |#1|) 73)) (-2087 (((-112) $) 67)) (-1600 (($) 108)) (-4193 (((-112) $) 35)) (-2121 (($ $ (-576)) 79)) (-1634 (((-112) $) 66)) (-3125 (($ $ $) 109)) (-3133 (($ $ $) 110)) (-3745 (($ $) 105)) (-3458 (($ $ $) 52) (($ (-656 $)) 51)) (-3699 (((-1179) $) 10)) (-1784 (($ |#1| |#1|) 74) (($ |#1|) 72) (($ (-419 (-576))) 71)) (-2317 ((|#1| $) 70)) (-1450 (((-1141) $) 11)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-3476 (((-3 $ "failed") $ $) 48)) (-4104 (($ $) 106)) (-4061 (($ $) 95)) (-3930 (($ $) 84)) (-4037 (($ $) 94)) (-3910 (($ $) 85)) (-4014 (($ $) 93)) (-3889 (($ $) 86)) (-2223 (((-112) $ |#1|) 65)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 75)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2791 (($ $) 104)) (-3961 (($ $) 92)) (-2672 (((-112) $ $) 45)) (-4071 (($ $) 103)) (-3938 (($ $) 91)) (-2815 (($ $) 102)) (-3983 (($ $) 90)) (-4388 (($ $) 101)) (-3995 (($ $) 89)) (-2803 (($ $) 100)) (-3974 (($ $) 88)) (-4083 (($ $) 99)) (-3951 (($ $) 87)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2992 (((-112) $ $) 111)) (-2964 (((-112) $ $) 113)) (-2925 (((-112) $ $) 8)) (-2978 (((-112) $ $) 112)) (-2950 (((-112) $ $) 114)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ $) 107) (($ $ (-419 (-576))) 78)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3488 (((-112) $ $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102)) (|has| |#2| (-102))))) (-4127 (($) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-1512 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4465)))) (-4264 (((-112) $ (-783)) NIL)) (-3755 ((|#2| $ |#1| |#2|) NIL)) (-2123 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-1974 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2198 (((-3 |#2| "failed") |#1| $) NIL)) (-3404 (($) NIL T CONST)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121))))) (-2172 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) NIL)) (-3945 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#2| $ |#1|) NIL)) (-3965 (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) NIL)) (-3281 ((|#1| $) NIL (|has| |#1| (-861)))) (-2425 (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-4280 ((|#1| $) NIL (|has| |#1| (-861)))) (-4326 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4465))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3200 (((-656 |#1|) $) NIL)) (-3259 (((-112) |#1| $) NIL)) (-2722 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL)) (-2597 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL)) (-3669 (((-656 |#1|) $) NIL)) (-3090 (((-112) |#1| $) NIL)) (-1450 (((-1141) $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3580 ((|#2| $) NIL (|has| |#1| (-861)))) (-3434 (((-3 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) "failed") (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL)) (-2304 (($ $ |#2|) NIL (|has| $ (-6 -4465)))) (-1541 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL)) (-3252 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-3207 (((-656 |#2|) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3101 (($) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-3569 (((-876) $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-2399 (((-112) $ $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102)) (|has| |#2| (-102))))) (-3972 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-2708 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102)) (|has| |#2| (-102))))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-562 |#1| |#2| |#3|) (-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4464))) (-1121) (-1121) (-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4464)))) (T -562)) +NIL +(-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4464))) +((-2191 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1193 |#2|) (-1193 |#2|))) 50))) +(((-563 |#1| |#2|) (-10 -7 (-15 -2191 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1193 |#2|) (-1193 |#2|))))) (-568) (-13 (-27) (-442 |#1|))) (T -563)) +((-2191 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-1 (-1193 *3) (-1193 *3))) (-4 *3 (-13 (-27) (-442 *6))) (-4 *6 (-568)) (-5 *2 (-598 *3)) (-5 *1 (-563 *6 *3))))) +(-10 -7 (-15 -2191 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1193 |#2|) (-1193 |#2|))))) +((-2244 (((-598 |#5|) |#5| (-1 |#3| |#3|)) 216)) (-3365 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212)) (-2671 (((-598 |#5|) |#5| (-1 |#3| |#3|)) 220))) +(((-564 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2671 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2244 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3365 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-568) (-1059 (-576))) (-13 (-27) (-442 |#1|)) (-1264 |#2|) (-1264 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -564)) +((-3365 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-27) (-442 *4))) (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *7 (-1264 (-419 *6))) (-5 *1 (-564 *4 *5 *6 *7 *2)) (-4 *2 (-353 *5 *6 *7)))) (-2244 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1264 *6)) (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)))) (-4 *8 (-1264 (-419 *7))) (-5 *2 (-598 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8)))) (-2671 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1264 *6)) (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)))) (-4 *8 (-1264 (-419 *7))) (-5 *2 (-598 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) +(-10 -7 (-15 -2671 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2244 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3365 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-1370 (((-112) (-576) (-576)) 12)) (-3084 (((-576) (-576)) 7)) (-3410 (((-576) (-576) (-576)) 10))) +(((-565) (-10 -7 (-15 -3084 ((-576) (-576))) (-15 -3410 ((-576) (-576) (-576))) (-15 -1370 ((-112) (-576) (-576))))) (T -565)) +((-1370 (*1 *2 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-565)))) (-3410 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565)))) (-3084 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) +(-10 -7 (-15 -3084 ((-576) (-576))) (-15 -3410 ((-576) (-576) (-576))) (-15 -1370 ((-112) (-576) (-576)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-3360 ((|#1| $) 68)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-4195 (($ $) 46)) (-1760 (((-112) $) 44)) (-4024 (($ $) 98)) (-3900 (($ $) 81)) (-2386 ((|#1| $) 69)) (-2428 (((-3 $ "failed") $ $) 20)) (-1840 (($ $) 80)) (-4005 (($ $) 97)) (-3876 (($ $) 82)) (-4049 (($ $) 96)) (-3919 (($ $) 83)) (-3404 (($) 18 T CONST)) (-1572 (((-3 (-576) "failed") $) 76)) (-2859 (((-576) $) 77)) (-3673 (((-3 $ "failed") $) 37)) (-3308 (($ |#1| |#1|) 73)) (-1866 (((-112) $) 67)) (-1600 (($) 108)) (-1351 (((-112) $) 35)) (-4131 (($ $ (-576)) 79)) (-3137 (((-112) $) 66)) (-3124 (($ $ $) 109)) (-1441 (($ $ $) 110)) (-3744 (($ $) 105)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-2046 (((-1179) $) 10)) (-4061 (($ |#1| |#1|) 74) (($ |#1|) 72) (($ (-419 (-576))) 71)) (-2302 ((|#1| $) 70)) (-1450 (((-1141) $) 11)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3497 (($ $ $) 54) (($ (-656 $)) 53)) (-3475 (((-3 $ "failed") $ $) 48)) (-4103 (($ $) 106)) (-4060 (($ $) 95)) (-3929 (($ $) 84)) (-4036 (($ $) 94)) (-3909 (($ $) 85)) (-4013 (($ $) 93)) (-3888 (($ $) 86)) (-3872 (((-112) $ |#1|) 65)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 75)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-2790 (($ $) 104)) (-3960 (($ $) 92)) (-1505 (((-112) $ $) 45)) (-4070 (($ $) 103)) (-3937 (($ $) 91)) (-2814 (($ $) 102)) (-3982 (($ $) 90)) (-4387 (($ $) 101)) (-3994 (($ $) 89)) (-2802 (($ $) 100)) (-3973 (($ $) 88)) (-4082 (($ $) 99)) (-3950 (($ $) 87)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2990 (((-112) $ $) 111)) (-2962 (((-112) $ $) 113)) (-2924 (((-112) $ $) 8)) (-2978 (((-112) $ $) 112)) (-2949 (((-112) $ $) 114)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ $) 107) (($ $ (-419 (-576))) 78)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-566 |#1|) (-141) (-13 (-416) (-1223))) (T -566)) -((-1784 (*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) (-2168 (*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) (-1784 (*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) (-1784 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))))) (-2317 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) (-2324 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) (-2087 (*1 *2 *1) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-112)))) (-1634 (*1 *2 *1) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-112)))) (-2223 (*1 *2 *1 *3) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-112))))) -(-13 (-464) (-861) (-1223) (-1023) (-1059 (-576)) (-10 -8 (-6 -4166) (-15 -1784 ($ |t#1| |t#1|)) (-15 -2168 ($ |t#1| |t#1|)) (-15 -1784 ($ |t#1|)) (-15 -1784 ($ (-419 (-576)))) (-15 -2317 (|t#1| $)) (-15 -2324 (|t#1| $)) (-15 -3361 (|t#1| $)) (-15 -2087 ((-112) $)) (-15 -1634 ((-112) $)) (-15 -2223 ((-112) $ |t#1|)))) +((-4061 (*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) (-3308 (*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) (-4061 (*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) (-4061 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))))) (-2302 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) (-2386 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) (-3360 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) (-1866 (*1 *2 *1) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-112)))) (-3137 (*1 *2 *1) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-112)))) (-3872 (*1 *2 *1 *3) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-112))))) +(-13 (-464) (-861) (-1223) (-1023) (-1059 (-576)) (-10 -8 (-6 -4165) (-15 -4061 ($ |t#1| |t#1|)) (-15 -3308 ($ |t#1| |t#1|)) (-15 -4061 ($ |t#1|)) (-15 -4061 ($ (-419 (-576)))) (-15 -2302 (|t#1| $)) (-15 -2386 (|t#1| $)) (-15 -3360 (|t#1| $)) (-15 -1866 ((-112) $)) (-15 -3137 ((-112) $)) (-15 -3872 ((-112) $ |t#1|)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-294) . T) ((-300) . T) ((-464) . T) ((-505) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-861) . T) ((-864) . T) ((-1023) . T) ((-1059 (-576)) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1223) . T) ((-1226) . T) ((-1238) . T)) -((-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 9)) (-2757 (($ $) 11)) (-3788 (((-112) $) 20)) (-1561 (((-3 $ "failed") $) 16)) (-2672 (((-112) $ $) 22))) -(((-567 |#1|) (-10 -8 (-15 -3788 ((-112) |#1|)) (-15 -2672 ((-112) |#1| |#1|)) (-15 -2757 (|#1| |#1|)) (-15 -2246 ((-2 (|:| -2778 |#1|) (|:| -4452 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1561 ((-3 |#1| "failed") |#1|))) (-568)) (T -567)) +((-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 9)) (-4195 (($ $) 11)) (-1760 (((-112) $) 20)) (-3673 (((-3 $ "failed") $) 16)) (-1505 (((-112) $ $) 22))) +(((-567 |#1|) (-10 -8 (-15 -1760 ((-112) |#1|)) (-15 -1505 ((-112) |#1| |#1|)) (-15 -4195 (|#1| |#1|)) (-15 -2798 ((-2 (|:| -4346 |#1|) (|:| -4451 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3673 ((-3 |#1| "failed") |#1|))) (-568)) (T -567)) NIL -(-10 -8 (-15 -3788 ((-112) |#1|)) (-15 -2672 ((-112) |#1| |#1|)) (-15 -2757 (|#1| |#1|)) (-15 -2246 ((-2 (|:| -2778 |#1|) (|:| -4452 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1561 ((-3 |#1| "failed") |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 47)) (-2757 (($ $) 46)) (-3788 (((-112) $) 44)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-1561 (((-3 $ "failed") $) 37)) (-4193 (((-112) $) 35)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3476 (((-3 $ "failed") $ $) 48)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2672 (((-112) $ $) 45)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +(-10 -8 (-15 -1760 ((-112) |#1|)) (-15 -1505 ((-112) |#1| |#1|)) (-15 -4195 (|#1| |#1|)) (-15 -2798 ((-2 (|:| -4346 |#1|) (|:| -4451 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3673 ((-3 |#1| "failed") |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-4195 (($ $) 46)) (-1760 (((-112) $) 44)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-3673 (((-3 $ "failed") $) 37)) (-1351 (((-112) $) 35)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3475 (((-3 $ "failed") $ $) 48)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-1505 (((-112) $ $) 45)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-568) (-141)) (T -568)) -((-3476 (*1 *1 *1 *1) (|partial| -4 *1 (-568))) (-2246 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2778 *1) (|:| -4452 *1) (|:| |associate| *1))) (-4 *1 (-568)))) (-2757 (*1 *1 *1) (-4 *1 (-568))) (-2672 (*1 *2 *1 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112)))) (-3788 (*1 *2 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) -(-13 (-174) (-38 $) (-300) (-10 -8 (-15 -3476 ((-3 $ "failed") $ $)) (-15 -2246 ((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $)) (-15 -2757 ($ $)) (-15 -2672 ((-112) $ $)) (-15 -3788 ((-112) $)))) +((-3475 (*1 *1 *1 *1) (|partial| -4 *1 (-568))) (-2798 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4346 *1) (|:| -4451 *1) (|:| |associate| *1))) (-4 *1 (-568)))) (-4195 (*1 *1 *1) (-4 *1 (-568))) (-1505 (*1 *2 *1 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112)))) (-1760 (*1 *2 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) +(-13 (-174) (-38 $) (-300) (-10 -8 (-15 -3475 ((-3 $ "failed") $ $)) (-15 -2798 ((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $)) (-15 -4195 ($ $)) (-15 -1505 ((-112) $ $)) (-15 -1760 ((-112) $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-300) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-2109 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1197) (-656 |#2|)) 38)) (-3561 (((-598 |#2|) |#2| (-1197)) 63)) (-3259 (((-3 |#2| "failed") |#2| (-1197)) 156)) (-1899 (((-3 (-2 (|:| -1698 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1197) (-624 |#2|) (-656 (-624 |#2|))) 159)) (-1822 (((-3 (-2 (|:| -1698 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1197) |#2|) 41))) -(((-569 |#1| |#2|) (-10 -7 (-15 -1822 ((-3 (-2 (|:| -1698 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1197) |#2|)) (-15 -2109 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1197) (-656 |#2|))) (-15 -3259 ((-3 |#2| "failed") |#2| (-1197))) (-15 -3561 ((-598 |#2|) |#2| (-1197))) (-15 -1899 ((-3 (-2 (|:| -1698 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1197) (-624 |#2|) (-656 (-624 |#2|))))) (-13 (-464) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -569)) -((-1899 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1197)) (-5 *6 (-656 (-624 *3))) (-5 *5 (-624 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *7))) (-4 *7 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| -1698 *3) (|:| |coeff| *3))) (-5 *1 (-569 *7 *3)))) (-3561 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-3259 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) (-2109 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-656 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *6 *3)))) (-1822 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| -1698 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) -(-10 -7 (-15 -1822 ((-3 (-2 (|:| -1698 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1197) |#2|)) (-15 -2109 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1197) (-656 |#2|))) (-15 -3259 ((-3 |#2| "failed") |#2| (-1197))) (-15 -3561 ((-598 |#2|) |#2| (-1197))) (-15 -1899 ((-3 (-2 (|:| -1698 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1197) (-624 |#2|) (-656 (-624 |#2|))))) -((-3921 (((-430 |#1|) |#1|) 19)) (-1828 (((-430 |#1|) |#1|) 34)) (-1921 (((-3 |#1| "failed") |#1|) 49)) (-2395 (((-430 |#1|) |#1|) 60))) -(((-570 |#1|) (-10 -7 (-15 -1828 ((-430 |#1|) |#1|)) (-15 -3921 ((-430 |#1|) |#1|)) (-15 -2395 ((-430 |#1|) |#1|)) (-15 -1921 ((-3 |#1| "failed") |#1|))) (-557)) (T -570)) -((-1921 (*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-557)))) (-2395 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) (-3921 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) (-1828 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557))))) -(-10 -7 (-15 -1828 ((-430 |#1|) |#1|)) (-15 -3921 ((-430 |#1|) |#1|)) (-15 -2395 ((-430 |#1|) |#1|)) (-15 -1921 ((-3 |#1| "failed") |#1|))) -((-1844 (($) 9)) (-2604 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2951 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 34)) (-3203 (((-656 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 31)) (-1901 (($ (-2 (|:| -4301 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2951 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-3008 (($ (-656 (-2 (|:| -4301 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2951 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-4440 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2951 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 38)) (-2281 (((-656 (-2 (|:| -4301 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2951 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-4224 (((-1293)) 11))) -(((-571) (-10 -8 (-15 -1844 ($)) (-15 -4224 ((-1293))) (-15 -3203 ((-656 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3008 ($ (-656 (-2 (|:| -4301 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2951 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1901 ($ (-2 (|:| -4301 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2951 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2604 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2951 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2281 ((-656 (-2 (|:| -4301 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2951 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4440 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2951 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -571)) -((-4440 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2951 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-571)))) (-2281 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -4301 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2951 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-571)))) (-2604 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2951 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-571)))) (-1901 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4301 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2951 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-571)))) (-3008 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4301 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2951 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-571)))) (-3203 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-571)))) (-4224 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-571)))) (-1844 (*1 *1) (-5 *1 (-571)))) -(-10 -8 (-15 -1844 ($)) (-15 -4224 ((-1293))) (-15 -3203 ((-656 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3008 ($ (-656 (-2 (|:| -4301 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2951 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1901 ($ (-2 (|:| -4301 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2951 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2604 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2951 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2281 ((-656 (-2 (|:| -4301 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2951 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4440 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2951 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-1798 (((-1193 (-419 (-1193 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1193 |#2|)) 35)) (-3791 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1193 |#2|)) 115)) (-4429 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|))) 85) (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1193 |#2|)) 55)) (-2704 (((-3 (-2 (|:| -1698 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1193 |#2|))) 92) (((-3 (-2 (|:| -1698 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1193 |#2|)) 114)) (-3280 (((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)) (-624 |#2|) |#2| (-419 (-1193 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)) |#2| (-1193 |#2|)) 116)) (-1909 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1593 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|))) 133 (|has| |#3| (-668 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1593 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1193 |#2|)) 132 (|has| |#3| (-668 |#2|)))) (-1955 ((|#2| (-1193 (-419 (-1193 |#2|))) (-624 |#2|) |#2|) 53)) (-3672 (((-1193 (-419 (-1193 |#2|))) (-1193 |#2|) (-624 |#2|)) 34))) -(((-572 |#1| |#2| |#3|) (-10 -7 (-15 -4429 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1193 |#2|))) (-15 -4429 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -2704 ((-3 (-2 (|:| -1698 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1193 |#2|))) (-15 -2704 ((-3 (-2 (|:| -1698 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -3791 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1193 |#2|))) (-15 -3791 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -3280 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)) |#2| (-1193 |#2|))) (-15 -3280 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)) (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -1798 ((-1193 (-419 (-1193 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1193 |#2|))) (-15 -1955 (|#2| (-1193 (-419 (-1193 |#2|))) (-624 |#2|) |#2|)) (-15 -3672 ((-1193 (-419 (-1193 |#2|))) (-1193 |#2|) (-624 |#2|))) (IF (|has| |#3| (-668 |#2|)) (PROGN (-15 -1909 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1593 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1193 |#2|))) (-15 -1909 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1593 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|))))) |%noBranch|)) (-13 (-464) (-1059 (-576)) (-148) (-651 (-576))) (-13 (-442 |#1|) (-27) (-1223)) (-1121)) (T -572)) -((-1909 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-419 (-1193 *4))) (-4 *4 (-13 (-442 *7) (-27) (-1223))) (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1593 (-656 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1121)))) (-1909 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-1193 *4)) (-4 *4 (-13 (-442 *7) (-27) (-1223))) (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1593 (-656 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1121)))) (-3672 (*1 *2 *3 *4) (-12 (-5 *4 (-624 *6)) (-4 *6 (-13 (-442 *5) (-27) (-1223))) (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-1193 (-419 (-1193 *6)))) (-5 *1 (-572 *5 *6 *7)) (-5 *3 (-1193 *6)) (-4 *7 (-1121)))) (-1955 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1193 (-419 (-1193 *2)))) (-5 *4 (-624 *2)) (-4 *2 (-13 (-442 *5) (-27) (-1223))) (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1121)))) (-1798 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-1193 (-419 (-1193 *3)))) (-5 *1 (-572 *6 *3 *7)) (-5 *5 (-1193 *3)) (-4 *7 (-1121)))) (-3280 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1197))) (-5 *5 (-419 (-1193 *2))) (-4 *2 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1121)))) (-3280 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1197))) (-5 *5 (-1193 *2)) (-4 *2 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1121)))) (-3791 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-419 (-1193 *3))) (-4 *3 (-13 (-442 *7) (-27) (-1223))) (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1121)))) (-3791 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-1193 *3)) (-4 *3 (-13 (-442 *7) (-27) (-1223))) (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1121)))) (-2704 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1193 *3))) (-4 *3 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -1698 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121)))) (-2704 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-1193 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -1698 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121)))) (-4429 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1193 *3))) (-4 *3 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121)))) (-4429 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-1193 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121))))) -(-10 -7 (-15 -4429 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1193 |#2|))) (-15 -4429 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -2704 ((-3 (-2 (|:| -1698 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1193 |#2|))) (-15 -2704 ((-3 (-2 (|:| -1698 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -3791 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1193 |#2|))) (-15 -3791 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -3280 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)) |#2| (-1193 |#2|))) (-15 -3280 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)) (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -1798 ((-1193 (-419 (-1193 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1193 |#2|))) (-15 -1955 (|#2| (-1193 (-419 (-1193 |#2|))) (-624 |#2|) |#2|)) (-15 -3672 ((-1193 (-419 (-1193 |#2|))) (-1193 |#2|) (-624 |#2|))) (IF (|has| |#3| (-668 |#2|)) (PROGN (-15 -1909 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1593 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1193 |#2|))) (-15 -1909 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1593 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|))))) |%noBranch|)) -((-1965 (((-576) (-576) (-783)) 85)) (-3542 (((-576) (-576)) 83)) (-3709 (((-576) (-576)) 81)) (-3315 (((-576) (-576)) 87)) (-3866 (((-576) (-576) (-576)) 65)) (-4432 (((-576) (-576) (-576)) 62)) (-3120 (((-419 (-576)) (-576)) 30)) (-4108 (((-576) (-576)) 34)) (-1599 (((-576) (-576)) 74)) (-2890 (((-576) (-576)) 46)) (-3143 (((-656 (-576)) (-576)) 80)) (-3372 (((-576) (-576) (-576) (-576) (-576)) 58)) (-2690 (((-419 (-576)) (-576)) 55))) -(((-573) (-10 -7 (-15 -2690 ((-419 (-576)) (-576))) (-15 -3372 ((-576) (-576) (-576) (-576) (-576))) (-15 -3143 ((-656 (-576)) (-576))) (-15 -2890 ((-576) (-576))) (-15 -1599 ((-576) (-576))) (-15 -4108 ((-576) (-576))) (-15 -3120 ((-419 (-576)) (-576))) (-15 -4432 ((-576) (-576) (-576))) (-15 -3866 ((-576) (-576) (-576))) (-15 -3315 ((-576) (-576))) (-15 -3709 ((-576) (-576))) (-15 -3542 ((-576) (-576))) (-15 -1965 ((-576) (-576) (-783))))) (T -573)) -((-1965 (*1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-783)) (-5 *1 (-573)))) (-3542 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3709 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3315 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3866 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-4432 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3120 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) (-4108 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1599 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-2890 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3143 (*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) (-3372 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-2690 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) -(-10 -7 (-15 -2690 ((-419 (-576)) (-576))) (-15 -3372 ((-576) (-576) (-576) (-576) (-576))) (-15 -3143 ((-656 (-576)) (-576))) (-15 -2890 ((-576) (-576))) (-15 -1599 ((-576) (-576))) (-15 -4108 ((-576) (-576))) (-15 -3120 ((-419 (-576)) (-576))) (-15 -4432 ((-576) (-576) (-576))) (-15 -3866 ((-576) (-576) (-576))) (-15 -3315 ((-576) (-576))) (-15 -3709 ((-576) (-576))) (-15 -3542 ((-576) (-576))) (-15 -1965 ((-576) (-576) (-783)))) -((-1889 (((-2 (|:| |answer| |#4|) (|:| -4242 |#4|)) |#4| (-1 |#2| |#2|)) 56))) -(((-574 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1889 ((-2 (|:| |answer| |#4|) (|:| -4242 |#4|)) |#4| (-1 |#2| |#2|)))) (-374) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -574)) -((-1889 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) (-4 *7 (-1264 (-419 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -4242 *3))) (-5 *1 (-574 *5 *6 *7 *3)) (-4 *3 (-353 *5 *6 *7))))) -(-10 -7 (-15 -1889 ((-2 (|:| |answer| |#4|) (|:| -4242 |#4|)) |#4| (-1 |#2| |#2|)))) -((-1889 (((-2 (|:| |answer| (-419 |#2|)) (|:| -4242 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 18))) -(((-575 |#1| |#2|) (-10 -7 (-15 -1889 ((-2 (|:| |answer| (-419 |#2|)) (|:| -4242 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)))) (-374) (-1264 |#1|)) (T -575)) -((-1889 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |answer| (-419 *6)) (|:| -4242 (-419 *6)) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-575 *5 *6)) (-5 *3 (-419 *6))))) -(-10 -7 (-15 -1889 ((-2 (|:| |answer| (-419 |#2|)) (|:| -4242 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 30)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 96)) (-2757 (($ $) 97)) (-3788 (((-112) $) NIL)) (-3475 (($ $ $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-4417 (($ $ $ $) 52)) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-4016 (((-112) $ $) NIL)) (-3308 (((-576) $) NIL)) (-2745 (($ $ $) 91)) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL)) (-2860 (((-576) $) NIL)) (-3429 (($ $ $) 53)) (-2204 (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 76) (((-701 (-576)) (-701 $)) 72)) (-1561 (((-3 $ "failed") $) 93)) (-3104 (((-3 (-419 (-576)) "failed") $) NIL)) (-2545 (((-112) $) NIL)) (-2568 (((-419 (-576)) $) NIL)) (-1836 (($) 78) (($ $) 79)) (-3441 (($ $ $) 90)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-4249 (((-112) $) NIL)) (-3271 (($ $ $ $) NIL)) (-3941 (($ $ $) 69)) (-2087 (((-112) $) NIL)) (-1432 (($ $ $) NIL)) (-1840 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL)) (-4193 (((-112) $) 34)) (-2946 (((-112) $) 85)) (-2240 (((-3 $ "failed") $) NIL)) (-1634 (((-112) $) 43)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4379 (($ $ $ $) 54)) (-3125 (($ $ $) 87)) (-3133 (($ $ $) 86)) (-2242 (($ $) NIL)) (-2437 (($ $) 49)) (-3913 (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) 68)) (-3893 (($ $ $) NIL)) (-3540 (($) NIL T CONST)) (-1373 (($ $) 38)) (-1450 (((-1141) $) 42)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 128)) (-3498 (($ $ $) 94) (($ (-656 $)) NIL)) (-1803 (($ $) NIL)) (-1828 (((-430 $) $) 114)) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL)) (-3476 (((-3 $ "failed") $ $) 112)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3644 (((-112) $) NIL)) (-1967 (((-783) $) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 89)) (-2775 (($ $) NIL) (($ $ (-783)) NIL)) (-1806 (($ $) 40)) (-1870 (($ $) 36)) (-4172 (((-576) $) 48) (((-548) $) 63) (((-907 (-576)) $) NIL) (((-390) $) 57) (((-227) $) 60) (((-1179) $) 65)) (-3570 (((-876) $) 46) (($ (-576)) 47) (($ $) NIL) (($ (-576)) 47)) (-3996 (((-783)) NIL T CONST)) (-3586 (((-112) $ $) NIL)) (-2979 (($ $ $) NIL)) (-4055 (((-112) $ $) NIL)) (-3516 (($) 35)) (-2672 (((-112) $ $) NIL)) (-1701 (($ $ $ $) 51)) (-2122 (($ $) 77)) (-2721 (($) 6 T CONST)) (-2732 (($) 31 T CONST)) (-1636 (((-1179) $) 26) (((-1179) $ (-112)) 27) (((-1293) (-834) $) 28) (((-1293) (-834) $ (-112)) 29)) (-2020 (($ $) NIL) (($ $ (-783)) NIL)) (-2992 (((-112) $ $) 50)) (-2964 (((-112) $ $) 80)) (-2925 (((-112) $ $) 33)) (-2978 (((-112) $ $) 81)) (-2950 (((-112) $ $) 10)) (-3044 (($ $) 16) (($ $ $) 39)) (-3030 (($ $ $) 37)) (** (($ $ (-940)) NIL) (($ $ (-783)) 84)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 83) (($ $ $) 82) (($ (-576) $) 83))) -(((-576) (-13 (-557) (-626 (-1179)) (-840) (-10 -7 (-6 -4452) (-6 -4457) (-6 -4453) (-6 -4447)))) (T -576)) -NIL -(-13 (-557) (-626 (-1179)) (-840) (-10 -7 (-6 -4452) (-6 -4457) (-6 -4453) (-6 -4447))) -((-2012 (((-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))) (-781) (-1084)) 116) (((-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))) (-781)) 118)) (-1491 (((-3 (-1056) "failed") (-326 (-390)) (-1113 (-855 (-390))) (-1197)) 195) (((-3 (-1056) "failed") (-326 (-390)) (-1113 (-855 (-390))) (-1179)) 194) (((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390) (-390) (-1084)) 199) (((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390) (-390)) 200) (((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390)) 201) (((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390))))) 202) (((-1056) (-326 (-390)) (-1115 (-855 (-390)))) 190) (((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390)) 189) (((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390) (-390)) 185) (((-1056) (-781)) 177) (((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390) (-390) (-1084)) 184))) -(((-577) (-10 -7 (-15 -1491 ((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390) (-390) (-1084))) (-15 -1491 ((-1056) (-781))) (-15 -1491 ((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390) (-390))) (-15 -1491 ((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390))) (-15 -1491 ((-1056) (-326 (-390)) (-1115 (-855 (-390))))) (-15 -1491 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))))) (-15 -1491 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390))) (-15 -1491 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390) (-390))) (-15 -1491 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390) (-390) (-1084))) (-15 -2012 ((-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))) (-781))) (-15 -2012 ((-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))) (-781) (-1084))) (-15 -1491 ((-3 (-1056) "failed") (-326 (-390)) (-1113 (-855 (-390))) (-1179))) (-15 -1491 ((-3 (-1056) "failed") (-326 (-390)) (-1113 (-855 (-390))) (-1197))))) (T -577)) -((-1491 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) (-5 *5 (-1197)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-1491 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) (-5 *5 (-1179)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-2012 (*1 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-1084)) (-5 *2 (-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) (-5 *1 (-577)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) (-5 *1 (-577)))) (-1491 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) (-5 *5 (-390)) (-5 *6 (-1084)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-1491 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-1491 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-1491 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) (-5 *2 (-1056)) (-5 *1 (-577)))) (-1491 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) (-5 *2 (-1056)) (-5 *1 (-577)))) (-1491 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-1491 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-1491 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-1491 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) (-5 *5 (-390)) (-5 *6 (-1084)) (-5 *2 (-1056)) (-5 *1 (-577))))) -(-10 -7 (-15 -1491 ((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390) (-390) (-1084))) (-15 -1491 ((-1056) (-781))) (-15 -1491 ((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390) (-390))) (-15 -1491 ((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390))) (-15 -1491 ((-1056) (-326 (-390)) (-1115 (-855 (-390))))) (-15 -1491 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))))) (-15 -1491 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390))) (-15 -1491 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390) (-390))) (-15 -1491 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390) (-390) (-1084))) (-15 -2012 ((-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))) (-781))) (-15 -2012 ((-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))) (-781) (-1084))) (-15 -1491 ((-3 (-1056) "failed") (-326 (-390)) (-1113 (-855 (-390))) (-1179))) (-15 -1491 ((-3 (-1056) "failed") (-326 (-390)) (-1113 (-855 (-390))) (-1197)))) -((-3859 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|)) 195)) (-3288 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|)) 97)) (-3781 (((-3 (-2 (|:| -1698 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|) 191)) (-2442 (((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197))) 200)) (-1446 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1593 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1197)) 209 (|has| |#3| (-668 |#2|))))) -(((-578 |#1| |#2| |#3|) (-10 -7 (-15 -3288 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|))) (-15 -3781 ((-3 (-2 (|:| -1698 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|)) (-15 -3859 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|))) (-15 -2442 ((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)))) (IF (|has| |#3| (-668 |#2|)) (-15 -1446 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1593 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1197))) |%noBranch|)) (-13 (-464) (-1059 (-576)) (-148) (-651 (-576))) (-13 (-442 |#1|) (-27) (-1223)) (-1121)) (T -578)) -((-1446 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-1197)) (-4 *4 (-13 (-442 *7) (-27) (-1223))) (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1593 (-656 *4)))) (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1121)))) (-2442 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1197))) (-4 *2 (-13 (-442 *5) (-27) (-1223))) (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1121)))) (-3859 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1121)))) (-3781 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1223))) (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -1698 *3) (|:| |coeff| *3))) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1121)))) (-3288 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1223))) (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1121))))) -(-10 -7 (-15 -3288 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|))) (-15 -3781 ((-3 (-2 (|:| -1698 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|)) (-15 -3859 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|))) (-15 -2442 ((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)))) (IF (|has| |#3| (-668 |#2|)) (-15 -1446 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1593 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1197))) |%noBranch|)) -((-2724 (((-2 (|:| -1411 |#2|) (|:| |nconst| |#2|)) |#2| (-1197)) 64)) (-4304 (((-3 |#2| "failed") |#2| (-1197) (-855 |#2|) (-855 |#2|)) 175 (-12 (|has| |#2| (-1160)) (|has| |#1| (-626 (-907 (-576)))) (|has| |#1| (-901 (-576))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197)) 154 (-12 (|has| |#2| (-641)) (|has| |#1| (-626 (-907 (-576)))) (|has| |#1| (-901 (-576)))))) (-2993 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197)) 156 (-12 (|has| |#2| (-641)) (|has| |#1| (-626 (-907 (-576)))) (|has| |#1| (-901 (-576))))))) -(((-579 |#1| |#2|) (-10 -7 (-15 -2724 ((-2 (|:| -1411 |#2|) (|:| |nconst| |#2|)) |#2| (-1197))) (IF (|has| |#1| (-626 (-907 (-576)))) (IF (|has| |#1| (-901 (-576))) (PROGN (IF (|has| |#2| (-641)) (PROGN (-15 -2993 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197))) (-15 -4304 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197)))) |%noBranch|) (IF (|has| |#2| (-1160)) (-15 -4304 ((-3 |#2| "failed") |#2| (-1197) (-855 |#2|) (-855 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1059 (-576)) (-464) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -579)) -((-4304 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1197)) (-5 *4 (-855 *2)) (-4 *2 (-1160)) (-4 *2 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-626 (-907 (-576)))) (-4 *5 (-901 (-576))) (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) (-5 *1 (-579 *5 *2)))) (-4304 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-626 (-907 (-576)))) (-4 *5 (-901 (-576))) (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-2993 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-626 (-907 (-576)))) (-4 *5 (-901 (-576))) (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-2724 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| -1411 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) -(-10 -7 (-15 -2724 ((-2 (|:| -1411 |#2|) (|:| |nconst| |#2|)) |#2| (-1197))) (IF (|has| |#1| (-626 (-907 (-576)))) (IF (|has| |#1| (-901 (-576))) (PROGN (IF (|has| |#2| (-641)) (PROGN (-15 -2993 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197))) (-15 -4304 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197)))) |%noBranch|) (IF (|has| |#2| (-1160)) (-15 -4304 ((-3 |#2| "failed") |#2| (-1197) (-855 |#2|) (-855 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2750 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))) 41)) (-1491 (((-598 (-419 |#2|)) (-419 |#2|)) 28)) (-2585 (((-3 (-419 |#2|) "failed") (-419 |#2|)) 17)) (-3838 (((-3 (-2 (|:| -1698 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|)) 48))) -(((-580 |#1| |#2|) (-10 -7 (-15 -1491 ((-598 (-419 |#2|)) (-419 |#2|))) (-15 -2585 ((-3 (-419 |#2|) "failed") (-419 |#2|))) (-15 -3838 ((-3 (-2 (|:| -1698 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|))) (-15 -2750 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))))) (-13 (-374) (-148) (-1059 (-576))) (-1264 |#1|)) (T -580)) -((-2750 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-656 (-419 *6))) (-5 *3 (-419 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *5 *6)))) (-3838 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| -1698 (-419 *5)) (|:| |coeff| (-419 *5)))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))) (-2585 (*1 *2 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-13 (-374) (-148) (-1059 (-576)))) (-5 *1 (-580 *3 *4)))) (-1491 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) (-4 *5 (-1264 *4)) (-5 *2 (-598 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5))))) -(-10 -7 (-15 -1491 ((-598 (-419 |#2|)) (-419 |#2|))) (-15 -2585 ((-3 (-419 |#2|) "failed") (-419 |#2|))) (-15 -3838 ((-3 (-2 (|:| -1698 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|))) (-15 -2750 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))))) -((-2806 (((-3 (-576) "failed") |#1|) 14)) (-1421 (((-112) |#1|) 13)) (-3135 (((-576) |#1|) 9))) -(((-581 |#1|) (-10 -7 (-15 -3135 ((-576) |#1|)) (-15 -1421 ((-112) |#1|)) (-15 -2806 ((-3 (-576) "failed") |#1|))) (-1059 (-576))) (T -581)) -((-2806 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1059 *2)))) (-1421 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1059 (-576))))) (-3135 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1059 *2))))) -(-10 -7 (-15 -3135 ((-576) |#1|)) (-15 -1421 ((-112) |#1|)) (-15 -2806 ((-3 (-576) "failed") |#1|))) -((-1442 (((-3 (-2 (|:| |mainpart| (-419 (-971 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-971 |#1|))) (|:| |logand| (-419 (-971 |#1|))))))) "failed") (-419 (-971 |#1|)) (-1197) (-656 (-419 (-971 |#1|)))) 48)) (-3114 (((-598 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-1197)) 28)) (-2038 (((-3 (-419 (-971 |#1|)) "failed") (-419 (-971 |#1|)) (-1197)) 23)) (-1617 (((-3 (-2 (|:| -1698 (-419 (-971 |#1|))) (|:| |coeff| (-419 (-971 |#1|)))) "failed") (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|))) 35))) -(((-582 |#1|) (-10 -7 (-15 -3114 ((-598 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-1197))) (-15 -2038 ((-3 (-419 (-971 |#1|)) "failed") (-419 (-971 |#1|)) (-1197))) (-15 -1442 ((-3 (-2 (|:| |mainpart| (-419 (-971 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-971 |#1|))) (|:| |logand| (-419 (-971 |#1|))))))) "failed") (-419 (-971 |#1|)) (-1197) (-656 (-419 (-971 |#1|))))) (-15 -1617 ((-3 (-2 (|:| -1698 (-419 (-971 |#1|))) (|:| |coeff| (-419 (-971 |#1|)))) "failed") (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|))))) (-13 (-568) (-1059 (-576)) (-148))) (T -582)) -((-1617 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-13 (-568) (-1059 (-576)) (-148))) (-5 *2 (-2 (|:| -1698 (-419 (-971 *5))) (|:| |coeff| (-419 (-971 *5))))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-971 *5))))) (-1442 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-656 (-419 (-971 *6)))) (-5 *3 (-419 (-971 *6))) (-4 *6 (-13 (-568) (-1059 (-576)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-582 *6)))) (-2038 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-419 (-971 *4))) (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)) (-148))) (-5 *1 (-582 *4)))) (-3114 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-568) (-1059 (-576)) (-148))) (-5 *2 (-598 (-419 (-971 *5)))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-971 *5)))))) -(-10 -7 (-15 -3114 ((-598 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-1197))) (-15 -2038 ((-3 (-419 (-971 |#1|)) "failed") (-419 (-971 |#1|)) (-1197))) (-15 -1442 ((-3 (-2 (|:| |mainpart| (-419 (-971 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-971 |#1|))) (|:| |logand| (-419 (-971 |#1|))))))) "failed") (-419 (-971 |#1|)) (-1197) (-656 (-419 (-971 |#1|))))) (-15 -1617 ((-3 (-2 (|:| -1698 (-419 (-971 |#1|))) (|:| |coeff| (-419 (-971 |#1|)))) "failed") (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|))))) -((-3489 (((-112) $ $) 75)) (-4308 (((-112) $) 48)) (-3361 ((|#1| $) 39)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) 79)) (-4025 (($ $) 139)) (-3901 (($ $) 118)) (-2324 ((|#1| $) 37)) (-4367 (((-3 $ "failed") $ $) NIL)) (-1839 (($ $) NIL)) (-4006 (($ $) 141)) (-3877 (($ $) 114)) (-4050 (($ $) 143)) (-3920 (($ $) 122)) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) 93)) (-2860 (((-576) $) 95)) (-1561 (((-3 $ "failed") $) 78)) (-2168 (($ |#1| |#1|) 35)) (-2087 (((-112) $) 44)) (-1600 (($) 104)) (-4193 (((-112) $) 55)) (-2121 (($ $ (-576)) NIL)) (-1634 (((-112) $) 45)) (-3125 (($ $ $) NIL)) (-3133 (($ $ $) NIL)) (-3745 (($ $) 106)) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-1784 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-419 (-576))) 92)) (-2317 ((|#1| $) 36)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) 81) (($ (-656 $)) NIL)) (-3476 (((-3 $ "failed") $ $) 80)) (-4104 (($ $) 108)) (-4061 (($ $) 147)) (-3930 (($ $) 120)) (-4037 (($ $) 149)) (-3910 (($ $) 124)) (-4014 (($ $) 145)) (-3889 (($ $) 116)) (-2223 (((-112) $ |#1|) 42)) (-3570 (((-876) $) 100) (($ (-576)) 83) (($ $) NIL) (($ (-576)) 83)) (-3996 (((-783)) 102 T CONST)) (-4055 (((-112) $ $) NIL)) (-2791 (($ $) 161)) (-3961 (($ $) 130)) (-2672 (((-112) $ $) NIL)) (-4071 (($ $) 159)) (-3938 (($ $) 126)) (-2815 (($ $) 157)) (-3983 (($ $) 137)) (-4388 (($ $) 155)) (-3995 (($ $) 135)) (-2803 (($ $) 153)) (-3974 (($ $) 132)) (-4083 (($ $) 151)) (-3951 (($ $) 128)) (-2721 (($) 30 T CONST)) (-2732 (($) 10 T CONST)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 49)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) 47)) (-3044 (($ $) 53) (($ $ $) 54)) (-3030 (($ $ $) 52)) (** (($ $ (-940)) 71) (($ $ (-783)) NIL) (($ $ $) 110) (($ $ (-419 (-576))) 163)) (* (($ (-940) $) 66) (($ (-783) $) NIL) (($ (-576) $) 65) (($ $ $) 61))) +((-4031 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1197) (-656 |#2|)) 38)) (-1371 (((-598 |#2|) |#2| (-1197)) 63)) (-3372 (((-3 |#2| "failed") |#2| (-1197)) 156)) (-3889 (((-3 (-2 (|:| -2451 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1197) (-624 |#2|) (-656 (-624 |#2|))) 159)) (-4398 (((-3 (-2 (|:| -2451 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1197) |#2|) 41))) +(((-569 |#1| |#2|) (-10 -7 (-15 -4398 ((-3 (-2 (|:| -2451 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1197) |#2|)) (-15 -4031 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1197) (-656 |#2|))) (-15 -3372 ((-3 |#2| "failed") |#2| (-1197))) (-15 -1371 ((-598 |#2|) |#2| (-1197))) (-15 -3889 ((-3 (-2 (|:| -2451 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1197) (-624 |#2|) (-656 (-624 |#2|))))) (-13 (-464) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -569)) +((-3889 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1197)) (-5 *6 (-656 (-624 *3))) (-5 *5 (-624 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *7))) (-4 *7 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| -2451 *3) (|:| |coeff| *3))) (-5 *1 (-569 *7 *3)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-3372 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) (-4031 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-656 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *6 *3)))) (-4398 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| -2451 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) +(-10 -7 (-15 -4398 ((-3 (-2 (|:| -2451 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1197) |#2|)) (-15 -4031 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1197) (-656 |#2|))) (-15 -3372 ((-3 |#2| "failed") |#2| (-1197))) (-15 -1371 ((-598 |#2|) |#2| (-1197))) (-15 -3889 ((-3 (-2 (|:| -2451 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1197) (-624 |#2|) (-656 (-624 |#2|))))) +((-3760 (((-430 |#1|) |#1|) 19)) (-1828 (((-430 |#1|) |#1|) 34)) (-2803 (((-3 |#1| "failed") |#1|) 49)) (-1809 (((-430 |#1|) |#1|) 60))) +(((-570 |#1|) (-10 -7 (-15 -1828 ((-430 |#1|) |#1|)) (-15 -3760 ((-430 |#1|) |#1|)) (-15 -1809 ((-430 |#1|) |#1|)) (-15 -2803 ((-3 |#1| "failed") |#1|))) (-557)) (T -570)) +((-2803 (*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-557)))) (-1809 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) (-3760 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) (-1828 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557))))) +(-10 -7 (-15 -1828 ((-430 |#1|) |#1|)) (-15 -3760 ((-430 |#1|) |#1|)) (-15 -1809 ((-430 |#1|) |#1|)) (-15 -2803 ((-3 |#1| "failed") |#1|))) +((-3366 (($) 9)) (-2605 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3417 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 34)) (-3200 (((-656 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 31)) (-2597 (($ (-2 (|:| -4300 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4439 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3417 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-2649 (($ (-656 (-2 (|:| -4300 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4439 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3417 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-4439 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3417 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 38)) (-3207 (((-656 (-2 (|:| -4300 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4439 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3417 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-3567 (((-1293)) 11))) +(((-571) (-10 -8 (-15 -3366 ($)) (-15 -3567 ((-1293))) (-15 -3200 ((-656 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2649 ($ (-656 (-2 (|:| -4300 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4439 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3417 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2597 ($ (-2 (|:| -4300 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4439 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3417 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2605 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3417 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3207 ((-656 (-2 (|:| -4300 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4439 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3417 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4439 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3417 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -571)) +((-4439 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3417 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-571)))) (-3207 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -4300 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4439 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3417 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-571)))) (-2605 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3417 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-571)))) (-2597 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4300 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4439 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3417 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-571)))) (-2649 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4300 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4439 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3417 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-571)))) (-3200 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-571)))) (-3567 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-571)))) (-3366 (*1 *1) (-5 *1 (-571)))) +(-10 -8 (-15 -3366 ($)) (-15 -3567 ((-1293))) (-15 -3200 ((-656 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2649 ($ (-656 (-2 (|:| -4300 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4439 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3417 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2597 ($ (-2 (|:| -4300 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4439 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3417 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2605 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3417 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3207 ((-656 (-2 (|:| -4300 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4439 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3417 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4439 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3417 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-1797 (((-1193 (-419 (-1193 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1193 |#2|)) 35)) (-1793 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1193 |#2|)) 115)) (-1815 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|))) 85) (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1193 |#2|)) 55)) (-1782 (((-3 (-2 (|:| -2451 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1193 |#2|))) 92) (((-3 (-2 (|:| -2451 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1193 |#2|)) 114)) (-3606 (((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)) (-624 |#2|) |#2| (-419 (-1193 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)) |#2| (-1193 |#2|)) 116)) (-2670 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2675 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|))) 133 (|has| |#3| (-668 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2675 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1193 |#2|)) 132 (|has| |#3| (-668 |#2|)))) (-1956 ((|#2| (-1193 (-419 (-1193 |#2|))) (-624 |#2|) |#2|) 53)) (-3671 (((-1193 (-419 (-1193 |#2|))) (-1193 |#2|) (-624 |#2|)) 34))) +(((-572 |#1| |#2| |#3|) (-10 -7 (-15 -1815 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1193 |#2|))) (-15 -1815 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -1782 ((-3 (-2 (|:| -2451 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1193 |#2|))) (-15 -1782 ((-3 (-2 (|:| -2451 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -1793 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1193 |#2|))) (-15 -1793 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -3606 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)) |#2| (-1193 |#2|))) (-15 -3606 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)) (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -1797 ((-1193 (-419 (-1193 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1193 |#2|))) (-15 -1956 (|#2| (-1193 (-419 (-1193 |#2|))) (-624 |#2|) |#2|)) (-15 -3671 ((-1193 (-419 (-1193 |#2|))) (-1193 |#2|) (-624 |#2|))) (IF (|has| |#3| (-668 |#2|)) (PROGN (-15 -2670 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2675 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1193 |#2|))) (-15 -2670 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2675 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|))))) |%noBranch|)) (-13 (-464) (-1059 (-576)) (-148) (-651 (-576))) (-13 (-442 |#1|) (-27) (-1223)) (-1121)) (T -572)) +((-2670 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-419 (-1193 *4))) (-4 *4 (-13 (-442 *7) (-27) (-1223))) (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2675 (-656 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1121)))) (-2670 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-1193 *4)) (-4 *4 (-13 (-442 *7) (-27) (-1223))) (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2675 (-656 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1121)))) (-3671 (*1 *2 *3 *4) (-12 (-5 *4 (-624 *6)) (-4 *6 (-13 (-442 *5) (-27) (-1223))) (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-1193 (-419 (-1193 *6)))) (-5 *1 (-572 *5 *6 *7)) (-5 *3 (-1193 *6)) (-4 *7 (-1121)))) (-1956 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1193 (-419 (-1193 *2)))) (-5 *4 (-624 *2)) (-4 *2 (-13 (-442 *5) (-27) (-1223))) (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1121)))) (-1797 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-1193 (-419 (-1193 *3)))) (-5 *1 (-572 *6 *3 *7)) (-5 *5 (-1193 *3)) (-4 *7 (-1121)))) (-3606 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1197))) (-5 *5 (-419 (-1193 *2))) (-4 *2 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1121)))) (-3606 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1197))) (-5 *5 (-1193 *2)) (-4 *2 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1121)))) (-1793 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-419 (-1193 *3))) (-4 *3 (-13 (-442 *7) (-27) (-1223))) (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1121)))) (-1793 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-1193 *3)) (-4 *3 (-13 (-442 *7) (-27) (-1223))) (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1121)))) (-1782 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1193 *3))) (-4 *3 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -2451 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121)))) (-1782 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-1193 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -2451 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121)))) (-1815 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1193 *3))) (-4 *3 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121)))) (-1815 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-1193 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121))))) +(-10 -7 (-15 -1815 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1193 |#2|))) (-15 -1815 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -1782 ((-3 (-2 (|:| -2451 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1193 |#2|))) (-15 -1782 ((-3 (-2 (|:| -2451 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -1793 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1193 |#2|))) (-15 -1793 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -3606 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)) |#2| (-1193 |#2|))) (-15 -3606 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)) (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -1797 ((-1193 (-419 (-1193 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1193 |#2|))) (-15 -1956 (|#2| (-1193 (-419 (-1193 |#2|))) (-624 |#2|) |#2|)) (-15 -3671 ((-1193 (-419 (-1193 |#2|))) (-1193 |#2|) (-624 |#2|))) (IF (|has| |#3| (-668 |#2|)) (PROGN (-15 -2670 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2675 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1193 |#2|))) (-15 -2670 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2675 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|))))) |%noBranch|)) +((-3240 (((-576) (-576) (-783)) 85)) (-4318 (((-576) (-576)) 83)) (-2156 (((-576) (-576)) 81)) (-2646 (((-576) (-576)) 87)) (-1333 (((-576) (-576) (-576)) 65)) (-1846 (((-576) (-576) (-576)) 62)) (-2499 (((-419 (-576)) (-576)) 30)) (-1719 (((-576) (-576)) 34)) (-2747 (((-576) (-576)) 74)) (-2928 (((-576) (-576)) 46)) (-1511 (((-656 (-576)) (-576)) 80)) (-3258 (((-576) (-576) (-576) (-576) (-576)) 58)) (-1650 (((-419 (-576)) (-576)) 55))) +(((-573) (-10 -7 (-15 -1650 ((-419 (-576)) (-576))) (-15 -3258 ((-576) (-576) (-576) (-576) (-576))) (-15 -1511 ((-656 (-576)) (-576))) (-15 -2928 ((-576) (-576))) (-15 -2747 ((-576) (-576))) (-15 -1719 ((-576) (-576))) (-15 -2499 ((-419 (-576)) (-576))) (-15 -1846 ((-576) (-576) (-576))) (-15 -1333 ((-576) (-576) (-576))) (-15 -2646 ((-576) (-576))) (-15 -2156 ((-576) (-576))) (-15 -4318 ((-576) (-576))) (-15 -3240 ((-576) (-576) (-783))))) (T -573)) +((-3240 (*1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-783)) (-5 *1 (-573)))) (-4318 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-2156 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-2646 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1333 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1846 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-2499 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) (-1719 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-2747 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-2928 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1511 (*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) (-3258 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1650 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) +(-10 -7 (-15 -1650 ((-419 (-576)) (-576))) (-15 -3258 ((-576) (-576) (-576) (-576) (-576))) (-15 -1511 ((-656 (-576)) (-576))) (-15 -2928 ((-576) (-576))) (-15 -2747 ((-576) (-576))) (-15 -1719 ((-576) (-576))) (-15 -2499 ((-419 (-576)) (-576))) (-15 -1846 ((-576) (-576) (-576))) (-15 -1333 ((-576) (-576) (-576))) (-15 -2646 ((-576) (-576))) (-15 -2156 ((-576) (-576))) (-15 -4318 ((-576) (-576))) (-15 -3240 ((-576) (-576) (-783)))) +((-3782 (((-2 (|:| |answer| |#4|) (|:| -3754 |#4|)) |#4| (-1 |#2| |#2|)) 56))) +(((-574 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3782 ((-2 (|:| |answer| |#4|) (|:| -3754 |#4|)) |#4| (-1 |#2| |#2|)))) (-374) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -574)) +((-3782 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) (-4 *7 (-1264 (-419 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3754 *3))) (-5 *1 (-574 *5 *6 *7 *3)) (-4 *3 (-353 *5 *6 *7))))) +(-10 -7 (-15 -3782 ((-2 (|:| |answer| |#4|) (|:| -3754 |#4|)) |#4| (-1 |#2| |#2|)))) +((-3782 (((-2 (|:| |answer| (-419 |#2|)) (|:| -3754 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 18))) +(((-575 |#1| |#2|) (-10 -7 (-15 -3782 ((-2 (|:| |answer| (-419 |#2|)) (|:| -3754 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)))) (-374) (-1264 |#1|)) (T -575)) +((-3782 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |answer| (-419 *6)) (|:| -3754 (-419 *6)) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-575 *5 *6)) (-5 *3 (-419 *6))))) +(-10 -7 (-15 -3782 ((-2 (|:| |answer| (-419 |#2|)) (|:| -3754 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 30)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 96)) (-4195 (($ $) 97)) (-1760 (((-112) $) NIL)) (-1775 (($ $ $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-1724 (($ $ $ $) 52)) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3330 (((-112) $ $) NIL)) (-3906 (((-576) $) NIL)) (-2743 (($ $ $) 91)) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL)) (-2859 (((-576) $) NIL)) (-3428 (($ $ $) 53)) (-3674 (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 76) (((-701 (-576)) (-701 $)) 72)) (-3673 (((-3 $ "failed") $) 93)) (-2358 (((-3 (-419 (-576)) "failed") $) NIL)) (-2769 (((-112) $) NIL)) (-3025 (((-419 (-576)) $) NIL)) (-1836 (($) 78) (($ $) 79)) (-3440 (($ $ $) 90)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3833 (((-112) $) NIL)) (-3495 (($ $ $ $) NIL)) (-3948 (($ $ $) 69)) (-1866 (((-112) $) NIL)) (-2199 (($ $ $) NIL)) (-3325 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL)) (-1351 (((-112) $) 34)) (-3376 (((-112) $) 85)) (-2734 (((-3 $ "failed") $) NIL)) (-3137 (((-112) $) 43)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2542 (($ $ $ $) 54)) (-3124 (($ $ $) 87)) (-1441 (($ $ $) 86)) (-2243 (($ $) NIL)) (-2435 (($ $) 49)) (-3676 (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) 68)) (-3473 (($ $ $) NIL)) (-3539 (($) NIL T CONST)) (-1373 (($ $) 38)) (-1450 (((-1141) $) 42)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 128)) (-3497 (($ $ $) 94) (($ (-656 $)) NIL)) (-4225 (($ $) NIL)) (-1828 (((-430 $) $) 114)) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL)) (-3475 (((-3 $ "failed") $ $) 112)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2768 (((-112) $) NIL)) (-1979 (((-783) $) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 89)) (-2774 (($ $) NIL) (($ $ (-783)) NIL)) (-1807 (($ $) 40)) (-1870 (($ $) 36)) (-4171 (((-576) $) 48) (((-548) $) 63) (((-907 (-576)) $) NIL) (((-390) $) 57) (((-227) $) 60) (((-1179) $) 65)) (-3569 (((-876) $) 46) (($ (-576)) 47) (($ $) NIL) (($ (-576)) 47)) (-3154 (((-783)) NIL T CONST)) (-3479 (((-112) $ $) NIL)) (-3679 (($ $ $) NIL)) (-2399 (((-112) $ $) NIL)) (-3515 (($) 35)) (-1505 (((-112) $ $) NIL)) (-2474 (($ $ $ $) 51)) (-4143 (($ $) 77)) (-2721 (($) 6 T CONST)) (-2731 (($) 31 T CONST)) (-3160 (((-1179) $) 26) (((-1179) $ (-112)) 27) (((-1293) (-834) $) 28) (((-1293) (-834) $ (-112)) 29)) (-2020 (($ $) NIL) (($ $ (-783)) NIL)) (-2990 (((-112) $ $) 50)) (-2962 (((-112) $ $) 80)) (-2924 (((-112) $ $) 33)) (-2978 (((-112) $ $) 81)) (-2949 (((-112) $ $) 10)) (-3043 (($ $) 16) (($ $ $) 39)) (-3029 (($ $ $) 37)) (** (($ $ (-940)) NIL) (($ $ (-783)) 84)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 83) (($ $ $) 82) (($ (-576) $) 83))) +(((-576) (-13 (-557) (-626 (-1179)) (-840) (-10 -7 (-6 -4451) (-6 -4456) (-6 -4452) (-6 -4446)))) (T -576)) +NIL +(-13 (-557) (-626 (-1179)) (-840) (-10 -7 (-6 -4451) (-6 -4456) (-6 -4452) (-6 -4446))) +((-2402 (((-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))) (-781) (-1084)) 116) (((-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))) (-781)) 118)) (-4160 (((-3 (-1056) "failed") (-326 (-390)) (-1113 (-855 (-390))) (-1197)) 195) (((-3 (-1056) "failed") (-326 (-390)) (-1113 (-855 (-390))) (-1179)) 194) (((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390) (-390) (-1084)) 199) (((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390) (-390)) 200) (((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390)) 201) (((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390))))) 202) (((-1056) (-326 (-390)) (-1115 (-855 (-390)))) 190) (((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390)) 189) (((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390) (-390)) 185) (((-1056) (-781)) 177) (((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390) (-390) (-1084)) 184))) +(((-577) (-10 -7 (-15 -4160 ((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390) (-390) (-1084))) (-15 -4160 ((-1056) (-781))) (-15 -4160 ((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390) (-390))) (-15 -4160 ((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390))) (-15 -4160 ((-1056) (-326 (-390)) (-1115 (-855 (-390))))) (-15 -4160 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))))) (-15 -4160 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390))) (-15 -4160 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390) (-390))) (-15 -4160 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390) (-390) (-1084))) (-15 -2402 ((-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))) (-781))) (-15 -2402 ((-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))) (-781) (-1084))) (-15 -4160 ((-3 (-1056) "failed") (-326 (-390)) (-1113 (-855 (-390))) (-1179))) (-15 -4160 ((-3 (-1056) "failed") (-326 (-390)) (-1113 (-855 (-390))) (-1197))))) (T -577)) +((-4160 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) (-5 *5 (-1197)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-4160 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) (-5 *5 (-1179)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-2402 (*1 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-1084)) (-5 *2 (-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) (-5 *1 (-577)))) (-2402 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) (-5 *1 (-577)))) (-4160 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) (-5 *5 (-390)) (-5 *6 (-1084)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-4160 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-4160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-4160 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) (-5 *2 (-1056)) (-5 *1 (-577)))) (-4160 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) (-5 *2 (-1056)) (-5 *1 (-577)))) (-4160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-4160 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-4160 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-4160 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) (-5 *5 (-390)) (-5 *6 (-1084)) (-5 *2 (-1056)) (-5 *1 (-577))))) +(-10 -7 (-15 -4160 ((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390) (-390) (-1084))) (-15 -4160 ((-1056) (-781))) (-15 -4160 ((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390) (-390))) (-15 -4160 ((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390))) (-15 -4160 ((-1056) (-326 (-390)) (-1115 (-855 (-390))))) (-15 -4160 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))))) (-15 -4160 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390))) (-15 -4160 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390) (-390))) (-15 -4160 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390) (-390) (-1084))) (-15 -2402 ((-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))) (-781))) (-15 -2402 ((-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))) (-781) (-1084))) (-15 -4160 ((-3 (-1056) "failed") (-326 (-390)) (-1113 (-855 (-390))) (-1179))) (-15 -4160 ((-3 (-1056) "failed") (-326 (-390)) (-1113 (-855 (-390))) (-1197)))) +((-4405 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|)) 195)) (-3688 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|)) 97)) (-1693 (((-3 (-2 (|:| -2451 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|) 191)) (-4227 (((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197))) 200)) (-2354 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2675 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1197)) 209 (|has| |#3| (-668 |#2|))))) +(((-578 |#1| |#2| |#3|) (-10 -7 (-15 -3688 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|))) (-15 -1693 ((-3 (-2 (|:| -2451 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|)) (-15 -4405 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|))) (-15 -4227 ((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)))) (IF (|has| |#3| (-668 |#2|)) (-15 -2354 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2675 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1197))) |%noBranch|)) (-13 (-464) (-1059 (-576)) (-148) (-651 (-576))) (-13 (-442 |#1|) (-27) (-1223)) (-1121)) (T -578)) +((-2354 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-1197)) (-4 *4 (-13 (-442 *7) (-27) (-1223))) (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2675 (-656 *4)))) (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1121)))) (-4227 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1197))) (-4 *2 (-13 (-442 *5) (-27) (-1223))) (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1121)))) (-4405 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1121)))) (-1693 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1223))) (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -2451 *3) (|:| |coeff| *3))) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1121)))) (-3688 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1223))) (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1121))))) +(-10 -7 (-15 -3688 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|))) (-15 -1693 ((-3 (-2 (|:| -2451 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|)) (-15 -4405 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|))) (-15 -4227 ((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)))) (IF (|has| |#3| (-668 |#2|)) (-15 -2354 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2675 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1197))) |%noBranch|)) +((-1919 (((-2 (|:| -3672 |#2|) (|:| |nconst| |#2|)) |#2| (-1197)) 64)) (-3098 (((-3 |#2| "failed") |#2| (-1197) (-855 |#2|) (-855 |#2|)) 175 (-12 (|has| |#2| (-1160)) (|has| |#1| (-626 (-907 (-576)))) (|has| |#1| (-901 (-576))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197)) 154 (-12 (|has| |#2| (-641)) (|has| |#1| (-626 (-907 (-576)))) (|has| |#1| (-901 (-576)))))) (-3804 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197)) 156 (-12 (|has| |#2| (-641)) (|has| |#1| (-626 (-907 (-576)))) (|has| |#1| (-901 (-576))))))) +(((-579 |#1| |#2|) (-10 -7 (-15 -1919 ((-2 (|:| -3672 |#2|) (|:| |nconst| |#2|)) |#2| (-1197))) (IF (|has| |#1| (-626 (-907 (-576)))) (IF (|has| |#1| (-901 (-576))) (PROGN (IF (|has| |#2| (-641)) (PROGN (-15 -3804 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197))) (-15 -3098 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197)))) |%noBranch|) (IF (|has| |#2| (-1160)) (-15 -3098 ((-3 |#2| "failed") |#2| (-1197) (-855 |#2|) (-855 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1059 (-576)) (-464) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -579)) +((-3098 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1197)) (-5 *4 (-855 *2)) (-4 *2 (-1160)) (-4 *2 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-626 (-907 (-576)))) (-4 *5 (-901 (-576))) (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) (-5 *1 (-579 *5 *2)))) (-3098 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-626 (-907 (-576)))) (-4 *5 (-901 (-576))) (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-3804 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-626 (-907 (-576)))) (-4 *5 (-901 (-576))) (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-1919 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| -3672 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) +(-10 -7 (-15 -1919 ((-2 (|:| -3672 |#2|) (|:| |nconst| |#2|)) |#2| (-1197))) (IF (|has| |#1| (-626 (-907 (-576)))) (IF (|has| |#1| (-901 (-576))) (PROGN (IF (|has| |#2| (-641)) (PROGN (-15 -3804 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197))) (-15 -3098 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197)))) |%noBranch|) (IF (|has| |#2| (-1160)) (-15 -3098 ((-3 |#2| "failed") |#2| (-1197) (-855 |#2|) (-855 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-4133 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))) 41)) (-4160 (((-598 (-419 |#2|)) (-419 |#2|)) 28)) (-3180 (((-3 (-419 |#2|) "failed") (-419 |#2|)) 17)) (-4214 (((-3 (-2 (|:| -2451 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|)) 48))) +(((-580 |#1| |#2|) (-10 -7 (-15 -4160 ((-598 (-419 |#2|)) (-419 |#2|))) (-15 -3180 ((-3 (-419 |#2|) "failed") (-419 |#2|))) (-15 -4214 ((-3 (-2 (|:| -2451 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|))) (-15 -4133 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))))) (-13 (-374) (-148) (-1059 (-576))) (-1264 |#1|)) (T -580)) +((-4133 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-656 (-419 *6))) (-5 *3 (-419 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *5 *6)))) (-4214 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| -2451 (-419 *5)) (|:| |coeff| (-419 *5)))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))) (-3180 (*1 *2 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-13 (-374) (-148) (-1059 (-576)))) (-5 *1 (-580 *3 *4)))) (-4160 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) (-4 *5 (-1264 *4)) (-5 *2 (-598 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5))))) +(-10 -7 (-15 -4160 ((-598 (-419 |#2|)) (-419 |#2|))) (-15 -3180 ((-3 (-419 |#2|) "failed") (-419 |#2|))) (-15 -4214 ((-3 (-2 (|:| -2451 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|))) (-15 -4133 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))))) +((-1463 (((-3 (-576) "failed") |#1|) 14)) (-2082 (((-112) |#1|) 13)) (-3132 (((-576) |#1|) 9))) +(((-581 |#1|) (-10 -7 (-15 -3132 ((-576) |#1|)) (-15 -2082 ((-112) |#1|)) (-15 -1463 ((-3 (-576) "failed") |#1|))) (-1059 (-576))) (T -581)) +((-1463 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1059 *2)))) (-2082 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1059 (-576))))) (-3132 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1059 *2))))) +(-10 -7 (-15 -3132 ((-576) |#1|)) (-15 -2082 ((-112) |#1|)) (-15 -1463 ((-3 (-576) "failed") |#1|))) +((-2305 (((-3 (-2 (|:| |mainpart| (-419 (-971 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-971 |#1|))) (|:| |logand| (-419 (-971 |#1|))))))) "failed") (-419 (-971 |#1|)) (-1197) (-656 (-419 (-971 |#1|)))) 48)) (-2433 (((-598 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-1197)) 28)) (-1433 (((-3 (-419 (-971 |#1|)) "failed") (-419 (-971 |#1|)) (-1197)) 23)) (-2923 (((-3 (-2 (|:| -2451 (-419 (-971 |#1|))) (|:| |coeff| (-419 (-971 |#1|)))) "failed") (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|))) 35))) +(((-582 |#1|) (-10 -7 (-15 -2433 ((-598 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-1197))) (-15 -1433 ((-3 (-419 (-971 |#1|)) "failed") (-419 (-971 |#1|)) (-1197))) (-15 -2305 ((-3 (-2 (|:| |mainpart| (-419 (-971 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-971 |#1|))) (|:| |logand| (-419 (-971 |#1|))))))) "failed") (-419 (-971 |#1|)) (-1197) (-656 (-419 (-971 |#1|))))) (-15 -2923 ((-3 (-2 (|:| -2451 (-419 (-971 |#1|))) (|:| |coeff| (-419 (-971 |#1|)))) "failed") (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|))))) (-13 (-568) (-1059 (-576)) (-148))) (T -582)) +((-2923 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-13 (-568) (-1059 (-576)) (-148))) (-5 *2 (-2 (|:| -2451 (-419 (-971 *5))) (|:| |coeff| (-419 (-971 *5))))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-971 *5))))) (-2305 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-656 (-419 (-971 *6)))) (-5 *3 (-419 (-971 *6))) (-4 *6 (-13 (-568) (-1059 (-576)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-582 *6)))) (-1433 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-419 (-971 *4))) (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)) (-148))) (-5 *1 (-582 *4)))) (-2433 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-568) (-1059 (-576)) (-148))) (-5 *2 (-598 (-419 (-971 *5)))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-971 *5)))))) +(-10 -7 (-15 -2433 ((-598 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-1197))) (-15 -1433 ((-3 (-419 (-971 |#1|)) "failed") (-419 (-971 |#1|)) (-1197))) (-15 -2305 ((-3 (-2 (|:| |mainpart| (-419 (-971 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-971 |#1|))) (|:| |logand| (-419 (-971 |#1|))))))) "failed") (-419 (-971 |#1|)) (-1197) (-656 (-419 (-971 |#1|))))) (-15 -2923 ((-3 (-2 (|:| -2451 (-419 (-971 |#1|))) (|:| |coeff| (-419 (-971 |#1|)))) "failed") (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|))))) +((-3488 (((-112) $ $) 75)) (-3135 (((-112) $) 48)) (-3360 ((|#1| $) 39)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) 79)) (-4024 (($ $) 139)) (-3900 (($ $) 118)) (-2386 ((|#1| $) 37)) (-2428 (((-3 $ "failed") $ $) NIL)) (-1840 (($ $) NIL)) (-4005 (($ $) 141)) (-3876 (($ $) 114)) (-4049 (($ $) 143)) (-3919 (($ $) 122)) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) 93)) (-2859 (((-576) $) 95)) (-3673 (((-3 $ "failed") $) 78)) (-3308 (($ |#1| |#1|) 35)) (-1866 (((-112) $) 44)) (-1600 (($) 104)) (-1351 (((-112) $) 55)) (-4131 (($ $ (-576)) NIL)) (-3137 (((-112) $) 45)) (-3124 (($ $ $) NIL)) (-1441 (($ $ $) NIL)) (-3744 (($ $) 106)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-4061 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-419 (-576))) 92)) (-2302 ((|#1| $) 36)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) 81) (($ (-656 $)) NIL)) (-3475 (((-3 $ "failed") $ $) 80)) (-4103 (($ $) 108)) (-4060 (($ $) 147)) (-3929 (($ $) 120)) (-4036 (($ $) 149)) (-3909 (($ $) 124)) (-4013 (($ $) 145)) (-3888 (($ $) 116)) (-3872 (((-112) $ |#1|) 42)) (-3569 (((-876) $) 100) (($ (-576)) 83) (($ $) NIL) (($ (-576)) 83)) (-3154 (((-783)) 102 T CONST)) (-2399 (((-112) $ $) NIL)) (-2790 (($ $) 161)) (-3960 (($ $) 130)) (-1505 (((-112) $ $) NIL)) (-4070 (($ $) 159)) (-3937 (($ $) 126)) (-2814 (($ $) 157)) (-3982 (($ $) 137)) (-4387 (($ $) 155)) (-3994 (($ $) 135)) (-2802 (($ $) 153)) (-3973 (($ $) 132)) (-4082 (($ $) 151)) (-3950 (($ $) 128)) (-2721 (($) 30 T CONST)) (-2731 (($) 10 T CONST)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 49)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) 47)) (-3043 (($ $) 53) (($ $ $) 54)) (-3029 (($ $ $) 52)) (** (($ $ (-940)) 71) (($ $ (-783)) NIL) (($ $ $) 110) (($ $ (-419 (-576))) 163)) (* (($ (-940) $) 66) (($ (-783) $) NIL) (($ (-576) $) 65) (($ $ $) 61))) (((-583 |#1|) (-566 |#1|) (-13 (-416) (-1223))) (T -583)) NIL (-566 |#1|) -((-1963 (((-3 (-656 (-1193 (-576))) "failed") (-656 (-1193 (-576))) (-1193 (-576))) 27))) -(((-584) (-10 -7 (-15 -1963 ((-3 (-656 (-1193 (-576))) "failed") (-656 (-1193 (-576))) (-1193 (-576)))))) (T -584)) -((-1963 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1193 (-576)))) (-5 *3 (-1193 (-576))) (-5 *1 (-584))))) -(-10 -7 (-15 -1963 ((-3 (-656 (-1193 (-576))) "failed") (-656 (-1193 (-576))) (-1193 (-576))))) -((-3697 (((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1197)) 19)) (-1975 (((-656 (-624 |#2|)) (-656 |#2|) (-1197)) 23)) (-1820 (((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|))) 11)) (-1853 ((|#2| |#2| (-1197)) 59 (|has| |#1| (-568)))) (-3981 ((|#2| |#2| (-1197)) 87 (-12 (|has| |#2| (-294)) (|has| |#1| (-464))))) (-2622 (((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1197)) 25)) (-2518 (((-624 |#2|) (-656 (-624 |#2|))) 24)) (-2436 (((-598 |#2|) |#2| (-1197) (-1 (-598 |#2|) |#2| (-1197)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197))) 115 (-12 (|has| |#2| (-294)) (|has| |#2| (-641)) (|has| |#2| (-1059 (-1197))) (|has| |#1| (-626 (-907 (-576)))) (|has| |#1| (-464)) (|has| |#1| (-901 (-576))))))) -(((-585 |#1| |#2|) (-10 -7 (-15 -3697 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1197))) (-15 -2518 ((-624 |#2|) (-656 (-624 |#2|)))) (-15 -2622 ((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1197))) (-15 -1820 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|)))) (-15 -1975 ((-656 (-624 |#2|)) (-656 |#2|) (-1197))) (IF (|has| |#1| (-568)) (-15 -1853 (|#2| |#2| (-1197))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-294)) (PROGN (-15 -3981 (|#2| |#2| (-1197))) (IF (|has| |#1| (-626 (-907 (-576)))) (IF (|has| |#1| (-901 (-576))) (IF (|has| |#2| (-641)) (IF (|has| |#2| (-1059 (-1197))) (-15 -2436 ((-598 |#2|) |#2| (-1197) (-1 (-598 |#2|) |#2| (-1197)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1121) (-442 |#1|)) (T -585)) -((-2436 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-598 *3) *3 (-1197))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1197))) (-4 *3 (-294)) (-4 *3 (-641)) (-4 *3 (-1059 *4)) (-4 *3 (-442 *7)) (-5 *4 (-1197)) (-4 *7 (-626 (-907 (-576)))) (-4 *7 (-464)) (-4 *7 (-901 (-576))) (-4 *7 (-1121)) (-5 *2 (-598 *3)) (-5 *1 (-585 *7 *3)))) (-3981 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-464)) (-4 *4 (-1121)) (-5 *1 (-585 *4 *2)) (-4 *2 (-294)) (-4 *2 (-442 *4)))) (-1853 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-4 *4 (-1121)) (-5 *1 (-585 *4 *2)) (-4 *2 (-442 *4)))) (-1975 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-1197)) (-4 *6 (-442 *5)) (-4 *5 (-1121)) (-5 *2 (-656 (-624 *6))) (-5 *1 (-585 *5 *6)))) (-1820 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-624 *4))) (-4 *4 (-442 *3)) (-4 *3 (-1121)) (-5 *1 (-585 *3 *4)))) (-2622 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-624 *6))) (-5 *4 (-1197)) (-5 *2 (-624 *6)) (-4 *6 (-442 *5)) (-4 *5 (-1121)) (-5 *1 (-585 *5 *6)))) (-2518 (*1 *2 *3) (-12 (-5 *3 (-656 (-624 *5))) (-4 *4 (-1121)) (-5 *2 (-624 *5)) (-5 *1 (-585 *4 *5)) (-4 *5 (-442 *4)))) (-3697 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-624 *5))) (-5 *3 (-1197)) (-4 *5 (-442 *4)) (-4 *4 (-1121)) (-5 *1 (-585 *4 *5))))) -(-10 -7 (-15 -3697 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1197))) (-15 -2518 ((-624 |#2|) (-656 (-624 |#2|)))) (-15 -2622 ((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1197))) (-15 -1820 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|)))) (-15 -1975 ((-656 (-624 |#2|)) (-656 |#2|) (-1197))) (IF (|has| |#1| (-568)) (-15 -1853 (|#2| |#2| (-1197))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-294)) (PROGN (-15 -3981 (|#2| |#2| (-1197))) (IF (|has| |#1| (-626 (-907 (-576)))) (IF (|has| |#1| (-901 (-576))) (IF (|has| |#2| (-641)) (IF (|has| |#2| (-1059 (-1197))) (-15 -2436 ((-598 |#2|) |#2| (-1197) (-1 (-598 |#2|) |#2| (-1197)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2867 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|)) 199)) (-1445 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1698 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|))) 174)) (-1464 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|))) 171)) (-3033 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1698 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162)) (-3862 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1698 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185)) (-3483 (((-3 (-2 (|:| -1698 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|)) 202)) (-3064 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1698 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1698 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|)) 205)) (-1711 (((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 88)) (-1331 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-2318 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4250 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|))) 178)) (-3829 (((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4250 |#1|) (|:| |sol?| (-112))) (-576) |#1|)) 166)) (-2739 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4250 |#1|) (|:| |sol?| (-112))) (-576) |#1|)) 189)) (-2412 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1698 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4250 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|)) 210))) -(((-586 |#1| |#2|) (-10 -7 (-15 -3862 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1698 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2739 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4250 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -2867 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|))) (-15 -3064 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1698 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1698 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|))) (-15 -2412 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1698 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4250 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|))) (-15 -1445 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1698 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|)))) (-15 -2318 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4250 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|)))) (-15 -3483 ((-3 (-2 (|:| -1698 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -1464 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|)))) (-15 -3033 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1698 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3829 ((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4250 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -1711 ((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -1331 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-374) (-1264 |#1|)) (T -586)) -((-1331 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-586 *5 *3)))) (-1711 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |ir| (-598 (-419 *6))) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-3829 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -4250 *4) (|:| |sol?| (-112))) (-576) *4)) (-4 *4 (-374)) (-4 *5 (-1264 *4)) (-5 *1 (-586 *4 *5)))) (-3033 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -1698 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-374)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1264 *4)))) (-1464 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-656 (-419 *7))) (-4 *7 (-1264 *6)) (-5 *3 (-419 *7)) (-4 *6 (-374)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-586 *6 *7)))) (-3483 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -1698 (-419 *6)) (|:| |coeff| (-419 *6)))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-2318 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -4250 *7) (|:| |sol?| (-112))) (-576) *7)) (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1264 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-1445 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -1698 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1264 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-2412 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4250 *6) (|:| |sol?| (-112))) (-576) *6)) (-4 *6 (-374)) (-4 *7 (-1264 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -1698 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-3064 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1698 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-374)) (-4 *7 (-1264 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -1698 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2867 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-656 *6) "failed") (-576) *6 *6)) (-4 *6 (-374)) (-4 *7 (-1264 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2739 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4250 *6) (|:| |sol?| (-112))) (-576) *6)) (-4 *6 (-374)) (-4 *7 (-1264 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-3862 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1698 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-374)) (-4 *7 (-1264 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(-10 -7 (-15 -3862 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1698 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2739 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4250 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -2867 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|))) (-15 -3064 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1698 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1698 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|))) (-15 -2412 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1698 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4250 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|))) (-15 -1445 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1698 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|)))) (-15 -2318 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4250 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|)))) (-15 -3483 ((-3 (-2 (|:| -1698 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -1464 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|)))) (-15 -3033 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1698 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3829 ((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4250 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -1711 ((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -1331 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-1786 (((-3 |#2| "failed") |#2| (-1197) (-1197)) 10))) -(((-587 |#1| |#2|) (-10 -7 (-15 -1786 ((-3 |#2| "failed") |#2| (-1197) (-1197)))) (-13 (-317) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-978) (-1160) (-29 |#1|))) (T -587)) -((-1786 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1197)) (-4 *4 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-587 *4 *2)) (-4 *2 (-13 (-1223) (-978) (-1160) (-29 *4)))))) -(-10 -7 (-15 -1786 ((-3 |#2| "failed") |#2| (-1197) (-1197)))) -((-3431 (((-703 (-1246)) $ (-1246)) 26)) (-3559 (((-703 (-561)) $ (-561)) 25)) (-3000 (((-783) $ (-129)) 27)) (-4175 (((-703 (-130)) $ (-130)) 24)) (-1436 (((-703 (-1246)) $) 12)) (-2362 (((-703 (-1244)) $) 8)) (-4205 (((-703 (-1243)) $) 10)) (-1729 (((-703 (-561)) $) 13)) (-1833 (((-703 (-559)) $) 9)) (-3918 (((-703 (-558)) $) 11)) (-4261 (((-783) $ (-129)) 7)) (-3578 (((-703 (-130)) $) 14)) (-3423 (($ $) 6))) +((-3220 (((-3 (-656 (-1193 (-576))) "failed") (-656 (-1193 (-576))) (-1193 (-576))) 27))) +(((-584) (-10 -7 (-15 -3220 ((-3 (-656 (-1193 (-576))) "failed") (-656 (-1193 (-576))) (-1193 (-576)))))) (T -584)) +((-3220 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1193 (-576)))) (-5 *3 (-1193 (-576))) (-5 *1 (-584))))) +(-10 -7 (-15 -3220 ((-3 (-656 (-1193 (-576))) "failed") (-656 (-1193 (-576))) (-1193 (-576))))) +((-3316 (((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1197)) 19)) (-2036 (((-656 (-624 |#2|)) (-656 |#2|) (-1197)) 23)) (-1820 (((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|))) 11)) (-3441 ((|#2| |#2| (-1197)) 59 (|has| |#1| (-568)))) (-3020 ((|#2| |#2| (-1197)) 87 (-12 (|has| |#2| (-294)) (|has| |#1| (-464))))) (-2258 (((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1197)) 25)) (-3784 (((-624 |#2|) (-656 (-624 |#2|))) 24)) (-4179 (((-598 |#2|) |#2| (-1197) (-1 (-598 |#2|) |#2| (-1197)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197))) 115 (-12 (|has| |#2| (-294)) (|has| |#2| (-641)) (|has| |#2| (-1059 (-1197))) (|has| |#1| (-626 (-907 (-576)))) (|has| |#1| (-464)) (|has| |#1| (-901 (-576))))))) +(((-585 |#1| |#2|) (-10 -7 (-15 -3316 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1197))) (-15 -3784 ((-624 |#2|) (-656 (-624 |#2|)))) (-15 -2258 ((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1197))) (-15 -1820 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|)))) (-15 -2036 ((-656 (-624 |#2|)) (-656 |#2|) (-1197))) (IF (|has| |#1| (-568)) (-15 -3441 (|#2| |#2| (-1197))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-294)) (PROGN (-15 -3020 (|#2| |#2| (-1197))) (IF (|has| |#1| (-626 (-907 (-576)))) (IF (|has| |#1| (-901 (-576))) (IF (|has| |#2| (-641)) (IF (|has| |#2| (-1059 (-1197))) (-15 -4179 ((-598 |#2|) |#2| (-1197) (-1 (-598 |#2|) |#2| (-1197)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1121) (-442 |#1|)) (T -585)) +((-4179 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-598 *3) *3 (-1197))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1197))) (-4 *3 (-294)) (-4 *3 (-641)) (-4 *3 (-1059 *4)) (-4 *3 (-442 *7)) (-5 *4 (-1197)) (-4 *7 (-626 (-907 (-576)))) (-4 *7 (-464)) (-4 *7 (-901 (-576))) (-4 *7 (-1121)) (-5 *2 (-598 *3)) (-5 *1 (-585 *7 *3)))) (-3020 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-464)) (-4 *4 (-1121)) (-5 *1 (-585 *4 *2)) (-4 *2 (-294)) (-4 *2 (-442 *4)))) (-3441 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-4 *4 (-1121)) (-5 *1 (-585 *4 *2)) (-4 *2 (-442 *4)))) (-2036 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-1197)) (-4 *6 (-442 *5)) (-4 *5 (-1121)) (-5 *2 (-656 (-624 *6))) (-5 *1 (-585 *5 *6)))) (-1820 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-624 *4))) (-4 *4 (-442 *3)) (-4 *3 (-1121)) (-5 *1 (-585 *3 *4)))) (-2258 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-624 *6))) (-5 *4 (-1197)) (-5 *2 (-624 *6)) (-4 *6 (-442 *5)) (-4 *5 (-1121)) (-5 *1 (-585 *5 *6)))) (-3784 (*1 *2 *3) (-12 (-5 *3 (-656 (-624 *5))) (-4 *4 (-1121)) (-5 *2 (-624 *5)) (-5 *1 (-585 *4 *5)) (-4 *5 (-442 *4)))) (-3316 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-624 *5))) (-5 *3 (-1197)) (-4 *5 (-442 *4)) (-4 *4 (-1121)) (-5 *1 (-585 *4 *5))))) +(-10 -7 (-15 -3316 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1197))) (-15 -3784 ((-624 |#2|) (-656 (-624 |#2|)))) (-15 -2258 ((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1197))) (-15 -1820 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|)))) (-15 -2036 ((-656 (-624 |#2|)) (-656 |#2|) (-1197))) (IF (|has| |#1| (-568)) (-15 -3441 (|#2| |#2| (-1197))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-294)) (PROGN (-15 -3020 (|#2| |#2| (-1197))) (IF (|has| |#1| (-626 (-907 (-576)))) (IF (|has| |#1| (-901 (-576))) (IF (|has| |#2| (-641)) (IF (|has| |#2| (-1059 (-1197))) (-15 -4179 ((-598 |#2|) |#2| (-1197) (-1 (-598 |#2|) |#2| (-1197)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-3981 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|)) 199)) (-2342 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2451 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|))) 174)) (-3883 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|))) 171)) (-2930 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2451 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162)) (-4435 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2451 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185)) (-1837 (((-3 (-2 (|:| -2451 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|)) 202)) (-3231 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2451 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2451 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|)) 205)) (-1401 (((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 88)) (-2893 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-2313 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4249 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|))) 178)) (-4144 (((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4249 |#1|) (|:| |sol?| (-112))) (-576) |#1|)) 166)) (-4045 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4249 |#1|) (|:| |sol?| (-112))) (-576) |#1|)) 189)) (-1975 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2451 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4249 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|)) 210))) +(((-586 |#1| |#2|) (-10 -7 (-15 -4435 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2451 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4045 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4249 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -3981 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|))) (-15 -3231 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2451 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2451 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|))) (-15 -1975 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2451 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4249 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|))) (-15 -2342 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2451 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|)))) (-15 -2313 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4249 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|)))) (-15 -1837 ((-3 (-2 (|:| -2451 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -3883 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|)))) (-15 -2930 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2451 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -4144 ((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4249 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -1401 ((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2893 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-374) (-1264 |#1|)) (T -586)) +((-2893 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-586 *5 *3)))) (-1401 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |ir| (-598 (-419 *6))) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-4144 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -4249 *4) (|:| |sol?| (-112))) (-576) *4)) (-4 *4 (-374)) (-4 *5 (-1264 *4)) (-5 *1 (-586 *4 *5)))) (-2930 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2451 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-374)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1264 *4)))) (-3883 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-656 (-419 *7))) (-4 *7 (-1264 *6)) (-5 *3 (-419 *7)) (-4 *6 (-374)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-586 *6 *7)))) (-1837 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -2451 (-419 *6)) (|:| |coeff| (-419 *6)))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-2313 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -4249 *7) (|:| |sol?| (-112))) (-576) *7)) (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1264 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-2342 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2451 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1264 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-1975 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4249 *6) (|:| |sol?| (-112))) (-576) *6)) (-4 *6 (-374)) (-4 *7 (-1264 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -2451 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-3231 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2451 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-374)) (-4 *7 (-1264 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -2451 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-3981 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-656 *6) "failed") (-576) *6 *6)) (-4 *6 (-374)) (-4 *7 (-1264 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-4045 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4249 *6) (|:| |sol?| (-112))) (-576) *6)) (-4 *6 (-374)) (-4 *7 (-1264 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-4435 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2451 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-374)) (-4 *7 (-1264 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) +(-10 -7 (-15 -4435 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2451 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4045 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4249 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -3981 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|))) (-15 -3231 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2451 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2451 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|))) (-15 -1975 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2451 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4249 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|))) (-15 -2342 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2451 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|)))) (-15 -2313 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4249 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|)))) (-15 -1837 ((-3 (-2 (|:| -2451 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -3883 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|)))) (-15 -2930 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2451 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -4144 ((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4249 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -1401 ((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2893 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-4071 (((-3 |#2| "failed") |#2| (-1197) (-1197)) 10))) +(((-587 |#1| |#2|) (-10 -7 (-15 -4071 ((-3 |#2| "failed") |#2| (-1197) (-1197)))) (-13 (-317) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-978) (-1160) (-29 |#1|))) (T -587)) +((-4071 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1197)) (-4 *4 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-587 *4 *2)) (-4 *2 (-13 (-1223) (-978) (-1160) (-29 *4)))))) +(-10 -7 (-15 -4071 ((-3 |#2| "failed") |#2| (-1197) (-1197)))) +((-2574 (((-703 (-1246)) $ (-1246)) 26)) (-1350 (((-703 (-561)) $ (-561)) 25)) (-3890 (((-783) $ (-129)) 27)) (-4299 (((-703 (-130)) $ (-130)) 24)) (-2242 (((-703 (-1246)) $) 12)) (-1507 (((-703 (-1244)) $) 8)) (-1459 (((-703 (-1243)) $) 10)) (-1549 (((-703 (-561)) $) 13)) (-3272 (((-703 (-559)) $) 9)) (-3737 (((-703 (-558)) $) 11)) (-3954 (((-783) $ (-129)) 7)) (-3409 (((-703 (-130)) $) 14)) (-2516 (($ $) 6))) (((-588) (-141)) (T -588)) NIL (-13 (-539) (-874)) (((-175) . T) ((-539) . T) ((-874) . T)) -((-3431 (((-703 (-1246)) $ (-1246)) NIL)) (-3559 (((-703 (-561)) $ (-561)) NIL)) (-3000 (((-783) $ (-129)) NIL)) (-4175 (((-703 (-130)) $ (-130)) NIL)) (-1436 (((-703 (-1246)) $) NIL)) (-2362 (((-703 (-1244)) $) NIL)) (-4205 (((-703 (-1243)) $) NIL)) (-1729 (((-703 (-561)) $) NIL)) (-1833 (((-703 (-559)) $) NIL)) (-3918 (((-703 (-558)) $) NIL)) (-4261 (((-783) $ (-129)) NIL)) (-3578 (((-703 (-130)) $) NIL)) (-2105 (((-112) $) NIL)) (-3146 (($ (-400)) 14) (($ (-1179)) 16)) (-3570 (((-876) $) NIL)) (-3423 (($ $) NIL))) -(((-589) (-13 (-588) (-625 (-876)) (-10 -8 (-15 -3146 ($ (-400))) (-15 -3146 ($ (-1179))) (-15 -2105 ((-112) $))))) (T -589)) -((-3146 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-589)))) (-3146 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-589)))) (-2105 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589))))) -(-13 (-588) (-625 (-876)) (-10 -8 (-15 -3146 ($ (-400))) (-15 -3146 ($ (-1179))) (-15 -2105 ((-112) $)))) -((-3489 (((-112) $ $) NIL)) (-2751 (($) 7 T CONST)) (-3699 (((-1179) $) NIL)) (-2022 (($) 6 T CONST)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 15)) (-4107 (($) 9 T CONST)) (-2949 (($) 8 T CONST)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 11))) -(((-590) (-13 (-1121) (-10 -8 (-15 -2022 ($) -1480) (-15 -2751 ($) -1480) (-15 -2949 ($) -1480) (-15 -4107 ($) -1480)))) (T -590)) -((-2022 (*1 *1) (-5 *1 (-590))) (-2751 (*1 *1) (-5 *1 (-590))) (-2949 (*1 *1) (-5 *1 (-590))) (-4107 (*1 *1) (-5 *1 (-590)))) -(-13 (-1121) (-10 -8 (-15 -2022 ($) -1480) (-15 -2751 ($) -1480) (-15 -2949 ($) -1480) (-15 -4107 ($) -1480))) -((-3489 (((-112) $ $) NIL)) (-2125 (((-703 $) (-503)) 21)) (-3699 (((-1179) $) NIL)) (-2558 (($ (-1179)) 14)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 33)) (-2262 (((-215 4 (-130)) $) 24)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 26))) -(((-591) (-13 (-1121) (-10 -8 (-15 -2558 ($ (-1179))) (-15 -2262 ((-215 4 (-130)) $)) (-15 -2125 ((-703 $) (-503)))))) (T -591)) -((-2558 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-591)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-591)))) (-2125 (*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-703 (-591))) (-5 *1 (-591))))) -(-13 (-1121) (-10 -8 (-15 -2558 ($ (-1179))) (-15 -2262 ((-215 4 (-130)) $)) (-15 -2125 ((-703 $) (-503))))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-1839 (($ $ (-576)) 75)) (-4016 (((-112) $ $) NIL)) (-3886 (($) NIL T CONST)) (-4260 (($ (-1193 (-576)) (-576)) 81)) (-3429 (($ $ $) NIL)) (-1561 (((-3 $ "failed") $) 66)) (-2462 (($ $) 43)) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-3917 (((-783) $) 16)) (-4193 (((-112) $) NIL)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1633 (((-576)) 37)) (-4325 (((-576) $) 41)) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1749 (($ $ (-576)) 24)) (-3476 (((-3 $ "failed") $ $) 71)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1967 (((-783) $) 17)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 72)) (-4326 (((-1178 (-576)) $) 19)) (-3126 (($ $) 26)) (-3570 (((-876) $) 102) (($ (-576)) 61) (($ $) NIL)) (-3996 (((-783)) 15 T CONST)) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL)) (-4166 (((-576) $ (-576)) 46)) (-2721 (($) 44 T CONST)) (-2732 (($) 21 T CONST)) (-2925 (((-112) $ $) 52)) (-3044 (($ $) 60) (($ $ $) 48)) (-3030 (($ $ $) 59)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 62) (($ $ $) 63))) +((-2574 (((-703 (-1246)) $ (-1246)) NIL)) (-1350 (((-703 (-561)) $ (-561)) NIL)) (-3890 (((-783) $ (-129)) NIL)) (-4299 (((-703 (-130)) $ (-130)) NIL)) (-2242 (((-703 (-1246)) $) NIL)) (-1507 (((-703 (-1244)) $) NIL)) (-1459 (((-703 (-1243)) $) NIL)) (-1549 (((-703 (-561)) $) NIL)) (-3272 (((-703 (-559)) $) NIL)) (-3737 (((-703 (-558)) $) NIL)) (-3954 (((-783) $ (-129)) NIL)) (-3409 (((-703 (-130)) $) NIL)) (-3991 (((-112) $) NIL)) (-1536 (($ (-400)) 14) (($ (-1179)) 16)) (-3569 (((-876) $) NIL)) (-2516 (($ $) NIL))) +(((-589) (-13 (-588) (-625 (-876)) (-10 -8 (-15 -1536 ($ (-400))) (-15 -1536 ($ (-1179))) (-15 -3991 ((-112) $))))) (T -589)) +((-1536 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-589)))) (-1536 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-589)))) (-3991 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589))))) +(-13 (-588) (-625 (-876)) (-10 -8 (-15 -1536 ($ (-400))) (-15 -1536 ($ (-1179))) (-15 -3991 ((-112) $)))) +((-3488 (((-112) $ $) NIL)) (-2750 (($) 7 T CONST)) (-2046 (((-1179) $) NIL)) (-2023 (($) 6 T CONST)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 15)) (-1709 (($) 9 T CONST)) (-3407 (($) 8 T CONST)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 11))) +(((-590) (-13 (-1121) (-10 -8 (-15 -2023 ($) -1480) (-15 -2750 ($) -1480) (-15 -3407 ($) -1480) (-15 -1709 ($) -1480)))) (T -590)) +((-2023 (*1 *1) (-5 *1 (-590))) (-2750 (*1 *1) (-5 *1 (-590))) (-3407 (*1 *1) (-5 *1 (-590))) (-1709 (*1 *1) (-5 *1 (-590)))) +(-13 (-1121) (-10 -8 (-15 -2023 ($) -1480) (-15 -2750 ($) -1480) (-15 -3407 ($) -1480) (-15 -1709 ($) -1480))) +((-3488 (((-112) $ $) NIL)) (-2125 (((-703 $) (-503)) 21)) (-2046 (((-1179) $) NIL)) (-2907 (($ (-1179)) 14)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 33)) (-2993 (((-215 4 (-130)) $) 24)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 26))) +(((-591) (-13 (-1121) (-10 -8 (-15 -2907 ($ (-1179))) (-15 -2993 ((-215 4 (-130)) $)) (-15 -2125 ((-703 $) (-503)))))) (T -591)) +((-2907 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-591)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-591)))) (-2125 (*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-703 (-591))) (-5 *1 (-591))))) +(-13 (-1121) (-10 -8 (-15 -2907 ($ (-1179))) (-15 -2993 ((-215 4 (-130)) $)) (-15 -2125 ((-703 $) (-503))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-1840 (($ $ (-576)) 75)) (-3330 (((-112) $ $) NIL)) (-3404 (($) NIL T CONST)) (-3943 (($ (-1193 (-576)) (-576)) 81)) (-3428 (($ $ $) NIL)) (-3673 (((-3 $ "failed") $) 66)) (-4416 (($ $) 43)) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3726 (((-783) $) 16)) (-1351 (((-112) $) NIL)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3125 (((-576)) 37)) (-3287 (((-576) $) 41)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1743 (($ $ (-576)) 24)) (-3475 (((-3 $ "failed") $ $) 71)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1979 (((-783) $) 17)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 72)) (-3295 (((-1178 (-576)) $) 19)) (-2539 (($ $) 26)) (-3569 (((-876) $) 102) (($ (-576)) 61) (($ $) NIL)) (-3154 (((-783)) 15 T CONST)) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL)) (-4165 (((-576) $ (-576)) 46)) (-2721 (($) 44 T CONST)) (-2731 (($) 21 T CONST)) (-2924 (((-112) $ $) 52)) (-3043 (($ $) 60) (($ $ $) 48)) (-3029 (($ $ $) 59)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 62) (($ $ $) 63))) (((-592 |#1| |#2|) (-883 |#1|) (-576) (-112)) (T -592)) NIL (-883 |#1|) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 30)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-2441 (((-112) $) NIL)) (-2664 (((-783)) NIL)) (-2210 (($ $ (-940)) NIL (|has| $ (-379))) (($ $) NIL)) (-4183 (((-1210 (-940) (-783)) (-576)) 59)) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-4016 (((-112) $ $) NIL)) (-2098 (((-783)) NIL)) (-3886 (($) NIL T CONST)) (-1572 (((-3 $ "failed") $) 95)) (-2860 (($ $) 94)) (-4119 (($ (-1288 $)) 93)) (-2554 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-3429 (($ $ $) NIL)) (-1561 (((-3 $ "failed") $) 44)) (-1836 (($) NIL)) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-2005 (($) 61)) (-4090 (((-112) $) NIL)) (-2910 (($ $) NIL) (($ $ (-783)) NIL)) (-4249 (((-112) $) NIL)) (-3917 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-4193 (((-112) $) NIL)) (-4263 (($) 49 (|has| $ (-379)))) (-1536 (((-112) $) NIL (|has| $ (-379)))) (-1381 (($ $ (-940)) NIL (|has| $ (-379))) (($ $) NIL)) (-2240 (((-3 $ "failed") $) NIL)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2731 (((-1193 $) $ (-940)) NIL (|has| $ (-379))) (((-1193 $) $) 104)) (-4401 (((-940) $) 67)) (-1938 (((-1193 $) $) NIL (|has| $ (-379)))) (-2512 (((-3 (-1193 $) "failed") $ $) NIL (|has| $ (-379))) (((-1193 $) $) NIL (|has| $ (-379)))) (-1649 (($ $ (-1193 $)) NIL (|has| $ (-379)))) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3540 (($) NIL T CONST)) (-3224 (($ (-940)) 60)) (-2844 (((-112) $) 87)) (-1450 (((-1141) $) NIL)) (-4129 (($) 28 (|has| $ (-379)))) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2406 (((-656 (-2 (|:| -1828 (-576)) (|:| -3422 (-576))))) 54)) (-1828 (((-430 $) $) NIL)) (-2301 (((-940)) 86) (((-845 (-940))) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1967 (((-783) $) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-3793 (((-3 (-783) "failed") $ $) NIL) (((-783) $) NIL)) (-2003 (((-135)) NIL)) (-2775 (($ $) NIL) (($ $ (-783)) NIL)) (-3634 (((-940) $) 85) (((-845 (-940)) $) NIL)) (-3867 (((-1193 $)) 102)) (-1535 (($) 66)) (-2532 (($) 50 (|has| $ (-379)))) (-4152 (((-701 $) (-1288 $)) NIL) (((-1288 $) $) 91)) (-4172 (((-576) $) 40)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL)) (-3570 (((-876) $) NIL) (($ (-576)) 42) (($ $) NIL) (($ (-419 (-576))) NIL)) (-4336 (((-3 $ "failed") $) NIL) (($ $) 105)) (-3996 (((-783)) 51 T CONST)) (-4055 (((-112) $ $) 107)) (-1593 (((-1288 $) (-940)) 97) (((-1288 $)) 96)) (-2672 (((-112) $ $) NIL)) (-3419 (((-112) $) NIL)) (-2721 (($) 31 T CONST)) (-2732 (($) 27 T CONST)) (-3051 (($ $ (-783)) NIL (|has| $ (-379))) (($ $) NIL (|has| $ (-379)))) (-2020 (($ $) NIL) (($ $ (-783)) NIL)) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ $) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 34)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 81) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 30)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-4217 (((-112) $) NIL)) (-2611 (((-783)) NIL)) (-2210 (($ $ (-940)) NIL (|has| $ (-379))) (($ $) NIL)) (-4371 (((-1210 (-940) (-783)) (-576)) 59)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3330 (((-112) $ $) NIL)) (-2098 (((-783)) NIL)) (-3404 (($) NIL T CONST)) (-1572 (((-3 $ "failed") $) 95)) (-2859 (($ $) 94)) (-1819 (($ (-1288 $)) 93)) (-2868 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-3428 (($ $ $) NIL)) (-3673 (((-3 $ "failed") $) 44)) (-1836 (($) NIL)) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-2345 (($) 61)) (-1543 (((-112) $) NIL)) (-3153 (($ $) NIL) (($ $ (-783)) NIL)) (-3833 (((-112) $) NIL)) (-3726 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-1351 (((-112) $) NIL)) (-3975 (($) 49 (|has| $ (-379)))) (-3381 (((-112) $) NIL (|has| $ (-379)))) (-2738 (($ $ (-940)) NIL (|has| $ (-379))) (($ $) NIL)) (-2734 (((-3 $ "failed") $) NIL)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1989 (((-1193 $) $ (-940)) NIL (|has| $ (-379))) (((-1193 $) $) 104)) (-1558 (((-940) $) 67)) (-2997 (((-1193 $) $) NIL (|has| $ (-379)))) (-3720 (((-3 (-1193 $) "failed") $ $) NIL (|has| $ (-379))) (((-1193 $) $) NIL (|has| $ (-379)))) (-1999 (($ $ (-1193 $)) NIL (|has| $ (-379)))) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3539 (($) NIL T CONST)) (-3223 (($ (-940)) 60)) (-3759 (((-112) $) 87)) (-1450 (((-1141) $) NIL)) (-4128 (($) 28 (|has| $ (-379)))) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1913 (((-656 (-2 (|:| -1828 (-576)) (|:| -2508 (-576))))) 54)) (-1828 (((-430 $) $) NIL)) (-2135 (((-940)) 86) (((-845 (-940))) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1979 (((-783) $) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-1813 (((-3 (-783) "failed") $ $) NIL) (((-783) $) NIL)) (-2319 (((-135)) NIL)) (-2774 (($ $) NIL) (($ $ (-783)) NIL)) (-2683 (((-940) $) 85) (((-845 (-940)) $) NIL)) (-1346 (((-1193 $)) 102)) (-3371 (($) 66)) (-3931 (($) 50 (|has| $ (-379)))) (-4096 (((-701 $) (-1288 $)) NIL) (((-1288 $) $) 91)) (-4171 (((-576) $) 40)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) 42) (($ $) NIL) (($ (-419 (-576))) NIL)) (-3390 (((-3 $ "failed") $) NIL) (($ $) 105)) (-3154 (((-783)) 51 T CONST)) (-2399 (((-112) $ $) 107)) (-2675 (((-1288 $) (-940)) 97) (((-1288 $)) 96)) (-1505 (((-112) $ $) NIL)) (-2476 (((-112) $) NIL)) (-2721 (($) 31 T CONST)) (-2731 (($) 27 T CONST)) (-3108 (($ $ (-783)) NIL (|has| $ (-379))) (($ $) NIL (|has| $ (-379)))) (-2020 (($ $) NIL) (($ $ (-783)) NIL)) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 34)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 81) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) (((-593 |#1|) (-13 (-360) (-339 $) (-626 (-576))) (-940)) (T -593)) NIL (-13 (-360) (-339 $) (-626 (-576))) -((-2991 (((-1293) (-1179)) 10))) -(((-594) (-10 -7 (-15 -2991 ((-1293) (-1179))))) (T -594)) -((-2991 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-594))))) -(-10 -7 (-15 -2991 ((-1293) (-1179)))) -((-2488 (((-598 |#2|) (-598 |#2|)) 42)) (-1942 (((-656 |#2|) (-598 |#2|)) 44)) (-2088 ((|#2| (-598 |#2|)) 50))) -(((-595 |#1| |#2|) (-10 -7 (-15 -2488 ((-598 |#2|) (-598 |#2|))) (-15 -1942 ((-656 |#2|) (-598 |#2|))) (-15 -2088 (|#2| (-598 |#2|)))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-29 |#1|) (-1223))) (T -595)) -((-2088 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-29 *4) (-1223))) (-5 *1 (-595 *4 *2)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))))) (-1942 (*1 *2 *3) (-12 (-5 *3 (-598 *5)) (-4 *5 (-13 (-29 *4) (-1223))) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-656 *5)) (-5 *1 (-595 *4 *5)))) (-2488 (*1 *2 *2) (-12 (-5 *2 (-598 *4)) (-4 *4 (-13 (-29 *3) (-1223))) (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-595 *3 *4))))) -(-10 -7 (-15 -2488 ((-598 |#2|) (-598 |#2|))) (-15 -1942 ((-656 |#2|) (-598 |#2|))) (-15 -2088 (|#2| (-598 |#2|)))) -((-4117 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -1698 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1698 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)) 30))) -(((-596 |#1| |#2|) (-10 -7 (-15 -4117 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|))) (-15 -4117 ((-3 (-2 (|:| -1698 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1698 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4117 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4117 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-374) (-374)) (T -596)) -((-4117 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-596 *5 *6)))) (-4117 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-374)) (-4 *2 (-374)) (-5 *1 (-596 *5 *2)))) (-4117 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -1698 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-2 (|:| -1698 *6) (|:| |coeff| *6))) (-5 *1 (-596 *5 *6)))) (-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-598 *6)) (-5 *1 (-596 *5 *6))))) -(-10 -7 (-15 -4117 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|))) (-15 -4117 ((-3 (-2 (|:| -1698 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1698 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4117 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4117 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1848 (($ (-518) (-609)) 14)) (-3549 (($ (-518) (-609) $) 16)) (-4418 (($ (-518) (-609)) 15)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL) (($ (-1202)) 7) (((-1202) $) 6)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-597) (-13 (-1121) (-502 (-1202)) (-10 -8 (-15 -1848 ($ (-518) (-609))) (-15 -4418 ($ (-518) (-609))) (-15 -3549 ($ (-518) (-609) $))))) (T -597)) -((-1848 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))) (-4418 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))) (-3549 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) -(-13 (-1121) (-502 (-1202)) (-10 -8 (-15 -1848 ($ (-518) (-609))) (-15 -4418 ($ (-518) (-609))) (-15 -3549 ($ (-518) (-609) $)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) 76)) (-2860 ((|#1| $) NIL)) (-1698 ((|#1| $) 30)) (-2631 (((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-3553 (($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 |#1|)) (|:| |logand| (-1193 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-4242 (((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 |#1|)) (|:| |logand| (-1193 |#1|)))) $) 31)) (-3699 (((-1179) $) NIL)) (-3948 (($ |#1| |#1|) 38) (($ |#1| (-1197)) 49 (|has| |#1| (-1059 (-1197))))) (-1450 (((-1141) $) NIL)) (-1457 (((-112) $) 35)) (-2775 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1197)) 89 (|has| |#1| (-917 (-1197))))) (-3570 (((-876) $) 110) (($ |#1|) 29)) (-4055 (((-112) $ $) NIL)) (-2721 (($) 18 T CONST)) (-2925 (((-112) $ $) NIL)) (-3044 (($ $) 17) (($ $ $) NIL)) (-3030 (($ $ $) 85)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 16) (($ (-419 (-576)) $) 41) (($ $ (-419 (-576))) NIL))) -(((-598 |#1|) (-13 (-729 (-419 (-576))) (-1059 |#1|) (-10 -8 (-15 -3553 ($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 |#1|)) (|:| |logand| (-1193 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1698 (|#1| $)) (-15 -4242 ((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 |#1|)) (|:| |logand| (-1193 |#1|)))) $)) (-15 -2631 ((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1457 ((-112) $)) (-15 -3948 ($ |#1| |#1|)) (-15 -2775 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-917 (-1197))) (-15 -2775 (|#1| $ (-1197))) |%noBranch|) (IF (|has| |#1| (-1059 (-1197))) (-15 -3948 ($ |#1| (-1197))) |%noBranch|))) (-374)) (T -598)) -((-3553 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 *2)) (|:| |logand| (-1193 *2))))) (-5 *4 (-656 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-374)) (-5 *1 (-598 *2)))) (-1698 (*1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-4242 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 *3)) (|:| |logand| (-1193 *3))))) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-2631 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-1457 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-3948 (*1 *1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-2775 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-2775 (*1 *2 *1 *3) (-12 (-4 *2 (-374)) (-4 *2 (-917 *3)) (-5 *1 (-598 *2)) (-5 *3 (-1197)))) (-3948 (*1 *1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *1 (-598 *2)) (-4 *2 (-1059 *3)) (-4 *2 (-374))))) -(-13 (-729 (-419 (-576))) (-1059 |#1|) (-10 -8 (-15 -3553 ($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 |#1|)) (|:| |logand| (-1193 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1698 (|#1| $)) (-15 -4242 ((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 |#1|)) (|:| |logand| (-1193 |#1|)))) $)) (-15 -2631 ((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1457 ((-112) $)) (-15 -3948 ($ |#1| |#1|)) (-15 -2775 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-917 (-1197))) (-15 -2775 (|#1| $ (-1197))) |%noBranch|) (IF (|has| |#1| (-1059 (-1197))) (-15 -3948 ($ |#1| (-1197))) |%noBranch|))) -((-4271 (((-112) |#1|) 16)) (-2007 (((-3 |#1| "failed") |#1|) 14)) (-1554 (((-2 (|:| -3516 |#1|) (|:| -3422 (-783))) |#1|) 38) (((-3 |#1| "failed") |#1| (-783)) 18)) (-4413 (((-112) |#1| (-783)) 19)) (-2428 ((|#1| |#1|) 42)) (-1611 ((|#1| |#1| (-783)) 45))) -(((-599 |#1|) (-10 -7 (-15 -4413 ((-112) |#1| (-783))) (-15 -1554 ((-3 |#1| "failed") |#1| (-783))) (-15 -1554 ((-2 (|:| -3516 |#1|) (|:| -3422 (-783))) |#1|)) (-15 -1611 (|#1| |#1| (-783))) (-15 -4271 ((-112) |#1|)) (-15 -2007 ((-3 |#1| "failed") |#1|)) (-15 -2428 (|#1| |#1|))) (-557)) (T -599)) -((-2428 (*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-2007 (*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-4271 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-1611 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-1554 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3516 *3) (|:| -3422 (-783)))) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-1554 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-4413 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) -(-10 -7 (-15 -4413 ((-112) |#1| (-783))) (-15 -1554 ((-3 |#1| "failed") |#1| (-783))) (-15 -1554 ((-2 (|:| -3516 |#1|) (|:| -3422 (-783))) |#1|)) (-15 -1611 (|#1| |#1| (-783))) (-15 -4271 ((-112) |#1|)) (-15 -2007 ((-3 |#1| "failed") |#1|)) (-15 -2428 (|#1| |#1|))) -((-1469 (((-1193 |#1|) (-940)) 44))) -(((-600 |#1|) (-10 -7 (-15 -1469 ((-1193 |#1|) (-940)))) (-360)) (T -600)) -((-1469 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-600 *4)) (-4 *4 (-360))))) -(-10 -7 (-15 -1469 ((-1193 |#1|) (-940)))) -((-2488 (((-598 (-419 (-971 |#1|))) (-598 (-419 (-971 |#1|)))) 27)) (-1491 (((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-971 |#1|)) (-1197)) 34 (|has| |#1| (-148)))) (-1942 (((-656 (-326 |#1|)) (-598 (-419 (-971 |#1|)))) 19)) (-2402 (((-326 |#1|) (-419 (-971 |#1|)) (-1197)) 32 (|has| |#1| (-148)))) (-2088 (((-326 |#1|) (-598 (-419 (-971 |#1|)))) 21))) -(((-601 |#1|) (-10 -7 (-15 -2488 ((-598 (-419 (-971 |#1|))) (-598 (-419 (-971 |#1|))))) (-15 -1942 ((-656 (-326 |#1|)) (-598 (-419 (-971 |#1|))))) (-15 -2088 ((-326 |#1|) (-598 (-419 (-971 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -1491 ((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-971 |#1|)) (-1197))) (-15 -2402 ((-326 |#1|) (-419 (-971 |#1|)) (-1197)))) |%noBranch|)) (-13 (-464) (-1059 (-576)) (-651 (-576)))) (T -601)) -((-2402 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-148)) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-326 *5)) (-5 *1 (-601 *5)))) (-1491 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-148)) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (-326 *5) (-656 (-326 *5)))) (-5 *1 (-601 *5)))) (-2088 (*1 *2 *3) (-12 (-5 *3 (-598 (-419 (-971 *4)))) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-601 *4)))) (-1942 (*1 *2 *3) (-12 (-5 *3 (-598 (-419 (-971 *4)))) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-656 (-326 *4))) (-5 *1 (-601 *4)))) (-2488 (*1 *2 *2) (-12 (-5 *2 (-598 (-419 (-971 *3)))) (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-601 *3))))) -(-10 -7 (-15 -2488 ((-598 (-419 (-971 |#1|))) (-598 (-419 (-971 |#1|))))) (-15 -1942 ((-656 (-326 |#1|)) (-598 (-419 (-971 |#1|))))) (-15 -2088 ((-326 |#1|) (-598 (-419 (-971 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -1491 ((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-971 |#1|)) (-1197))) (-15 -2402 ((-326 |#1|) (-419 (-971 |#1|)) (-1197)))) |%noBranch|)) -((-2521 (((-656 (-701 (-576))) (-656 (-940)) (-656 (-924 (-576)))) 78) (((-656 (-701 (-576))) (-656 (-940))) 79) (((-701 (-576)) (-656 (-940)) (-924 (-576))) 72)) (-2476 (((-783) (-656 (-940))) 69))) -(((-602) (-10 -7 (-15 -2476 ((-783) (-656 (-940)))) (-15 -2521 ((-701 (-576)) (-656 (-940)) (-924 (-576)))) (-15 -2521 ((-656 (-701 (-576))) (-656 (-940)))) (-15 -2521 ((-656 (-701 (-576))) (-656 (-940)) (-656 (-924 (-576))))))) (T -602)) -((-2521 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-940))) (-5 *4 (-656 (-924 (-576)))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602)))) (-2521 (*1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602)))) (-2521 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-940))) (-5 *4 (-924 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-602)))) (-2476 (*1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *2 (-783)) (-5 *1 (-602))))) -(-10 -7 (-15 -2476 ((-783) (-656 (-940)))) (-15 -2521 ((-701 (-576)) (-656 (-940)) (-924 (-576)))) (-15 -2521 ((-656 (-701 (-576))) (-656 (-940)))) (-15 -2521 ((-656 (-701 (-576))) (-656 (-940)) (-656 (-924 (-576)))))) -((-3459 (((-656 |#5|) |#5| (-112)) 100)) (-3701 (((-112) |#5| (-656 |#5|)) 34))) -(((-603 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3459 ((-656 |#5|) |#5| (-112))) (-15 -3701 ((-112) |#5| (-656 |#5|)))) (-13 (-317) (-148)) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1130 |#1| |#2| |#3| |#4|)) (T -603)) -((-3701 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1130 *5 *6 *7 *8)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-603 *5 *6 *7 *8 *3)))) (-3459 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-656 *3)) (-5 *1 (-603 *5 *6 *7 *8 *3)) (-4 *3 (-1130 *5 *6 *7 *8))))) -(-10 -7 (-15 -3459 ((-656 |#5|) |#5| (-112))) (-15 -3701 ((-112) |#5| (-656 |#5|)))) -((-3489 (((-112) $ $) NIL)) (-1669 (((-1156) $) 11)) (-1657 (((-1156) $) 9)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 17) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) +((-3792 (((-1293) (-1179)) 10))) +(((-594) (-10 -7 (-15 -3792 ((-1293) (-1179))))) (T -594)) +((-3792 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-594))))) +(-10 -7 (-15 -3792 ((-1293) (-1179)))) +((-3455 (((-598 |#2|) (-598 |#2|)) 42)) (-1942 (((-656 |#2|) (-598 |#2|)) 44)) (-1876 ((|#2| (-598 |#2|)) 50))) +(((-595 |#1| |#2|) (-10 -7 (-15 -3455 ((-598 |#2|) (-598 |#2|))) (-15 -1942 ((-656 |#2|) (-598 |#2|))) (-15 -1876 (|#2| (-598 |#2|)))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-29 |#1|) (-1223))) (T -595)) +((-1876 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-29 *4) (-1223))) (-5 *1 (-595 *4 *2)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))))) (-1942 (*1 *2 *3) (-12 (-5 *3 (-598 *5)) (-4 *5 (-13 (-29 *4) (-1223))) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-656 *5)) (-5 *1 (-595 *4 *5)))) (-3455 (*1 *2 *2) (-12 (-5 *2 (-598 *4)) (-4 *4 (-13 (-29 *3) (-1223))) (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-595 *3 *4))))) +(-10 -7 (-15 -3455 ((-598 |#2|) (-598 |#2|))) (-15 -1942 ((-656 |#2|) (-598 |#2|))) (-15 -1876 (|#2| (-598 |#2|)))) +((-4116 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2451 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2451 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)) 30))) +(((-596 |#1| |#2|) (-10 -7 (-15 -4116 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|))) (-15 -4116 ((-3 (-2 (|:| -2451 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2451 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4116 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4116 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-374) (-374)) (T -596)) +((-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-596 *5 *6)))) (-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-374)) (-4 *2 (-374)) (-5 *1 (-596 *5 *2)))) (-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2451 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-2 (|:| -2451 *6) (|:| |coeff| *6))) (-5 *1 (-596 *5 *6)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-598 *6)) (-5 *1 (-596 *5 *6))))) +(-10 -7 (-15 -4116 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|))) (-15 -4116 ((-3 (-2 (|:| -2451 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2451 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4116 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4116 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-3396 (($ (-518) (-609)) 14)) (-4380 (($ (-518) (-609) $) 16)) (-1733 (($ (-518) (-609)) 15)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL) (($ (-1202)) 7) (((-1202) $) 6)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-597) (-13 (-1121) (-502 (-1202)) (-10 -8 (-15 -3396 ($ (-518) (-609))) (-15 -1733 ($ (-518) (-609))) (-15 -4380 ($ (-518) (-609) $))))) (T -597)) +((-3396 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))) (-1733 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))) (-4380 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) +(-13 (-1121) (-502 (-1202)) (-10 -8 (-15 -3396 ($ (-518) (-609))) (-15 -1733 ($ (-518) (-609))) (-15 -4380 ($ (-518) (-609) $)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) 76)) (-2859 ((|#1| $) NIL)) (-2451 ((|#1| $) 30)) (-2320 (((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-4408 (($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 |#1|)) (|:| |logand| (-1193 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-3754 (((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 |#1|)) (|:| |logand| (-1193 |#1|)))) $) 31)) (-2046 (((-1179) $) NIL)) (-4003 (($ |#1| |#1|) 38) (($ |#1| (-1197)) 49 (|has| |#1| (-1059 (-1197))))) (-1450 (((-1141) $) NIL)) (-2456 (((-112) $) 35)) (-2774 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1197)) 89 (|has| |#1| (-917 (-1197))))) (-3569 (((-876) $) 110) (($ |#1|) 29)) (-2399 (((-112) $ $) NIL)) (-2721 (($) 18 T CONST)) (-2924 (((-112) $ $) NIL)) (-3043 (($ $) 17) (($ $ $) NIL)) (-3029 (($ $ $) 85)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 16) (($ (-419 (-576)) $) 41) (($ $ (-419 (-576))) NIL))) +(((-598 |#1|) (-13 (-729 (-419 (-576))) (-1059 |#1|) (-10 -8 (-15 -4408 ($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 |#1|)) (|:| |logand| (-1193 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2451 (|#1| $)) (-15 -3754 ((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 |#1|)) (|:| |logand| (-1193 |#1|)))) $)) (-15 -2320 ((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2456 ((-112) $)) (-15 -4003 ($ |#1| |#1|)) (-15 -2774 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-917 (-1197))) (-15 -2774 (|#1| $ (-1197))) |%noBranch|) (IF (|has| |#1| (-1059 (-1197))) (-15 -4003 ($ |#1| (-1197))) |%noBranch|))) (-374)) (T -598)) +((-4408 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 *2)) (|:| |logand| (-1193 *2))))) (-5 *4 (-656 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-374)) (-5 *1 (-598 *2)))) (-2451 (*1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-3754 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 *3)) (|:| |logand| (-1193 *3))))) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-2320 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-2456 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-4003 (*1 *1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-2774 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-2774 (*1 *2 *1 *3) (-12 (-4 *2 (-374)) (-4 *2 (-917 *3)) (-5 *1 (-598 *2)) (-5 *3 (-1197)))) (-4003 (*1 *1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *1 (-598 *2)) (-4 *2 (-1059 *3)) (-4 *2 (-374))))) +(-13 (-729 (-419 (-576))) (-1059 |#1|) (-10 -8 (-15 -4408 ($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 |#1|)) (|:| |logand| (-1193 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2451 (|#1| $)) (-15 -3754 ((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 |#1|)) (|:| |logand| (-1193 |#1|)))) $)) (-15 -2320 ((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2456 ((-112) $)) (-15 -4003 ($ |#1| |#1|)) (-15 -2774 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-917 (-1197))) (-15 -2774 (|#1| $ (-1197))) |%noBranch|) (IF (|has| |#1| (-1059 (-1197))) (-15 -4003 ($ |#1| (-1197))) |%noBranch|))) +((-2757 (((-112) |#1|) 16)) (-2368 (((-3 |#1| "failed") |#1|) 14)) (-3593 (((-2 (|:| -3515 |#1|) (|:| -2508 (-783))) |#1|) 38) (((-3 |#1| "failed") |#1| (-783)) 18)) (-1683 (((-112) |#1| (-783)) 19)) (-4094 ((|#1| |#1|) 42)) (-2871 ((|#1| |#1| (-783)) 45))) +(((-599 |#1|) (-10 -7 (-15 -1683 ((-112) |#1| (-783))) (-15 -3593 ((-3 |#1| "failed") |#1| (-783))) (-15 -3593 ((-2 (|:| -3515 |#1|) (|:| -2508 (-783))) |#1|)) (-15 -2871 (|#1| |#1| (-783))) (-15 -2757 ((-112) |#1|)) (-15 -2368 ((-3 |#1| "failed") |#1|)) (-15 -4094 (|#1| |#1|))) (-557)) (T -599)) +((-4094 (*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-2368 (*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-2757 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-2871 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-3593 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3515 *3) (|:| -2508 (-783)))) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-3593 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-1683 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) +(-10 -7 (-15 -1683 ((-112) |#1| (-783))) (-15 -3593 ((-3 |#1| "failed") |#1| (-783))) (-15 -3593 ((-2 (|:| -3515 |#1|) (|:| -2508 (-783))) |#1|)) (-15 -2871 (|#1| |#1| (-783))) (-15 -2757 ((-112) |#1|)) (-15 -2368 ((-3 |#1| "failed") |#1|)) (-15 -4094 (|#1| |#1|))) +((-3934 (((-1193 |#1|) (-940)) 44))) +(((-600 |#1|) (-10 -7 (-15 -3934 ((-1193 |#1|) (-940)))) (-360)) (T -600)) +((-3934 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-600 *4)) (-4 *4 (-360))))) +(-10 -7 (-15 -3934 ((-1193 |#1|) (-940)))) +((-3455 (((-598 (-419 (-971 |#1|))) (-598 (-419 (-971 |#1|)))) 27)) (-4160 (((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-971 |#1|)) (-1197)) 34 (|has| |#1| (-148)))) (-1942 (((-656 (-326 |#1|)) (-598 (-419 (-971 |#1|)))) 19)) (-1874 (((-326 |#1|) (-419 (-971 |#1|)) (-1197)) 32 (|has| |#1| (-148)))) (-1876 (((-326 |#1|) (-598 (-419 (-971 |#1|)))) 21))) +(((-601 |#1|) (-10 -7 (-15 -3455 ((-598 (-419 (-971 |#1|))) (-598 (-419 (-971 |#1|))))) (-15 -1942 ((-656 (-326 |#1|)) (-598 (-419 (-971 |#1|))))) (-15 -1876 ((-326 |#1|) (-598 (-419 (-971 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -4160 ((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-971 |#1|)) (-1197))) (-15 -1874 ((-326 |#1|) (-419 (-971 |#1|)) (-1197)))) |%noBranch|)) (-13 (-464) (-1059 (-576)) (-651 (-576)))) (T -601)) +((-1874 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-148)) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-326 *5)) (-5 *1 (-601 *5)))) (-4160 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-148)) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (-326 *5) (-656 (-326 *5)))) (-5 *1 (-601 *5)))) (-1876 (*1 *2 *3) (-12 (-5 *3 (-598 (-419 (-971 *4)))) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-601 *4)))) (-1942 (*1 *2 *3) (-12 (-5 *3 (-598 (-419 (-971 *4)))) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-656 (-326 *4))) (-5 *1 (-601 *4)))) (-3455 (*1 *2 *2) (-12 (-5 *2 (-598 (-419 (-971 *3)))) (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-601 *3))))) +(-10 -7 (-15 -3455 ((-598 (-419 (-971 |#1|))) (-598 (-419 (-971 |#1|))))) (-15 -1942 ((-656 (-326 |#1|)) (-598 (-419 (-971 |#1|))))) (-15 -1876 ((-326 |#1|) (-598 (-419 (-971 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -4160 ((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-971 |#1|)) (-1197))) (-15 -1874 ((-326 |#1|) (-419 (-971 |#1|)) (-1197)))) |%noBranch|)) +((-3818 (((-656 (-701 (-576))) (-656 (-940)) (-656 (-924 (-576)))) 78) (((-656 (-701 (-576))) (-656 (-940))) 79) (((-701 (-576)) (-656 (-940)) (-924 (-576))) 72)) (-1431 (((-783) (-656 (-940))) 69))) +(((-602) (-10 -7 (-15 -1431 ((-783) (-656 (-940)))) (-15 -3818 ((-701 (-576)) (-656 (-940)) (-924 (-576)))) (-15 -3818 ((-656 (-701 (-576))) (-656 (-940)))) (-15 -3818 ((-656 (-701 (-576))) (-656 (-940)) (-656 (-924 (-576))))))) (T -602)) +((-3818 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-940))) (-5 *4 (-656 (-924 (-576)))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602)))) (-3818 (*1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602)))) (-3818 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-940))) (-5 *4 (-924 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-602)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *2 (-783)) (-5 *1 (-602))))) +(-10 -7 (-15 -1431 ((-783) (-656 (-940)))) (-15 -3818 ((-701 (-576)) (-656 (-940)) (-924 (-576)))) (-15 -3818 ((-656 (-701 (-576))) (-656 (-940)))) (-15 -3818 ((-656 (-701 (-576))) (-656 (-940)) (-656 (-924 (-576)))))) +((-1632 (((-656 |#5|) |#5| (-112)) 100)) (-2066 (((-112) |#5| (-656 |#5|)) 34))) +(((-603 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1632 ((-656 |#5|) |#5| (-112))) (-15 -2066 ((-112) |#5| (-656 |#5|)))) (-13 (-317) (-148)) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1130 |#1| |#2| |#3| |#4|)) (T -603)) +((-2066 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1130 *5 *6 *7 *8)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-603 *5 *6 *7 *8 *3)))) (-1632 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-656 *3)) (-5 *1 (-603 *5 *6 *7 *8 *3)) (-4 *3 (-1130 *5 *6 *7 *8))))) +(-10 -7 (-15 -1632 ((-656 |#5|) |#5| (-112))) (-15 -2066 ((-112) |#5| (-656 |#5|)))) +((-3488 (((-112) $ $) NIL)) (-1669 (((-1156) $) 11)) (-1657 (((-1156) $) 9)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 17) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) (((-604) (-13 (-1104) (-10 -8 (-15 -1657 ((-1156) $)) (-15 -1669 ((-1156) $))))) (T -604)) ((-1657 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-604)))) (-1669 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-604))))) (-13 (-1104) (-10 -8 (-15 -1657 ((-1156) $)) (-15 -1669 ((-1156) $)))) -((-3489 (((-112) $ $) NIL (|has| (-145) (-102)))) (-3557 (($ $) 38)) (-3343 (($ $) NIL)) (-3350 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2047 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4466)))) (-2141 (((-112) $ $) 67)) (-2117 (((-112) $ $ (-576)) 62)) (-2488 (((-656 $) $ (-145)) 75) (((-656 $) $ (-142)) 76)) (-1710 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-861)))) (-4298 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4466))) (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-861))))) (-1795 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-861)))) (-1808 (((-112) $ (-783)) NIL)) (-3756 (((-145) $ (-576) (-145)) 59 (|has| $ (-6 -4466))) (((-145) $ (-1255 (-576)) (-145)) NIL (|has| $ (-6 -4466)))) (-1974 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4465)))) (-3886 (($) NIL T CONST)) (-2638 (($ $ (-145)) 79) (($ $ (-142)) 80)) (-3990 (($ $) NIL (|has| $ (-6 -4466)))) (-3836 (($ $) NIL)) (-3716 (($ $ (-1255 (-576)) $) 57)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-145) (-1121))))) (-3946 (($ (-145) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-145) (-1121)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4465)))) (-3686 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4465)) (|has| (-145) (-1121)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4465))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4465)))) (-4335 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4466)))) (-4274 (((-145) $ (-576)) NIL)) (-2167 (((-112) $ $) 88)) (-3660 (((-576) (-1 (-112) (-145)) $) NIL) (((-576) (-145) $) NIL (|has| (-145) (-1121))) (((-576) (-145) $ (-576)) 64 (|has| (-145) (-1121))) (((-576) $ $ (-576)) 63) (((-576) (-142) $ (-576)) 66)) (-3966 (((-656 (-145)) $) NIL (|has| $ (-6 -4465)))) (-4141 (($ (-783) (-145)) 9)) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-576) $) 32 (|has| (-576) (-861)))) (-3125 (($ $ $) NIL (|has| (-145) (-861)))) (-3391 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-861)))) (-2014 (((-656 (-145)) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-145) (-1121))))) (-2137 (((-576) $) 47 (|has| (-576) (-861)))) (-3133 (($ $ $) NIL (|has| (-145) (-861)))) (-1916 (((-112) $ $ (-145)) 89)) (-1358 (((-783) $ $ (-145)) 86)) (-4323 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4466)))) (-4117 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-2936 (($ $) 41)) (-4056 (($ $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-2648 (($ $ (-145)) 77) (($ $ (-142)) 78)) (-3699 (((-1179) $) 43 (|has| (-145) (-1121)))) (-2176 (($ (-145) $ (-576)) NIL) (($ $ $ (-576)) 27)) (-4234 (((-656 (-576)) $) NIL)) (-3354 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) 85 (|has| (-145) (-1121)))) (-3581 (((-145) $) NIL (|has| (-576) (-861)))) (-1541 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-4046 (($ $ (-145)) NIL (|has| $ (-6 -4466)))) (-4320 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-145) (-1121))))) (-2281 (((-656 (-145)) $) NIL)) (-3973 (((-112) $) 15)) (-4225 (($) 10)) (-2797 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) 68) (($ $ (-1255 (-576))) 25) (($ $ $) NIL)) (-3466 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1460 (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4465))) (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-145) (-1121))))) (-3025 (($ $ $ (-576)) 81 (|has| $ (-6 -4466)))) (-1870 (($ $) 20)) (-4172 (((-548) $) NIL (|has| (-145) (-626 (-548))))) (-3582 (($ (-656 (-145))) NIL)) (-1615 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 19) (($ (-656 $)) 82)) (-3570 (($ (-145)) NIL) (((-876) $) 31 (|has| (-145) (-625 (-876))))) (-4055 (((-112) $ $) NIL (|has| (-145) (-102)))) (-3321 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4465)))) (-2992 (((-112) $ $) NIL (|has| (-145) (-861)))) (-2964 (((-112) $ $) NIL (|has| (-145) (-861)))) (-2925 (((-112) $ $) 17 (|has| (-145) (-102)))) (-2978 (((-112) $ $) NIL (|has| (-145) (-861)))) (-2950 (((-112) $ $) 18 (|has| (-145) (-861)))) (-3503 (((-783) $) 16 (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) NIL (|has| (-145) (-102)))) (-1329 (($ $) 38)) (-2951 (($ $) NIL)) (-3045 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-1512 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2140 (((-112) $ $) 67)) (-2118 (((-112) $ $ (-576)) 62)) (-3455 (((-656 $) $ (-145)) 75) (((-656 $) $ (-142)) 76)) (-1390 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-861)))) (-3039 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-145) (-861))))) (-1795 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-861)))) (-4264 (((-112) $ (-783)) NIL)) (-3755 (((-145) $ (-576) (-145)) 59 (|has| $ (-6 -4465))) (((-145) $ (-1255 (-576)) (-145)) NIL (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-3404 (($) NIL T CONST)) (-2636 (($ $ (-145)) 79) (($ $ (-142)) 80)) (-3092 (($ $) NIL (|has| $ (-6 -4465)))) (-3835 (($ $) NIL)) (-2236 (($ $ (-1255 (-576)) $) 57)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-3945 (($ (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4464))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4464)))) (-4332 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4465)))) (-4272 (((-145) $ (-576)) NIL)) (-2167 (((-112) $ $) 88)) (-3659 (((-576) (-1 (-112) (-145)) $) NIL) (((-576) (-145) $) NIL (|has| (-145) (-1121))) (((-576) (-145) $ (-576)) 64 (|has| (-145) (-1121))) (((-576) $ $ (-576)) 63) (((-576) (-142) $ (-576)) 66)) (-3965 (((-656 (-145)) $) NIL (|has| $ (-6 -4464)))) (-4140 (($ (-783) (-145)) 9)) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-576) $) 32 (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| (-145) (-861)))) (-2185 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-861)))) (-2425 (((-656 (-145)) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-4280 (((-576) $) 47 (|has| (-576) (-861)))) (-1441 (($ $ $) NIL (|has| (-145) (-861)))) (-1916 (((-112) $ $ (-145)) 89)) (-1358 (((-783) $ $ (-145)) 86)) (-4326 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-3284 (($ $) 41)) (-2409 (($ $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2648 (($ $ (-145)) 77) (($ $ (-142)) 78)) (-2046 (((-1179) $) 43 (|has| (-145) (-1121)))) (-2176 (($ (-145) $ (-576)) NIL) (($ $ $ (-576)) 27)) (-3669 (((-656 (-576)) $) NIL)) (-3090 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) 85 (|has| (-145) (-1121)))) (-3580 (((-145) $) NIL (|has| (-576) (-861)))) (-3434 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-2304 (($ $ (-145)) NIL (|has| $ (-6 -4465)))) (-3252 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-3207 (((-656 (-145)) $) NIL)) (-2940 (((-112) $) 15)) (-3579 (($) 10)) (-2796 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) 68) (($ $ (-1255 (-576))) 25) (($ $ $) NIL)) (-3465 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1460 (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464))) (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-2840 (($ $ $ (-576)) 81 (|has| $ (-6 -4465)))) (-1870 (($ $) 20)) (-4171 (((-548) $) NIL (|has| (-145) (-626 (-548))))) (-3581 (($ (-656 (-145))) NIL)) (-1615 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 19) (($ (-656 $)) 82)) (-3569 (($ (-145)) NIL) (((-876) $) 31 (|has| (-145) (-625 (-876))))) (-2399 (((-112) $ $) NIL (|has| (-145) (-102)))) (-2708 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-2990 (((-112) $ $) NIL (|has| (-145) (-861)))) (-2962 (((-112) $ $) NIL (|has| (-145) (-861)))) (-2924 (((-112) $ $) 17 (|has| (-145) (-102)))) (-2978 (((-112) $ $) NIL (|has| (-145) (-861)))) (-2949 (((-112) $ $) 18 (|has| (-145) (-861)))) (-3502 (((-783) $) 16 (|has| $ (-6 -4464))))) (((-605 |#1|) (-1165) (-576)) (T -605)) NIL (-1165) @@ -2456,193 +2456,193 @@ NIL (((-606 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1369 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1115 |#4|))) (-15 -1369 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|))) (-805) (-861) (-568) (-968 |#3| |#1| |#2|)) (T -606)) ((-1369 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) (-5 *1 (-606 *5 *4 *6 *3)) (-4 *3 (-968 *6 *5 *4)))) (-1369 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1115 *3)) (-4 *3 (-968 *7 *6 *4)) (-4 *6 (-805)) (-4 *4 (-861)) (-4 *7 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) (-5 *1 (-606 *6 *4 *7 *3))))) (-10 -7 (-15 -1369 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1115 |#4|))) (-15 -1369 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 71)) (-1969 (((-656 (-1103)) $) NIL)) (-3055 (((-1197) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2757 (($ $) NIL (|has| |#1| (-568)))) (-3788 (((-112) $) NIL (|has| |#1| (-568)))) (-2326 (($ $ (-576)) 58) (($ $ (-576) (-576)) 59)) (-3669 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 65)) (-2340 (($ $) 109)) (-4367 (((-3 $ "failed") $ $) NIL)) (-2817 (((-876) (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1047 (-855 (-576))) (-1197) |#1| (-419 (-576))) 241)) (-3080 (($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 36)) (-3886 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-1424 (((-112) $) NIL)) (-3917 (((-576) $) 63) (((-576) $ (-576)) 64)) (-4193 (((-112) $) NIL)) (-4116 (($ $ (-940)) 83)) (-1378 (($ (-1 |#1| (-576)) $) 80)) (-2823 (((-112) $) 26)) (-1945 (($ |#1| (-576)) 22) (($ $ (-1103) (-576)) NIL) (($ $ (-656 (-1103)) (-656 (-576))) NIL)) (-4117 (($ (-1 |#1| |#1|) $) 75)) (-3905 (($ (-1047 (-855 (-576))) (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 13)) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-3699 (((-1179) $) NIL)) (-1491 (($ $) 161 (|has| |#1| (-38 (-419 (-576)))))) (-1930 (((-3 $ "failed") $ $ (-112)) 108)) (-2564 (($ $ $) 116)) (-1450 (((-1141) $) NIL)) (-3619 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 15)) (-4284 (((-1047 (-855 (-576))) $) 14)) (-1749 (($ $ (-576)) 47)) (-3476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3284 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576)))))) (-2797 ((|#1| $ (-576)) 62) (($ $ $) NIL (|has| (-576) (-1133)))) (-2775 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-3634 (((-576) $) NIL)) (-3126 (($ $) 48)) (-3570 (((-876) $) NIL) (($ (-576)) 29) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 28 (|has| |#1| (-174)))) (-3177 ((|#1| $ (-576)) 61)) (-4336 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3996 (((-783)) 39 T CONST)) (-2396 ((|#1| $) NIL)) (-4283 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-1838 (($ $) 169 (|has| |#1| (-38 (-419 (-576)))))) (-2574 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-2351 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-1991 (($ $) 201 (|has| |#1| (-38 (-419 (-576)))))) (-4365 (($ $) 173 (|has| |#1| (-38 (-419 (-576)))))) (-1602 (($ $ (-419 (-576))) 177 (|has| |#1| (-38 (-419 (-576)))))) (-4259 (($ $ |#1|) 157 (|has| |#1| (-38 (-419 (-576)))))) (-3687 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-3351 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-4085 (($ $) 203 (|has| |#1| (-38 (-419 (-576)))))) (-4158 (($ $) 175 (|has| |#1| (-38 (-419 (-576)))))) (-3952 (($ $) 199 (|has| |#1| (-38 (-419 (-576)))))) (-4257 (($ $) 171 (|has| |#1| (-38 (-419 (-576)))))) (-3675 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-3955 (($ $) 172 (|has| |#1| (-38 (-419 (-576)))))) (-1332 (($ $) 209 (|has| |#1| (-38 (-419 (-576)))))) (-2200 (($ $) 185 (|has| |#1| (-38 (-419 (-576)))))) (-3392 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-4215 (($ $) 181 (|has| |#1| (-38 (-419 (-576)))))) (-3855 (($ $) 213 (|has| |#1| (-38 (-419 (-576)))))) (-1694 (($ $) 189 (|has| |#1| (-38 (-419 (-576)))))) (-3978 (($ $) 215 (|has| |#1| (-38 (-419 (-576)))))) (-2799 (($ $) 191 (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) 211 (|has| |#1| (-38 (-419 (-576)))))) (-2491 (($ $) 187 (|has| |#1| (-38 (-419 (-576)))))) (-3954 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-1556 (($ $) 183 (|has| |#1| (-38 (-419 (-576)))))) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4166 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3570 (|#1| (-1197))))))) (-2721 (($) 30 T CONST)) (-2732 (($) 40 T CONST)) (-2020 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-2925 (((-112) $ $) 73)) (-3057 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3044 (($ $) 91) (($ $ $) 72)) (-3030 (($ $ $) 88)) (** (($ $ (-940)) NIL) (($ $ (-783)) 111)) (* (($ (-940) $) 98) (($ (-783) $) 96) (($ (-576) $) 93) (($ $ $) 104) (($ $ |#1|) NIL) (($ |#1| $) 123) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-607 |#1|) (-13 (-1266 |#1| (-576)) (-10 -8 (-15 -3905 ($ (-1047 (-855 (-576))) (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -4284 ((-1047 (-855 (-576))) $)) (-15 -3619 ((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $)) (-15 -3080 ($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -2823 ((-112) $)) (-15 -1378 ($ (-1 |#1| (-576)) $)) (-15 -1930 ((-3 $ "failed") $ $ (-112))) (-15 -2340 ($ $)) (-15 -2564 ($ $ $)) (-15 -2817 ((-876) (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1047 (-855 (-576))) (-1197) |#1| (-419 (-576)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1491 ($ $)) (-15 -4259 ($ $ |#1|)) (-15 -1602 ($ $ (-419 (-576)))) (-15 -3351 ($ $)) (-15 -3687 ($ $)) (-15 -2351 ($ $)) (-15 -3955 ($ $)) (-15 -1838 ($ $)) (-15 -4257 ($ $)) (-15 -4365 ($ $)) (-15 -4158 ($ $)) (-15 -4215 ($ $)) (-15 -1556 ($ $)) (-15 -2200 ($ $)) (-15 -2491 ($ $)) (-15 -1694 ($ $)) (-15 -2799 ($ $)) (-15 -2574 ($ $)) (-15 -3675 ($ $)) (-15 -4283 ($ $)) (-15 -3952 ($ $)) (-15 -1991 ($ $)) (-15 -4085 ($ $)) (-15 -3392 ($ $)) (-15 -3954 ($ $)) (-15 -1332 ($ $)) (-15 -4082 ($ $)) (-15 -3855 ($ $)) (-15 -3978 ($ $))) |%noBranch|))) (-1070)) (T -607)) -((-2823 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1070)))) (-3905 (*1 *1 *2 *3) (-12 (-5 *2 (-1047 (-855 (-576)))) (-5 *3 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *4)))) (-4 *4 (-1070)) (-5 *1 (-607 *4)))) (-4284 (*1 *2 *1) (-12 (-5 *2 (-1047 (-855 (-576)))) (-5 *1 (-607 *3)) (-4 *3 (-1070)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-5 *1 (-607 *3)) (-4 *3 (-1070)))) (-3080 (*1 *1 *2) (-12 (-5 *2 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-4 *3 (-1070)) (-5 *1 (-607 *3)))) (-1378 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *3 (-1070)) (-5 *1 (-607 *3)))) (-1930 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1070)))) (-2340 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1070)))) (-2564 (*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1070)))) (-2817 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *6)))) (-5 *4 (-1047 (-855 (-576)))) (-5 *5 (-1197)) (-5 *7 (-419 (-576))) (-4 *6 (-1070)) (-5 *2 (-876)) (-5 *1 (-607 *6)))) (-1491 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-4259 (*1 *1 *1 *2) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-1602 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1070)))) (-3351 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3687 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2351 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3955 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-1838 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-4257 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-4365 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-4158 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-4215 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-1556 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2200 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2491 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-1694 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2799 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2574 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3675 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-4283 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3952 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-1991 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-4085 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3392 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3954 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-1332 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-4082 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3855 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3978 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(-13 (-1266 |#1| (-576)) (-10 -8 (-15 -3905 ($ (-1047 (-855 (-576))) (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -4284 ((-1047 (-855 (-576))) $)) (-15 -3619 ((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $)) (-15 -3080 ($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -2823 ((-112) $)) (-15 -1378 ($ (-1 |#1| (-576)) $)) (-15 -1930 ((-3 $ "failed") $ $ (-112))) (-15 -2340 ($ $)) (-15 -2564 ($ $ $)) (-15 -2817 ((-876) (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1047 (-855 (-576))) (-1197) |#1| (-419 (-576)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1491 ($ $)) (-15 -4259 ($ $ |#1|)) (-15 -1602 ($ $ (-419 (-576)))) (-15 -3351 ($ $)) (-15 -3687 ($ $)) (-15 -2351 ($ $)) (-15 -3955 ($ $)) (-15 -1838 ($ $)) (-15 -4257 ($ $)) (-15 -4365 ($ $)) (-15 -4158 ($ $)) (-15 -4215 ($ $)) (-15 -1556 ($ $)) (-15 -2200 ($ $)) (-15 -2491 ($ $)) (-15 -1694 ($ $)) (-15 -2799 ($ $)) (-15 -2574 ($ $)) (-15 -3675 ($ $)) (-15 -4283 ($ $)) (-15 -3952 ($ $)) (-15 -1991 ($ $)) (-15 -4085 ($ $)) (-15 -3392 ($ $)) (-15 -3954 ($ $)) (-15 -1332 ($ $)) (-15 -4082 ($ $)) (-15 -3855 ($ $)) (-15 -3978 ($ $))) |%noBranch|))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 63)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2757 (($ $) NIL (|has| |#1| (-568)))) (-3788 (((-112) $) NIL (|has| |#1| (-568)))) (-4367 (((-3 $ "failed") $ $) NIL)) (-3080 (($ (-1178 |#1|)) 9)) (-3886 (($) NIL T CONST)) (-1561 (((-3 $ "failed") $) 44)) (-1424 (((-112) $) 56)) (-3917 (((-783) $) 61) (((-783) $ (-783)) 60)) (-4193 (((-112) $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3476 (((-3 $ "failed") $ $) 46 (|has| |#1| (-568)))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL (|has| |#1| (-568)))) (-1618 (((-1178 |#1|) $) 25)) (-3996 (((-783)) 55 T CONST)) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2721 (($) 10 T CONST)) (-2732 (($) 14 T CONST)) (-2925 (((-112) $ $) 24)) (-3044 (($ $) 32) (($ $ $) 16)) (-3030 (($ $ $) 27)) (** (($ $ (-940)) NIL) (($ $ (-783)) 53)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-576)) 38))) -(((-608 |#1|) (-13 (-1070) (-111 |#1| |#1|) (-10 -8 (-15 -1618 ((-1178 |#1|) $)) (-15 -3080 ($ (-1178 |#1|))) (-15 -1424 ((-112) $)) (-15 -3917 ((-783) $)) (-15 -3917 ((-783) $ (-783))) (-15 * ($ $ (-576))) (IF (|has| |#1| (-568)) (-6 (-568)) |%noBranch|))) (-1070)) (T -608)) -((-1618 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) (-3080 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-608 *3)))) (-1424 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) (-3917 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) (-3917 (*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-608 *3)) (-4 *3 (-1070))))) -(-13 (-1070) (-111 |#1| |#1|) (-10 -8 (-15 -1618 ((-1178 |#1|) $)) (-15 -3080 ($ (-1178 |#1|))) (-15 -1424 ((-112) $)) (-15 -3917 ((-783) $)) (-15 -3917 ((-783) $ (-783))) (-15 * ($ $ (-576))) (IF (|has| |#1| (-568)) (-6 (-568)) |%noBranch|))) -((-3489 (((-112) $ $) NIL)) (-4236 (($) 8 T CONST)) (-3457 (($) 7 T CONST)) (-3131 (($ $ (-656 $)) 16)) (-3699 (((-1179) $) NIL)) (-4403 (($) 6 T CONST)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL) (($ (-1202)) 15) (((-1202) $) 10)) (-3807 (($) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-609) (-13 (-1121) (-502 (-1202)) (-10 -8 (-15 -4403 ($) -1480) (-15 -3457 ($) -1480) (-15 -4236 ($) -1480) (-15 -3807 ($) -1480) (-15 -3131 ($ $ (-656 $)))))) (T -609)) -((-4403 (*1 *1) (-5 *1 (-609))) (-3457 (*1 *1) (-5 *1 (-609))) (-4236 (*1 *1) (-5 *1 (-609))) (-3807 (*1 *1) (-5 *1 (-609))) (-3131 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-609))) (-5 *1 (-609))))) -(-13 (-1121) (-502 (-1202)) (-10 -8 (-15 -4403 ($) -1480) (-15 -3457 ($) -1480) (-15 -4236 ($) -1480) (-15 -3807 ($) -1480) (-15 -3131 ($ $ (-656 $))))) -((-4117 (((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)) 15))) -(((-610 |#1| |#2|) (-10 -7 (-15 -4117 ((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)))) (-1238) (-1238)) (T -610)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-613 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-613 *6)) (-5 *1 (-610 *5 *6))))) -(-10 -7 (-15 -4117 ((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)))) -((-4117 (((-1178 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1178 |#2|)) 20) (((-1178 |#3|) (-1 |#3| |#1| |#2|) (-1178 |#1|) (-613 |#2|)) 19) (((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|)) 18))) -(((-611 |#1| |#2| |#3|) (-10 -7 (-15 -4117 ((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|))) (-15 -4117 ((-1178 |#3|) (-1 |#3| |#1| |#2|) (-1178 |#1|) (-613 |#2|))) (-15 -4117 ((-1178 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1178 |#2|)))) (-1238) (-1238) (-1238)) (T -611)) -((-4117 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-1178 *7)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-1178 *8)) (-5 *1 (-611 *6 *7 *8)))) (-4117 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1178 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-1178 *8)) (-5 *1 (-611 *6 *7 *8)))) (-4117 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-613 *8)) (-5 *1 (-611 *6 *7 *8))))) -(-10 -7 (-15 -4117 ((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|))) (-15 -4117 ((-1178 |#3|) (-1 |#3| |#1| |#2|) (-1178 |#1|) (-613 |#2|))) (-15 -4117 ((-1178 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1178 |#2|)))) -((-3803 ((|#3| |#3| (-656 (-624 |#3|)) (-656 (-1197))) 57)) (-3182 (((-171 |#2|) |#3|) 122)) (-4394 ((|#3| (-171 |#2|)) 46)) (-3763 ((|#2| |#3|) 21)) (-3914 ((|#3| |#2|) 35))) -(((-612 |#1| |#2| |#3|) (-10 -7 (-15 -4394 (|#3| (-171 |#2|))) (-15 -3763 (|#2| |#3|)) (-15 -3914 (|#3| |#2|)) (-15 -3182 ((-171 |#2|) |#3|)) (-15 -3803 (|#3| |#3| (-656 (-624 |#3|)) (-656 (-1197))))) (-568) (-13 (-442 |#1|) (-1023) (-1223)) (-13 (-442 (-171 |#1|)) (-1023) (-1223))) (T -612)) -((-3803 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-656 (-1197))) (-4 *2 (-13 (-442 (-171 *5)) (-1023) (-1223))) (-4 *5 (-568)) (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-442 *5) (-1023) (-1223))))) (-3182 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-171 *5)) (-5 *1 (-612 *4 *5 *3)) (-4 *5 (-13 (-442 *4) (-1023) (-1223))) (-4 *3 (-13 (-442 (-171 *4)) (-1023) (-1223))))) (-3914 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1023) (-1223))) (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-442 *4) (-1023) (-1223))))) (-3763 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 *4) (-1023) (-1223))) (-5 *1 (-612 *4 *2 *3)) (-4 *3 (-13 (-442 (-171 *4)) (-1023) (-1223))))) (-4394 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-442 *4) (-1023) (-1223))) (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1023) (-1223))) (-5 *1 (-612 *4 *5 *2))))) -(-10 -7 (-15 -4394 (|#3| (-171 |#2|))) (-15 -3763 (|#2| |#3|)) (-15 -3914 (|#3| |#2|)) (-15 -3182 ((-171 |#2|) |#3|)) (-15 -3803 (|#3| |#3| (-656 (-624 |#3|)) (-656 (-1197))))) -((-1974 (($ (-1 (-112) |#1|) $) 17)) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-4354 (($ (-1 |#1| |#1|) |#1|) 9)) (-1953 (($ (-1 (-112) |#1|) $) 13)) (-1966 (($ (-1 (-112) |#1|) $) 15)) (-3582 (((-1178 |#1|) $) 18)) (-3570 (((-876) $) NIL))) -(((-613 |#1|) (-13 (-625 (-876)) (-10 -8 (-15 -4117 ($ (-1 |#1| |#1|) $)) (-15 -1953 ($ (-1 (-112) |#1|) $)) (-15 -1966 ($ (-1 (-112) |#1|) $)) (-15 -1974 ($ (-1 (-112) |#1|) $)) (-15 -4354 ($ (-1 |#1| |#1|) |#1|)) (-15 -3582 ((-1178 |#1|) $)))) (-1238)) (T -613)) -((-4117 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) (-1953 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) (-1966 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) (-1974 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) (-4354 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) (-3582 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1238))))) -(-13 (-625 (-876)) (-10 -8 (-15 -4117 ($ (-1 |#1| |#1|) $)) (-15 -1953 ($ (-1 (-112) |#1|) $)) (-15 -1966 ($ (-1 (-112) |#1|) $)) (-15 -1974 ($ (-1 (-112) |#1|) $)) (-15 -4354 ($ (-1 |#1| |#1|) |#1|)) (-15 -3582 ((-1178 |#1|) $)))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3832 (($ (-783)) NIL (|has| |#1| (-23)))) (-2047 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4466)))) (-1710 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-4298 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4466))) (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-861))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-1808 (((-112) $ (-783)) NIL)) (-3756 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4466))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4466)))) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3886 (($) NIL T CONST)) (-3990 (($ $) NIL (|has| $ (-6 -4466)))) (-3836 (($ $) NIL)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3946 (($ |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4335 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4466)))) (-4274 ((|#1| $ (-576)) NIL)) (-3660 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-3966 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-2355 (((-701 |#1|) $ $) NIL (|has| |#1| (-1070)))) (-4141 (($ (-783) |#1|) NIL)) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-576) $) NIL (|has| (-576) (-861)))) (-3125 (($ $ $) NIL (|has| |#1| (-861)))) (-3391 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2137 (((-576) $) NIL (|has| (-576) (-861)))) (-3133 (($ $ $) NIL (|has| |#1| (-861)))) (-4323 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2846 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))))) (-1330 (((-112) $ (-783)) NIL)) (-2437 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))))) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2176 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-4234 (((-656 (-576)) $) NIL)) (-3354 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3581 ((|#1| $) NIL (|has| (-576) (-861)))) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4046 (($ $ |#1|) NIL (|has| $ (-6 -4466)))) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2281 (((-656 |#1|) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-2118 ((|#1| $ $) NIL (|has| |#1| (-1070)))) (-3466 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-3409 (($ $ $) NIL (|has| |#1| (-1070)))) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3025 (($ $ $ (-576)) NIL (|has| $ (-6 -4466)))) (-1870 (($ $) NIL)) (-4172 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) NIL)) (-1615 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3570 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2992 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2950 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3044 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3030 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 71)) (-1969 (((-656 (-1103)) $) NIL)) (-3054 (((-1197) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4195 (($ $) NIL (|has| |#1| (-568)))) (-1760 (((-112) $) NIL (|has| |#1| (-568)))) (-2408 (($ $ (-576)) 58) (($ $ (-576) (-576)) 59)) (-3064 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 65)) (-2517 (($ $) 109)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3462 (((-876) (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1047 (-855 (-576))) (-1197) |#1| (-419 (-576))) 241)) (-3079 (($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 36)) (-3404 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-2116 (((-112) $) NIL)) (-3726 (((-576) $) 63) (((-576) $ (-576)) 64)) (-1351 (((-112) $) NIL)) (-1800 (($ $ (-940)) 83)) (-3811 (($ (-1 |#1| (-576)) $) 80)) (-3538 (((-112) $) 26)) (-1944 (($ |#1| (-576)) 22) (($ $ (-1103) (-576)) NIL) (($ $ (-656 (-1103)) (-656 (-576))) NIL)) (-4116 (($ (-1 |#1| |#1|) $) 75)) (-3597 (($ (-1047 (-855 (-576))) (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 13)) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-2046 (((-1179) $) NIL)) (-4160 (($ $) 161 (|has| |#1| (-38 (-419 (-576)))))) (-2894 (((-3 $ "failed") $ $ (-112)) 108)) (-2986 (($ $ $) 116)) (-1450 (((-1141) $) NIL)) (-3830 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 15)) (-2895 (((-1047 (-855 (-576))) $) 14)) (-1743 (($ $ (-576)) 47)) (-3475 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3282 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576)))))) (-2796 ((|#1| $ (-576)) 62) (($ $ $) NIL (|has| (-576) (-1133)))) (-2774 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-2683 (((-576) $) NIL)) (-2539 (($ $) 48)) (-3569 (((-876) $) NIL) (($ (-576)) 29) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 28 (|has| |#1| (-174)))) (-1822 ((|#1| $ (-576)) 61)) (-3390 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3154 (((-783)) 39 T CONST)) (-2396 ((|#1| $) NIL)) (-2876 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-3315 (($ $) 169 (|has| |#1| (-38 (-419 (-576)))))) (-3096 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-1446 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-2200 (($ $) 201 (|has| |#1| (-38 (-419 (-576)))))) (-2405 (($ $) 173 (|has| |#1| (-38 (-419 (-576)))))) (-2773 (($ $ (-419 (-576))) 177 (|has| |#1| (-38 (-419 (-576)))))) (-3933 (($ $ |#1|) 157 (|has| |#1| (-38 (-419 (-576)))))) (-3212 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-3058 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-2678 (($ $) 203 (|has| |#1| (-38 (-419 (-576)))))) (-4159 (($ $) 175 (|has| |#1| (-38 (-419 (-576)))))) (-2726 (($ $) 199 (|has| |#1| (-38 (-419 (-576)))))) (-3913 (($ $) 171 (|has| |#1| (-38 (-419 (-576)))))) (-3106 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-2764 (($ $) 172 (|has| |#1| (-38 (-419 (-576)))))) (-2909 (($ $) 209 (|has| |#1| (-38 (-419 (-576)))))) (-3626 (($ $) 185 (|has| |#1| (-38 (-419 (-576)))))) (-2196 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-3469 (($ $) 181 (|has| |#1| (-38 (-419 (-576)))))) (-4377 (($ $) 213 (|has| |#1| (-38 (-419 (-576)))))) (-2406 (($ $) 189 (|has| |#1| (-38 (-419 (-576)))))) (-2979 (($ $) 215 (|has| |#1| (-38 (-419 (-576)))))) (-1407 (($ $) 191 (|has| |#1| (-38 (-419 (-576)))))) (-2656 (($ $) 211 (|has| |#1| (-38 (-419 (-576)))))) (-3491 (($ $) 187 (|has| |#1| (-38 (-419 (-576)))))) (-2748 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-3615 (($ $) 183 (|has| |#1| (-38 (-419 (-576)))))) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4165 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-2721 (($) 30 T CONST)) (-2731 (($) 40 T CONST)) (-2020 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-2924 (((-112) $ $) 73)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $) 91) (($ $ $) 72)) (-3029 (($ $ $) 88)) (** (($ $ (-940)) NIL) (($ $ (-783)) 111)) (* (($ (-940) $) 98) (($ (-783) $) 96) (($ (-576) $) 93) (($ $ $) 104) (($ $ |#1|) NIL) (($ |#1| $) 123) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-607 |#1|) (-13 (-1266 |#1| (-576)) (-10 -8 (-15 -3597 ($ (-1047 (-855 (-576))) (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -2895 ((-1047 (-855 (-576))) $)) (-15 -3830 ((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $)) (-15 -3079 ($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -3538 ((-112) $)) (-15 -3811 ($ (-1 |#1| (-576)) $)) (-15 -2894 ((-3 $ "failed") $ $ (-112))) (-15 -2517 ($ $)) (-15 -2986 ($ $ $)) (-15 -3462 ((-876) (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1047 (-855 (-576))) (-1197) |#1| (-419 (-576)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4160 ($ $)) (-15 -3933 ($ $ |#1|)) (-15 -2773 ($ $ (-419 (-576)))) (-15 -3058 ($ $)) (-15 -3212 ($ $)) (-15 -1446 ($ $)) (-15 -2764 ($ $)) (-15 -3315 ($ $)) (-15 -3913 ($ $)) (-15 -2405 ($ $)) (-15 -4159 ($ $)) (-15 -3469 ($ $)) (-15 -3615 ($ $)) (-15 -3626 ($ $)) (-15 -3491 ($ $)) (-15 -2406 ($ $)) (-15 -1407 ($ $)) (-15 -3096 ($ $)) (-15 -3106 ($ $)) (-15 -2876 ($ $)) (-15 -2726 ($ $)) (-15 -2200 ($ $)) (-15 -2678 ($ $)) (-15 -2196 ($ $)) (-15 -2748 ($ $)) (-15 -2909 ($ $)) (-15 -2656 ($ $)) (-15 -4377 ($ $)) (-15 -2979 ($ $))) |%noBranch|))) (-1070)) (T -607)) +((-3538 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1070)))) (-3597 (*1 *1 *2 *3) (-12 (-5 *2 (-1047 (-855 (-576)))) (-5 *3 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *4)))) (-4 *4 (-1070)) (-5 *1 (-607 *4)))) (-2895 (*1 *2 *1) (-12 (-5 *2 (-1047 (-855 (-576)))) (-5 *1 (-607 *3)) (-4 *3 (-1070)))) (-3830 (*1 *2 *1) (-12 (-5 *2 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-5 *1 (-607 *3)) (-4 *3 (-1070)))) (-3079 (*1 *1 *2) (-12 (-5 *2 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-4 *3 (-1070)) (-5 *1 (-607 *3)))) (-3811 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *3 (-1070)) (-5 *1 (-607 *3)))) (-2894 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1070)))) (-2517 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1070)))) (-2986 (*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1070)))) (-3462 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *6)))) (-5 *4 (-1047 (-855 (-576)))) (-5 *5 (-1197)) (-5 *7 (-419 (-576))) (-4 *6 (-1070)) (-5 *2 (-876)) (-5 *1 (-607 *6)))) (-4160 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3933 (*1 *1 *1 *2) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2773 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1070)))) (-3058 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3212 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-1446 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2764 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3315 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3913 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2405 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-4159 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3469 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3615 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3626 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3491 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2406 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-1407 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3096 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3106 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2876 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2726 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2200 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2678 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2196 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2748 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2909 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2656 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-4377 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2979 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(-13 (-1266 |#1| (-576)) (-10 -8 (-15 -3597 ($ (-1047 (-855 (-576))) (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -2895 ((-1047 (-855 (-576))) $)) (-15 -3830 ((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $)) (-15 -3079 ($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -3538 ((-112) $)) (-15 -3811 ($ (-1 |#1| (-576)) $)) (-15 -2894 ((-3 $ "failed") $ $ (-112))) (-15 -2517 ($ $)) (-15 -2986 ($ $ $)) (-15 -3462 ((-876) (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1047 (-855 (-576))) (-1197) |#1| (-419 (-576)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4160 ($ $)) (-15 -3933 ($ $ |#1|)) (-15 -2773 ($ $ (-419 (-576)))) (-15 -3058 ($ $)) (-15 -3212 ($ $)) (-15 -1446 ($ $)) (-15 -2764 ($ $)) (-15 -3315 ($ $)) (-15 -3913 ($ $)) (-15 -2405 ($ $)) (-15 -4159 ($ $)) (-15 -3469 ($ $)) (-15 -3615 ($ $)) (-15 -3626 ($ $)) (-15 -3491 ($ $)) (-15 -2406 ($ $)) (-15 -1407 ($ $)) (-15 -3096 ($ $)) (-15 -3106 ($ $)) (-15 -2876 ($ $)) (-15 -2726 ($ $)) (-15 -2200 ($ $)) (-15 -2678 ($ $)) (-15 -2196 ($ $)) (-15 -2748 ($ $)) (-15 -2909 ($ $)) (-15 -2656 ($ $)) (-15 -4377 ($ $)) (-15 -2979 ($ $))) |%noBranch|))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 63)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4195 (($ $) NIL (|has| |#1| (-568)))) (-1760 (((-112) $) NIL (|has| |#1| (-568)))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3079 (($ (-1178 |#1|)) 9)) (-3404 (($) NIL T CONST)) (-3673 (((-3 $ "failed") $) 44)) (-2116 (((-112) $) 56)) (-3726 (((-783) $) 61) (((-783) $ (-783)) 60)) (-1351 (((-112) $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3475 (((-3 $ "failed") $ $) 46 (|has| |#1| (-568)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL (|has| |#1| (-568)))) (-2937 (((-1178 |#1|) $) 25)) (-3154 (((-783)) 55 T CONST)) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2721 (($) 10 T CONST)) (-2731 (($) 14 T CONST)) (-2924 (((-112) $ $) 24)) (-3043 (($ $) 32) (($ $ $) 16)) (-3029 (($ $ $) 27)) (** (($ $ (-940)) NIL) (($ $ (-783)) 53)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-576)) 38))) +(((-608 |#1|) (-13 (-1070) (-111 |#1| |#1|) (-10 -8 (-15 -2937 ((-1178 |#1|) $)) (-15 -3079 ($ (-1178 |#1|))) (-15 -2116 ((-112) $)) (-15 -3726 ((-783) $)) (-15 -3726 ((-783) $ (-783))) (-15 * ($ $ (-576))) (IF (|has| |#1| (-568)) (-6 (-568)) |%noBranch|))) (-1070)) (T -608)) +((-2937 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) (-3079 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-608 *3)))) (-2116 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) (-3726 (*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-608 *3)) (-4 *3 (-1070))))) +(-13 (-1070) (-111 |#1| |#1|) (-10 -8 (-15 -2937 ((-1178 |#1|) $)) (-15 -3079 ($ (-1178 |#1|))) (-15 -2116 ((-112) $)) (-15 -3726 ((-783) $)) (-15 -3726 ((-783) $ (-783))) (-15 * ($ $ (-576))) (IF (|has| |#1| (-568)) (-6 (-568)) |%noBranch|))) +((-3488 (((-112) $ $) NIL)) (-3696 (($) 8 T CONST)) (-1623 (($) 7 T CONST)) (-1424 (($ $ (-656 $)) 16)) (-2046 (((-1179) $) NIL)) (-1580 (($) 6 T CONST)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL) (($ (-1202)) 15) (((-1202) $) 10)) (-1959 (($) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-609) (-13 (-1121) (-502 (-1202)) (-10 -8 (-15 -1580 ($) -1480) (-15 -1623 ($) -1480) (-15 -3696 ($) -1480) (-15 -1959 ($) -1480) (-15 -1424 ($ $ (-656 $)))))) (T -609)) +((-1580 (*1 *1) (-5 *1 (-609))) (-1623 (*1 *1) (-5 *1 (-609))) (-3696 (*1 *1) (-5 *1 (-609))) (-1959 (*1 *1) (-5 *1 (-609))) (-1424 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-609))) (-5 *1 (-609))))) +(-13 (-1121) (-502 (-1202)) (-10 -8 (-15 -1580 ($) -1480) (-15 -1623 ($) -1480) (-15 -3696 ($) -1480) (-15 -1959 ($) -1480) (-15 -1424 ($ $ (-656 $))))) +((-4116 (((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)) 15))) +(((-610 |#1| |#2|) (-10 -7 (-15 -4116 ((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)))) (-1238) (-1238)) (T -610)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-613 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-613 *6)) (-5 *1 (-610 *5 *6))))) +(-10 -7 (-15 -4116 ((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)))) +((-4116 (((-1178 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1178 |#2|)) 20) (((-1178 |#3|) (-1 |#3| |#1| |#2|) (-1178 |#1|) (-613 |#2|)) 19) (((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|)) 18))) +(((-611 |#1| |#2| |#3|) (-10 -7 (-15 -4116 ((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|))) (-15 -4116 ((-1178 |#3|) (-1 |#3| |#1| |#2|) (-1178 |#1|) (-613 |#2|))) (-15 -4116 ((-1178 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1178 |#2|)))) (-1238) (-1238) (-1238)) (T -611)) +((-4116 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-1178 *7)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-1178 *8)) (-5 *1 (-611 *6 *7 *8)))) (-4116 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1178 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-1178 *8)) (-5 *1 (-611 *6 *7 *8)))) (-4116 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-613 *8)) (-5 *1 (-611 *6 *7 *8))))) +(-10 -7 (-15 -4116 ((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|))) (-15 -4116 ((-1178 |#3|) (-1 |#3| |#1| |#2|) (-1178 |#1|) (-613 |#2|))) (-15 -4116 ((-1178 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1178 |#2|)))) +((-1920 ((|#3| |#3| (-656 (-624 |#3|)) (-656 (-1197))) 57)) (-1877 (((-171 |#2|) |#3|) 122)) (-2684 ((|#3| (-171 |#2|)) 46)) (-1513 ((|#2| |#3|) 21)) (-3690 ((|#3| |#2|) 35))) +(((-612 |#1| |#2| |#3|) (-10 -7 (-15 -2684 (|#3| (-171 |#2|))) (-15 -1513 (|#2| |#3|)) (-15 -3690 (|#3| |#2|)) (-15 -1877 ((-171 |#2|) |#3|)) (-15 -1920 (|#3| |#3| (-656 (-624 |#3|)) (-656 (-1197))))) (-568) (-13 (-442 |#1|) (-1023) (-1223)) (-13 (-442 (-171 |#1|)) (-1023) (-1223))) (T -612)) +((-1920 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-656 (-1197))) (-4 *2 (-13 (-442 (-171 *5)) (-1023) (-1223))) (-4 *5 (-568)) (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-442 *5) (-1023) (-1223))))) (-1877 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-171 *5)) (-5 *1 (-612 *4 *5 *3)) (-4 *5 (-13 (-442 *4) (-1023) (-1223))) (-4 *3 (-13 (-442 (-171 *4)) (-1023) (-1223))))) (-3690 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1023) (-1223))) (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-442 *4) (-1023) (-1223))))) (-1513 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 *4) (-1023) (-1223))) (-5 *1 (-612 *4 *2 *3)) (-4 *3 (-13 (-442 (-171 *4)) (-1023) (-1223))))) (-2684 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-442 *4) (-1023) (-1223))) (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1023) (-1223))) (-5 *1 (-612 *4 *5 *2))))) +(-10 -7 (-15 -2684 (|#3| (-171 |#2|))) (-15 -1513 (|#2| |#3|)) (-15 -3690 (|#3| |#2|)) (-15 -1877 ((-171 |#2|) |#3|)) (-15 -1920 (|#3| |#3| (-656 (-624 |#3|)) (-656 (-1197))))) +((-1974 (($ (-1 (-112) |#1|) $) 17)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-4353 (($ (-1 |#1| |#1|) |#1|) 9)) (-1952 (($ (-1 (-112) |#1|) $) 13)) (-1966 (($ (-1 (-112) |#1|) $) 15)) (-3581 (((-1178 |#1|) $) 18)) (-3569 (((-876) $) NIL))) +(((-613 |#1|) (-13 (-625 (-876)) (-10 -8 (-15 -4116 ($ (-1 |#1| |#1|) $)) (-15 -1952 ($ (-1 (-112) |#1|) $)) (-15 -1966 ($ (-1 (-112) |#1|) $)) (-15 -1974 ($ (-1 (-112) |#1|) $)) (-15 -4353 ($ (-1 |#1| |#1|) |#1|)) (-15 -3581 ((-1178 |#1|) $)))) (-1238)) (T -613)) +((-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) (-1952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) (-1966 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) (-1974 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) (-4353 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) (-3581 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1238))))) +(-13 (-625 (-876)) (-10 -8 (-15 -4116 ($ (-1 |#1| |#1|) $)) (-15 -1952 ($ (-1 (-112) |#1|) $)) (-15 -1966 ($ (-1 (-112) |#1|) $)) (-15 -1974 ($ (-1 (-112) |#1|) $)) (-15 -4353 ($ (-1 |#1| |#1|) |#1|)) (-15 -3581 ((-1178 |#1|) $)))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3831 (($ (-783)) NIL (|has| |#1| (-23)))) (-1512 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-1390 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-3039 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-4264 (((-112) $ (-783)) NIL)) (-3755 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3404 (($) NIL T CONST)) (-3092 (($ $) NIL (|has| $ (-6 -4465)))) (-3835 (($ $) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3945 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) NIL)) (-3659 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2355 (((-701 |#1|) $ $) NIL (|has| |#1| (-1070)))) (-4140 (($ (-783) |#1|) NIL)) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-2185 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4280 (((-576) $) NIL (|has| (-576) (-861)))) (-1441 (($ $ $) NIL (|has| |#1| (-861)))) (-4326 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3781 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))))) (-2883 (((-112) $ (-783)) NIL)) (-2435 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))))) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2176 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3669 (((-656 (-576)) $) NIL)) (-3090 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3580 ((|#1| $) NIL (|has| (-576) (-861)))) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2304 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3207 (((-656 |#1|) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-4099 ((|#1| $ $) NIL (|has| |#1| (-1070)))) (-3465 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-2365 (($ $ $) NIL (|has| |#1| (-1070)))) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2840 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) NIL)) (-1615 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2924 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2949 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3043 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3029 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) (((-614 |#1| |#2|) (-1286 |#1|) (-1238) (-576)) (T -614)) NIL (-1286 |#1|) -((-2047 (((-1293) $ |#2| |#2|) 35)) (-2924 ((|#2| $) 23)) (-2137 ((|#2| $) 21)) (-4323 (($ (-1 |#3| |#3|) $) 32)) (-4117 (($ (-1 |#3| |#3|) $) 30)) (-3581 ((|#3| $) 26)) (-4046 (($ $ |#3|) 33)) (-3845 (((-112) |#3| $) 17)) (-2281 (((-656 |#3|) $) 15)) (-2797 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-615 |#1| |#2| |#3|) (-10 -8 (-15 -2047 ((-1293) |#1| |#2| |#2|)) (-15 -4046 (|#1| |#1| |#3|)) (-15 -3581 (|#3| |#1|)) (-15 -2924 (|#2| |#1|)) (-15 -2137 (|#2| |#1|)) (-15 -3845 ((-112) |#3| |#1|)) (-15 -2281 ((-656 |#3|) |#1|)) (-15 -2797 (|#3| |#1| |#2|)) (-15 -2797 (|#3| |#1| |#2| |#3|)) (-15 -4323 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4117 (|#1| (-1 |#3| |#3|) |#1|))) (-616 |#2| |#3|) (-1121) (-1238)) (T -615)) +((-1512 (((-1293) $ |#2| |#2|) 35)) (-3281 ((|#2| $) 23)) (-4280 ((|#2| $) 21)) (-4326 (($ (-1 |#3| |#3|) $) 32)) (-4116 (($ (-1 |#3| |#3|) $) 30)) (-3580 ((|#3| $) 26)) (-2304 (($ $ |#3|) 33)) (-4282 (((-112) |#3| $) 17)) (-3207 (((-656 |#3|) $) 15)) (-2796 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-615 |#1| |#2| |#3|) (-10 -8 (-15 -1512 ((-1293) |#1| |#2| |#2|)) (-15 -2304 (|#1| |#1| |#3|)) (-15 -3580 (|#3| |#1|)) (-15 -3281 (|#2| |#1|)) (-15 -4280 (|#2| |#1|)) (-15 -4282 ((-112) |#3| |#1|)) (-15 -3207 ((-656 |#3|) |#1|)) (-15 -2796 (|#3| |#1| |#2|)) (-15 -2796 (|#3| |#1| |#2| |#3|)) (-15 -4326 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4116 (|#1| (-1 |#3| |#3|) |#1|))) (-616 |#2| |#3|) (-1121) (-1238)) (T -615)) NIL -(-10 -8 (-15 -2047 ((-1293) |#1| |#2| |#2|)) (-15 -4046 (|#1| |#1| |#3|)) (-15 -3581 (|#3| |#1|)) (-15 -2924 (|#2| |#1|)) (-15 -2137 (|#2| |#1|)) (-15 -3845 ((-112) |#3| |#1|)) (-15 -2281 ((-656 |#3|) |#1|)) (-15 -2797 (|#3| |#1| |#2|)) (-15 -2797 (|#3| |#1| |#2| |#3|)) (-15 -4323 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4117 (|#1| (-1 |#3| |#3|) |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#2| (-102)))) (-2047 (((-1293) $ |#1| |#1|) 41 (|has| $ (-6 -4466)))) (-1808 (((-112) $ (-783)) 8)) (-3756 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4466)))) (-3886 (($) 7 T CONST)) (-4335 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4466)))) (-4274 ((|#2| $ |#1|) 52)) (-3966 (((-656 |#2|) $) 31 (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) 9)) (-2924 ((|#1| $) 44 (|has| |#1| (-861)))) (-2014 (((-656 |#2|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4465))))) (-2137 ((|#1| $) 45 (|has| |#1| (-861)))) (-4323 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#2| |#2|) $) 36)) (-1330 (((-112) $ (-783)) 10)) (-3699 (((-1179) $) 23 (|has| |#2| (-1121)))) (-4234 (((-656 |#1|) $) 47)) (-3354 (((-112) |#1| $) 48)) (-1450 (((-1141) $) 22 (|has| |#2| (-1121)))) (-3581 ((|#2| $) 43 (|has| |#1| (-861)))) (-4046 (($ $ |#2|) 42 (|has| $ (-6 -4466)))) (-4320 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#2|))) 27 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) 26 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) 24 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-4040 (((-112) $ $) 14)) (-3845 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-2281 (((-656 |#2|) $) 49)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-2797 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-1460 (((-783) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4465))) (((-783) |#2| $) 29 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 13)) (-3570 (((-876) $) 18 (|has| |#2| (-625 (-876))))) (-4055 (((-112) $ $) 21 (|has| |#2| (-102)))) (-3321 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 19 (|has| |#2| (-102)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +(-10 -8 (-15 -1512 ((-1293) |#1| |#2| |#2|)) (-15 -2304 (|#1| |#1| |#3|)) (-15 -3580 (|#3| |#1|)) (-15 -3281 (|#2| |#1|)) (-15 -4280 (|#2| |#1|)) (-15 -4282 ((-112) |#3| |#1|)) (-15 -3207 ((-656 |#3|) |#1|)) (-15 -2796 (|#3| |#1| |#2|)) (-15 -2796 (|#3| |#1| |#2| |#3|)) (-15 -4326 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4116 (|#1| (-1 |#3| |#3|) |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#2| (-102)))) (-1512 (((-1293) $ |#1| |#1|) 41 (|has| $ (-6 -4465)))) (-4264 (((-112) $ (-783)) 8)) (-3755 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4465)))) (-3404 (($) 7 T CONST)) (-4332 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4465)))) (-4272 ((|#2| $ |#1|) 52)) (-3965 (((-656 |#2|) $) 31 (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) 9)) (-3281 ((|#1| $) 44 (|has| |#1| (-861)))) (-2425 (((-656 |#2|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464))))) (-4280 ((|#1| $) 45 (|has| |#1| (-861)))) (-4326 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#2| |#2|) $) 36)) (-2883 (((-112) $ (-783)) 10)) (-2046 (((-1179) $) 23 (|has| |#2| (-1121)))) (-3669 (((-656 |#1|) $) 47)) (-3090 (((-112) |#1| $) 48)) (-1450 (((-1141) $) 22 (|has| |#2| (-1121)))) (-3580 ((|#2| $) 43 (|has| |#1| (-861)))) (-2304 (($ $ |#2|) 42 (|has| $ (-6 -4465)))) (-3252 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#2|))) 27 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) 26 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) 24 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-2252 (((-112) $ $) 14)) (-4282 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-3207 (((-656 |#2|) $) 49)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-2796 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-1460 (((-783) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4464))) (((-783) |#2| $) 29 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-3569 (((-876) $) 18 (|has| |#2| (-625 (-876))))) (-2399 (((-112) $ $) 21 (|has| |#2| (-102)))) (-2708 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 19 (|has| |#2| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-616 |#1| |#2|) (-141) (-1121) (-1238)) (T -616)) -((-2281 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) (-5 *2 (-656 *4)))) (-3354 (*1 *2 *3 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) (-5 *2 (-112)))) (-4234 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) (-5 *2 (-656 *3)))) (-3845 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1121)) (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-112)))) (-2137 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1121)) (-4 *2 (-861)))) (-2924 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1121)) (-4 *2 (-861)))) (-3581 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1121)) (-4 *3 (-861)) (-4 *2 (-1238)))) (-4046 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1238)))) (-2047 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) (-5 *2 (-1293))))) -(-13 (-501 |t#2|) (-298 |t#1| |t#2|) (-10 -8 (-15 -2281 ((-656 |t#2|) $)) (-15 -3354 ((-112) |t#1| $)) (-15 -4234 ((-656 |t#1|) $)) (IF (|has| |t#2| (-1121)) (IF (|has| $ (-6 -4465)) (-15 -3845 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-861)) (PROGN (-15 -2137 (|t#1| $)) (-15 -2924 (|t#1| $)) (-15 -3581 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4466)) (PROGN (-15 -4046 ($ $ |t#2|)) (-15 -2047 ((-1293) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) -2760 (|has| |#2| (-1121)) (|has| |#2| (-102))) ((-625 (-876)) -2760 (|has| |#2| (-1121)) (|has| |#2| (-625 (-876)))) ((-296 |#1| |#2|) . T) ((-298 |#1| |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-1121) |has| |#2| (-1121)) ((-1238) . T)) -((-3570 (((-876) $) 19) (($ (-130)) 13) (((-130) $) 14))) +((-3207 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) (-5 *2 (-656 *4)))) (-3090 (*1 *2 *3 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) (-5 *2 (-112)))) (-3669 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) (-5 *2 (-656 *3)))) (-4282 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1121)) (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-112)))) (-4280 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1121)) (-4 *2 (-861)))) (-3281 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1121)) (-4 *2 (-861)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1121)) (-4 *3 (-861)) (-4 *2 (-1238)))) (-2304 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1238)))) (-1512 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) (-5 *2 (-1293))))) +(-13 (-501 |t#2|) (-298 |t#1| |t#2|) (-10 -8 (-15 -3207 ((-656 |t#2|) $)) (-15 -3090 ((-112) |t#1| $)) (-15 -3669 ((-656 |t#1|) $)) (IF (|has| |t#2| (-1121)) (IF (|has| $ (-6 -4464)) (-15 -4282 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-861)) (PROGN (-15 -4280 (|t#1| $)) (-15 -3281 (|t#1| $)) (-15 -3580 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4465)) (PROGN (-15 -2304 ($ $ |t#2|)) (-15 -1512 ((-1293) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) -2759 (|has| |#2| (-1121)) (|has| |#2| (-102))) ((-625 (-876)) -2759 (|has| |#2| (-1121)) (|has| |#2| (-625 (-876)))) ((-296 |#1| |#2|) . T) ((-298 |#1| |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-1121) |has| |#2| (-1121)) ((-1238) . T)) +((-3569 (((-876) $) 19) (($ (-130)) 13) (((-130) $) 14))) (((-617) (-13 (-625 (-876)) (-502 (-130)))) (T -617)) NIL (-13 (-625 (-876)) (-502 (-130))) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL) (($ (-1202)) NIL) (((-1202) $) NIL) (((-1237) $) 14) (($ (-656 (-1237))) 13)) (-1564 (((-656 (-1237)) $) 10)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-618) (-13 (-1104) (-625 (-1237)) (-10 -8 (-15 -3570 ($ (-656 (-1237)))) (-15 -1564 ((-656 (-1237)) $))))) (T -618)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-618)))) (-1564 (*1 *2 *1) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-618))))) -(-13 (-1104) (-625 (-1237)) (-10 -8 (-15 -3570 ($ (-656 (-1237)))) (-15 -1564 ((-656 (-1237)) $)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2778 (((-3 $ "failed")) NIL (-2760 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4367 (((-3 $ "failed") $ $) NIL)) (-3210 (((-1288 (-701 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-1288 (-701 |#1|)) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-2385 (((-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3886 (($) NIL T CONST)) (-3251 (((-3 (-2 (|:| |particular| $) (|:| -1593 (-656 $))) "failed")) NIL (-2760 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3260 (((-3 $ "failed")) NIL (-2760 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2191 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3331 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-3352 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-2454 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1979 (((-1193 (-971 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-3377 (($ $ (-940)) NIL)) (-1738 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-3471 (((-1193 |#1|) $) NIL (-2760 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2267 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-2654 (((-1193 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-2002 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4119 (($ (-1288 |#1|)) NIL (|has| |#2| (-429 |#1|))) (($ (-1288 |#1|) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-1561 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3734 (((-940)) NIL (|has| |#2| (-378 |#1|)))) (-1576 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4017 (($ $ (-940)) NIL)) (-2035 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1706 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1758 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3590 (((-3 (-2 (|:| |particular| $) (|:| -1593 (-656 $))) "failed")) NIL (-2760 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1778 (((-3 $ "failed")) NIL (-2760 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1670 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-2756 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2903 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-2941 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3548 (((-1193 (-971 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-1783 (($ $ (-940)) NIL)) (-3394 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-4164 (((-1193 |#1|) $) NIL (-2760 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3814 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3145 (((-1193 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-1707 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3699 (((-1179) $) NIL)) (-2083 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3897 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3998 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1450 (((-1141) $) NIL)) (-2522 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2797 ((|#1| $ (-576)) NIL (|has| |#2| (-429 |#1|)))) (-4152 (((-701 |#1|) (-1288 $)) NIL (|has| |#2| (-429 |#1|))) (((-1288 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1288 $) (-1288 $)) NIL (|has| |#2| (-378 |#1|))) (((-1288 |#1|) $ (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-4172 (($ (-1288 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-1288 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-4034 (((-656 (-971 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-656 (-971 |#1|)) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-2076 (($ $ $) NIL)) (-2195 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3570 (((-876) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-4055 (((-112) $ $) NIL)) (-1593 (((-1288 $)) NIL (|has| |#2| (-429 |#1|)))) (-4208 (((-656 (-1288 |#1|))) NIL (-2760 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3790 (($ $ $ $) NIL)) (-1511 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3569 (($ (-701 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-4064 (($ $ $) NIL)) (-3689 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3818 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4395 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2721 (($) NIL T CONST)) (-2925 (((-112) $ $) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) 24)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-619 |#1| |#2|) (-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -3570 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) (-174) (-756 |#1|)) (T -619)) -((-3570 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-619 *3 *2)) (-4 *2 (-756 *3))))) -(-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -3570 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) -((-3489 (((-112) $ $) NIL)) (-1768 (((-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) $ (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) 39)) (-4128 (($ (-656 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)))) NIL) (($) NIL)) (-2047 (((-1293) $ (-1179) (-1179)) NIL (|has| $ (-6 -4466)))) (-1808 (((-112) $ (-783)) NIL)) (-3756 ((|#1| $ (-1179) |#1|) 49)) (-2300 (($ (-1 (-112) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4465)))) (-2197 (((-3 |#1| "failed") (-1179) $) 52)) (-3886 (($) NIL T CONST)) (-1635 (($ $ (-1179)) 25)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-1121))))) (-1671 (((-3 |#1| "failed") (-1179) $) 53) (($ (-1 (-112) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4465))) (($ (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) $) NIL (|has| $ (-6 -4465)))) (-3946 (($ (-1 (-112) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4465))) (($ (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-1121))))) (-3686 (((-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-1 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4465))) (((-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-1 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $ (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) NIL (|has| $ (-6 -4465))) (((-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-1 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $ (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-1121))))) (-3936 (((-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) $) 38)) (-4335 ((|#1| $ (-1179) |#1|) NIL (|has| $ (-6 -4466)))) (-4274 ((|#1| $ (-1179)) NIL)) (-3966 (((-656 |#1|) $) NIL (|has| $ (-6 -4465))) (((-656 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4465)))) (-3982 (($ $) 54)) (-3257 (($ (-400)) 23) (($ (-400) (-1179)) 22)) (-2629 (((-400) $) 40)) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-1179) $) NIL (|has| (-1179) (-861)))) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465))) (((-656 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121)))) (((-112) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-1121))))) (-2137 (((-1179) $) NIL (|has| (-1179) (-861)))) (-4323 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL)) (-3203 (((-656 (-1179)) $) 45)) (-4008 (((-112) (-1179) $) NIL)) (-4013 (((-1179) $) 41)) (-1597 (((-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) $) NIL)) (-1901 (($ (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) $) NIL)) (-4234 (((-656 (-1179)) $) NIL)) (-3354 (((-112) (-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3581 ((|#1| $) NIL (|has| (-1179) (-861)))) (-1541 (((-3 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) "failed") (-1 (-112) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $) NIL)) (-4046 (($ $ |#1|) NIL (|has| $ (-6 -4466)))) (-3449 (((-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) $) NIL)) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) (-656 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)))) NIL (-12 (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)))) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-1121)))) (($ $ (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) NIL (-12 (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)))) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-1121)))) (($ $ (-304 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)))) NIL (-12 (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)))) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-1121)))) (($ $ (-656 (-304 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))))) NIL (-12 (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)))) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2281 (((-656 |#1|) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) 43)) (-2797 ((|#1| $ (-1179) |#1|) NIL) ((|#1| $ (-1179)) 48)) (-2271 (($ (-656 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)))) NIL) (($) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121)))) (((-783) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-1121)))) (((-783) (-1 (-112) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4172 (((-548) $) NIL (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-626 (-548))))) (-3582 (($ (-656 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)))) NIL)) (-3570 (((-876) $) 21)) (-3423 (($ $) 26)) (-4055 (((-112) $ $) NIL)) (-3943 (($ (-656 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)))) NIL)) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 20)) (-3503 (((-783) $) 47 (|has| $ (-6 -4465))))) -(((-620 |#1|) (-13 (-375 (-400) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) (-1214 (-1179) |#1|) (-10 -8 (-6 -4465) (-15 -3982 ($ $)))) (-1121)) (T -620)) -((-3982 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1121))))) -(-13 (-375 (-400) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) (-1214 (-1179) |#1|) (-10 -8 (-6 -4465) (-15 -3982 ($ $)))) -((-1612 (((-112) (-2 (|:| -4301 |#2|) (|:| -4440 |#3|)) $) 16)) (-3203 (((-656 |#2|) $) 20)) (-4008 (((-112) |#2| $) 12))) -(((-621 |#1| |#2| |#3|) (-10 -8 (-15 -3203 ((-656 |#2|) |#1|)) (-15 -4008 ((-112) |#2| |#1|)) (-15 -1612 ((-112) (-2 (|:| -4301 |#2|) (|:| -4440 |#3|)) |#1|))) (-622 |#2| |#3|) (-1121) (-1121)) (T -621)) -NIL -(-10 -8 (-15 -3203 ((-656 |#2|) |#1|)) (-15 -4008 ((-112) |#2| |#1|)) (-15 -1612 ((-112) (-2 (|:| -4301 |#2|) (|:| -4440 |#3|)) |#1|))) -((-3489 (((-112) $ $) 20 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102)))) (-1808 (((-112) $ (-783)) 8)) (-2300 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 46 (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 56 (|has| $ (-6 -4465)))) (-2197 (((-3 |#2| "failed") |#1| $) 62)) (-3886 (($) 7 T CONST)) (-1415 (($ $) 59 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| $ (-6 -4465))))) (-1671 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 48 (|has| $ (-6 -4465))) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 47 (|has| $ (-6 -4465))) (((-3 |#2| "failed") |#1| $) 63)) (-3946 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| $ (-6 -4465)))) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 55 (|has| $ (-6 -4465)))) (-3686 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 57 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| $ (-6 -4465)))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 54 (|has| $ (-6 -4465))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 53 (|has| $ (-6 -4465)))) (-3966 (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 31 (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) 9)) (-2014 (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| $ (-6 -4465))))) (-4323 (($ (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 36)) (-1330 (((-112) $ (-783)) 10)) (-3699 (((-1179) $) 23 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (-3203 (((-656 |#1|) $) 64)) (-4008 (((-112) |#1| $) 65)) (-1597 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 40)) (-1901 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 41)) (-1450 (((-1141) $) 22 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (-1541 (((-3 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 52)) (-3449 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 42)) (-4320 (((-112) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))))) 27 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) 26 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 25 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) 24 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121))))) (-4040 (((-112) $ $) 14)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-2271 (($) 50) (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) 49)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 32 (|has| $ (-6 -4465))) (((-783) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 13)) (-4172 (((-548) $) 60 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-626 (-548))))) (-3582 (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) 51)) (-3570 (((-876) $) 18 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-625 (-876))))) (-4055 (((-112) $ $) 21 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102)))) (-3943 (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) 43)) (-3321 (((-112) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 34 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 19 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL) (($ (-1202)) NIL) (((-1202) $) NIL) (((-1237) $) 14) (($ (-656 (-1237))) 13)) (-1564 (((-656 (-1237)) $) 10)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-618) (-13 (-1104) (-625 (-1237)) (-10 -8 (-15 -3569 ($ (-656 (-1237)))) (-15 -1564 ((-656 (-1237)) $))))) (T -618)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-618)))) (-1564 (*1 *2 *1) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-618))))) +(-13 (-1104) (-625 (-1237)) (-10 -8 (-15 -3569 ($ (-656 (-1237)))) (-15 -1564 ((-656 (-1237)) $)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-4346 (((-3 $ "failed")) NIL (-2759 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2428 (((-3 $ "failed") $ $) NIL)) (-4142 (((-1288 (-701 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-1288 (-701 |#1|)) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-1717 (((-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3404 (($) NIL T CONST)) (-3320 (((-3 (-2 (|:| |particular| $) (|:| -2675 (-656 $))) "failed")) NIL (-2759 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3382 (((-3 $ "failed")) NIL (-2759 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3535 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-2834 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-3068 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-4339 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2064 (((-1193 (-971 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-2029 (($ $ (-940)) NIL)) (-1641 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-1735 (((-1193 |#1|) $) NIL (-2759 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3057 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-2531 (((-1193 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-2306 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1819 (($ (-1288 |#1|)) NIL (|has| |#2| (-429 |#1|))) (($ (-1288 |#1|) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3673 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3733 (((-940)) NIL (|has| |#2| (-378 |#1|)))) (-3810 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3343 (($ $ (-940)) NIL)) (-1413 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2515 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1826 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3530 (((-3 (-2 (|:| |particular| $) (|:| -2675 (-656 $))) "failed")) NIL (-2759 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3995 (((-3 $ "failed")) NIL (-2759 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2160 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-4185 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-3070 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3334 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4369 (((-1193 (-971 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-4050 (($ $ (-940)) NIL)) (-2218 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-4218 (((-1193 |#1|) $) NIL (-2759 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2004 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-1528 (((-1193 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-2524 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2046 (((-1179) $) NIL)) (-1821 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3514 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3175 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1450 (((-1141) $) NIL)) (-3827 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2796 ((|#1| $ (-576)) NIL (|has| |#2| (-429 |#1|)))) (-4096 (((-701 |#1|) (-1288 $)) NIL (|has| |#2| (-429 |#1|))) (((-1288 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1288 $) (-1288 $)) NIL (|has| |#2| (-378 |#1|))) (((-1288 |#1|) $ (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-4171 (($ (-1288 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-1288 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-2220 (((-656 (-971 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-656 (-971 |#1|)) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-1758 (($ $ $) NIL)) (-3583 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3569 (((-876) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2399 (((-112) $ $) NIL)) (-2675 (((-1288 $)) NIL (|has| |#2| (-429 |#1|)))) (-1484 (((-656 (-1288 |#1|))) NIL (-2759 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1783 (($ $ $ $) NIL)) (-4354 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3568 (($ (-701 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-2487 (($ $ $) NIL)) (-3233 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4033 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2693 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2721 (($) NIL T CONST)) (-2924 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) 24)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-619 |#1| |#2|) (-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -3569 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) (-174) (-756 |#1|)) (T -619)) +((-3569 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-619 *3 *2)) (-4 *2 (-756 *3))))) +(-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -3569 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) +((-3488 (((-112) $ $) NIL)) (-1923 (((-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) $ (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) 39)) (-4127 (($ (-656 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)))) NIL) (($) NIL)) (-1512 (((-1293) $ (-1179) (-1179)) NIL (|has| $ (-6 -4465)))) (-4264 (((-112) $ (-783)) NIL)) (-3755 ((|#1| $ (-1179) |#1|) 49)) (-2123 (($ (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-1974 (($ (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-2198 (((-3 |#1| "failed") (-1179) $) 52)) (-3404 (($) NIL T CONST)) (-3149 (($ $ (-1179)) 25)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-1121))))) (-2172 (((-3 |#1| "failed") (-1179) $) 53) (($ (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $) NIL (|has| $ (-6 -4464))) (($ (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) $) NIL (|has| $ (-6 -4464)))) (-3945 (($ (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $) NIL (|has| $ (-6 -4464))) (($ (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-1121))))) (-3685 (((-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-1 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-1 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $ (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-1 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $ (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-1121))))) (-3917 (((-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) $) 38)) (-4332 ((|#1| $ (-1179) |#1|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-1179)) NIL)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464))) (((-656 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-3032 (($ $) 54)) (-3256 (($ (-400)) 23) (($ (-400) (-1179)) 22)) (-2628 (((-400) $) 40)) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-1179) $) NIL (|has| (-1179) (-861)))) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464))) (((-656 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (((-112) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-1121))))) (-4280 (((-1179) $) NIL (|has| (-1179) (-861)))) (-4326 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465))) (($ (-1 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL)) (-3200 (((-656 (-1179)) $) 45)) (-3259 (((-112) (-1179) $) NIL)) (-3311 (((-1179) $) 41)) (-2722 (((-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) $) NIL)) (-2597 (($ (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) $) NIL)) (-3669 (((-656 (-1179)) $) NIL)) (-3090 (((-112) (-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3580 ((|#1| $) NIL (|has| (-1179) (-861)))) (-3434 (((-3 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) "failed") (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $) NIL)) (-2304 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-1541 (((-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) $) NIL)) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) (-656 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)))) NIL (-12 (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-319 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)))) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-1121)))) (($ $ (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) NIL (-12 (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-319 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)))) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)))) NIL (-12 (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-319 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)))) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-1121)))) (($ $ (-656 (-304 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))))) NIL (-12 (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-319 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)))) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3207 (((-656 |#1|) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) 43)) (-2796 ((|#1| $ (-1179) |#1|) NIL) ((|#1| $ (-1179)) 48)) (-3101 (($ (-656 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)))) NIL) (($) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (((-783) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-1121)))) (((-783) (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)))) NIL)) (-3569 (((-876) $) 21)) (-2516 (($ $) 26)) (-2399 (((-112) $ $) NIL)) (-3972 (($ (-656 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)))) NIL)) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 20)) (-3502 (((-783) $) 47 (|has| $ (-6 -4464))))) +(((-620 |#1|) (-13 (-375 (-400) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) (-1214 (-1179) |#1|) (-10 -8 (-6 -4464) (-15 -3032 ($ $)))) (-1121)) (T -620)) +((-3032 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1121))))) +(-13 (-375 (-400) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) (-1214 (-1179) |#1|) (-10 -8 (-6 -4464) (-15 -3032 ($ $)))) +((-2885 (((-112) (-2 (|:| -4300 |#2|) (|:| -4439 |#3|)) $) 16)) (-3200 (((-656 |#2|) $) 20)) (-3259 (((-112) |#2| $) 12))) +(((-621 |#1| |#2| |#3|) (-10 -8 (-15 -3200 ((-656 |#2|) |#1|)) (-15 -3259 ((-112) |#2| |#1|)) (-15 -2885 ((-112) (-2 (|:| -4300 |#2|) (|:| -4439 |#3|)) |#1|))) (-622 |#2| |#3|) (-1121) (-1121)) (T -621)) +NIL +(-10 -8 (-15 -3200 ((-656 |#2|) |#1|)) (-15 -3259 ((-112) |#2| |#1|)) (-15 -2885 ((-112) (-2 (|:| -4300 |#2|) (|:| -4439 |#3|)) |#1|))) +((-3488 (((-112) $ $) 20 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102)))) (-4264 (((-112) $ (-783)) 8)) (-2123 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 46 (|has| $ (-6 -4464)))) (-1974 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 56 (|has| $ (-6 -4464)))) (-2198 (((-3 |#2| "failed") |#1| $) 62)) (-3404 (($) 7 T CONST)) (-2034 (($ $) 59 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| $ (-6 -4464))))) (-2172 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 48 (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 47 (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) 63)) (-3945 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 55 (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 57 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 54 (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 53 (|has| $ (-6 -4464)))) (-3965 (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 31 (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) 9)) (-2425 (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| $ (-6 -4464))))) (-4326 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 36)) (-2883 (((-112) $ (-783)) 10)) (-2046 (((-1179) $) 23 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (-3200 (((-656 |#1|) $) 64)) (-3259 (((-112) |#1| $) 65)) (-2722 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 40)) (-2597 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 41)) (-1450 (((-1141) $) 22 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (-3434 (((-3 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) "failed") (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 52)) (-1541 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 42)) (-3252 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))))) 27 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) 26 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 25 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) 24 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121))))) (-2252 (((-112) $ $) 14)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-3101 (($) 50) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) 49)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 32 (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-4171 (((-548) $) 60 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) 51)) (-3569 (((-876) $) 18 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-625 (-876))))) (-2399 (((-112) $ $) 21 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102)))) (-3972 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) 43)) (-2708 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 34 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 19 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-622 |#1| |#2|) (-141) (-1121) (-1121)) (T -622)) -((-4008 (*1 *2 *3 *1) (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-5 *2 (-112)))) (-3203 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-5 *2 (-656 *3)))) (-1671 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) (-2197 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) -(-13 (-231 (-2 (|:| -4301 |t#1|) (|:| -4440 |t#2|))) (-10 -8 (-15 -4008 ((-112) |t#1| $)) (-15 -3203 ((-656 |t#1|) $)) (-15 -1671 ((-3 |t#2| "failed") |t#1| $)) (-15 -2197 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T) ((-102) -2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102))) ((-625 (-876)) -2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-625 (-876)))) ((-152 #0#) . T) ((-626 (-548)) |has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-319 #0#) -12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121))) ((-501 #0#) . T) ((-526 #0# #0#) -12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121))) ((-1121) |has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) ((-1238) . T)) -((-1440 (((-624 |#2|) |#1|) 17)) (-2864 (((-3 |#1| "failed") (-624 |#2|)) 21))) -(((-623 |#1| |#2|) (-10 -7 (-15 -1440 ((-624 |#2|) |#1|)) (-15 -2864 ((-3 |#1| "failed") (-624 |#2|)))) (-1121) (-1121)) (T -623)) -((-2864 (*1 *2 *3) (|partial| -12 (-5 *3 (-624 *4)) (-4 *4 (-1121)) (-4 *2 (-1121)) (-5 *1 (-623 *2 *4)))) (-1440 (*1 *2 *3) (-12 (-5 *2 (-624 *4)) (-5 *1 (-623 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121))))) -(-10 -7 (-15 -1440 ((-624 |#2|) |#1|)) (-15 -2864 ((-3 |#1| "failed") (-624 |#2|)))) -((-3489 (((-112) $ $) NIL)) (-3744 (((-3 (-1197) "failed") $) 46)) (-2610 (((-1293) $ (-783)) 22)) (-3660 (((-783) $) 20)) (-1777 (((-115) $) 9)) (-3125 (($ $ $) NIL)) (-3133 (($ $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1640 (($ (-115) (-656 |#1|) (-783)) 32) (($ (-1197)) 33)) (-1322 (((-112) $ (-115)) 15) (((-112) $ (-1197)) 13)) (-2327 (((-783) $) 17)) (-1450 (((-1141) $) NIL)) (-4172 (((-907 (-576)) $) 95 (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) 102 (|has| |#1| (-626 (-907 (-390))))) (((-548) $) 88 (|has| |#1| (-626 (-548))))) (-3570 (((-876) $) 72)) (-4055 (((-112) $ $) NIL)) (-1737 (((-656 |#1|) $) 19)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 51)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) 53))) -(((-624 |#1|) (-13 (-133) (-861) (-899 |#1|) (-10 -8 (-15 -1777 ((-115) $)) (-15 -1737 ((-656 |#1|) $)) (-15 -2327 ((-783) $)) (-15 -1640 ($ (-115) (-656 |#1|) (-783))) (-15 -1640 ($ (-1197))) (-15 -3744 ((-3 (-1197) "failed") $)) (-15 -1322 ((-112) $ (-115))) (-15 -1322 ((-112) $ (-1197))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) (-1121)) (T -624)) -((-1777 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) (-1737 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) (-2327 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) (-1640 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-1121)) (-5 *1 (-624 *5)))) (-1640 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) (-3744 (*1 *2 *1) (|partial| -12 (-5 *2 (-1197)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) (-1322 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1121)))) (-1322 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1121))))) -(-13 (-133) (-861) (-899 |#1|) (-10 -8 (-15 -1777 ((-115) $)) (-15 -1737 ((-656 |#1|) $)) (-15 -2327 ((-783) $)) (-15 -1640 ($ (-115) (-656 |#1|) (-783))) (-15 -1640 ($ (-1197))) (-15 -3744 ((-3 (-1197) "failed") $)) (-15 -1322 ((-112) $ (-115))) (-15 -1322 ((-112) $ (-1197))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) -((-3570 ((|#1| $) 6))) +((-3259 (*1 *2 *3 *1) (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-5 *2 (-112)))) (-3200 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-5 *2 (-656 *3)))) (-2172 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) (-2198 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) +(-13 (-231 (-2 (|:| -4300 |t#1|) (|:| -4439 |t#2|))) (-10 -8 (-15 -3259 ((-112) |t#1| $)) (-15 -3200 ((-656 |t#1|) $)) (-15 -2172 ((-3 |t#2| "failed") |t#1| $)) (-15 -2198 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T) ((-102) -2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102))) ((-625 (-876)) -2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-625 (-876)))) ((-152 #0#) . T) ((-626 (-548)) |has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-319 #0#) -12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121))) ((-501 #0#) . T) ((-526 #0# #0#) -12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121))) ((-1121) |has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) ((-1238) . T)) +((-2285 (((-624 |#2|) |#1|) 17)) (-3949 (((-3 |#1| "failed") (-624 |#2|)) 21))) +(((-623 |#1| |#2|) (-10 -7 (-15 -2285 ((-624 |#2|) |#1|)) (-15 -3949 ((-3 |#1| "failed") (-624 |#2|)))) (-1121) (-1121)) (T -623)) +((-3949 (*1 *2 *3) (|partial| -12 (-5 *3 (-624 *4)) (-4 *4 (-1121)) (-4 *2 (-1121)) (-5 *1 (-623 *2 *4)))) (-2285 (*1 *2 *3) (-12 (-5 *2 (-624 *4)) (-5 *1 (-623 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121))))) +(-10 -7 (-15 -2285 ((-624 |#2|) |#1|)) (-15 -3949 ((-3 |#1| "failed") (-624 |#2|)))) +((-3488 (((-112) $ $) NIL)) (-2522 (((-3 (-1197) "failed") $) 46)) (-2143 (((-1293) $ (-783)) 22)) (-3659 (((-783) $) 20)) (-1776 (((-115) $) 9)) (-3124 (($ $ $) NIL)) (-1441 (($ $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1640 (($ (-115) (-656 |#1|) (-783)) 32) (($ (-1197)) 33)) (-2808 (((-112) $ (-115)) 15) (((-112) $ (-1197)) 13)) (-2327 (((-783) $) 17)) (-1450 (((-1141) $) NIL)) (-4171 (((-907 (-576)) $) 95 (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) 102 (|has| |#1| (-626 (-907 (-390))))) (((-548) $) 88 (|has| |#1| (-626 (-548))))) (-3569 (((-876) $) 72)) (-2399 (((-112) $ $) NIL)) (-1631 (((-656 |#1|) $) 19)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 51)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) 53))) +(((-624 |#1|) (-13 (-133) (-861) (-899 |#1|) (-10 -8 (-15 -1776 ((-115) $)) (-15 -1631 ((-656 |#1|) $)) (-15 -2327 ((-783) $)) (-15 -1640 ($ (-115) (-656 |#1|) (-783))) (-15 -1640 ($ (-1197))) (-15 -2522 ((-3 (-1197) "failed") $)) (-15 -2808 ((-112) $ (-115))) (-15 -2808 ((-112) $ (-1197))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) (-1121)) (T -624)) +((-1776 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) (-1631 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) (-2327 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) (-1640 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-1121)) (-5 *1 (-624 *5)))) (-1640 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) (-2522 (*1 *2 *1) (|partial| -12 (-5 *2 (-1197)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) (-2808 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1121)))) (-2808 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1121))))) +(-13 (-133) (-861) (-899 |#1|) (-10 -8 (-15 -1776 ((-115) $)) (-15 -1631 ((-656 |#1|) $)) (-15 -2327 ((-783) $)) (-15 -1640 ($ (-115) (-656 |#1|) (-783))) (-15 -1640 ($ (-1197))) (-15 -2522 ((-3 (-1197) "failed") $)) (-15 -2808 ((-112) $ (-115))) (-15 -2808 ((-112) $ (-1197))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) +((-3569 ((|#1| $) 6))) (((-625 |#1|) (-141) (-1238)) (T -625)) -((-3570 (*1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1238))))) -(-13 (-10 -8 (-15 -3570 (|t#1| $)))) -((-4172 ((|#1| $) 6))) +((-3569 (*1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1238))))) +(-13 (-10 -8 (-15 -3569 (|t#1| $)))) +((-4171 ((|#1| $) 6))) (((-626 |#1|) (-141) (-1238)) (T -626)) -((-4172 (*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1238))))) -(-13 (-10 -8 (-15 -4172 (|t#1| $)))) -((-1573 (((-3 (-1193 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)) 15) (((-3 (-1193 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)) 16))) -(((-627 |#1| |#2|) (-10 -7 (-15 -1573 ((-3 (-1193 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -1573 ((-3 (-1193 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)))) (-13 (-148) (-27) (-1059 (-576)) (-1059 (-419 (-576)))) (-1264 |#1|)) (T -627)) -((-1573 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-148) (-27) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-1193 (-419 *6))) (-5 *1 (-627 *5 *6)) (-5 *3 (-419 *6)))) (-1573 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *2 (-1193 (-419 *5))) (-5 *1 (-627 *4 *5)) (-5 *3 (-419 *5))))) -(-10 -7 (-15 -1573 ((-3 (-1193 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -1573 ((-3 (-1193 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)))) -((-3570 (($ |#1|) 6))) +((-4171 (*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1238))))) +(-13 (-10 -8 (-15 -4171 (|t#1| $)))) +((-3777 (((-3 (-1193 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)) 15) (((-3 (-1193 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)) 16))) +(((-627 |#1| |#2|) (-10 -7 (-15 -3777 ((-3 (-1193 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -3777 ((-3 (-1193 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)))) (-13 (-148) (-27) (-1059 (-576)) (-1059 (-419 (-576)))) (-1264 |#1|)) (T -627)) +((-3777 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-148) (-27) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-1193 (-419 *6))) (-5 *1 (-627 *5 *6)) (-5 *3 (-419 *6)))) (-3777 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *2 (-1193 (-419 *5))) (-5 *1 (-627 *4 *5)) (-5 *3 (-419 *5))))) +(-10 -7 (-15 -3777 ((-3 (-1193 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -3777 ((-3 (-1193 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)))) +((-3569 (($ |#1|) 6))) (((-628 |#1|) (-141) (-1238)) (T -628)) -((-3570 (*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1238))))) -(-13 (-10 -8 (-15 -3570 ($ |t#1|)))) -((-3489 (((-112) $ $) NIL)) (-3863 (($) 14 T CONST)) (-2142 (($) 15 T CONST)) (-2686 (($ $ $) 29)) (-2663 (($ $) 27)) (-3699 (((-1179) $) NIL)) (-3602 (($ $ $) 30)) (-1450 (((-1141) $) NIL)) (-3513 (($) 11 T CONST)) (-3001 (($ $ $) 31)) (-3570 (((-876) $) 35)) (-2708 (((-112) $ (|[\|\|]| -3513)) 24) (((-112) $ (|[\|\|]| -3863)) 26) (((-112) $ (|[\|\|]| -2142)) 21)) (-4055 (((-112) $ $) NIL)) (-2675 (($ $ $) 28)) (-2925 (((-112) $ $) 18))) -(((-629) (-13 (-988) (-10 -8 (-15 -3863 ($) -1480) (-15 -2708 ((-112) $ (|[\|\|]| -3513))) (-15 -2708 ((-112) $ (|[\|\|]| -3863))) (-15 -2708 ((-112) $ (|[\|\|]| -2142)))))) (T -629)) -((-3863 (*1 *1) (-5 *1 (-629))) (-2708 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3513)) (-5 *2 (-112)) (-5 *1 (-629)))) (-2708 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3863)) (-5 *2 (-112)) (-5 *1 (-629)))) (-2708 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2142)) (-5 *2 (-112)) (-5 *1 (-629))))) -(-13 (-988) (-10 -8 (-15 -3863 ($) -1480) (-15 -2708 ((-112) $ (|[\|\|]| -3513))) (-15 -2708 ((-112) $ (|[\|\|]| -3863))) (-15 -2708 ((-112) $ (|[\|\|]| -2142))))) -((-4172 (($ |#1|) 6))) +((-3569 (*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1238))))) +(-13 (-10 -8 (-15 -3569 ($ |t#1|)))) +((-3488 (((-112) $ $) NIL)) (-3861 (($) 14 T CONST)) (-2142 (($) 15 T CONST)) (-2685 (($ $ $) 29)) (-2663 (($ $) 27)) (-2046 (((-1179) $) NIL)) (-3656 (($ $ $) 30)) (-1450 (((-1141) $) NIL)) (-3511 (($) 11 T CONST)) (-2588 (($ $ $) 31)) (-3569 (((-876) $) 35)) (-2707 (((-112) $ (|[\|\|]| -3511)) 24) (((-112) $ (|[\|\|]| -3861)) 26) (((-112) $ (|[\|\|]| -2142)) 21)) (-2399 (((-112) $ $) NIL)) (-2674 (($ $ $) 28)) (-2924 (((-112) $ $) 18))) +(((-629) (-13 (-988) (-10 -8 (-15 -3861 ($) -1480) (-15 -2707 ((-112) $ (|[\|\|]| -3511))) (-15 -2707 ((-112) $ (|[\|\|]| -3861))) (-15 -2707 ((-112) $ (|[\|\|]| -2142)))))) (T -629)) +((-3861 (*1 *1) (-5 *1 (-629))) (-2707 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3511)) (-5 *2 (-112)) (-5 *1 (-629)))) (-2707 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3861)) (-5 *2 (-112)) (-5 *1 (-629)))) (-2707 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2142)) (-5 *2 (-112)) (-5 *1 (-629))))) +(-13 (-988) (-10 -8 (-15 -3861 ($) -1480) (-15 -2707 ((-112) $ (|[\|\|]| -3511))) (-15 -2707 ((-112) $ (|[\|\|]| -3861))) (-15 -2707 ((-112) $ (|[\|\|]| -2142))))) +((-4171 (($ |#1|) 6))) (((-630 |#1|) (-141) (-1238)) (T -630)) -((-4172 (*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1238))))) -(-13 (-10 -8 (-15 -4172 ($ |t#1|)))) -((-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) 10))) -(((-631 |#1| |#2|) (-10 -8 (-15 -3570 (|#1| |#2|)) (-15 -3570 (|#1| (-576))) (-15 -3570 ((-876) |#1|))) (-632 |#2|) (-1070)) (T -631)) +((-4171 (*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1238))))) +(-13 (-10 -8 (-15 -4171 ($ |t#1|)))) +((-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) 10))) +(((-631 |#1| |#2|) (-10 -8 (-15 -3569 (|#1| |#2|)) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) (-632 |#2|) (-1070)) (T -631)) NIL -(-10 -8 (-15 -3570 (|#1| |#2|)) (-15 -3570 (|#1| (-576))) (-15 -3570 ((-876) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-1561 (((-3 $ "failed") $) 37)) (-4193 (((-112) $) 35)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 41)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#1| $) 42))) +(-10 -8 (-15 -3569 (|#1| |#2|)) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-3673 (((-3 $ "failed") $) 37)) (-1351 (((-112) $) 35)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 41)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#1| $) 42))) (((-632 |#1|) (-141) (-1070)) (T -632)) -((-3570 (*1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1070))))) -(-13 (-1070) (-660 |t#1|) (-10 -8 (-15 -3570 ($ |t#1|)))) +((-3569 (*1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1070))))) +(-13 (-1070) (-660 |t#1|) (-10 -8 (-15 -3569 ($ |t#1|)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-738) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3308 (((-576) $) NIL (|has| |#1| (-860)))) (-3886 (($) NIL T CONST)) (-1561 (((-3 $ "failed") $) NIL)) (-2087 (((-112) $) NIL (|has| |#1| (-860)))) (-4193 (((-112) $) NIL)) (-1570 ((|#1| $) 13)) (-1634 (((-112) $) NIL (|has| |#1| (-860)))) (-3125 (($ $ $) NIL (|has| |#1| (-860)))) (-3133 (($ $ $) NIL (|has| |#1| (-860)))) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1581 ((|#3| $) 15)) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL)) (-3996 (((-783)) 20 T CONST)) (-4055 (((-112) $ $) NIL)) (-2122 (($ $) NIL (|has| |#1| (-860)))) (-2721 (($) NIL T CONST)) (-2732 (($) 12 T CONST)) (-2992 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2950 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3057 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-633 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (-15 -3057 ($ $ |#3|)) (-15 -3057 ($ |#1| |#3|)) (-15 -1570 (|#1| $)) (-15 -1581 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-738) |#2|)) (T -633)) -((-3057 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-738) *4)))) (-3057 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-633 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-738) *4)))) (-1570 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-633 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-738) *3)))) (-1581 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (-15 -3057 ($ $ |#3|)) (-15 -3057 ($ |#1| |#3|)) (-15 -1570 (|#1| $)) (-15 -1581 (|#3| $)))) -((-2769 ((|#2| |#2| (-1197) (-1197)) 16))) -(((-634 |#1| |#2|) (-10 -7 (-15 -2769 (|#2| |#2| (-1197) (-1197)))) (-13 (-317) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-978) (-29 |#1|))) (T -634)) -((-2769 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-634 *4 *2)) (-4 *2 (-13 (-1223) (-978) (-29 *4)))))) -(-10 -7 (-15 -2769 (|#2| |#2| (-1197) (-1197)))) -((-3489 (((-112) $ $) 64)) (-4308 (((-112) $) 58)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-2128 ((|#1| $) 55)) (-4367 (((-3 $ "failed") $ $) NIL)) (-4016 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2772 (((-2 (|:| -3708 $) (|:| -4020 (-419 |#2|))) (-419 |#2|)) 111 (|has| |#1| (-374)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-2860 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3429 (($ $ $) NIL (|has| |#1| (-374)))) (-2114 (($ $) 27)) (-1561 (((-3 $ "failed") $) 88)) (-3441 (($ $ $) NIL (|has| |#1| (-374)))) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3917 (((-576) $) 22)) (-4193 (((-112) $) NIL)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2823 (((-112) $) 40)) (-1945 (($ |#1| (-576)) 24)) (-2091 ((|#1| $) 57)) (-3458 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) 101 (|has| |#1| (-374)))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| |#1| (-374)))) (-3476 (((-3 $ "failed") $ $) 93)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1967 (((-783) $) 115 (|has| |#1| (-374)))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 114 (|has| |#1| (-374)))) (-2775 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) 75) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-3634 (((-576) $) 38)) (-4172 (((-419 |#2|) $) 47)) (-3570 (((-876) $) 69) (($ (-576)) 35) (($ $) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) 34) (($ |#2|) 25)) (-3177 ((|#1| $ (-576)) 72)) (-4336 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL)) (-2721 (($) 9 T CONST)) (-2732 (($) 14 T CONST)) (-2020 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-2925 (((-112) $ $) 21)) (-3044 (($ $) 51) (($ $ $) NIL)) (-3030 (($ $ $) 90)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 29) (($ $ $) 49))) -(((-635 |#1| |#2|) (-13 (-232 |#2|) (-568) (-626 (-419 |#2|)) (-423 |#1|) (-1059 |#2|) (-10 -8 (-15 -2823 ((-112) $)) (-15 -3634 ((-576) $)) (-15 -3917 ((-576) $)) (-15 -2114 ($ $)) (-15 -2091 (|#1| $)) (-15 -2128 (|#1| $)) (-15 -3177 (|#1| $ (-576))) (-15 -1945 ($ |#1| (-576))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-317)) (-15 -2772 ((-2 (|:| -3708 $) (|:| -4020 (-419 |#2|))) (-419 |#2|)))) |%noBranch|))) (-568) (-1264 |#1|)) (T -635)) -((-2823 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-112)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1264 *3)))) (-3634 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1264 *3)))) (-3917 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1264 *3)))) (-2114 (*1 *1 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1264 *2)))) (-2091 (*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1264 *2)))) (-2128 (*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1264 *2)))) (-3177 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) (-4 *4 (-1264 *2)))) (-1945 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) (-4 *4 (-1264 *2)))) (-2772 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *4 (-568)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| -3708 (-635 *4 *5)) (|:| -4020 (-419 *5)))) (-5 *1 (-635 *4 *5)) (-5 *3 (-419 *5))))) -(-13 (-232 |#2|) (-568) (-626 (-419 |#2|)) (-423 |#1|) (-1059 |#2|) (-10 -8 (-15 -2823 ((-112) $)) (-15 -3634 ((-576) $)) (-15 -3917 ((-576) $)) (-15 -2114 ($ $)) (-15 -2091 (|#1| $)) (-15 -2128 (|#1| $)) (-15 -3177 (|#1| $ (-576))) (-15 -1945 ($ |#1| (-576))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-317)) (-15 -2772 ((-2 (|:| -3708 $) (|:| -4020 (-419 |#2|))) (-419 |#2|)))) |%noBranch|))) -((-3603 (((-656 |#6|) (-656 |#4|) (-112)) 54)) (-3770 ((|#6| |#6|) 48))) -(((-636 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3770 (|#6| |#6|)) (-15 -3603 ((-656 |#6|) (-656 |#4|) (-112)))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|) (-1130 |#1| |#2| |#3| |#4|)) (T -636)) -((-3603 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 *10)) (-5 *1 (-636 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *10 (-1130 *5 *6 *7 *8)))) (-3770 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-636 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *2 (-1130 *3 *4 *5 *6))))) -(-10 -7 (-15 -3770 (|#6| |#6|)) (-15 -3603 ((-656 |#6|) (-656 |#4|) (-112)))) -((-2241 (((-112) |#3| (-783) (-656 |#3|)) 29)) (-1333 (((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1193 |#3|)))) "failed") |#3| (-656 (-1193 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2761 (-656 (-2 (|:| |irr| |#4|) (|:| -2567 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)) 69))) -(((-637 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2241 ((-112) |#3| (-783) (-656 |#3|))) (-15 -1333 ((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1193 |#3|)))) "failed") |#3| (-656 (-1193 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2761 (-656 (-2 (|:| |irr| |#4|) (|:| -2567 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)))) (-861) (-805) (-317) (-968 |#3| |#2| |#1|)) (T -637)) -((-1333 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2761 (-656 (-2 (|:| |irr| *10) (|:| -2567 (-576))))))) (-5 *6 (-656 *3)) (-5 *7 (-656 *8)) (-4 *8 (-861)) (-4 *3 (-317)) (-4 *10 (-968 *3 *9 *8)) (-4 *9 (-805)) (-5 *2 (-2 (|:| |polfac| (-656 *10)) (|:| |correct| *3) (|:| |corrfact| (-656 (-1193 *3))))) (-5 *1 (-637 *8 *9 *3 *10)) (-5 *4 (-656 (-1193 *3))))) (-2241 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-783)) (-5 *5 (-656 *3)) (-4 *3 (-317)) (-4 *6 (-861)) (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-637 *6 *7 *3 *8)) (-4 *8 (-968 *3 *7 *6))))) -(-10 -7 (-15 -2241 ((-112) |#3| (-783) (-656 |#3|))) (-15 -1333 ((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1193 |#3|)))) "failed") |#3| (-656 (-1193 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2761 (-656 (-2 (|:| |irr| |#4|) (|:| -2567 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)))) -((-3489 (((-112) $ $) NIL)) (-1669 (((-1156) $) 11)) (-1657 (((-1156) $) 9)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 17) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3906 (((-576) $) NIL (|has| |#1| (-860)))) (-3404 (($) NIL T CONST)) (-3673 (((-3 $ "failed") $) NIL)) (-1866 (((-112) $) NIL (|has| |#1| (-860)))) (-1351 (((-112) $) NIL)) (-1570 ((|#1| $) 13)) (-3137 (((-112) $) NIL (|has| |#1| (-860)))) (-3124 (($ $ $) NIL (|has| |#1| (-860)))) (-1441 (($ $ $) NIL (|has| |#1| (-860)))) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1581 ((|#3| $) 15)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL)) (-3154 (((-783)) 20 T CONST)) (-2399 (((-112) $ $) NIL)) (-4143 (($ $) NIL (|has| |#1| (-860)))) (-2721 (($) NIL T CONST)) (-2731 (($) 12 T CONST)) (-2990 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2949 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3056 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-633 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (-15 -3056 ($ $ |#3|)) (-15 -3056 ($ |#1| |#3|)) (-15 -1570 (|#1| $)) (-15 -1581 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-738) |#2|)) (T -633)) +((-3056 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-738) *4)))) (-3056 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-633 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-738) *4)))) (-1570 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-633 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-738) *3)))) (-1581 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (-15 -3056 ($ $ |#3|)) (-15 -3056 ($ |#1| |#3|)) (-15 -1570 (|#1| $)) (-15 -1581 (|#3| $)))) +((-4283 ((|#2| |#2| (-1197) (-1197)) 16))) +(((-634 |#1| |#2|) (-10 -7 (-15 -4283 (|#2| |#2| (-1197) (-1197)))) (-13 (-317) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-978) (-29 |#1|))) (T -634)) +((-4283 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-634 *4 *2)) (-4 *2 (-13 (-1223) (-978) (-29 *4)))))) +(-10 -7 (-15 -4283 (|#2| |#2| (-1197) (-1197)))) +((-3488 (((-112) $ $) 64)) (-3135 (((-112) $) 58)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-4192 ((|#1| $) 55)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3330 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4306 (((-2 (|:| -2144 $) (|:| -2090 (-419 |#2|))) (-419 |#2|)) 111 (|has| |#1| (-374)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-2859 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3428 (($ $ $) NIL (|has| |#1| (-374)))) (-2114 (($ $) 27)) (-3673 (((-3 $ "failed") $) 88)) (-3440 (($ $ $) NIL (|has| |#1| (-374)))) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3726 (((-576) $) 22)) (-1351 (((-112) $) NIL)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3538 (((-112) $) 40)) (-1944 (($ |#1| (-576)) 24)) (-2091 ((|#1| $) 57)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3497 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) 101 (|has| |#1| (-374)))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-3475 (((-3 $ "failed") $ $) 93)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1979 (((-783) $) 115 (|has| |#1| (-374)))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 114 (|has| |#1| (-374)))) (-2774 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) 75) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-2683 (((-576) $) 38)) (-4171 (((-419 |#2|) $) 47)) (-3569 (((-876) $) 69) (($ (-576)) 35) (($ $) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) 34) (($ |#2|) 25)) (-1822 ((|#1| $ (-576)) 72)) (-3390 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL)) (-2721 (($) 9 T CONST)) (-2731 (($) 14 T CONST)) (-2020 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-2924 (((-112) $ $) 21)) (-3043 (($ $) 51) (($ $ $) NIL)) (-3029 (($ $ $) 90)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 29) (($ $ $) 49))) +(((-635 |#1| |#2|) (-13 (-232 |#2|) (-568) (-626 (-419 |#2|)) (-423 |#1|) (-1059 |#2|) (-10 -8 (-15 -3538 ((-112) $)) (-15 -2683 ((-576) $)) (-15 -3726 ((-576) $)) (-15 -2114 ($ $)) (-15 -2091 (|#1| $)) (-15 -4192 (|#1| $)) (-15 -1822 (|#1| $ (-576))) (-15 -1944 ($ |#1| (-576))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-317)) (-15 -4306 ((-2 (|:| -2144 $) (|:| -2090 (-419 |#2|))) (-419 |#2|)))) |%noBranch|))) (-568) (-1264 |#1|)) (T -635)) +((-3538 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-112)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1264 *3)))) (-2683 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1264 *3)))) (-3726 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1264 *3)))) (-2114 (*1 *1 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1264 *2)))) (-2091 (*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1264 *2)))) (-4192 (*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1264 *2)))) (-1822 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) (-4 *4 (-1264 *2)))) (-1944 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) (-4 *4 (-1264 *2)))) (-4306 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *4 (-568)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| -2144 (-635 *4 *5)) (|:| -2090 (-419 *5)))) (-5 *1 (-635 *4 *5)) (-5 *3 (-419 *5))))) +(-13 (-232 |#2|) (-568) (-626 (-419 |#2|)) (-423 |#1|) (-1059 |#2|) (-10 -8 (-15 -3538 ((-112) $)) (-15 -2683 ((-576) $)) (-15 -3726 ((-576) $)) (-15 -2114 ($ $)) (-15 -2091 (|#1| $)) (-15 -4192 (|#1| $)) (-15 -1822 (|#1| $ (-576))) (-15 -1944 ($ |#1| (-576))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-317)) (-15 -4306 ((-2 (|:| -2144 $) (|:| -2090 (-419 |#2|))) (-419 |#2|)))) |%noBranch|))) +((-3668 (((-656 |#6|) (-656 |#4|) (-112)) 54)) (-1578 ((|#6| |#6|) 48))) +(((-636 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1578 (|#6| |#6|)) (-15 -3668 ((-656 |#6|) (-656 |#4|) (-112)))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|) (-1130 |#1| |#2| |#3| |#4|)) (T -636)) +((-3668 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 *10)) (-5 *1 (-636 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *10 (-1130 *5 *6 *7 *8)))) (-1578 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-636 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *2 (-1130 *3 *4 *5 *6))))) +(-10 -7 (-15 -1578 (|#6| |#6|)) (-15 -3668 ((-656 |#6|) (-656 |#4|) (-112)))) +((-2749 (((-112) |#3| (-783) (-656 |#3|)) 29)) (-2921 (((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1193 |#3|)))) "failed") |#3| (-656 (-1193 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4213 (-656 (-2 (|:| |irr| |#4|) (|:| -3012 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)) 69))) +(((-637 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2749 ((-112) |#3| (-783) (-656 |#3|))) (-15 -2921 ((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1193 |#3|)))) "failed") |#3| (-656 (-1193 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4213 (-656 (-2 (|:| |irr| |#4|) (|:| -3012 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)))) (-861) (-805) (-317) (-968 |#3| |#2| |#1|)) (T -637)) +((-2921 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -4213 (-656 (-2 (|:| |irr| *10) (|:| -3012 (-576))))))) (-5 *6 (-656 *3)) (-5 *7 (-656 *8)) (-4 *8 (-861)) (-4 *3 (-317)) (-4 *10 (-968 *3 *9 *8)) (-4 *9 (-805)) (-5 *2 (-2 (|:| |polfac| (-656 *10)) (|:| |correct| *3) (|:| |corrfact| (-656 (-1193 *3))))) (-5 *1 (-637 *8 *9 *3 *10)) (-5 *4 (-656 (-1193 *3))))) (-2749 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-783)) (-5 *5 (-656 *3)) (-4 *3 (-317)) (-4 *6 (-861)) (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-637 *6 *7 *3 *8)) (-4 *8 (-968 *3 *7 *6))))) +(-10 -7 (-15 -2749 ((-112) |#3| (-783) (-656 |#3|))) (-15 -2921 ((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1193 |#3|)))) "failed") |#3| (-656 (-1193 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4213 (-656 (-2 (|:| |irr| |#4|) (|:| -3012 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)))) +((-3488 (((-112) $ $) NIL)) (-1669 (((-1156) $) 11)) (-1657 (((-1156) $) 9)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 17) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) (((-638) (-13 (-1104) (-10 -8 (-15 -1657 ((-1156) $)) (-15 -1669 ((-1156) $))))) (T -638)) ((-1657 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-638)))) (-1669 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-638))))) (-13 (-1104) (-10 -8 (-15 -1657 ((-1156) $)) (-15 -1669 ((-1156) $)))) -((-3489 (((-112) $ $) NIL)) (-3447 (((-656 |#1|) $) NIL)) (-3886 (($) NIL T CONST)) (-1561 (((-3 $ "failed") $) NIL)) (-4193 (((-112) $) NIL)) (-1372 (($ $) 77)) (-3745 (((-676 |#1| |#2|) $) 60)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) 81)) (-2413 (((-656 (-304 |#2|)) $ $) 42)) (-1450 (((-1141) $) NIL)) (-4104 (($ (-676 |#1| |#2|)) 56)) (-2314 (($ $ $) NIL)) (-2076 (($ $ $) NIL)) (-3570 (((-876) $) 66) (((-1303 |#1| |#2|) $) NIL) (((-1308 |#1| |#2|) $) 74)) (-4055 (((-112) $ $) NIL)) (-2732 (($) 61 T CONST)) (-2922 (((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $) 41)) (-1756 (((-656 (-676 |#1| |#2|)) (-656 |#1|)) 73)) (-3071 (((-656 (-2 (|:| |k| (-908 |#1|)) (|:| |c| |#2|))) $) 46)) (-2925 (((-112) $ $) 62)) (-3057 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 52))) -(((-639 |#1| |#2| |#3|) (-13 (-485) (-10 -8 (-15 -4104 ($ (-676 |#1| |#2|))) (-15 -3745 ((-676 |#1| |#2|) $)) (-15 -3071 ((-656 (-2 (|:| |k| (-908 |#1|)) (|:| |c| |#2|))) $)) (-15 -3570 ((-1303 |#1| |#2|) $)) (-15 -3570 ((-1308 |#1| |#2|) $)) (-15 -1372 ($ $)) (-15 -3447 ((-656 |#1|) $)) (-15 -1756 ((-656 (-676 |#1| |#2|)) (-656 |#1|))) (-15 -2922 ((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $)) (-15 -2413 ((-656 (-304 |#2|)) $ $)))) (-861) (-13 (-174) (-729 (-419 (-576)))) (-940)) (T -639)) -((-4104 (*1 *1 *2) (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-5 *1 (-639 *3 *4 *5)) (-14 *5 (-940)))) (-3745 (*1 *2 *1) (-12 (-5 *2 (-676 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) (-3071 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-908 *3)) (|:| |c| *4)))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-1308 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) (-1372 (*1 *1 *1) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-861)) (-4 *3 (-13 (-174) (-729 (-419 (-576))))) (-14 *4 (-940)))) (-3447 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) (-1756 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-861)) (-5 *2 (-656 (-676 *4 *5))) (-5 *1 (-639 *4 *5 *6)) (-4 *5 (-13 (-174) (-729 (-419 (-576))))) (-14 *6 (-940)))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-684 *3)) (|:| |c| *4)))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) (-2413 (*1 *2 *1 *1) (-12 (-5 *2 (-656 (-304 *4))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940))))) -(-13 (-485) (-10 -8 (-15 -4104 ($ (-676 |#1| |#2|))) (-15 -3745 ((-676 |#1| |#2|) $)) (-15 -3071 ((-656 (-2 (|:| |k| (-908 |#1|)) (|:| |c| |#2|))) $)) (-15 -3570 ((-1303 |#1| |#2|) $)) (-15 -3570 ((-1308 |#1| |#2|) $)) (-15 -1372 ($ $)) (-15 -3447 ((-656 |#1|) $)) (-15 -1756 ((-656 (-676 |#1| |#2|)) (-656 |#1|))) (-15 -2922 ((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $)) (-15 -2413 ((-656 (-304 |#2|)) $ $)))) -((-3603 (((-656 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|)))) (-656 (-792 |#1| (-878 |#2|))) (-112)) 103) (((-656 (-1067 |#1| |#2|)) (-656 (-792 |#1| (-878 |#2|))) (-112)) 77)) (-3101 (((-112) (-656 (-792 |#1| (-878 |#2|)))) 26)) (-4398 (((-656 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|)))) (-656 (-792 |#1| (-878 |#2|))) (-112)) 102)) (-2642 (((-656 (-1067 |#1| |#2|)) (-656 (-792 |#1| (-878 |#2|))) (-112)) 76)) (-1456 (((-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|)))) 30)) (-2947 (((-3 (-656 (-792 |#1| (-878 |#2|))) "failed") (-656 (-792 |#1| (-878 |#2|)))) 29))) -(((-640 |#1| |#2|) (-10 -7 (-15 -3101 ((-112) (-656 (-792 |#1| (-878 |#2|))))) (-15 -2947 ((-3 (-656 (-792 |#1| (-878 |#2|))) "failed") (-656 (-792 |#1| (-878 |#2|))))) (-15 -1456 ((-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|))))) (-15 -2642 ((-656 (-1067 |#1| |#2|)) (-656 (-792 |#1| (-878 |#2|))) (-112))) (-15 -4398 ((-656 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|)))) (-656 (-792 |#1| (-878 |#2|))) (-112))) (-15 -3603 ((-656 (-1067 |#1| |#2|)) (-656 (-792 |#1| (-878 |#2|))) (-112))) (-15 -3603 ((-656 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|)))) (-656 (-792 |#1| (-878 |#2|))) (-112)))) (-464) (-656 (-1197))) (T -640)) -((-3603 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1167 *5 (-543 (-878 *6)) (-878 *6) (-792 *5 (-878 *6))))) (-5 *1 (-640 *5 *6)))) (-3603 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-640 *5 *6)))) (-4398 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1167 *5 (-543 (-878 *6)) (-878 *6) (-792 *5 (-878 *6))))) (-5 *1 (-640 *5 *6)))) (-2642 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-640 *5 *6)))) (-1456 (*1 *2 *2) (-12 (-5 *2 (-656 (-792 *3 (-878 *4)))) (-4 *3 (-464)) (-14 *4 (-656 (-1197))) (-5 *1 (-640 *3 *4)))) (-2947 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-792 *3 (-878 *4)))) (-4 *3 (-464)) (-14 *4 (-656 (-1197))) (-5 *1 (-640 *3 *4)))) (-3101 (*1 *2 *3) (-12 (-5 *3 (-656 (-792 *4 (-878 *5)))) (-4 *4 (-464)) (-14 *5 (-656 (-1197))) (-5 *2 (-112)) (-5 *1 (-640 *4 *5))))) -(-10 -7 (-15 -3101 ((-112) (-656 (-792 |#1| (-878 |#2|))))) (-15 -2947 ((-3 (-656 (-792 |#1| (-878 |#2|))) "failed") (-656 (-792 |#1| (-878 |#2|))))) (-15 -1456 ((-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|))))) (-15 -2642 ((-656 (-1067 |#1| |#2|)) (-656 (-792 |#1| (-878 |#2|))) (-112))) (-15 -4398 ((-656 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|)))) (-656 (-792 |#1| (-878 |#2|))) (-112))) (-15 -3603 ((-656 (-1067 |#1| |#2|)) (-656 (-792 |#1| (-878 |#2|))) (-112))) (-15 -3603 ((-656 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|)))) (-656 (-792 |#1| (-878 |#2|))) (-112)))) -((-4025 (($ $) 38)) (-3901 (($ $) 21)) (-4006 (($ $) 37)) (-3877 (($ $) 22)) (-4050 (($ $) 36)) (-3920 (($ $) 23)) (-1600 (($) 48)) (-3745 (($ $) 45)) (-3851 (($ $) 17)) (-3948 (($ $ (-1113 $)) 7) (($ $ (-1197)) 6)) (-4104 (($ $) 46)) (-3827 (($ $) 15)) (-3864 (($ $) 16)) (-4061 (($ $) 35)) (-3930 (($ $) 24)) (-4037 (($ $) 34)) (-3910 (($ $) 25)) (-4014 (($ $) 33)) (-3889 (($ $) 26)) (-2791 (($ $) 44)) (-3961 (($ $) 32)) (-4071 (($ $) 43)) (-3938 (($ $) 31)) (-2815 (($ $) 42)) (-3983 (($ $) 30)) (-4388 (($ $) 41)) (-3995 (($ $) 29)) (-2803 (($ $) 40)) (-3974 (($ $) 28)) (-4083 (($ $) 39)) (-3951 (($ $) 27)) (-3588 (($ $) 19)) (-2894 (($ $) 20)) (-2643 (($ $) 18)) (** (($ $ $) 47))) +((-3488 (((-112) $ $) NIL)) (-3446 (((-656 |#1|) $) NIL)) (-3404 (($) NIL T CONST)) (-3673 (((-3 $ "failed") $) NIL)) (-1351 (((-112) $) NIL)) (-3187 (($ $) 77)) (-3744 (((-676 |#1| |#2|) $) 60)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) 81)) (-1985 (((-656 (-304 |#2|)) $ $) 42)) (-1450 (((-1141) $) NIL)) (-4103 (($ (-676 |#1| |#2|)) 56)) (-2272 (($ $ $) NIL)) (-1758 (($ $ $) NIL)) (-3569 (((-876) $) 66) (((-1303 |#1| |#2|) $) NIL) (((-1308 |#1| |#2|) $) 74)) (-2399 (((-112) $ $) NIL)) (-2731 (($) 61 T CONST)) (-3260 (((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $) 41)) (-1816 (((-656 (-676 |#1| |#2|)) (-656 |#1|)) 73)) (-2012 (((-656 (-2 (|:| |k| (-908 |#1|)) (|:| |c| |#2|))) $) 46)) (-2924 (((-112) $ $) 62)) (-3056 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 52))) +(((-639 |#1| |#2| |#3|) (-13 (-485) (-10 -8 (-15 -4103 ($ (-676 |#1| |#2|))) (-15 -3744 ((-676 |#1| |#2|) $)) (-15 -2012 ((-656 (-2 (|:| |k| (-908 |#1|)) (|:| |c| |#2|))) $)) (-15 -3569 ((-1303 |#1| |#2|) $)) (-15 -3569 ((-1308 |#1| |#2|) $)) (-15 -3187 ($ $)) (-15 -3446 ((-656 |#1|) $)) (-15 -1816 ((-656 (-676 |#1| |#2|)) (-656 |#1|))) (-15 -3260 ((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $)) (-15 -1985 ((-656 (-304 |#2|)) $ $)))) (-861) (-13 (-174) (-729 (-419 (-576)))) (-940)) (T -639)) +((-4103 (*1 *1 *2) (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-5 *1 (-639 *3 *4 *5)) (-14 *5 (-940)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-676 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) (-2012 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-908 *3)) (|:| |c| *4)))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-1308 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) (-3187 (*1 *1 *1) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-861)) (-4 *3 (-13 (-174) (-729 (-419 (-576))))) (-14 *4 (-940)))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) (-1816 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-861)) (-5 *2 (-656 (-676 *4 *5))) (-5 *1 (-639 *4 *5 *6)) (-4 *5 (-13 (-174) (-729 (-419 (-576))))) (-14 *6 (-940)))) (-3260 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-684 *3)) (|:| |c| *4)))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) (-1985 (*1 *2 *1 *1) (-12 (-5 *2 (-656 (-304 *4))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940))))) +(-13 (-485) (-10 -8 (-15 -4103 ($ (-676 |#1| |#2|))) (-15 -3744 ((-676 |#1| |#2|) $)) (-15 -2012 ((-656 (-2 (|:| |k| (-908 |#1|)) (|:| |c| |#2|))) $)) (-15 -3569 ((-1303 |#1| |#2|) $)) (-15 -3569 ((-1308 |#1| |#2|) $)) (-15 -3187 ($ $)) (-15 -3446 ((-656 |#1|) $)) (-15 -1816 ((-656 (-676 |#1| |#2|)) (-656 |#1|))) (-15 -3260 ((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $)) (-15 -1985 ((-656 (-304 |#2|)) $ $)))) +((-3668 (((-656 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|)))) (-656 (-792 |#1| (-878 |#2|))) (-112)) 103) (((-656 (-1067 |#1| |#2|)) (-656 (-792 |#1| (-878 |#2|))) (-112)) 77)) (-2318 (((-112) (-656 (-792 |#1| (-878 |#2|)))) 26)) (-2720 (((-656 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|)))) (-656 (-792 |#1| (-878 |#2|))) (-112)) 102)) (-2427 (((-656 (-1067 |#1| |#2|)) (-656 (-792 |#1| (-878 |#2|))) (-112)) 76)) (-2445 (((-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|)))) 30)) (-3386 (((-3 (-656 (-792 |#1| (-878 |#2|))) "failed") (-656 (-792 |#1| (-878 |#2|)))) 29))) +(((-640 |#1| |#2|) (-10 -7 (-15 -2318 ((-112) (-656 (-792 |#1| (-878 |#2|))))) (-15 -3386 ((-3 (-656 (-792 |#1| (-878 |#2|))) "failed") (-656 (-792 |#1| (-878 |#2|))))) (-15 -2445 ((-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|))))) (-15 -2427 ((-656 (-1067 |#1| |#2|)) (-656 (-792 |#1| (-878 |#2|))) (-112))) (-15 -2720 ((-656 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|)))) (-656 (-792 |#1| (-878 |#2|))) (-112))) (-15 -3668 ((-656 (-1067 |#1| |#2|)) (-656 (-792 |#1| (-878 |#2|))) (-112))) (-15 -3668 ((-656 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|)))) (-656 (-792 |#1| (-878 |#2|))) (-112)))) (-464) (-656 (-1197))) (T -640)) +((-3668 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1167 *5 (-543 (-878 *6)) (-878 *6) (-792 *5 (-878 *6))))) (-5 *1 (-640 *5 *6)))) (-3668 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-640 *5 *6)))) (-2720 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1167 *5 (-543 (-878 *6)) (-878 *6) (-792 *5 (-878 *6))))) (-5 *1 (-640 *5 *6)))) (-2427 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-640 *5 *6)))) (-2445 (*1 *2 *2) (-12 (-5 *2 (-656 (-792 *3 (-878 *4)))) (-4 *3 (-464)) (-14 *4 (-656 (-1197))) (-5 *1 (-640 *3 *4)))) (-3386 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-792 *3 (-878 *4)))) (-4 *3 (-464)) (-14 *4 (-656 (-1197))) (-5 *1 (-640 *3 *4)))) (-2318 (*1 *2 *3) (-12 (-5 *3 (-656 (-792 *4 (-878 *5)))) (-4 *4 (-464)) (-14 *5 (-656 (-1197))) (-5 *2 (-112)) (-5 *1 (-640 *4 *5))))) +(-10 -7 (-15 -2318 ((-112) (-656 (-792 |#1| (-878 |#2|))))) (-15 -3386 ((-3 (-656 (-792 |#1| (-878 |#2|))) "failed") (-656 (-792 |#1| (-878 |#2|))))) (-15 -2445 ((-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|))))) (-15 -2427 ((-656 (-1067 |#1| |#2|)) (-656 (-792 |#1| (-878 |#2|))) (-112))) (-15 -2720 ((-656 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|)))) (-656 (-792 |#1| (-878 |#2|))) (-112))) (-15 -3668 ((-656 (-1067 |#1| |#2|)) (-656 (-792 |#1| (-878 |#2|))) (-112))) (-15 -3668 ((-656 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|)))) (-656 (-792 |#1| (-878 |#2|))) (-112)))) +((-4024 (($ $) 38)) (-3900 (($ $) 21)) (-4005 (($ $) 37)) (-3876 (($ $) 22)) (-4049 (($ $) 36)) (-3919 (($ $) 23)) (-1600 (($) 48)) (-3744 (($ $) 45)) (-3850 (($ $) 17)) (-4003 (($ $ (-1113 $)) 7) (($ $ (-1197)) 6)) (-4103 (($ $) 46)) (-3826 (($ $) 15)) (-3863 (($ $) 16)) (-4060 (($ $) 35)) (-3929 (($ $) 24)) (-4036 (($ $) 34)) (-3909 (($ $) 25)) (-4013 (($ $) 33)) (-3888 (($ $) 26)) (-2790 (($ $) 44)) (-3960 (($ $) 32)) (-4070 (($ $) 43)) (-3937 (($ $) 31)) (-2814 (($ $) 42)) (-3982 (($ $) 30)) (-4387 (($ $) 41)) (-3994 (($ $) 29)) (-2802 (($ $) 40)) (-3973 (($ $) 28)) (-4082 (($ $) 39)) (-3950 (($ $) 27)) (-3505 (($ $) 19)) (-2967 (($ $) 20)) (-2437 (($ $) 18)) (** (($ $ $) 47))) (((-641) (-141)) (T -641)) -((-2894 (*1 *1 *1) (-4 *1 (-641))) (-3588 (*1 *1 *1) (-4 *1 (-641))) (-2643 (*1 *1 *1) (-4 *1 (-641))) (-3851 (*1 *1 *1) (-4 *1 (-641))) (-3864 (*1 *1 *1) (-4 *1 (-641))) (-3827 (*1 *1 *1) (-4 *1 (-641)))) -(-13 (-978) (-1223) (-10 -8 (-15 -2894 ($ $)) (-15 -3588 ($ $)) (-15 -2643 ($ $)) (-15 -3851 ($ $)) (-15 -3864 ($ $)) (-15 -3827 ($ $)))) +((-2967 (*1 *1 *1) (-4 *1 (-641))) (-3505 (*1 *1 *1) (-4 *1 (-641))) (-2437 (*1 *1 *1) (-4 *1 (-641))) (-3850 (*1 *1 *1) (-4 *1 (-641))) (-3863 (*1 *1 *1) (-4 *1 (-641))) (-3826 (*1 *1 *1) (-4 *1 (-641)))) +(-13 (-978) (-1223) (-10 -8 (-15 -2967 ($ $)) (-15 -3505 ($ $)) (-15 -2437 ($ $)) (-15 -3850 ($ $)) (-15 -3863 ($ $)) (-15 -3826 ($ $)))) (((-35) . T) ((-95) . T) ((-294) . T) ((-505) . T) ((-978) . T) ((-1223) . T) ((-1226) . T)) -((-1777 (((-115) (-115)) 88)) (-3851 ((|#2| |#2|) 28)) (-3948 ((|#2| |#2| (-1113 |#2|)) 84) ((|#2| |#2| (-1197)) 50)) (-3827 ((|#2| |#2|) 27)) (-3864 ((|#2| |#2|) 29)) (-2468 (((-112) (-115)) 33)) (-3588 ((|#2| |#2|) 24)) (-2894 ((|#2| |#2|) 26)) (-2643 ((|#2| |#2|) 25))) -(((-642 |#1| |#2|) (-10 -7 (-15 -2468 ((-112) (-115))) (-15 -1777 ((-115) (-115))) (-15 -2894 (|#2| |#2|)) (-15 -3588 (|#2| |#2|)) (-15 -2643 (|#2| |#2|)) (-15 -3851 (|#2| |#2|)) (-15 -3827 (|#2| |#2|)) (-15 -3864 (|#2| |#2|)) (-15 -3948 (|#2| |#2| (-1197))) (-15 -3948 (|#2| |#2| (-1113 |#2|)))) (-568) (-13 (-442 |#1|) (-1023) (-1223))) (T -642)) -((-3948 (*1 *2 *2 *3) (-12 (-5 *3 (-1113 *2)) (-4 *2 (-13 (-442 *4) (-1023) (-1223))) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)))) (-3948 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)) (-4 *2 (-13 (-442 *4) (-1023) (-1223))))) (-3864 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023) (-1223))))) (-3827 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023) (-1223))))) (-3851 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023) (-1223))))) (-2643 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023) (-1223))))) (-3588 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023) (-1223))))) (-2894 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023) (-1223))))) (-1777 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-642 *3 *4)) (-4 *4 (-13 (-442 *3) (-1023) (-1223))))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-642 *4 *5)) (-4 *5 (-13 (-442 *4) (-1023) (-1223)))))) -(-10 -7 (-15 -2468 ((-112) (-115))) (-15 -1777 ((-115) (-115))) (-15 -2894 (|#2| |#2|)) (-15 -3588 (|#2| |#2|)) (-15 -2643 (|#2| |#2|)) (-15 -3851 (|#2| |#2|)) (-15 -3827 (|#2| |#2|)) (-15 -3864 (|#2| |#2|)) (-15 -3948 (|#2| |#2| (-1197))) (-15 -3948 (|#2| |#2| (-1113 |#2|)))) -((-4399 (((-493 |#1| |#2|) (-253 |#1| |#2|)) 63)) (-4384 (((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 89)) (-3097 (((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-878 |#1|)) 91) (((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-878 |#1|)) 90)) (-2619 (((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|))) 134)) (-1841 (((-656 (-493 |#1| |#2|)) (-878 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 104)) (-3386 (((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|))) 145)) (-3122 (((-1288 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|))) 68)) (-3312 (((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 47)) (-1437 (((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|))) 60)) (-1760 (((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|))) 112))) -(((-643 |#1| |#2|) (-10 -7 (-15 -2619 ((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|)))) (-15 -3386 ((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|)))) (-15 -4384 ((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3097 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-878 |#1|))) (-15 -3097 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-878 |#1|))) (-15 -3312 ((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3122 ((-1288 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|)))) (-15 -1760 ((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -1841 ((-656 (-493 |#1| |#2|)) (-878 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -1437 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -4399 ((-493 |#1| |#2|) (-253 |#1| |#2|)))) (-656 (-1197)) (-464)) (T -643)) -((-4399 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *2 (-493 *4 *5)) (-5 *1 (-643 *4 *5)))) (-1437 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))) (-1841 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-878 *4)) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))) (-1760 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-253 *5 *6))) (-4 *6 (-464)) (-5 *2 (-253 *5 *6)) (-14 *5 (-656 (-1197))) (-5 *1 (-643 *5 *6)))) (-3122 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) (-14 *5 (-656 (-1197))) (-4 *6 (-464)) (-5 *2 (-1288 *6)) (-5 *1 (-643 *5 *6)))) (-3312 (*1 *2 *2) (-12 (-5 *2 (-656 (-493 *3 *4))) (-14 *3 (-656 (-1197))) (-4 *4 (-464)) (-5 *1 (-643 *3 *4)))) (-3097 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-878 *5)) (-14 *5 (-656 (-1197))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) (-4 *6 (-464)))) (-3097 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-878 *5)) (-14 *5 (-656 (-1197))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) (-4 *6 (-464)))) (-4384 (*1 *2 *3) (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *2 (-656 (-253 *4 *5))) (-5 *1 (-643 *4 *5)))) (-3386 (*1 *2 *3) (-12 (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |glbase| (-656 (-253 *4 *5))) (|:| |glval| (-656 (-576))))) (-5 *1 (-643 *4 *5)) (-5 *3 (-656 (-253 *4 *5))))) (-2619 (*1 *2 *3) (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |gblist| (-656 (-253 *4 *5))) (|:| |gvlist| (-656 (-576))))) (-5 *1 (-643 *4 *5))))) -(-10 -7 (-15 -2619 ((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|)))) (-15 -3386 ((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|)))) (-15 -4384 ((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3097 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-878 |#1|))) (-15 -3097 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-878 |#1|))) (-15 -3312 ((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3122 ((-1288 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|)))) (-15 -1760 ((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -1841 ((-656 (-493 |#1| |#2|)) (-878 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -1437 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -4399 ((-493 |#1| |#2|) (-253 |#1| |#2|)))) -((-3489 (((-112) $ $) NIL (-2760 (|has| (-52) (-102)) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-102))))) (-4128 (($) NIL) (($ (-656 (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))))) NIL)) (-2047 (((-1293) $ (-1179) (-1179)) NIL (|has| $ (-6 -4466)))) (-1808 (((-112) $ (-783)) NIL)) (-3756 (((-52) $ (-1179) (-52)) 16) (((-52) $ (-1197) (-52)) 17)) (-2300 (($ (-1 (-112) (-2 (|:| -4301 (-1179)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) (-2 (|:| -4301 (-1179)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465)))) (-2197 (((-3 (-52) "failed") (-1179) $) NIL)) (-3886 (($) NIL T CONST)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-1121))))) (-1671 (($ (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) $) NIL (|has| $ (-6 -4465))) (($ (-1 (-112) (-2 (|:| -4301 (-1179)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465))) (((-3 (-52) "failed") (-1179) $) NIL)) (-3946 (($ (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-1121)))) (($ (-1 (-112) (-2 (|:| -4301 (-1179)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465)))) (-3686 (((-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-1 (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1179)) (|:| -4440 (-52)))) $ (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1179)) (|:| -4440 (-52)))) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-1121)))) (((-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-1 (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1179)) (|:| -4440 (-52)))) $ (-2 (|:| -4301 (-1179)) (|:| -4440 (-52)))) NIL (|has| $ (-6 -4465))) (((-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-1 (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1179)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465)))) (-4335 (((-52) $ (-1179) (-52)) NIL (|has| $ (-6 -4466)))) (-4274 (((-52) $ (-1179)) NIL)) (-3966 (((-656 (-2 (|:| -4301 (-1179)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465))) (((-656 (-52)) $) NIL (|has| $ (-6 -4465)))) (-3982 (($ $) NIL)) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-1179) $) NIL (|has| (-1179) (-861)))) (-2014 (((-656 (-2 (|:| -4301 (-1179)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465))) (((-656 (-52)) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-1121)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-52) (-1121))))) (-2137 (((-1179) $) NIL (|has| (-1179) (-861)))) (-4323 (($ (-1 (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1179)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1179)) (|:| -4440 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2032 (($ (-400)) 9)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL (-2760 (|has| (-52) (-1121)) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-1121))))) (-3203 (((-656 (-1179)) $) NIL)) (-4008 (((-112) (-1179) $) NIL)) (-1597 (((-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) $) NIL)) (-1901 (($ (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) $) NIL)) (-4234 (((-656 (-1179)) $) NIL)) (-3354 (((-112) (-1179) $) NIL)) (-1450 (((-1141) $) NIL (-2760 (|has| (-52) (-1121)) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-1121))))) (-3581 (((-52) $) NIL (|has| (-1179) (-861)))) (-1541 (((-3 (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) "failed") (-1 (-112) (-2 (|:| -4301 (-1179)) (|:| -4440 (-52)))) $) NIL)) (-4046 (($ $ (-52)) NIL (|has| $ (-6 -4466)))) (-3449 (((-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) $) NIL)) (-4320 (((-112) (-1 (-112) (-2 (|:| -4301 (-1179)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 (-2 (|:| -4301 (-1179)) (|:| -4440 (-52)))))) NIL (-12 (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-319 (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-1121)))) (($ $ (-304 (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))))) NIL (-12 (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-319 (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-1121)))) (($ $ (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1179)) (|:| -4440 (-52)))) NIL (-12 (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-319 (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-1121)))) (($ $ (-656 (-2 (|:| -4301 (-1179)) (|:| -4440 (-52)))) (-656 (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))))) NIL (-12 (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-319 (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-1121)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-52) (-1121))))) (-2281 (((-656 (-52)) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 (((-52) $ (-1179)) 14) (((-52) $ (-1179) (-52)) NIL) (((-52) $ (-1197)) 15)) (-2271 (($) NIL) (($ (-656 (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))))) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4301 (-1179)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465))) (((-783) (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-1121)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-52) (-1121)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4172 (((-548) $) NIL (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-626 (-548))))) (-3582 (($ (-656 (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))))) NIL)) (-3570 (((-876) $) NIL (-2760 (|has| (-52) (-625 (-876))) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-625 (-876)))))) (-4055 (((-112) $ $) NIL (-2760 (|has| (-52) (-102)) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-102))))) (-3943 (($ (-656 (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))))) NIL)) (-3321 (((-112) (-1 (-112) (-2 (|:| -4301 (-1179)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) NIL (-2760 (|has| (-52) (-102)) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 (-52))) (-102))))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-644) (-13 (-1214 (-1179) (-52)) (-296 (-1197) (-52)) (-10 -8 (-15 -2032 ($ (-400))) (-15 -3982 ($ $)) (-15 -3756 ((-52) $ (-1197) (-52)))))) (T -644)) -((-2032 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-644)))) (-3982 (*1 *1 *1) (-5 *1 (-644))) (-3756 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1197)) (-5 *1 (-644))))) -(-13 (-1214 (-1179) (-52)) (-296 (-1197) (-52)) (-10 -8 (-15 -2032 ($ (-400))) (-15 -3982 ($ $)) (-15 -3756 ((-52) $ (-1197) (-52))))) -((-3057 (($ $ |#2|) 10))) -(((-645 |#1| |#2|) (-10 -8 (-15 -3057 (|#1| |#1| |#2|))) (-646 |#2|) (-174)) (T -645)) -NIL -(-10 -8 (-15 -3057 (|#1| |#1| |#2|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3582 (($ $ $) 34)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2925 (((-112) $ $) 8)) (-3057 (($ $ |#1|) 33 (|has| |#1| (-374)))) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +((-1776 (((-115) (-115)) 88)) (-3850 ((|#2| |#2|) 28)) (-4003 ((|#2| |#2| (-1113 |#2|)) 84) ((|#2| |#2| (-1197)) 50)) (-3826 ((|#2| |#2|) 27)) (-3863 ((|#2| |#2|) 29)) (-1349 (((-112) (-115)) 33)) (-3505 ((|#2| |#2|) 24)) (-2967 ((|#2| |#2|) 26)) (-2437 ((|#2| |#2|) 25))) +(((-642 |#1| |#2|) (-10 -7 (-15 -1349 ((-112) (-115))) (-15 -1776 ((-115) (-115))) (-15 -2967 (|#2| |#2|)) (-15 -3505 (|#2| |#2|)) (-15 -2437 (|#2| |#2|)) (-15 -3850 (|#2| |#2|)) (-15 -3826 (|#2| |#2|)) (-15 -3863 (|#2| |#2|)) (-15 -4003 (|#2| |#2| (-1197))) (-15 -4003 (|#2| |#2| (-1113 |#2|)))) (-568) (-13 (-442 |#1|) (-1023) (-1223))) (T -642)) +((-4003 (*1 *2 *2 *3) (-12 (-5 *3 (-1113 *2)) (-4 *2 (-13 (-442 *4) (-1023) (-1223))) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)))) (-4003 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)) (-4 *2 (-13 (-442 *4) (-1023) (-1223))))) (-3863 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023) (-1223))))) (-3826 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023) (-1223))))) (-3850 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023) (-1223))))) (-2437 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023) (-1223))))) (-3505 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023) (-1223))))) (-2967 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023) (-1223))))) (-1776 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-642 *3 *4)) (-4 *4 (-13 (-442 *3) (-1023) (-1223))))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-642 *4 *5)) (-4 *5 (-13 (-442 *4) (-1023) (-1223)))))) +(-10 -7 (-15 -1349 ((-112) (-115))) (-15 -1776 ((-115) (-115))) (-15 -2967 (|#2| |#2|)) (-15 -3505 (|#2| |#2|)) (-15 -2437 (|#2| |#2|)) (-15 -3850 (|#2| |#2|)) (-15 -3826 (|#2| |#2|)) (-15 -3863 (|#2| |#2|)) (-15 -4003 (|#2| |#2| (-1197))) (-15 -4003 (|#2| |#2| (-1113 |#2|)))) +((-1539 (((-493 |#1| |#2|) (-253 |#1| |#2|)) 63)) (-2591 (((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 89)) (-2286 (((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-878 |#1|)) 91) (((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-878 |#1|)) 90)) (-2225 (((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|))) 134)) (-3333 (((-656 (-493 |#1| |#2|)) (-878 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 104)) (-2124 (((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|))) 145)) (-2519 (((-1288 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|))) 68)) (-2623 (((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 47)) (-2254 (((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|))) 60)) (-1848 (((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|))) 112))) +(((-643 |#1| |#2|) (-10 -7 (-15 -2225 ((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|)))) (-15 -2124 ((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|)))) (-15 -2591 ((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -2286 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-878 |#1|))) (-15 -2286 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-878 |#1|))) (-15 -2623 ((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -2519 ((-1288 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|)))) (-15 -1848 ((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -3333 ((-656 (-493 |#1| |#2|)) (-878 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -2254 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -1539 ((-493 |#1| |#2|) (-253 |#1| |#2|)))) (-656 (-1197)) (-464)) (T -643)) +((-1539 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *2 (-493 *4 *5)) (-5 *1 (-643 *4 *5)))) (-2254 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))) (-3333 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-878 *4)) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))) (-1848 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-253 *5 *6))) (-4 *6 (-464)) (-5 *2 (-253 *5 *6)) (-14 *5 (-656 (-1197))) (-5 *1 (-643 *5 *6)))) (-2519 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) (-14 *5 (-656 (-1197))) (-4 *6 (-464)) (-5 *2 (-1288 *6)) (-5 *1 (-643 *5 *6)))) (-2623 (*1 *2 *2) (-12 (-5 *2 (-656 (-493 *3 *4))) (-14 *3 (-656 (-1197))) (-4 *4 (-464)) (-5 *1 (-643 *3 *4)))) (-2286 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-878 *5)) (-14 *5 (-656 (-1197))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) (-4 *6 (-464)))) (-2286 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-878 *5)) (-14 *5 (-656 (-1197))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) (-4 *6 (-464)))) (-2591 (*1 *2 *3) (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *2 (-656 (-253 *4 *5))) (-5 *1 (-643 *4 *5)))) (-2124 (*1 *2 *3) (-12 (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |glbase| (-656 (-253 *4 *5))) (|:| |glval| (-656 (-576))))) (-5 *1 (-643 *4 *5)) (-5 *3 (-656 (-253 *4 *5))))) (-2225 (*1 *2 *3) (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |gblist| (-656 (-253 *4 *5))) (|:| |gvlist| (-656 (-576))))) (-5 *1 (-643 *4 *5))))) +(-10 -7 (-15 -2225 ((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|)))) (-15 -2124 ((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|)))) (-15 -2591 ((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -2286 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-878 |#1|))) (-15 -2286 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-878 |#1|))) (-15 -2623 ((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -2519 ((-1288 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|)))) (-15 -1848 ((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -3333 ((-656 (-493 |#1| |#2|)) (-878 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -2254 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -1539 ((-493 |#1| |#2|) (-253 |#1| |#2|)))) +((-3488 (((-112) $ $) NIL (-2759 (|has| (-52) (-102)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-102))))) (-4127 (($) NIL) (($ (-656 (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))))) NIL)) (-1512 (((-1293) $ (-1179) (-1179)) NIL (|has| $ (-6 -4465)))) (-4264 (((-112) $ (-783)) NIL)) (-3755 (((-52) $ (-1179) (-52)) 16) (((-52) $ (-1197) (-52)) 17)) (-2123 (($ (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-1974 (($ (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-2198 (((-3 (-52) "failed") (-1179) $) NIL)) (-3404 (($) NIL T CONST)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-1121))))) (-2172 (($ (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-3 (-52) "failed") (-1179) $) NIL)) (-3945 (($ (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-1121)))) (($ (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-1 (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1179)) (|:| -4439 (-52)))) $ (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1179)) (|:| -4439 (-52)))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-1121)))) (((-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-1 (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1179)) (|:| -4439 (-52)))) $ (-2 (|:| -4300 (-1179)) (|:| -4439 (-52)))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-1 (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1179)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-4332 (((-52) $ (-1179) (-52)) NIL (|has| $ (-6 -4465)))) (-4272 (((-52) $ (-1179)) NIL)) (-3965 (((-656 (-2 (|:| -4300 (-1179)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-656 (-52)) $) NIL (|has| $ (-6 -4464)))) (-3032 (($ $) NIL)) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-1179) $) NIL (|has| (-1179) (-861)))) (-2425 (((-656 (-2 (|:| -4300 (-1179)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-656 (-52)) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-1121)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-52) (-1121))))) (-4280 (((-1179) $) NIL (|has| (-1179) (-861)))) (-4326 (($ (-1 (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1179)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4465))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1179)) (|:| -4439 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2033 (($ (-400)) 9)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL (-2759 (|has| (-52) (-1121)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-1121))))) (-3200 (((-656 (-1179)) $) NIL)) (-3259 (((-112) (-1179) $) NIL)) (-2722 (((-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) $) NIL)) (-2597 (($ (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) $) NIL)) (-3669 (((-656 (-1179)) $) NIL)) (-3090 (((-112) (-1179) $) NIL)) (-1450 (((-1141) $) NIL (-2759 (|has| (-52) (-1121)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-1121))))) (-3580 (((-52) $) NIL (|has| (-1179) (-861)))) (-3434 (((-3 (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) "failed") (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4439 (-52)))) $) NIL)) (-2304 (($ $ (-52)) NIL (|has| $ (-6 -4465)))) (-1541 (((-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) $) NIL)) (-3252 (((-112) (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 (-2 (|:| -4300 (-1179)) (|:| -4439 (-52)))))) NIL (-12 (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-319 (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))))) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-1121)))) (($ $ (-304 (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))))) NIL (-12 (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-319 (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))))) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-1121)))) (($ $ (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1179)) (|:| -4439 (-52)))) NIL (-12 (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-319 (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))))) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-1121)))) (($ $ (-656 (-2 (|:| -4300 (-1179)) (|:| -4439 (-52)))) (-656 (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))))) NIL (-12 (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-319 (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))))) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-1121)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-52) (-1121))))) (-3207 (((-656 (-52)) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 (((-52) $ (-1179)) 14) (((-52) $ (-1179) (-52)) NIL) (((-52) $ (-1197)) 15)) (-3101 (($) NIL) (($ (-656 (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))))) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-1121)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-52) (-1121)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))))) NIL)) (-3569 (((-876) $) NIL (-2759 (|has| (-52) (-625 (-876))) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-625 (-876)))))) (-2399 (((-112) $ $) NIL (-2759 (|has| (-52) (-102)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-102))))) (-3972 (($ (-656 (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))))) NIL)) (-2708 (((-112) (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) NIL (-2759 (|has| (-52) (-102)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (-102))))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-644) (-13 (-1214 (-1179) (-52)) (-296 (-1197) (-52)) (-10 -8 (-15 -2033 ($ (-400))) (-15 -3032 ($ $)) (-15 -3755 ((-52) $ (-1197) (-52)))))) (T -644)) +((-2033 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-644)))) (-3032 (*1 *1 *1) (-5 *1 (-644))) (-3755 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1197)) (-5 *1 (-644))))) +(-13 (-1214 (-1179) (-52)) (-296 (-1197) (-52)) (-10 -8 (-15 -2033 ($ (-400))) (-15 -3032 ($ $)) (-15 -3755 ((-52) $ (-1197) (-52))))) +((-3056 (($ $ |#2|) 10))) +(((-645 |#1| |#2|) (-10 -8 (-15 -3056 (|#1| |#1| |#2|))) (-646 |#2|) (-174)) (T -645)) +NIL +(-10 -8 (-15 -3056 (|#1| |#1| |#2|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3581 (($ $ $) 34)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2924 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 33 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) (((-646 |#1|) (-141) (-174)) (T -646)) -((-3582 (*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)))) (-3057 (*1 *1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) -(-13 (-729 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3582 ($ $ $)) (IF (|has| |t#1| (-374)) (-15 -3057 ($ $ |t#1|)) |%noBranch|))) +((-3581 (*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)))) (-3056 (*1 *1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) +(-13 (-729 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3581 ($ $ $)) (IF (|has| |t#1| (-374)) (-15 -3056 ($ $ |t#1|)) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2778 (((-3 $ "failed")) NIL (-2760 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4367 (((-3 $ "failed") $ $) NIL)) (-3210 (((-1288 (-701 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-1288 (-701 |#1|)) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-2385 (((-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3886 (($) NIL T CONST)) (-3251 (((-3 (-2 (|:| |particular| $) (|:| -1593 (-656 $))) "failed")) NIL (-2760 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3260 (((-3 $ "failed")) NIL (-2760 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2191 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3331 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-3352 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-2454 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1979 (((-1193 (-971 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-3377 (($ $ (-940)) NIL)) (-1738 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-3471 (((-1193 |#1|) $) NIL (-2760 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2267 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-2654 (((-1193 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-2002 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4119 (($ (-1288 |#1|)) NIL (|has| |#2| (-429 |#1|))) (($ (-1288 |#1|) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-1561 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3734 (((-940)) NIL (|has| |#2| (-378 |#1|)))) (-1576 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4017 (($ $ (-940)) NIL)) (-2035 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1706 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1758 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3590 (((-3 (-2 (|:| |particular| $) (|:| -1593 (-656 $))) "failed")) NIL (-2760 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1778 (((-3 $ "failed")) NIL (-2760 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1670 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-2756 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2903 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-2941 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3548 (((-1193 (-971 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-1783 (($ $ (-940)) NIL)) (-3394 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-4164 (((-1193 |#1|) $) NIL (-2760 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3814 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3145 (((-1193 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-1707 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3699 (((-1179) $) NIL)) (-2083 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3897 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3998 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1450 (((-1141) $) NIL)) (-2522 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2797 ((|#1| $ (-576)) NIL (|has| |#2| (-429 |#1|)))) (-4152 (((-701 |#1|) (-1288 $)) NIL (|has| |#2| (-429 |#1|))) (((-1288 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1288 $) (-1288 $)) NIL (|has| |#2| (-378 |#1|))) (((-1288 |#1|) $ (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-4172 (($ (-1288 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-1288 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-4034 (((-656 (-971 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-656 (-971 |#1|)) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-2076 (($ $ $) NIL)) (-2195 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3570 (((-876) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-4055 (((-112) $ $) NIL)) (-1593 (((-1288 $)) NIL (|has| |#2| (-429 |#1|)))) (-4208 (((-656 (-1288 |#1|))) NIL (-2760 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3790 (($ $ $ $) NIL)) (-1511 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3569 (($ (-701 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-4064 (($ $ $) NIL)) (-3689 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3818 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4395 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2721 (($) 19 T CONST)) (-2925 (((-112) $ $) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) 20)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-647 |#1| |#2|) (-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -3570 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) (-174) (-756 |#1|)) (T -647)) -((-3570 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-647 *3 *2)) (-4 *2 (-756 *3))))) -(-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -3570 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) -((-3339 (((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1179)) 106) (((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|))) 131)) (-2282 (((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|))) 136))) -(((-648 |#1| |#2|) (-10 -7 (-15 -3339 ((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|)))) (-15 -2282 ((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|)))) (-15 -3339 ((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1179)))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -648)) -((-3339 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-304 *3)) (-5 *5 (-1179)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-855 *3)) (-5 *1 (-648 *6 *3)))) (-2282 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-304 (-845 *3))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-845 *3)) (-5 *1 (-648 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-3339 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-855 *3))) (-4 *3 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (-855 *3) (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) "failed")) (-5 *1 (-648 *5 *3))))) -(-10 -7 (-15 -3339 ((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|)))) (-15 -2282 ((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|)))) (-15 -3339 ((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1179)))) -((-3339 (((-3 (-855 (-419 (-971 |#1|))) "failed") (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))) (-1179)) 86) (((-3 (-855 (-419 (-971 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed"))) "failed") (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|)))) 20) (((-3 (-855 (-419 (-971 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed"))) "failed") (-419 (-971 |#1|)) (-304 (-855 (-971 |#1|)))) 35)) (-2282 (((-845 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|)))) 23) (((-845 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-304 (-845 (-971 |#1|)))) 43))) -(((-649 |#1|) (-10 -7 (-15 -3339 ((-3 (-855 (-419 (-971 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed"))) "failed") (-419 (-971 |#1|)) (-304 (-855 (-971 |#1|))))) (-15 -3339 ((-3 (-855 (-419 (-971 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed"))) "failed") (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))))) (-15 -2282 ((-845 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-304 (-845 (-971 |#1|))))) (-15 -2282 ((-845 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))))) (-15 -3339 ((-3 (-855 (-419 (-971 |#1|))) "failed") (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))) (-1179)))) (-464)) (T -649)) -((-3339 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-304 (-419 (-971 *6)))) (-5 *5 (-1179)) (-5 *3 (-419 (-971 *6))) (-4 *6 (-464)) (-5 *2 (-855 *3)) (-5 *1 (-649 *6)))) (-2282 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-419 (-971 *5)))) (-5 *3 (-419 (-971 *5))) (-4 *5 (-464)) (-5 *2 (-845 *3)) (-5 *1 (-649 *5)))) (-2282 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-845 (-971 *5)))) (-4 *5 (-464)) (-5 *2 (-845 (-419 (-971 *5)))) (-5 *1 (-649 *5)) (-5 *3 (-419 (-971 *5))))) (-3339 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-419 (-971 *5)))) (-5 *3 (-419 (-971 *5))) (-4 *5 (-464)) (-5 *2 (-3 (-855 *3) (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) "failed")) (-5 *1 (-649 *5)))) (-3339 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-855 (-971 *5)))) (-4 *5 (-464)) (-5 *2 (-3 (-855 (-419 (-971 *5))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 *5))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 *5))) "failed"))) "failed")) (-5 *1 (-649 *5)) (-5 *3 (-419 (-971 *5)))))) -(-10 -7 (-15 -3339 ((-3 (-855 (-419 (-971 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed"))) "failed") (-419 (-971 |#1|)) (-304 (-855 (-971 |#1|))))) (-15 -3339 ((-3 (-855 (-419 (-971 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed"))) "failed") (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))))) (-15 -2282 ((-845 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-304 (-845 (-971 |#1|))))) (-15 -2282 ((-845 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))))) (-15 -3339 ((-3 (-855 (-419 (-971 |#1|))) "failed") (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))) (-1179)))) -((-1931 (((-3 (-1288 (-419 |#1|)) "failed") (-1288 |#2|) |#2|) 64 (-2663 (|has| |#1| (-374)))) (((-3 (-1288 |#1|) "failed") (-1288 |#2|) |#2|) 49 (|has| |#1| (-374)))) (-2676 (((-112) (-1288 |#2|)) 33)) (-3761 (((-3 (-1288 |#1|) "failed") (-1288 |#2|)) 40))) -(((-650 |#1| |#2|) (-10 -7 (-15 -2676 ((-112) (-1288 |#2|))) (-15 -3761 ((-3 (-1288 |#1|) "failed") (-1288 |#2|))) (IF (|has| |#1| (-374)) (-15 -1931 ((-3 (-1288 |#1|) "failed") (-1288 |#2|) |#2|)) (-15 -1931 ((-3 (-1288 (-419 |#1|)) "failed") (-1288 |#2|) |#2|)))) (-568) (-13 (-1070) (-651 |#1|))) (T -650)) -((-1931 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 *5))) (-2663 (-4 *5 (-374))) (-4 *5 (-568)) (-5 *2 (-1288 (-419 *5))) (-5 *1 (-650 *5 *4)))) (-1931 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 *5))) (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-1288 *5)) (-5 *1 (-650 *5 *4)))) (-3761 (*1 *2 *3) (|partial| -12 (-5 *3 (-1288 *5)) (-4 *5 (-13 (-1070) (-651 *4))) (-4 *4 (-568)) (-5 *2 (-1288 *4)) (-5 *1 (-650 *4 *5)))) (-2676 (*1 *2 *3) (-12 (-5 *3 (-1288 *5)) (-4 *5 (-13 (-1070) (-651 *4))) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-650 *4 *5))))) -(-10 -7 (-15 -2676 ((-112) (-1288 |#2|))) (-15 -3761 ((-3 (-1288 |#1|) "failed") (-1288 |#2|))) (IF (|has| |#1| (-374)) (-15 -1931 ((-3 (-1288 |#1|) "failed") (-1288 |#2|) |#2|)) (-15 -1931 ((-3 (-1288 (-419 |#1|)) "failed") (-1288 |#2|) |#2|)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-2204 (((-701 |#1|) (-701 $)) 30) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 29)) (-3913 (((-701 |#1|) (-1288 $)) 32) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 31)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-4346 (((-3 $ "failed")) NIL (-2759 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2428 (((-3 $ "failed") $ $) NIL)) (-4142 (((-1288 (-701 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-1288 (-701 |#1|)) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-1717 (((-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3404 (($) NIL T CONST)) (-3320 (((-3 (-2 (|:| |particular| $) (|:| -2675 (-656 $))) "failed")) NIL (-2759 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3382 (((-3 $ "failed")) NIL (-2759 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3535 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-2834 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-3068 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-4339 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2064 (((-1193 (-971 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-2029 (($ $ (-940)) NIL)) (-1641 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-1735 (((-1193 |#1|) $) NIL (-2759 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3057 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-2531 (((-1193 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-2306 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1819 (($ (-1288 |#1|)) NIL (|has| |#2| (-429 |#1|))) (($ (-1288 |#1|) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3673 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3733 (((-940)) NIL (|has| |#2| (-378 |#1|)))) (-3810 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3343 (($ $ (-940)) NIL)) (-1413 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2515 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1826 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3530 (((-3 (-2 (|:| |particular| $) (|:| -2675 (-656 $))) "failed")) NIL (-2759 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3995 (((-3 $ "failed")) NIL (-2759 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2160 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-4185 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-3070 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3334 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4369 (((-1193 (-971 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-4050 (($ $ (-940)) NIL)) (-2218 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-4218 (((-1193 |#1|) $) NIL (-2759 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2004 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-1528 (((-1193 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-2524 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2046 (((-1179) $) NIL)) (-1821 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3514 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3175 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1450 (((-1141) $) NIL)) (-3827 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2796 ((|#1| $ (-576)) NIL (|has| |#2| (-429 |#1|)))) (-4096 (((-701 |#1|) (-1288 $)) NIL (|has| |#2| (-429 |#1|))) (((-1288 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1288 $) (-1288 $)) NIL (|has| |#2| (-378 |#1|))) (((-1288 |#1|) $ (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-4171 (($ (-1288 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-1288 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-2220 (((-656 (-971 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-656 (-971 |#1|)) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-1758 (($ $ $) NIL)) (-3583 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3569 (((-876) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2399 (((-112) $ $) NIL)) (-2675 (((-1288 $)) NIL (|has| |#2| (-429 |#1|)))) (-1484 (((-656 (-1288 |#1|))) NIL (-2759 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1783 (($ $ $ $) NIL)) (-4354 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3568 (($ (-701 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-2487 (($ $ $) NIL)) (-3233 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4033 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2693 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2721 (($) 19 T CONST)) (-2924 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) 20)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-647 |#1| |#2|) (-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -3569 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) (-174) (-756 |#1|)) (T -647)) +((-3569 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-647 *3 *2)) (-4 *2 (-756 *3))))) +(-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -3569 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) +((-2925 (((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1179)) 106) (((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|))) 131)) (-3215 (((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|))) 136))) +(((-648 |#1| |#2|) (-10 -7 (-15 -2925 ((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|)))) (-15 -3215 ((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|)))) (-15 -2925 ((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1179)))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -648)) +((-2925 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-304 *3)) (-5 *5 (-1179)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-855 *3)) (-5 *1 (-648 *6 *3)))) (-3215 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-304 (-845 *3))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-845 *3)) (-5 *1 (-648 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-2925 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-855 *3))) (-4 *3 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (-855 *3) (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) "failed")) (-5 *1 (-648 *5 *3))))) +(-10 -7 (-15 -2925 ((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|)))) (-15 -3215 ((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|)))) (-15 -2925 ((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1179)))) +((-2925 (((-3 (-855 (-419 (-971 |#1|))) "failed") (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))) (-1179)) 86) (((-3 (-855 (-419 (-971 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed"))) "failed") (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|)))) 20) (((-3 (-855 (-419 (-971 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed"))) "failed") (-419 (-971 |#1|)) (-304 (-855 (-971 |#1|)))) 35)) (-3215 (((-845 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|)))) 23) (((-845 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-304 (-845 (-971 |#1|)))) 43))) +(((-649 |#1|) (-10 -7 (-15 -2925 ((-3 (-855 (-419 (-971 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed"))) "failed") (-419 (-971 |#1|)) (-304 (-855 (-971 |#1|))))) (-15 -2925 ((-3 (-855 (-419 (-971 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed"))) "failed") (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))))) (-15 -3215 ((-845 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-304 (-845 (-971 |#1|))))) (-15 -3215 ((-845 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))))) (-15 -2925 ((-3 (-855 (-419 (-971 |#1|))) "failed") (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))) (-1179)))) (-464)) (T -649)) +((-2925 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-304 (-419 (-971 *6)))) (-5 *5 (-1179)) (-5 *3 (-419 (-971 *6))) (-4 *6 (-464)) (-5 *2 (-855 *3)) (-5 *1 (-649 *6)))) (-3215 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-419 (-971 *5)))) (-5 *3 (-419 (-971 *5))) (-4 *5 (-464)) (-5 *2 (-845 *3)) (-5 *1 (-649 *5)))) (-3215 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-845 (-971 *5)))) (-4 *5 (-464)) (-5 *2 (-845 (-419 (-971 *5)))) (-5 *1 (-649 *5)) (-5 *3 (-419 (-971 *5))))) (-2925 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-419 (-971 *5)))) (-5 *3 (-419 (-971 *5))) (-4 *5 (-464)) (-5 *2 (-3 (-855 *3) (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) "failed")) (-5 *1 (-649 *5)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-855 (-971 *5)))) (-4 *5 (-464)) (-5 *2 (-3 (-855 (-419 (-971 *5))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 *5))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 *5))) "failed"))) "failed")) (-5 *1 (-649 *5)) (-5 *3 (-419 (-971 *5)))))) +(-10 -7 (-15 -2925 ((-3 (-855 (-419 (-971 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed"))) "failed") (-419 (-971 |#1|)) (-304 (-855 (-971 |#1|))))) (-15 -2925 ((-3 (-855 (-419 (-971 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed"))) "failed") (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))))) (-15 -3215 ((-845 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-304 (-845 (-971 |#1|))))) (-15 -3215 ((-845 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))))) (-15 -2925 ((-3 (-855 (-419 (-971 |#1|))) "failed") (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))) (-1179)))) +((-2904 (((-3 (-1288 (-419 |#1|)) "failed") (-1288 |#2|) |#2|) 64 (-2663 (|has| |#1| (-374)))) (((-3 (-1288 |#1|) "failed") (-1288 |#2|) |#2|) 49 (|has| |#1| (-374)))) (-1529 (((-112) (-1288 |#2|)) 33)) (-1496 (((-3 (-1288 |#1|) "failed") (-1288 |#2|)) 40))) +(((-650 |#1| |#2|) (-10 -7 (-15 -1529 ((-112) (-1288 |#2|))) (-15 -1496 ((-3 (-1288 |#1|) "failed") (-1288 |#2|))) (IF (|has| |#1| (-374)) (-15 -2904 ((-3 (-1288 |#1|) "failed") (-1288 |#2|) |#2|)) (-15 -2904 ((-3 (-1288 (-419 |#1|)) "failed") (-1288 |#2|) |#2|)))) (-568) (-13 (-1070) (-651 |#1|))) (T -650)) +((-2904 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 *5))) (-2663 (-4 *5 (-374))) (-4 *5 (-568)) (-5 *2 (-1288 (-419 *5))) (-5 *1 (-650 *5 *4)))) (-2904 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 *5))) (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-1288 *5)) (-5 *1 (-650 *5 *4)))) (-1496 (*1 *2 *3) (|partial| -12 (-5 *3 (-1288 *5)) (-4 *5 (-13 (-1070) (-651 *4))) (-4 *4 (-568)) (-5 *2 (-1288 *4)) (-5 *1 (-650 *4 *5)))) (-1529 (*1 *2 *3) (-12 (-5 *3 (-1288 *5)) (-4 *5 (-13 (-1070) (-651 *4))) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-650 *4 *5))))) +(-10 -7 (-15 -1529 ((-112) (-1288 |#2|))) (-15 -1496 ((-3 (-1288 |#1|) "failed") (-1288 |#2|))) (IF (|has| |#1| (-374)) (-15 -2904 ((-3 (-1288 |#1|) "failed") (-1288 |#2|) |#2|)) (-15 -2904 ((-3 (-1288 (-419 |#1|)) "failed") (-1288 |#2|) |#2|)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-3674 (((-701 |#1|) (-701 $)) 30) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 29)) (-3676 (((-701 |#1|) (-1288 $)) 32) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 31)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) (((-651 |#1|) (-141) (-1070)) (T -651)) -((-3913 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1070)) (-5 *2 (-701 *4)))) (-3913 (*1 *2 *3 *1) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1070)) (-5 *2 (-2 (|:| -2590 (-701 *4)) (|:| |vec| (-1288 *4)))))) (-2204 (*1 *2 *3) (-12 (-5 *3 (-701 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1070)) (-5 *2 (-701 *4)))) (-2204 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *1)) (-5 *4 (-1288 *1)) (-4 *1 (-651 *5)) (-4 *5 (-1070)) (-5 *2 (-2 (|:| -2590 (-701 *5)) (|:| |vec| (-1288 *5))))))) -(-13 (-660 |t#1|) (-10 -8 (-15 -3913 ((-701 |t#1|) (-1288 $))) (-15 -3913 ((-2 (|:| -2590 (-701 |t#1|)) (|:| |vec| (-1288 |t#1|))) (-1288 $) $)) (-15 -2204 ((-701 |t#1|) (-701 $))) (-15 -2204 ((-2 (|:| -2590 (-701 |t#1|)) (|:| |vec| (-1288 |t#1|))) (-701 $) (-1288 $))))) +((-3676 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1070)) (-5 *2 (-701 *4)))) (-3676 (*1 *2 *3 *1) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1070)) (-5 *2 (-2 (|:| -3232 (-701 *4)) (|:| |vec| (-1288 *4)))))) (-3674 (*1 *2 *3) (-12 (-5 *3 (-701 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1070)) (-5 *2 (-701 *4)))) (-3674 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *1)) (-5 *4 (-1288 *1)) (-4 *1 (-651 *5)) (-4 *5 (-1070)) (-5 *2 (-2 (|:| -3232 (-701 *5)) (|:| |vec| (-1288 *5))))))) +(-13 (-660 |t#1|) (-10 -8 (-15 -3676 ((-701 |t#1|) (-1288 $))) (-15 -3676 ((-2 (|:| -3232 (-701 |t#1|)) (|:| |vec| (-1288 |t#1|))) (-1288 $) $)) (-15 -3674 ((-701 |t#1|) (-701 $))) (-15 -3674 ((-2 (|:| -3232 (-701 |t#1|)) (|:| |vec| (-1288 |t#1|))) (-701 $) (-1288 $))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) 7)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2925 (((-112) $ $) 8)) (* (($ |#1| $) 14) (($ $ |#1|) 17))) +((-3488 (((-112) $ $) 7)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2924 (((-112) $ $) 8)) (* (($ |#1| $) 14) (($ $ |#1|) 17))) (((-652 |#1|) (-141) (-1133)) (T -652)) NIL (-13 (-658 |t#1|) (-1072 |t#1|)) @@ -2651,1876 +2651,1876 @@ NIL (((-653 |#1| |#2|) (-10 -7 (-15 -1358 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|))) (-15 -1358 (|#2| (-656 |#1|) (-656 |#2|) |#1|)) (-15 -1358 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) |#2|)) (-15 -1358 (|#2| (-656 |#1|) (-656 |#2|) |#1| |#2|)) (-15 -1358 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) (-1 |#2| |#1|))) (-15 -1358 (|#2| (-656 |#1|) (-656 |#2|) |#1| (-1 |#2| |#1|)))) (-1121) (-1238)) (T -653)) ((-1358 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1121)) (-4 *2 (-1238)) (-5 *1 (-653 *5 *2)))) (-1358 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) (-4 *5 (-1121)) (-4 *6 (-1238)) (-5 *1 (-653 *5 *6)))) (-1358 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1121)) (-4 *2 (-1238)) (-5 *1 (-653 *5 *2)))) (-1358 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 *5)) (-4 *6 (-1121)) (-4 *5 (-1238)) (-5 *2 (-1 *5 *6)) (-5 *1 (-653 *6 *5)))) (-1358 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1121)) (-4 *2 (-1238)) (-5 *1 (-653 *5 *2)))) (-1358 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) (-4 *5 (-1121)) (-4 *6 (-1238)) (-5 *2 (-1 *6 *5)) (-5 *1 (-653 *5 *6))))) (-10 -7 (-15 -1358 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|))) (-15 -1358 (|#2| (-656 |#1|) (-656 |#2|) |#1|)) (-15 -1358 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) |#2|)) (-15 -1358 (|#2| (-656 |#1|) (-656 |#2|) |#1| |#2|)) (-15 -1358 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) (-1 |#2| |#1|))) (-15 -1358 (|#2| (-656 |#1|) (-656 |#2|) |#1| (-1 |#2| |#1|)))) -((-1950 (((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|) 16)) (-3686 ((|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|) 18)) (-4117 (((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)) 13))) -(((-654 |#1| |#2|) (-10 -7 (-15 -1950 ((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -3686 (|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -4117 ((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)))) (-1238) (-1238)) (T -654)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-656 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-656 *6)) (-5 *1 (-654 *5 *6)))) (-3686 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-656 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-654 *5 *2)))) (-1950 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-656 *6)) (-4 *6 (-1238)) (-4 *5 (-1238)) (-5 *2 (-656 *5)) (-5 *1 (-654 *6 *5))))) -(-10 -7 (-15 -1950 ((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -3686 (|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -4117 ((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)))) -((-4117 (((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)) 21))) -(((-655 |#1| |#2| |#3|) (-10 -7 (-15 -4117 ((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)))) (-1238) (-1238) (-1238)) (T -655)) -((-4117 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-656 *6)) (-5 *5 (-656 *7)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-656 *8)) (-5 *1 (-655 *6 *7 *8))))) -(-10 -7 (-15 -4117 ((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3106 ((|#1| $) NIL)) (-2898 ((|#1| $) NIL)) (-4426 (($ $) NIL)) (-2047 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4466)))) (-2587 (($ $ (-576)) NIL (|has| $ (-6 -4466)))) (-1710 (((-112) $) NIL (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-4298 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-861)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-1795 (($ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1808 (((-112) $ (-783)) NIL)) (-2647 ((|#1| $ |#1|) NIL (|has| $ (-6 -4466)))) (-4364 (($ $ $) NIL (|has| $ (-6 -4466)))) (-2297 ((|#1| $ |#1|) NIL (|has| $ (-6 -4466)))) (-1350 ((|#1| $ |#1|) NIL (|has| $ (-6 -4466)))) (-3756 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4466))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4466))) (($ $ "rest" $) NIL (|has| $ (-6 -4466))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4466))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4466))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4466)))) (-1894 (($ $ (-656 $)) NIL (|has| $ (-6 -4466)))) (-3993 (($ $ $) 37 (|has| |#1| (-1121)))) (-2901 (($ $ $) 41 (|has| |#1| (-1121)))) (-1416 (($ $ $) 44 (|has| |#1| (-1121)))) (-2300 (($ (-1 (-112) |#1|) $) NIL)) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2883 ((|#1| $) NIL)) (-3886 (($) NIL T CONST)) (-3990 (($ $) NIL (|has| $ (-6 -4466)))) (-3836 (($ $) NIL)) (-3593 (($ $) 23) (($ $ (-783)) NIL)) (-1703 (($ $) NIL (|has| |#1| (-1121)))) (-1415 (($ $) 36 (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1671 (($ |#1| $) NIL (|has| |#1| (-1121))) (($ (-1 (-112) |#1|) $) NIL)) (-3946 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-4335 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4466)))) (-4274 ((|#1| $ (-576)) NIL)) (-4419 (((-112) $) NIL)) (-3660 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121))) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) (-1 (-112) |#1|) $) NIL)) (-3966 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-2653 (((-112) $) 11)) (-2387 (((-656 $) $) NIL)) (-3295 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-4135 (($) 9 T CONST)) (-4141 (($ (-783) |#1|) NIL)) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-576) $) NIL (|has| (-576) (-861)))) (-3125 (($ $ $) NIL (|has| |#1| (-861)))) (-2453 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3391 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2137 (((-576) $) NIL (|has| (-576) (-861)))) (-3133 (($ $ $) NIL (|has| |#1| (-861)))) (-4323 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1650 (($ |#1|) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-2353 (((-656 |#1|) $) NIL)) (-3443 (((-112) $) NIL)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3969 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-1901 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2176 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-4234 (((-656 (-576)) $) NIL)) (-3354 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3581 ((|#1| $) 20) (($ $ (-783)) NIL)) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4046 (($ $ |#1|) NIL (|has| $ (-6 -4466)))) (-3166 (((-112) $) NIL)) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2281 (((-656 |#1|) $) NIL)) (-3973 (((-112) $) 39)) (-4225 (($) 38)) (-2797 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1255 (-576))) NIL) ((|#1| $ (-576)) 42) ((|#1| $ (-576) |#1|) NIL)) (-2789 (((-576) $ $) NIL)) (-2161 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-3466 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-3617 (((-112) $) NIL)) (-2934 (($ $) NIL)) (-3852 (($ $) NIL (|has| $ (-6 -4466)))) (-2687 (((-783) $) NIL)) (-3369 (($ $) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3025 (($ $ $ (-576)) NIL (|has| $ (-6 -4466)))) (-1870 (($ $) NIL)) (-4172 (((-548) $) 53 (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) NIL)) (-2840 (($ |#1| $) 12)) (-2974 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1615 (($ $ $) 35) (($ |#1| $) 43) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-3570 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2902 (((-656 $) $) NIL)) (-2621 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3485 (($ $ $) 13)) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-1636 (((-1179) $) 31 (|has| |#1| (-840))) (((-1179) $ (-112)) 32 (|has| |#1| (-840))) (((-1293) (-834) $) 33 (|has| |#1| (-840))) (((-1293) (-834) $ (-112)) 34 (|has| |#1| (-840)))) (-2992 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2950 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-656 |#1|) (-13 (-678 |#1|) (-10 -8 (-15 -4135 ($) -1480) (-15 -2653 ((-112) $)) (-15 -2840 ($ |#1| $)) (-15 -3485 ($ $ $)) (IF (|has| |#1| (-1121)) (PROGN (-15 -3993 ($ $ $)) (-15 -2901 ($ $ $)) (-15 -1416 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) (-1238)) (T -656)) -((-4135 (*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1238)))) (-2653 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-656 *3)) (-4 *3 (-1238)))) (-2840 (*1 *1 *2 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1238)))) (-3485 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1238)))) (-3993 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-1238)))) (-2901 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-1238)))) (-1416 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-1238))))) -(-13 (-678 |#1|) (-10 -8 (-15 -4135 ($) -1480) (-15 -2653 ((-112) $)) (-15 -2840 ($ |#1| $)) (-15 -3485 ($ $ $)) (IF (|has| |#1| (-1121)) (PROGN (-15 -3993 ($ $ $)) (-15 -2901 ($ $ $)) (-15 -1416 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 11) (($ (-1202)) NIL) (((-1202) $) NIL) ((|#1| $) 8)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) +((-3120 (((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|) 16)) (-3685 ((|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|) 18)) (-4116 (((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)) 13))) +(((-654 |#1| |#2|) (-10 -7 (-15 -3120 ((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -3685 (|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -4116 ((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)))) (-1238) (-1238)) (T -654)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-656 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-656 *6)) (-5 *1 (-654 *5 *6)))) (-3685 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-656 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-654 *5 *2)))) (-3120 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-656 *6)) (-4 *6 (-1238)) (-4 *5 (-1238)) (-5 *2 (-656 *5)) (-5 *1 (-654 *6 *5))))) +(-10 -7 (-15 -3120 ((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -3685 (|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -4116 ((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)))) +((-4116 (((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)) 21))) +(((-655 |#1| |#2| |#3|) (-10 -7 (-15 -4116 ((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)))) (-1238) (-1238) (-1238)) (T -655)) +((-4116 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-656 *6)) (-5 *5 (-656 *7)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-656 *8)) (-5 *1 (-655 *6 *7 *8))))) +(-10 -7 (-15 -4116 ((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3104 ((|#1| $) NIL)) (-2898 ((|#1| $) NIL)) (-4424 (($ $) NIL)) (-1512 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-3203 (($ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1390 (((-112) $) NIL (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3039 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-1795 (($ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-4264 (((-112) $ (-783)) NIL)) (-2482 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-2395 (($ $ $) NIL (|has| $ (-6 -4465)))) (-2089 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-1336 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4465))) (($ $ "rest" $) NIL (|has| $ (-6 -4465))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-3829 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-3128 (($ $ $) 37 (|has| |#1| (-1121)))) (-3047 (($ $ $) 41 (|has| |#1| (-1121)))) (-2042 (($ $ $) 44 (|has| |#1| (-1121)))) (-2123 (($ (-1 (-112) |#1|) $) NIL)) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2882 ((|#1| $) NIL)) (-3404 (($) NIL T CONST)) (-3092 (($ $) NIL (|has| $ (-6 -4465)))) (-3835 (($ $) NIL)) (-3592 (($ $) 23) (($ $ (-783)) NIL)) (-2495 (($ $) NIL (|has| |#1| (-1121)))) (-2034 (($ $) 36 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2172 (($ |#1| $) NIL (|has| |#1| (-1121))) (($ (-1 (-112) |#1|) $) NIL)) (-3945 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4332 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) NIL)) (-1742 (((-112) $) NIL)) (-3659 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121))) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) (-1 (-112) |#1|) $) NIL)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2651 (((-112) $) 11)) (-1736 (((-656 $) $) NIL)) (-3768 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-4134 (($) 9 T CONST)) (-4140 (($ (-783) |#1|) NIL)) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-4330 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2185 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4280 (((-576) $) NIL (|has| (-576) (-861)))) (-1441 (($ $ $) NIL (|has| |#1| (-861)))) (-4326 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1649 (($ |#1|) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2353 (((-656 |#1|) $) NIL)) (-1508 (((-112) $) NIL)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3968 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2597 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2176 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3669 (((-656 (-576)) $) NIL)) (-3090 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3580 ((|#1| $) 20) (($ $ (-783)) NIL)) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2304 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-1721 (((-112) $) NIL)) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3207 (((-656 |#1|) $) NIL)) (-2940 (((-112) $) 39)) (-3579 (($) 38)) (-2796 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1255 (-576))) NIL) ((|#1| $ (-576)) 42) ((|#1| $ (-576) |#1|) NIL)) (-1335 (((-576) $ $) NIL)) (-1352 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-3465 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-3806 (((-112) $) NIL)) (-3262 (($ $) NIL)) (-4347 (($ $) NIL (|has| $ (-6 -4465)))) (-1619 (((-783) $) NIL)) (-3237 (($ $) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2840 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) 53 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) NIL)) (-2839 (($ |#1| $) 12)) (-3631 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1615 (($ $ $) 35) (($ |#1| $) 43) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-3059 (((-656 $) $) NIL)) (-2247 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3482 (($ $ $) 13)) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3160 (((-1179) $) 31 (|has| |#1| (-840))) (((-1179) $ (-112)) 32 (|has| |#1| (-840))) (((-1293) (-834) $) 33 (|has| |#1| (-840))) (((-1293) (-834) $ (-112)) 34 (|has| |#1| (-840)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2924 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2949 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-656 |#1|) (-13 (-678 |#1|) (-10 -8 (-15 -4134 ($) -1480) (-15 -2651 ((-112) $)) (-15 -2839 ($ |#1| $)) (-15 -3482 ($ $ $)) (IF (|has| |#1| (-1121)) (PROGN (-15 -3128 ($ $ $)) (-15 -3047 ($ $ $)) (-15 -2042 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) (-1238)) (T -656)) +((-4134 (*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1238)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-656 *3)) (-4 *3 (-1238)))) (-2839 (*1 *1 *2 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1238)))) (-3482 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1238)))) (-3128 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-1238)))) (-3047 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-1238)))) (-2042 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-1238))))) +(-13 (-678 |#1|) (-10 -8 (-15 -4134 ($) -1480) (-15 -2651 ((-112) $)) (-15 -2839 ($ |#1| $)) (-15 -3482 ($ $ $)) (IF (|has| |#1| (-1121)) (PROGN (-15 -3128 ($ $ $)) (-15 -3047 ($ $ $)) (-15 -2042 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 11) (($ (-1202)) NIL) (((-1202) $) NIL) ((|#1| $) 8)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) (((-657 |#1|) (-13 (-1104) (-625 |#1|)) (-1121)) (T -657)) NIL (-13 (-1104) (-625 |#1|)) -((-3489 (((-112) $ $) 7)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2925 (((-112) $ $) 8)) (* (($ |#1| $) 14))) +((-3488 (((-112) $ $) 7)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2924 (((-112) $ $) 8)) (* (($ |#1| $) 14))) (((-658 |#1|) (-141) (-1133)) (T -658)) ((* (*1 *1 *2 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1133))))) (-13 (-1121) (-10 -8 (-15 * ($ |t#1| $)))) (((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3362 (($ |#1| |#1| $) 43)) (-1808 (((-112) $ (-783)) NIL)) (-2300 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3886 (($) NIL T CONST)) (-1703 (($ $) 45)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1671 (($ |#1| $) 56 (|has| $ (-6 -4465))) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4465)))) (-3946 (($ |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-3966 (((-656 |#1|) $) 9 (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) NIL)) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-4323 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 37)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1597 ((|#1| $) 47)) (-1901 (($ |#1| $) 29) (($ |#1| $ (-783)) 42)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3449 ((|#1| $) 50)) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) 23)) (-4225 (($) 28)) (-2618 (((-112) $) 54)) (-1621 (((-656 (-2 (|:| -4440 |#1|) (|:| -1460 (-783)))) $) 67)) (-2271 (($) 26) (($ (-656 |#1|)) 19)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) 63 (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1870 (($ $) 20)) (-4172 (((-548) $) 34 (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) NIL)) (-3570 (((-876) $) 14 (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3943 (($ (-656 |#1|)) 24)) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 69 (|has| |#1| (-102)))) (-3503 (((-783) $) 17 (|has| $ (-6 -4465))))) -(((-659 |#1|) (-13 (-707 |#1|) (-10 -8 (-6 -4465) (-15 -2618 ((-112) $)) (-15 -3362 ($ |#1| |#1| $)))) (-1121)) (T -659)) -((-2618 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-659 *3)) (-4 *3 (-1121)))) (-3362 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1121))))) -(-13 (-707 |#1|) (-10 -8 (-6 -4465) (-15 -2618 ((-112) $)) (-15 -3362 ($ |#1| |#1| $)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3174 (($ |#1| |#1| $) 43)) (-4264 (((-112) $ (-783)) NIL)) (-2123 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4464)))) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3404 (($) NIL T CONST)) (-2495 (($ $) 45)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2172 (($ |#1| $) 56 (|has| $ (-6 -4464))) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4464)))) (-3945 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-3965 (((-656 |#1|) $) 9 (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) NIL)) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4326 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 37)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2722 ((|#1| $) 47)) (-2597 (($ |#1| $) 29) (($ |#1| $ (-783)) 42)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1541 ((|#1| $) 50)) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) 23)) (-3579 (($) 28)) (-2214 (((-112) $) 54)) (-2977 (((-656 (-2 (|:| -4439 |#1|) (|:| -1460 (-783)))) $) 67)) (-3101 (($) 26) (($ (-656 |#1|)) 19)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) 63 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) 20)) (-4171 (((-548) $) 34 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) NIL)) (-3569 (((-876) $) 14 (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3972 (($ (-656 |#1|)) 24)) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 69 (|has| |#1| (-102)))) (-3502 (((-783) $) 17 (|has| $ (-6 -4464))))) +(((-659 |#1|) (-13 (-707 |#1|) (-10 -8 (-6 -4464) (-15 -2214 ((-112) $)) (-15 -3174 ($ |#1| |#1| $)))) (-1121)) (T -659)) +((-2214 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-659 *3)) (-4 *3 (-1121)))) (-3174 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1121))))) +(-13 (-707 |#1|) (-10 -8 (-6 -4464) (-15 -2214 ((-112) $)) (-15 -3174 ($ |#1| |#1| $)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) (((-660 |#1|) (-141) (-1079)) (T -660)) NIL (-13 (-21) (-658 |t#1|)) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-2098 (((-783) $) 17)) (-3702 (($ $ |#1|) 69)) (-3990 (($ $) 39)) (-3836 (($ $) 37)) (-1572 (((-3 |#1| "failed") $) 61)) (-2860 ((|#1| $) NIL)) (-3604 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-3234 (((-876) $ (-1 (-876) (-876) (-876)) (-1 (-876) (-876) (-876)) (-576)) 56)) (-4276 ((|#1| $ (-576)) 35)) (-2414 ((|#2| $ (-576)) 34)) (-3310 (($ (-1 |#1| |#1|) $) 41)) (-2053 (($ (-1 |#2| |#2|) $) 47)) (-4021 (($) 11)) (-2489 (($ |#1| |#2|) 24)) (-2096 (($ (-656 (-2 (|:| |gen| |#1|) (|:| -4104 |#2|)))) 25)) (-2582 (((-656 (-2 (|:| |gen| |#1|) (|:| -4104 |#2|))) $) 14)) (-2636 (($ |#1| $) 71)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2059 (((-112) $ $) 76)) (-3570 (((-876) $) 21) (($ |#1|) 18)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 27))) -(((-661 |#1| |#2| |#3|) (-13 (-1121) (-1059 |#1|) (-10 -8 (-15 -3234 ((-876) $ (-1 (-876) (-876) (-876)) (-1 (-876) (-876) (-876)) (-576))) (-15 -2582 ((-656 (-2 (|:| |gen| |#1|) (|:| -4104 |#2|))) $)) (-15 -2489 ($ |#1| |#2|)) (-15 -2096 ($ (-656 (-2 (|:| |gen| |#1|) (|:| -4104 |#2|))))) (-15 -2414 (|#2| $ (-576))) (-15 -4276 (|#1| $ (-576))) (-15 -3836 ($ $)) (-15 -3990 ($ $)) (-15 -2098 ((-783) $)) (-15 -4021 ($)) (-15 -3702 ($ $ |#1|)) (-15 -2636 ($ |#1| $)) (-15 -3604 ($ |#1| |#2| $)) (-15 -3604 ($ $ $)) (-15 -2059 ((-112) $ $)) (-15 -2053 ($ (-1 |#2| |#2|) $)) (-15 -3310 ($ (-1 |#1| |#1|) $)))) (-1121) (-23) |#2|) (T -661)) -((-3234 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-876) (-876) (-876))) (-5 *4 (-576)) (-5 *2 (-876)) (-5 *1 (-661 *5 *6 *7)) (-4 *5 (-1121)) (-4 *6 (-23)) (-14 *7 *6))) (-2582 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4104 *4)))) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4))) (-2489 (*1 *1 *2 *3) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-2096 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4104 *4)))) (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5)))) (-2414 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-23)) (-5 *1 (-661 *4 *2 *5)) (-4 *4 (-1121)) (-14 *5 *2))) (-4276 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-1121)) (-5 *1 (-661 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3836 (*1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-3990 (*1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4))) (-4021 (*1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-3702 (*1 *1 *1 *2) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-2636 (*1 *1 *2 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-3604 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-3604 (*1 *1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-2059 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4))) (-2053 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121)))) (-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-661 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1121) (-1059 |#1|) (-10 -8 (-15 -3234 ((-876) $ (-1 (-876) (-876) (-876)) (-1 (-876) (-876) (-876)) (-576))) (-15 -2582 ((-656 (-2 (|:| |gen| |#1|) (|:| -4104 |#2|))) $)) (-15 -2489 ($ |#1| |#2|)) (-15 -2096 ($ (-656 (-2 (|:| |gen| |#1|) (|:| -4104 |#2|))))) (-15 -2414 (|#2| $ (-576))) (-15 -4276 (|#1| $ (-576))) (-15 -3836 ($ $)) (-15 -3990 ($ $)) (-15 -2098 ((-783) $)) (-15 -4021 ($)) (-15 -3702 ($ $ |#1|)) (-15 -2636 ($ |#1| $)) (-15 -3604 ($ |#1| |#2| $)) (-15 -3604 ($ $ $)) (-15 -2059 ((-112) $ $)) (-15 -2053 ($ (-1 |#2| |#2|) $)) (-15 -3310 ($ (-1 |#1| |#1|) $)))) -((-2137 (((-576) $) 31)) (-2176 (($ |#2| $ (-576)) 27) (($ $ $ (-576)) NIL)) (-4234 (((-656 (-576)) $) 12)) (-3354 (((-112) (-576) $) 18)) (-1615 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-656 $)) NIL))) -(((-662 |#1| |#2|) (-10 -8 (-15 -2176 (|#1| |#1| |#1| (-576))) (-15 -2176 (|#1| |#2| |#1| (-576))) (-15 -1615 (|#1| (-656 |#1|))) (-15 -1615 (|#1| |#1| |#1|)) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#2|)) (-15 -2137 ((-576) |#1|)) (-15 -4234 ((-656 (-576)) |#1|)) (-15 -3354 ((-112) (-576) |#1|))) (-663 |#2|) (-1238)) (T -662)) -NIL -(-10 -8 (-15 -2176 (|#1| |#1| |#1| (-576))) (-15 -2176 (|#1| |#2| |#1| (-576))) (-15 -1615 (|#1| (-656 |#1|))) (-15 -1615 (|#1| |#1| |#1|)) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#2|)) (-15 -2137 ((-576) |#1|)) (-15 -4234 ((-656 (-576)) |#1|)) (-15 -3354 ((-112) (-576) |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2047 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4466)))) (-1808 (((-112) $ (-783)) 8)) (-3756 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4466))) ((|#1| $ (-1255 (-576)) |#1|) 60 (|has| $ (-6 -4466)))) (-1974 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4465)))) (-3886 (($) 7 T CONST)) (-1415 (($ $) 80 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-3946 (($ |#1| $) 79 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4465)))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4465)))) (-4335 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4466)))) (-4274 ((|#1| $ (-576)) 52)) (-3966 (((-656 |#1|) $) 31 (|has| $ (-6 -4465)))) (-4141 (($ (-783) |#1|) 70)) (-3870 (((-112) $ (-783)) 9)) (-2924 (((-576) $) 44 (|has| (-576) (-861)))) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-2137 (((-576) $) 45 (|has| (-576) (-861)))) (-4323 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1330 (((-112) $ (-783)) 10)) (-3699 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2176 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-4234 (((-656 (-576)) $) 47)) (-3354 (((-112) (-576) $) 48)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3581 ((|#1| $) 43 (|has| (-576) (-861)))) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4046 (($ $ |#1|) 42 (|has| $ (-6 -4466)))) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3845 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2281 (((-656 |#1|) $) 49)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-2797 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1255 (-576))) 71)) (-3466 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 13)) (-4172 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) 72)) (-1615 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3570 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) NIL)) (-2098 (((-783) $) 17)) (-2075 (($ $ |#1|) 69)) (-3092 (($ $) 39)) (-3835 (($ $) 37)) (-1572 (((-3 |#1| "failed") $) 61)) (-2859 ((|#1| $) NIL)) (-3601 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-4375 (((-876) $ (-1 (-876) (-876) (-876)) (-1 (-876) (-876) (-876)) (-576)) 56)) (-2807 ((|#1| $ (-576)) 35)) (-1993 ((|#2| $ (-576)) 34)) (-3925 (($ (-1 |#1| |#1|) $) 41)) (-1555 (($ (-1 |#2| |#2|) $) 47)) (-2102 (($) 11)) (-3467 (($ |#1| |#2|) 24)) (-1936 (($ (-656 (-2 (|:| |gen| |#1|) (|:| -4103 |#2|)))) 25)) (-3168 (((-656 (-2 (|:| |gen| |#1|) (|:| -4103 |#2|))) $) 14)) (-2380 (($ |#1| $) 71)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1617 (((-112) $ $) 76)) (-3569 (((-876) $) 21) (($ |#1|) 18)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 27))) +(((-661 |#1| |#2| |#3|) (-13 (-1121) (-1059 |#1|) (-10 -8 (-15 -4375 ((-876) $ (-1 (-876) (-876) (-876)) (-1 (-876) (-876) (-876)) (-576))) (-15 -3168 ((-656 (-2 (|:| |gen| |#1|) (|:| -4103 |#2|))) $)) (-15 -3467 ($ |#1| |#2|)) (-15 -1936 ($ (-656 (-2 (|:| |gen| |#1|) (|:| -4103 |#2|))))) (-15 -1993 (|#2| $ (-576))) (-15 -2807 (|#1| $ (-576))) (-15 -3835 ($ $)) (-15 -3092 ($ $)) (-15 -2098 ((-783) $)) (-15 -2102 ($)) (-15 -2075 ($ $ |#1|)) (-15 -2380 ($ |#1| $)) (-15 -3601 ($ |#1| |#2| $)) (-15 -3601 ($ $ $)) (-15 -1617 ((-112) $ $)) (-15 -1555 ($ (-1 |#2| |#2|) $)) (-15 -3925 ($ (-1 |#1| |#1|) $)))) (-1121) (-23) |#2|) (T -661)) +((-4375 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-876) (-876) (-876))) (-5 *4 (-576)) (-5 *2 (-876)) (-5 *1 (-661 *5 *6 *7)) (-4 *5 (-1121)) (-4 *6 (-23)) (-14 *7 *6))) (-3168 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4103 *4)))) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4))) (-3467 (*1 *1 *2 *3) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-1936 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4103 *4)))) (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5)))) (-1993 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-23)) (-5 *1 (-661 *4 *2 *5)) (-4 *4 (-1121)) (-14 *5 *2))) (-2807 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-1121)) (-5 *1 (-661 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3835 (*1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-3092 (*1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4))) (-2102 (*1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-2075 (*1 *1 *1 *2) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-2380 (*1 *1 *2 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-3601 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-3601 (*1 *1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-1617 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4))) (-1555 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121)))) (-3925 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-661 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1121) (-1059 |#1|) (-10 -8 (-15 -4375 ((-876) $ (-1 (-876) (-876) (-876)) (-1 (-876) (-876) (-876)) (-576))) (-15 -3168 ((-656 (-2 (|:| |gen| |#1|) (|:| -4103 |#2|))) $)) (-15 -3467 ($ |#1| |#2|)) (-15 -1936 ($ (-656 (-2 (|:| |gen| |#1|) (|:| -4103 |#2|))))) (-15 -1993 (|#2| $ (-576))) (-15 -2807 (|#1| $ (-576))) (-15 -3835 ($ $)) (-15 -3092 ($ $)) (-15 -2098 ((-783) $)) (-15 -2102 ($)) (-15 -2075 ($ $ |#1|)) (-15 -2380 ($ |#1| $)) (-15 -3601 ($ |#1| |#2| $)) (-15 -3601 ($ $ $)) (-15 -1617 ((-112) $ $)) (-15 -1555 ($ (-1 |#2| |#2|) $)) (-15 -3925 ($ (-1 |#1| |#1|) $)))) +((-4280 (((-576) $) 31)) (-2176 (($ |#2| $ (-576)) 27) (($ $ $ (-576)) NIL)) (-3669 (((-656 (-576)) $) 12)) (-3090 (((-112) (-576) $) 18)) (-1615 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-656 $)) NIL))) +(((-662 |#1| |#2|) (-10 -8 (-15 -2176 (|#1| |#1| |#1| (-576))) (-15 -2176 (|#1| |#2| |#1| (-576))) (-15 -1615 (|#1| (-656 |#1|))) (-15 -1615 (|#1| |#1| |#1|)) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#2|)) (-15 -4280 ((-576) |#1|)) (-15 -3669 ((-656 (-576)) |#1|)) (-15 -3090 ((-112) (-576) |#1|))) (-663 |#2|) (-1238)) (T -662)) +NIL +(-10 -8 (-15 -2176 (|#1| |#1| |#1| (-576))) (-15 -2176 (|#1| |#2| |#1| (-576))) (-15 -1615 (|#1| (-656 |#1|))) (-15 -1615 (|#1| |#1| |#1|)) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#2|)) (-15 -4280 ((-576) |#1|)) (-15 -3669 ((-656 (-576)) |#1|)) (-15 -3090 ((-112) (-576) |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1512 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4465)))) (-4264 (((-112) $ (-783)) 8)) (-3755 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 60 (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4464)))) (-3404 (($) 7 T CONST)) (-2034 (($ $) 80 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ |#1| $) 79 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) 52)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-4140 (($ (-783) |#1|) 70)) (-1368 (((-112) $ (-783)) 9)) (-3281 (((-576) $) 44 (|has| (-576) (-861)))) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4280 (((-576) $) 45 (|has| (-576) (-861)))) (-4326 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2883 (((-112) $ (-783)) 10)) (-2046 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2176 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3669 (((-656 (-576)) $) 47)) (-3090 (((-112) (-576) $) 48)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3580 ((|#1| $) 43 (|has| (-576) (-861)))) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2304 (($ $ |#1|) 42 (|has| $ (-6 -4465)))) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-4282 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3207 (((-656 |#1|) $) 49)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-2796 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1255 (-576))) 71)) (-3465 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-4171 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 72)) (-1615 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-663 |#1|) (-141) (-1238)) (T -663)) -((-4141 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) (-1615 (*1 *1 *1 *2) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1238)))) (-1615 (*1 *1 *2 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1238)))) (-1615 (*1 *1 *1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1238)))) (-1615 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) (-4117 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) (-3466 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) (-3466 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 (-576))) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) (-2176 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-663 *2)) (-4 *2 (-1238)))) (-2176 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) (-3756 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1255 (-576))) (|has| *1 (-6 -4466)) (-4 *1 (-663 *2)) (-4 *2 (-1238))))) -(-13 (-616 (-576) |t#1|) (-152 |t#1|) (-296 (-1255 (-576)) $) (-10 -8 (-15 -4141 ($ (-783) |t#1|)) (-15 -1615 ($ $ |t#1|)) (-15 -1615 ($ |t#1| $)) (-15 -1615 ($ $ $)) (-15 -1615 ($ (-656 $))) (-15 -4117 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3466 ($ $ (-576))) (-15 -3466 ($ $ (-1255 (-576)))) (-15 -2176 ($ |t#1| $ (-576))) (-15 -2176 ($ $ $ (-576))) (IF (|has| $ (-6 -4466)) (-15 -3756 (|t#1| $ (-1255 (-576)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-102) -2760 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2760 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-2767 (((-3 |#2| "failed") |#3| |#2| (-1197) |#2| (-656 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -1593 (-656 |#2|))) "failed") |#3| |#2| (-1197)) 44))) -(((-664 |#1| |#2| |#3|) (-10 -7 (-15 -2767 ((-3 (-2 (|:| |particular| |#2|) (|:| -1593 (-656 |#2|))) "failed") |#3| |#2| (-1197))) (-15 -2767 ((-3 |#2| "failed") |#3| |#2| (-1197) |#2| (-656 |#2|)))) (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1223) (-978)) (-668 |#2|)) (T -664)) -((-2767 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *1 (-664 *6 *2 *3)) (-4 *3 (-668 *2)))) (-2767 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1197)) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-4 *4 (-13 (-29 *6) (-1223) (-978))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1593 (-656 *4)))) (-5 *1 (-664 *6 *4 *3)) (-4 *3 (-668 *4))))) -(-10 -7 (-15 -2767 ((-3 (-2 (|:| |particular| |#2|) (|:| -1593 (-656 |#2|))) "failed") |#3| |#2| (-1197))) (-15 -2767 ((-3 |#2| "failed") |#3| |#2| (-1197) |#2| (-656 |#2|)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-3183 (($ $) NIL (|has| |#1| (-374)))) (-1605 (($ $ $) NIL (|has| |#1| (-374)))) (-2911 (($ $ (-783)) NIL (|has| |#1| (-374)))) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-3620 (($ $ $) NIL (|has| |#1| (-374)))) (-3112 (($ $ $) NIL (|has| |#1| (-374)))) (-2209 (($ $ $) NIL (|has| |#1| (-374)))) (-2367 (($ $ $) NIL (|has| |#1| (-374)))) (-3703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| |#1| (-374)))) (-2881 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3054 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#1| (-374)))) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2860 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-2114 (($ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-3767 (($ $) NIL (|has| |#1| (-464)))) (-4193 (((-112) $) NIL)) (-1945 (($ |#1| (-783)) NIL)) (-3684 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#1| (-568)))) (-3358 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#1| (-568)))) (-3751 (((-783) $) NIL)) (-1764 (($ $ $) NIL (|has| |#1| (-374)))) (-2849 (($ $ $) NIL (|has| |#1| (-374)))) (-2296 (($ $ $) NIL (|has| |#1| (-374)))) (-1857 (($ $ $) NIL (|has| |#1| (-374)))) (-1566 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| |#1| (-374)))) (-3215 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4258 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#1| (-374)))) (-2091 ((|#1| $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2797 ((|#1| $ |#1|) NIL)) (-3455 (($ $ $) NIL (|has| |#1| (-374)))) (-3634 (((-783) $) NIL)) (-2457 ((|#1| $) NIL (|has| |#1| (-464)))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) NIL)) (-1618 (((-656 |#1|) $) NIL)) (-3177 ((|#1| $ (-783)) NIL)) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-3569 ((|#1| $ |#1| |#1|) NIL)) (-3960 (($ $) NIL)) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2020 (($) NIL)) (-2925 (((-112) $ $) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +((-4140 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) (-1615 (*1 *1 *1 *2) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1238)))) (-1615 (*1 *1 *2 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1238)))) (-1615 (*1 *1 *1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1238)))) (-1615 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) (-4116 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) (-3465 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) (-3465 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 (-576))) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) (-2176 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-663 *2)) (-4 *2 (-1238)))) (-2176 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) (-3755 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1255 (-576))) (|has| *1 (-6 -4465)) (-4 *1 (-663 *2)) (-4 *2 (-1238))))) +(-13 (-616 (-576) |t#1|) (-152 |t#1|) (-296 (-1255 (-576)) $) (-10 -8 (-15 -4140 ($ (-783) |t#1|)) (-15 -1615 ($ $ |t#1|)) (-15 -1615 ($ |t#1| $)) (-15 -1615 ($ $ $)) (-15 -1615 ($ (-656 $))) (-15 -4116 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3465 ($ $ (-576))) (-15 -3465 ($ $ (-1255 (-576)))) (-15 -2176 ($ |t#1| $ (-576))) (-15 -2176 ($ $ $ (-576))) (IF (|has| $ (-6 -4465)) (-15 -3755 (|t#1| $ (-1255 (-576)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-102) -2759 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2759 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-4263 (((-3 |#2| "failed") |#3| |#2| (-1197) |#2| (-656 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -2675 (-656 |#2|))) "failed") |#3| |#2| (-1197)) 44))) +(((-664 |#1| |#2| |#3|) (-10 -7 (-15 -4263 ((-3 (-2 (|:| |particular| |#2|) (|:| -2675 (-656 |#2|))) "failed") |#3| |#2| (-1197))) (-15 -4263 ((-3 |#2| "failed") |#3| |#2| (-1197) |#2| (-656 |#2|)))) (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1223) (-978)) (-668 |#2|)) (T -664)) +((-4263 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *1 (-664 *6 *2 *3)) (-4 *3 (-668 *2)))) (-4263 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1197)) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-4 *4 (-13 (-29 *6) (-1223) (-978))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2675 (-656 *4)))) (-5 *1 (-664 *6 *4 *3)) (-4 *3 (-668 *4))))) +(-10 -7 (-15 -4263 ((-3 (-2 (|:| |particular| |#2|) (|:| -2675 (-656 |#2|))) "failed") |#3| |#2| (-1197))) (-15 -4263 ((-3 |#2| "failed") |#3| |#2| (-1197) |#2| (-656 |#2|)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-1886 (($ $) NIL (|has| |#1| (-374)))) (-2809 (($ $ $) NIL (|has| |#1| (-374)))) (-3165 (($ $ (-783)) NIL (|has| |#1| (-374)))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-3842 (($ $ $) NIL (|has| |#1| (-374)))) (-2424 (($ $ $) NIL (|has| |#1| (-374)))) (-3723 (($ $ $) NIL (|has| |#1| (-374)))) (-1550 (($ $ $) NIL (|has| |#1| (-374)))) (-2086 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-2836 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3143 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#1| (-374)))) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2859 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-2114 (($ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1547 (($ $) NIL (|has| |#1| (-464)))) (-1351 (((-112) $) NIL)) (-1944 (($ |#1| (-783)) NIL)) (-3202 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#1| (-568)))) (-3140 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#1| (-568)))) (-2578 (((-783) $) NIL)) (-1882 (($ $ $) NIL (|has| |#1| (-374)))) (-3814 (($ $ $) NIL (|has| |#1| (-374)))) (-2079 (($ $ $) NIL (|has| |#1| (-374)))) (-3490 (($ $ $) NIL (|has| |#1| (-374)))) (-3722 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-4193 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3923 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#1| (-374)))) (-2091 ((|#1| $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2796 ((|#1| $ |#1|) NIL)) (-1602 (($ $ $) NIL (|has| |#1| (-374)))) (-2683 (((-783) $) NIL)) (-4370 ((|#1| $) NIL (|has| |#1| (-464)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) NIL)) (-2937 (((-656 |#1|) $) NIL)) (-1822 ((|#1| $ (-783)) NIL)) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-3568 ((|#1| $ |#1| |#1|) NIL)) (-2825 (($ $) NIL)) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2020 (($) NIL)) (-2924 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) (((-665 |#1|) (-668 |#1|) (-238)) (T -665)) NIL (-668 |#1|) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-3183 (($ $) NIL (|has| |#1| (-374)))) (-1605 (($ $ $) NIL (|has| |#1| (-374)))) (-2911 (($ $ (-783)) NIL (|has| |#1| (-374)))) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-3620 (($ $ $) NIL (|has| |#1| (-374)))) (-3112 (($ $ $) NIL (|has| |#1| (-374)))) (-2209 (($ $ $) NIL (|has| |#1| (-374)))) (-2367 (($ $ $) NIL (|has| |#1| (-374)))) (-3703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| |#1| (-374)))) (-2881 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3054 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#1| (-374)))) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2860 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-2114 (($ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-3767 (($ $) NIL (|has| |#1| (-464)))) (-4193 (((-112) $) NIL)) (-1945 (($ |#1| (-783)) NIL)) (-3684 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#1| (-568)))) (-3358 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#1| (-568)))) (-3751 (((-783) $) NIL)) (-1764 (($ $ $) NIL (|has| |#1| (-374)))) (-2849 (($ $ $) NIL (|has| |#1| (-374)))) (-2296 (($ $ $) NIL (|has| |#1| (-374)))) (-1857 (($ $ $) NIL (|has| |#1| (-374)))) (-1566 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| |#1| (-374)))) (-3215 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4258 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#1| (-374)))) (-2091 ((|#1| $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2797 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3455 (($ $ $) NIL (|has| |#1| (-374)))) (-3634 (((-783) $) NIL)) (-2457 ((|#1| $) NIL (|has| |#1| (-464)))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) NIL)) (-1618 (((-656 |#1|) $) NIL)) (-3177 ((|#1| $ (-783)) NIL)) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-3569 ((|#1| $ |#1| |#1|) NIL)) (-3960 (($ $) NIL)) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2020 (($) NIL)) (-2925 (((-112) $ $) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-666 |#1| |#2|) (-13 (-668 |#1|) (-296 |#2| |#2|)) (-238) (-13 (-660 |#1|) (-10 -8 (-15 -2775 ($ $))))) (T -666)) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-1886 (($ $) NIL (|has| |#1| (-374)))) (-2809 (($ $ $) NIL (|has| |#1| (-374)))) (-3165 (($ $ (-783)) NIL (|has| |#1| (-374)))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-3842 (($ $ $) NIL (|has| |#1| (-374)))) (-2424 (($ $ $) NIL (|has| |#1| (-374)))) (-3723 (($ $ $) NIL (|has| |#1| (-374)))) (-1550 (($ $ $) NIL (|has| |#1| (-374)))) (-2086 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-2836 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3143 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#1| (-374)))) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2859 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-2114 (($ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1547 (($ $) NIL (|has| |#1| (-464)))) (-1351 (((-112) $) NIL)) (-1944 (($ |#1| (-783)) NIL)) (-3202 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#1| (-568)))) (-3140 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#1| (-568)))) (-2578 (((-783) $) NIL)) (-1882 (($ $ $) NIL (|has| |#1| (-374)))) (-3814 (($ $ $) NIL (|has| |#1| (-374)))) (-2079 (($ $ $) NIL (|has| |#1| (-374)))) (-3490 (($ $ $) NIL (|has| |#1| (-374)))) (-3722 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-4193 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3923 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#1| (-374)))) (-2091 ((|#1| $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2796 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-1602 (($ $ $) NIL (|has| |#1| (-374)))) (-2683 (((-783) $) NIL)) (-4370 ((|#1| $) NIL (|has| |#1| (-464)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) NIL)) (-2937 (((-656 |#1|) $) NIL)) (-1822 ((|#1| $ (-783)) NIL)) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-3568 ((|#1| $ |#1| |#1|) NIL)) (-2825 (($ $) NIL)) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2020 (($) NIL)) (-2924 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-666 |#1| |#2|) (-13 (-668 |#1|) (-296 |#2| |#2|)) (-238) (-13 (-660 |#1|) (-10 -8 (-15 -2774 ($ $))))) (T -666)) NIL (-13 (-668 |#1|) (-296 |#2| |#2|)) -((-3183 (($ $) 29)) (-3960 (($ $) 27)) (-2020 (($) 13))) -(((-667 |#1| |#2|) (-10 -8 (-15 -3183 (|#1| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -2020 (|#1|))) (-668 |#2|) (-1070)) (T -667)) +((-1886 (($ $) 29)) (-2825 (($ $) 27)) (-2020 (($) 13))) +(((-667 |#1| |#2|) (-10 -8 (-15 -1886 (|#1| |#1|)) (-15 -2825 (|#1| |#1|)) (-15 -2020 (|#1|))) (-668 |#2|) (-1070)) (T -667)) NIL -(-10 -8 (-15 -3183 (|#1| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -2020 (|#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-3183 (($ $) 87 (|has| |#1| (-374)))) (-1605 (($ $ $) 89 (|has| |#1| (-374)))) (-2911 (($ $ (-783)) 88 (|has| |#1| (-374)))) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-3620 (($ $ $) 50 (|has| |#1| (-374)))) (-3112 (($ $ $) 51 (|has| |#1| (-374)))) (-2209 (($ $ $) 53 (|has| |#1| (-374)))) (-2367 (($ $ $) 48 (|has| |#1| (-374)))) (-3703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 47 (|has| |#1| (-374)))) (-2881 (((-3 $ "failed") $ $) 49 (|has| |#1| (-374)))) (-3054 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 52 (|has| |#1| (-374)))) (-1572 (((-3 (-576) "failed") $) 80 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 77 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 74)) (-2860 (((-576) $) 79 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 76 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 75)) (-2114 (($ $) 69)) (-1561 (((-3 $ "failed") $) 37)) (-3767 (($ $) 60 (|has| |#1| (-464)))) (-4193 (((-112) $) 35)) (-1945 (($ |#1| (-783)) 67)) (-3684 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 62 (|has| |#1| (-568)))) (-3358 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 63 (|has| |#1| (-568)))) (-3751 (((-783) $) 71)) (-1764 (($ $ $) 57 (|has| |#1| (-374)))) (-2849 (($ $ $) 58 (|has| |#1| (-374)))) (-2296 (($ $ $) 46 (|has| |#1| (-374)))) (-1857 (($ $ $) 55 (|has| |#1| (-374)))) (-1566 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 54 (|has| |#1| (-374)))) (-3215 (((-3 $ "failed") $ $) 56 (|has| |#1| (-374)))) (-4258 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 59 (|has| |#1| (-374)))) (-2091 ((|#1| $) 70)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3476 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-568)))) (-2797 ((|#1| $ |#1|) 92)) (-3455 (($ $ $) 86 (|has| |#1| (-374)))) (-3634 (((-783) $) 72)) (-2457 ((|#1| $) 61 (|has| |#1| (-464)))) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 78 (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) 73)) (-1618 (((-656 |#1|) $) 66)) (-3177 ((|#1| $ (-783)) 68)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-3569 ((|#1| $ |#1| |#1|) 65)) (-3960 (($ $) 90)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2020 (($) 91)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(-10 -8 (-15 -1886 (|#1| |#1|)) (-15 -2825 (|#1| |#1|)) (-15 -2020 (|#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-1886 (($ $) 87 (|has| |#1| (-374)))) (-2809 (($ $ $) 89 (|has| |#1| (-374)))) (-3165 (($ $ (-783)) 88 (|has| |#1| (-374)))) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-3842 (($ $ $) 50 (|has| |#1| (-374)))) (-2424 (($ $ $) 51 (|has| |#1| (-374)))) (-3723 (($ $ $) 53 (|has| |#1| (-374)))) (-1550 (($ $ $) 48 (|has| |#1| (-374)))) (-2086 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 47 (|has| |#1| (-374)))) (-2836 (((-3 $ "failed") $ $) 49 (|has| |#1| (-374)))) (-3143 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 52 (|has| |#1| (-374)))) (-1572 (((-3 (-576) "failed") $) 80 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 77 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 74)) (-2859 (((-576) $) 79 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 76 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 75)) (-2114 (($ $) 69)) (-3673 (((-3 $ "failed") $) 37)) (-1547 (($ $) 60 (|has| |#1| (-464)))) (-1351 (((-112) $) 35)) (-1944 (($ |#1| (-783)) 67)) (-3202 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 62 (|has| |#1| (-568)))) (-3140 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 63 (|has| |#1| (-568)))) (-2578 (((-783) $) 71)) (-1882 (($ $ $) 57 (|has| |#1| (-374)))) (-3814 (($ $ $) 58 (|has| |#1| (-374)))) (-2079 (($ $ $) 46 (|has| |#1| (-374)))) (-3490 (($ $ $) 55 (|has| |#1| (-374)))) (-3722 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 54 (|has| |#1| (-374)))) (-4193 (((-3 $ "failed") $ $) 56 (|has| |#1| (-374)))) (-3923 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 59 (|has| |#1| (-374)))) (-2091 ((|#1| $) 70)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3475 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-568)))) (-2796 ((|#1| $ |#1|) 92)) (-1602 (($ $ $) 86 (|has| |#1| (-374)))) (-2683 (((-783) $) 72)) (-4370 ((|#1| $) 61 (|has| |#1| (-464)))) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 78 (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) 73)) (-2937 (((-656 |#1|) $) 66)) (-1822 ((|#1| $ (-783)) 68)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-3568 ((|#1| $ |#1| |#1|) 65)) (-2825 (($ $) 90)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2020 (($) 91)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) (((-668 |#1|) (-141) (-1070)) (T -668)) -((-2020 (*1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)))) (-3960 (*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)))) (-1605 (*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-2911 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-668 *3)) (-4 *3 (-1070)) (-4 *3 (-374)))) (-3183 (*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-3455 (*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) -(-13 (-866 |t#1|) (-296 |t#1| |t#1|) (-10 -8 (-15 -2020 ($)) (-15 -3960 ($ $)) (IF (|has| |t#1| (-374)) (PROGN (-15 -1605 ($ $ $)) (-15 -2911 ($ $ (-783))) (-15 -3183 ($ $)) (-15 -3455 ($ $ $))) |%noBranch|))) +((-2020 (*1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)))) (-2825 (*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)))) (-2809 (*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-3165 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-668 *3)) (-4 *3 (-1070)) (-4 *3 (-374)))) (-1886 (*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-1602 (*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) +(-13 (-866 |t#1|) (-296 |t#1| |t#1|) (-10 -8 (-15 -2020 ($)) (-15 -2825 ($ $)) (IF (|has| |t#1| (-374)) (PROGN (-15 -2809 ($ $ $)) (-15 -3165 ($ $ (-783))) (-15 -1886 ($ $)) (-15 -1602 ($ $ $))) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-296 |#1| |#1|) . T) ((-423 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1059 #0#) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-866 |#1|) . T)) -((-2740 (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))) 85 (|has| |#1| (-27)))) (-1828 (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))) 84 (|has| |#1| (-27))) (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 19))) -(((-669 |#1| |#2|) (-10 -7 (-15 -1828 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1828 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)))) (-15 -2740 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))))) |%noBranch|)) (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576)))) (-1264 |#1|)) (T -669)) -((-2740 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *2 (-656 (-665 (-419 *5)))) (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))) (-1828 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *2 (-656 (-665 (-419 *5)))) (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))) (-1828 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-665 (-419 *6)))) (-5 *1 (-669 *5 *6)) (-5 *3 (-665 (-419 *6)))))) -(-10 -7 (-15 -1828 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1828 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)))) (-15 -2740 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))))) |%noBranch|)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-3183 (($ $) NIL (|has| |#1| (-374)))) (-1605 (($ $ $) 28 (|has| |#1| (-374)))) (-2911 (($ $ (-783)) 31 (|has| |#1| (-374)))) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-3620 (($ $ $) NIL (|has| |#1| (-374)))) (-3112 (($ $ $) NIL (|has| |#1| (-374)))) (-2209 (($ $ $) NIL (|has| |#1| (-374)))) (-2367 (($ $ $) NIL (|has| |#1| (-374)))) (-3703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| |#1| (-374)))) (-2881 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3054 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#1| (-374)))) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2860 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-2114 (($ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-3767 (($ $) NIL (|has| |#1| (-464)))) (-4193 (((-112) $) NIL)) (-1945 (($ |#1| (-783)) NIL)) (-3684 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#1| (-568)))) (-3358 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#1| (-568)))) (-3751 (((-783) $) NIL)) (-1764 (($ $ $) NIL (|has| |#1| (-374)))) (-2849 (($ $ $) NIL (|has| |#1| (-374)))) (-2296 (($ $ $) NIL (|has| |#1| (-374)))) (-1857 (($ $ $) NIL (|has| |#1| (-374)))) (-1566 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| |#1| (-374)))) (-3215 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4258 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#1| (-374)))) (-2091 ((|#1| $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2797 ((|#1| $ |#1|) 24)) (-3455 (($ $ $) 33 (|has| |#1| (-374)))) (-3634 (((-783) $) NIL)) (-2457 ((|#1| $) NIL (|has| |#1| (-464)))) (-3570 (((-876) $) 20) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) NIL)) (-1618 (((-656 |#1|) $) NIL)) (-3177 ((|#1| $ (-783)) NIL)) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-3569 ((|#1| $ |#1| |#1|) 23)) (-3960 (($ $) NIL)) (-2721 (($) 21 T CONST)) (-2732 (($) 8 T CONST)) (-2020 (($) NIL)) (-2925 (((-112) $ $) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +((-4058 (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))) 85 (|has| |#1| (-27)))) (-1828 (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))) 84 (|has| |#1| (-27))) (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 19))) +(((-669 |#1| |#2|) (-10 -7 (-15 -1828 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1828 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)))) (-15 -4058 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))))) |%noBranch|)) (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576)))) (-1264 |#1|)) (T -669)) +((-4058 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *2 (-656 (-665 (-419 *5)))) (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))) (-1828 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *2 (-656 (-665 (-419 *5)))) (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))) (-1828 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-665 (-419 *6)))) (-5 *1 (-669 *5 *6)) (-5 *3 (-665 (-419 *6)))))) +(-10 -7 (-15 -1828 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1828 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)))) (-15 -4058 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))))) |%noBranch|)) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-1886 (($ $) NIL (|has| |#1| (-374)))) (-2809 (($ $ $) 28 (|has| |#1| (-374)))) (-3165 (($ $ (-783)) 31 (|has| |#1| (-374)))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-3842 (($ $ $) NIL (|has| |#1| (-374)))) (-2424 (($ $ $) NIL (|has| |#1| (-374)))) (-3723 (($ $ $) NIL (|has| |#1| (-374)))) (-1550 (($ $ $) NIL (|has| |#1| (-374)))) (-2086 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-2836 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3143 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#1| (-374)))) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2859 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-2114 (($ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1547 (($ $) NIL (|has| |#1| (-464)))) (-1351 (((-112) $) NIL)) (-1944 (($ |#1| (-783)) NIL)) (-3202 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#1| (-568)))) (-3140 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#1| (-568)))) (-2578 (((-783) $) NIL)) (-1882 (($ $ $) NIL (|has| |#1| (-374)))) (-3814 (($ $ $) NIL (|has| |#1| (-374)))) (-2079 (($ $ $) NIL (|has| |#1| (-374)))) (-3490 (($ $ $) NIL (|has| |#1| (-374)))) (-3722 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-4193 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3923 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#1| (-374)))) (-2091 ((|#1| $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2796 ((|#1| $ |#1|) 24)) (-1602 (($ $ $) 33 (|has| |#1| (-374)))) (-2683 (((-783) $) NIL)) (-4370 ((|#1| $) NIL (|has| |#1| (-464)))) (-3569 (((-876) $) 20) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) NIL)) (-2937 (((-656 |#1|) $) NIL)) (-1822 ((|#1| $ (-783)) NIL)) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-3568 ((|#1| $ |#1| |#1|) 23)) (-2825 (($ $) NIL)) (-2721 (($) 21 T CONST)) (-2731 (($) 8 T CONST)) (-2020 (($) NIL)) (-2924 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) (((-670 |#1| |#2|) (-668 |#1|) (-1070) (-1 |#1| |#1|)) (T -670)) NIL (-668 |#1|) -((-1605 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65)) (-2911 ((|#2| |#2| (-783) (-1 |#1| |#1|)) 45)) (-3455 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67))) -(((-671 |#1| |#2|) (-10 -7 (-15 -1605 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2911 (|#2| |#2| (-783) (-1 |#1| |#1|))) (-15 -3455 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-374) (-668 |#1|)) (T -671)) -((-3455 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) (-4 *2 (-668 *4)))) (-2911 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-5 *1 (-671 *5 *2)) (-4 *2 (-668 *5)))) (-1605 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) (-4 *2 (-668 *4))))) -(-10 -7 (-15 -1605 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2911 (|#2| |#2| (-783) (-1 |#1| |#1|))) (-15 -3455 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-3563 (($ $ $) 9))) -(((-672 |#1|) (-10 -8 (-15 -3563 (|#1| |#1| |#1|))) (-673)) (T -672)) -NIL -(-10 -8 (-15 -3563 (|#1| |#1| |#1|))) -((-3489 (((-112) $ $) 7)) (-3517 (($ $) 11)) (-4055 (((-112) $ $) 6)) (-3563 (($ $ $) 9)) (-2925 (((-112) $ $) 8)) (-3552 (($ $ $) 10))) +((-2809 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65)) (-3165 ((|#2| |#2| (-783) (-1 |#1| |#1|)) 45)) (-1602 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67))) +(((-671 |#1| |#2|) (-10 -7 (-15 -2809 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3165 (|#2| |#2| (-783) (-1 |#1| |#1|))) (-15 -1602 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-374) (-668 |#1|)) (T -671)) +((-1602 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) (-4 *2 (-668 *4)))) (-3165 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-5 *1 (-671 *5 *2)) (-4 *2 (-668 *5)))) (-2809 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) (-4 *2 (-668 *4))))) +(-10 -7 (-15 -2809 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3165 (|#2| |#2| (-783) (-1 |#1| |#1|))) (-15 -1602 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-3562 (($ $ $) 9))) +(((-672 |#1|) (-10 -8 (-15 -3562 (|#1| |#1| |#1|))) (-673)) (T -672)) +NIL +(-10 -8 (-15 -3562 (|#1| |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-3516 (($ $) 11)) (-2399 (((-112) $ $) 6)) (-3562 (($ $ $) 9)) (-2924 (((-112) $ $) 8)) (-3551 (($ $ $) 10))) (((-673) (-141)) (T -673)) -((-3517 (*1 *1 *1) (-4 *1 (-673))) (-3552 (*1 *1 *1 *1) (-4 *1 (-673))) (-3563 (*1 *1 *1 *1) (-4 *1 (-673)))) -(-13 (-102) (-10 -8 (-15 -3517 ($ $)) (-15 -3552 ($ $ $)) (-15 -3563 ($ $ $)))) +((-3516 (*1 *1 *1) (-4 *1 (-673))) (-3551 (*1 *1 *1 *1) (-4 *1 (-673))) (-3562 (*1 *1 *1 *1) (-4 *1 (-673)))) +(-13 (-102) (-10 -8 (-15 -3516 ($ $)) (-15 -3551 ($ $ $)) (-15 -3562 ($ $ $)))) (((-102) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 15)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-1570 ((|#1| $) 23)) (-3125 (($ $ $) NIL (|has| |#1| (-803)))) (-3133 (($ $ $) NIL (|has| |#1| (-803)))) (-3699 (((-1179) $) 48)) (-1450 (((-1141) $) NIL)) (-1581 ((|#3| $) 24)) (-3570 (((-876) $) 43)) (-4055 (((-112) $ $) 22)) (-2721 (($) 10 T CONST)) (-2992 (((-112) $ $) NIL (|has| |#1| (-803)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-803)))) (-2925 (((-112) $ $) 20)) (-2978 (((-112) $ $) NIL (|has| |#1| (-803)))) (-2950 (((-112) $ $) 26 (|has| |#1| (-803)))) (-3057 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3044 (($ $) 17) (($ $ $) NIL)) (-3030 (($ $ $) 29)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) -(((-674 |#1| |#2| |#3|) (-13 (-729 |#2|) (-10 -8 (IF (|has| |#1| (-803)) (-6 (-803)) |%noBranch|) (-15 -3057 ($ $ |#3|)) (-15 -3057 ($ |#1| |#3|)) (-15 -1570 (|#1| $)) (-15 -1581 (|#3| $)))) (-729 |#2|) (-174) (|SubsetCategory| (-738) |#2|)) (T -674)) -((-3057 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4)) (-4 *2 (|SubsetCategory| (-738) *4)))) (-3057 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-674 *2 *4 *3)) (-4 *2 (-729 *4)) (-4 *3 (|SubsetCategory| (-738) *4)))) (-1570 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-729 *3)) (-5 *1 (-674 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-738) *3)))) (-1581 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4))))) -(-13 (-729 |#2|) (-10 -8 (IF (|has| |#1| (-803)) (-6 (-803)) |%noBranch|) (-15 -3057 ($ $ |#3|)) (-15 -3057 ($ |#1| |#3|)) (-15 -1570 (|#1| $)) (-15 -1581 (|#3| $)))) -((-2186 (((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|)) 33))) -(((-675 |#1|) (-10 -7 (-15 -2186 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|)))) (-928)) (T -675)) -((-2186 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1193 *4))) (-5 *3 (-1193 *4)) (-4 *4 (-928)) (-5 *1 (-675 *4))))) -(-10 -7 (-15 -2186 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-3447 (((-656 |#1|) $) 84)) (-1996 (($ $ (-783)) 94)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-4442 (((-1312 |#1| |#2|) (-1312 |#1| |#2|) $) 50)) (-1572 (((-3 (-684 |#1|) "failed") $) NIL)) (-2860 (((-684 |#1|) $) NIL)) (-2114 (($ $) 93)) (-2217 (((-783) $) NIL)) (-1608 (((-656 $) $) NIL)) (-2823 (((-112) $) NIL)) (-3685 (($ (-684 |#1|) |#2|) 70)) (-1372 (($ $) 89)) (-4117 (($ (-1 |#2| |#2|) $) NIL)) (-2054 (((-1312 |#1| |#2|) (-1312 |#1| |#2|) $) 49)) (-2644 (((-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2081 (((-684 |#1|) $) NIL)) (-2091 ((|#2| $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3284 (($ $ |#1| $) 32) (($ $ (-656 |#1|) (-656 $)) 34)) (-3634 (((-783) $) 91)) (-3582 (($ $ $) 20) (($ (-684 |#1|) (-684 |#1|)) 79) (($ (-684 |#1|) $) 77) (($ $ (-684 |#1|)) 78)) (-3570 (((-876) $) NIL) (($ |#1|) 76) (((-1303 |#1| |#2|) $) 60) (((-1312 |#1| |#2|) $) 43) (($ (-684 |#1|)) 27)) (-1618 (((-656 |#2|) $) NIL)) (-3177 ((|#2| $ (-684 |#1|)) NIL)) (-1714 ((|#2| (-1312 |#1| |#2|) $) 45)) (-4055 (((-112) $ $) NIL)) (-2721 (($) 23 T CONST)) (-3071 (((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3824 (((-3 $ "failed") (-1303 |#1| |#2|)) 62)) (-3550 (($ (-684 |#1|)) 14)) (-2925 (((-112) $ $) 46)) (-3057 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3044 (($ $) 68) (($ $ $) NIL)) (-3030 (($ $ $) 31)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-684 |#1|)) NIL))) -(((-676 |#1| |#2|) (-13 (-385 |#1| |#2|) (-393 |#2| (-684 |#1|)) (-10 -8 (-15 -3824 ((-3 $ "failed") (-1303 |#1| |#2|))) (-15 -3582 ($ (-684 |#1|) (-684 |#1|))) (-15 -3582 ($ (-684 |#1|) $)) (-15 -3582 ($ $ (-684 |#1|))))) (-861) (-174)) (T -676)) -((-3824 (*1 *1 *2) (|partial| -12 (-5 *2 (-1303 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *1 (-676 *3 *4)))) (-3582 (*1 *1 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174)))) (-3582 (*1 *1 *2 *1) (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174)))) (-3582 (*1 *1 *1 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174))))) -(-13 (-385 |#1| |#2|) (-393 |#2| (-684 |#1|)) (-10 -8 (-15 -3824 ((-3 $ "failed") (-1303 |#1| |#2|))) (-15 -3582 ($ (-684 |#1|) (-684 |#1|))) (-15 -3582 ($ (-684 |#1|) $)) (-15 -3582 ($ $ (-684 |#1|))))) -((-1710 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 59)) (-4298 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-2300 (($ (-1 (-112) |#2|) $) 29)) (-3990 (($ $) 65)) (-1703 (($ $) 74)) (-1671 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-3686 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62)) (-3660 (((-576) |#2| $ (-576)) 71) (((-576) |#2| $) NIL) (((-576) (-1 (-112) |#2|) $) 54)) (-4141 (($ (-783) |#2|) 63)) (-2453 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-3391 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-4117 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-1650 (($ |#2|) 15)) (-1901 (($ $ $ (-576)) 42) (($ |#2| $ (-576)) 40)) (-1541 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-2161 (($ $ (-1255 (-576))) 51) (($ $ (-576)) 44)) (-3025 (($ $ $ (-576)) 70)) (-1870 (($ $) 68)) (-2950 (((-112) $ $) 76))) -(((-677 |#1| |#2|) (-10 -8 (-15 -1650 (|#1| |#2|)) (-15 -2161 (|#1| |#1| (-576))) (-15 -2161 (|#1| |#1| (-1255 (-576)))) (-15 -1671 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1901 (|#1| |#2| |#1| (-576))) (-15 -1901 (|#1| |#1| |#1| (-576))) (-15 -2453 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2300 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1671 (|#1| |#2| |#1|)) (-15 -1703 (|#1| |#1|)) (-15 -2453 (|#1| |#1| |#1|)) (-15 -3391 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1710 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3660 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3660 ((-576) |#2| |#1|)) (-15 -3660 ((-576) |#2| |#1| (-576))) (-15 -3391 (|#1| |#1| |#1|)) (-15 -1710 ((-112) |#1|)) (-15 -3025 (|#1| |#1| |#1| (-576))) (-15 -3990 (|#1| |#1|)) (-15 -4298 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4298 (|#1| |#1|)) (-15 -2950 ((-112) |#1| |#1|)) (-15 -3686 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3686 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3686 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1541 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4141 (|#1| (-783) |#2|)) (-15 -4117 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4117 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1870 (|#1| |#1|))) (-678 |#2|) (-1238)) (T -677)) -NIL -(-10 -8 (-15 -1650 (|#1| |#2|)) (-15 -2161 (|#1| |#1| (-576))) (-15 -2161 (|#1| |#1| (-1255 (-576)))) (-15 -1671 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1901 (|#1| |#2| |#1| (-576))) (-15 -1901 (|#1| |#1| |#1| (-576))) (-15 -2453 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2300 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1671 (|#1| |#2| |#1|)) (-15 -1703 (|#1| |#1|)) (-15 -2453 (|#1| |#1| |#1|)) (-15 -3391 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1710 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3660 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3660 ((-576) |#2| |#1|)) (-15 -3660 ((-576) |#2| |#1| (-576))) (-15 -3391 (|#1| |#1| |#1|)) (-15 -1710 ((-112) |#1|)) (-15 -3025 (|#1| |#1| |#1| (-576))) (-15 -3990 (|#1| |#1|)) (-15 -4298 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4298 (|#1| |#1|)) (-15 -2950 ((-112) |#1| |#1|)) (-15 -3686 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3686 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3686 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1541 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4141 (|#1| (-783) |#2|)) (-15 -4117 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4117 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1870 (|#1| |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3106 ((|#1| $) 49)) (-2898 ((|#1| $) 66)) (-4426 (($ $) 68)) (-2047 (((-1293) $ (-576) (-576)) 99 (|has| $ (-6 -4466)))) (-2587 (($ $ (-576)) 53 (|has| $ (-6 -4466)))) (-1710 (((-112) $) 144 (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) 138)) (-4298 (($ $) 148 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4466)))) (-1795 (($ $) 143 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) 137)) (-1808 (((-112) $ (-783)) 8)) (-2647 ((|#1| $ |#1|) 40 (|has| $ (-6 -4466)))) (-4364 (($ $ $) 57 (|has| $ (-6 -4466)))) (-2297 ((|#1| $ |#1|) 55 (|has| $ (-6 -4466)))) (-1350 ((|#1| $ |#1|) 59 (|has| $ (-6 -4466)))) (-3756 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4466))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4466))) (($ $ "rest" $) 56 (|has| $ (-6 -4466))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4466))) ((|#1| $ (-1255 (-576)) |#1|) 119 (|has| $ (-6 -4466))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4466)))) (-1894 (($ $ (-656 $)) 42 (|has| $ (-6 -4466)))) (-2300 (($ (-1 (-112) |#1|) $) 131)) (-1974 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4465)))) (-2883 ((|#1| $) 67)) (-3886 (($) 7 T CONST)) (-3990 (($ $) 146 (|has| $ (-6 -4466)))) (-3836 (($ $) 136)) (-3593 (($ $) 74) (($ $ (-783)) 72)) (-1703 (($ $) 133 (|has| |#1| (-1121)))) (-1415 (($ $) 101 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1671 (($ |#1| $) 132 (|has| |#1| (-1121))) (($ (-1 (-112) |#1|) $) 127)) (-3946 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4465))) (($ |#1| $) 102 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-4335 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4466)))) (-4274 ((|#1| $ (-576)) 89)) (-4419 (((-112) $) 85)) (-3660 (((-576) |#1| $ (-576)) 141 (|has| |#1| (-1121))) (((-576) |#1| $) 140 (|has| |#1| (-1121))) (((-576) (-1 (-112) |#1|) $) 139)) (-3966 (((-656 |#1|) $) 31 (|has| $ (-6 -4465)))) (-2387 (((-656 $) $) 51)) (-3295 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-4141 (($ (-783) |#1|) 111)) (-3870 (((-112) $ (-783)) 9)) (-2924 (((-576) $) 97 (|has| (-576) (-861)))) (-3125 (($ $ $) 154 (|has| |#1| (-861)))) (-2453 (($ $ $) 134 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 130)) (-3391 (($ $ $) 142 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 135)) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-2137 (((-576) $) 96 (|has| (-576) (-861)))) (-3133 (($ $ $) 153 (|has| |#1| (-861)))) (-4323 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1650 (($ |#1|) 124)) (-1330 (((-112) $ (-783)) 10)) (-2353 (((-656 |#1|) $) 46)) (-3443 (((-112) $) 50)) (-3699 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3969 ((|#1| $) 71) (($ $ (-783)) 69)) (-1901 (($ $ $ (-576)) 129) (($ |#1| $ (-576)) 128)) (-2176 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-4234 (((-656 (-576)) $) 94)) (-3354 (((-112) (-576) $) 93)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3581 ((|#1| $) 77) (($ $ (-783)) 75)) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-4046 (($ $ |#1|) 98 (|has| $ (-6 -4466)))) (-3166 (((-112) $) 86)) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3845 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2281 (((-656 |#1|) $) 92)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-2797 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1255 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-2789 (((-576) $ $) 45)) (-2161 (($ $ (-1255 (-576))) 126) (($ $ (-576)) 125)) (-3466 (($ $ (-1255 (-576))) 116) (($ $ (-576)) 115)) (-3617 (((-112) $) 47)) (-2934 (($ $) 63)) (-3852 (($ $) 60 (|has| $ (-6 -4466)))) (-2687 (((-783) $) 64)) (-3369 (($ $) 65)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-3025 (($ $ $ (-576)) 145 (|has| $ (-6 -4466)))) (-1870 (($ $) 13)) (-4172 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) 109)) (-2974 (($ $ $) 62) (($ $ |#1|) 61)) (-1615 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-3570 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2902 (((-656 $) $) 52)) (-2621 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-4055 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2992 (((-112) $ $) 152 (|has| |#1| (-861)))) (-2964 (((-112) $ $) 150 (|has| |#1| (-861)))) (-2925 (((-112) $ $) 19 (|has| |#1| (-102)))) (-2978 (((-112) $ $) 151 (|has| |#1| (-861)))) (-2950 (((-112) $ $) 149 (|has| |#1| (-861)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 15)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-1570 ((|#1| $) 23)) (-3124 (($ $ $) NIL (|has| |#1| (-803)))) (-1441 (($ $ $) NIL (|has| |#1| (-803)))) (-2046 (((-1179) $) 48)) (-1450 (((-1141) $) NIL)) (-1581 ((|#3| $) 24)) (-3569 (((-876) $) 43)) (-2399 (((-112) $ $) 22)) (-2721 (($) 10 T CONST)) (-2990 (((-112) $ $) NIL (|has| |#1| (-803)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-803)))) (-2924 (((-112) $ $) 20)) (-2978 (((-112) $ $) NIL (|has| |#1| (-803)))) (-2949 (((-112) $ $) 26 (|has| |#1| (-803)))) (-3056 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3043 (($ $) 17) (($ $ $) NIL)) (-3029 (($ $ $) 29)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) +(((-674 |#1| |#2| |#3|) (-13 (-729 |#2|) (-10 -8 (IF (|has| |#1| (-803)) (-6 (-803)) |%noBranch|) (-15 -3056 ($ $ |#3|)) (-15 -3056 ($ |#1| |#3|)) (-15 -1570 (|#1| $)) (-15 -1581 (|#3| $)))) (-729 |#2|) (-174) (|SubsetCategory| (-738) |#2|)) (T -674)) +((-3056 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4)) (-4 *2 (|SubsetCategory| (-738) *4)))) (-3056 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-674 *2 *4 *3)) (-4 *2 (-729 *4)) (-4 *3 (|SubsetCategory| (-738) *4)))) (-1570 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-729 *3)) (-5 *1 (-674 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-738) *3)))) (-1581 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4))))) +(-13 (-729 |#2|) (-10 -8 (IF (|has| |#1| (-803)) (-6 (-803)) |%noBranch|) (-15 -3056 ($ $ |#3|)) (-15 -3056 ($ |#1| |#3|)) (-15 -1570 (|#1| $)) (-15 -1581 (|#3| $)))) +((-3484 (((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|)) 33))) +(((-675 |#1|) (-10 -7 (-15 -3484 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|)))) (-928)) (T -675)) +((-3484 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1193 *4))) (-5 *3 (-1193 *4)) (-4 *4 (-928)) (-5 *1 (-675 *4))))) +(-10 -7 (-15 -3484 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-3446 (((-656 |#1|) $) 84)) (-2256 (($ $ (-783)) 94)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-1932 (((-1312 |#1| |#2|) (-1312 |#1| |#2|) $) 50)) (-1572 (((-3 (-684 |#1|) "failed") $) NIL)) (-2859 (((-684 |#1|) $) NIL)) (-2114 (($ $) 93)) (-3799 (((-783) $) NIL)) (-2846 (((-656 $) $) NIL)) (-3538 (((-112) $) NIL)) (-3684 (($ (-684 |#1|) |#2|) 70)) (-3187 (($ $) 89)) (-4116 (($ (-1 |#2| |#2|) $) NIL)) (-1566 (((-1312 |#1| |#2|) (-1312 |#1| |#2|) $) 49)) (-2448 (((-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2081 (((-684 |#1|) $) NIL)) (-2091 ((|#2| $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3282 (($ $ |#1| $) 32) (($ $ (-656 |#1|) (-656 $)) 34)) (-2683 (((-783) $) 91)) (-3581 (($ $ $) 20) (($ (-684 |#1|) (-684 |#1|)) 79) (($ (-684 |#1|) $) 77) (($ $ (-684 |#1|)) 78)) (-3569 (((-876) $) NIL) (($ |#1|) 76) (((-1303 |#1| |#2|) $) 60) (((-1312 |#1| |#2|) $) 43) (($ (-684 |#1|)) 27)) (-2937 (((-656 |#2|) $) NIL)) (-1822 ((|#2| $ (-684 |#1|)) NIL)) (-1715 ((|#2| (-1312 |#1| |#2|) $) 45)) (-2399 (((-112) $ $) NIL)) (-2721 (($) 23 T CONST)) (-2012 (((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4101 (((-3 $ "failed") (-1303 |#1| |#2|)) 62)) (-4389 (($ (-684 |#1|)) 14)) (-2924 (((-112) $ $) 46)) (-3056 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3043 (($ $) 68) (($ $ $) NIL)) (-3029 (($ $ $) 31)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-684 |#1|)) NIL))) +(((-676 |#1| |#2|) (-13 (-385 |#1| |#2|) (-393 |#2| (-684 |#1|)) (-10 -8 (-15 -4101 ((-3 $ "failed") (-1303 |#1| |#2|))) (-15 -3581 ($ (-684 |#1|) (-684 |#1|))) (-15 -3581 ($ (-684 |#1|) $)) (-15 -3581 ($ $ (-684 |#1|))))) (-861) (-174)) (T -676)) +((-4101 (*1 *1 *2) (|partial| -12 (-5 *2 (-1303 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *1 (-676 *3 *4)))) (-3581 (*1 *1 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174)))) (-3581 (*1 *1 *2 *1) (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174)))) (-3581 (*1 *1 *1 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174))))) +(-13 (-385 |#1| |#2|) (-393 |#2| (-684 |#1|)) (-10 -8 (-15 -4101 ((-3 $ "failed") (-1303 |#1| |#2|))) (-15 -3581 ($ (-684 |#1|) (-684 |#1|))) (-15 -3581 ($ (-684 |#1|) $)) (-15 -3581 ($ $ (-684 |#1|))))) +((-1390 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 59)) (-3039 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-2123 (($ (-1 (-112) |#2|) $) 29)) (-3092 (($ $) 65)) (-2495 (($ $) 74)) (-2172 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-3685 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62)) (-3659 (((-576) |#2| $ (-576)) 71) (((-576) |#2| $) NIL) (((-576) (-1 (-112) |#2|) $) 54)) (-4140 (($ (-783) |#2|) 63)) (-4330 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-2185 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-4116 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-1649 (($ |#2|) 15)) (-2597 (($ $ $ (-576)) 42) (($ |#2| $ (-576)) 40)) (-3434 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-1352 (($ $ (-1255 (-576))) 51) (($ $ (-576)) 44)) (-2840 (($ $ $ (-576)) 70)) (-1870 (($ $) 68)) (-2949 (((-112) $ $) 76))) +(((-677 |#1| |#2|) (-10 -8 (-15 -1649 (|#1| |#2|)) (-15 -1352 (|#1| |#1| (-576))) (-15 -1352 (|#1| |#1| (-1255 (-576)))) (-15 -2172 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2597 (|#1| |#2| |#1| (-576))) (-15 -2597 (|#1| |#1| |#1| (-576))) (-15 -4330 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2123 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2172 (|#1| |#2| |#1|)) (-15 -2495 (|#1| |#1|)) (-15 -4330 (|#1| |#1| |#1|)) (-15 -2185 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1390 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3659 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3659 ((-576) |#2| |#1|)) (-15 -3659 ((-576) |#2| |#1| (-576))) (-15 -2185 (|#1| |#1| |#1|)) (-15 -1390 ((-112) |#1|)) (-15 -2840 (|#1| |#1| |#1| (-576))) (-15 -3092 (|#1| |#1|)) (-15 -3039 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3039 (|#1| |#1|)) (-15 -2949 ((-112) |#1| |#1|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3434 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4140 (|#1| (-783) |#2|)) (-15 -4116 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1870 (|#1| |#1|))) (-678 |#2|) (-1238)) (T -677)) +NIL +(-10 -8 (-15 -1649 (|#1| |#2|)) (-15 -1352 (|#1| |#1| (-576))) (-15 -1352 (|#1| |#1| (-1255 (-576)))) (-15 -2172 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2597 (|#1| |#2| |#1| (-576))) (-15 -2597 (|#1| |#1| |#1| (-576))) (-15 -4330 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2123 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2172 (|#1| |#2| |#1|)) (-15 -2495 (|#1| |#1|)) (-15 -4330 (|#1| |#1| |#1|)) (-15 -2185 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1390 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3659 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3659 ((-576) |#2| |#1|)) (-15 -3659 ((-576) |#2| |#1| (-576))) (-15 -2185 (|#1| |#1| |#1|)) (-15 -1390 ((-112) |#1|)) (-15 -2840 (|#1| |#1| |#1| (-576))) (-15 -3092 (|#1| |#1|)) (-15 -3039 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3039 (|#1| |#1|)) (-15 -2949 ((-112) |#1| |#1|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3685 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3434 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4140 (|#1| (-783) |#2|)) (-15 -4116 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1870 (|#1| |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3104 ((|#1| $) 49)) (-2898 ((|#1| $) 66)) (-4424 (($ $) 68)) (-1512 (((-1293) $ (-576) (-576)) 99 (|has| $ (-6 -4465)))) (-3203 (($ $ (-576)) 53 (|has| $ (-6 -4465)))) (-1390 (((-112) $) 144 (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) 138)) (-3039 (($ $) 148 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4465)))) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4465)))) (-1795 (($ $) 143 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) 137)) (-4264 (((-112) $ (-783)) 8)) (-2482 ((|#1| $ |#1|) 40 (|has| $ (-6 -4465)))) (-2395 (($ $ $) 57 (|has| $ (-6 -4465)))) (-2089 ((|#1| $ |#1|) 55 (|has| $ (-6 -4465)))) (-1336 ((|#1| $ |#1|) 59 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4465))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4465))) (($ $ "rest" $) 56 (|has| $ (-6 -4465))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 119 (|has| $ (-6 -4465))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4465)))) (-3829 (($ $ (-656 $)) 42 (|has| $ (-6 -4465)))) (-2123 (($ (-1 (-112) |#1|) $) 131)) (-1974 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4464)))) (-2882 ((|#1| $) 67)) (-3404 (($) 7 T CONST)) (-3092 (($ $) 146 (|has| $ (-6 -4465)))) (-3835 (($ $) 136)) (-3592 (($ $) 74) (($ $ (-783)) 72)) (-2495 (($ $) 133 (|has| |#1| (-1121)))) (-2034 (($ $) 101 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2172 (($ |#1| $) 132 (|has| |#1| (-1121))) (($ (-1 (-112) |#1|) $) 127)) (-3945 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4464))) (($ |#1| $) 102 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4332 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) 89)) (-1742 (((-112) $) 85)) (-3659 (((-576) |#1| $ (-576)) 141 (|has| |#1| (-1121))) (((-576) |#1| $) 140 (|has| |#1| (-1121))) (((-576) (-1 (-112) |#1|) $) 139)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-1736 (((-656 $) $) 51)) (-3768 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-4140 (($ (-783) |#1|) 111)) (-1368 (((-112) $ (-783)) 9)) (-3281 (((-576) $) 97 (|has| (-576) (-861)))) (-3124 (($ $ $) 154 (|has| |#1| (-861)))) (-4330 (($ $ $) 134 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 130)) (-2185 (($ $ $) 142 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 135)) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4280 (((-576) $) 96 (|has| (-576) (-861)))) (-1441 (($ $ $) 153 (|has| |#1| (-861)))) (-4326 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1649 (($ |#1|) 124)) (-2883 (((-112) $ (-783)) 10)) (-2353 (((-656 |#1|) $) 46)) (-1508 (((-112) $) 50)) (-2046 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3968 ((|#1| $) 71) (($ $ (-783)) 69)) (-2597 (($ $ $ (-576)) 129) (($ |#1| $ (-576)) 128)) (-2176 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-3669 (((-656 (-576)) $) 94)) (-3090 (((-112) (-576) $) 93)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3580 ((|#1| $) 77) (($ $ (-783)) 75)) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-2304 (($ $ |#1|) 98 (|has| $ (-6 -4465)))) (-1721 (((-112) $) 86)) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-4282 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3207 (((-656 |#1|) $) 92)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-2796 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1255 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-1335 (((-576) $ $) 45)) (-1352 (($ $ (-1255 (-576))) 126) (($ $ (-576)) 125)) (-3465 (($ $ (-1255 (-576))) 116) (($ $ (-576)) 115)) (-3806 (((-112) $) 47)) (-3262 (($ $) 63)) (-4347 (($ $) 60 (|has| $ (-6 -4465)))) (-1619 (((-783) $) 64)) (-3237 (($ $) 65)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2840 (($ $ $ (-576)) 145 (|has| $ (-6 -4465)))) (-1870 (($ $) 13)) (-4171 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 109)) (-3631 (($ $ $) 62) (($ $ |#1|) 61)) (-1615 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-3059 (((-656 $) $) 52)) (-2247 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-2399 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2990 (((-112) $ $) 152 (|has| |#1| (-861)))) (-2962 (((-112) $ $) 150 (|has| |#1| (-861)))) (-2924 (((-112) $ $) 19 (|has| |#1| (-102)))) (-2978 (((-112) $ $) 151 (|has| |#1| (-861)))) (-2949 (((-112) $ $) 149 (|has| |#1| (-861)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-678 |#1|) (-141) (-1238)) (T -678)) -((-1650 (*1 *1 *2) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1238))))) -(-13 (-1170 |t#1|) (-384 |t#1|) (-292 |t#1|) (-10 -8 (-15 -1650 ($ |t#1|)))) -(((-34) . T) ((-102) -2760 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-625 (-876)) -2760 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-292 |#1|) . T) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1031 |#1|) . T) ((-1121) -2760 (|has| |#1| (-1121)) (|has| |#1| (-861))) ((-1170 |#1|) . T) ((-1238) . T) ((-1276 |#1|) . T)) -((-2767 (((-656 (-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -1593 (-656 (-1288 |#1|))))) (-656 (-656 |#1|)) (-656 (-1288 |#1|))) 22) (((-656 (-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -1593 (-656 (-1288 |#1|))))) (-701 |#1|) (-656 (-1288 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -1593 (-656 (-1288 |#1|)))) (-656 (-656 |#1|)) (-1288 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -1593 (-656 (-1288 |#1|)))) (-701 |#1|) (-1288 |#1|)) 14)) (-3734 (((-783) (-701 |#1|) (-1288 |#1|)) 30)) (-1483 (((-3 (-1288 |#1|) "failed") (-701 |#1|) (-1288 |#1|)) 24)) (-1575 (((-112) (-701 |#1|) (-1288 |#1|)) 27))) -(((-679 |#1|) (-10 -7 (-15 -2767 ((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -1593 (-656 (-1288 |#1|)))) (-701 |#1|) (-1288 |#1|))) (-15 -2767 ((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -1593 (-656 (-1288 |#1|)))) (-656 (-656 |#1|)) (-1288 |#1|))) (-15 -2767 ((-656 (-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -1593 (-656 (-1288 |#1|))))) (-701 |#1|) (-656 (-1288 |#1|)))) (-15 -2767 ((-656 (-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -1593 (-656 (-1288 |#1|))))) (-656 (-656 |#1|)) (-656 (-1288 |#1|)))) (-15 -1483 ((-3 (-1288 |#1|) "failed") (-701 |#1|) (-1288 |#1|))) (-15 -1575 ((-112) (-701 |#1|) (-1288 |#1|))) (-15 -3734 ((-783) (-701 |#1|) (-1288 |#1|)))) (-374)) (T -679)) -((-3734 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-5 *4 (-1288 *5)) (-4 *5 (-374)) (-5 *2 (-783)) (-5 *1 (-679 *5)))) (-1575 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-5 *4 (-1288 *5)) (-4 *5 (-374)) (-5 *2 (-112)) (-5 *1 (-679 *5)))) (-1483 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1288 *4)) (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *1 (-679 *4)))) (-2767 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| |particular| (-3 (-1288 *5) "failed")) (|:| -1593 (-656 (-1288 *5)))))) (-5 *1 (-679 *5)) (-5 *4 (-656 (-1288 *5))))) (-2767 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| |particular| (-3 (-1288 *5) "failed")) (|:| -1593 (-656 (-1288 *5)))))) (-5 *1 (-679 *5)) (-5 *4 (-656 (-1288 *5))))) (-2767 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) (-5 *2 (-2 (|:| |particular| (-3 (-1288 *5) "failed")) (|:| -1593 (-656 (-1288 *5))))) (-5 *1 (-679 *5)) (-5 *4 (-1288 *5)))) (-2767 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |particular| (-3 (-1288 *5) "failed")) (|:| -1593 (-656 (-1288 *5))))) (-5 *1 (-679 *5)) (-5 *4 (-1288 *5))))) -(-10 -7 (-15 -2767 ((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -1593 (-656 (-1288 |#1|)))) (-701 |#1|) (-1288 |#1|))) (-15 -2767 ((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -1593 (-656 (-1288 |#1|)))) (-656 (-656 |#1|)) (-1288 |#1|))) (-15 -2767 ((-656 (-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -1593 (-656 (-1288 |#1|))))) (-701 |#1|) (-656 (-1288 |#1|)))) (-15 -2767 ((-656 (-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -1593 (-656 (-1288 |#1|))))) (-656 (-656 |#1|)) (-656 (-1288 |#1|)))) (-15 -1483 ((-3 (-1288 |#1|) "failed") (-701 |#1|) (-1288 |#1|))) (-15 -1575 ((-112) (-701 |#1|) (-1288 |#1|))) (-15 -3734 ((-783) (-701 |#1|) (-1288 |#1|)))) -((-2767 (((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1593 (-656 |#3|)))) |#4| (-656 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1593 (-656 |#3|))) |#4| |#3|) 60)) (-3734 (((-783) |#4| |#3|) 18)) (-1483 (((-3 |#3| "failed") |#4| |#3|) 21)) (-1575 (((-112) |#4| |#3|) 14))) -(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2767 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1593 (-656 |#3|))) |#4| |#3|)) (-15 -2767 ((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1593 (-656 |#3|)))) |#4| (-656 |#3|))) (-15 -1483 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1575 ((-112) |#4| |#3|)) (-15 -3734 ((-783) |#4| |#3|))) (-374) (-13 (-384 |#1|) (-10 -7 (-6 -4466))) (-13 (-384 |#1|) (-10 -7 (-6 -4466))) (-699 |#1| |#2| |#3|)) (T -680)) -((-3734 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4466)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4466)))) (-5 *2 (-783)) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-1575 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4466)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4466)))) (-5 *2 (-112)) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-1483 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-374)) (-4 *5 (-13 (-384 *4) (-10 -7 (-6 -4466)))) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4466)))) (-5 *1 (-680 *4 *5 *2 *3)) (-4 *3 (-699 *4 *5 *2)))) (-2767 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4466)))) (-4 *7 (-13 (-384 *5) (-10 -7 (-6 -4466)))) (-5 *2 (-656 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1593 (-656 *7))))) (-5 *1 (-680 *5 *6 *7 *3)) (-5 *4 (-656 *7)) (-4 *3 (-699 *5 *6 *7)))) (-2767 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4466)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4466)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1593 (-656 *4)))) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))) -(-10 -7 (-15 -2767 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1593 (-656 |#3|))) |#4| |#3|)) (-15 -2767 ((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1593 (-656 |#3|)))) |#4| (-656 |#3|))) (-15 -1483 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1575 ((-112) |#4| |#3|)) (-15 -3734 ((-783) |#4| |#3|))) -((-2438 (((-2 (|:| |particular| (-3 (-1288 (-419 |#4|)) "failed")) (|:| -1593 (-656 (-1288 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)) 51))) -(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2438 ((-2 (|:| |particular| (-3 (-1288 (-419 |#4|)) "failed")) (|:| -1593 (-656 (-1288 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)))) (-568) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -681)) -((-2438 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *7)) (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-5 *2 (-2 (|:| |particular| (-3 (-1288 (-419 *8)) "failed")) (|:| -1593 (-656 (-1288 (-419 *8)))))) (-5 *1 (-681 *5 *6 *7 *8))))) -(-10 -7 (-15 -2438 ((-2 (|:| |particular| (-3 (-1288 (-419 |#4|)) "failed")) (|:| -1593 (-656 (-1288 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2778 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-2210 ((|#2| $) NIL)) (-2283 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3210 (((-1288 (-701 |#2|))) NIL) (((-1288 (-701 |#2|)) (-1288 $)) NIL)) (-3240 (((-112) $) NIL)) (-2385 (((-1288 $)) 42)) (-1808 (((-112) $ (-783)) NIL)) (-1787 (($ |#2|) NIL)) (-3886 (($) NIL T CONST)) (-2030 (($ $) NIL (|has| |#2| (-317)))) (-4093 (((-245 |#1| |#2|) $ (-576)) NIL)) (-3251 (((-3 (-2 (|:| |particular| $) (|:| -1593 (-656 $))) "failed")) NIL (|has| |#2| (-568)))) (-3260 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-2191 (((-701 |#2|)) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-3331 ((|#2| $) NIL)) (-3352 (((-701 |#2|) $) NIL) (((-701 |#2|) $ (-1288 $)) NIL)) (-2454 (((-3 $ "failed") $) NIL (|has| |#2| (-568)))) (-1979 (((-1193 (-971 |#2|))) NIL (|has| |#2| (-374)))) (-3377 (($ $ (-940)) NIL)) (-1738 ((|#2| $) NIL)) (-3471 (((-1193 |#2|) $) NIL (|has| |#2| (-568)))) (-2267 ((|#2|) NIL) ((|#2| (-1288 $)) NIL)) (-2654 (((-1193 |#2|) $) NIL)) (-2002 (((-112)) NIL)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-2860 (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) ((|#2| $) NIL)) (-4119 (($ (-1288 |#2|)) NIL) (($ (-1288 |#2|) (-1288 $)) NIL)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-3734 (((-783) $) NIL (|has| |#2| (-568))) (((-940)) 43)) (-4274 ((|#2| $ (-576) (-576)) NIL)) (-1576 (((-112)) NIL)) (-4017 (($ $ (-940)) NIL)) (-3966 (((-656 |#2|) $) NIL (|has| $ (-6 -4465)))) (-4193 (((-112) $) NIL)) (-1394 (((-783) $) NIL (|has| |#2| (-568)))) (-2196 (((-656 (-245 |#1| |#2|)) $) NIL (|has| |#2| (-568)))) (-1689 (((-783) $) NIL)) (-2035 (((-112)) NIL)) (-1699 (((-783) $) NIL)) (-3870 (((-112) $ (-783)) NIL)) (-2471 ((|#2| $) NIL (|has| |#2| (-6 (-4467 "*"))))) (-4267 (((-576) $) NIL)) (-1952 (((-576) $) NIL)) (-2014 (((-656 |#2|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-3900 (((-576) $) NIL)) (-2569 (((-576) $) NIL)) (-2467 (($ (-656 (-656 |#2|))) NIL)) (-4323 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1907 (((-656 (-656 |#2|)) $) NIL)) (-1706 (((-112)) NIL)) (-1758 (((-112)) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3590 (((-3 (-2 (|:| |particular| $) (|:| -1593 (-656 $))) "failed")) NIL (|has| |#2| (-568)))) (-1778 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-1670 (((-701 |#2|)) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-2756 ((|#2| $) NIL)) (-2903 (((-701 |#2|) $) NIL) (((-701 |#2|) $ (-1288 $)) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-2941 (((-3 $ "failed") $) NIL (|has| |#2| (-568)))) (-3548 (((-1193 (-971 |#2|))) NIL (|has| |#2| (-374)))) (-1783 (($ $ (-940)) NIL)) (-3394 ((|#2| $) NIL)) (-4164 (((-1193 |#2|) $) NIL (|has| |#2| (-568)))) (-3814 ((|#2|) NIL) ((|#2| (-1288 $)) NIL)) (-3145 (((-1193 |#2|) $) NIL)) (-1707 (((-112)) NIL)) (-3699 (((-1179) $) NIL)) (-2083 (((-112)) NIL)) (-3897 (((-112)) NIL)) (-3998 (((-112)) NIL)) (-2807 (((-3 $ "failed") $) NIL (|has| |#2| (-374)))) (-1450 (((-1141) $) NIL)) (-2522 (((-112)) NIL)) (-3476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-4320 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#2| $ (-576) (-576) |#2|) NIL) ((|#2| $ (-576) (-576)) 28) ((|#2| $ (-576)) NIL)) (-2775 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-3367 ((|#2| $) NIL)) (-2784 (($ (-656 |#2|)) NIL)) (-4002 (((-112) $) NIL)) (-2625 (((-245 |#1| |#2|) $) NIL)) (-4223 ((|#2| $) NIL (|has| |#2| (-6 (-4467 "*"))))) (-1460 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-1870 (($ $) NIL)) (-4152 (((-701 |#2|) (-1288 $)) NIL) (((-1288 |#2|) $) NIL) (((-701 |#2|) (-1288 $) (-1288 $)) NIL) (((-1288 |#2|) $ (-1288 $)) 31)) (-4172 (($ (-1288 |#2|)) NIL) (((-1288 |#2|) $) NIL)) (-4034 (((-656 (-971 |#2|))) NIL) (((-656 (-971 |#2|)) (-1288 $)) NIL)) (-2076 (($ $ $) NIL)) (-2195 (((-112)) NIL)) (-2129 (((-245 |#1| |#2|) $ (-576)) NIL)) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1059 (-419 (-576))))) (($ |#2|) NIL) (((-701 |#2|) $) NIL)) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-1593 (((-1288 $)) 41)) (-4208 (((-656 (-1288 |#2|))) NIL (|has| |#2| (-568)))) (-3790 (($ $ $ $) NIL)) (-1511 (((-112)) NIL)) (-3569 (($ (-701 |#2|) $) NIL)) (-3321 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465)))) (-3830 (((-112) $) NIL)) (-4064 (($ $ $) NIL)) (-3689 (((-112)) NIL)) (-3818 (((-112)) NIL)) (-4395 (((-112)) NIL)) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2020 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#2| (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) NIL) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) NIL)) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) +((-1649 (*1 *1 *2) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1238))))) +(-13 (-1170 |t#1|) (-384 |t#1|) (-292 |t#1|) (-10 -8 (-15 -1649 ($ |t#1|)))) +(((-34) . T) ((-102) -2759 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-625 (-876)) -2759 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-292 |#1|) . T) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1031 |#1|) . T) ((-1121) -2759 (|has| |#1| (-1121)) (|has| |#1| (-861))) ((-1170 |#1|) . T) ((-1238) . T) ((-1276 |#1|) . T)) +((-4263 (((-656 (-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2675 (-656 (-1288 |#1|))))) (-656 (-656 |#1|)) (-656 (-1288 |#1|))) 22) (((-656 (-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2675 (-656 (-1288 |#1|))))) (-701 |#1|) (-656 (-1288 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2675 (-656 (-1288 |#1|)))) (-656 (-656 |#1|)) (-1288 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2675 (-656 (-1288 |#1|)))) (-701 |#1|) (-1288 |#1|)) 14)) (-3733 (((-783) (-701 |#1|) (-1288 |#1|)) 30)) (-4077 (((-3 (-1288 |#1|) "failed") (-701 |#1|) (-1288 |#1|)) 24)) (-3797 (((-112) (-701 |#1|) (-1288 |#1|)) 27))) +(((-679 |#1|) (-10 -7 (-15 -4263 ((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2675 (-656 (-1288 |#1|)))) (-701 |#1|) (-1288 |#1|))) (-15 -4263 ((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2675 (-656 (-1288 |#1|)))) (-656 (-656 |#1|)) (-1288 |#1|))) (-15 -4263 ((-656 (-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2675 (-656 (-1288 |#1|))))) (-701 |#1|) (-656 (-1288 |#1|)))) (-15 -4263 ((-656 (-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2675 (-656 (-1288 |#1|))))) (-656 (-656 |#1|)) (-656 (-1288 |#1|)))) (-15 -4077 ((-3 (-1288 |#1|) "failed") (-701 |#1|) (-1288 |#1|))) (-15 -3797 ((-112) (-701 |#1|) (-1288 |#1|))) (-15 -3733 ((-783) (-701 |#1|) (-1288 |#1|)))) (-374)) (T -679)) +((-3733 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-5 *4 (-1288 *5)) (-4 *5 (-374)) (-5 *2 (-783)) (-5 *1 (-679 *5)))) (-3797 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-5 *4 (-1288 *5)) (-4 *5 (-374)) (-5 *2 (-112)) (-5 *1 (-679 *5)))) (-4077 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1288 *4)) (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *1 (-679 *4)))) (-4263 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| |particular| (-3 (-1288 *5) "failed")) (|:| -2675 (-656 (-1288 *5)))))) (-5 *1 (-679 *5)) (-5 *4 (-656 (-1288 *5))))) (-4263 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| |particular| (-3 (-1288 *5) "failed")) (|:| -2675 (-656 (-1288 *5)))))) (-5 *1 (-679 *5)) (-5 *4 (-656 (-1288 *5))))) (-4263 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) (-5 *2 (-2 (|:| |particular| (-3 (-1288 *5) "failed")) (|:| -2675 (-656 (-1288 *5))))) (-5 *1 (-679 *5)) (-5 *4 (-1288 *5)))) (-4263 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |particular| (-3 (-1288 *5) "failed")) (|:| -2675 (-656 (-1288 *5))))) (-5 *1 (-679 *5)) (-5 *4 (-1288 *5))))) +(-10 -7 (-15 -4263 ((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2675 (-656 (-1288 |#1|)))) (-701 |#1|) (-1288 |#1|))) (-15 -4263 ((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2675 (-656 (-1288 |#1|)))) (-656 (-656 |#1|)) (-1288 |#1|))) (-15 -4263 ((-656 (-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2675 (-656 (-1288 |#1|))))) (-701 |#1|) (-656 (-1288 |#1|)))) (-15 -4263 ((-656 (-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2675 (-656 (-1288 |#1|))))) (-656 (-656 |#1|)) (-656 (-1288 |#1|)))) (-15 -4077 ((-3 (-1288 |#1|) "failed") (-701 |#1|) (-1288 |#1|))) (-15 -3797 ((-112) (-701 |#1|) (-1288 |#1|))) (-15 -3733 ((-783) (-701 |#1|) (-1288 |#1|)))) +((-4263 (((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2675 (-656 |#3|)))) |#4| (-656 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2675 (-656 |#3|))) |#4| |#3|) 60)) (-3733 (((-783) |#4| |#3|) 18)) (-4077 (((-3 |#3| "failed") |#4| |#3|) 21)) (-3797 (((-112) |#4| |#3|) 14))) +(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4263 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2675 (-656 |#3|))) |#4| |#3|)) (-15 -4263 ((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2675 (-656 |#3|)))) |#4| (-656 |#3|))) (-15 -4077 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3797 ((-112) |#4| |#3|)) (-15 -3733 ((-783) |#4| |#3|))) (-374) (-13 (-384 |#1|) (-10 -7 (-6 -4465))) (-13 (-384 |#1|) (-10 -7 (-6 -4465))) (-699 |#1| |#2| |#3|)) (T -680)) +((-3733 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-5 *2 (-783)) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-3797 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-5 *2 (-112)) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-4077 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-374)) (-4 *5 (-13 (-384 *4) (-10 -7 (-6 -4465)))) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4465)))) (-5 *1 (-680 *4 *5 *2 *3)) (-4 *3 (-699 *4 *5 *2)))) (-4263 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-4 *7 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-5 *2 (-656 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2675 (-656 *7))))) (-5 *1 (-680 *5 *6 *7 *3)) (-5 *4 (-656 *7)) (-4 *3 (-699 *5 *6 *7)))) (-4263 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2675 (-656 *4)))) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))) +(-10 -7 (-15 -4263 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2675 (-656 |#3|))) |#4| |#3|)) (-15 -4263 ((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2675 (-656 |#3|)))) |#4| (-656 |#3|))) (-15 -4077 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3797 ((-112) |#4| |#3|)) (-15 -3733 ((-783) |#4| |#3|))) +((-4189 (((-2 (|:| |particular| (-3 (-1288 (-419 |#4|)) "failed")) (|:| -2675 (-656 (-1288 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)) 51))) +(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4189 ((-2 (|:| |particular| (-3 (-1288 (-419 |#4|)) "failed")) (|:| -2675 (-656 (-1288 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)))) (-568) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -681)) +((-4189 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *7)) (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-5 *2 (-2 (|:| |particular| (-3 (-1288 (-419 *8)) "failed")) (|:| -2675 (-656 (-1288 (-419 *8)))))) (-5 *1 (-681 *5 *6 *7 *8))))) +(-10 -7 (-15 -4189 ((-2 (|:| |particular| (-3 (-1288 (-419 |#4|)) "failed")) (|:| -2675 (-656 (-1288 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-4346 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-2210 ((|#2| $) NIL)) (-3226 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-4142 (((-1288 (-701 |#2|))) NIL) (((-1288 (-701 |#2|)) (-1288 $)) NIL)) (-4434 (((-112) $) NIL)) (-1717 (((-1288 $)) 42)) (-4264 (((-112) $ (-783)) NIL)) (-4083 (($ |#2|) NIL)) (-3404 (($) NIL T CONST)) (-2548 (($ $) NIL (|has| |#2| (-317)))) (-1575 (((-245 |#1| |#2|) $ (-576)) NIL)) (-3320 (((-3 (-2 (|:| |particular| $) (|:| -2675 (-656 $))) "failed")) NIL (|has| |#2| (-568)))) (-3382 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-3535 (((-701 |#2|)) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-2834 ((|#2| $) NIL)) (-3068 (((-701 |#2|) $) NIL) (((-701 |#2|) $ (-1288 $)) NIL)) (-4339 (((-3 $ "failed") $) NIL (|has| |#2| (-568)))) (-2064 (((-1193 (-971 |#2|))) NIL (|has| |#2| (-374)))) (-2029 (($ $ (-940)) NIL)) (-1641 ((|#2| $) NIL)) (-1735 (((-1193 |#2|) $) NIL (|has| |#2| (-568)))) (-3057 ((|#2|) NIL) ((|#2| (-1288 $)) NIL)) (-2531 (((-1193 |#2|) $) NIL)) (-2306 (((-112)) NIL)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-2859 (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) ((|#2| $) NIL)) (-1819 (($ (-1288 |#2|)) NIL) (($ (-1288 |#2|) (-1288 $)) NIL)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-3733 (((-783) $) NIL (|has| |#2| (-568))) (((-940)) 43)) (-4272 ((|#2| $ (-576) (-576)) NIL)) (-3810 (((-112)) NIL)) (-3343 (($ $ (-940)) NIL)) (-3965 (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-1351 (((-112) $) NIL)) (-1768 (((-783) $) NIL (|has| |#2| (-568)))) (-3595 (((-656 (-245 |#1| |#2|)) $) NIL (|has| |#2| (-568)))) (-1689 (((-783) $) NIL)) (-1413 (((-112)) NIL)) (-1699 (((-783) $) NIL)) (-1368 (((-112) $ (-783)) NIL)) (-1381 ((|#2| $) NIL (|has| |#2| (-6 (-4466 "*"))))) (-4017 (((-576) $) NIL)) (-3144 (((-576) $) NIL)) (-2425 (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-3550 (((-576) $) NIL)) (-3037 (((-576) $) NIL)) (-2466 (($ (-656 (-656 |#2|))) NIL)) (-4326 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2650 (((-656 (-656 |#2|)) $) NIL)) (-2515 (((-112)) NIL)) (-1826 (((-112)) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-3530 (((-3 (-2 (|:| |particular| $) (|:| -2675 (-656 $))) "failed")) NIL (|has| |#2| (-568)))) (-3995 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-2160 (((-701 |#2|)) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-4185 ((|#2| $) NIL)) (-3070 (((-701 |#2|) $) NIL) (((-701 |#2|) $ (-1288 $)) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-3334 (((-3 $ "failed") $) NIL (|has| |#2| (-568)))) (-4369 (((-1193 (-971 |#2|))) NIL (|has| |#2| (-374)))) (-4050 (($ $ (-940)) NIL)) (-2218 ((|#2| $) NIL)) (-4218 (((-1193 |#2|) $) NIL (|has| |#2| (-568)))) (-2004 ((|#2|) NIL) ((|#2| (-1288 $)) NIL)) (-1528 (((-1193 |#2|) $) NIL)) (-2524 (((-112)) NIL)) (-2046 (((-1179) $) NIL)) (-1821 (((-112)) NIL)) (-3514 (((-112)) NIL)) (-3175 (((-112)) NIL)) (-3375 (((-3 $ "failed") $) NIL (|has| |#2| (-374)))) (-1450 (((-1141) $) NIL)) (-3827 (((-112)) NIL)) (-3475 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-3252 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#2| $ (-576) (-576) |#2|) NIL) ((|#2| $ (-576) (-576)) 28) ((|#2| $ (-576)) NIL)) (-2774 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-3216 ((|#2| $) NIL)) (-4406 (($ (-656 |#2|)) NIL)) (-3218 (((-112) $) NIL)) (-2279 (((-245 |#1| |#2|) $) NIL)) (-3556 ((|#2| $) NIL (|has| |#2| (-6 (-4466 "*"))))) (-1460 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1870 (($ $) NIL)) (-4096 (((-701 |#2|) (-1288 $)) NIL) (((-1288 |#2|) $) NIL) (((-701 |#2|) (-1288 $) (-1288 $)) NIL) (((-1288 |#2|) $ (-1288 $)) 31)) (-4171 (($ (-1288 |#2|)) NIL) (((-1288 |#2|) $) NIL)) (-2220 (((-656 (-971 |#2|))) NIL) (((-656 (-971 |#2|)) (-1288 $)) NIL)) (-1758 (($ $ $) NIL)) (-3583 (((-112)) NIL)) (-4203 (((-245 |#1| |#2|) $ (-576)) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1059 (-419 (-576))))) (($ |#2|) NIL) (((-701 |#2|) $) NIL)) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-2675 (((-1288 $)) 41)) (-1484 (((-656 (-1288 |#2|))) NIL (|has| |#2| (-568)))) (-1783 (($ $ $ $) NIL)) (-4354 (((-112)) NIL)) (-3568 (($ (-701 |#2|) $) NIL)) (-2708 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-4155 (((-112) $) NIL)) (-2487 (($ $ $) NIL)) (-3233 (((-112)) NIL)) (-4033 (((-112)) NIL)) (-2693 (((-112)) NIL)) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2020 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#2| (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) NIL) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) NIL)) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) (((-682 |#1| |#2|) (-13 (-1144 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-429 |#2|)) (-940) (-174)) (T -682)) NIL (-13 (-1144 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-429 |#2|)) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-4287 (((-656 (-1156)) $) 10)) (-3570 (((-876) $) 16) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-683) (-13 (-1104) (-10 -8 (-15 -4287 ((-656 (-1156)) $))))) (T -683)) -((-4287 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-683))))) -(-13 (-1104) (-10 -8 (-15 -4287 ((-656 (-1156)) $)))) -((-3489 (((-112) $ $) NIL)) (-3447 (((-656 |#1|) $) NIL)) (-4250 (($ $) 62)) (-1579 (((-112) $) NIL)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2860 ((|#1| $) NIL)) (-3125 (($ $ $) NIL)) (-3133 (($ $ $) NIL)) (-3736 (((-3 $ "failed") (-831 |#1|)) 27)) (-2670 (((-112) (-831 |#1|)) 17)) (-4216 (($ (-831 |#1|)) 28)) (-4292 (((-112) $ $) 36)) (-2437 (((-940) $) 43)) (-4240 (($ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1828 (((-656 $) (-831 |#1|)) 19)) (-3570 (((-876) $) 51) (($ |#1|) 40) (((-831 |#1|) $) 47) (((-689 |#1|) $) 52)) (-4055 (((-112) $ $) NIL)) (-4278 (((-59 (-656 $)) (-656 |#1|) (-940)) 67)) (-3725 (((-656 $) (-656 |#1|) (-940)) 70)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 63)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) 46))) -(((-684 |#1|) (-13 (-861) (-1059 |#1|) (-10 -8 (-15 -1579 ((-112) $)) (-15 -4240 ($ $)) (-15 -4250 ($ $)) (-15 -2437 ((-940) $)) (-15 -4292 ((-112) $ $)) (-15 -3570 ((-831 |#1|) $)) (-15 -3570 ((-689 |#1|) $)) (-15 -1828 ((-656 $) (-831 |#1|))) (-15 -2670 ((-112) (-831 |#1|))) (-15 -4216 ($ (-831 |#1|))) (-15 -3736 ((-3 $ "failed") (-831 |#1|))) (-15 -3447 ((-656 |#1|) $)) (-15 -4278 ((-59 (-656 $)) (-656 |#1|) (-940))) (-15 -3725 ((-656 $) (-656 |#1|) (-940))))) (-861)) (T -684)) -((-1579 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-4240 (*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-861)))) (-4250 (*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-861)))) (-2437 (*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-4292 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-689 *3)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-1828 (*1 *2 *3) (-12 (-5 *3 (-831 *4)) (-4 *4 (-861)) (-5 *2 (-656 (-684 *4))) (-5 *1 (-684 *4)))) (-2670 (*1 *2 *3) (-12 (-5 *3 (-831 *4)) (-4 *4 (-861)) (-5 *2 (-112)) (-5 *1 (-684 *4)))) (-4216 (*1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *3 (-861)) (-5 *1 (-684 *3)))) (-3736 (*1 *1 *2) (|partial| -12 (-5 *2 (-831 *3)) (-4 *3 (-861)) (-5 *1 (-684 *3)))) (-3447 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-4278 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-940)) (-4 *5 (-861)) (-5 *2 (-59 (-656 (-684 *5)))) (-5 *1 (-684 *5)))) (-3725 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-940)) (-4 *5 (-861)) (-5 *2 (-656 (-684 *5))) (-5 *1 (-684 *5))))) -(-13 (-861) (-1059 |#1|) (-10 -8 (-15 -1579 ((-112) $)) (-15 -4240 ($ $)) (-15 -4250 ($ $)) (-15 -2437 ((-940) $)) (-15 -4292 ((-112) $ $)) (-15 -3570 ((-831 |#1|) $)) (-15 -3570 ((-689 |#1|) $)) (-15 -1828 ((-656 $) (-831 |#1|))) (-15 -2670 ((-112) (-831 |#1|))) (-15 -4216 ($ (-831 |#1|))) (-15 -3736 ((-3 $ "failed") (-831 |#1|))) (-15 -3447 ((-656 |#1|) $)) (-15 -4278 ((-59 (-656 $)) (-656 |#1|) (-940))) (-15 -3725 ((-656 $) (-656 |#1|) (-940))))) -((-3106 ((|#2| $) 100)) (-4426 (($ $) 121)) (-1808 (((-112) $ (-783)) 35)) (-3593 (($ $) 109) (($ $ (-783)) 112)) (-4419 (((-112) $) 122)) (-2387 (((-656 $) $) 96)) (-3295 (((-112) $ $) 92)) (-3870 (((-112) $ (-783)) 33)) (-2924 (((-576) $) 66)) (-2137 (((-576) $) 65)) (-1330 (((-112) $ (-783)) 31)) (-3443 (((-112) $) 98)) (-3969 ((|#2| $) 113) (($ $ (-783)) 117)) (-2176 (($ $ $ (-576)) 83) (($ |#2| $ (-576)) 82)) (-4234 (((-656 (-576)) $) 64)) (-3354 (((-112) (-576) $) 59)) (-3581 ((|#2| $) NIL) (($ $ (-783)) 108)) (-1749 (($ $ (-576)) 125)) (-3166 (((-112) $) 124)) (-4320 (((-112) (-1 (-112) |#2|) $) 42)) (-2281 (((-656 |#2|) $) 46)) (-2797 ((|#2| $ "value") NIL) ((|#2| $ "first") 107) (($ $ "rest") 111) ((|#2| $ "last") 120) (($ $ (-1255 (-576))) 79) ((|#2| $ (-576)) 57) ((|#2| $ (-576) |#2|) 58)) (-2789 (((-576) $ $) 91)) (-3466 (($ $ (-1255 (-576))) 78) (($ $ (-576)) 72)) (-3617 (((-112) $) 87)) (-2934 (($ $) 105)) (-2687 (((-783) $) 104)) (-3369 (($ $) 103)) (-3582 (($ (-656 |#2|)) 53)) (-3126 (($ $) 126)) (-2902 (((-656 $) $) 90)) (-2621 (((-112) $ $) 89)) (-3321 (((-112) (-1 (-112) |#2|) $) 41)) (-2925 (((-112) $ $) 20)) (-3503 (((-783) $) 39))) -(((-685 |#1| |#2|) (-10 -8 (-15 -2925 ((-112) |#1| |#1|)) (-15 -3126 (|#1| |#1|)) (-15 -1749 (|#1| |#1| (-576))) (-15 -4419 ((-112) |#1|)) (-15 -3166 ((-112) |#1|)) (-15 -2797 (|#2| |#1| (-576) |#2|)) (-15 -2797 (|#2| |#1| (-576))) (-15 -2281 ((-656 |#2|) |#1|)) (-15 -3354 ((-112) (-576) |#1|)) (-15 -4234 ((-656 (-576)) |#1|)) (-15 -2137 ((-576) |#1|)) (-15 -2924 ((-576) |#1|)) (-15 -3582 (|#1| (-656 |#2|))) (-15 -2797 (|#1| |#1| (-1255 (-576)))) (-15 -3466 (|#1| |#1| (-576))) (-15 -3466 (|#1| |#1| (-1255 (-576)))) (-15 -2176 (|#1| |#2| |#1| (-576))) (-15 -2176 (|#1| |#1| |#1| (-576))) (-15 -2934 (|#1| |#1|)) (-15 -2687 ((-783) |#1|)) (-15 -3369 (|#1| |#1|)) (-15 -4426 (|#1| |#1|)) (-15 -3969 (|#1| |#1| (-783))) (-15 -2797 (|#2| |#1| "last")) (-15 -3969 (|#2| |#1|)) (-15 -3593 (|#1| |#1| (-783))) (-15 -2797 (|#1| |#1| "rest")) (-15 -3593 (|#1| |#1|)) (-15 -3581 (|#1| |#1| (-783))) (-15 -2797 (|#2| |#1| "first")) (-15 -3581 (|#2| |#1|)) (-15 -3295 ((-112) |#1| |#1|)) (-15 -2621 ((-112) |#1| |#1|)) (-15 -2789 ((-576) |#1| |#1|)) (-15 -3617 ((-112) |#1|)) (-15 -2797 (|#2| |#1| "value")) (-15 -3106 (|#2| |#1|)) (-15 -3443 ((-112) |#1|)) (-15 -2387 ((-656 |#1|) |#1|)) (-15 -2902 ((-656 |#1|) |#1|)) (-15 -4320 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3321 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3503 ((-783) |#1|)) (-15 -1808 ((-112) |#1| (-783))) (-15 -3870 ((-112) |#1| (-783))) (-15 -1330 ((-112) |#1| (-783)))) (-686 |#2|) (-1238)) (T -685)) -NIL -(-10 -8 (-15 -2925 ((-112) |#1| |#1|)) (-15 -3126 (|#1| |#1|)) (-15 -1749 (|#1| |#1| (-576))) (-15 -4419 ((-112) |#1|)) (-15 -3166 ((-112) |#1|)) (-15 -2797 (|#2| |#1| (-576) |#2|)) (-15 -2797 (|#2| |#1| (-576))) (-15 -2281 ((-656 |#2|) |#1|)) (-15 -3354 ((-112) (-576) |#1|)) (-15 -4234 ((-656 (-576)) |#1|)) (-15 -2137 ((-576) |#1|)) (-15 -2924 ((-576) |#1|)) (-15 -3582 (|#1| (-656 |#2|))) (-15 -2797 (|#1| |#1| (-1255 (-576)))) (-15 -3466 (|#1| |#1| (-576))) (-15 -3466 (|#1| |#1| (-1255 (-576)))) (-15 -2176 (|#1| |#2| |#1| (-576))) (-15 -2176 (|#1| |#1| |#1| (-576))) (-15 -2934 (|#1| |#1|)) (-15 -2687 ((-783) |#1|)) (-15 -3369 (|#1| |#1|)) (-15 -4426 (|#1| |#1|)) (-15 -3969 (|#1| |#1| (-783))) (-15 -2797 (|#2| |#1| "last")) (-15 -3969 (|#2| |#1|)) (-15 -3593 (|#1| |#1| (-783))) (-15 -2797 (|#1| |#1| "rest")) (-15 -3593 (|#1| |#1|)) (-15 -3581 (|#1| |#1| (-783))) (-15 -2797 (|#2| |#1| "first")) (-15 -3581 (|#2| |#1|)) (-15 -3295 ((-112) |#1| |#1|)) (-15 -2621 ((-112) |#1| |#1|)) (-15 -2789 ((-576) |#1| |#1|)) (-15 -3617 ((-112) |#1|)) (-15 -2797 (|#2| |#1| "value")) (-15 -3106 (|#2| |#1|)) (-15 -3443 ((-112) |#1|)) (-15 -2387 ((-656 |#1|) |#1|)) (-15 -2902 ((-656 |#1|) |#1|)) (-15 -4320 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3321 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3503 ((-783) |#1|)) (-15 -1808 ((-112) |#1| (-783))) (-15 -3870 ((-112) |#1| (-783))) (-15 -1330 ((-112) |#1| (-783)))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3106 ((|#1| $) 49)) (-2898 ((|#1| $) 66)) (-4426 (($ $) 68)) (-2047 (((-1293) $ (-576) (-576)) 99 (|has| $ (-6 -4466)))) (-2587 (($ $ (-576)) 53 (|has| $ (-6 -4466)))) (-1808 (((-112) $ (-783)) 8)) (-2647 ((|#1| $ |#1|) 40 (|has| $ (-6 -4466)))) (-4364 (($ $ $) 57 (|has| $ (-6 -4466)))) (-2297 ((|#1| $ |#1|) 55 (|has| $ (-6 -4466)))) (-1350 ((|#1| $ |#1|) 59 (|has| $ (-6 -4466)))) (-3756 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4466))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4466))) (($ $ "rest" $) 56 (|has| $ (-6 -4466))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4466))) ((|#1| $ (-1255 (-576)) |#1|) 119 (|has| $ (-6 -4466))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4466)))) (-1894 (($ $ (-656 $)) 42 (|has| $ (-6 -4466)))) (-1974 (($ (-1 (-112) |#1|) $) 104)) (-2883 ((|#1| $) 67)) (-3886 (($) 7 T CONST)) (-1988 (($ $) 126)) (-3593 (($ $) 74) (($ $ (-783)) 72)) (-1415 (($ $) 101 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-3946 (($ |#1| $) 102 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) (($ (-1 (-112) |#1|) $) 105)) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-4335 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4466)))) (-4274 ((|#1| $ (-576)) 89)) (-4419 (((-112) $) 85)) (-3966 (((-656 |#1|) $) 31 (|has| $ (-6 -4465)))) (-2556 (((-783) $) 125)) (-2387 (((-656 $) $) 51)) (-3295 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-4141 (($ (-783) |#1|) 111)) (-3870 (((-112) $ (-783)) 9)) (-2924 (((-576) $) 97 (|has| (-576) (-861)))) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-2137 (((-576) $) 96 (|has| (-576) (-861)))) (-4323 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1330 (((-112) $ (-783)) 10)) (-2353 (((-656 |#1|) $) 46)) (-3443 (((-112) $) 50)) (-3486 (($ $) 128)) (-4047 (((-112) $) 129)) (-3699 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3969 ((|#1| $) 71) (($ $ (-783)) 69)) (-2176 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-4234 (((-656 (-576)) $) 94)) (-3354 (((-112) (-576) $) 93)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3585 ((|#1| $) 127)) (-3581 ((|#1| $) 77) (($ $ (-783)) 75)) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-4046 (($ $ |#1|) 98 (|has| $ (-6 -4466)))) (-1749 (($ $ (-576)) 124)) (-3166 (((-112) $) 86)) (-2677 (((-112) $) 130)) (-2605 (((-112) $) 131)) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3845 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2281 (((-656 |#1|) $) 92)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-2797 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1255 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-2789 (((-576) $ $) 45)) (-3466 (($ $ (-1255 (-576))) 116) (($ $ (-576)) 115)) (-3617 (((-112) $) 47)) (-2934 (($ $) 63)) (-3852 (($ $) 60 (|has| $ (-6 -4466)))) (-2687 (((-783) $) 64)) (-3369 (($ $) 65)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 13)) (-4172 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) 109)) (-2974 (($ $ $) 62 (|has| $ (-6 -4466))) (($ $ |#1|) 61 (|has| $ (-6 -4466)))) (-1615 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-3126 (($ $) 123)) (-3570 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2902 (((-656 $) $) 52)) (-2621 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-4055 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2922 (((-656 (-1156)) $) 10)) (-3569 (((-876) $) 16) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-683) (-13 (-1104) (-10 -8 (-15 -2922 ((-656 (-1156)) $))))) (T -683)) +((-2922 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-683))))) +(-13 (-1104) (-10 -8 (-15 -2922 ((-656 (-1156)) $)))) +((-3488 (((-112) $ $) NIL)) (-3446 (((-656 |#1|) $) NIL)) (-4249 (($ $) 62)) (-3847 (((-112) $) NIL)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2859 ((|#1| $) NIL)) (-3124 (($ $ $) NIL)) (-1441 (($ $ $) NIL)) (-2438 (((-3 $ "failed") (-831 |#1|)) 27)) (-1488 (((-112) (-831 |#1|)) 17)) (-3480 (($ (-831 |#1|)) 28)) (-2989 (((-112) $ $) 36)) (-2435 (((-940) $) 43)) (-4239 (($ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1828 (((-656 $) (-831 |#1|)) 19)) (-3569 (((-876) $) 51) (($ |#1|) 40) (((-831 |#1|) $) 47) (((-689 |#1|) $) 52)) (-2399 (((-112) $ $) NIL)) (-2831 (((-59 (-656 $)) (-656 |#1|) (-940)) 67)) (-2334 (((-656 $) (-656 |#1|) (-940)) 70)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 63)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) 46))) +(((-684 |#1|) (-13 (-861) (-1059 |#1|) (-10 -8 (-15 -3847 ((-112) $)) (-15 -4239 ($ $)) (-15 -4249 ($ $)) (-15 -2435 ((-940) $)) (-15 -2989 ((-112) $ $)) (-15 -3569 ((-831 |#1|) $)) (-15 -3569 ((-689 |#1|) $)) (-15 -1828 ((-656 $) (-831 |#1|))) (-15 -1488 ((-112) (-831 |#1|))) (-15 -3480 ($ (-831 |#1|))) (-15 -2438 ((-3 $ "failed") (-831 |#1|))) (-15 -3446 ((-656 |#1|) $)) (-15 -2831 ((-59 (-656 $)) (-656 |#1|) (-940))) (-15 -2334 ((-656 $) (-656 |#1|) (-940))))) (-861)) (T -684)) +((-3847 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-4239 (*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-861)))) (-4249 (*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-861)))) (-2435 (*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-2989 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-689 *3)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-1828 (*1 *2 *3) (-12 (-5 *3 (-831 *4)) (-4 *4 (-861)) (-5 *2 (-656 (-684 *4))) (-5 *1 (-684 *4)))) (-1488 (*1 *2 *3) (-12 (-5 *3 (-831 *4)) (-4 *4 (-861)) (-5 *2 (-112)) (-5 *1 (-684 *4)))) (-3480 (*1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *3 (-861)) (-5 *1 (-684 *3)))) (-2438 (*1 *1 *2) (|partial| -12 (-5 *2 (-831 *3)) (-4 *3 (-861)) (-5 *1 (-684 *3)))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-2831 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-940)) (-4 *5 (-861)) (-5 *2 (-59 (-656 (-684 *5)))) (-5 *1 (-684 *5)))) (-2334 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-940)) (-4 *5 (-861)) (-5 *2 (-656 (-684 *5))) (-5 *1 (-684 *5))))) +(-13 (-861) (-1059 |#1|) (-10 -8 (-15 -3847 ((-112) $)) (-15 -4239 ($ $)) (-15 -4249 ($ $)) (-15 -2435 ((-940) $)) (-15 -2989 ((-112) $ $)) (-15 -3569 ((-831 |#1|) $)) (-15 -3569 ((-689 |#1|) $)) (-15 -1828 ((-656 $) (-831 |#1|))) (-15 -1488 ((-112) (-831 |#1|))) (-15 -3480 ($ (-831 |#1|))) (-15 -2438 ((-3 $ "failed") (-831 |#1|))) (-15 -3446 ((-656 |#1|) $)) (-15 -2831 ((-59 (-656 $)) (-656 |#1|) (-940))) (-15 -2334 ((-656 $) (-656 |#1|) (-940))))) +((-3104 ((|#2| $) 100)) (-4424 (($ $) 121)) (-4264 (((-112) $ (-783)) 35)) (-3592 (($ $) 109) (($ $ (-783)) 112)) (-1742 (((-112) $) 122)) (-1736 (((-656 $) $) 96)) (-3768 (((-112) $ $) 92)) (-1368 (((-112) $ (-783)) 33)) (-3281 (((-576) $) 66)) (-4280 (((-576) $) 65)) (-2883 (((-112) $ (-783)) 31)) (-1508 (((-112) $) 98)) (-3968 ((|#2| $) 113) (($ $ (-783)) 117)) (-2176 (($ $ $ (-576)) 83) (($ |#2| $ (-576)) 82)) (-3669 (((-656 (-576)) $) 64)) (-3090 (((-112) (-576) $) 59)) (-3580 ((|#2| $) NIL) (($ $ (-783)) 108)) (-1743 (($ $ (-576)) 125)) (-1721 (((-112) $) 124)) (-3252 (((-112) (-1 (-112) |#2|) $) 42)) (-3207 (((-656 |#2|) $) 46)) (-2796 ((|#2| $ "value") NIL) ((|#2| $ "first") 107) (($ $ "rest") 111) ((|#2| $ "last") 120) (($ $ (-1255 (-576))) 79) ((|#2| $ (-576)) 57) ((|#2| $ (-576) |#2|) 58)) (-1335 (((-576) $ $) 91)) (-3465 (($ $ (-1255 (-576))) 78) (($ $ (-576)) 72)) (-3806 (((-112) $) 87)) (-3262 (($ $) 105)) (-1619 (((-783) $) 104)) (-3237 (($ $) 103)) (-3581 (($ (-656 |#2|)) 53)) (-2539 (($ $) 126)) (-3059 (((-656 $) $) 90)) (-2247 (((-112) $ $) 89)) (-2708 (((-112) (-1 (-112) |#2|) $) 41)) (-2924 (((-112) $ $) 20)) (-3502 (((-783) $) 39))) +(((-685 |#1| |#2|) (-10 -8 (-15 -2924 ((-112) |#1| |#1|)) (-15 -2539 (|#1| |#1|)) (-15 -1743 (|#1| |#1| (-576))) (-15 -1742 ((-112) |#1|)) (-15 -1721 ((-112) |#1|)) (-15 -2796 (|#2| |#1| (-576) |#2|)) (-15 -2796 (|#2| |#1| (-576))) (-15 -3207 ((-656 |#2|) |#1|)) (-15 -3090 ((-112) (-576) |#1|)) (-15 -3669 ((-656 (-576)) |#1|)) (-15 -4280 ((-576) |#1|)) (-15 -3281 ((-576) |#1|)) (-15 -3581 (|#1| (-656 |#2|))) (-15 -2796 (|#1| |#1| (-1255 (-576)))) (-15 -3465 (|#1| |#1| (-576))) (-15 -3465 (|#1| |#1| (-1255 (-576)))) (-15 -2176 (|#1| |#2| |#1| (-576))) (-15 -2176 (|#1| |#1| |#1| (-576))) (-15 -3262 (|#1| |#1|)) (-15 -1619 ((-783) |#1|)) (-15 -3237 (|#1| |#1|)) (-15 -4424 (|#1| |#1|)) (-15 -3968 (|#1| |#1| (-783))) (-15 -2796 (|#2| |#1| "last")) (-15 -3968 (|#2| |#1|)) (-15 -3592 (|#1| |#1| (-783))) (-15 -2796 (|#1| |#1| "rest")) (-15 -3592 (|#1| |#1|)) (-15 -3580 (|#1| |#1| (-783))) (-15 -2796 (|#2| |#1| "first")) (-15 -3580 (|#2| |#1|)) (-15 -3768 ((-112) |#1| |#1|)) (-15 -2247 ((-112) |#1| |#1|)) (-15 -1335 ((-576) |#1| |#1|)) (-15 -3806 ((-112) |#1|)) (-15 -2796 (|#2| |#1| "value")) (-15 -3104 (|#2| |#1|)) (-15 -1508 ((-112) |#1|)) (-15 -1736 ((-656 |#1|) |#1|)) (-15 -3059 ((-656 |#1|) |#1|)) (-15 -3252 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2708 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3502 ((-783) |#1|)) (-15 -4264 ((-112) |#1| (-783))) (-15 -1368 ((-112) |#1| (-783))) (-15 -2883 ((-112) |#1| (-783)))) (-686 |#2|) (-1238)) (T -685)) +NIL +(-10 -8 (-15 -2924 ((-112) |#1| |#1|)) (-15 -2539 (|#1| |#1|)) (-15 -1743 (|#1| |#1| (-576))) (-15 -1742 ((-112) |#1|)) (-15 -1721 ((-112) |#1|)) (-15 -2796 (|#2| |#1| (-576) |#2|)) (-15 -2796 (|#2| |#1| (-576))) (-15 -3207 ((-656 |#2|) |#1|)) (-15 -3090 ((-112) (-576) |#1|)) (-15 -3669 ((-656 (-576)) |#1|)) (-15 -4280 ((-576) |#1|)) (-15 -3281 ((-576) |#1|)) (-15 -3581 (|#1| (-656 |#2|))) (-15 -2796 (|#1| |#1| (-1255 (-576)))) (-15 -3465 (|#1| |#1| (-576))) (-15 -3465 (|#1| |#1| (-1255 (-576)))) (-15 -2176 (|#1| |#2| |#1| (-576))) (-15 -2176 (|#1| |#1| |#1| (-576))) (-15 -3262 (|#1| |#1|)) (-15 -1619 ((-783) |#1|)) (-15 -3237 (|#1| |#1|)) (-15 -4424 (|#1| |#1|)) (-15 -3968 (|#1| |#1| (-783))) (-15 -2796 (|#2| |#1| "last")) (-15 -3968 (|#2| |#1|)) (-15 -3592 (|#1| |#1| (-783))) (-15 -2796 (|#1| |#1| "rest")) (-15 -3592 (|#1| |#1|)) (-15 -3580 (|#1| |#1| (-783))) (-15 -2796 (|#2| |#1| "first")) (-15 -3580 (|#2| |#1|)) (-15 -3768 ((-112) |#1| |#1|)) (-15 -2247 ((-112) |#1| |#1|)) (-15 -1335 ((-576) |#1| |#1|)) (-15 -3806 ((-112) |#1|)) (-15 -2796 (|#2| |#1| "value")) (-15 -3104 (|#2| |#1|)) (-15 -1508 ((-112) |#1|)) (-15 -1736 ((-656 |#1|) |#1|)) (-15 -3059 ((-656 |#1|) |#1|)) (-15 -3252 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2708 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3502 ((-783) |#1|)) (-15 -4264 ((-112) |#1| (-783))) (-15 -1368 ((-112) |#1| (-783))) (-15 -2883 ((-112) |#1| (-783)))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3104 ((|#1| $) 49)) (-2898 ((|#1| $) 66)) (-4424 (($ $) 68)) (-1512 (((-1293) $ (-576) (-576)) 99 (|has| $ (-6 -4465)))) (-3203 (($ $ (-576)) 53 (|has| $ (-6 -4465)))) (-4264 (((-112) $ (-783)) 8)) (-2482 ((|#1| $ |#1|) 40 (|has| $ (-6 -4465)))) (-2395 (($ $ $) 57 (|has| $ (-6 -4465)))) (-2089 ((|#1| $ |#1|) 55 (|has| $ (-6 -4465)))) (-1336 ((|#1| $ |#1|) 59 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4465))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4465))) (($ $ "rest" $) 56 (|has| $ (-6 -4465))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 119 (|has| $ (-6 -4465))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4465)))) (-3829 (($ $ (-656 $)) 42 (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) |#1|) $) 104)) (-2882 ((|#1| $) 67)) (-3404 (($) 7 T CONST)) (-2164 (($ $) 126)) (-3592 (($ $) 74) (($ $ (-783)) 72)) (-2034 (($ $) 101 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ |#1| $) 102 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 105)) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4332 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) 89)) (-1742 (((-112) $) 85)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-2896 (((-783) $) 125)) (-1736 (((-656 $) $) 51)) (-3768 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-4140 (($ (-783) |#1|) 111)) (-1368 (((-112) $ (-783)) 9)) (-3281 (((-576) $) 97 (|has| (-576) (-861)))) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4280 (((-576) $) 96 (|has| (-576) (-861)))) (-4326 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-2883 (((-112) $ (-783)) 10)) (-2353 (((-656 |#1|) $) 46)) (-1508 (((-112) $) 50)) (-1858 (($ $) 128)) (-2315 (((-112) $) 129)) (-2046 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3968 ((|#1| $) 71) (($ $ (-783)) 69)) (-2176 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-3669 (((-656 (-576)) $) 94)) (-3090 (((-112) (-576) $) 93)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3468 ((|#1| $) 127)) (-3580 ((|#1| $) 77) (($ $ (-783)) 75)) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-2304 (($ $ |#1|) 98 (|has| $ (-6 -4465)))) (-1743 (($ $ (-576)) 124)) (-1721 (((-112) $) 86)) (-1537 (((-112) $) 130)) (-2085 (((-112) $) 131)) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-4282 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3207 (((-656 |#1|) $) 92)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-2796 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1255 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-1335 (((-576) $ $) 45)) (-3465 (($ $ (-1255 (-576))) 116) (($ $ (-576)) 115)) (-3806 (((-112) $) 47)) (-3262 (($ $) 63)) (-4347 (($ $) 60 (|has| $ (-6 -4465)))) (-1619 (((-783) $) 64)) (-3237 (($ $) 65)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-4171 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 109)) (-3631 (($ $ $) 62 (|has| $ (-6 -4465))) (($ $ |#1|) 61 (|has| $ (-6 -4465)))) (-1615 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-2539 (($ $) 123)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-3059 (((-656 $) $) 52)) (-2247 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-2399 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-686 |#1|) (-141) (-1238)) (T -686)) -((-3946 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1238)))) (-1974 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1238)))) (-2605 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) (-2677 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) (-4047 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) (-3486 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238)))) (-3585 (*1 *2 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238)))) (-1988 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238)))) (-2556 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-783)))) (-1749 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-686 *3)) (-4 *3 (-1238)))) (-3126 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238))))) -(-13 (-1170 |t#1|) (-10 -8 (-15 -3946 ($ (-1 (-112) |t#1|) $)) (-15 -1974 ($ (-1 (-112) |t#1|) $)) (-15 -2605 ((-112) $)) (-15 -2677 ((-112) $)) (-15 -4047 ((-112) $)) (-15 -3486 ($ $)) (-15 -3585 (|t#1| $)) (-15 -1988 ($ $)) (-15 -2556 ((-783) $)) (-15 -1749 ($ $ (-576))) (-15 -3126 ($ $)))) -(((-34) . T) ((-102) -2760 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2760 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-1031 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1170 |#1|) . T) ((-1238) . T) ((-1276 |#1|) . T)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1537 (($ (-783) (-783) (-783)) 53 (|has| |#1| (-1070)))) (-1808 (((-112) $ (-783)) NIL)) (-3934 ((|#1| $ (-783) (-783) (-783) |#1|) 47)) (-3886 (($) NIL T CONST)) (-3604 (($ $ $) 57 (|has| |#1| (-1070)))) (-3966 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) NIL)) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2380 (((-1288 (-783)) $) 12)) (-2985 (($ (-1197) $ $) 34)) (-4323 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3214 (($ (-783)) 55 (|has| |#1| (-1070)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#1| $ (-783) (-783) (-783)) 44)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3582 (($ (-656 (-656 (-656 |#1|)))) 67)) (-3570 (($ (-977 (-977 (-977 |#1|)))) 23) (((-977 (-977 (-977 |#1|))) $) 19) (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-687 |#1|) (-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1070)) (PROGN (-15 -1537 ($ (-783) (-783) (-783))) (-15 -3214 ($ (-783))) (-15 -3604 ($ $ $))) |%noBranch|) (-15 -3582 ($ (-656 (-656 (-656 |#1|))))) (-15 -2797 (|#1| $ (-783) (-783) (-783))) (-15 -3934 (|#1| $ (-783) (-783) (-783) |#1|)) (-15 -3570 ($ (-977 (-977 (-977 |#1|))))) (-15 -3570 ((-977 (-977 (-977 |#1|))) $)) (-15 -2985 ($ (-1197) $ $)) (-15 -2380 ((-1288 (-783)) $)))) (-1121)) (T -687)) -((-1537 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1070)) (-4 *3 (-1121)))) (-3214 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1070)) (-4 *3 (-1121)))) (-3604 (*1 *1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-1070)) (-4 *2 (-1121)))) (-3582 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-656 *3)))) (-4 *3 (-1121)) (-5 *1 (-687 *3)))) (-2797 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1121)))) (-3934 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1121)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-977 (-977 (-977 *3)))) (-4 *3 (-1121)) (-5 *1 (-687 *3)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-977 (-977 (-977 *3)))) (-5 *1 (-687 *3)) (-4 *3 (-1121)))) (-2985 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-687 *3)) (-4 *3 (-1121)))) (-2380 (*1 *2 *1) (-12 (-5 *2 (-1288 (-783))) (-5 *1 (-687 *3)) (-4 *3 (-1121))))) -(-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1070)) (PROGN (-15 -1537 ($ (-783) (-783) (-783))) (-15 -3214 ($ (-783))) (-15 -3604 ($ $ $))) |%noBranch|) (-15 -3582 ($ (-656 (-656 (-656 |#1|))))) (-15 -2797 (|#1| $ (-783) (-783) (-783))) (-15 -3934 (|#1| $ (-783) (-783) (-783) |#1|)) (-15 -3570 ($ (-977 (-977 (-977 |#1|))))) (-15 -3570 ((-977 (-977 (-977 |#1|))) $)) (-15 -2985 ($ (-1197) $ $)) (-15 -2380 ((-1288 (-783)) $)))) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-3811 (((-495) $) 10)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 19) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2641 (((-1156) $) 12)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-688) (-13 (-1104) (-10 -8 (-15 -3811 ((-495) $)) (-15 -2641 ((-1156) $))))) (T -688)) -((-3811 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-688)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-688))))) -(-13 (-1104) (-10 -8 (-15 -3811 ((-495) $)) (-15 -2641 ((-1156) $)))) -((-3489 (((-112) $ $) NIL)) (-3447 (((-656 |#1|) $) 15)) (-4250 (($ $) 19)) (-1579 (((-112) $) 20)) (-1572 (((-3 |#1| "failed") $) 23)) (-2860 ((|#1| $) 21)) (-3593 (($ $) 37)) (-1372 (($ $) 25)) (-3125 (($ $ $) NIL)) (-3133 (($ $ $) NIL)) (-4292 (((-112) $ $) 47)) (-2437 (((-940) $) 40)) (-4240 (($ $) 18)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3581 ((|#1| $) 36)) (-3570 (((-876) $) 32) (($ |#1|) 24) (((-831 |#1|) $) 28)) (-4055 (((-112) $ $) NIL)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 13)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) 44)) (* (($ $ $) 35))) -(((-689 |#1|) (-13 (-861) (-1059 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3570 ((-831 |#1|) $)) (-15 -3581 (|#1| $)) (-15 -4240 ($ $)) (-15 -2437 ((-940) $)) (-15 -4292 ((-112) $ $)) (-15 -1372 ($ $)) (-15 -3593 ($ $)) (-15 -1579 ((-112) $)) (-15 -4250 ($ $)) (-15 -3447 ((-656 |#1|) $)))) (-861)) (T -689)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) (-3581 (*1 *2 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-4240 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-2437 (*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) (-4292 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) (-1372 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-3593 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-1579 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) (-4250 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-3447 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-689 *3)) (-4 *3 (-861))))) -(-13 (-861) (-1059 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3570 ((-831 |#1|) $)) (-15 -3581 (|#1| $)) (-15 -4240 ($ $)) (-15 -2437 ((-940) $)) (-15 -4292 ((-112) $ $)) (-15 -1372 ($ $)) (-15 -3593 ($ $)) (-15 -1579 ((-112) $)) (-15 -4250 ($ $)) (-15 -3447 ((-656 |#1|) $)))) -((-1403 ((|#1| (-1 |#1| (-783) |#1|) (-783) |#1|) 11)) (-4038 ((|#1| (-1 |#1| |#1|) (-783) |#1|) 9))) -(((-690 |#1|) (-10 -7 (-15 -4038 (|#1| (-1 |#1| |#1|) (-783) |#1|)) (-15 -1403 (|#1| (-1 |#1| (-783) |#1|) (-783) |#1|))) (-1121)) (T -690)) -((-1403 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-783) *2)) (-5 *4 (-783)) (-4 *2 (-1121)) (-5 *1 (-690 *2)))) (-4038 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-783)) (-4 *2 (-1121)) (-5 *1 (-690 *2))))) -(-10 -7 (-15 -4038 (|#1| (-1 |#1| |#1|) (-783) |#1|)) (-15 -1403 (|#1| (-1 |#1| (-783) |#1|) (-783) |#1|))) -((-1326 ((|#2| |#1| |#2|) 9)) (-4438 ((|#1| |#1| |#2|) 8))) -(((-691 |#1| |#2|) (-10 -7 (-15 -4438 (|#1| |#1| |#2|)) (-15 -1326 (|#2| |#1| |#2|))) (-1121) (-1121)) (T -691)) -((-1326 (*1 *2 *3 *2) (-12 (-5 *1 (-691 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) (-4438 (*1 *2 *2 *3) (-12 (-5 *1 (-691 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) -(-10 -7 (-15 -4438 (|#1| |#1| |#2|)) (-15 -1326 (|#2| |#1| |#2|))) -((-1846 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-692 |#1| |#2| |#3|) (-10 -7 (-15 -1846 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1121) (-1121) (-1121)) (T -692)) -((-1846 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)) (-5 *1 (-692 *5 *6 *2))))) -(-10 -7 (-15 -1846 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-3489 (((-112) $ $) NIL)) (-2984 (((-1237) $) 21)) (-2916 (((-656 (-1237)) $) 19)) (-3060 (($ (-656 (-1237)) (-1237)) 14)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 29) (($ (-1202)) NIL) (((-1202) $) NIL) (((-1237) $) 22) (($ (-1139)) 10)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-693) (-13 (-1104) (-625 (-1237)) (-10 -8 (-15 -3570 ($ (-1139))) (-15 -3060 ($ (-656 (-1237)) (-1237))) (-15 -2916 ((-656 (-1237)) $)) (-15 -2984 ((-1237) $))))) (T -693)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-693)))) (-3060 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1237))) (-5 *3 (-1237)) (-5 *1 (-693)))) (-2916 (*1 *2 *1) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-693)))) (-2984 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-693))))) -(-13 (-1104) (-625 (-1237)) (-10 -8 (-15 -3570 ($ (-1139))) (-15 -3060 ($ (-656 (-1237)) (-1237))) (-15 -2916 ((-656 (-1237)) $)) (-15 -2984 ((-1237) $)))) -((-1403 (((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)) 26)) (-2017 (((-1 |#1|) |#1|) 8)) (-3099 ((|#1| |#1|) 19)) (-3117 (((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576)) 18) ((|#1| (-1 |#1| |#1|)) 11)) (-3570 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-783)) 23))) -(((-694 |#1|) (-10 -7 (-15 -2017 ((-1 |#1|) |#1|)) (-15 -3570 ((-1 |#1|) |#1|)) (-15 -3117 (|#1| (-1 |#1| |#1|))) (-15 -3117 ((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576))) (-15 -3099 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-783))) (-15 -1403 ((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)))) (-1121)) (T -694)) -((-1403 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-783) *3)) (-4 *3 (-1121)) (-5 *1 (-694 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *4 (-1121)) (-5 *1 (-694 *4)))) (-3099 (*1 *2 *2) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1121)))) (-3117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-656 *5) (-656 *5))) (-5 *4 (-576)) (-5 *2 (-656 *5)) (-5 *1 (-694 *5)) (-4 *5 (-1121)))) (-3117 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-694 *2)) (-4 *2 (-1121)))) (-3570 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1121)))) (-2017 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1121))))) -(-10 -7 (-15 -2017 ((-1 |#1|) |#1|)) (-15 -3570 ((-1 |#1|) |#1|)) (-15 -3117 (|#1| (-1 |#1| |#1|))) (-15 -3117 ((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576))) (-15 -3099 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-783))) (-15 -1403 ((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)))) -((-2798 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-1426 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1480 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1411 (((-1 |#2| |#1|) |#2|) 11))) -(((-695 |#1| |#2|) (-10 -7 (-15 -1411 ((-1 |#2| |#1|) |#2|)) (-15 -1426 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1480 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2798 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1121) (-1121)) (T -695)) -((-2798 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5)))) (-1480 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1121)) (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5)) (-4 *4 (-1121)))) (-1426 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-5 *2 (-1 *5)) (-5 *1 (-695 *4 *5)))) (-1411 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-695 *4 *3)) (-4 *4 (-1121)) (-4 *3 (-1121))))) -(-10 -7 (-15 -1411 ((-1 |#2| |#1|) |#2|)) (-15 -1426 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1480 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2798 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-4362 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3325 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3755 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2173 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-4155 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-696 |#1| |#2| |#3|) (-10 -7 (-15 -3325 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3755 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2173 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4155 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4362 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1121) (-1121) (-1121)) (T -696)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-1 *7 *5)) (-5 *1 (-696 *5 *6 *7)))) (-4362 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-696 *4 *5 *6)))) (-4155 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *4 (-1121)))) (-2173 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1121)) (-4 *6 (-1121)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *5 (-1121)))) (-3755 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *4 *5 *6)))) (-3325 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1121)) (-4 *4 (-1121)) (-4 *6 (-1121)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *5 *4 *6))))) -(-10 -7 (-15 -3325 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3755 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2173 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4155 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4362 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-3686 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4117 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-697 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4117 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4117 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3686 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1070) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|) (-1070) (-384 |#5|) (-384 |#5|) (-699 |#5| |#6| |#7|)) (T -697)) -((-3686 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1070)) (-4 *2 (-1070)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *8 (-384 *2)) (-4 *9 (-384 *2)) (-5 *1 (-697 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-699 *5 *6 *7)) (-4 *10 (-699 *2 *8 *9)))) (-4117 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1070)) (-4 *8 (-1070)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-699 *8 *9 *10)) (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-699 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8)))) (-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1070)) (-4 *8 (-1070)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-699 *8 *9 *10)) (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-699 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8))))) -(-10 -7 (-15 -4117 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4117 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3686 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-3832 (($ (-783) (-783)) 42)) (-3430 (($ $ $) 73)) (-3244 (($ |#3|) 68) (($ $) 69)) (-2283 (((-112) $) 36)) (-2873 (($ $ (-576) (-576)) 84)) (-4112 (($ $ (-576) (-576)) 85)) (-1644 (($ $ (-576) (-576) (-576) (-576)) 90)) (-3395 (($ $) 71)) (-3240 (((-112) $) 15)) (-2515 (($ $ (-576) (-576) $) 91)) (-3756 ((|#2| $ (-576) (-576) |#2|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) 89)) (-1787 (($ (-783) |#2|) 55)) (-2467 (($ (-656 (-656 |#2|))) 51) (($ (-783) (-783) (-1 |#2| (-576) (-576))) 53)) (-1907 (((-656 (-656 |#2|)) $) 80)) (-2948 (($ $ $) 72)) (-3476 (((-3 $ "failed") $ |#2|) 122)) (-2797 ((|#2| $ (-576) (-576)) NIL) ((|#2| $ (-576) (-576) |#2|) NIL) (($ $ (-656 (-576)) (-656 (-576))) 88)) (-2784 (($ (-656 |#2|)) 56) (($ (-656 $)) 58)) (-4002 (((-112) $) 28)) (-3570 (($ |#4|) 63) (((-876) $) NIL)) (-3830 (((-112) $) 38)) (-3057 (($ $ |#2|) 124)) (-3044 (($ $ $) 95) (($ $) 98)) (-3030 (($ $ $) 93)) (** (($ $ (-783)) 111) (($ $ (-576)) 128)) (* (($ $ $) 104) (($ |#2| $) 100) (($ $ |#2|) 101) (($ (-576) $) 103) ((|#4| $ |#4|) 115) ((|#3| |#3| $) 119))) -(((-698 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3570 ((-876) |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3057 (|#1| |#1| |#2|)) (-15 -3476 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1|)) (-15 -3044 (|#1| |#1| |#1|)) (-15 -3030 (|#1| |#1| |#1|)) (-15 -2515 (|#1| |#1| (-576) (-576) |#1|)) (-15 -1644 (|#1| |#1| (-576) (-576) (-576) (-576))) (-15 -4112 (|#1| |#1| (-576) (-576))) (-15 -2873 (|#1| |#1| (-576) (-576))) (-15 -3756 (|#1| |#1| (-656 (-576)) (-656 (-576)) |#1|)) (-15 -2797 (|#1| |#1| (-656 (-576)) (-656 (-576)))) (-15 -1907 ((-656 (-656 |#2|)) |#1|)) (-15 -3430 (|#1| |#1| |#1|)) (-15 -2948 (|#1| |#1| |#1|)) (-15 -3395 (|#1| |#1|)) (-15 -3244 (|#1| |#1|)) (-15 -3244 (|#1| |#3|)) (-15 -3570 (|#1| |#4|)) (-15 -2784 (|#1| (-656 |#1|))) (-15 -2784 (|#1| (-656 |#2|))) (-15 -1787 (|#1| (-783) |#2|)) (-15 -2467 (|#1| (-783) (-783) (-1 |#2| (-576) (-576)))) (-15 -2467 (|#1| (-656 (-656 |#2|)))) (-15 -3832 (|#1| (-783) (-783))) (-15 -3830 ((-112) |#1|)) (-15 -2283 ((-112) |#1|)) (-15 -4002 ((-112) |#1|)) (-15 -3240 ((-112) |#1|)) (-15 -3756 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2797 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2797 (|#2| |#1| (-576) (-576)))) (-699 |#2| |#3| |#4|) (-1070) (-384 |#2|) (-384 |#2|)) (T -698)) -NIL -(-10 -8 (-15 -3570 ((-876) |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3057 (|#1| |#1| |#2|)) (-15 -3476 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1|)) (-15 -3044 (|#1| |#1| |#1|)) (-15 -3030 (|#1| |#1| |#1|)) (-15 -2515 (|#1| |#1| (-576) (-576) |#1|)) (-15 -1644 (|#1| |#1| (-576) (-576) (-576) (-576))) (-15 -4112 (|#1| |#1| (-576) (-576))) (-15 -2873 (|#1| |#1| (-576) (-576))) (-15 -3756 (|#1| |#1| (-656 (-576)) (-656 (-576)) |#1|)) (-15 -2797 (|#1| |#1| (-656 (-576)) (-656 (-576)))) (-15 -1907 ((-656 (-656 |#2|)) |#1|)) (-15 -3430 (|#1| |#1| |#1|)) (-15 -2948 (|#1| |#1| |#1|)) (-15 -3395 (|#1| |#1|)) (-15 -3244 (|#1| |#1|)) (-15 -3244 (|#1| |#3|)) (-15 -3570 (|#1| |#4|)) (-15 -2784 (|#1| (-656 |#1|))) (-15 -2784 (|#1| (-656 |#2|))) (-15 -1787 (|#1| (-783) |#2|)) (-15 -2467 (|#1| (-783) (-783) (-1 |#2| (-576) (-576)))) (-15 -2467 (|#1| (-656 (-656 |#2|)))) (-15 -3832 (|#1| (-783) (-783))) (-15 -3830 ((-112) |#1|)) (-15 -2283 ((-112) |#1|)) (-15 -4002 ((-112) |#1|)) (-15 -3240 ((-112) |#1|)) (-15 -3756 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2797 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2797 (|#2| |#1| (-576) (-576)))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3832 (($ (-783) (-783)) 99)) (-3430 (($ $ $) 88)) (-3244 (($ |#2|) 92) (($ $) 91)) (-2283 (((-112) $) 101)) (-2873 (($ $ (-576) (-576)) 84)) (-4112 (($ $ (-576) (-576)) 83)) (-1644 (($ $ (-576) (-576) (-576) (-576)) 82)) (-3395 (($ $) 90)) (-3240 (((-112) $) 103)) (-1808 (((-112) $ (-783)) 8)) (-2515 (($ $ (-576) (-576) $) 81)) (-3756 ((|#1| $ (-576) (-576) |#1|) 45) (($ $ (-656 (-576)) (-656 (-576)) $) 85)) (-1631 (($ $ (-576) |#2|) 43)) (-4436 (($ $ (-576) |#3|) 42)) (-1787 (($ (-783) |#1|) 96)) (-3886 (($) 7 T CONST)) (-2030 (($ $) 68 (|has| |#1| (-317)))) (-4093 ((|#2| $ (-576)) 47)) (-3734 (((-783) $) 67 (|has| |#1| (-568)))) (-4335 ((|#1| $ (-576) (-576) |#1|) 44)) (-4274 ((|#1| $ (-576) (-576)) 49)) (-3966 (((-656 |#1|) $) 31)) (-1394 (((-783) $) 66 (|has| |#1| (-568)))) (-2196 (((-656 |#3|) $) 65 (|has| |#1| (-568)))) (-1689 (((-783) $) 52)) (-4141 (($ (-783) (-783) |#1|) 58)) (-1699 (((-783) $) 51)) (-3870 (((-112) $ (-783)) 9)) (-2471 ((|#1| $) 63 (|has| |#1| (-6 (-4467 "*"))))) (-4267 (((-576) $) 56)) (-1952 (((-576) $) 54)) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-3900 (((-576) $) 55)) (-2569 (((-576) $) 53)) (-2467 (($ (-656 (-656 |#1|))) 98) (($ (-783) (-783) (-1 |#1| (-576) (-576))) 97)) (-4323 (($ (-1 |#1| |#1|) $) 35)) (-4117 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-1907 (((-656 (-656 |#1|)) $) 87)) (-1330 (((-112) $ (-783)) 10)) (-3699 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2807 (((-3 $ "failed") $) 62 (|has| |#1| (-374)))) (-2948 (($ $ $) 89)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-4046 (($ $ |#1|) 57)) (-3476 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-568)))) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-2797 ((|#1| $ (-576) (-576)) 50) ((|#1| $ (-576) (-576) |#1|) 48) (($ $ (-656 (-576)) (-656 (-576))) 86)) (-2784 (($ (-656 |#1|)) 95) (($ (-656 $)) 94)) (-4002 (((-112) $) 102)) (-4223 ((|#1| $) 64 (|has| |#1| (-6 (-4467 "*"))))) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 13)) (-2129 ((|#3| $ (-576)) 46)) (-3570 (($ |#3|) 93) (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-3830 (((-112) $) 100)) (-2925 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3057 (($ $ |#1|) 69 (|has| |#1| (-374)))) (-3044 (($ $ $) 79) (($ $) 78)) (-3030 (($ $ $) 80)) (** (($ $ (-783)) 71) (($ $ (-576)) 61 (|has| |#1| (-374)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-576) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-3945 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1238)))) (-1974 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1238)))) (-2085 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) (-1537 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) (-2315 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) (-1858 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238)))) (-3468 (*1 *2 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238)))) (-2164 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238)))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-783)))) (-1743 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-686 *3)) (-4 *3 (-1238)))) (-2539 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238))))) +(-13 (-1170 |t#1|) (-10 -8 (-15 -3945 ($ (-1 (-112) |t#1|) $)) (-15 -1974 ($ (-1 (-112) |t#1|) $)) (-15 -2085 ((-112) $)) (-15 -1537 ((-112) $)) (-15 -2315 ((-112) $)) (-15 -1858 ($ $)) (-15 -3468 (|t#1| $)) (-15 -2164 ($ $)) (-15 -2896 ((-783) $)) (-15 -1743 ($ $ (-576))) (-15 -2539 ($ $)))) +(((-34) . T) ((-102) -2759 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2759 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-1031 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1170 |#1|) . T) ((-1238) . T) ((-1276 |#1|) . T)) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3391 (($ (-783) (-783) (-783)) 53 (|has| |#1| (-1070)))) (-4264 (((-112) $ (-783)) NIL)) (-3899 ((|#1| $ (-783) (-783) (-783) |#1|) 47)) (-3404 (($) NIL T CONST)) (-3601 (($ $ $) 57 (|has| |#1| (-1070)))) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) NIL)) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1676 (((-1288 (-783)) $) 12)) (-3728 (($ (-1197) $ $) 34)) (-4326 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-4184 (($ (-783)) 55 (|has| |#1| (-1070)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#1| $ (-783) (-783) (-783)) 44)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3581 (($ (-656 (-656 (-656 |#1|)))) 67)) (-3569 (($ (-977 (-977 (-977 |#1|)))) 23) (((-977 (-977 (-977 |#1|))) $) 19) (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-687 |#1|) (-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1070)) (PROGN (-15 -3391 ($ (-783) (-783) (-783))) (-15 -4184 ($ (-783))) (-15 -3601 ($ $ $))) |%noBranch|) (-15 -3581 ($ (-656 (-656 (-656 |#1|))))) (-15 -2796 (|#1| $ (-783) (-783) (-783))) (-15 -3899 (|#1| $ (-783) (-783) (-783) |#1|)) (-15 -3569 ($ (-977 (-977 (-977 |#1|))))) (-15 -3569 ((-977 (-977 (-977 |#1|))) $)) (-15 -3728 ($ (-1197) $ $)) (-15 -1676 ((-1288 (-783)) $)))) (-1121)) (T -687)) +((-3391 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1070)) (-4 *3 (-1121)))) (-4184 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1070)) (-4 *3 (-1121)))) (-3601 (*1 *1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-1070)) (-4 *2 (-1121)))) (-3581 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-656 *3)))) (-4 *3 (-1121)) (-5 *1 (-687 *3)))) (-2796 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1121)))) (-3899 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1121)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-977 (-977 (-977 *3)))) (-4 *3 (-1121)) (-5 *1 (-687 *3)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-977 (-977 (-977 *3)))) (-5 *1 (-687 *3)) (-4 *3 (-1121)))) (-3728 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-687 *3)) (-4 *3 (-1121)))) (-1676 (*1 *2 *1) (-12 (-5 *2 (-1288 (-783))) (-5 *1 (-687 *3)) (-4 *3 (-1121))))) +(-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1070)) (PROGN (-15 -3391 ($ (-783) (-783) (-783))) (-15 -4184 ($ (-783))) (-15 -3601 ($ $ $))) |%noBranch|) (-15 -3581 ($ (-656 (-656 (-656 |#1|))))) (-15 -2796 (|#1| $ (-783) (-783) (-783))) (-15 -3899 (|#1| $ (-783) (-783) (-783) |#1|)) (-15 -3569 ($ (-977 (-977 (-977 |#1|))))) (-15 -3569 ((-977 (-977 (-977 |#1|))) $)) (-15 -3728 ($ (-1197) $ $)) (-15 -1676 ((-1288 (-783)) $)))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1982 (((-495) $) 10)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 19) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2640 (((-1156) $) 12)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-688) (-13 (-1104) (-10 -8 (-15 -1982 ((-495) $)) (-15 -2640 ((-1156) $))))) (T -688)) +((-1982 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-688)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-688))))) +(-13 (-1104) (-10 -8 (-15 -1982 ((-495) $)) (-15 -2640 ((-1156) $)))) +((-3488 (((-112) $ $) NIL)) (-3446 (((-656 |#1|) $) 15)) (-4249 (($ $) 19)) (-3847 (((-112) $) 20)) (-1572 (((-3 |#1| "failed") $) 23)) (-2859 ((|#1| $) 21)) (-3592 (($ $) 37)) (-3187 (($ $) 25)) (-3124 (($ $ $) NIL)) (-1441 (($ $ $) NIL)) (-2989 (((-112) $ $) 47)) (-2435 (((-940) $) 40)) (-4239 (($ $) 18)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3580 ((|#1| $) 36)) (-3569 (((-876) $) 32) (($ |#1|) 24) (((-831 |#1|) $) 28)) (-2399 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 13)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) 44)) (* (($ $ $) 35))) +(((-689 |#1|) (-13 (-861) (-1059 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3569 ((-831 |#1|) $)) (-15 -3580 (|#1| $)) (-15 -4239 ($ $)) (-15 -2435 ((-940) $)) (-15 -2989 ((-112) $ $)) (-15 -3187 ($ $)) (-15 -3592 ($ $)) (-15 -3847 ((-112) $)) (-15 -4249 ($ $)) (-15 -3446 ((-656 |#1|) $)))) (-861)) (T -689)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) (-3580 (*1 *2 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-4239 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-2435 (*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) (-2989 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) (-3187 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-3592 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-3847 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) (-4249 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-689 *3)) (-4 *3 (-861))))) +(-13 (-861) (-1059 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3569 ((-831 |#1|) $)) (-15 -3580 (|#1| $)) (-15 -4239 ($ $)) (-15 -2435 ((-940) $)) (-15 -2989 ((-112) $ $)) (-15 -3187 ($ $)) (-15 -3592 ($ $)) (-15 -3847 ((-112) $)) (-15 -4249 ($ $)) (-15 -3446 ((-656 |#1|) $)))) +((-4053 ((|#1| (-1 |#1| (-783) |#1|) (-783) |#1|) 11)) (-4038 ((|#1| (-1 |#1| |#1|) (-783) |#1|) 9))) +(((-690 |#1|) (-10 -7 (-15 -4038 (|#1| (-1 |#1| |#1|) (-783) |#1|)) (-15 -4053 (|#1| (-1 |#1| (-783) |#1|) (-783) |#1|))) (-1121)) (T -690)) +((-4053 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-783) *2)) (-5 *4 (-783)) (-4 *2 (-1121)) (-5 *1 (-690 *2)))) (-4038 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-783)) (-4 *2 (-1121)) (-5 *1 (-690 *2))))) +(-10 -7 (-15 -4038 (|#1| (-1 |#1| |#1|) (-783) |#1|)) (-15 -4053 (|#1| (-1 |#1| (-783) |#1|) (-783) |#1|))) +((-1326 ((|#2| |#1| |#2|) 9)) (-4437 ((|#1| |#1| |#2|) 8))) +(((-691 |#1| |#2|) (-10 -7 (-15 -4437 (|#1| |#1| |#2|)) (-15 -1326 (|#2| |#1| |#2|))) (-1121) (-1121)) (T -691)) +((-1326 (*1 *2 *3 *2) (-12 (-5 *1 (-691 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) (-4437 (*1 *2 *2 *3) (-12 (-5 *1 (-691 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) +(-10 -7 (-15 -4437 (|#1| |#1| |#2|)) (-15 -1326 (|#2| |#1| |#2|))) +((-1847 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-692 |#1| |#2| |#3|) (-10 -7 (-15 -1847 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1121) (-1121) (-1121)) (T -692)) +((-1847 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)) (-5 *1 (-692 *5 *6 *2))))) +(-10 -7 (-15 -1847 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-3488 (((-112) $ $) NIL)) (-2983 (((-1237) $) 21)) (-2915 (((-656 (-1237)) $) 19)) (-3189 (($ (-656 (-1237)) (-1237)) 14)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 29) (($ (-1202)) NIL) (((-1202) $) NIL) (((-1237) $) 22) (($ (-1139)) 10)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-693) (-13 (-1104) (-625 (-1237)) (-10 -8 (-15 -3569 ($ (-1139))) (-15 -3189 ($ (-656 (-1237)) (-1237))) (-15 -2915 ((-656 (-1237)) $)) (-15 -2983 ((-1237) $))))) (T -693)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-693)))) (-3189 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1237))) (-5 *3 (-1237)) (-5 *1 (-693)))) (-2915 (*1 *2 *1) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-693)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-693))))) +(-13 (-1104) (-625 (-1237)) (-10 -8 (-15 -3569 ($ (-1139))) (-15 -3189 ($ (-656 (-1237)) (-1237))) (-15 -2915 ((-656 (-1237)) $)) (-15 -2983 ((-1237) $)))) +((-4053 (((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)) 26)) (-2446 (((-1 |#1|) |#1|) 8)) (-3099 ((|#1| |#1|) 19)) (-2470 (((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576)) 18) ((|#1| (-1 |#1| |#1|)) 11)) (-3569 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-783)) 23))) +(((-694 |#1|) (-10 -7 (-15 -2446 ((-1 |#1|) |#1|)) (-15 -3569 ((-1 |#1|) |#1|)) (-15 -2470 (|#1| (-1 |#1| |#1|))) (-15 -2470 ((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576))) (-15 -3099 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-783))) (-15 -4053 ((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)))) (-1121)) (T -694)) +((-4053 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-783) *3)) (-4 *3 (-1121)) (-5 *1 (-694 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *4 (-1121)) (-5 *1 (-694 *4)))) (-3099 (*1 *2 *2) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1121)))) (-2470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-656 *5) (-656 *5))) (-5 *4 (-576)) (-5 *2 (-656 *5)) (-5 *1 (-694 *5)) (-4 *5 (-1121)))) (-2470 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-694 *2)) (-4 *2 (-1121)))) (-3569 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1121)))) (-2446 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1121))))) +(-10 -7 (-15 -2446 ((-1 |#1|) |#1|)) (-15 -3569 ((-1 |#1|) |#1|)) (-15 -2470 (|#1| (-1 |#1| |#1|))) (-15 -2470 ((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576))) (-15 -3099 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-783))) (-15 -4053 ((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)))) +((-1396 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2139 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1480 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3672 (((-1 |#2| |#1|) |#2|) 11))) +(((-695 |#1| |#2|) (-10 -7 (-15 -3672 ((-1 |#2| |#1|) |#2|)) (-15 -2139 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1480 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1396 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1121) (-1121)) (T -695)) +((-1396 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5)))) (-1480 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1121)) (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5)) (-4 *4 (-1121)))) (-2139 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-5 *2 (-1 *5)) (-5 *1 (-695 *4 *5)))) (-3672 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-695 *4 *3)) (-4 *4 (-1121)) (-4 *3 (-1121))))) +(-10 -7 (-15 -3672 ((-1 |#2| |#1|) |#2|)) (-15 -2139 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1480 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1396 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-2372 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2762 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2619 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3352 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-4126 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-696 |#1| |#2| |#3|) (-10 -7 (-15 -2762 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2619 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3352 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4126 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2372 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1121) (-1121) (-1121)) (T -696)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-1 *7 *5)) (-5 *1 (-696 *5 *6 *7)))) (-2372 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-696 *4 *5 *6)))) (-4126 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *4 (-1121)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1121)) (-4 *6 (-1121)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *5 (-1121)))) (-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *4 *5 *6)))) (-2762 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1121)) (-4 *4 (-1121)) (-4 *6 (-1121)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *5 *4 *6))))) +(-10 -7 (-15 -2762 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2619 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3352 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4126 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2372 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-3685 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4116 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-697 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4116 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4116 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3685 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1070) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|) (-1070) (-384 |#5|) (-384 |#5|) (-699 |#5| |#6| |#7|)) (T -697)) +((-3685 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1070)) (-4 *2 (-1070)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *8 (-384 *2)) (-4 *9 (-384 *2)) (-5 *1 (-697 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-699 *5 *6 *7)) (-4 *10 (-699 *2 *8 *9)))) (-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1070)) (-4 *8 (-1070)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-699 *8 *9 *10)) (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-699 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1070)) (-4 *8 (-1070)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-699 *8 *9 *10)) (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-699 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8))))) +(-10 -7 (-15 -4116 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4116 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3685 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-3831 (($ (-783) (-783)) 42)) (-2564 (($ $ $) 73)) (-1354 (($ |#3|) 68) (($ $) 69)) (-3226 (((-112) $) 36)) (-2736 (($ $ (-576) (-576)) 84)) (-1756 (($ $ (-576) (-576)) 85)) (-1965 (($ $ (-576) (-576) (-576) (-576)) 90)) (-2228 (($ $) 71)) (-4434 (((-112) $) 15)) (-3752 (($ $ (-576) (-576) $) 91)) (-3755 ((|#2| $ (-576) (-576) |#2|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) 89)) (-4083 (($ (-783) |#2|) 55)) (-2466 (($ (-656 (-656 |#2|))) 51) (($ (-783) (-783) (-1 |#2| (-576) (-576))) 53)) (-2650 (((-656 (-656 |#2|)) $) 80)) (-3397 (($ $ $) 72)) (-3475 (((-3 $ "failed") $ |#2|) 122)) (-2796 ((|#2| $ (-576) (-576)) NIL) ((|#2| $ (-576) (-576) |#2|) NIL) (($ $ (-656 (-576)) (-656 (-576))) 88)) (-4406 (($ (-656 |#2|)) 56) (($ (-656 $)) 58)) (-3218 (((-112) $) 28)) (-3569 (($ |#4|) 63) (((-876) $) NIL)) (-4155 (((-112) $) 38)) (-3056 (($ $ |#2|) 124)) (-3043 (($ $ $) 95) (($ $) 98)) (-3029 (($ $ $) 93)) (** (($ $ (-783)) 111) (($ $ (-576)) 128)) (* (($ $ $) 104) (($ |#2| $) 100) (($ $ |#2|) 101) (($ (-576) $) 103) ((|#4| $ |#4|) 115) ((|#3| |#3| $) 119))) +(((-698 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3569 ((-876) |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3056 (|#1| |#1| |#2|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3029 (|#1| |#1| |#1|)) (-15 -3752 (|#1| |#1| (-576) (-576) |#1|)) (-15 -1965 (|#1| |#1| (-576) (-576) (-576) (-576))) (-15 -1756 (|#1| |#1| (-576) (-576))) (-15 -2736 (|#1| |#1| (-576) (-576))) (-15 -3755 (|#1| |#1| (-656 (-576)) (-656 (-576)) |#1|)) (-15 -2796 (|#1| |#1| (-656 (-576)) (-656 (-576)))) (-15 -2650 ((-656 (-656 |#2|)) |#1|)) (-15 -2564 (|#1| |#1| |#1|)) (-15 -3397 (|#1| |#1| |#1|)) (-15 -2228 (|#1| |#1|)) (-15 -1354 (|#1| |#1|)) (-15 -1354 (|#1| |#3|)) (-15 -3569 (|#1| |#4|)) (-15 -4406 (|#1| (-656 |#1|))) (-15 -4406 (|#1| (-656 |#2|))) (-15 -4083 (|#1| (-783) |#2|)) (-15 -2466 (|#1| (-783) (-783) (-1 |#2| (-576) (-576)))) (-15 -2466 (|#1| (-656 (-656 |#2|)))) (-15 -3831 (|#1| (-783) (-783))) (-15 -4155 ((-112) |#1|)) (-15 -3226 ((-112) |#1|)) (-15 -3218 ((-112) |#1|)) (-15 -4434 ((-112) |#1|)) (-15 -3755 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2796 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2796 (|#2| |#1| (-576) (-576)))) (-699 |#2| |#3| |#4|) (-1070) (-384 |#2|) (-384 |#2|)) (T -698)) +NIL +(-10 -8 (-15 -3569 ((-876) |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3056 (|#1| |#1| |#2|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3029 (|#1| |#1| |#1|)) (-15 -3752 (|#1| |#1| (-576) (-576) |#1|)) (-15 -1965 (|#1| |#1| (-576) (-576) (-576) (-576))) (-15 -1756 (|#1| |#1| (-576) (-576))) (-15 -2736 (|#1| |#1| (-576) (-576))) (-15 -3755 (|#1| |#1| (-656 (-576)) (-656 (-576)) |#1|)) (-15 -2796 (|#1| |#1| (-656 (-576)) (-656 (-576)))) (-15 -2650 ((-656 (-656 |#2|)) |#1|)) (-15 -2564 (|#1| |#1| |#1|)) (-15 -3397 (|#1| |#1| |#1|)) (-15 -2228 (|#1| |#1|)) (-15 -1354 (|#1| |#1|)) (-15 -1354 (|#1| |#3|)) (-15 -3569 (|#1| |#4|)) (-15 -4406 (|#1| (-656 |#1|))) (-15 -4406 (|#1| (-656 |#2|))) (-15 -4083 (|#1| (-783) |#2|)) (-15 -2466 (|#1| (-783) (-783) (-1 |#2| (-576) (-576)))) (-15 -2466 (|#1| (-656 (-656 |#2|)))) (-15 -3831 (|#1| (-783) (-783))) (-15 -4155 ((-112) |#1|)) (-15 -3226 ((-112) |#1|)) (-15 -3218 ((-112) |#1|)) (-15 -4434 ((-112) |#1|)) (-15 -3755 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2796 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2796 (|#2| |#1| (-576) (-576)))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3831 (($ (-783) (-783)) 99)) (-2564 (($ $ $) 88)) (-1354 (($ |#2|) 92) (($ $) 91)) (-3226 (((-112) $) 101)) (-2736 (($ $ (-576) (-576)) 84)) (-1756 (($ $ (-576) (-576)) 83)) (-1965 (($ $ (-576) (-576) (-576) (-576)) 82)) (-2228 (($ $) 90)) (-4434 (((-112) $) 103)) (-4264 (((-112) $ (-783)) 8)) (-3752 (($ $ (-576) (-576) $) 81)) (-3755 ((|#1| $ (-576) (-576) |#1|) 45) (($ $ (-656 (-576)) (-656 (-576)) $) 85)) (-3100 (($ $ (-576) |#2|) 43)) (-1891 (($ $ (-576) |#3|) 42)) (-4083 (($ (-783) |#1|) 96)) (-3404 (($) 7 T CONST)) (-2548 (($ $) 68 (|has| |#1| (-317)))) (-1575 ((|#2| $ (-576)) 47)) (-3733 (((-783) $) 67 (|has| |#1| (-568)))) (-4332 ((|#1| $ (-576) (-576) |#1|) 44)) (-4272 ((|#1| $ (-576) (-576)) 49)) (-3965 (((-656 |#1|) $) 31)) (-1768 (((-783) $) 66 (|has| |#1| (-568)))) (-3595 (((-656 |#3|) $) 65 (|has| |#1| (-568)))) (-1689 (((-783) $) 52)) (-4140 (($ (-783) (-783) |#1|) 58)) (-1699 (((-783) $) 51)) (-1368 (((-112) $ (-783)) 9)) (-1381 ((|#1| $) 63 (|has| |#1| (-6 (-4466 "*"))))) (-4017 (((-576) $) 56)) (-3144 (((-576) $) 54)) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3550 (((-576) $) 55)) (-3037 (((-576) $) 53)) (-2466 (($ (-656 (-656 |#1|))) 98) (($ (-783) (-783) (-1 |#1| (-576) (-576))) 97)) (-4326 (($ (-1 |#1| |#1|) $) 35)) (-4116 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2650 (((-656 (-656 |#1|)) $) 87)) (-2883 (((-112) $ (-783)) 10)) (-2046 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3375 (((-3 $ "failed") $) 62 (|has| |#1| (-374)))) (-3397 (($ $ $) 89)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-2304 (($ $ |#1|) 57)) (-3475 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-568)))) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-2796 ((|#1| $ (-576) (-576)) 50) ((|#1| $ (-576) (-576) |#1|) 48) (($ $ (-656 (-576)) (-656 (-576))) 86)) (-4406 (($ (-656 |#1|)) 95) (($ (-656 $)) 94)) (-3218 (((-112) $) 102)) (-3556 ((|#1| $) 64 (|has| |#1| (-6 (-4466 "*"))))) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-4203 ((|#3| $ (-576)) 46)) (-3569 (($ |#3|) 93) (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-4155 (((-112) $) 100)) (-2924 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3056 (($ $ |#1|) 69 (|has| |#1| (-374)))) (-3043 (($ $ $) 79) (($ $) 78)) (-3029 (($ $ $) 80)) (** (($ $ (-783)) 71) (($ $ (-576)) 61 (|has| |#1| (-374)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-576) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-699 |#1| |#2| |#3|) (-141) (-1070) (-384 |t#1|) (-384 |t#1|)) (T -699)) -((-3240 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-4002 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-2283 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-3832 (*1 *1 *2 *2) (-12 (-5 *2 (-783)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2467 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2467 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-1 *4 (-576) (-576))) (-4 *4 (-1070)) (-4 *1 (-699 *4 *5 *6)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)))) (-1787 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2784 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2784 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3570 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *2)) (-4 *4 (-384 *3)) (-4 *2 (-384 *3)))) (-3244 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-4 *1 (-699 *3 *2 *4)) (-4 *2 (-384 *3)) (-4 *4 (-384 *3)))) (-3244 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3395 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-2948 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3430 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-1907 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-656 (-656 *3))))) (-2797 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3756 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2873 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4112 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1644 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2515 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3030 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3044 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3044 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-699 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *2 (-384 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-699 *3 *2 *4)) (-4 *3 (-1070)) (-4 *2 (-384 *3)) (-4 *4 (-384 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3476 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-568)))) (-3057 (*1 *1 *1 *2) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) (-2030 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-317)))) (-3734 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) (-1394 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) (-2196 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-656 *5)))) (-4223 (*1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (|has| *2 (-6 (-4467 "*"))) (-4 *2 (-1070)))) (-2471 (*1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (|has| *2 (-6 (-4467 "*"))) (-4 *2 (-1070)))) (-2807 (*1 *1 *1) (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-374))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4466) (-6 -4465) (-15 -3240 ((-112) $)) (-15 -4002 ((-112) $)) (-15 -2283 ((-112) $)) (-15 -3830 ((-112) $)) (-15 -3832 ($ (-783) (-783))) (-15 -2467 ($ (-656 (-656 |t#1|)))) (-15 -2467 ($ (-783) (-783) (-1 |t#1| (-576) (-576)))) (-15 -1787 ($ (-783) |t#1|)) (-15 -2784 ($ (-656 |t#1|))) (-15 -2784 ($ (-656 $))) (-15 -3570 ($ |t#3|)) (-15 -3244 ($ |t#2|)) (-15 -3244 ($ $)) (-15 -3395 ($ $)) (-15 -2948 ($ $ $)) (-15 -3430 ($ $ $)) (-15 -1907 ((-656 (-656 |t#1|)) $)) (-15 -2797 ($ $ (-656 (-576)) (-656 (-576)))) (-15 -3756 ($ $ (-656 (-576)) (-656 (-576)) $)) (-15 -2873 ($ $ (-576) (-576))) (-15 -4112 ($ $ (-576) (-576))) (-15 -1644 ($ $ (-576) (-576) (-576) (-576))) (-15 -2515 ($ $ (-576) (-576) $)) (-15 -3030 ($ $ $)) (-15 -3044 ($ $ $)) (-15 -3044 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-576) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-783))) (IF (|has| |t#1| (-568)) (-15 -3476 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-374)) (-15 -3057 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-317)) (-15 -2030 ($ $)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -3734 ((-783) $)) (-15 -1394 ((-783) $)) (-15 -2196 ((-656 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4467 "*"))) (PROGN (-15 -4223 (|t#1| $)) (-15 -2471 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-15 -2807 ((-3 $ "failed") $)) (-15 ** ($ $ (-576)))) |%noBranch|))) -(((-34) . T) ((-102) -2760 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2760 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-57 |#1| |#2| |#3|) . T) ((-1238) . T)) -((-2030 ((|#4| |#4|) 92 (|has| |#1| (-317)))) (-3734 (((-783) |#4|) 120 (|has| |#1| (-568)))) (-1394 (((-783) |#4|) 96 (|has| |#1| (-568)))) (-2196 (((-656 |#3|) |#4|) 103 (|has| |#1| (-568)))) (-2057 (((-2 (|:| -2715 |#1|) (|:| -3624 |#1|)) |#1| |#1|) 135 (|has| |#1| (-317)))) (-2471 ((|#1| |#4|) 52)) (-1800 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-568)))) (-2807 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-374)))) (-3511 ((|#4| |#4|) 88 (|has| |#1| (-568)))) (-4273 ((|#4| |#4| |#1| (-576) (-576)) 60)) (-3404 ((|#4| |#4| (-576) (-576)) 55)) (-2956 ((|#4| |#4| |#1| (-576) (-576)) 65)) (-4223 ((|#1| |#4|) 98)) (-3960 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-568))))) -(((-700 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4223 (|#1| |#4|)) (-15 -2471 (|#1| |#4|)) (-15 -3404 (|#4| |#4| (-576) (-576))) (-15 -4273 (|#4| |#4| |#1| (-576) (-576))) (-15 -2956 (|#4| |#4| |#1| (-576) (-576))) (IF (|has| |#1| (-568)) (PROGN (-15 -3734 ((-783) |#4|)) (-15 -1394 ((-783) |#4|)) (-15 -2196 ((-656 |#3|) |#4|)) (-15 -3511 (|#4| |#4|)) (-15 -1800 ((-3 |#4| "failed") |#4|)) (-15 -3960 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-317)) (PROGN (-15 -2030 (|#4| |#4|)) (-15 -2057 ((-2 (|:| -2715 |#1|) (|:| -3624 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2807 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -700)) -((-2807 (*1 *2 *2) (|partial| -12 (-4 *3 (-374)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-2057 (*1 *2 *3 *3) (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-2 (|:| -2715 *3) (|:| -3624 *3))) (-5 *1 (-700 *3 *4 *5 *6)) (-4 *6 (-699 *3 *4 *5)))) (-2030 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3960 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-1800 (*1 *2 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3511 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-2196 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-1394 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-2956 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) (-4 *2 (-699 *3 *5 *6)))) (-4273 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) (-4 *2 (-699 *3 *5 *6)))) (-3404 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *1 (-700 *4 *5 *6 *2)) (-4 *2 (-699 *4 *5 *6)))) (-2471 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) (-4223 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5))))) -(-10 -7 (-15 -4223 (|#1| |#4|)) (-15 -2471 (|#1| |#4|)) (-15 -3404 (|#4| |#4| (-576) (-576))) (-15 -4273 (|#4| |#4| |#1| (-576) (-576))) (-15 -2956 (|#4| |#4| |#1| (-576) (-576))) (IF (|has| |#1| (-568)) (PROGN (-15 -3734 ((-783) |#4|)) (-15 -1394 ((-783) |#4|)) (-15 -2196 ((-656 |#3|) |#4|)) (-15 -3511 (|#4| |#4|)) (-15 -1800 ((-3 |#4| "failed") |#4|)) (-15 -3960 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-317)) (PROGN (-15 -2030 (|#4| |#4|)) (-15 -2057 ((-2 (|:| -2715 |#1|) (|:| -3624 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2807 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3832 (($ (-783) (-783)) 64)) (-3430 (($ $ $) NIL)) (-3244 (($ (-1288 |#1|)) NIL) (($ $) NIL)) (-2283 (((-112) $) NIL)) (-2873 (($ $ (-576) (-576)) 22)) (-4112 (($ $ (-576) (-576)) NIL)) (-1644 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-3395 (($ $) NIL)) (-3240 (((-112) $) NIL)) (-1808 (((-112) $ (-783)) NIL)) (-2515 (($ $ (-576) (-576) $) NIL)) (-3756 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-1631 (($ $ (-576) (-1288 |#1|)) NIL)) (-4436 (($ $ (-576) (-1288 |#1|)) NIL)) (-1787 (($ (-783) |#1|) 37)) (-3886 (($) NIL T CONST)) (-2030 (($ $) 46 (|has| |#1| (-317)))) (-4093 (((-1288 |#1|) $ (-576)) NIL)) (-3734 (((-783) $) 48 (|has| |#1| (-568)))) (-4335 ((|#1| $ (-576) (-576) |#1|) 69)) (-4274 ((|#1| $ (-576) (-576)) NIL)) (-3966 (((-656 |#1|) $) NIL)) (-1394 (((-783) $) 50 (|has| |#1| (-568)))) (-2196 (((-656 (-1288 |#1|)) $) 53 (|has| |#1| (-568)))) (-1689 (((-783) $) 32)) (-4141 (($ (-783) (-783) |#1|) 28)) (-1699 (((-783) $) 33)) (-3870 (((-112) $ (-783)) NIL)) (-2471 ((|#1| $) 44 (|has| |#1| (-6 (-4467 "*"))))) (-4267 (((-576) $) 10)) (-1952 (((-576) $) 11)) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3900 (((-576) $) 14)) (-2569 (((-576) $) 65)) (-2467 (($ (-656 (-656 |#1|))) NIL) (($ (-783) (-783) (-1 |#1| (-576) (-576))) NIL)) (-4323 (($ (-1 |#1| |#1|) $) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1907 (((-656 (-656 |#1|)) $) 76)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2807 (((-3 $ "failed") $) 60 (|has| |#1| (-374)))) (-2948 (($ $ $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4046 (($ $ |#1|) NIL)) (-3476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-2784 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL) (($ (-1288 |#1|)) 70)) (-4002 (((-112) $) NIL)) (-4223 ((|#1| $) 42 (|has| |#1| (-6 (-4467 "*"))))) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-4172 (((-548) $) 80 (|has| |#1| (-626 (-548))))) (-2129 (((-1288 |#1|) $ (-576)) NIL)) (-3570 (($ (-1288 |#1|)) NIL) (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3830 (((-112) $) NIL)) (-2925 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3057 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3044 (($ $ $) NIL) (($ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-783)) 38) (($ $ (-576)) 62 (|has| |#1| (-374)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-1288 |#1|) $ (-1288 |#1|)) NIL) (((-1288 |#1|) (-1288 |#1|) $) NIL)) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-701 |#1|) (-13 (-699 |#1| (-1288 |#1|) (-1288 |#1|)) (-10 -8 (-15 -2784 ($ (-1288 |#1|))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2807 ((-3 $ "failed") $)) |%noBranch|))) (-1070)) (T -701)) -((-2807 (*1 *1 *1) (|partial| -12 (-5 *1 (-701 *2)) (-4 *2 (-374)) (-4 *2 (-1070)))) (-2784 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1070)) (-5 *1 (-701 *3))))) -(-13 (-699 |#1| (-1288 |#1|) (-1288 |#1|)) (-10 -8 (-15 -2784 ($ (-1288 |#1|))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2807 ((-3 $ "failed") $)) |%noBranch|))) -((-4202 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 37)) (-2683 (((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|) 32)) (-4251 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783)) 43)) (-1702 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 25)) (-2878 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 29) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 27)) (-1815 (((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|)) 31)) (-2785 (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 23)) (** (((-701 |#1|) (-701 |#1|) (-783)) 46))) -(((-702 |#1|) (-10 -7 (-15 -2785 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1702 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2878 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2878 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1815 ((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|))) (-15 -2683 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -4202 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -4251 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783))) (-15 ** ((-701 |#1|) (-701 |#1|) (-783)))) (-1070)) (T -702)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1070)) (-5 *1 (-702 *4)))) (-4251 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1070)) (-5 *1 (-702 *4)))) (-4202 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) (-2683 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) (-1815 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) (-2878 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) (-2878 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) (-1702 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) (-2785 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) -(-10 -7 (-15 -2785 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1702 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2878 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2878 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1815 ((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|))) (-15 -2683 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -4202 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -4251 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783))) (-15 ** ((-701 |#1|) (-701 |#1|) (-783)))) -((-1572 (((-3 |#1| "failed") $) 18)) (-2860 ((|#1| $) NIL)) (-1404 (($) 7 T CONST)) (-3461 (($ |#1|) 8)) (-3570 (($ |#1|) 16) (((-876) $) 23)) (-2708 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -1404)) 11)) (-1922 ((|#1| $) 15))) -(((-703 |#1|) (-13 (-1283) (-1059 |#1|) (-625 (-876)) (-10 -8 (-15 -3461 ($ |#1|)) (-15 -2708 ((-112) $ (|[\|\|]| |#1|))) (-15 -2708 ((-112) $ (|[\|\|]| -1404))) (-15 -1922 (|#1| $)) (-15 -1404 ($) -1480))) (-625 (-876))) (T -703)) -((-3461 (*1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-876))))) (-2708 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-625 (-876))) (-5 *2 (-112)) (-5 *1 (-703 *4)))) (-2708 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1404)) (-5 *2 (-112)) (-5 *1 (-703 *4)) (-4 *4 (-625 (-876))))) (-1922 (*1 *2 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-876))))) (-1404 (*1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-876)))))) -(-13 (-1283) (-1059 |#1|) (-625 (-876)) (-10 -8 (-15 -3461 ($ |#1|)) (-15 -2708 ((-112) $ (|[\|\|]| |#1|))) (-15 -2708 ((-112) $ (|[\|\|]| -1404))) (-15 -1922 (|#1| $)) (-15 -1404 ($) -1480))) -((-1825 ((|#2| |#2| |#4|) 29)) (-3418 (((-701 |#2|) |#3| |#4|) 35)) (-3027 (((-701 |#2|) |#2| |#4|) 34)) (-1982 (((-1288 |#2|) |#2| |#4|) 16)) (-4003 ((|#2| |#3| |#4|) 28)) (-2399 (((-701 |#2|) |#3| |#4| (-783) (-783)) 47)) (-1903 (((-701 |#2|) |#2| |#4| (-783)) 46))) -(((-704 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1982 ((-1288 |#2|) |#2| |#4|)) (-15 -4003 (|#2| |#3| |#4|)) (-15 -1825 (|#2| |#2| |#4|)) (-15 -3027 ((-701 |#2|) |#2| |#4|)) (-15 -1903 ((-701 |#2|) |#2| |#4| (-783))) (-15 -3418 ((-701 |#2|) |#3| |#4|)) (-15 -2399 ((-701 |#2|) |#3| |#4| (-783) (-783)))) (-1121) (-917 |#1|) (-384 |#2|) (-13 (-384 |#1|) (-10 -7 (-6 -4465)))) (T -704)) -((-2399 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-783)) (-4 *6 (-1121)) (-4 *7 (-917 *6)) (-5 *2 (-701 *7)) (-5 *1 (-704 *6 *7 *3 *4)) (-4 *3 (-384 *7)) (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4465)))))) (-3418 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-4 *6 (-917 *5)) (-5 *2 (-701 *6)) (-5 *1 (-704 *5 *6 *3 *4)) (-4 *3 (-384 *6)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4465)))))) (-1903 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-1121)) (-4 *3 (-917 *6)) (-5 *2 (-701 *3)) (-5 *1 (-704 *6 *3 *7 *4)) (-4 *7 (-384 *3)) (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4465)))))) (-3027 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-4 *3 (-917 *5)) (-5 *2 (-701 *3)) (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4465)))))) (-1825 (*1 *2 *2 *3) (-12 (-4 *4 (-1121)) (-4 *2 (-917 *4)) (-5 *1 (-704 *4 *2 *5 *3)) (-4 *5 (-384 *2)) (-4 *3 (-13 (-384 *4) (-10 -7 (-6 -4465)))))) (-4003 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-4 *2 (-917 *5)) (-5 *1 (-704 *5 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4465)))))) (-1982 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-4 *3 (-917 *5)) (-5 *2 (-1288 *3)) (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4465))))))) -(-10 -7 (-15 -1982 ((-1288 |#2|) |#2| |#4|)) (-15 -4003 (|#2| |#3| |#4|)) (-15 -1825 (|#2| |#2| |#4|)) (-15 -3027 ((-701 |#2|) |#2| |#4|)) (-15 -1903 ((-701 |#2|) |#2| |#4| (-783))) (-15 -3418 ((-701 |#2|) |#3| |#4|)) (-15 -2399 ((-701 |#2|) |#3| |#4| (-783) (-783)))) -((-2435 (((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)) 20)) (-4173 ((|#1| (-701 |#2|)) 9)) (-2206 (((-701 |#1|) (-701 |#2|)) 18))) -(((-705 |#1| |#2|) (-10 -7 (-15 -4173 (|#1| (-701 |#2|))) (-15 -2206 ((-701 |#1|) (-701 |#2|))) (-15 -2435 ((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)))) (-568) (-1013 |#1|)) (T -705)) -((-2435 (*1 *2 *3) (-12 (-5 *3 (-701 *5)) (-4 *5 (-1013 *4)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |num| (-701 *4)) (|:| |den| *4))) (-5 *1 (-705 *4 *5)))) (-2206 (*1 *2 *3) (-12 (-5 *3 (-701 *5)) (-4 *5 (-1013 *4)) (-4 *4 (-568)) (-5 *2 (-701 *4)) (-5 *1 (-705 *4 *5)))) (-4173 (*1 *2 *3) (-12 (-5 *3 (-701 *4)) (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-705 *2 *4))))) -(-10 -7 (-15 -4173 (|#1| (-701 |#2|))) (-15 -2206 ((-701 |#1|) (-701 |#2|))) (-15 -2435 ((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-4101 (((-701 (-711))) NIL) (((-701 (-711)) (-1288 $)) NIL)) (-2210 (((-711) $) NIL)) (-4025 (($ $) NIL (|has| (-711) (-1223)))) (-3901 (($ $) NIL (|has| (-711) (-1223)))) (-4183 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-711) (-360)))) (-4367 (((-3 $ "failed") $ $) NIL)) (-3601 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-928))))) (-2487 (($ $) NIL (-2760 (-12 (|has| (-711) (-317)) (|has| (-711) (-928))) (|has| (-711) (-374))))) (-3921 (((-430 $) $) NIL (-2760 (-12 (|has| (-711) (-317)) (|has| (-711) (-928))) (|has| (-711) (-374))))) (-1839 (($ $) NIL (-12 (|has| (-711) (-1023)) (|has| (-711) (-1223))))) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-928))))) (-4016 (((-112) $ $) NIL (|has| (-711) (-317)))) (-2098 (((-783)) NIL (|has| (-711) (-379)))) (-4006 (($ $) NIL (|has| (-711) (-1223)))) (-3877 (($ $) NIL (|has| (-711) (-1223)))) (-4050 (($ $) NIL (|has| (-711) (-1223)))) (-3920 (($ $) NIL (|has| (-711) (-1223)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-711) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-711) (-1059 (-419 (-576)))))) (-2860 (((-576) $) NIL) (((-711) $) NIL) (((-419 (-576)) $) NIL (|has| (-711) (-1059 (-419 (-576)))))) (-4119 (($ (-1288 (-711))) NIL) (($ (-1288 (-711)) (-1288 $)) NIL)) (-2554 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-711) (-360)))) (-3429 (($ $ $) NIL (|has| (-711) (-317)))) (-1420 (((-701 (-711)) $) NIL) (((-701 (-711)) $ (-1288 $)) NIL)) (-2204 (((-701 (-711)) (-701 $)) NIL) (((-2 (|:| -2590 (-701 (-711))) (|:| |vec| (-1288 (-711)))) (-701 $) (-1288 $)) NIL) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-711) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-711) (-651 (-576))))) (-3686 (((-3 $ "failed") (-419 (-1193 (-711)))) NIL (|has| (-711) (-374))) (($ (-1193 (-711))) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-1850 (((-711) $) 29)) (-3104 (((-3 (-419 (-576)) "failed") $) NIL (|has| (-711) (-557)))) (-2545 (((-112) $) NIL (|has| (-711) (-557)))) (-2568 (((-419 (-576)) $) NIL (|has| (-711) (-557)))) (-3734 (((-940)) NIL)) (-1836 (($) NIL (|has| (-711) (-379)))) (-3441 (($ $ $) NIL (|has| (-711) (-317)))) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL (|has| (-711) (-317)))) (-2005 (($) NIL (|has| (-711) (-360)))) (-4090 (((-112) $) NIL (|has| (-711) (-360)))) (-2910 (($ $) NIL (|has| (-711) (-360))) (($ $ (-783)) NIL (|has| (-711) (-360)))) (-4249 (((-112) $) NIL (-2760 (-12 (|has| (-711) (-317)) (|has| (-711) (-928))) (|has| (-711) (-374))))) (-1430 (((-2 (|:| |r| (-711)) (|:| |phi| (-711))) $) NIL (-12 (|has| (-711) (-1081)) (|has| (-711) (-1223))))) (-1600 (($) NIL (|has| (-711) (-1223)))) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-711) (-901 (-390)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-711) (-901 (-576))))) (-3917 (((-845 (-940)) $) NIL (|has| (-711) (-360))) (((-940) $) NIL (|has| (-711) (-360)))) (-4193 (((-112) $) NIL)) (-2121 (($ $ (-576)) NIL (-12 (|has| (-711) (-1023)) (|has| (-711) (-1223))))) (-1381 (((-711) $) NIL)) (-2240 (((-3 $ "failed") $) NIL (|has| (-711) (-360)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-711) (-317)))) (-2731 (((-1193 (-711)) $) NIL (|has| (-711) (-374)))) (-3125 (($ $ $) NIL)) (-3133 (($ $ $) NIL)) (-4117 (($ (-1 (-711) (-711)) $) NIL)) (-4401 (((-940) $) NIL (|has| (-711) (-379)))) (-3745 (($ $) NIL (|has| (-711) (-1223)))) (-3672 (((-1193 (-711)) $) NIL)) (-3913 (((-701 (-711)) (-1288 $)) NIL) (((-2 (|:| -2590 (-701 (-711))) (|:| |vec| (-1288 (-711)))) (-1288 $) $) NIL) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-711) (-651 (-576)))) (((-701 (-576)) (-1288 $)) NIL (|has| (-711) (-651 (-576))))) (-3458 (($ (-656 $)) NIL (|has| (-711) (-317))) (($ $ $) NIL (|has| (-711) (-317)))) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL (|has| (-711) (-374)))) (-3540 (($) NIL (|has| (-711) (-360)) CONST)) (-3224 (($ (-940)) NIL (|has| (-711) (-379)))) (-2429 (($) NIL)) (-1860 (((-711) $) 31)) (-1450 (((-1141) $) NIL)) (-4129 (($) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| (-711) (-317)))) (-3498 (($ (-656 $)) NIL (|has| (-711) (-317))) (($ $ $) NIL (|has| (-711) (-317)))) (-2406 (((-656 (-2 (|:| -1828 (-576)) (|:| -3422 (-576))))) NIL (|has| (-711) (-360)))) (-4100 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-928))))) (-1811 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-928))))) (-1828 (((-430 $) $) NIL (-2760 (-12 (|has| (-711) (-317)) (|has| (-711) (-928))) (|has| (-711) (-374))))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-711) (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| (-711) (-317)))) (-3476 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-711)) NIL (|has| (-711) (-568)))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-711) (-317)))) (-4104 (($ $) NIL (|has| (-711) (-1223)))) (-3284 (($ $ (-1197) (-711)) NIL (|has| (-711) (-526 (-1197) (-711)))) (($ $ (-656 (-1197)) (-656 (-711))) NIL (|has| (-711) (-526 (-1197) (-711)))) (($ $ (-656 (-304 (-711)))) NIL (|has| (-711) (-319 (-711)))) (($ $ (-304 (-711))) NIL (|has| (-711) (-319 (-711)))) (($ $ (-711) (-711)) NIL (|has| (-711) (-319 (-711)))) (($ $ (-656 (-711)) (-656 (-711))) NIL (|has| (-711) (-319 (-711))))) (-1967 (((-783) $) NIL (|has| (-711) (-317)))) (-2797 (($ $ (-711)) NIL (|has| (-711) (-296 (-711) (-711))))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| (-711) (-317)))) (-4352 (((-711)) NIL) (((-711) (-1288 $)) NIL)) (-3793 (((-3 (-783) "failed") $ $) NIL (|has| (-711) (-360))) (((-783) $) NIL (|has| (-711) (-360)))) (-2775 (($ $ (-1 (-711) (-711)) (-783)) NIL) (($ $ (-1 (-711) (-711))) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2760 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-1197) (-783)) NIL (-2760 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-656 (-1197))) NIL (-2760 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-1197)) NIL (-2760 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-783)) NIL (-2760 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237)))) (($ $) NIL (-2760 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237))))) (-2433 (((-701 (-711)) (-1288 $) (-1 (-711) (-711))) NIL (|has| (-711) (-374)))) (-3867 (((-1193 (-711))) NIL)) (-4061 (($ $) NIL (|has| (-711) (-1223)))) (-3930 (($ $) NIL (|has| (-711) (-1223)))) (-1535 (($) NIL (|has| (-711) (-360)))) (-4037 (($ $) NIL (|has| (-711) (-1223)))) (-3910 (($ $) NIL (|has| (-711) (-1223)))) (-4014 (($ $) NIL (|has| (-711) (-1223)))) (-3889 (($ $) NIL (|has| (-711) (-1223)))) (-4152 (((-701 (-711)) (-1288 $)) NIL) (((-1288 (-711)) $) NIL) (((-701 (-711)) (-1288 $) (-1288 $)) NIL) (((-1288 (-711)) $ (-1288 $)) NIL)) (-4172 (((-548) $) NIL (|has| (-711) (-626 (-548)))) (((-171 (-227)) $) NIL (|has| (-711) (-1043))) (((-171 (-390)) $) NIL (|has| (-711) (-1043))) (((-907 (-390)) $) NIL (|has| (-711) (-626 (-907 (-390))))) (((-907 (-576)) $) NIL (|has| (-711) (-626 (-907 (-576))))) (($ (-1193 (-711))) NIL) (((-1193 (-711)) $) NIL) (($ (-1288 (-711))) NIL) (((-1288 (-711)) $) NIL)) (-2314 (($ $) NIL)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (-2760 (-12 (|has| (-711) (-317)) (|has| $ (-146)) (|has| (-711) (-928))) (|has| (-711) (-360))))) (-4178 (($ (-711) (-711)) 12)) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-711)) NIL) (($ (-171 (-390))) 13) (($ (-171 (-576))) 19) (($ (-171 (-711))) 28) (($ (-171 (-713))) 25) (((-171 (-390)) $) 33) (($ (-419 (-576))) NIL (-2760 (|has| (-711) (-1059 (-419 (-576)))) (|has| (-711) (-374))))) (-4336 (($ $) NIL (|has| (-711) (-360))) (((-3 $ "failed") $) NIL (-2760 (-12 (|has| (-711) (-317)) (|has| $ (-146)) (|has| (-711) (-928))) (|has| (-711) (-146))))) (-4281 (((-1193 (-711)) $) NIL)) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-1593 (((-1288 $)) NIL)) (-2791 (($ $) NIL (|has| (-711) (-1223)))) (-3961 (($ $) NIL (|has| (-711) (-1223)))) (-2672 (((-112) $ $) NIL)) (-4071 (($ $) NIL (|has| (-711) (-1223)))) (-3938 (($ $) NIL (|has| (-711) (-1223)))) (-2815 (($ $) NIL (|has| (-711) (-1223)))) (-3983 (($ $) NIL (|has| (-711) (-1223)))) (-1737 (((-711) $) NIL (|has| (-711) (-1223)))) (-4388 (($ $) NIL (|has| (-711) (-1223)))) (-3995 (($ $) NIL (|has| (-711) (-1223)))) (-2803 (($ $) NIL (|has| (-711) (-1223)))) (-3974 (($ $) NIL (|has| (-711) (-1223)))) (-4083 (($ $) NIL (|has| (-711) (-1223)))) (-3951 (($ $) NIL (|has| (-711) (-1223)))) (-2122 (($ $) NIL (|has| (-711) (-1081)))) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2020 (($ $ (-1 (-711) (-711)) (-783)) NIL) (($ $ (-1 (-711) (-711))) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2760 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-1197) (-783)) NIL (-2760 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-656 (-1197))) NIL (-2760 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-1197)) NIL (-2760 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-783)) NIL (-2760 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237)))) (($ $) NIL (-2760 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237))))) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) NIL)) (-3057 (($ $ $) NIL (|has| (-711) (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ $) NIL (|has| (-711) (-1223))) (($ $ (-419 (-576))) NIL (-12 (|has| (-711) (-1023)) (|has| (-711) (-1223)))) (($ $ (-576)) NIL (|has| (-711) (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-711) $) NIL) (($ $ (-711)) NIL) (($ (-419 (-576)) $) NIL (|has| (-711) (-374))) (($ $ (-419 (-576))) NIL (|has| (-711) (-374))))) -(((-706) (-13 (-399) (-167 (-711)) (-10 -8 (-15 -3570 ($ (-171 (-390)))) (-15 -3570 ($ (-171 (-576)))) (-15 -3570 ($ (-171 (-711)))) (-15 -3570 ($ (-171 (-713)))) (-15 -3570 ((-171 (-390)) $))))) (T -706)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-171 (-576))) (-5 *1 (-706)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-171 (-711))) (-5 *1 (-706)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-171 (-713))) (-5 *1 (-706)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706))))) -(-13 (-399) (-167 (-711)) (-10 -8 (-15 -3570 ($ (-171 (-390)))) (-15 -3570 ($ (-171 (-576)))) (-15 -3570 ($ (-171 (-711)))) (-15 -3570 ($ (-171 (-713)))) (-15 -3570 ((-171 (-390)) $)))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1808 (((-112) $ (-783)) 8)) (-2300 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4465)))) (-3886 (($) 7 T CONST)) (-1703 (($ $) 63)) (-1415 (($ $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1671 (($ |#1| $) 48 (|has| $ (-6 -4465))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4465)))) (-3946 (($ |#1| $) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4465)))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4465)))) (-3966 (((-656 |#1|) $) 31 (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) 9)) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-4323 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 36)) (-1330 (((-112) $ (-783)) 10)) (-3699 (((-1179) $) 23 (|has| |#1| (-1121)))) (-1597 ((|#1| $) 40)) (-1901 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3449 ((|#1| $) 42)) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-1621 (((-656 (-2 (|:| -4440 |#1|) (|:| -1460 (-783)))) $) 62)) (-2271 (($) 50) (($ (-656 |#1|)) 49)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 13)) (-4172 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) 51)) (-3570 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3943 (($ (-656 |#1|)) 43)) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-4434 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-3218 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-3226 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-4155 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-3831 (*1 *1 *2 *2) (-12 (-5 *2 (-783)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2466 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2466 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-1 *4 (-576) (-576))) (-4 *4 (-1070)) (-4 *1 (-699 *4 *5 *6)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)))) (-4083 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4406 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4406 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3569 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *2)) (-4 *4 (-384 *3)) (-4 *2 (-384 *3)))) (-1354 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-4 *1 (-699 *3 *2 *4)) (-4 *2 (-384 *3)) (-4 *4 (-384 *3)))) (-1354 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-2228 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3397 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-2564 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-2650 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-656 (-656 *3))))) (-2796 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3755 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2736 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1756 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1965 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3752 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3029 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3043 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3043 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-699 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *2 (-384 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-699 *3 *2 *4)) (-4 *3 (-1070)) (-4 *2 (-384 *3)) (-4 *4 (-384 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3475 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-568)))) (-3056 (*1 *1 *1 *2) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) (-2548 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-317)))) (-3733 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) (-1768 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-656 *5)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (|has| *2 (-6 (-4466 "*"))) (-4 *2 (-1070)))) (-1381 (*1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (|has| *2 (-6 (-4466 "*"))) (-4 *2 (-1070)))) (-3375 (*1 *1 *1) (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-374))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4465) (-6 -4464) (-15 -4434 ((-112) $)) (-15 -3218 ((-112) $)) (-15 -3226 ((-112) $)) (-15 -4155 ((-112) $)) (-15 -3831 ($ (-783) (-783))) (-15 -2466 ($ (-656 (-656 |t#1|)))) (-15 -2466 ($ (-783) (-783) (-1 |t#1| (-576) (-576)))) (-15 -4083 ($ (-783) |t#1|)) (-15 -4406 ($ (-656 |t#1|))) (-15 -4406 ($ (-656 $))) (-15 -3569 ($ |t#3|)) (-15 -1354 ($ |t#2|)) (-15 -1354 ($ $)) (-15 -2228 ($ $)) (-15 -3397 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -2650 ((-656 (-656 |t#1|)) $)) (-15 -2796 ($ $ (-656 (-576)) (-656 (-576)))) (-15 -3755 ($ $ (-656 (-576)) (-656 (-576)) $)) (-15 -2736 ($ $ (-576) (-576))) (-15 -1756 ($ $ (-576) (-576))) (-15 -1965 ($ $ (-576) (-576) (-576) (-576))) (-15 -3752 ($ $ (-576) (-576) $)) (-15 -3029 ($ $ $)) (-15 -3043 ($ $ $)) (-15 -3043 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-576) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-783))) (IF (|has| |t#1| (-568)) (-15 -3475 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-374)) (-15 -3056 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-317)) (-15 -2548 ($ $)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -3733 ((-783) $)) (-15 -1768 ((-783) $)) (-15 -3595 ((-656 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4466 "*"))) (PROGN (-15 -3556 (|t#1| $)) (-15 -1381 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-15 -3375 ((-3 $ "failed") $)) (-15 ** ($ $ (-576)))) |%noBranch|))) +(((-34) . T) ((-102) -2759 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2759 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-57 |#1| |#2| |#3|) . T) ((-1238) . T)) +((-2548 ((|#4| |#4|) 92 (|has| |#1| (-317)))) (-3733 (((-783) |#4|) 120 (|has| |#1| (-568)))) (-1768 (((-783) |#4|) 96 (|has| |#1| (-568)))) (-3595 (((-656 |#3|) |#4|) 103 (|has| |#1| (-568)))) (-1595 (((-2 (|:| -1855 |#1|) (|:| -3891 |#1|)) |#1| |#1|) 135 (|has| |#1| (-317)))) (-1381 ((|#1| |#4|) 52)) (-4197 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-568)))) (-3375 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-374)))) (-4062 ((|#4| |#4|) 88 (|has| |#1| (-568)))) (-2783 ((|#4| |#4| |#1| (-576) (-576)) 60)) (-2323 ((|#4| |#4| (-576) (-576)) 55)) (-3466 ((|#4| |#4| |#1| (-576) (-576)) 65)) (-3556 ((|#1| |#4|) 98)) (-2825 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-568))))) +(((-700 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3556 (|#1| |#4|)) (-15 -1381 (|#1| |#4|)) (-15 -2323 (|#4| |#4| (-576) (-576))) (-15 -2783 (|#4| |#4| |#1| (-576) (-576))) (-15 -3466 (|#4| |#4| |#1| (-576) (-576))) (IF (|has| |#1| (-568)) (PROGN (-15 -3733 ((-783) |#4|)) (-15 -1768 ((-783) |#4|)) (-15 -3595 ((-656 |#3|) |#4|)) (-15 -4062 (|#4| |#4|)) (-15 -4197 ((-3 |#4| "failed") |#4|)) (-15 -2825 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-317)) (PROGN (-15 -2548 (|#4| |#4|)) (-15 -1595 ((-2 (|:| -1855 |#1|) (|:| -3891 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3375 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -700)) +((-3375 (*1 *2 *2) (|partial| -12 (-4 *3 (-374)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-1595 (*1 *2 *3 *3) (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-2 (|:| -1855 *3) (|:| -3891 *3))) (-5 *1 (-700 *3 *4 *5 *6)) (-4 *6 (-699 *3 *4 *5)))) (-2548 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-2825 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-4197 (*1 *2 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-4062 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3595 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-1768 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3466 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) (-4 *2 (-699 *3 *5 *6)))) (-2783 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) (-4 *2 (-699 *3 *5 *6)))) (-2323 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *1 (-700 *4 *5 *6 *2)) (-4 *2 (-699 *4 *5 *6)))) (-1381 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) (-3556 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5))))) +(-10 -7 (-15 -3556 (|#1| |#4|)) (-15 -1381 (|#1| |#4|)) (-15 -2323 (|#4| |#4| (-576) (-576))) (-15 -2783 (|#4| |#4| |#1| (-576) (-576))) (-15 -3466 (|#4| |#4| |#1| (-576) (-576))) (IF (|has| |#1| (-568)) (PROGN (-15 -3733 ((-783) |#4|)) (-15 -1768 ((-783) |#4|)) (-15 -3595 ((-656 |#3|) |#4|)) (-15 -4062 (|#4| |#4|)) (-15 -4197 ((-3 |#4| "failed") |#4|)) (-15 -2825 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-317)) (PROGN (-15 -2548 (|#4| |#4|)) (-15 -1595 ((-2 (|:| -1855 |#1|) (|:| -3891 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3375 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3831 (($ (-783) (-783)) 64)) (-2564 (($ $ $) NIL)) (-1354 (($ (-1288 |#1|)) NIL) (($ $) NIL)) (-3226 (((-112) $) NIL)) (-2736 (($ $ (-576) (-576)) 22)) (-1756 (($ $ (-576) (-576)) NIL)) (-1965 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-2228 (($ $) NIL)) (-4434 (((-112) $) NIL)) (-4264 (((-112) $ (-783)) NIL)) (-3752 (($ $ (-576) (-576) $) NIL)) (-3755 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-3100 (($ $ (-576) (-1288 |#1|)) NIL)) (-1891 (($ $ (-576) (-1288 |#1|)) NIL)) (-4083 (($ (-783) |#1|) 37)) (-3404 (($) NIL T CONST)) (-2548 (($ $) 46 (|has| |#1| (-317)))) (-1575 (((-1288 |#1|) $ (-576)) NIL)) (-3733 (((-783) $) 48 (|has| |#1| (-568)))) (-4332 ((|#1| $ (-576) (-576) |#1|) 69)) (-4272 ((|#1| $ (-576) (-576)) NIL)) (-3965 (((-656 |#1|) $) NIL)) (-1768 (((-783) $) 50 (|has| |#1| (-568)))) (-3595 (((-656 (-1288 |#1|)) $) 53 (|has| |#1| (-568)))) (-1689 (((-783) $) 32)) (-4140 (($ (-783) (-783) |#1|) 28)) (-1699 (((-783) $) 33)) (-1368 (((-112) $ (-783)) NIL)) (-1381 ((|#1| $) 44 (|has| |#1| (-6 (-4466 "*"))))) (-4017 (((-576) $) 10)) (-3144 (((-576) $) 11)) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3550 (((-576) $) 14)) (-3037 (((-576) $) 65)) (-2466 (($ (-656 (-656 |#1|))) NIL) (($ (-783) (-783) (-1 |#1| (-576) (-576))) NIL)) (-4326 (($ (-1 |#1| |#1|) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2650 (((-656 (-656 |#1|)) $) 76)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3375 (((-3 $ "failed") $) 60 (|has| |#1| (-374)))) (-3397 (($ $ $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-2304 (($ $ |#1|) NIL)) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-4406 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL) (($ (-1288 |#1|)) 70)) (-3218 (((-112) $) NIL)) (-3556 ((|#1| $) 42 (|has| |#1| (-6 (-4466 "*"))))) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-4171 (((-548) $) 80 (|has| |#1| (-626 (-548))))) (-4203 (((-1288 |#1|) $ (-576)) NIL)) (-3569 (($ (-1288 |#1|)) NIL) (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-4155 (((-112) $) NIL)) (-2924 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $ $) NIL) (($ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-783)) 38) (($ $ (-576)) 62 (|has| |#1| (-374)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-1288 |#1|) $ (-1288 |#1|)) NIL) (((-1288 |#1|) (-1288 |#1|) $) NIL)) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-701 |#1|) (-13 (-699 |#1| (-1288 |#1|) (-1288 |#1|)) (-10 -8 (-15 -4406 ($ (-1288 |#1|))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3375 ((-3 $ "failed") $)) |%noBranch|))) (-1070)) (T -701)) +((-3375 (*1 *1 *1) (|partial| -12 (-5 *1 (-701 *2)) (-4 *2 (-374)) (-4 *2 (-1070)))) (-4406 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1070)) (-5 *1 (-701 *3))))) +(-13 (-699 |#1| (-1288 |#1|) (-1288 |#1|)) (-10 -8 (-15 -4406 ($ (-1288 |#1|))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3375 ((-3 $ "failed") $)) |%noBranch|))) +((-1432 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 37)) (-1588 (((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|) 32)) (-3844 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783)) 43)) (-2484 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 25)) (-2800 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 29) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 27)) (-4338 (((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|)) 31)) (-4414 (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 23)) (** (((-701 |#1|) (-701 |#1|) (-783)) 46))) +(((-702 |#1|) (-10 -7 (-15 -4414 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2484 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2800 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2800 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -4338 ((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|))) (-15 -1588 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -1432 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3844 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783))) (-15 ** ((-701 |#1|) (-701 |#1|) (-783)))) (-1070)) (T -702)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1070)) (-5 *1 (-702 *4)))) (-3844 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1070)) (-5 *1 (-702 *4)))) (-1432 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) (-1588 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) (-4338 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) (-2800 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) (-2800 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) (-2484 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) (-4414 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) +(-10 -7 (-15 -4414 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2484 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2800 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2800 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -4338 ((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|))) (-15 -1588 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -1432 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3844 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783))) (-15 ** ((-701 |#1|) (-701 |#1|) (-783)))) +((-1572 (((-3 |#1| "failed") $) 18)) (-2859 ((|#1| $) NIL)) (-1402 (($) 7 T CONST)) (-1655 (($ |#1|) 8)) (-3569 (($ |#1|) 16) (((-876) $) 23)) (-2707 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -1402)) 11)) (-1922 ((|#1| $) 15))) +(((-703 |#1|) (-13 (-1283) (-1059 |#1|) (-625 (-876)) (-10 -8 (-15 -1655 ($ |#1|)) (-15 -2707 ((-112) $ (|[\|\|]| |#1|))) (-15 -2707 ((-112) $ (|[\|\|]| -1402))) (-15 -1922 (|#1| $)) (-15 -1402 ($) -1480))) (-625 (-876))) (T -703)) +((-1655 (*1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-876))))) (-2707 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-625 (-876))) (-5 *2 (-112)) (-5 *1 (-703 *4)))) (-2707 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1402)) (-5 *2 (-112)) (-5 *1 (-703 *4)) (-4 *4 (-625 (-876))))) (-1922 (*1 *2 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-876))))) (-1402 (*1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-876)))))) +(-13 (-1283) (-1059 |#1|) (-625 (-876)) (-10 -8 (-15 -1655 ($ |#1|)) (-15 -2707 ((-112) $ (|[\|\|]| |#1|))) (-15 -2707 ((-112) $ (|[\|\|]| -1402))) (-15 -1922 (|#1| $)) (-15 -1402 ($) -1480))) +((-4428 ((|#2| |#2| |#4|) 29)) (-2463 (((-701 |#2|) |#3| |#4|) 35)) (-2865 (((-701 |#2|) |#2| |#4|) 34)) (-2094 (((-1288 |#2|) |#2| |#4|) 16)) (-3228 ((|#2| |#3| |#4|) 28)) (-1839 (((-701 |#2|) |#3| |#4| (-783) (-783)) 47)) (-2616 (((-701 |#2|) |#2| |#4| (-783)) 46))) +(((-704 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2094 ((-1288 |#2|) |#2| |#4|)) (-15 -3228 (|#2| |#3| |#4|)) (-15 -4428 (|#2| |#2| |#4|)) (-15 -2865 ((-701 |#2|) |#2| |#4|)) (-15 -2616 ((-701 |#2|) |#2| |#4| (-783))) (-15 -2463 ((-701 |#2|) |#3| |#4|)) (-15 -1839 ((-701 |#2|) |#3| |#4| (-783) (-783)))) (-1121) (-917 |#1|) (-384 |#2|) (-13 (-384 |#1|) (-10 -7 (-6 -4464)))) (T -704)) +((-1839 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-783)) (-4 *6 (-1121)) (-4 *7 (-917 *6)) (-5 *2 (-701 *7)) (-5 *1 (-704 *6 *7 *3 *4)) (-4 *3 (-384 *7)) (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4464)))))) (-2463 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-4 *6 (-917 *5)) (-5 *2 (-701 *6)) (-5 *1 (-704 *5 *6 *3 *4)) (-4 *3 (-384 *6)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464)))))) (-2616 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-1121)) (-4 *3 (-917 *6)) (-5 *2 (-701 *3)) (-5 *1 (-704 *6 *3 *7 *4)) (-4 *7 (-384 *3)) (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4464)))))) (-2865 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-4 *3 (-917 *5)) (-5 *2 (-701 *3)) (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464)))))) (-4428 (*1 *2 *2 *3) (-12 (-4 *4 (-1121)) (-4 *2 (-917 *4)) (-5 *1 (-704 *4 *2 *5 *3)) (-4 *5 (-384 *2)) (-4 *3 (-13 (-384 *4) (-10 -7 (-6 -4464)))))) (-3228 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-4 *2 (-917 *5)) (-5 *1 (-704 *5 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464)))))) (-2094 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-4 *3 (-917 *5)) (-5 *2 (-1288 *3)) (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464))))))) +(-10 -7 (-15 -2094 ((-1288 |#2|) |#2| |#4|)) (-15 -3228 (|#2| |#3| |#4|)) (-15 -4428 (|#2| |#2| |#4|)) (-15 -2865 ((-701 |#2|) |#2| |#4|)) (-15 -2616 ((-701 |#2|) |#2| |#4| (-783))) (-15 -2463 ((-701 |#2|) |#3| |#4|)) (-15 -1839 ((-701 |#2|) |#3| |#4| (-783) (-783)))) +((-4169 (((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)) 20)) (-4277 ((|#1| (-701 |#2|)) 9)) (-3689 (((-701 |#1|) (-701 |#2|)) 18))) +(((-705 |#1| |#2|) (-10 -7 (-15 -4277 (|#1| (-701 |#2|))) (-15 -3689 ((-701 |#1|) (-701 |#2|))) (-15 -4169 ((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)))) (-568) (-1013 |#1|)) (T -705)) +((-4169 (*1 *2 *3) (-12 (-5 *3 (-701 *5)) (-4 *5 (-1013 *4)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |num| (-701 *4)) (|:| |den| *4))) (-5 *1 (-705 *4 *5)))) (-3689 (*1 *2 *3) (-12 (-5 *3 (-701 *5)) (-4 *5 (-1013 *4)) (-4 *4 (-568)) (-5 *2 (-701 *4)) (-5 *1 (-705 *4 *5)))) (-4277 (*1 *2 *3) (-12 (-5 *3 (-701 *4)) (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-705 *2 *4))))) +(-10 -7 (-15 -4277 (|#1| (-701 |#2|))) (-15 -3689 ((-701 |#1|) (-701 |#2|))) (-15 -4169 ((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-1656 (((-701 (-711))) NIL) (((-701 (-711)) (-1288 $)) NIL)) (-2210 (((-711) $) NIL)) (-4024 (($ $) NIL (|has| (-711) (-1223)))) (-3900 (($ $) NIL (|has| (-711) (-1223)))) (-4371 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-711) (-360)))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3646 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-928))))) (-3444 (($ $) NIL (-2759 (-12 (|has| (-711) (-317)) (|has| (-711) (-928))) (|has| (-711) (-374))))) (-3760 (((-430 $) $) NIL (-2759 (-12 (|has| (-711) (-317)) (|has| (-711) (-928))) (|has| (-711) (-374))))) (-1840 (($ $) NIL (-12 (|has| (-711) (-1023)) (|has| (-711) (-1223))))) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-928))))) (-3330 (((-112) $ $) NIL (|has| (-711) (-317)))) (-2098 (((-783)) NIL (|has| (-711) (-379)))) (-4005 (($ $) NIL (|has| (-711) (-1223)))) (-3876 (($ $) NIL (|has| (-711) (-1223)))) (-4049 (($ $) NIL (|has| (-711) (-1223)))) (-3919 (($ $) NIL (|has| (-711) (-1223)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-711) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-711) (-1059 (-419 (-576)))))) (-2859 (((-576) $) NIL) (((-711) $) NIL) (((-419 (-576)) $) NIL (|has| (-711) (-1059 (-419 (-576)))))) (-1819 (($ (-1288 (-711))) NIL) (($ (-1288 (-711)) (-1288 $)) NIL)) (-2868 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-711) (-360)))) (-3428 (($ $ $) NIL (|has| (-711) (-317)))) (-2072 (((-701 (-711)) $) NIL) (((-701 (-711)) $ (-1288 $)) NIL)) (-3674 (((-701 (-711)) (-701 $)) NIL) (((-2 (|:| -3232 (-701 (-711))) (|:| |vec| (-1288 (-711)))) (-701 $) (-1288 $)) NIL) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-711) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-711) (-651 (-576))))) (-3685 (((-3 $ "failed") (-419 (-1193 (-711)))) NIL (|has| (-711) (-374))) (($ (-1193 (-711))) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1850 (((-711) $) 29)) (-2358 (((-3 (-419 (-576)) "failed") $) NIL (|has| (-711) (-557)))) (-2769 (((-112) $) NIL (|has| (-711) (-557)))) (-3025 (((-419 (-576)) $) NIL (|has| (-711) (-557)))) (-3733 (((-940)) NIL)) (-1836 (($) NIL (|has| (-711) (-379)))) (-3440 (($ $ $) NIL (|has| (-711) (-317)))) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| (-711) (-317)))) (-2345 (($) NIL (|has| (-711) (-360)))) (-1543 (((-112) $) NIL (|has| (-711) (-360)))) (-3153 (($ $) NIL (|has| (-711) (-360))) (($ $ (-783)) NIL (|has| (-711) (-360)))) (-3833 (((-112) $) NIL (-2759 (-12 (|has| (-711) (-317)) (|has| (-711) (-928))) (|has| (-711) (-374))))) (-2177 (((-2 (|:| |r| (-711)) (|:| |phi| (-711))) $) NIL (-12 (|has| (-711) (-1081)) (|has| (-711) (-1223))))) (-1600 (($) NIL (|has| (-711) (-1223)))) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-711) (-901 (-390)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-711) (-901 (-576))))) (-3726 (((-845 (-940)) $) NIL (|has| (-711) (-360))) (((-940) $) NIL (|has| (-711) (-360)))) (-1351 (((-112) $) NIL)) (-4131 (($ $ (-576)) NIL (-12 (|has| (-711) (-1023)) (|has| (-711) (-1223))))) (-2738 (((-711) $) NIL)) (-2734 (((-3 $ "failed") $) NIL (|has| (-711) (-360)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-711) (-317)))) (-1989 (((-1193 (-711)) $) NIL (|has| (-711) (-374)))) (-3124 (($ $ $) NIL)) (-1441 (($ $ $) NIL)) (-4116 (($ (-1 (-711) (-711)) $) NIL)) (-1558 (((-940) $) NIL (|has| (-711) (-379)))) (-3744 (($ $) NIL (|has| (-711) (-1223)))) (-3671 (((-1193 (-711)) $) NIL)) (-3676 (((-701 (-711)) (-1288 $)) NIL) (((-2 (|:| -3232 (-701 (-711))) (|:| |vec| (-1288 (-711)))) (-1288 $) $) NIL) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-711) (-651 (-576)))) (((-701 (-576)) (-1288 $)) NIL (|has| (-711) (-651 (-576))))) (-3457 (($ (-656 $)) NIL (|has| (-711) (-317))) (($ $ $) NIL (|has| (-711) (-317)))) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL (|has| (-711) (-374)))) (-3539 (($) NIL (|has| (-711) (-360)) CONST)) (-3223 (($ (-940)) NIL (|has| (-711) (-379)))) (-4104 (($) NIL)) (-1860 (((-711) $) 31)) (-1450 (((-1141) $) NIL)) (-4128 (($) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| (-711) (-317)))) (-3497 (($ (-656 $)) NIL (|has| (-711) (-317))) (($ $ $) NIL (|has| (-711) (-317)))) (-1913 (((-656 (-2 (|:| -1828 (-576)) (|:| -2508 (-576))))) NIL (|has| (-711) (-360)))) (-1644 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-928))))) (-4296 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-928))))) (-1828 (((-430 $) $) NIL (-2759 (-12 (|has| (-711) (-317)) (|has| (-711) (-928))) (|has| (-711) (-374))))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-711) (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| (-711) (-317)))) (-3475 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-711)) NIL (|has| (-711) (-568)))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-711) (-317)))) (-4103 (($ $) NIL (|has| (-711) (-1223)))) (-3282 (($ $ (-1197) (-711)) NIL (|has| (-711) (-526 (-1197) (-711)))) (($ $ (-656 (-1197)) (-656 (-711))) NIL (|has| (-711) (-526 (-1197) (-711)))) (($ $ (-656 (-304 (-711)))) NIL (|has| (-711) (-319 (-711)))) (($ $ (-304 (-711))) NIL (|has| (-711) (-319 (-711)))) (($ $ (-711) (-711)) NIL (|has| (-711) (-319 (-711)))) (($ $ (-656 (-711)) (-656 (-711))) NIL (|has| (-711) (-319 (-711))))) (-1979 (((-783) $) NIL (|has| (-711) (-317)))) (-2796 (($ $ (-711)) NIL (|has| (-711) (-296 (-711) (-711))))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| (-711) (-317)))) (-2269 (((-711)) NIL) (((-711) (-1288 $)) NIL)) (-1813 (((-3 (-783) "failed") $ $) NIL (|has| (-711) (-360))) (((-783) $) NIL (|has| (-711) (-360)))) (-2774 (($ $ (-1 (-711) (-711)) (-783)) NIL) (($ $ (-1 (-711) (-711))) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2759 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-1197) (-783)) NIL (-2759 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-656 (-1197))) NIL (-2759 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-1197)) NIL (-2759 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-783)) NIL (-2759 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237)))) (($ $) NIL (-2759 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237))))) (-4149 (((-701 (-711)) (-1288 $) (-1 (-711) (-711))) NIL (|has| (-711) (-374)))) (-1346 (((-1193 (-711))) NIL)) (-4060 (($ $) NIL (|has| (-711) (-1223)))) (-3929 (($ $) NIL (|has| (-711) (-1223)))) (-3371 (($) NIL (|has| (-711) (-360)))) (-4036 (($ $) NIL (|has| (-711) (-1223)))) (-3909 (($ $) NIL (|has| (-711) (-1223)))) (-4013 (($ $) NIL (|has| (-711) (-1223)))) (-3888 (($ $) NIL (|has| (-711) (-1223)))) (-4096 (((-701 (-711)) (-1288 $)) NIL) (((-1288 (-711)) $) NIL) (((-701 (-711)) (-1288 $) (-1288 $)) NIL) (((-1288 (-711)) $ (-1288 $)) NIL)) (-4171 (((-548) $) NIL (|has| (-711) (-626 (-548)))) (((-171 (-227)) $) NIL (|has| (-711) (-1043))) (((-171 (-390)) $) NIL (|has| (-711) (-1043))) (((-907 (-390)) $) NIL (|has| (-711) (-626 (-907 (-390))))) (((-907 (-576)) $) NIL (|has| (-711) (-626 (-907 (-576))))) (($ (-1193 (-711))) NIL) (((-1193 (-711)) $) NIL) (($ (-1288 (-711))) NIL) (((-1288 (-711)) $) NIL)) (-2272 (($ $) NIL)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (-2759 (-12 (|has| (-711) (-317)) (|has| $ (-146)) (|has| (-711) (-928))) (|has| (-711) (-360))))) (-4177 (($ (-711) (-711)) 12)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-711)) NIL) (($ (-171 (-390))) 13) (($ (-171 (-576))) 19) (($ (-171 (-711))) 28) (($ (-171 (-713))) 25) (((-171 (-390)) $) 33) (($ (-419 (-576))) NIL (-2759 (|has| (-711) (-1059 (-419 (-576)))) (|has| (-711) (-374))))) (-3390 (($ $) NIL (|has| (-711) (-360))) (((-3 $ "failed") $) NIL (-2759 (-12 (|has| (-711) (-317)) (|has| $ (-146)) (|has| (-711) (-928))) (|has| (-711) (-146))))) (-2857 (((-1193 (-711)) $) NIL)) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-2675 (((-1288 $)) NIL)) (-2790 (($ $) NIL (|has| (-711) (-1223)))) (-3960 (($ $) NIL (|has| (-711) (-1223)))) (-1505 (((-112) $ $) NIL)) (-4070 (($ $) NIL (|has| (-711) (-1223)))) (-3937 (($ $) NIL (|has| (-711) (-1223)))) (-2814 (($ $) NIL (|has| (-711) (-1223)))) (-3982 (($ $) NIL (|has| (-711) (-1223)))) (-1631 (((-711) $) NIL (|has| (-711) (-1223)))) (-4387 (($ $) NIL (|has| (-711) (-1223)))) (-3994 (($ $) NIL (|has| (-711) (-1223)))) (-2802 (($ $) NIL (|has| (-711) (-1223)))) (-3973 (($ $) NIL (|has| (-711) (-1223)))) (-4082 (($ $) NIL (|has| (-711) (-1223)))) (-3950 (($ $) NIL (|has| (-711) (-1223)))) (-4143 (($ $) NIL (|has| (-711) (-1081)))) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2020 (($ $ (-1 (-711) (-711)) (-783)) NIL) (($ $ (-1 (-711) (-711))) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2759 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-1197) (-783)) NIL (-2759 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-656 (-1197))) NIL (-2759 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-1197)) NIL (-2759 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-783)) NIL (-2759 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237)))) (($ $) NIL (-2759 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237))))) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL (|has| (-711) (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ $) NIL (|has| (-711) (-1223))) (($ $ (-419 (-576))) NIL (-12 (|has| (-711) (-1023)) (|has| (-711) (-1223)))) (($ $ (-576)) NIL (|has| (-711) (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-711) $) NIL) (($ $ (-711)) NIL) (($ (-419 (-576)) $) NIL (|has| (-711) (-374))) (($ $ (-419 (-576))) NIL (|has| (-711) (-374))))) +(((-706) (-13 (-399) (-167 (-711)) (-10 -8 (-15 -3569 ($ (-171 (-390)))) (-15 -3569 ($ (-171 (-576)))) (-15 -3569 ($ (-171 (-711)))) (-15 -3569 ($ (-171 (-713)))) (-15 -3569 ((-171 (-390)) $))))) (T -706)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-171 (-576))) (-5 *1 (-706)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-171 (-711))) (-5 *1 (-706)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-171 (-713))) (-5 *1 (-706)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706))))) +(-13 (-399) (-167 (-711)) (-10 -8 (-15 -3569 ($ (-171 (-390)))) (-15 -3569 ($ (-171 (-576)))) (-15 -3569 ($ (-171 (-711)))) (-15 -3569 ($ (-171 (-713)))) (-15 -3569 ((-171 (-390)) $)))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4264 (((-112) $ (-783)) 8)) (-2123 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4464)))) (-1974 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4464)))) (-3404 (($) 7 T CONST)) (-2495 (($ $) 63)) (-2034 (($ $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2172 (($ |#1| $) 48 (|has| $ (-6 -4464))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4464)))) (-3945 (($ |#1| $) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4464)))) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) 9)) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4326 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-2883 (((-112) $ (-783)) 10)) (-2046 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2722 ((|#1| $) 40)) (-2597 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1541 ((|#1| $) 42)) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-2977 (((-656 (-2 (|:| -4439 |#1|) (|:| -1460 (-783)))) $) 62)) (-3101 (($) 50) (($ (-656 |#1|)) 49)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-4171 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 51)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3972 (($ (-656 |#1|)) 43)) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-707 |#1|) (-141) (-1121)) (T -707)) -((-1901 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-707 *2)) (-4 *2 (-1121)))) (-1703 (*1 *1 *1) (-12 (-4 *1 (-707 *2)) (-4 *2 (-1121)))) (-1621 (*1 *2 *1) (-12 (-4 *1 (-707 *3)) (-4 *3 (-1121)) (-5 *2 (-656 (-2 (|:| -4440 *3) (|:| -1460 (-783)))))))) -(-13 (-240 |t#1|) (-10 -8 (-15 -1901 ($ |t#1| $ (-783))) (-15 -1703 ($ $)) (-15 -1621 ((-656 (-2 (|:| -4440 |t#1|) (|:| -1460 (-783)))) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2760 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2760 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-2439 (((-656 |#1|) (-656 (-2 (|:| -1828 |#1|) (|:| -3634 (-576)))) (-576)) 65)) (-1753 ((|#1| |#1| (-576)) 62)) (-3498 ((|#1| |#1| |#1| (-576)) 46)) (-1828 (((-656 |#1|) |#1| (-576)) 49)) (-3518 ((|#1| |#1| (-576) |#1| (-576)) 40)) (-1467 (((-656 (-2 (|:| -1828 |#1|) (|:| -3634 (-576)))) |#1| (-576)) 61))) -(((-708 |#1|) (-10 -7 (-15 -3498 (|#1| |#1| |#1| (-576))) (-15 -1753 (|#1| |#1| (-576))) (-15 -1828 ((-656 |#1|) |#1| (-576))) (-15 -1467 ((-656 (-2 (|:| -1828 |#1|) (|:| -3634 (-576)))) |#1| (-576))) (-15 -2439 ((-656 |#1|) (-656 (-2 (|:| -1828 |#1|) (|:| -3634 (-576)))) (-576))) (-15 -3518 (|#1| |#1| (-576) |#1| (-576)))) (-1264 (-576))) (T -708)) -((-3518 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1264 *3)))) (-2439 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| -1828 *5) (|:| -3634 (-576))))) (-5 *4 (-576)) (-4 *5 (-1264 *4)) (-5 *2 (-656 *5)) (-5 *1 (-708 *5)))) (-1467 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-656 (-2 (|:| -1828 *3) (|:| -3634 *4)))) (-5 *1 (-708 *3)) (-4 *3 (-1264 *4)))) (-1828 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-656 *3)) (-5 *1 (-708 *3)) (-4 *3 (-1264 *4)))) (-1753 (*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1264 *3)))) (-3498 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1264 *3))))) -(-10 -7 (-15 -3498 (|#1| |#1| |#1| (-576))) (-15 -1753 (|#1| |#1| (-576))) (-15 -1828 ((-656 |#1|) |#1| (-576))) (-15 -1467 ((-656 (-2 (|:| -1828 |#1|) (|:| -3634 (-576)))) |#1| (-576))) (-15 -2439 ((-656 |#1|) (-656 (-2 (|:| -1828 |#1|) (|:| -3634 (-576)))) (-576))) (-15 -3518 (|#1| |#1| (-576) |#1| (-576)))) -((-3416 (((-1 (-962 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 17)) (-1518 (((-1154 (-227)) (-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-656 (-270))) 53) (((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-656 (-270))) 55) (((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1115 (-227)) (-1115 (-227)) (-656 (-270))) 57)) (-3294 (((-1154 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-656 (-270))) NIL)) (-2875 (((-1154 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1115 (-227)) (-1115 (-227)) (-656 (-270))) 58))) -(((-709) (-10 -7 (-15 -1518 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -1518 ((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -1518 ((-1154 (-227)) (-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -2875 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -3294 ((-1154 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -3416 ((-1 (-962 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -709)) -((-3416 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1 (-227) (-227) (-227) (-227))) (-5 *2 (-1 (-962 (-227)) (-227) (-227))) (-5 *1 (-709)))) (-3294 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1115 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-709)))) (-2875 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1115 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-709)))) (-1518 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1154 (-227))) (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-227))) (-5 *5 (-656 (-270))) (-5 *1 (-709)))) (-1518 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-227))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-709)))) (-1518 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1115 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-709))))) -(-10 -7 (-15 -1518 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -1518 ((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -1518 ((-1154 (-227)) (-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -2875 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -3294 ((-1154 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -3416 ((-1 (-962 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) +((-2597 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-707 *2)) (-4 *2 (-1121)))) (-2495 (*1 *1 *1) (-12 (-4 *1 (-707 *2)) (-4 *2 (-1121)))) (-2977 (*1 *2 *1) (-12 (-4 *1 (-707 *3)) (-4 *3 (-1121)) (-5 *2 (-656 (-2 (|:| -4439 *3) (|:| -1460 (-783)))))))) +(-13 (-240 |t#1|) (-10 -8 (-15 -2597 ($ |t#1| $ (-783))) (-15 -2495 ($ $)) (-15 -2977 ((-656 (-2 (|:| -4439 |t#1|) (|:| -1460 (-783)))) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2759 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2759 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-4198 (((-656 |#1|) (-656 (-2 (|:| -1828 |#1|) (|:| -2683 (-576)))) (-576)) 65)) (-1786 ((|#1| |#1| (-576)) 62)) (-3497 ((|#1| |#1| |#1| (-576)) 46)) (-1828 (((-656 |#1|) |#1| (-576)) 49)) (-4105 ((|#1| |#1| (-576) |#1| (-576)) 40)) (-3914 (((-656 (-2 (|:| -1828 |#1|) (|:| -2683 (-576)))) |#1| (-576)) 61))) +(((-708 |#1|) (-10 -7 (-15 -3497 (|#1| |#1| |#1| (-576))) (-15 -1786 (|#1| |#1| (-576))) (-15 -1828 ((-656 |#1|) |#1| (-576))) (-15 -3914 ((-656 (-2 (|:| -1828 |#1|) (|:| -2683 (-576)))) |#1| (-576))) (-15 -4198 ((-656 |#1|) (-656 (-2 (|:| -1828 |#1|) (|:| -2683 (-576)))) (-576))) (-15 -4105 (|#1| |#1| (-576) |#1| (-576)))) (-1264 (-576))) (T -708)) +((-4105 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1264 *3)))) (-4198 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| -1828 *5) (|:| -2683 (-576))))) (-5 *4 (-576)) (-4 *5 (-1264 *4)) (-5 *2 (-656 *5)) (-5 *1 (-708 *5)))) (-3914 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-656 (-2 (|:| -1828 *3) (|:| -2683 *4)))) (-5 *1 (-708 *3)) (-4 *3 (-1264 *4)))) (-1828 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-656 *3)) (-5 *1 (-708 *3)) (-4 *3 (-1264 *4)))) (-1786 (*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1264 *3)))) (-3497 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1264 *3))))) +(-10 -7 (-15 -3497 (|#1| |#1| |#1| (-576))) (-15 -1786 (|#1| |#1| (-576))) (-15 -1828 ((-656 |#1|) |#1| (-576))) (-15 -3914 ((-656 (-2 (|:| -1828 |#1|) (|:| -2683 (-576)))) |#1| (-576))) (-15 -4198 ((-656 |#1|) (-656 (-2 (|:| -1828 |#1|) (|:| -2683 (-576)))) (-576))) (-15 -4105 (|#1| |#1| (-576) |#1| (-576)))) +((-2441 (((-1 (-962 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 17)) (-4421 (((-1154 (-227)) (-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-656 (-270))) 53) (((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-656 (-270))) 55) (((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1115 (-227)) (-1115 (-227)) (-656 (-270))) 57)) (-3758 (((-1154 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-656 (-270))) NIL)) (-2765 (((-1154 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1115 (-227)) (-1115 (-227)) (-656 (-270))) 58))) +(((-709) (-10 -7 (-15 -4421 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -4421 ((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -4421 ((-1154 (-227)) (-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -2765 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -3758 ((-1154 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -2441 ((-1 (-962 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -709)) +((-2441 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1 (-227) (-227) (-227) (-227))) (-5 *2 (-1 (-962 (-227)) (-227) (-227))) (-5 *1 (-709)))) (-3758 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1115 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-709)))) (-2765 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1115 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-709)))) (-4421 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1154 (-227))) (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-227))) (-5 *5 (-656 (-270))) (-5 *1 (-709)))) (-4421 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-227))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-709)))) (-4421 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1115 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-709))))) +(-10 -7 (-15 -4421 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -4421 ((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -4421 ((-1154 (-227)) (-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -2765 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -3758 ((-1154 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -2441 ((-1 (-962 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) ((-1828 (((-430 (-1193 |#4|)) (-1193 |#4|)) 86) (((-430 |#4|) |#4|) 266))) (((-710 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1828 ((-430 |#4|) |#4|)) (-15 -1828 ((-430 (-1193 |#4|)) (-1193 |#4|)))) (-861) (-805) (-360) (-968 |#3| |#2| |#1|)) (T -710)) ((-1828 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-360)) (-4 *7 (-968 *6 *5 *4)) (-5 *2 (-430 (-1193 *7))) (-5 *1 (-710 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) (-1828 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-968 *6 *5 *4))))) (-10 -7 (-15 -1828 ((-430 |#4|) |#4|)) (-15 -1828 ((-430 (-1193 |#4|)) (-1193 |#4|)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 97)) (-2575 (((-576) $) 34)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-2326 (($ $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-1839 (($ $) NIL)) (-4016 (((-112) $ $) NIL)) (-3308 (((-576) $) NIL)) (-3886 (($) NIL T CONST)) (-4300 (($ $) NIL)) (-1572 (((-3 (-576) "failed") $) 85) (((-3 (-419 (-576)) "failed") $) 28) (((-3 (-390) "failed") $) 82)) (-2860 (((-576) $) 87) (((-419 (-576)) $) 79) (((-390) $) 80)) (-3429 (($ $ $) 109)) (-1561 (((-3 $ "failed") $) 100)) (-3441 (($ $ $) 108)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-4249 (((-112) $) NIL)) (-3340 (((-940)) 89) (((-940) (-940)) 88)) (-2087 (((-112) $) NIL)) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL)) (-3917 (((-576) $) NIL)) (-4193 (((-112) $) NIL)) (-2121 (($ $ (-576)) NIL)) (-1381 (($ $) NIL)) (-1634 (((-112) $) NIL)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1776 (((-576) (-576)) 94) (((-576)) 95)) (-3125 (($ $ $) NIL) (($) NIL (-12 (-2663 (|has| $ (-6 -4448))) (-2663 (|has| $ (-6 -4456)))))) (-1550 (((-576) (-576)) 92) (((-576)) 93)) (-3133 (($ $ $) NIL) (($) NIL (-12 (-2663 (|has| $ (-6 -4448))) (-2663 (|has| $ (-6 -4456)))))) (-1492 (((-576) $) 17)) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) 104)) (-3373 (((-940) (-576)) NIL (|has| $ (-6 -4456)))) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2393 (($ $) NIL)) (-2443 (($ $) NIL)) (-3045 (($ (-576) (-576)) NIL) (($ (-576) (-576) (-940)) NIL)) (-1828 (((-430 $) $) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) 105)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3422 (((-576) $) 24)) (-1967 (((-783) $) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 107)) (-4326 (((-940)) NIL) (((-940) (-940)) NIL (|has| $ (-6 -4456)))) (-1351 (((-940) (-576)) NIL (|has| $ (-6 -4456)))) (-4172 (((-390) $) NIL) (((-227) $) NIL) (((-907 (-390)) $) NIL)) (-3570 (((-876) $) 63) (($ (-576)) 75) (($ $) NIL) (($ (-419 (-576))) 78) (($ (-576)) 75) (($ (-419 (-576))) 78) (($ (-390)) 72) (((-390) $) 61) (($ (-713)) 66)) (-3996 (((-783)) 119 T CONST)) (-2904 (($ (-576) (-576) (-940)) 54)) (-4118 (($ $) NIL)) (-3029 (((-940)) NIL) (((-940) (-940)) NIL (|has| $ (-6 -4456)))) (-4055 (((-112) $ $) NIL)) (-3516 (((-940)) 91) (((-940) (-940)) 90)) (-2672 (((-112) $ $) NIL)) (-2122 (($ $) NIL)) (-2721 (($) 37 T CONST)) (-2732 (($) 18 T CONST)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 96)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) 118)) (-3057 (($ $ $) 77)) (-3044 (($ $) 115) (($ $ $) 116)) (-3030 (($ $ $) 114)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) 103)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 110) (($ $ $) 101) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-711) (-13 (-416) (-399) (-374) (-1059 (-390)) (-1059 (-419 (-576))) (-148) (-10 -8 (-15 -3340 ((-940) (-940))) (-15 -3340 ((-940))) (-15 -3516 ((-940) (-940))) (-15 -1550 ((-576) (-576))) (-15 -1550 ((-576))) (-15 -1776 ((-576) (-576))) (-15 -1776 ((-576))) (-15 -3570 ((-390) $)) (-15 -3570 ($ (-713))) (-15 -1492 ((-576) $)) (-15 -3422 ((-576) $)) (-15 -2904 ($ (-576) (-576) (-940)))))) (T -711)) -((-3422 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-1492 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-3340 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-711)))) (-3340 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-711)))) (-3516 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-711)))) (-1550 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-1550 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-1776 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-1776 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-390)) (-5 *1 (-711)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-711)))) (-2904 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-940)) (-5 *1 (-711))))) -(-13 (-416) (-399) (-374) (-1059 (-390)) (-1059 (-419 (-576))) (-148) (-10 -8 (-15 -3340 ((-940) (-940))) (-15 -3340 ((-940))) (-15 -3516 ((-940) (-940))) (-15 -1550 ((-576) (-576))) (-15 -1550 ((-576))) (-15 -1776 ((-576) (-576))) (-15 -1776 ((-576))) (-15 -3570 ((-390) $)) (-15 -3570 ($ (-713))) (-15 -1492 ((-576) $)) (-15 -3422 ((-576) $)) (-15 -2904 ($ (-576) (-576) (-940))))) -((-3149 (((-701 |#1|) (-701 |#1|) |#1| |#1|) 85)) (-2030 (((-701 |#1|) (-701 |#1|) |#1|) 66)) (-3470 (((-701 |#1|) (-701 |#1|) |#1|) 86)) (-2591 (((-701 |#1|) (-701 |#1|)) 67)) (-2057 (((-2 (|:| -2715 |#1|) (|:| -3624 |#1|)) |#1| |#1|) 84))) -(((-712 |#1|) (-10 -7 (-15 -2591 ((-701 |#1|) (-701 |#1|))) (-15 -2030 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -3470 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -3149 ((-701 |#1|) (-701 |#1|) |#1| |#1|)) (-15 -2057 ((-2 (|:| -2715 |#1|) (|:| -3624 |#1|)) |#1| |#1|))) (-317)) (T -712)) -((-2057 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2715 *3) (|:| -3624 *3))) (-5 *1 (-712 *3)) (-4 *3 (-317)))) (-3149 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-3470 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-2030 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-2591 (*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) -(-10 -7 (-15 -2591 ((-701 |#1|) (-701 |#1|))) (-15 -2030 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -3470 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -3149 ((-701 |#1|) (-701 |#1|) |#1| |#1|)) (-15 -2057 ((-2 (|:| -2715 |#1|) (|:| -3624 |#1|)) |#1| |#1|))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-3475 (($ $ $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-4417 (($ $ $ $) NIL)) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-4016 (((-112) $ $) NIL)) (-3308 (((-576) $) NIL)) (-2745 (($ $ $) NIL)) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) 31)) (-2860 (((-576) $) 29)) (-3429 (($ $ $) NIL)) (-2204 (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-3104 (((-3 (-419 (-576)) "failed") $) NIL)) (-2545 (((-112) $) NIL)) (-2568 (((-419 (-576)) $) NIL)) (-1836 (($ $) NIL) (($) NIL)) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-4249 (((-112) $) NIL)) (-3271 (($ $ $ $) NIL)) (-3941 (($ $ $) NIL)) (-2087 (((-112) $) NIL)) (-1432 (($ $ $) NIL)) (-1840 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL)) (-4193 (((-112) $) NIL)) (-2946 (((-112) $) NIL)) (-2240 (((-3 $ "failed") $) NIL)) (-1634 (((-112) $) NIL)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4379 (($ $ $ $) NIL)) (-3125 (($ $ $) NIL)) (-3610 (((-940) (-940)) 10) (((-940)) 9)) (-3133 (($ $ $) NIL)) (-2242 (($ $) NIL)) (-2437 (($ $) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL)) (-3458 (($ (-656 $)) NIL) (($ $ $) NIL)) (-3699 (((-1179) $) NIL)) (-3893 (($ $ $) NIL)) (-3540 (($) NIL T CONST)) (-1373 (($ $) NIL)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1803 (($ $) NIL)) (-1828 (((-430 $) $) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3644 (((-112) $) NIL)) (-1967 (((-783) $) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-2775 (($ $ (-783)) NIL) (($ $) NIL)) (-1806 (($ $) NIL)) (-1870 (($ $) NIL)) (-4172 (((-227) $) NIL) (((-390) $) NIL) (((-907 (-576)) $) NIL) (((-548) $) NIL) (((-576) $) NIL)) (-3570 (((-876) $) NIL) (($ (-576)) 28) (($ $) NIL) (($ (-576)) 28) (((-326 $) (-326 (-576))) 18)) (-3996 (((-783)) NIL T CONST)) (-3586 (((-112) $ $) NIL)) (-2979 (($ $ $) NIL)) (-4055 (((-112) $ $) NIL)) (-3516 (($) NIL)) (-2672 (((-112) $ $) NIL)) (-1701 (($ $ $ $) NIL)) (-2122 (($ $) NIL)) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2020 (($ $ (-783)) NIL) (($ $) NIL)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) -(((-713) (-13 (-399) (-557) (-10 -8 (-15 -3610 ((-940) (-940))) (-15 -3610 ((-940))) (-15 -3570 ((-326 $) (-326 (-576))))))) (T -713)) -((-3610 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-713)))) (-3610 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-713)))) (-3570 (*1 *2 *3) (-12 (-5 *3 (-326 (-576))) (-5 *2 (-326 (-713))) (-5 *1 (-713))))) -(-13 (-399) (-557) (-10 -8 (-15 -3610 ((-940) (-940))) (-15 -3610 ((-940))) (-15 -3570 ((-326 $) (-326 (-576)))))) -((-2308 (((-1 |#4| |#2| |#3|) |#1| (-1197) (-1197)) 19)) (-4244 (((-1 |#4| |#2| |#3|) (-1197)) 12))) -(((-714 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4244 ((-1 |#4| |#2| |#3|) (-1197))) (-15 -2308 ((-1 |#4| |#2| |#3|) |#1| (-1197) (-1197)))) (-626 (-548)) (-1238) (-1238) (-1238)) (T -714)) -((-2308 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1197)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *3 *5 *6 *7)) (-4 *3 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238)) (-4 *7 (-1238)))) (-4244 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *4 *5 *6 *7)) (-4 *4 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238)) (-4 *7 (-1238))))) -(-10 -7 (-15 -4244 ((-1 |#4| |#2| |#3|) (-1197))) (-15 -2308 ((-1 |#4| |#2| |#3|) |#1| (-1197) (-1197)))) -((-3152 (((-1 (-227) (-227) (-227)) |#1| (-1197) (-1197)) 43) (((-1 (-227) (-227)) |#1| (-1197)) 48))) -(((-715 |#1|) (-10 -7 (-15 -3152 ((-1 (-227) (-227)) |#1| (-1197))) (-15 -3152 ((-1 (-227) (-227) (-227)) |#1| (-1197) (-1197)))) (-626 (-548))) (T -715)) -((-3152 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1197)) (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-715 *3)) (-4 *3 (-626 (-548))))) (-3152 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-715 *3)) (-4 *3 (-626 (-548)))))) -(-10 -7 (-15 -3152 ((-1 (-227) (-227)) |#1| (-1197))) (-15 -3152 ((-1 (-227) (-227) (-227)) |#1| (-1197) (-1197)))) -((-3341 (((-1197) |#1| (-1197) (-656 (-1197))) 10) (((-1197) |#1| (-1197) (-1197) (-1197)) 13) (((-1197) |#1| (-1197) (-1197)) 12) (((-1197) |#1| (-1197)) 11))) -(((-716 |#1|) (-10 -7 (-15 -3341 ((-1197) |#1| (-1197))) (-15 -3341 ((-1197) |#1| (-1197) (-1197))) (-15 -3341 ((-1197) |#1| (-1197) (-1197) (-1197))) (-15 -3341 ((-1197) |#1| (-1197) (-656 (-1197))))) (-626 (-548))) (T -716)) -((-3341 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-656 (-1197))) (-5 *2 (-1197)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-3341 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-3341 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-3341 (*1 *2 *3 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548)))))) -(-10 -7 (-15 -3341 ((-1197) |#1| (-1197))) (-15 -3341 ((-1197) |#1| (-1197) (-1197))) (-15 -3341 ((-1197) |#1| (-1197) (-1197) (-1197))) (-15 -3341 ((-1197) |#1| (-1197) (-656 (-1197))))) -((-2611 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-717 |#1| |#2|) (-10 -7 (-15 -2611 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1238) (-1238)) (T -717)) -((-2611 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-717 *3 *4)) (-4 *3 (-1238)) (-4 *4 (-1238))))) -(-10 -7 (-15 -2611 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-2742 (((-1 |#3| |#2|) (-1197)) 11)) (-2308 (((-1 |#3| |#2|) |#1| (-1197)) 21))) -(((-718 |#1| |#2| |#3|) (-10 -7 (-15 -2742 ((-1 |#3| |#2|) (-1197))) (-15 -2308 ((-1 |#3| |#2|) |#1| (-1197)))) (-626 (-548)) (-1238) (-1238)) (T -718)) -((-2308 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *3 *5 *6)) (-4 *3 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238)))) (-2742 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *4 *5 *6)) (-4 *4 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238))))) -(-10 -7 (-15 -2742 ((-1 |#3| |#2|) (-1197))) (-15 -2308 ((-1 |#3| |#2|) |#1| (-1197)))) -((-4199 (((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 (-1193 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -2743 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1288 (-656 (-1193 |#3|))) |#3|) 92)) (-3849 (((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 (-1193 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|) 110)) (-2115 (((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1193 |#4|)) (-1288 (-656 (-1193 |#3|))) |#3|) 47))) -(((-719 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2115 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1193 |#4|)) (-1288 (-656 (-1193 |#3|))) |#3|)) (-15 -3849 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 (-1193 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|)) (-15 -4199 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 (-1193 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -2743 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1288 (-656 (-1193 |#3|))) |#3|))) (-805) (-861) (-317) (-968 |#3| |#1| |#2|)) (T -719)) -((-4199 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-656 (-1193 *13))) (-5 *3 (-1193 *13)) (-5 *4 (-656 *12)) (-5 *5 (-656 *10)) (-5 *6 (-656 *13)) (-5 *7 (-656 (-656 (-2 (|:| -2743 (-783)) (|:| |pcoef| *13))))) (-5 *8 (-656 (-783))) (-5 *9 (-1288 (-656 (-1193 *10)))) (-4 *12 (-861)) (-4 *10 (-317)) (-4 *13 (-968 *10 *11 *12)) (-4 *11 (-805)) (-5 *1 (-719 *11 *12 *10 *13)))) (-3849 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-656 *11)) (-5 *5 (-656 (-1193 *9))) (-5 *6 (-656 *9)) (-5 *7 (-656 *12)) (-5 *8 (-656 (-783))) (-4 *11 (-861)) (-4 *9 (-317)) (-4 *12 (-968 *9 *10 *11)) (-4 *10 (-805)) (-5 *2 (-656 (-1193 *12))) (-5 *1 (-719 *10 *11 *9 *12)) (-5 *3 (-1193 *12)))) (-2115 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-656 (-1193 *11))) (-5 *3 (-1193 *11)) (-5 *4 (-656 *10)) (-5 *5 (-656 *8)) (-5 *6 (-656 (-783))) (-5 *7 (-1288 (-656 (-1193 *8)))) (-4 *10 (-861)) (-4 *8 (-317)) (-4 *11 (-968 *8 *9 *10)) (-4 *9 (-805)) (-5 *1 (-719 *9 *10 *8 *11))))) -(-10 -7 (-15 -2115 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1193 |#4|)) (-1288 (-656 (-1193 |#3|))) |#3|)) (-15 -3849 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 (-1193 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|)) (-15 -4199 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 (-1193 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -2743 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1288 (-656 (-1193 |#3|))) |#3|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-2114 (($ $) 48)) (-1561 (((-3 $ "failed") $) 37)) (-4193 (((-112) $) 35)) (-1945 (($ |#1| (-783)) 46)) (-3751 (((-783) $) 50)) (-2091 ((|#1| $) 49)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3634 (((-783) $) 51)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 45 (|has| |#1| (-174)))) (-3177 ((|#1| $ (-783)) 47)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 97)) (-3110 (((-576) $) 34)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-2408 (($ $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-1840 (($ $) NIL)) (-3330 (((-112) $ $) NIL)) (-3906 (((-576) $) NIL)) (-3404 (($) NIL T CONST)) (-3065 (($ $) NIL)) (-1572 (((-3 (-576) "failed") $) 85) (((-3 (-419 (-576)) "failed") $) 28) (((-3 (-390) "failed") $) 82)) (-2859 (((-576) $) 87) (((-419 (-576)) $) 79) (((-390) $) 80)) (-3428 (($ $ $) 109)) (-3673 (((-3 $ "failed") $) 100)) (-3440 (($ $ $) 108)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3833 (((-112) $) NIL)) (-3337 (((-940)) 89) (((-940) (-940)) 88)) (-1866 (((-112) $) NIL)) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL)) (-3726 (((-576) $) NIL)) (-1351 (((-112) $) NIL)) (-4131 (($ $ (-576)) NIL)) (-2738 (($ $) NIL)) (-3137 (((-112) $) NIL)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3984 (((-576) (-576)) 94) (((-576)) 95)) (-3124 (($ $ $) NIL) (($) NIL (-12 (-2663 (|has| $ (-6 -4447))) (-2663 (|has| $ (-6 -4455)))))) (-3546 (((-576) (-576)) 92) (((-576)) 93)) (-1441 (($ $ $) NIL) (($) NIL (-12 (-2663 (|has| $ (-6 -4447))) (-2663 (|has| $ (-6 -4455)))))) (-1492 (((-576) $) 17)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) 104)) (-3268 (((-940) (-576)) NIL (|has| $ (-6 -4455)))) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1788 (($ $) NIL)) (-4236 (($ $) NIL)) (-3044 (($ (-576) (-576)) NIL) (($ (-576) (-576) (-940)) NIL)) (-1828 (((-430 $) $) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) 105)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2508 (((-576) $) 24)) (-1979 (((-783) $) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 107)) (-3295 (((-940)) NIL) (((-940) (-940)) NIL (|has| $ (-6 -4455)))) (-1342 (((-940) (-576)) NIL (|has| $ (-6 -4455)))) (-4171 (((-390) $) NIL) (((-227) $) NIL) (((-907 (-390)) $) NIL)) (-3569 (((-876) $) 63) (($ (-576)) 75) (($ $) NIL) (($ (-419 (-576))) 78) (($ (-576)) 75) (($ (-419 (-576))) 78) (($ (-390)) 72) (((-390) $) 61) (($ (-713)) 66)) (-3154 (((-783)) 119 T CONST)) (-3083 (($ (-576) (-576) (-940)) 54)) (-1810 (($ $) NIL)) (-2892 (((-940)) NIL) (((-940) (-940)) NIL (|has| $ (-6 -4455)))) (-2399 (((-112) $ $) NIL)) (-3515 (((-940)) 91) (((-940) (-940)) 90)) (-1505 (((-112) $ $) NIL)) (-4143 (($ $) NIL)) (-2721 (($) 37 T CONST)) (-2731 (($) 18 T CONST)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 96)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) 118)) (-3056 (($ $ $) 77)) (-3043 (($ $) 115) (($ $ $) 116)) (-3029 (($ $ $) 114)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) 103)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 110) (($ $ $) 101) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +(((-711) (-13 (-416) (-399) (-374) (-1059 (-390)) (-1059 (-419 (-576))) (-148) (-10 -8 (-15 -3337 ((-940) (-940))) (-15 -3337 ((-940))) (-15 -3515 ((-940) (-940))) (-15 -3546 ((-576) (-576))) (-15 -3546 ((-576))) (-15 -3984 ((-576) (-576))) (-15 -3984 ((-576))) (-15 -3569 ((-390) $)) (-15 -3569 ($ (-713))) (-15 -1492 ((-576) $)) (-15 -2508 ((-576) $)) (-15 -3083 ($ (-576) (-576) (-940)))))) (T -711)) +((-2508 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-1492 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-3337 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-711)))) (-3337 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-711)))) (-3515 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-711)))) (-3546 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-3546 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-3984 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-3984 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-390)) (-5 *1 (-711)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-711)))) (-3083 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-940)) (-5 *1 (-711))))) +(-13 (-416) (-399) (-374) (-1059 (-390)) (-1059 (-419 (-576))) (-148) (-10 -8 (-15 -3337 ((-940) (-940))) (-15 -3337 ((-940))) (-15 -3515 ((-940) (-940))) (-15 -3546 ((-576) (-576))) (-15 -3546 ((-576))) (-15 -3984 ((-576) (-576))) (-15 -3984 ((-576))) (-15 -3569 ((-390) $)) (-15 -3569 ($ (-713))) (-15 -1492 ((-576) $)) (-15 -2508 ((-576) $)) (-15 -3083 ($ (-576) (-576) (-940))))) +((-1565 (((-701 |#1|) (-701 |#1|) |#1| |#1|) 85)) (-2548 (((-701 |#1|) (-701 |#1|) |#1|) 66)) (-1727 (((-701 |#1|) (-701 |#1|) |#1|) 86)) (-3242 (((-701 |#1|) (-701 |#1|)) 67)) (-1595 (((-2 (|:| -1855 |#1|) (|:| -3891 |#1|)) |#1| |#1|) 84))) +(((-712 |#1|) (-10 -7 (-15 -3242 ((-701 |#1|) (-701 |#1|))) (-15 -2548 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -1727 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -1565 ((-701 |#1|) (-701 |#1|) |#1| |#1|)) (-15 -1595 ((-2 (|:| -1855 |#1|) (|:| -3891 |#1|)) |#1| |#1|))) (-317)) (T -712)) +((-1595 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1855 *3) (|:| -3891 *3))) (-5 *1 (-712 *3)) (-4 *3 (-317)))) (-1565 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-1727 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-2548 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-3242 (*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) +(-10 -7 (-15 -3242 ((-701 |#1|) (-701 |#1|))) (-15 -2548 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -1727 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -1565 ((-701 |#1|) (-701 |#1|) |#1| |#1|)) (-15 -1595 ((-2 (|:| -1855 |#1|) (|:| -3891 |#1|)) |#1| |#1|))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-1775 (($ $ $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-1724 (($ $ $ $) NIL)) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3330 (((-112) $ $) NIL)) (-3906 (((-576) $) NIL)) (-2743 (($ $ $) NIL)) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) 31)) (-2859 (((-576) $) 29)) (-3428 (($ $ $) NIL)) (-3674 (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-2358 (((-3 (-419 (-576)) "failed") $) NIL)) (-2769 (((-112) $) NIL)) (-3025 (((-419 (-576)) $) NIL)) (-1836 (($ $) NIL) (($) NIL)) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3833 (((-112) $) NIL)) (-3495 (($ $ $ $) NIL)) (-3948 (($ $ $) NIL)) (-1866 (((-112) $) NIL)) (-2199 (($ $ $) NIL)) (-3325 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL)) (-1351 (((-112) $) NIL)) (-3376 (((-112) $) NIL)) (-2734 (((-3 $ "failed") $) NIL)) (-3137 (((-112) $) NIL)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2542 (($ $ $ $) NIL)) (-3124 (($ $ $) NIL)) (-3731 (((-940) (-940)) 10) (((-940)) 9)) (-1441 (($ $ $) NIL)) (-2243 (($ $) NIL)) (-2435 (($ $) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL)) (-3457 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2046 (((-1179) $) NIL)) (-3473 (($ $ $) NIL)) (-3539 (($) NIL T CONST)) (-1373 (($ $) NIL)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ (-656 $)) NIL) (($ $ $) NIL)) (-4225 (($ $) NIL)) (-1828 (((-430 $) $) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2768 (((-112) $) NIL)) (-1979 (((-783) $) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-2774 (($ $ (-783)) NIL) (($ $) NIL)) (-1807 (($ $) NIL)) (-1870 (($ $) NIL)) (-4171 (((-227) $) NIL) (((-390) $) NIL) (((-907 (-576)) $) NIL) (((-548) $) NIL) (((-576) $) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) 28) (($ $) NIL) (($ (-576)) 28) (((-326 $) (-326 (-576))) 18)) (-3154 (((-783)) NIL T CONST)) (-3479 (((-112) $ $) NIL)) (-3679 (($ $ $) NIL)) (-2399 (((-112) $ $) NIL)) (-3515 (($) NIL)) (-1505 (((-112) $ $) NIL)) (-2474 (($ $ $ $) NIL)) (-4143 (($ $) NIL)) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2020 (($ $ (-783)) NIL) (($ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) +(((-713) (-13 (-399) (-557) (-10 -8 (-15 -3731 ((-940) (-940))) (-15 -3731 ((-940))) (-15 -3569 ((-326 $) (-326 (-576))))))) (T -713)) +((-3731 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-713)))) (-3731 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-713)))) (-3569 (*1 *2 *3) (-12 (-5 *3 (-326 (-576))) (-5 *2 (-326 (-713))) (-5 *1 (-713))))) +(-13 (-399) (-557) (-10 -8 (-15 -3731 ((-940) (-940))) (-15 -3731 ((-940))) (-15 -3569 ((-326 $) (-326 (-576)))))) +((-2219 (((-1 |#4| |#2| |#3|) |#1| (-1197) (-1197)) 19)) (-3776 (((-1 |#4| |#2| |#3|) (-1197)) 12))) +(((-714 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3776 ((-1 |#4| |#2| |#3|) (-1197))) (-15 -2219 ((-1 |#4| |#2| |#3|) |#1| (-1197) (-1197)))) (-626 (-548)) (-1238) (-1238) (-1238)) (T -714)) +((-2219 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1197)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *3 *5 *6 *7)) (-4 *3 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238)) (-4 *7 (-1238)))) (-3776 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *4 *5 *6 *7)) (-4 *4 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238)) (-4 *7 (-1238))))) +(-10 -7 (-15 -3776 ((-1 |#4| |#2| |#3|) (-1197))) (-15 -2219 ((-1 |#4| |#2| |#3|) |#1| (-1197) (-1197)))) +((-1587 (((-1 (-227) (-227) (-227)) |#1| (-1197) (-1197)) 43) (((-1 (-227) (-227)) |#1| (-1197)) 48))) +(((-715 |#1|) (-10 -7 (-15 -1587 ((-1 (-227) (-227)) |#1| (-1197))) (-15 -1587 ((-1 (-227) (-227) (-227)) |#1| (-1197) (-1197)))) (-626 (-548))) (T -715)) +((-1587 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1197)) (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-715 *3)) (-4 *3 (-626 (-548))))) (-1587 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-715 *3)) (-4 *3 (-626 (-548)))))) +(-10 -7 (-15 -1587 ((-1 (-227) (-227)) |#1| (-1197))) (-15 -1587 ((-1 (-227) (-227) (-227)) |#1| (-1197) (-1197)))) +((-3339 (((-1197) |#1| (-1197) (-656 (-1197))) 10) (((-1197) |#1| (-1197) (-1197) (-1197)) 13) (((-1197) |#1| (-1197) (-1197)) 12) (((-1197) |#1| (-1197)) 11))) +(((-716 |#1|) (-10 -7 (-15 -3339 ((-1197) |#1| (-1197))) (-15 -3339 ((-1197) |#1| (-1197) (-1197))) (-15 -3339 ((-1197) |#1| (-1197) (-1197) (-1197))) (-15 -3339 ((-1197) |#1| (-1197) (-656 (-1197))))) (-626 (-548))) (T -716)) +((-3339 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-656 (-1197))) (-5 *2 (-1197)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-3339 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-3339 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-3339 (*1 *2 *3 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548)))))) +(-10 -7 (-15 -3339 ((-1197) |#1| (-1197))) (-15 -3339 ((-1197) |#1| (-1197) (-1197))) (-15 -3339 ((-1197) |#1| (-1197) (-1197) (-1197))) (-15 -3339 ((-1197) |#1| (-1197) (-656 (-1197))))) +((-2609 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-717 |#1| |#2|) (-10 -7 (-15 -2609 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1238) (-1238)) (T -717)) +((-2609 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-717 *3 *4)) (-4 *3 (-1238)) (-4 *4 (-1238))))) +(-10 -7 (-15 -2609 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-4068 (((-1 |#3| |#2|) (-1197)) 11)) (-2219 (((-1 |#3| |#2|) |#1| (-1197)) 21))) +(((-718 |#1| |#2| |#3|) (-10 -7 (-15 -4068 ((-1 |#3| |#2|) (-1197))) (-15 -2219 ((-1 |#3| |#2|) |#1| (-1197)))) (-626 (-548)) (-1238) (-1238)) (T -718)) +((-2219 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *3 *5 *6)) (-4 *3 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238)))) (-4068 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *4 *5 *6)) (-4 *4 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238))))) +(-10 -7 (-15 -4068 ((-1 |#3| |#2|) (-1197))) (-15 -2219 ((-1 |#3| |#2|) |#1| (-1197)))) +((-1405 (((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 (-1193 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -4080 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1288 (-656 (-1193 |#3|))) |#3|) 92)) (-4327 (((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 (-1193 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|) 110)) (-4078 (((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1193 |#4|)) (-1288 (-656 (-1193 |#3|))) |#3|) 47))) +(((-719 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4078 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1193 |#4|)) (-1288 (-656 (-1193 |#3|))) |#3|)) (-15 -4327 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 (-1193 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|)) (-15 -1405 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 (-1193 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -4080 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1288 (-656 (-1193 |#3|))) |#3|))) (-805) (-861) (-317) (-968 |#3| |#1| |#2|)) (T -719)) +((-1405 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-656 (-1193 *13))) (-5 *3 (-1193 *13)) (-5 *4 (-656 *12)) (-5 *5 (-656 *10)) (-5 *6 (-656 *13)) (-5 *7 (-656 (-656 (-2 (|:| -4080 (-783)) (|:| |pcoef| *13))))) (-5 *8 (-656 (-783))) (-5 *9 (-1288 (-656 (-1193 *10)))) (-4 *12 (-861)) (-4 *10 (-317)) (-4 *13 (-968 *10 *11 *12)) (-4 *11 (-805)) (-5 *1 (-719 *11 *12 *10 *13)))) (-4327 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-656 *11)) (-5 *5 (-656 (-1193 *9))) (-5 *6 (-656 *9)) (-5 *7 (-656 *12)) (-5 *8 (-656 (-783))) (-4 *11 (-861)) (-4 *9 (-317)) (-4 *12 (-968 *9 *10 *11)) (-4 *10 (-805)) (-5 *2 (-656 (-1193 *12))) (-5 *1 (-719 *10 *11 *9 *12)) (-5 *3 (-1193 *12)))) (-4078 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-656 (-1193 *11))) (-5 *3 (-1193 *11)) (-5 *4 (-656 *10)) (-5 *5 (-656 *8)) (-5 *6 (-656 (-783))) (-5 *7 (-1288 (-656 (-1193 *8)))) (-4 *10 (-861)) (-4 *8 (-317)) (-4 *11 (-968 *8 *9 *10)) (-4 *9 (-805)) (-5 *1 (-719 *9 *10 *8 *11))))) +(-10 -7 (-15 -4078 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1193 |#4|)) (-1288 (-656 (-1193 |#3|))) |#3|)) (-15 -4327 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 (-1193 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|)) (-15 -1405 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 (-1193 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -4080 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1288 (-656 (-1193 |#3|))) |#3|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-2114 (($ $) 48)) (-3673 (((-3 $ "failed") $) 37)) (-1351 (((-112) $) 35)) (-1944 (($ |#1| (-783)) 46)) (-2578 (((-783) $) 50)) (-2091 ((|#1| $) 49)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2683 (((-783) $) 51)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 45 (|has| |#1| (-174)))) (-1822 ((|#1| $ (-783)) 47)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) (((-720 |#1|) (-141) (-1070)) (T -720)) -((-3634 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) (-3751 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1070)))) (-2114 (*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1070)))) (-3177 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1070)))) (-1945 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1070))))) -(-13 (-1070) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3634 ((-783) $)) (-15 -3751 ((-783) $)) (-15 -2091 (|t#1| $)) (-15 -2114 ($ $)) (-15 -3177 (|t#1| $ (-783))) (-15 -1945 ($ |t#1| (-783))))) +((-2683 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) (-2578 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1070)))) (-2114 (*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1070)))) (-1822 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1070)))) (-1944 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1070))))) +(-13 (-1070) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -2683 ((-783) $)) (-15 -2578 ((-783) $)) (-15 -2091 (|t#1| $)) (-15 -2114 ($ $)) (-15 -1822 (|t#1| $ (-783))) (-15 -1944 ($ |t#1| (-783))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-4117 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-721 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4117 (|#6| (-1 |#4| |#1|) |#3|))) (-568) (-1264 |#1|) (-1264 (-419 |#2|)) (-568) (-1264 |#4|) (-1264 (-419 |#5|))) (T -721)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-568)) (-4 *7 (-568)) (-4 *6 (-1264 *5)) (-4 *2 (-1264 (-419 *8))) (-5 *1 (-721 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1264 (-419 *6))) (-4 *8 (-1264 *7))))) -(-10 -7 (-15 -4117 (|#6| (-1 |#4| |#1|) |#3|))) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3490 (((-1179) (-876)) 38)) (-1977 (((-1293) (-1179)) 31)) (-3425 (((-1179) (-876)) 28)) (-2347 (((-1179) (-876)) 29)) (-3570 (((-876) $) NIL) (((-1179) (-876)) 27)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-722) (-13 (-1121) (-10 -7 (-15 -3570 ((-1179) (-876))) (-15 -3425 ((-1179) (-876))) (-15 -2347 ((-1179) (-876))) (-15 -3490 ((-1179) (-876))) (-15 -1977 ((-1293) (-1179)))))) (T -722)) -((-3570 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722)))) (-3425 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722)))) (-2347 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722)))) (-1977 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-722))))) -(-13 (-1121) (-10 -7 (-15 -3570 ((-1179) (-876))) (-15 -3425 ((-1179) (-876))) (-15 -2347 ((-1179) (-876))) (-15 -3490 ((-1179) (-876))) (-15 -1977 ((-1293) (-1179))))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-4016 (((-112) $ $) NIL)) (-3886 (($) NIL T CONST)) (-3429 (($ $ $) NIL)) (-3686 (($ |#1| |#2|) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-4249 (((-112) $) NIL)) (-4193 (((-112) $) NIL)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1633 ((|#2| $) NIL)) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1828 (((-430 $) $) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3011 (((-3 $ "failed") $ $) NIL)) (-1967 (((-783) $) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) ((|#1| $) NIL)) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL)) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ $) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-723 |#1| |#2| |#3| |#4| |#5|) (-13 (-374) (-10 -8 (-15 -1633 (|#2| $)) (-15 -3570 (|#1| $)) (-15 -3686 ($ |#1| |#2|)) (-15 -3011 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -723)) -((-1633 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-723 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3570 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3686 (*1 *1 *2 *3) (-12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3011 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-374) (-10 -8 (-15 -1633 (|#2| $)) (-15 -3570 (|#1| $)) (-15 -3686 ($ |#1| |#2|)) (-15 -3011 ((-3 $ "failed") $ $)))) -((-3489 (((-112) $ $) 87)) (-4308 (((-112) $) 36)) (-2516 (((-1288 |#1|) $ (-783)) NIL)) (-1969 (((-656 (-1103)) $) NIL)) (-3591 (($ (-1193 |#1|)) NIL)) (-1798 (((-1193 $) $ (-1103)) NIL) (((-1193 |#1|) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2757 (($ $) NIL (|has| |#1| (-568)))) (-3788 (((-112) $) NIL (|has| |#1| (-568)))) (-3543 (((-783) $) NIL) (((-783) $ (-656 (-1103))) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3049 (($ $ $) NIL (|has| |#1| (-568)))) (-3601 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2487 (($ $) NIL (|has| |#1| (-464)))) (-3921 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-4016 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2098 (((-783)) 54 (|has| |#1| (-379)))) (-1533 (($ $ (-783)) NIL)) (-2266 (($ $ (-783)) NIL)) (-4330 ((|#2| |#2|) 50)) (-2772 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-1103) "failed") $) NIL)) (-2860 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-1103) $) NIL)) (-3230 (($ $ $ (-1103)) NIL (|has| |#1| (-174))) ((|#1| $ $) NIL (|has| |#1| (-174)))) (-3429 (($ $ $) NIL (|has| |#1| (-374)))) (-2114 (($ $) 40)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3686 (($ |#2|) 48)) (-1561 (((-3 $ "failed") $) 97)) (-1836 (($) 58 (|has| |#1| (-379)))) (-3441 (($ $ $) NIL (|has| |#1| (-374)))) (-1898 (($ $ $) NIL)) (-1804 (($ $ $) NIL (|has| |#1| (-568)))) (-2865 (((-2 (|:| -1714 |#1|) (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#1| (-568)))) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3767 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1103)) NIL (|has| |#1| (-464)))) (-2103 (((-656 $) $) NIL)) (-4249 (((-112) $) NIL (|has| |#1| (-928)))) (-2567 (((-977 $)) 89)) (-2431 (($ $ |#1| (-783) $) NIL)) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1103) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1103) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3917 (((-783) $ $) NIL (|has| |#1| (-568)))) (-4193 (((-112) $) NIL)) (-2217 (((-783) $) NIL)) (-2240 (((-3 $ "failed") $) NIL (|has| |#1| (-1173)))) (-1955 (($ (-1193 |#1|) (-1103)) NIL) (($ (-1193 $) (-1103)) NIL)) (-4116 (($ $ (-783)) NIL)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1608 (((-656 $) $) NIL)) (-2823 (((-112) $) NIL)) (-1945 (($ |#1| (-783)) 85) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-4130 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $ (-1103)) NIL) (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-1633 ((|#2|) 51)) (-3751 (((-783) $) NIL) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-2999 (($ (-1 (-783) (-783)) $) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-1732 (((-1193 |#1|) $) NIL)) (-3721 (((-3 (-1103) "failed") $) NIL)) (-4401 (((-940) $) NIL (|has| |#1| (-379)))) (-3672 ((|#2| $) 47)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2081 (($ $) NIL)) (-2091 ((|#1| $) 34)) (-3458 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3699 (((-1179) $) NIL)) (-2015 (((-2 (|:| -2715 $) (|:| -3624 $)) $ (-783)) NIL)) (-1385 (((-3 (-656 $) "failed") $) NIL)) (-1690 (((-3 (-656 $) "failed") $) NIL)) (-2040 (((-3 (-2 (|:| |var| (-1103)) (|:| -3422 (-783))) "failed") $) NIL)) (-1491 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3540 (($) NIL (|has| |#1| (-1173)) CONST)) (-3224 (($ (-940)) NIL (|has| |#1| (-379)))) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) NIL)) (-2070 ((|#1| $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4351 (($ $) 88 (|has| |#1| (-360)))) (-4100 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-928)))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| |#1| (-374)))) (-3476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-568)))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3284 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1103) |#1|) NIL) (($ $ (-656 (-1103)) (-656 |#1|)) NIL) (($ $ (-1103) $) NIL) (($ $ (-656 (-1103)) (-656 $)) NIL)) (-1967 (((-783) $) NIL (|has| |#1| (-374)))) (-2797 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-4177 (((-3 $ "failed") $ (-783)) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 98 (|has| |#1| (-374)))) (-4352 (($ $ (-1103)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-2775 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-3634 (((-783) $) 38) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-4172 (((-907 (-390)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-1103) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-2457 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1103)) NIL (|has| |#1| (-464)))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-3363 (((-977 $)) 42)) (-2507 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-3570 (((-876) $) 68) (($ (-576)) NIL) (($ |#1|) 65) (($ (-1103)) NIL) (($ |#2|) 75) (($ (-419 (-576))) NIL (-2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-1618 (((-656 |#1|) $) NIL)) (-3177 ((|#1| $ (-783)) 70) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-4336 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3996 (((-783)) NIL T CONST)) (-2541 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2721 (($) 25 T CONST)) (-2758 (((-1288 |#1|) $) 83)) (-1801 (($ (-1288 |#1|)) 57)) (-2732 (($) 8 T CONST)) (-2020 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-4176 (((-1288 |#1|) $) NIL)) (-2925 (((-112) $ $) 76)) (-3057 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3044 (($ $) 79) (($ $ $) NIL)) (-3030 (($ $ $) 39)) (** (($ $ (-940)) NIL) (($ $ (-783)) 92)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 64) (($ $ $) 82) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 62) (($ $ |#1|) NIL))) -(((-724 |#1| |#2|) (-13 (-1264 |#1|) (-628 |#2|) (-10 -8 (-15 -4330 (|#2| |#2|)) (-15 -1633 (|#2|)) (-15 -3686 ($ |#2|)) (-15 -3672 (|#2| $)) (-15 -2758 ((-1288 |#1|) $)) (-15 -1801 ($ (-1288 |#1|))) (-15 -4176 ((-1288 |#1|) $)) (-15 -2567 ((-977 $))) (-15 -3363 ((-977 $))) (IF (|has| |#1| (-360)) (-15 -4351 ($ $)) |%noBranch|) (IF (|has| |#1| (-379)) (-6 (-379)) |%noBranch|))) (-1070) (-1264 |#1|)) (T -724)) -((-4330 (*1 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1264 *3)))) (-1633 (*1 *2) (-12 (-4 *2 (-1264 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1070)))) (-3686 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1264 *3)))) (-3672 (*1 *2 *1) (-12 (-4 *2 (-1264 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1070)))) (-2758 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-5 *2 (-1288 *3)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1264 *3)))) (-1801 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1070)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1264 *3)))) (-4176 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-5 *2 (-1288 *3)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1264 *3)))) (-2567 (*1 *2) (-12 (-4 *3 (-1070)) (-5 *2 (-977 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) (-4 *4 (-1264 *3)))) (-3363 (*1 *2) (-12 (-4 *3 (-1070)) (-5 *2 (-977 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) (-4 *4 (-1264 *3)))) (-4351 (*1 *1 *1) (-12 (-4 *2 (-360)) (-4 *2 (-1070)) (-5 *1 (-724 *2 *3)) (-4 *3 (-1264 *2))))) -(-13 (-1264 |#1|) (-628 |#2|) (-10 -8 (-15 -4330 (|#2| |#2|)) (-15 -1633 (|#2|)) (-15 -3686 ($ |#2|)) (-15 -3672 (|#2| $)) (-15 -2758 ((-1288 |#1|) $)) (-15 -1801 ($ (-1288 |#1|))) (-15 -4176 ((-1288 |#1|) $)) (-15 -2567 ((-977 $))) (-15 -3363 ((-977 $))) (IF (|has| |#1| (-360)) (-15 -4351 ($ $)) |%noBranch|) (IF (|has| |#1| (-379)) (-6 (-379)) |%noBranch|))) -((-3489 (((-112) $ $) NIL)) (-3125 (($ $ $) NIL)) (-3133 (($ $ $) NIL)) (-3699 (((-1179) $) NIL)) (-3224 ((|#1| $) 13)) (-1450 (((-1141) $) NIL)) (-3422 ((|#2| $) 12)) (-3582 (($ |#1| |#2|) 16)) (-3570 (((-876) $) NIL) (($ (-2 (|:| -3224 |#1|) (|:| -3422 |#2|))) 15) (((-2 (|:| -3224 |#1|) (|:| -3422 |#2|)) $) 14)) (-4055 (((-112) $ $) NIL)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) 11))) -(((-725 |#1| |#2| |#3|) (-13 (-861) (-502 (-2 (|:| -3224 |#1|) (|:| -3422 |#2|))) (-10 -8 (-15 -3422 (|#2| $)) (-15 -3224 (|#1| $)) (-15 -3582 ($ |#1| |#2|)))) (-861) (-1121) (-1 (-112) (-2 (|:| -3224 |#1|) (|:| -3422 |#2|)) (-2 (|:| -3224 |#1|) (|:| -3422 |#2|)))) (T -725)) -((-3422 (*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-725 *3 *2 *4)) (-4 *3 (-861)) (-14 *4 (-1 (-112) (-2 (|:| -3224 *3) (|:| -3422 *2)) (-2 (|:| -3224 *3) (|:| -3422 *2)))))) (-3224 (*1 *2 *1) (-12 (-4 *2 (-861)) (-5 *1 (-725 *2 *3 *4)) (-4 *3 (-1121)) (-14 *4 (-1 (-112) (-2 (|:| -3224 *2) (|:| -3422 *3)) (-2 (|:| -3224 *2) (|:| -3422 *3)))))) (-3582 (*1 *1 *2 *3) (-12 (-5 *1 (-725 *2 *3 *4)) (-4 *2 (-861)) (-4 *3 (-1121)) (-14 *4 (-1 (-112) (-2 (|:| -3224 *2) (|:| -3422 *3)) (-2 (|:| -3224 *2) (|:| -3422 *3))))))) -(-13 (-861) (-502 (-2 (|:| -3224 |#1|) (|:| -3422 |#2|))) (-10 -8 (-15 -3422 (|#2| $)) (-15 -3224 (|#1| $)) (-15 -3582 ($ |#1| |#2|)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 66)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) 102) (((-3 (-115) "failed") $) 108)) (-2860 ((|#1| $) NIL) (((-115) $) 39)) (-1561 (((-3 $ "failed") $) 103)) (-4069 ((|#2| (-115) |#2|) 93)) (-4193 (((-112) $) NIL)) (-2108 (($ |#1| (-372 (-115))) 14)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-4137 (($ $ (-1 |#2| |#2|)) 65)) (-2533 (($ $ (-1 |#2| |#2|)) 44)) (-2797 ((|#2| $ |#2|) 33)) (-3088 ((|#1| |#1|) 118 (|has| |#1| (-174)))) (-3570 (((-876) $) 73) (($ (-576)) 18) (($ |#1|) 17) (($ (-115)) 23)) (-4336 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3996 (((-783)) 37 T CONST)) (-4055 (((-112) $ $) NIL)) (-3960 (($ $) 112 (|has| |#1| (-174))) (($ $ $) 116 (|has| |#1| (-174)))) (-2721 (($) 21 T CONST)) (-2732 (($) 9 T CONST)) (-2925 (((-112) $ $) NIL)) (-3044 (($ $) 48) (($ $ $) NIL)) (-3030 (($ $ $) 83)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ (-115) (-576)) NIL) (($ $ (-576)) 64)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 111) (($ $ $) 53) (($ |#1| $) 109 (|has| |#1| (-174))) (($ $ |#1|) 110 (|has| |#1| (-174))))) -(((-726 |#1| |#2|) (-13 (-1070) (-1059 |#1|) (-1059 (-115)) (-296 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3960 ($ $)) (-15 -3960 ($ $ $)) (-15 -3088 (|#1| |#1|))) |%noBranch|) (-15 -2533 ($ $ (-1 |#2| |#2|))) (-15 -4137 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -4069 (|#2| (-115) |#2|)) (-15 -2108 ($ |#1| (-372 (-115)))))) (-1070) (-660 |#1|)) (T -726)) -((-3960 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1070)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-3960 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1070)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-3088 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1070)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-2533 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1070)) (-5 *1 (-726 *3 *4)))) (-4137 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1070)) (-5 *1 (-726 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-4 *4 (-1070)) (-5 *1 (-726 *4 *5)) (-4 *5 (-660 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *3 (-1070)) (-5 *1 (-726 *3 *4)) (-4 *4 (-660 *3)))) (-4069 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1070)) (-5 *1 (-726 *4 *2)) (-4 *2 (-660 *4)))) (-2108 (*1 *1 *2 *3) (-12 (-5 *3 (-372 (-115))) (-4 *2 (-1070)) (-5 *1 (-726 *2 *4)) (-4 *4 (-660 *2))))) -(-13 (-1070) (-1059 |#1|) (-1059 (-115)) (-296 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3960 ($ $)) (-15 -3960 ($ $ $)) (-15 -3088 (|#1| |#1|))) |%noBranch|) (-15 -2533 ($ $ (-1 |#2| |#2|))) (-15 -4137 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -4069 (|#2| (-115) |#2|)) (-15 -2108 ($ |#1| (-372 (-115)))))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 33)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-3686 (($ |#1| |#2|) 25)) (-1561 (((-3 $ "failed") $) 51)) (-4193 (((-112) $) 35)) (-1633 ((|#2| $) 12)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) 52)) (-1450 (((-1141) $) NIL)) (-3011 (((-3 $ "failed") $ $) 50)) (-3570 (((-876) $) 24) (($ (-576)) 19) ((|#1| $) 13)) (-3996 (((-783)) 28 T CONST)) (-4055 (((-112) $ $) NIL)) (-2721 (($) 16 T CONST)) (-2732 (($) 30 T CONST)) (-2925 (((-112) $ $) 41)) (-3044 (($ $) 46) (($ $ $) 40)) (-3030 (($ $ $) 43)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 21) (($ $ $) 20))) -(((-727 |#1| |#2| |#3| |#4| |#5|) (-13 (-1070) (-10 -8 (-15 -1633 (|#2| $)) (-15 -3570 (|#1| $)) (-15 -3686 ($ |#1| |#2|)) (-15 -3011 ((-3 $ "failed") $ $)) (-15 -1561 ((-3 $ "failed") $)) (-15 -2050 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -727)) -((-1561 (*1 *1 *1) (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1633 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-727 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3570 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3686 (*1 *1 *2 *3) (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3011 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2050 (*1 *1 *1) (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-1070) (-10 -8 (-15 -1633 (|#2| $)) (-15 -3570 (|#1| $)) (-15 -3686 ($ |#1| |#2|)) (-15 -3011 ((-3 $ "failed") $ $)) (-15 -1561 ((-3 $ "failed") $)) (-15 -2050 ($ $)))) +((-4116 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-721 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4116 (|#6| (-1 |#4| |#1|) |#3|))) (-568) (-1264 |#1|) (-1264 (-419 |#2|)) (-568) (-1264 |#4|) (-1264 (-419 |#5|))) (T -721)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-568)) (-4 *7 (-568)) (-4 *6 (-1264 *5)) (-4 *2 (-1264 (-419 *8))) (-5 *1 (-721 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1264 (-419 *6))) (-4 *8 (-1264 *7))))) +(-10 -7 (-15 -4116 (|#6| (-1 |#4| |#1|) |#3|))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1893 (((-1179) (-876)) 38)) (-1977 (((-1293) (-1179)) 31)) (-2536 (((-1179) (-876)) 28)) (-2573 (((-1179) (-876)) 29)) (-3569 (((-876) $) NIL) (((-1179) (-876)) 27)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-722) (-13 (-1121) (-10 -7 (-15 -3569 ((-1179) (-876))) (-15 -2536 ((-1179) (-876))) (-15 -2573 ((-1179) (-876))) (-15 -1893 ((-1179) (-876))) (-15 -1977 ((-1293) (-1179)))))) (T -722)) +((-3569 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722)))) (-2536 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722)))) (-2573 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722)))) (-1893 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722)))) (-1977 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-722))))) +(-13 (-1121) (-10 -7 (-15 -3569 ((-1179) (-876))) (-15 -2536 ((-1179) (-876))) (-15 -2573 ((-1179) (-876))) (-15 -1893 ((-1179) (-876))) (-15 -1977 ((-1293) (-1179))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3330 (((-112) $ $) NIL)) (-3404 (($) NIL T CONST)) (-3428 (($ $ $) NIL)) (-3685 (($ |#1| |#2|) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3833 (((-112) $) NIL)) (-1351 (((-112) $) NIL)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3125 ((|#2| $) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1828 (((-430 $) $) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2680 (((-3 $ "failed") $ $) NIL)) (-1979 (((-783) $) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) ((|#1| $) NIL)) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL)) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +(((-723 |#1| |#2| |#3| |#4| |#5|) (-13 (-374) (-10 -8 (-15 -3125 (|#2| $)) (-15 -3569 (|#1| $)) (-15 -3685 ($ |#1| |#2|)) (-15 -2680 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -723)) +((-3125 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-723 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3569 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3685 (*1 *1 *2 *3) (-12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2680 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-374) (-10 -8 (-15 -3125 (|#2| $)) (-15 -3569 (|#1| $)) (-15 -3685 ($ |#1| |#2|)) (-15 -2680 ((-3 $ "failed") $ $)))) +((-3488 (((-112) $ $) 87)) (-3135 (((-112) $) 36)) (-3764 (((-1288 |#1|) $ (-783)) NIL)) (-1969 (((-656 (-1103)) $) NIL)) (-3543 (($ (-1193 |#1|)) NIL)) (-1797 (((-1193 $) $ (-1103)) NIL) (((-1193 |#1|) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4195 (($ $) NIL (|has| |#1| (-568)))) (-1760 (((-112) $) NIL (|has| |#1| (-568)))) (-4329 (((-783) $) NIL) (((-783) $ (-656 (-1103))) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3085 (($ $ $) NIL (|has| |#1| (-568)))) (-3646 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3444 (($ $) NIL (|has| |#1| (-464)))) (-3760 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3330 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2098 (((-783)) 54 (|has| |#1| (-379)))) (-3350 (($ $ (-783)) NIL)) (-3046 (($ $ (-783)) NIL)) (-3338 ((|#2| |#2|) 50)) (-4306 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-1103) "failed") $) NIL)) (-2859 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-1103) $) NIL)) (-4334 (($ $ $ (-1103)) NIL (|has| |#1| (-174))) ((|#1| $ $) NIL (|has| |#1| (-174)))) (-3428 (($ $ $) NIL (|has| |#1| (-374)))) (-2114 (($ $) 40)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3685 (($ |#2|) 48)) (-3673 (((-3 $ "failed") $) 97)) (-1836 (($) 58 (|has| |#1| (-379)))) (-3440 (($ $ $) NIL (|has| |#1| (-374)))) (-3879 (($ $ $) NIL)) (-4235 (($ $ $) NIL (|has| |#1| (-568)))) (-3958 (((-2 (|:| -1715 |#1|) (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#1| (-568)))) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-1547 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1103)) NIL (|has| |#1| (-464)))) (-2103 (((-656 $) $) NIL)) (-3833 (((-112) $) NIL (|has| |#1| (-928)))) (-3012 (((-977 $)) 89)) (-4124 (($ $ |#1| (-783) $) NIL)) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1103) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1103) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3726 (((-783) $ $) NIL (|has| |#1| (-568)))) (-1351 (((-112) $) NIL)) (-3799 (((-783) $) NIL)) (-2734 (((-3 $ "failed") $) NIL (|has| |#1| (-1173)))) (-1956 (($ (-1193 |#1|) (-1103)) NIL) (($ (-1193 $) (-1103)) NIL)) (-1800 (($ $ (-783)) NIL)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2846 (((-656 $) $) NIL)) (-3538 (((-112) $) NIL)) (-1944 (($ |#1| (-783)) 85) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-1915 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $ (-1103)) NIL) (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-3125 ((|#2|) 51)) (-2578 (((-783) $) NIL) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-3878 (($ (-1 (-783) (-783)) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-1582 (((-1193 |#1|) $) NIL)) (-2289 (((-3 (-1103) "failed") $) NIL)) (-1558 (((-940) $) NIL (|has| |#1| (-379)))) (-3671 ((|#2| $) 47)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2081 (($ $) NIL)) (-2091 ((|#1| $) 34)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2046 (((-1179) $) NIL)) (-2436 (((-2 (|:| -1855 $) (|:| -3891 $)) $ (-783)) NIL)) (-3845 (((-3 (-656 $) "failed") $) NIL)) (-2363 (((-3 (-656 $) "failed") $) NIL)) (-1452 (((-3 (-2 (|:| |var| (-1103)) (|:| -2508 (-783))) "failed") $) NIL)) (-4160 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3539 (($) NIL (|has| |#1| (-1173)) CONST)) (-3223 (($ (-940)) NIL (|has| |#1| (-379)))) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) NIL)) (-2070 ((|#1| $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3497 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2259 (($ $) 88 (|has| |#1| (-360)))) (-1644 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-928)))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-568)))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3282 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1103) |#1|) NIL) (($ $ (-656 (-1103)) (-656 |#1|)) NIL) (($ $ (-1103) $) NIL) (($ $ (-656 (-1103)) (-656 $)) NIL)) (-1979 (((-783) $) NIL (|has| |#1| (-374)))) (-2796 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-4320 (((-3 $ "failed") $ (-783)) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 98 (|has| |#1| (-374)))) (-2269 (($ $ (-1103)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-2774 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-2683 (((-783) $) 38) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-1103) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-4370 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1103)) NIL (|has| |#1| (-464)))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-3184 (((-977 $)) 42)) (-3657 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-3569 (((-876) $) 68) (($ (-576)) NIL) (($ |#1|) 65) (($ (-1103)) NIL) (($ |#2|) 75) (($ (-419 (-576))) NIL (-2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2937 (((-656 |#1|) $) NIL)) (-1822 ((|#1| $ (-783)) 70) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-3390 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3154 (((-783)) NIL T CONST)) (-2717 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2721 (($) 25 T CONST)) (-4205 (((-1288 |#1|) $) 83)) (-4206 (($ (-1288 |#1|)) 57)) (-2731 (($) 8 T CONST)) (-2020 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-4310 (((-1288 |#1|) $) NIL)) (-2924 (((-112) $ $) 76)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $) 79) (($ $ $) NIL)) (-3029 (($ $ $) 39)) (** (($ $ (-940)) NIL) (($ $ (-783)) 92)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 64) (($ $ $) 82) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 62) (($ $ |#1|) NIL))) +(((-724 |#1| |#2|) (-13 (-1264 |#1|) (-628 |#2|) (-10 -8 (-15 -3338 (|#2| |#2|)) (-15 -3125 (|#2|)) (-15 -3685 ($ |#2|)) (-15 -3671 (|#2| $)) (-15 -4205 ((-1288 |#1|) $)) (-15 -4206 ($ (-1288 |#1|))) (-15 -4310 ((-1288 |#1|) $)) (-15 -3012 ((-977 $))) (-15 -3184 ((-977 $))) (IF (|has| |#1| (-360)) (-15 -2259 ($ $)) |%noBranch|) (IF (|has| |#1| (-379)) (-6 (-379)) |%noBranch|))) (-1070) (-1264 |#1|)) (T -724)) +((-3338 (*1 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1264 *3)))) (-3125 (*1 *2) (-12 (-4 *2 (-1264 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1070)))) (-3685 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1264 *3)))) (-3671 (*1 *2 *1) (-12 (-4 *2 (-1264 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1070)))) (-4205 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-5 *2 (-1288 *3)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1264 *3)))) (-4206 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1070)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1264 *3)))) (-4310 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-5 *2 (-1288 *3)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1264 *3)))) (-3012 (*1 *2) (-12 (-4 *3 (-1070)) (-5 *2 (-977 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) (-4 *4 (-1264 *3)))) (-3184 (*1 *2) (-12 (-4 *3 (-1070)) (-5 *2 (-977 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) (-4 *4 (-1264 *3)))) (-2259 (*1 *1 *1) (-12 (-4 *2 (-360)) (-4 *2 (-1070)) (-5 *1 (-724 *2 *3)) (-4 *3 (-1264 *2))))) +(-13 (-1264 |#1|) (-628 |#2|) (-10 -8 (-15 -3338 (|#2| |#2|)) (-15 -3125 (|#2|)) (-15 -3685 ($ |#2|)) (-15 -3671 (|#2| $)) (-15 -4205 ((-1288 |#1|) $)) (-15 -4206 ($ (-1288 |#1|))) (-15 -4310 ((-1288 |#1|) $)) (-15 -3012 ((-977 $))) (-15 -3184 ((-977 $))) (IF (|has| |#1| (-360)) (-15 -2259 ($ $)) |%noBranch|) (IF (|has| |#1| (-379)) (-6 (-379)) |%noBranch|))) +((-3488 (((-112) $ $) NIL)) (-3124 (($ $ $) NIL)) (-1441 (($ $ $) NIL)) (-2046 (((-1179) $) NIL)) (-3223 ((|#1| $) 13)) (-1450 (((-1141) $) NIL)) (-2508 ((|#2| $) 12)) (-3581 (($ |#1| |#2|) 16)) (-3569 (((-876) $) NIL) (($ (-2 (|:| -3223 |#1|) (|:| -2508 |#2|))) 15) (((-2 (|:| -3223 |#1|) (|:| -2508 |#2|)) $) 14)) (-2399 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) 11))) +(((-725 |#1| |#2| |#3|) (-13 (-861) (-502 (-2 (|:| -3223 |#1|) (|:| -2508 |#2|))) (-10 -8 (-15 -2508 (|#2| $)) (-15 -3223 (|#1| $)) (-15 -3581 ($ |#1| |#2|)))) (-861) (-1121) (-1 (-112) (-2 (|:| -3223 |#1|) (|:| -2508 |#2|)) (-2 (|:| -3223 |#1|) (|:| -2508 |#2|)))) (T -725)) +((-2508 (*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-725 *3 *2 *4)) (-4 *3 (-861)) (-14 *4 (-1 (-112) (-2 (|:| -3223 *3) (|:| -2508 *2)) (-2 (|:| -3223 *3) (|:| -2508 *2)))))) (-3223 (*1 *2 *1) (-12 (-4 *2 (-861)) (-5 *1 (-725 *2 *3 *4)) (-4 *3 (-1121)) (-14 *4 (-1 (-112) (-2 (|:| -3223 *2) (|:| -2508 *3)) (-2 (|:| -3223 *2) (|:| -2508 *3)))))) (-3581 (*1 *1 *2 *3) (-12 (-5 *1 (-725 *2 *3 *4)) (-4 *2 (-861)) (-4 *3 (-1121)) (-14 *4 (-1 (-112) (-2 (|:| -3223 *2) (|:| -2508 *3)) (-2 (|:| -3223 *2) (|:| -2508 *3))))))) +(-13 (-861) (-502 (-2 (|:| -3223 |#1|) (|:| -2508 |#2|))) (-10 -8 (-15 -2508 (|#2| $)) (-15 -3223 (|#1| $)) (-15 -3581 ($ |#1| |#2|)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 66)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) 102) (((-3 (-115) "failed") $) 108)) (-2859 ((|#1| $) NIL) (((-115) $) 39)) (-3673 (((-3 $ "failed") $) 103)) (-2537 ((|#2| (-115) |#2|) 93)) (-1351 (((-112) $) NIL)) (-4020 (($ |#1| (-372 (-115))) 14)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1978 (($ $ (-1 |#2| |#2|)) 65)) (-3941 (($ $ (-1 |#2| |#2|)) 44)) (-2796 ((|#2| $ |#2|) 33)) (-2190 ((|#1| |#1|) 118 (|has| |#1| (-174)))) (-3569 (((-876) $) 73) (($ (-576)) 18) (($ |#1|) 17) (($ (-115)) 23)) (-3390 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3154 (((-783)) 37 T CONST)) (-2399 (((-112) $ $) NIL)) (-2825 (($ $) 112 (|has| |#1| (-174))) (($ $ $) 116 (|has| |#1| (-174)))) (-2721 (($) 21 T CONST)) (-2731 (($) 9 T CONST)) (-2924 (((-112) $ $) NIL)) (-3043 (($ $) 48) (($ $ $) NIL)) (-3029 (($ $ $) 83)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ (-115) (-576)) NIL) (($ $ (-576)) 64)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 111) (($ $ $) 53) (($ |#1| $) 109 (|has| |#1| (-174))) (($ $ |#1|) 110 (|has| |#1| (-174))))) +(((-726 |#1| |#2|) (-13 (-1070) (-1059 |#1|) (-1059 (-115)) (-296 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2825 ($ $)) (-15 -2825 ($ $ $)) (-15 -2190 (|#1| |#1|))) |%noBranch|) (-15 -3941 ($ $ (-1 |#2| |#2|))) (-15 -1978 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -2537 (|#2| (-115) |#2|)) (-15 -4020 ($ |#1| (-372 (-115)))))) (-1070) (-660 |#1|)) (T -726)) +((-2825 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1070)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-2825 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1070)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-2190 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1070)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-3941 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1070)) (-5 *1 (-726 *3 *4)))) (-1978 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1070)) (-5 *1 (-726 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-4 *4 (-1070)) (-5 *1 (-726 *4 *5)) (-4 *5 (-660 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *3 (-1070)) (-5 *1 (-726 *3 *4)) (-4 *4 (-660 *3)))) (-2537 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1070)) (-5 *1 (-726 *4 *2)) (-4 *2 (-660 *4)))) (-4020 (*1 *1 *2 *3) (-12 (-5 *3 (-372 (-115))) (-4 *2 (-1070)) (-5 *1 (-726 *2 *4)) (-4 *4 (-660 *2))))) +(-13 (-1070) (-1059 |#1|) (-1059 (-115)) (-296 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2825 ($ $)) (-15 -2825 ($ $ $)) (-15 -2190 (|#1| |#1|))) |%noBranch|) (-15 -3941 ($ $ (-1 |#2| |#2|))) (-15 -1978 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -2537 (|#2| (-115) |#2|)) (-15 -4020 ($ |#1| (-372 (-115)))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 33)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-3685 (($ |#1| |#2|) 25)) (-3673 (((-3 $ "failed") $) 51)) (-1351 (((-112) $) 35)) (-3125 ((|#2| $) 12)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) 52)) (-1450 (((-1141) $) NIL)) (-2680 (((-3 $ "failed") $ $) 50)) (-3569 (((-876) $) 24) (($ (-576)) 19) ((|#1| $) 13)) (-3154 (((-783)) 28 T CONST)) (-2399 (((-112) $ $) NIL)) (-2721 (($) 16 T CONST)) (-2731 (($) 30 T CONST)) (-2924 (((-112) $ $) 41)) (-3043 (($ $) 46) (($ $ $) 40)) (-3029 (($ $ $) 43)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 21) (($ $ $) 20))) +(((-727 |#1| |#2| |#3| |#4| |#5|) (-13 (-1070) (-10 -8 (-15 -3125 (|#2| $)) (-15 -3569 (|#1| $)) (-15 -3685 ($ |#1| |#2|)) (-15 -2680 ((-3 $ "failed") $ $)) (-15 -3673 ((-3 $ "failed") $)) (-15 -2050 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -727)) +((-3673 (*1 *1 *1) (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3125 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-727 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3569 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3685 (*1 *1 *2 *3) (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2680 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2050 (*1 *1 *1) (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-1070) (-10 -8 (-15 -3125 (|#2| $)) (-15 -3569 (|#1| $)) (-15 -3685 ($ |#1| |#2|)) (-15 -2680 ((-3 $ "failed") $ $)) (-15 -3673 ((-3 $ "failed") $)) (-15 -2050 ($ $)))) ((* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) (((-728 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) (-729 |#2|) (-174)) (T -728)) NIL (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) (((-729 |#1|) (-141) (-174)) (T -729)) NIL (-13 (-111 |t#1| |t#1|) (-652 |t#1|)) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-2745 (($ |#1|) 17) (($ $ |#1|) 20)) (-2131 (($ |#1|) 18) (($ $ |#1|) 21)) (-3886 (($) NIL T CONST)) (-1561 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-4193 (((-112) $) NIL)) (-3250 (($ |#1| |#1| |#1| |#1|) 8)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) 16)) (-1450 (((-1141) $) NIL)) (-3284 ((|#1| $ |#1|) 24) (((-845 |#1|) $ (-845 |#1|)) 32)) (-2314 (($ $ $) NIL)) (-2076 (($ $ $) NIL)) (-3570 (((-876) $) 39)) (-4055 (((-112) $ $) NIL)) (-2732 (($) 9 T CONST)) (-2925 (((-112) $ $) 48)) (-3057 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 14))) -(((-730 |#1|) (-13 (-485) (-10 -8 (-15 -3250 ($ |#1| |#1| |#1| |#1|)) (-15 -2745 ($ |#1|)) (-15 -2131 ($ |#1|)) (-15 -1561 ($)) (-15 -2745 ($ $ |#1|)) (-15 -2131 ($ $ |#1|)) (-15 -1561 ($ $)) (-15 -3284 (|#1| $ |#1|)) (-15 -3284 ((-845 |#1|) $ (-845 |#1|))))) (-374)) (T -730)) -((-3250 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2745 (*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2131 (*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-1561 (*1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2745 (*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2131 (*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-1561 (*1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3284 (*1 *2 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3284 (*1 *2 *1 *2) (-12 (-5 *2 (-845 *3)) (-4 *3 (-374)) (-5 *1 (-730 *3))))) -(-13 (-485) (-10 -8 (-15 -3250 ($ |#1| |#1| |#1| |#1|)) (-15 -2745 ($ |#1|)) (-15 -2131 ($ |#1|)) (-15 -1561 ($)) (-15 -2745 ($ $ |#1|)) (-15 -2131 ($ $ |#1|)) (-15 -1561 ($ $)) (-15 -3284 (|#1| $ |#1|)) (-15 -3284 ((-845 |#1|) $ (-845 |#1|))))) -((-3377 (($ $ (-940)) 19)) (-1783 (($ $ (-940)) 20)) (** (($ $ (-940)) 10))) -(((-731 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-940))) (-15 -1783 (|#1| |#1| (-940))) (-15 -3377 (|#1| |#1| (-940)))) (-732)) (T -731)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-940))) (-15 -1783 (|#1| |#1| (-940))) (-15 -3377 (|#1| |#1| (-940)))) -((-3489 (((-112) $ $) 7)) (-3377 (($ $ (-940)) 16)) (-1783 (($ $ (-940)) 15)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2925 (((-112) $ $) 8)) (** (($ $ (-940)) 14)) (* (($ $ $) 17))) +((-3488 (((-112) $ $) NIL)) (-2743 (($ |#1|) 17) (($ $ |#1|) 20)) (-4222 (($ |#1|) 18) (($ $ |#1|) 21)) (-3404 (($) NIL T CONST)) (-3673 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-1351 (((-112) $) NIL)) (-3309 (($ |#1| |#1| |#1| |#1|) 8)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) 16)) (-1450 (((-1141) $) NIL)) (-3282 ((|#1| $ |#1|) 24) (((-845 |#1|) $ (-845 |#1|)) 32)) (-2272 (($ $ $) NIL)) (-1758 (($ $ $) NIL)) (-3569 (((-876) $) 39)) (-2399 (((-112) $ $) NIL)) (-2731 (($) 9 T CONST)) (-2924 (((-112) $ $) 48)) (-3056 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 14))) +(((-730 |#1|) (-13 (-485) (-10 -8 (-15 -3309 ($ |#1| |#1| |#1| |#1|)) (-15 -2743 ($ |#1|)) (-15 -4222 ($ |#1|)) (-15 -3673 ($)) (-15 -2743 ($ $ |#1|)) (-15 -4222 ($ $ |#1|)) (-15 -3673 ($ $)) (-15 -3282 (|#1| $ |#1|)) (-15 -3282 ((-845 |#1|) $ (-845 |#1|))))) (-374)) (T -730)) +((-3309 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2743 (*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-4222 (*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3673 (*1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2743 (*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-4222 (*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3673 (*1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3282 (*1 *2 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3282 (*1 *2 *1 *2) (-12 (-5 *2 (-845 *3)) (-4 *3 (-374)) (-5 *1 (-730 *3))))) +(-13 (-485) (-10 -8 (-15 -3309 ($ |#1| |#1| |#1| |#1|)) (-15 -2743 ($ |#1|)) (-15 -4222 ($ |#1|)) (-15 -3673 ($)) (-15 -2743 ($ $ |#1|)) (-15 -4222 ($ $ |#1|)) (-15 -3673 ($ $)) (-15 -3282 (|#1| $ |#1|)) (-15 -3282 ((-845 |#1|) $ (-845 |#1|))))) +((-2029 (($ $ (-940)) 19)) (-4050 (($ $ (-940)) 20)) (** (($ $ (-940)) 10))) +(((-731 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-940))) (-15 -4050 (|#1| |#1| (-940))) (-15 -2029 (|#1| |#1| (-940)))) (-732)) (T -731)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-940))) (-15 -4050 (|#1| |#1| (-940))) (-15 -2029 (|#1| |#1| (-940)))) +((-3488 (((-112) $ $) 7)) (-2029 (($ $ (-940)) 16)) (-4050 (($ $ (-940)) 15)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2924 (((-112) $ $) 8)) (** (($ $ (-940)) 14)) (* (($ $ $) 17))) (((-732) (-141)) (T -732)) -((* (*1 *1 *1 *1) (-4 *1 (-732))) (-3377 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-940)))) (-1783 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-940)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-940))))) -(-13 (-1121) (-10 -8 (-15 * ($ $ $)) (-15 -3377 ($ $ (-940))) (-15 -1783 ($ $ (-940))) (-15 ** ($ $ (-940))))) +((* (*1 *1 *1 *1) (-4 *1 (-732))) (-2029 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-940)))) (-4050 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-940)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-940))))) +(-13 (-1121) (-10 -8 (-15 * ($ $ $)) (-15 -2029 ($ $ (-940))) (-15 -4050 ($ $ (-940))) (-15 ** ($ $ (-940))))) (((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-3377 (($ $ (-940)) NIL) (($ $ (-783)) 18)) (-4193 (((-112) $) 10)) (-1783 (($ $ (-940)) NIL) (($ $ (-783)) 19)) (** (($ $ (-940)) NIL) (($ $ (-783)) 16))) -(((-733 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-783))) (-15 -1783 (|#1| |#1| (-783))) (-15 -3377 (|#1| |#1| (-783))) (-15 -4193 ((-112) |#1|)) (-15 ** (|#1| |#1| (-940))) (-15 -1783 (|#1| |#1| (-940))) (-15 -3377 (|#1| |#1| (-940)))) (-734)) (T -733)) +((-2029 (($ $ (-940)) NIL) (($ $ (-783)) 18)) (-1351 (((-112) $) 10)) (-4050 (($ $ (-940)) NIL) (($ $ (-783)) 19)) (** (($ $ (-940)) NIL) (($ $ (-783)) 16))) +(((-733 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-783))) (-15 -4050 (|#1| |#1| (-783))) (-15 -2029 (|#1| |#1| (-783))) (-15 -1351 ((-112) |#1|)) (-15 ** (|#1| |#1| (-940))) (-15 -4050 (|#1| |#1| (-940))) (-15 -2029 (|#1| |#1| (-940)))) (-734)) (T -733)) NIL -(-10 -8 (-15 ** (|#1| |#1| (-783))) (-15 -1783 (|#1| |#1| (-783))) (-15 -3377 (|#1| |#1| (-783))) (-15 -4193 ((-112) |#1|)) (-15 ** (|#1| |#1| (-940))) (-15 -1783 (|#1| |#1| (-940))) (-15 -3377 (|#1| |#1| (-940)))) -((-3489 (((-112) $ $) 7)) (-2454 (((-3 $ "failed") $) 18)) (-3377 (($ $ (-940)) 16) (($ $ (-783)) 23)) (-1561 (((-3 $ "failed") $) 20)) (-4193 (((-112) $) 24)) (-2941 (((-3 $ "failed") $) 19)) (-1783 (($ $ (-940)) 15) (($ $ (-783)) 22)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2732 (($) 25 T CONST)) (-2925 (((-112) $ $) 8)) (** (($ $ (-940)) 14) (($ $ (-783)) 21)) (* (($ $ $) 17))) +(-10 -8 (-15 ** (|#1| |#1| (-783))) (-15 -4050 (|#1| |#1| (-783))) (-15 -2029 (|#1| |#1| (-783))) (-15 -1351 ((-112) |#1|)) (-15 ** (|#1| |#1| (-940))) (-15 -4050 (|#1| |#1| (-940))) (-15 -2029 (|#1| |#1| (-940)))) +((-3488 (((-112) $ $) 7)) (-4339 (((-3 $ "failed") $) 18)) (-2029 (($ $ (-940)) 16) (($ $ (-783)) 23)) (-3673 (((-3 $ "failed") $) 20)) (-1351 (((-112) $) 24)) (-3334 (((-3 $ "failed") $) 19)) (-4050 (($ $ (-940)) 15) (($ $ (-783)) 22)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2731 (($) 25 T CONST)) (-2924 (((-112) $ $) 8)) (** (($ $ (-940)) 14) (($ $ (-783)) 21)) (* (($ $ $) 17))) (((-734) (-141)) (T -734)) -((-2732 (*1 *1) (-4 *1 (-734))) (-4193 (*1 *2 *1) (-12 (-4 *1 (-734)) (-5 *2 (-112)))) (-3377 (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (-1783 (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (-1561 (*1 *1 *1) (|partial| -4 *1 (-734))) (-2941 (*1 *1 *1) (|partial| -4 *1 (-734))) (-2454 (*1 *1 *1) (|partial| -4 *1 (-734)))) -(-13 (-732) (-10 -8 (-15 (-2732) ($) -1480) (-15 -4193 ((-112) $)) (-15 -3377 ($ $ (-783))) (-15 -1783 ($ $ (-783))) (-15 ** ($ $ (-783))) (-15 -1561 ((-3 $ "failed") $)) (-15 -2941 ((-3 $ "failed") $)) (-15 -2454 ((-3 $ "failed") $)))) +((-2731 (*1 *1) (-4 *1 (-734))) (-1351 (*1 *2 *1) (-12 (-4 *1 (-734)) (-5 *2 (-112)))) (-2029 (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (-4050 (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (-3673 (*1 *1 *1) (|partial| -4 *1 (-734))) (-3334 (*1 *1 *1) (|partial| -4 *1 (-734))) (-4339 (*1 *1 *1) (|partial| -4 *1 (-734)))) +(-13 (-732) (-10 -8 (-15 (-2731) ($) -1480) (-15 -1351 ((-112) $)) (-15 -2029 ($ $ (-783))) (-15 -4050 ($ $ (-783))) (-15 ** ($ $ (-783))) (-15 -3673 ((-3 $ "failed") $)) (-15 -3334 ((-3 $ "failed") $)) (-15 -4339 ((-3 $ "failed") $)))) (((-102) . T) ((-625 (-876)) . T) ((-732) . T) ((-1121) . T) ((-1238) . T)) -((-2098 (((-783)) 39)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2860 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 23)) (-3686 (($ |#3|) NIL) (((-3 $ "failed") (-419 |#3|)) 49)) (-1561 (((-3 $ "failed") $) 69)) (-1836 (($) 43)) (-1381 ((|#2| $) 21)) (-4129 (($) 18)) (-2775 (($ $ (-1 |#2| |#2|)) 57) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-2433 (((-701 |#2|) (-1288 $) (-1 |#2| |#2|)) 64)) (-4172 (((-1288 |#2|) $) NIL) (($ (-1288 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-4281 ((|#3| $) 36)) (-1593 (((-1288 $)) 33))) -(((-735 |#1| |#2| |#3|) (-10 -8 (-15 -2775 (|#1| |#1|)) (-15 -2775 (|#1| |#1| (-783))) (-15 -2775 (|#1| |#1| (-1197))) (-15 -2775 (|#1| |#1| (-656 (-1197)))) (-15 -2775 (|#1| |#1| (-1197) (-783))) (-15 -2775 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -1836 (|#1|)) (-15 -2098 ((-783))) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2433 ((-701 |#2|) (-1288 |#1|) (-1 |#2| |#2|))) (-15 -3686 ((-3 |#1| "failed") (-419 |#3|))) (-15 -4172 (|#1| |#3|)) (-15 -3686 (|#1| |#3|)) (-15 -4129 (|#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2860 (|#2| |#1|)) (-15 -2860 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2860 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -4172 (|#3| |#1|)) (-15 -4172 (|#1| (-1288 |#2|))) (-15 -4172 ((-1288 |#2|) |#1|)) (-15 -1593 ((-1288 |#1|))) (-15 -4281 (|#3| |#1|)) (-15 -1381 (|#2| |#1|)) (-15 -1561 ((-3 |#1| "failed") |#1|))) (-736 |#2| |#3|) (-174) (-1264 |#2|)) (T -735)) +((-2098 (((-783)) 39)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2859 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 23)) (-3685 (($ |#3|) NIL) (((-3 $ "failed") (-419 |#3|)) 49)) (-3673 (((-3 $ "failed") $) 69)) (-1836 (($) 43)) (-2738 ((|#2| $) 21)) (-4128 (($) 18)) (-2774 (($ $ (-1 |#2| |#2|)) 57) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-4149 (((-701 |#2|) (-1288 $) (-1 |#2| |#2|)) 64)) (-4171 (((-1288 |#2|) $) NIL) (($ (-1288 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2857 ((|#3| $) 36)) (-2675 (((-1288 $)) 33))) +(((-735 |#1| |#2| |#3|) (-10 -8 (-15 -2774 (|#1| |#1|)) (-15 -2774 (|#1| |#1| (-783))) (-15 -2774 (|#1| |#1| (-1197))) (-15 -2774 (|#1| |#1| (-656 (-1197)))) (-15 -2774 (|#1| |#1| (-1197) (-783))) (-15 -2774 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -1836 (|#1|)) (-15 -2098 ((-783))) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4149 ((-701 |#2|) (-1288 |#1|) (-1 |#2| |#2|))) (-15 -3685 ((-3 |#1| "failed") (-419 |#3|))) (-15 -4171 (|#1| |#3|)) (-15 -3685 (|#1| |#3|)) (-15 -4128 (|#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -4171 (|#3| |#1|)) (-15 -4171 (|#1| (-1288 |#2|))) (-15 -4171 ((-1288 |#2|) |#1|)) (-15 -2675 ((-1288 |#1|))) (-15 -2857 (|#3| |#1|)) (-15 -2738 (|#2| |#1|)) (-15 -3673 ((-3 |#1| "failed") |#1|))) (-736 |#2| |#3|) (-174) (-1264 |#2|)) (T -735)) ((-2098 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-783)) (-5 *1 (-735 *3 *4 *5)) (-4 *3 (-736 *4 *5))))) -(-10 -8 (-15 -2775 (|#1| |#1|)) (-15 -2775 (|#1| |#1| (-783))) (-15 -2775 (|#1| |#1| (-1197))) (-15 -2775 (|#1| |#1| (-656 (-1197)))) (-15 -2775 (|#1| |#1| (-1197) (-783))) (-15 -2775 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -1836 (|#1|)) (-15 -2098 ((-783))) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2433 ((-701 |#2|) (-1288 |#1|) (-1 |#2| |#2|))) (-15 -3686 ((-3 |#1| "failed") (-419 |#3|))) (-15 -4172 (|#1| |#3|)) (-15 -3686 (|#1| |#3|)) (-15 -4129 (|#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2860 (|#2| |#1|)) (-15 -2860 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2860 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -4172 (|#3| |#1|)) (-15 -4172 (|#1| (-1288 |#2|))) (-15 -4172 ((-1288 |#2|) |#1|)) (-15 -1593 ((-1288 |#1|))) (-15 -4281 (|#3| |#1|)) (-15 -1381 (|#2| |#1|)) (-15 -1561 ((-3 |#1| "failed") |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 105 (|has| |#1| (-374)))) (-2757 (($ $) 106 (|has| |#1| (-374)))) (-3788 (((-112) $) 108 (|has| |#1| (-374)))) (-4101 (((-701 |#1|) (-1288 $)) 53) (((-701 |#1|)) 68)) (-2210 ((|#1| $) 59)) (-4183 (((-1210 (-940) (-783)) (-576)) 158 (|has| |#1| (-360)))) (-4367 (((-3 $ "failed") $ $) 20)) (-2487 (($ $) 125 (|has| |#1| (-374)))) (-3921 (((-430 $) $) 126 (|has| |#1| (-374)))) (-4016 (((-112) $ $) 116 (|has| |#1| (-374)))) (-2098 (((-783)) 99 (|has| |#1| (-379)))) (-3886 (($) 18 T CONST)) (-1572 (((-3 (-576) "failed") $) 185 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 183 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 180)) (-2860 (((-576) $) 184 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 182 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 181)) (-4119 (($ (-1288 |#1|) (-1288 $)) 55) (($ (-1288 |#1|)) 71)) (-2554 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-360)))) (-3429 (($ $ $) 120 (|has| |#1| (-374)))) (-1420 (((-701 |#1|) $ (-1288 $)) 60) (((-701 |#1|) $) 66)) (-2204 (((-701 (-576)) (-701 $)) 177 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 176 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 175) (((-701 |#1|) (-701 $)) 174)) (-3686 (($ |#2|) 169) (((-3 $ "failed") (-419 |#2|)) 166 (|has| |#1| (-374)))) (-1561 (((-3 $ "failed") $) 37)) (-3734 (((-940)) 61)) (-1836 (($) 102 (|has| |#1| (-379)))) (-3441 (($ $ $) 119 (|has| |#1| (-374)))) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) 114 (|has| |#1| (-374)))) (-2005 (($) 160 (|has| |#1| (-360)))) (-4090 (((-112) $) 161 (|has| |#1| (-360)))) (-2910 (($ $ (-783)) 152 (|has| |#1| (-360))) (($ $) 151 (|has| |#1| (-360)))) (-4249 (((-112) $) 127 (|has| |#1| (-374)))) (-3917 (((-940) $) 163 (|has| |#1| (-360))) (((-845 (-940)) $) 149 (|has| |#1| (-360)))) (-4193 (((-112) $) 35)) (-1381 ((|#1| $) 58)) (-2240 (((-3 $ "failed") $) 153 (|has| |#1| (-360)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) 123 (|has| |#1| (-374)))) (-2731 ((|#2| $) 51 (|has| |#1| (-374)))) (-4401 (((-940) $) 101 (|has| |#1| (-379)))) (-3672 ((|#2| $) 167)) (-3913 (((-701 (-576)) (-1288 $)) 179 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 178 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 173) (((-701 |#1|) (-1288 $)) 172)) (-3458 (($ (-656 $)) 112 (|has| |#1| (-374))) (($ $ $) 111 (|has| |#1| (-374)))) (-3699 (((-1179) $) 10)) (-2050 (($ $) 128 (|has| |#1| (-374)))) (-3540 (($) 154 (|has| |#1| (-360)) CONST)) (-3224 (($ (-940)) 100 (|has| |#1| (-379)))) (-1450 (((-1141) $) 11)) (-4129 (($) 171)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 113 (|has| |#1| (-374)))) (-3498 (($ (-656 $)) 110 (|has| |#1| (-374))) (($ $ $) 109 (|has| |#1| (-374)))) (-2406 (((-656 (-2 (|:| -1828 (-576)) (|:| -3422 (-576))))) 157 (|has| |#1| (-360)))) (-1828 (((-430 $) $) 124 (|has| |#1| (-374)))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 121 (|has| |#1| (-374)))) (-3476 (((-3 $ "failed") $ $) 104 (|has| |#1| (-374)))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) 115 (|has| |#1| (-374)))) (-1967 (((-783) $) 117 (|has| |#1| (-374)))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 118 (|has| |#1| (-374)))) (-4352 ((|#1| (-1288 $)) 54) ((|#1|) 67)) (-3793 (((-783) $) 162 (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) 150 (|has| |#1| (-360)))) (-2775 (($ $ (-783)) 147 (-2760 (-2675 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) 145 (-2760 (-2675 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1197)) (-656 (-783))) 141 (-2675 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-1197) (-783)) 140 (-2675 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-656 (-1197))) 139 (-2675 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-1197)) 137 (-2675 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-1 |#1| |#1|)) 136 (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) 135 (|has| |#1| (-374)))) (-2433 (((-701 |#1|) (-1288 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-374)))) (-3867 ((|#2|) 170)) (-1535 (($) 159 (|has| |#1| (-360)))) (-4152 (((-1288 |#1|) $ (-1288 $)) 57) (((-701 |#1|) (-1288 $) (-1288 $)) 56) (((-1288 |#1|) $) 73) (((-701 |#1|) (-1288 $)) 72)) (-4172 (((-1288 |#1|) $) 70) (($ (-1288 |#1|)) 69) ((|#2| $) 186) (($ |#2|) 168)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) 156 (|has| |#1| (-360)))) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ $) 103 (|has| |#1| (-374))) (($ (-419 (-576))) 98 (-2760 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576))))))) (-4336 (($ $) 155 (|has| |#1| (-360))) (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-4281 ((|#2| $) 52)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-1593 (((-1288 $)) 74)) (-2672 (((-112) $ $) 107 (|has| |#1| (-374)))) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2020 (($ $ (-783)) 148 (-2760 (-2675 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) 146 (-2760 (-2675 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1197)) (-656 (-783))) 144 (-2675 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-1197) (-783)) 143 (-2675 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-656 (-1197))) 142 (-2675 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-1197)) 138 (-2675 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-1 |#1| |#1|)) 134 (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) 133 (|has| |#1| (-374)))) (-2925 (((-112) $ $) 8)) (-3057 (($ $ $) 132 (|has| |#1| (-374)))) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 129 (|has| |#1| (-374)))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-419 (-576)) $) 131 (|has| |#1| (-374))) (($ $ (-419 (-576))) 130 (|has| |#1| (-374))))) +(-10 -8 (-15 -2774 (|#1| |#1|)) (-15 -2774 (|#1| |#1| (-783))) (-15 -2774 (|#1| |#1| (-1197))) (-15 -2774 (|#1| |#1| (-656 (-1197)))) (-15 -2774 (|#1| |#1| (-1197) (-783))) (-15 -2774 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -1836 (|#1|)) (-15 -2098 ((-783))) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4149 ((-701 |#2|) (-1288 |#1|) (-1 |#2| |#2|))) (-15 -3685 ((-3 |#1| "failed") (-419 |#3|))) (-15 -4171 (|#1| |#3|)) (-15 -3685 (|#1| |#3|)) (-15 -4128 (|#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -4171 (|#3| |#1|)) (-15 -4171 (|#1| (-1288 |#2|))) (-15 -4171 ((-1288 |#2|) |#1|)) (-15 -2675 ((-1288 |#1|))) (-15 -2857 (|#3| |#1|)) (-15 -2738 (|#2| |#1|)) (-15 -3673 ((-3 |#1| "failed") |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 105 (|has| |#1| (-374)))) (-4195 (($ $) 106 (|has| |#1| (-374)))) (-1760 (((-112) $) 108 (|has| |#1| (-374)))) (-1656 (((-701 |#1|) (-1288 $)) 53) (((-701 |#1|)) 68)) (-2210 ((|#1| $) 59)) (-4371 (((-1210 (-940) (-783)) (-576)) 158 (|has| |#1| (-360)))) (-2428 (((-3 $ "failed") $ $) 20)) (-3444 (($ $) 125 (|has| |#1| (-374)))) (-3760 (((-430 $) $) 126 (|has| |#1| (-374)))) (-3330 (((-112) $ $) 116 (|has| |#1| (-374)))) (-2098 (((-783)) 99 (|has| |#1| (-379)))) (-3404 (($) 18 T CONST)) (-1572 (((-3 (-576) "failed") $) 185 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 183 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 180)) (-2859 (((-576) $) 184 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 182 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 181)) (-1819 (($ (-1288 |#1|) (-1288 $)) 55) (($ (-1288 |#1|)) 71)) (-2868 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-360)))) (-3428 (($ $ $) 120 (|has| |#1| (-374)))) (-2072 (((-701 |#1|) $ (-1288 $)) 60) (((-701 |#1|) $) 66)) (-3674 (((-701 (-576)) (-701 $)) 177 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 176 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 175) (((-701 |#1|) (-701 $)) 174)) (-3685 (($ |#2|) 169) (((-3 $ "failed") (-419 |#2|)) 166 (|has| |#1| (-374)))) (-3673 (((-3 $ "failed") $) 37)) (-3733 (((-940)) 61)) (-1836 (($) 102 (|has| |#1| (-379)))) (-3440 (($ $ $) 119 (|has| |#1| (-374)))) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) 114 (|has| |#1| (-374)))) (-2345 (($) 160 (|has| |#1| (-360)))) (-1543 (((-112) $) 161 (|has| |#1| (-360)))) (-3153 (($ $ (-783)) 152 (|has| |#1| (-360))) (($ $) 151 (|has| |#1| (-360)))) (-3833 (((-112) $) 127 (|has| |#1| (-374)))) (-3726 (((-940) $) 163 (|has| |#1| (-360))) (((-845 (-940)) $) 149 (|has| |#1| (-360)))) (-1351 (((-112) $) 35)) (-2738 ((|#1| $) 58)) (-2734 (((-3 $ "failed") $) 153 (|has| |#1| (-360)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) 123 (|has| |#1| (-374)))) (-1989 ((|#2| $) 51 (|has| |#1| (-374)))) (-1558 (((-940) $) 101 (|has| |#1| (-379)))) (-3671 ((|#2| $) 167)) (-3676 (((-701 (-576)) (-1288 $)) 179 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 178 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 173) (((-701 |#1|) (-1288 $)) 172)) (-3457 (($ (-656 $)) 112 (|has| |#1| (-374))) (($ $ $) 111 (|has| |#1| (-374)))) (-2046 (((-1179) $) 10)) (-2050 (($ $) 128 (|has| |#1| (-374)))) (-3539 (($) 154 (|has| |#1| (-360)) CONST)) (-3223 (($ (-940)) 100 (|has| |#1| (-379)))) (-1450 (((-1141) $) 11)) (-4128 (($) 171)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 113 (|has| |#1| (-374)))) (-3497 (($ (-656 $)) 110 (|has| |#1| (-374))) (($ $ $) 109 (|has| |#1| (-374)))) (-1913 (((-656 (-2 (|:| -1828 (-576)) (|:| -2508 (-576))))) 157 (|has| |#1| (-360)))) (-1828 (((-430 $) $) 124 (|has| |#1| (-374)))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 121 (|has| |#1| (-374)))) (-3475 (((-3 $ "failed") $ $) 104 (|has| |#1| (-374)))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) 115 (|has| |#1| (-374)))) (-1979 (((-783) $) 117 (|has| |#1| (-374)))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 118 (|has| |#1| (-374)))) (-2269 ((|#1| (-1288 $)) 54) ((|#1|) 67)) (-1813 (((-783) $) 162 (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) 150 (|has| |#1| (-360)))) (-2774 (($ $ (-783)) 147 (-2759 (-2674 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) 145 (-2759 (-2674 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1197)) (-656 (-783))) 141 (-2674 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-1197) (-783)) 140 (-2674 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-656 (-1197))) 139 (-2674 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-1197)) 137 (-2674 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-1 |#1| |#1|)) 136 (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) 135 (|has| |#1| (-374)))) (-4149 (((-701 |#1|) (-1288 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-374)))) (-1346 ((|#2|) 170)) (-3371 (($) 159 (|has| |#1| (-360)))) (-4096 (((-1288 |#1|) $ (-1288 $)) 57) (((-701 |#1|) (-1288 $) (-1288 $)) 56) (((-1288 |#1|) $) 73) (((-701 |#1|) (-1288 $)) 72)) (-4171 (((-1288 |#1|) $) 70) (($ (-1288 |#1|)) 69) ((|#2| $) 186) (($ |#2|) 168)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) 156 (|has| |#1| (-360)))) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ $) 103 (|has| |#1| (-374))) (($ (-419 (-576))) 98 (-2759 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576))))))) (-3390 (($ $) 155 (|has| |#1| (-360))) (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2857 ((|#2| $) 52)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-2675 (((-1288 $)) 74)) (-1505 (((-112) $ $) 107 (|has| |#1| (-374)))) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2020 (($ $ (-783)) 148 (-2759 (-2674 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) 146 (-2759 (-2674 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1197)) (-656 (-783))) 144 (-2674 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-1197) (-783)) 143 (-2674 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-656 (-1197))) 142 (-2674 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-1197)) 138 (-2674 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-1 |#1| |#1|)) 134 (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) 133 (|has| |#1| (-374)))) (-2924 (((-112) $ $) 8)) (-3056 (($ $ $) 132 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 129 (|has| |#1| (-374)))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-419 (-576)) $) 131 (|has| |#1| (-374))) (($ $ (-419 (-576))) 130 (|has| |#1| (-374))))) (((-736 |#1| |#2|) (-141) (-174) (-1264 |t#1|)) (T -736)) -((-4129 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-736 *2 *3)) (-4 *3 (-1264 *2)))) (-3867 (*1 *2) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1264 *3)))) (-3686 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1264 *3)))) (-4172 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1264 *3)))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1264 *3)))) (-3686 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-374)) (-4 *3 (-174)) (-4 *1 (-736 *3 *4)))) (-2433 (*1 *2 *3 *4) (-12 (-5 *3 (-1288 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-4 *1 (-736 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1264 *5)) (-5 *2 (-701 *5))))) -(-13 (-421 |t#1| |t#2|) (-174) (-626 |t#2|) (-423 |t#1|) (-388 |t#1|) (-10 -8 (-15 -4129 ($)) (-15 -3867 (|t#2|)) (-15 -3686 ($ |t#2|)) (-15 -4172 ($ |t#2|)) (-15 -3672 (|t#2| $)) (IF (|has| |t#1| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-6 (-374)) (-6 (-232 |t#1|)) (-15 -3686 ((-3 $ "failed") (-419 |t#2|))) (-15 -2433 ((-701 |t#1|) (-1288 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-360)) (-6 (-360)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-38 |#1|) . T) ((-38 $) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-102) . T) ((-111 #0# #0#) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2760 (|has| |#1| (-360)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) -2760 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-360)) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-625 (-876)) . T) ((-174) . T) ((-626 |#2|) . T) ((-234 $) -2760 (|has| |#1| (-360)) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-232 |#1|) |has| |#1| (-374)) ((-238) -2760 (|has| |#1| (-360)) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-237) -2760 (|has| |#1| (-360)) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-272 |#1|) |has| |#1| (-374)) ((-248) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-300) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-317) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-374) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-414) |has| |#1| (-360)) ((-379) -2760 (|has| |#1| (-379)) (|has| |#1| (-360))) ((-360) |has| |#1| (-360)) ((-381 |#1| |#2|) . T) ((-421 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-568) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 #0#) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-652 |#1|) . T) ((-652 $) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-729 |#1|) . T) ((-729 $) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-738) . T) ((-911 $ #2=(-1197)) -2760 (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))))) ((-917 (-1197)) -12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) ((-919 #2#) -2760 (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))))) ((-939) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1072 #0#) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1077 #0#) -2760 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1077 |#1|) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) |has| |#1| (-360)) ((-1238) . T) ((-1242) -2760 (|has| |#1| (-360)) (|has| |#1| (-374)))) -((-3886 (($) 11)) (-1561 (((-3 $ "failed") $) 14)) (-4193 (((-112) $) 10)) (** (($ $ (-940)) NIL) (($ $ (-783)) 20))) -(((-737 |#1|) (-10 -8 (-15 -1561 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 -4193 ((-112) |#1|)) (-15 -3886 (|#1|)) (-15 ** (|#1| |#1| (-940)))) (-738)) (T -737)) -NIL -(-10 -8 (-15 -1561 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 -4193 ((-112) |#1|)) (-15 -3886 (|#1|)) (-15 ** (|#1| |#1| (-940)))) -((-3489 (((-112) $ $) 7)) (-3886 (($) 19 T CONST)) (-1561 (((-3 $ "failed") $) 16)) (-4193 (((-112) $) 18)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2732 (($) 20 T CONST)) (-2925 (((-112) $ $) 8)) (** (($ $ (-940)) 14) (($ $ (-783)) 17)) (* (($ $ $) 15))) +((-4128 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-736 *2 *3)) (-4 *3 (-1264 *2)))) (-1346 (*1 *2) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1264 *3)))) (-3685 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1264 *3)))) (-4171 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1264 *3)))) (-3671 (*1 *2 *1) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1264 *3)))) (-3685 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-374)) (-4 *3 (-174)) (-4 *1 (-736 *3 *4)))) (-4149 (*1 *2 *3 *4) (-12 (-5 *3 (-1288 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-4 *1 (-736 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1264 *5)) (-5 *2 (-701 *5))))) +(-13 (-421 |t#1| |t#2|) (-174) (-626 |t#2|) (-423 |t#1|) (-388 |t#1|) (-10 -8 (-15 -4128 ($)) (-15 -1346 (|t#2|)) (-15 -3685 ($ |t#2|)) (-15 -4171 ($ |t#2|)) (-15 -3671 (|t#2| $)) (IF (|has| |t#1| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-6 (-374)) (-6 (-232 |t#1|)) (-15 -3685 ((-3 $ "failed") (-419 |t#2|))) (-15 -4149 ((-701 |t#1|) (-1288 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-360)) (-6 (-360)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-38 |#1|) . T) ((-38 $) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-102) . T) ((-111 #0# #0#) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2759 (|has| |#1| (-360)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) -2759 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-360)) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-625 (-876)) . T) ((-174) . T) ((-626 |#2|) . T) ((-234 $) -2759 (|has| |#1| (-360)) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-232 |#1|) |has| |#1| (-374)) ((-238) -2759 (|has| |#1| (-360)) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-237) -2759 (|has| |#1| (-360)) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-272 |#1|) |has| |#1| (-374)) ((-248) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-300) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-317) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-374) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-414) |has| |#1| (-360)) ((-379) -2759 (|has| |#1| (-379)) (|has| |#1| (-360))) ((-360) |has| |#1| (-360)) ((-381 |#1| |#2|) . T) ((-421 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-568) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 #0#) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-652 |#1|) . T) ((-652 $) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-729 |#1|) . T) ((-729 $) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-738) . T) ((-911 $ #2=(-1197)) -2759 (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))))) ((-917 (-1197)) -12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) ((-919 #2#) -2759 (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))))) ((-939) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1072 #0#) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1077 #0#) -2759 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1077 |#1|) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) |has| |#1| (-360)) ((-1238) . T) ((-1242) -2759 (|has| |#1| (-360)) (|has| |#1| (-374)))) +((-3404 (($) 11)) (-3673 (((-3 $ "failed") $) 14)) (-1351 (((-112) $) 10)) (** (($ $ (-940)) NIL) (($ $ (-783)) 20))) +(((-737 |#1|) (-10 -8 (-15 -3673 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 -1351 ((-112) |#1|)) (-15 -3404 (|#1|)) (-15 ** (|#1| |#1| (-940)))) (-738)) (T -737)) +NIL +(-10 -8 (-15 -3673 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 -1351 ((-112) |#1|)) (-15 -3404 (|#1|)) (-15 ** (|#1| |#1| (-940)))) +((-3488 (((-112) $ $) 7)) (-3404 (($) 19 T CONST)) (-3673 (((-3 $ "failed") $) 16)) (-1351 (((-112) $) 18)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2731 (($) 20 T CONST)) (-2924 (((-112) $ $) 8)) (** (($ $ (-940)) 14) (($ $ (-783)) 17)) (* (($ $ $) 15))) (((-738) (-141)) (T -738)) -((-2732 (*1 *1) (-4 *1 (-738))) (-3886 (*1 *1) (-4 *1 (-738))) (-4193 (*1 *2 *1) (-12 (-4 *1 (-738)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-783)))) (-1561 (*1 *1 *1) (|partial| -4 *1 (-738)))) -(-13 (-1133) (-10 -8 (-15 (-2732) ($) -1480) (-15 -3886 ($) -1480) (-15 -4193 ((-112) $)) (-15 ** ($ $ (-783))) (-15 -1561 ((-3 $ "failed") $)))) +((-2731 (*1 *1) (-4 *1 (-738))) (-3404 (*1 *1) (-4 *1 (-738))) (-1351 (*1 *2 *1) (-12 (-4 *1 (-738)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-783)))) (-3673 (*1 *1 *1) (|partial| -4 *1 (-738)))) +(-13 (-1133) (-10 -8 (-15 (-2731) ($) -1480) (-15 -3404 ($) -1480) (-15 -1351 ((-112) $)) (-15 ** ($ $ (-783))) (-15 -3673 ((-3 $ "failed") $)))) (((-102) . T) ((-625 (-876)) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-2859 (((-2 (|:| -3014 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-2488 (((-2 (|:| -3014 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2498 ((|#2| (-419 |#2|) (-1 |#2| |#2|)) 13)) (-1508 (((-2 (|:| |poly| |#2|) (|:| -3014 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)) 48))) -(((-739 |#1| |#2|) (-10 -7 (-15 -2488 ((-2 (|:| -3014 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2859 ((-2 (|:| -3014 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2498 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -1508 ((-2 (|:| |poly| |#2|) (|:| -3014 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)))) (-374) (-1264 |#1|)) (T -739)) -((-1508 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3014 (-419 *6)) (|:| |special| (-419 *6)))) (-5 *1 (-739 *5 *6)) (-5 *3 (-419 *6)))) (-2498 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1264 *5)) (-5 *1 (-739 *5 *2)) (-4 *5 (-374)))) (-2859 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -3014 (-430 *3)) (|:| |special| (-430 *3)))) (-5 *1 (-739 *5 *3)))) (-2488 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -3014 *3) (|:| |special| *3))) (-5 *1 (-739 *5 *3))))) -(-10 -7 (-15 -2488 ((-2 (|:| -3014 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2859 ((-2 (|:| -3014 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2498 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -1508 ((-2 (|:| |poly| |#2|) (|:| -3014 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)))) -((-3546 ((|#7| (-656 |#5|) |#6|) NIL)) (-4117 ((|#7| (-1 |#5| |#4|) |#6|) 27))) -(((-740 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4117 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3546 (|#7| (-656 |#5|) |#6|))) (-861) (-805) (-805) (-1070) (-1070) (-968 |#4| |#2| |#1|) (-968 |#5| |#3| |#1|)) (T -740)) -((-3546 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *9)) (-4 *9 (-1070)) (-4 *5 (-861)) (-4 *6 (-805)) (-4 *8 (-1070)) (-4 *2 (-968 *9 *7 *5)) (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) (-4 *4 (-968 *8 *6 *5)))) (-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1070)) (-4 *9 (-1070)) (-4 *5 (-861)) (-4 *6 (-805)) (-4 *2 (-968 *9 *7 *5)) (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) (-4 *4 (-968 *8 *6 *5))))) -(-10 -7 (-15 -4117 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3546 (|#7| (-656 |#5|) |#6|))) -((-4117 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-741 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4117 (|#7| (-1 |#2| |#1|) |#6|))) (-861) (-861) (-805) (-805) (-1070) (-968 |#5| |#3| |#1|) (-968 |#5| |#4| |#2|)) (T -741)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-861)) (-4 *6 (-861)) (-4 *7 (-805)) (-4 *9 (-1070)) (-4 *2 (-968 *9 *8 *6)) (-5 *1 (-741 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-805)) (-4 *4 (-968 *9 *7 *5))))) -(-10 -7 (-15 -4117 (|#7| (-1 |#2| |#1|) |#6|))) +((-3907 (((-2 (|:| -3014 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-3455 (((-2 (|:| -3014 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3566 ((|#2| (-419 |#2|) (-1 |#2| |#2|)) 13)) (-4323 (((-2 (|:| |poly| |#2|) (|:| -3014 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)) 48))) +(((-739 |#1| |#2|) (-10 -7 (-15 -3455 ((-2 (|:| -3014 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3907 ((-2 (|:| -3014 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3566 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -4323 ((-2 (|:| |poly| |#2|) (|:| -3014 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)))) (-374) (-1264 |#1|)) (T -739)) +((-4323 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3014 (-419 *6)) (|:| |special| (-419 *6)))) (-5 *1 (-739 *5 *6)) (-5 *3 (-419 *6)))) (-3566 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1264 *5)) (-5 *1 (-739 *5 *2)) (-4 *5 (-374)))) (-3907 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -3014 (-430 *3)) (|:| |special| (-430 *3)))) (-5 *1 (-739 *5 *3)))) (-3455 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -3014 *3) (|:| |special| *3))) (-5 *1 (-739 *5 *3))))) +(-10 -7 (-15 -3455 ((-2 (|:| -3014 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3907 ((-2 (|:| -3014 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3566 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -4323 ((-2 (|:| |poly| |#2|) (|:| -3014 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)))) +((-3544 ((|#7| (-656 |#5|) |#6|) NIL)) (-4116 ((|#7| (-1 |#5| |#4|) |#6|) 27))) +(((-740 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4116 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3544 (|#7| (-656 |#5|) |#6|))) (-861) (-805) (-805) (-1070) (-1070) (-968 |#4| |#2| |#1|) (-968 |#5| |#3| |#1|)) (T -740)) +((-3544 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *9)) (-4 *9 (-1070)) (-4 *5 (-861)) (-4 *6 (-805)) (-4 *8 (-1070)) (-4 *2 (-968 *9 *7 *5)) (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) (-4 *4 (-968 *8 *6 *5)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1070)) (-4 *9 (-1070)) (-4 *5 (-861)) (-4 *6 (-805)) (-4 *2 (-968 *9 *7 *5)) (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) (-4 *4 (-968 *8 *6 *5))))) +(-10 -7 (-15 -4116 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3544 (|#7| (-656 |#5|) |#6|))) +((-4116 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-741 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4116 (|#7| (-1 |#2| |#1|) |#6|))) (-861) (-861) (-805) (-805) (-1070) (-968 |#5| |#3| |#1|) (-968 |#5| |#4| |#2|)) (T -741)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-861)) (-4 *6 (-861)) (-4 *7 (-805)) (-4 *9 (-1070)) (-4 *2 (-968 *9 *8 *6)) (-5 *1 (-741 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-805)) (-4 *4 (-968 *9 *7 *5))))) +(-10 -7 (-15 -4116 (|#7| (-1 |#2| |#1|) |#6|))) ((-1828 (((-430 |#4|) |#4|) 42))) -(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1828 ((-430 |#4|) |#4|))) (-805) (-13 (-861) (-10 -8 (-15 -4172 ((-1197) $)) (-15 -3055 ((-3 $ "failed") (-1197))))) (-317) (-968 (-971 |#3|) |#1| |#2|)) (T -742)) -((-1828 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-861) (-10 -8 (-15 -4172 ((-1197) $)) (-15 -3055 ((-3 $ "failed") (-1197)))))) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-968 (-971 *6) *4 *5))))) +(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1828 ((-430 |#4|) |#4|))) (-805) (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $)) (-15 -3054 ((-3 $ "failed") (-1197))))) (-317) (-968 (-971 |#3|) |#1| |#2|)) (T -742)) +((-1828 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $)) (-15 -3054 ((-3 $ "failed") (-1197)))))) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-968 (-971 *6) *4 *5))))) (-10 -7 (-15 -1828 ((-430 |#4|) |#4|))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-1969 (((-656 (-878 |#1|)) $) NIL)) (-1798 (((-1193 $) $ (-878 |#1|)) NIL) (((-1193 |#2|) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2757 (($ $) NIL (|has| |#2| (-568)))) (-3788 (((-112) $) NIL (|has| |#2| (-568)))) (-3543 (((-783) $) NIL) (((-783) $ (-656 (-878 |#1|))) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3601 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-2487 (($ $) NIL (|has| |#2| (-464)))) (-3921 (((-430 $) $) NIL (|has| |#2| (-464)))) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-878 |#1|) "failed") $) NIL)) (-2860 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-878 |#1|) $) NIL)) (-3230 (($ $ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-2114 (($ $) NIL)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-3767 (($ $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-2103 (((-656 $) $) NIL)) (-4249 (((-112) $) NIL (|has| |#2| (-928)))) (-2431 (($ $ |#2| (-543 (-878 |#1|)) $) NIL)) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-4193 (((-112) $) NIL)) (-2217 (((-783) $) NIL)) (-1955 (($ (-1193 |#2|) (-878 |#1|)) NIL) (($ (-1193 $) (-878 |#1|)) NIL)) (-1608 (((-656 $) $) NIL)) (-2823 (((-112) $) NIL)) (-1945 (($ |#2| (-543 (-878 |#1|))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-4130 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $ (-878 |#1|)) NIL)) (-3751 (((-543 (-878 |#1|)) $) NIL) (((-783) $ (-878 |#1|)) NIL) (((-656 (-783)) $ (-656 (-878 |#1|))) NIL)) (-2999 (($ (-1 (-543 (-878 |#1|)) (-543 (-878 |#1|))) $) NIL)) (-4117 (($ (-1 |#2| |#2|) $) NIL)) (-3721 (((-3 (-878 |#1|) "failed") $) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-2081 (($ $) NIL)) (-2091 ((|#2| $) NIL)) (-3458 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-3699 (((-1179) $) NIL)) (-1385 (((-3 (-656 $) "failed") $) NIL)) (-1690 (((-3 (-656 $) "failed") $) NIL)) (-2040 (((-3 (-2 (|:| |var| (-878 |#1|)) (|:| -3422 (-783))) "failed") $) NIL)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) NIL)) (-2070 ((|#2| $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#2| (-464)))) (-3498 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-4100 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#2| (-928)))) (-3476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3284 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-878 |#1|) |#2|) NIL) (($ $ (-656 (-878 |#1|)) (-656 |#2|)) NIL) (($ $ (-878 |#1|) $) NIL) (($ $ (-656 (-878 |#1|)) (-656 $)) NIL)) (-4352 (($ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-2775 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-3634 (((-543 (-878 |#1|)) $) NIL) (((-783) $ (-878 |#1|)) NIL) (((-656 (-783)) $ (-656 (-878 |#1|))) NIL)) (-4172 (((-907 (-390)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-878 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-2457 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928))))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-878 |#1|)) NIL) (($ $) NIL (|has| |#2| (-568))) (($ (-419 (-576))) NIL (-2760 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576))))))) (-1618 (((-656 |#2|) $) NIL)) (-3177 ((|#2| $ (-543 (-878 |#1|))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-4336 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#2| (-146))))) (-3996 (((-783)) NIL T CONST)) (-2541 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2020 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-1969 (((-656 (-878 |#1|)) $) NIL)) (-1797 (((-1193 $) $ (-878 |#1|)) NIL) (((-1193 |#2|) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-4195 (($ $) NIL (|has| |#2| (-568)))) (-1760 (((-112) $) NIL (|has| |#2| (-568)))) (-4329 (((-783) $) NIL) (((-783) $ (-656 (-878 |#1|))) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3646 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3444 (($ $) NIL (|has| |#2| (-464)))) (-3760 (((-430 $) $) NIL (|has| |#2| (-464)))) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-878 |#1|) "failed") $) NIL)) (-2859 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-878 |#1|) $) NIL)) (-4334 (($ $ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-2114 (($ $) NIL)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1547 (($ $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-2103 (((-656 $) $) NIL)) (-3833 (((-112) $) NIL (|has| |#2| (-928)))) (-4124 (($ $ |#2| (-543 (-878 |#1|)) $) NIL)) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-1351 (((-112) $) NIL)) (-3799 (((-783) $) NIL)) (-1956 (($ (-1193 |#2|) (-878 |#1|)) NIL) (($ (-1193 $) (-878 |#1|)) NIL)) (-2846 (((-656 $) $) NIL)) (-3538 (((-112) $) NIL)) (-1944 (($ |#2| (-543 (-878 |#1|))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-1915 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $ (-878 |#1|)) NIL)) (-2578 (((-543 (-878 |#1|)) $) NIL) (((-783) $ (-878 |#1|)) NIL) (((-656 (-783)) $ (-656 (-878 |#1|))) NIL)) (-3878 (($ (-1 (-543 (-878 |#1|)) (-543 (-878 |#1|))) $) NIL)) (-4116 (($ (-1 |#2| |#2|) $) NIL)) (-2289 (((-3 (-878 |#1|) "failed") $) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-2081 (($ $) NIL)) (-2091 ((|#2| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2046 (((-1179) $) NIL)) (-3845 (((-3 (-656 $) "failed") $) NIL)) (-2363 (((-3 (-656 $) "failed") $) NIL)) (-1452 (((-3 (-2 (|:| |var| (-878 |#1|)) (|:| -2508 (-783))) "failed") $) NIL)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) NIL)) (-2070 ((|#2| $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#2| (-464)))) (-3497 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-1644 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#2| (-928)))) (-3475 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3282 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-878 |#1|) |#2|) NIL) (($ $ (-656 (-878 |#1|)) (-656 |#2|)) NIL) (($ $ (-878 |#1|) $) NIL) (($ $ (-656 (-878 |#1|)) (-656 $)) NIL)) (-2269 (($ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-2774 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-2683 (((-543 (-878 |#1|)) $) NIL) (((-783) $ (-878 |#1|)) NIL) (((-656 (-783)) $ (-656 (-878 |#1|))) NIL)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-878 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-4370 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-878 |#1|)) NIL) (($ $) NIL (|has| |#2| (-568))) (($ (-419 (-576))) NIL (-2759 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576))))))) (-2937 (((-656 |#2|) $) NIL)) (-1822 ((|#2| $ (-543 (-878 |#1|))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-3390 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#2| (-146))))) (-3154 (((-783)) NIL T CONST)) (-2717 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2020 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) (((-743 |#1| |#2|) (-968 |#2| (-543 (-878 |#1|)) (-878 |#1|)) (-656 (-1197)) (-1070)) (T -743)) NIL (-968 |#2| (-543 (-878 |#1|)) (-878 |#1|)) -((-4189 (((-2 (|:| -2324 (-971 |#3|)) (|:| -2317 (-971 |#3|))) |#4|) 14)) (-3305 ((|#4| |#4| |#2|) 33)) (-2500 ((|#4| (-419 (-971 |#3|)) |#2|) 64)) (-3109 ((|#4| (-1193 (-971 |#3|)) |#2|) 77)) (-3989 ((|#4| (-1193 |#4|) |#2|) 51)) (-3975 ((|#4| |#4| |#2|) 54)) (-1828 (((-430 |#4|) |#4|) 40))) -(((-744 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4189 ((-2 (|:| -2324 (-971 |#3|)) (|:| -2317 (-971 |#3|))) |#4|)) (-15 -3975 (|#4| |#4| |#2|)) (-15 -3989 (|#4| (-1193 |#4|) |#2|)) (-15 -3305 (|#4| |#4| |#2|)) (-15 -3109 (|#4| (-1193 (-971 |#3|)) |#2|)) (-15 -2500 (|#4| (-419 (-971 |#3|)) |#2|)) (-15 -1828 ((-430 |#4|) |#4|))) (-805) (-13 (-861) (-10 -8 (-15 -4172 ((-1197) $)))) (-568) (-968 (-419 (-971 |#3|)) |#1| |#2|)) (T -744)) -((-1828 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-861) (-10 -8 (-15 -4172 ((-1197) $))))) (-4 *6 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-968 (-419 (-971 *6)) *4 *5)))) (-2500 (*1 *2 *3 *4) (-12 (-4 *6 (-568)) (-4 *2 (-968 *3 *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-5 *3 (-419 (-971 *6))) (-4 *5 (-805)) (-4 *4 (-13 (-861) (-10 -8 (-15 -4172 ((-1197) $))))))) (-3109 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 (-971 *6))) (-4 *6 (-568)) (-4 *2 (-968 (-419 (-971 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) (-4 *4 (-13 (-861) (-10 -8 (-15 -4172 ((-1197) $))))))) (-3305 (*1 *2 *2 *3) (-12 (-4 *4 (-805)) (-4 *3 (-13 (-861) (-10 -8 (-15 -4172 ((-1197) $))))) (-4 *5 (-568)) (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-968 (-419 (-971 *5)) *4 *3)))) (-3989 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *2)) (-4 *2 (-968 (-419 (-971 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) (-4 *4 (-13 (-861) (-10 -8 (-15 -4172 ((-1197) $))))) (-4 *6 (-568)))) (-3975 (*1 *2 *2 *3) (-12 (-4 *4 (-805)) (-4 *3 (-13 (-861) (-10 -8 (-15 -4172 ((-1197) $))))) (-4 *5 (-568)) (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-968 (-419 (-971 *5)) *4 *3)))) (-4189 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-861) (-10 -8 (-15 -4172 ((-1197) $))))) (-4 *6 (-568)) (-5 *2 (-2 (|:| -2324 (-971 *6)) (|:| -2317 (-971 *6)))) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-968 (-419 (-971 *6)) *4 *5))))) -(-10 -7 (-15 -4189 ((-2 (|:| -2324 (-971 |#3|)) (|:| -2317 (-971 |#3|))) |#4|)) (-15 -3975 (|#4| |#4| |#2|)) (-15 -3989 (|#4| (-1193 |#4|) |#2|)) (-15 -3305 (|#4| |#4| |#2|)) (-15 -3109 (|#4| (-1193 (-971 |#3|)) |#2|)) (-15 -2500 (|#4| (-419 (-971 |#3|)) |#2|)) (-15 -1828 ((-430 |#4|) |#4|))) +((-4431 (((-2 (|:| -2386 (-971 |#3|)) (|:| -2302 (-971 |#3|))) |#4|) 14)) (-3873 ((|#4| |#4| |#2|) 33)) (-3589 ((|#4| (-419 (-971 |#3|)) |#2|) 64)) (-2401 ((|#4| (-1193 (-971 |#3|)) |#2|) 77)) (-3082 ((|#4| (-1193 |#4|) |#2|) 51)) (-2953 ((|#4| |#4| |#2|) 54)) (-1828 (((-430 |#4|) |#4|) 40))) +(((-744 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4431 ((-2 (|:| -2386 (-971 |#3|)) (|:| -2302 (-971 |#3|))) |#4|)) (-15 -2953 (|#4| |#4| |#2|)) (-15 -3082 (|#4| (-1193 |#4|) |#2|)) (-15 -3873 (|#4| |#4| |#2|)) (-15 -2401 (|#4| (-1193 (-971 |#3|)) |#2|)) (-15 -3589 (|#4| (-419 (-971 |#3|)) |#2|)) (-15 -1828 ((-430 |#4|) |#4|))) (-805) (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $)))) (-568) (-968 (-419 (-971 |#3|)) |#1| |#2|)) (T -744)) +((-1828 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $))))) (-4 *6 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-968 (-419 (-971 *6)) *4 *5)))) (-3589 (*1 *2 *3 *4) (-12 (-4 *6 (-568)) (-4 *2 (-968 *3 *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-5 *3 (-419 (-971 *6))) (-4 *5 (-805)) (-4 *4 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $))))))) (-2401 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 (-971 *6))) (-4 *6 (-568)) (-4 *2 (-968 (-419 (-971 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) (-4 *4 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $))))))) (-3873 (*1 *2 *2 *3) (-12 (-4 *4 (-805)) (-4 *3 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $))))) (-4 *5 (-568)) (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-968 (-419 (-971 *5)) *4 *3)))) (-3082 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *2)) (-4 *2 (-968 (-419 (-971 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) (-4 *4 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $))))) (-4 *6 (-568)))) (-2953 (*1 *2 *2 *3) (-12 (-4 *4 (-805)) (-4 *3 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $))))) (-4 *5 (-568)) (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-968 (-419 (-971 *5)) *4 *3)))) (-4431 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $))))) (-4 *6 (-568)) (-5 *2 (-2 (|:| -2386 (-971 *6)) (|:| -2302 (-971 *6)))) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-968 (-419 (-971 *6)) *4 *5))))) +(-10 -7 (-15 -4431 ((-2 (|:| -2386 (-971 |#3|)) (|:| -2302 (-971 |#3|))) |#4|)) (-15 -2953 (|#4| |#4| |#2|)) (-15 -3082 (|#4| (-1193 |#4|) |#2|)) (-15 -3873 (|#4| |#4| |#2|)) (-15 -2401 (|#4| (-1193 (-971 |#3|)) |#2|)) (-15 -3589 (|#4| (-419 (-971 |#3|)) |#2|)) (-15 -1828 ((-430 |#4|) |#4|))) ((-1828 (((-430 |#4|) |#4|) 54))) (((-745 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1828 ((-430 |#4|) |#4|))) (-805) (-861) (-13 (-317) (-148)) (-968 (-419 |#3|) |#1| |#2|)) (T -745)) ((-1828 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-745 *4 *5 *6 *3)) (-4 *3 (-968 (-419 *6) *4 *5))))) (-10 -7 (-15 -1828 ((-430 |#4|) |#4|))) -((-4117 (((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)) 18))) -(((-746 |#1| |#2| |#3|) (-10 -7 (-15 -4117 ((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)))) (-1070) (-1070) (-738)) (T -746)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-747 *5 *7)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-4 *7 (-738)) (-5 *2 (-747 *6 *7)) (-5 *1 (-746 *5 *6 *7))))) -(-10 -7 (-15 -4117 ((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 36)) (-3669 (((-656 (-2 (|:| -1714 |#1|) (|:| -3685 |#2|))) $) 37)) (-4367 (((-3 $ "failed") $ $) NIL)) (-2098 (((-783)) 22 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) 76) (((-3 |#1| "failed") $) 79)) (-2860 ((|#2| $) NIL) ((|#1| $) NIL)) (-2114 (($ $) 102 (|has| |#2| (-861)))) (-1561 (((-3 $ "failed") $) 85)) (-1836 (($) 48 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-4193 (((-112) $) NIL)) (-2217 (((-783) $) 70)) (-1608 (((-656 $) $) 52)) (-2823 (((-112) $) NIL)) (-1945 (($ |#1| |#2|) 17)) (-4117 (($ (-1 |#1| |#1|) $) 68)) (-4401 (((-940) $) 43 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-2081 ((|#2| $) 101 (|has| |#2| (-861)))) (-2091 ((|#1| $) 100 (|has| |#2| (-861)))) (-3699 (((-1179) $) NIL)) (-3224 (($ (-940)) 35 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 99) (($ (-576)) 59) (($ |#2|) 55) (($ |#1|) 56) (($ (-656 (-2 (|:| -1714 |#1|) (|:| -3685 |#2|)))) 11)) (-1618 (((-656 |#1|) $) 54)) (-3177 ((|#1| $ |#2|) 115)) (-4336 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-2721 (($) 12 T CONST)) (-2732 (($) 44 T CONST)) (-2925 (((-112) $ $) 105)) (-3044 (($ $) 61) (($ $ $) NIL)) (-3030 (($ $ $) 33)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 66) (($ $ $) 118) (($ |#1| $) 63 (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-747 |#1| |#2|) (-13 (-1070) (-1059 |#2|) (-1059 |#1|) (-10 -8 (-15 -1945 ($ |#1| |#2|)) (-15 -3177 (|#1| $ |#2|)) (-15 -3570 ($ (-656 (-2 (|:| -1714 |#1|) (|:| -3685 |#2|))))) (-15 -3669 ((-656 (-2 (|:| -1714 |#1|) (|:| -3685 |#2|))) $)) (-15 -4117 ($ (-1 |#1| |#1|) $)) (-15 -2823 ((-112) $)) (-15 -1618 ((-656 |#1|) $)) (-15 -1608 ((-656 $) $)) (-15 -2217 ((-783) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-861)) (PROGN (-15 -2081 (|#2| $)) (-15 -2091 (|#1| $)) (-15 -2114 ($ $))) |%noBranch|))) (-1070) (-738)) (T -747)) -((-1945 (*1 *1 *2 *3) (-12 (-5 *1 (-747 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-738)))) (-3177 (*1 *2 *1 *3) (-12 (-4 *2 (-1070)) (-5 *1 (-747 *2 *3)) (-4 *3 (-738)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -1714 *3) (|:| -3685 *4)))) (-4 *3 (-1070)) (-4 *4 (-738)) (-5 *1 (-747 *3 *4)))) (-3669 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -1714 *3) (|:| -3685 *4)))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-738)))) (-4117 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-747 *3 *4)) (-4 *4 (-738)))) (-2823 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-738)))) (-1618 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-738)))) (-1608 (*1 *2 *1) (-12 (-5 *2 (-656 (-747 *3 *4))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-738)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-738)))) (-2081 (*1 *2 *1) (-12 (-4 *2 (-738)) (-4 *2 (-861)) (-5 *1 (-747 *3 *2)) (-4 *3 (-1070)))) (-2091 (*1 *2 *1) (-12 (-4 *2 (-1070)) (-5 *1 (-747 *2 *3)) (-4 *3 (-861)) (-4 *3 (-738)))) (-2114 (*1 *1 *1) (-12 (-5 *1 (-747 *2 *3)) (-4 *3 (-861)) (-4 *2 (-1070)) (-4 *3 (-738))))) -(-13 (-1070) (-1059 |#2|) (-1059 |#1|) (-10 -8 (-15 -1945 ($ |#1| |#2|)) (-15 -3177 (|#1| $ |#2|)) (-15 -3570 ($ (-656 (-2 (|:| -1714 |#1|) (|:| -3685 |#2|))))) (-15 -3669 ((-656 (-2 (|:| -1714 |#1|) (|:| -3685 |#2|))) $)) (-15 -4117 ($ (-1 |#1| |#1|) $)) (-15 -2823 ((-112) $)) (-15 -1618 ((-656 |#1|) $)) (-15 -1608 ((-656 $) $)) (-15 -2217 ((-783) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-861)) (PROGN (-15 -2081 (|#2| $)) (-15 -2091 (|#1| $)) (-15 -2114 ($ $))) |%noBranch|))) -((-3489 (((-112) $ $) 20)) (-1820 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3319 (($ $ $) 73)) (-1928 (((-112) $ $) 74)) (-1808 (((-112) $ (-783)) 8)) (-2071 (($ (-656 |#1|)) 69) (($) 68)) (-2300 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4465)))) (-3886 (($) 7 T CONST)) (-1703 (($ $) 63)) (-1415 (($ $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1671 (($ |#1| $) 48 (|has| $ (-6 -4465))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4465)))) (-3946 (($ |#1| $) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4465)))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4465)))) (-3966 (((-656 |#1|) $) 31 (|has| $ (-6 -4465)))) (-4248 (((-112) $ $) 65)) (-3870 (((-112) $ (-783)) 9)) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-4323 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 36)) (-1330 (((-112) $ (-783)) 10)) (-3699 (((-1179) $) 23)) (-3285 (($ $ $) 70)) (-1597 ((|#1| $) 40)) (-1901 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-1450 (((-1141) $) 22)) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3449 ((|#1| $) 42)) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-1621 (((-656 (-2 (|:| -4440 |#1|) (|:| -1460 (-783)))) $) 62)) (-3204 (($ $ |#1|) 72) (($ $ $) 71)) (-2271 (($) 50) (($ (-656 |#1|)) 49)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 13)) (-4172 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) 51)) (-3570 (((-876) $) 18)) (-1893 (($ (-656 |#1|)) 67) (($) 66)) (-4055 (((-112) $ $) 21)) (-3943 (($ (-656 |#1|)) 43)) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 19)) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-4116 (((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)) 18))) +(((-746 |#1| |#2| |#3|) (-10 -7 (-15 -4116 ((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)))) (-1070) (-1070) (-738)) (T -746)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-747 *5 *7)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-4 *7 (-738)) (-5 *2 (-747 *6 *7)) (-5 *1 (-746 *5 *6 *7))))) +(-10 -7 (-15 -4116 ((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 36)) (-3064 (((-656 (-2 (|:| -1715 |#1|) (|:| -3684 |#2|))) $) 37)) (-2428 (((-3 $ "failed") $ $) NIL)) (-2098 (((-783)) 22 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) 76) (((-3 |#1| "failed") $) 79)) (-2859 ((|#2| $) NIL) ((|#1| $) NIL)) (-2114 (($ $) 102 (|has| |#2| (-861)))) (-3673 (((-3 $ "failed") $) 85)) (-1836 (($) 48 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-1351 (((-112) $) NIL)) (-3799 (((-783) $) 70)) (-2846 (((-656 $) $) 52)) (-3538 (((-112) $) NIL)) (-1944 (($ |#1| |#2|) 17)) (-4116 (($ (-1 |#1| |#1|) $) 68)) (-1558 (((-940) $) 43 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-2081 ((|#2| $) 101 (|has| |#2| (-861)))) (-2091 ((|#1| $) 100 (|has| |#2| (-861)))) (-2046 (((-1179) $) NIL)) (-3223 (($ (-940)) 35 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 99) (($ (-576)) 59) (($ |#2|) 55) (($ |#1|) 56) (($ (-656 (-2 (|:| -1715 |#1|) (|:| -3684 |#2|)))) 11)) (-2937 (((-656 |#1|) $) 54)) (-1822 ((|#1| $ |#2|) 115)) (-3390 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-2721 (($) 12 T CONST)) (-2731 (($) 44 T CONST)) (-2924 (((-112) $ $) 105)) (-3043 (($ $) 61) (($ $ $) NIL)) (-3029 (($ $ $) 33)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 66) (($ $ $) 118) (($ |#1| $) 63 (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-747 |#1| |#2|) (-13 (-1070) (-1059 |#2|) (-1059 |#1|) (-10 -8 (-15 -1944 ($ |#1| |#2|)) (-15 -1822 (|#1| $ |#2|)) (-15 -3569 ($ (-656 (-2 (|:| -1715 |#1|) (|:| -3684 |#2|))))) (-15 -3064 ((-656 (-2 (|:| -1715 |#1|) (|:| -3684 |#2|))) $)) (-15 -4116 ($ (-1 |#1| |#1|) $)) (-15 -3538 ((-112) $)) (-15 -2937 ((-656 |#1|) $)) (-15 -2846 ((-656 $) $)) (-15 -3799 ((-783) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-861)) (PROGN (-15 -2081 (|#2| $)) (-15 -2091 (|#1| $)) (-15 -2114 ($ $))) |%noBranch|))) (-1070) (-738)) (T -747)) +((-1944 (*1 *1 *2 *3) (-12 (-5 *1 (-747 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-738)))) (-1822 (*1 *2 *1 *3) (-12 (-4 *2 (-1070)) (-5 *1 (-747 *2 *3)) (-4 *3 (-738)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -1715 *3) (|:| -3684 *4)))) (-4 *3 (-1070)) (-4 *4 (-738)) (-5 *1 (-747 *3 *4)))) (-3064 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -1715 *3) (|:| -3684 *4)))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-738)))) (-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-747 *3 *4)) (-4 *4 (-738)))) (-3538 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-738)))) (-2937 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-738)))) (-2846 (*1 *2 *1) (-12 (-5 *2 (-656 (-747 *3 *4))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-738)))) (-3799 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-738)))) (-2081 (*1 *2 *1) (-12 (-4 *2 (-738)) (-4 *2 (-861)) (-5 *1 (-747 *3 *2)) (-4 *3 (-1070)))) (-2091 (*1 *2 *1) (-12 (-4 *2 (-1070)) (-5 *1 (-747 *2 *3)) (-4 *3 (-861)) (-4 *3 (-738)))) (-2114 (*1 *1 *1) (-12 (-5 *1 (-747 *2 *3)) (-4 *3 (-861)) (-4 *2 (-1070)) (-4 *3 (-738))))) +(-13 (-1070) (-1059 |#2|) (-1059 |#1|) (-10 -8 (-15 -1944 ($ |#1| |#2|)) (-15 -1822 (|#1| $ |#2|)) (-15 -3569 ($ (-656 (-2 (|:| -1715 |#1|) (|:| -3684 |#2|))))) (-15 -3064 ((-656 (-2 (|:| -1715 |#1|) (|:| -3684 |#2|))) $)) (-15 -4116 ($ (-1 |#1| |#1|) $)) (-15 -3538 ((-112) $)) (-15 -2937 ((-656 |#1|) $)) (-15 -2846 ((-656 $) $)) (-15 -3799 ((-783) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-861)) (PROGN (-15 -2081 (|#2| $)) (-15 -2091 (|#1| $)) (-15 -2114 ($ $))) |%noBranch|))) +((-3488 (((-112) $ $) 20)) (-1820 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2688 (($ $ $) 73)) (-2866 (((-112) $ $) 74)) (-4264 (((-112) $ (-783)) 8)) (-2071 (($ (-656 |#1|)) 69) (($) 68)) (-2123 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4464)))) (-1974 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4464)))) (-3404 (($) 7 T CONST)) (-2495 (($ $) 63)) (-2034 (($ $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2172 (($ |#1| $) 48 (|has| $ (-6 -4464))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4464)))) (-3945 (($ |#1| $) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4464)))) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-3820 (((-112) $ $) 65)) (-1368 (((-112) $ (-783)) 9)) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4326 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-2883 (((-112) $ (-783)) 10)) (-2046 (((-1179) $) 23)) (-3651 (($ $ $) 70)) (-2722 ((|#1| $) 40)) (-2597 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-1450 (((-1141) $) 22)) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1541 ((|#1| $) 42)) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-2977 (((-656 (-2 (|:| -4439 |#1|) (|:| -1460 (-783)))) $) 62)) (-4079 (($ $ |#1|) 72) (($ $ $) 71)) (-3101 (($) 50) (($ (-656 |#1|)) 49)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-4171 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 51)) (-3569 (((-876) $) 18)) (-1895 (($ (-656 |#1|)) 67) (($) 66)) (-2399 (((-112) $ $) 21)) (-3972 (($ (-656 |#1|)) 43)) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 19)) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-748 |#1|) (-141) (-1121)) (T -748)) NIL (-13 (-707 |t#1|) (-1119 |t#1|)) (((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-876)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-707 |#1|) . T) ((-1119 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-1820 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 92)) (-3319 (($ $ $) 96)) (-1928 (((-112) $ $) 104)) (-1808 (((-112) $ (-783)) NIL)) (-2071 (($ (-656 |#1|)) 26) (($) 17)) (-2300 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3886 (($) NIL T CONST)) (-1703 (($ $) 85)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1671 (($ |#1| $) 70 (|has| $ (-6 -4465))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4465))) (($ |#1| $ (-576)) 75) (($ (-1 (-112) |#1|) $ (-576)) 78)) (-3946 (($ |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (($ |#1| $ (-576)) 80) (($ (-1 (-112) |#1|) $ (-576)) 81)) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-3966 (((-656 |#1|) $) 32 (|has| $ (-6 -4465)))) (-4248 (((-112) $ $) 103)) (-4368 (($) 15) (($ |#1|) 28) (($ (-656 |#1|)) 23)) (-3870 (((-112) $ (-783)) NIL)) (-2014 (((-656 |#1|) $) 38)) (-1612 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-4323 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 89)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL)) (-3285 (($ $ $) 94)) (-1597 ((|#1| $) 62)) (-1901 (($ |#1| $) 63) (($ |#1| $ (-783)) 86)) (-1450 (((-1141) $) NIL)) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3449 ((|#1| $) 61)) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) 56)) (-4225 (($) 14)) (-1621 (((-656 (-2 (|:| -4440 |#1|) (|:| -1460 (-783)))) $) 55)) (-3204 (($ $ |#1|) NIL) (($ $ $) 95)) (-2271 (($) 16) (($ (-656 |#1|)) 25)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) 68 (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1870 (($ $) 79)) (-4172 (((-548) $) 36 (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) 22)) (-3570 (((-876) $) 49)) (-1893 (($ (-656 |#1|)) 27) (($) 18)) (-4055 (((-112) $ $) NIL)) (-3943 (($ (-656 |#1|)) 24)) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 100)) (-3503 (((-783) $) 67 (|has| $ (-6 -4465))))) -(((-749 |#1|) (-13 (-748 |#1|) (-10 -8 (-6 -4465) (-6 -4466) (-15 -4368 ($)) (-15 -4368 ($ |#1|)) (-15 -4368 ($ (-656 |#1|))) (-15 -2014 ((-656 |#1|) $)) (-15 -3946 ($ |#1| $ (-576))) (-15 -3946 ($ (-1 (-112) |#1|) $ (-576))) (-15 -1671 ($ |#1| $ (-576))) (-15 -1671 ($ (-1 (-112) |#1|) $ (-576))))) (-1121)) (T -749)) -((-4368 (*1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1121)))) (-4368 (*1 *1 *2) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1121)))) (-4368 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-749 *3)))) (-2014 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-749 *3)) (-4 *3 (-1121)))) (-3946 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1121)))) (-3946 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1121)) (-5 *1 (-749 *4)))) (-1671 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1121)))) (-1671 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1121)) (-5 *1 (-749 *4))))) -(-13 (-748 |#1|) (-10 -8 (-6 -4465) (-6 -4466) (-15 -4368 ($)) (-15 -4368 ($ |#1|)) (-15 -4368 ($ (-656 |#1|))) (-15 -2014 ((-656 |#1|) $)) (-15 -3946 ($ |#1| $ (-576))) (-15 -3946 ($ (-1 (-112) |#1|) $ (-576))) (-15 -1671 ($ |#1| $ (-576))) (-15 -1671 ($ (-1 (-112) |#1|) $ (-576))))) -((-2972 (((-1293) (-1179)) 8))) -(((-750) (-10 -7 (-15 -2972 ((-1293) (-1179))))) (T -750)) -((-2972 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-750))))) -(-10 -7 (-15 -2972 ((-1293) (-1179)))) -((-2627 (((-656 |#1|) (-656 |#1|) (-656 |#1|)) 15))) -(((-751 |#1|) (-10 -7 (-15 -2627 ((-656 |#1|) (-656 |#1|) (-656 |#1|)))) (-861)) (T -751)) -((-2627 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-751 *3))))) -(-10 -7 (-15 -2627 ((-656 |#1|) (-656 |#1|) (-656 |#1|)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-1969 (((-656 |#2|) $) 149)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 142 (|has| |#1| (-568)))) (-2757 (($ $) 141 (|has| |#1| (-568)))) (-3788 (((-112) $) 139 (|has| |#1| (-568)))) (-4025 (($ $) 98 (|has| |#1| (-38 (-419 (-576)))))) (-3901 (($ $) 81 (|has| |#1| (-38 (-419 (-576)))))) (-4367 (((-3 $ "failed") $ $) 20)) (-1839 (($ $) 80 (|has| |#1| (-38 (-419 (-576)))))) (-4006 (($ $) 97 (|has| |#1| (-38 (-419 (-576)))))) (-3877 (($ $) 82 (|has| |#1| (-38 (-419 (-576)))))) (-4050 (($ $) 96 (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $) 83 (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($) 18 T CONST)) (-2114 (($ $) 133)) (-1561 (((-3 $ "failed") $) 37)) (-2383 (((-971 |#1|) $ (-783)) 111) (((-971 |#1|) $ (-783) (-783)) 110)) (-1424 (((-112) $) 150)) (-1600 (($) 108 (|has| |#1| (-38 (-419 (-576)))))) (-3917 (((-783) $ |#2|) 113) (((-783) $ |#2| (-783)) 112)) (-4193 (((-112) $) 35)) (-2121 (($ $ (-576)) 79 (|has| |#1| (-38 (-419 (-576)))))) (-2823 (((-112) $) 131)) (-1945 (($ $ (-656 |#2|) (-656 (-543 |#2|))) 148) (($ $ |#2| (-543 |#2|)) 147) (($ |#1| (-543 |#2|)) 132) (($ $ |#2| (-783)) 115) (($ $ (-656 |#2|) (-656 (-783))) 114)) (-4117 (($ (-1 |#1| |#1|) $) 130)) (-3745 (($ $) 105 (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) 128)) (-2091 ((|#1| $) 127)) (-3699 (((-1179) $) 10)) (-1491 (($ $ |#2|) 109 (|has| |#1| (-38 (-419 (-576)))))) (-1450 (((-1141) $) 11)) (-1749 (($ $ (-783)) 116)) (-3476 (((-3 $ "failed") $ $) 143 (|has| |#1| (-568)))) (-4104 (($ $) 106 (|has| |#1| (-38 (-419 (-576)))))) (-3284 (($ $ |#2| $) 124) (($ $ (-656 |#2|) (-656 $)) 123) (($ $ (-656 (-304 $))) 122) (($ $ (-304 $)) 121) (($ $ $ $) 120) (($ $ (-656 $) (-656 $)) 119)) (-2775 (($ $ (-656 |#2|) (-656 (-783))) 44) (($ $ |#2| (-783)) 43) (($ $ (-656 |#2|)) 42) (($ $ |#2|) 40)) (-3634 (((-543 |#2|) $) 129)) (-4061 (($ $) 95 (|has| |#1| (-38 (-419 (-576)))))) (-3930 (($ $) 84 (|has| |#1| (-38 (-419 (-576)))))) (-4037 (($ $) 94 (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) 85 (|has| |#1| (-38 (-419 (-576)))))) (-4014 (($ $) 93 (|has| |#1| (-38 (-419 (-576)))))) (-3889 (($ $) 86 (|has| |#1| (-38 (-419 (-576)))))) (-3126 (($ $) 151)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 146 (|has| |#1| (-174))) (($ $) 144 (|has| |#1| (-568))) (($ (-419 (-576))) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3177 ((|#1| $ (-543 |#2|)) 134) (($ $ |#2| (-783)) 118) (($ $ (-656 |#2|) (-656 (-783))) 117)) (-4336 (((-3 $ "failed") $) 145 (|has| |#1| (-146)))) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2791 (($ $) 104 (|has| |#1| (-38 (-419 (-576)))))) (-3961 (($ $) 92 (|has| |#1| (-38 (-419 (-576)))))) (-2672 (((-112) $ $) 140 (|has| |#1| (-568)))) (-4071 (($ $) 103 (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) 91 (|has| |#1| (-38 (-419 (-576)))))) (-2815 (($ $) 102 (|has| |#1| (-38 (-419 (-576)))))) (-3983 (($ $) 90 (|has| |#1| (-38 (-419 (-576)))))) (-4388 (($ $) 101 (|has| |#1| (-38 (-419 (-576)))))) (-3995 (($ $) 89 (|has| |#1| (-38 (-419 (-576)))))) (-2803 (($ $) 100 (|has| |#1| (-38 (-419 (-576)))))) (-3974 (($ $) 88 (|has| |#1| (-38 (-419 (-576)))))) (-4083 (($ $) 99 (|has| |#1| (-38 (-419 (-576)))))) (-3951 (($ $) 87 (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2020 (($ $ (-656 |#2|) (-656 (-783))) 47) (($ $ |#2| (-783)) 46) (($ $ (-656 |#2|)) 45) (($ $ |#2|) 41)) (-2925 (((-112) $ $) 8)) (-3057 (($ $ |#1|) 135 (|has| |#1| (-374)))) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ $) 107 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 78 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 138 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 137 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 126) (($ $ |#1|) 125))) +((-3488 (((-112) $ $) NIL)) (-1820 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 92)) (-2688 (($ $ $) 96)) (-2866 (((-112) $ $) 104)) (-4264 (((-112) $ (-783)) NIL)) (-2071 (($ (-656 |#1|)) 26) (($) 17)) (-2123 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4464)))) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3404 (($) NIL T CONST)) (-2495 (($ $) 85)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2172 (($ |#1| $) 70 (|has| $ (-6 -4464))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4464))) (($ |#1| $ (-576)) 75) (($ (-1 (-112) |#1|) $ (-576)) 78)) (-3945 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (($ |#1| $ (-576)) 80) (($ (-1 (-112) |#1|) $ (-576)) 81)) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-3965 (((-656 |#1|) $) 32 (|has| $ (-6 -4464)))) (-3820 (((-112) $ $) 103)) (-2439 (($) 15) (($ |#1|) 28) (($ (-656 |#1|)) 23)) (-1368 (((-112) $ (-783)) NIL)) (-2425 (((-656 |#1|) $) 38)) (-2885 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4326 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 89)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL)) (-3651 (($ $ $) 94)) (-2722 ((|#1| $) 62)) (-2597 (($ |#1| $) 63) (($ |#1| $ (-783)) 86)) (-1450 (((-1141) $) NIL)) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1541 ((|#1| $) 61)) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) 56)) (-3579 (($) 14)) (-2977 (((-656 (-2 (|:| -4439 |#1|) (|:| -1460 (-783)))) $) 55)) (-4079 (($ $ |#1|) NIL) (($ $ $) 95)) (-3101 (($) 16) (($ (-656 |#1|)) 25)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) 68 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) 79)) (-4171 (((-548) $) 36 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 22)) (-3569 (((-876) $) 49)) (-1895 (($ (-656 |#1|)) 27) (($) 18)) (-2399 (((-112) $ $) NIL)) (-3972 (($ (-656 |#1|)) 24)) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 100)) (-3502 (((-783) $) 67 (|has| $ (-6 -4464))))) +(((-749 |#1|) (-13 (-748 |#1|) (-10 -8 (-6 -4464) (-6 -4465) (-15 -2439 ($)) (-15 -2439 ($ |#1|)) (-15 -2439 ($ (-656 |#1|))) (-15 -2425 ((-656 |#1|) $)) (-15 -3945 ($ |#1| $ (-576))) (-15 -3945 ($ (-1 (-112) |#1|) $ (-576))) (-15 -2172 ($ |#1| $ (-576))) (-15 -2172 ($ (-1 (-112) |#1|) $ (-576))))) (-1121)) (T -749)) +((-2439 (*1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1121)))) (-2439 (*1 *1 *2) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1121)))) (-2439 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-749 *3)))) (-2425 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-749 *3)) (-4 *3 (-1121)))) (-3945 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1121)))) (-3945 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1121)) (-5 *1 (-749 *4)))) (-2172 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1121)))) (-2172 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1121)) (-5 *1 (-749 *4))))) +(-13 (-748 |#1|) (-10 -8 (-6 -4464) (-6 -4465) (-15 -2439 ($)) (-15 -2439 ($ |#1|)) (-15 -2439 ($ (-656 |#1|))) (-15 -2425 ((-656 |#1|) $)) (-15 -3945 ($ |#1| $ (-576))) (-15 -3945 ($ (-1 (-112) |#1|) $ (-576))) (-15 -2172 ($ |#1| $ (-576))) (-15 -2172 ($ (-1 (-112) |#1|) $ (-576))))) +((-2968 (((-1293) (-1179)) 8))) +(((-750) (-10 -7 (-15 -2968 ((-1293) (-1179))))) (T -750)) +((-2968 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-750))))) +(-10 -7 (-15 -2968 ((-1293) (-1179)))) +((-2298 (((-656 |#1|) (-656 |#1|) (-656 |#1|)) 15))) +(((-751 |#1|) (-10 -7 (-15 -2298 ((-656 |#1|) (-656 |#1|) (-656 |#1|)))) (-861)) (T -751)) +((-2298 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-751 *3))))) +(-10 -7 (-15 -2298 ((-656 |#1|) (-656 |#1|) (-656 |#1|)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-1969 (((-656 |#2|) $) 149)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 142 (|has| |#1| (-568)))) (-4195 (($ $) 141 (|has| |#1| (-568)))) (-1760 (((-112) $) 139 (|has| |#1| (-568)))) (-4024 (($ $) 98 (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) 81 (|has| |#1| (-38 (-419 (-576)))))) (-2428 (((-3 $ "failed") $ $) 20)) (-1840 (($ $) 80 (|has| |#1| (-38 (-419 (-576)))))) (-4005 (($ $) 97 (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) 82 (|has| |#1| (-38 (-419 (-576)))))) (-4049 (($ $) 96 (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) 83 (|has| |#1| (-38 (-419 (-576)))))) (-3404 (($) 18 T CONST)) (-2114 (($ $) 133)) (-3673 (((-3 $ "failed") $) 37)) (-2383 (((-971 |#1|) $ (-783)) 111) (((-971 |#1|) $ (-783) (-783)) 110)) (-2116 (((-112) $) 150)) (-1600 (($) 108 (|has| |#1| (-38 (-419 (-576)))))) (-3726 (((-783) $ |#2|) 113) (((-783) $ |#2| (-783)) 112)) (-1351 (((-112) $) 35)) (-4131 (($ $ (-576)) 79 (|has| |#1| (-38 (-419 (-576)))))) (-3538 (((-112) $) 131)) (-1944 (($ $ (-656 |#2|) (-656 (-543 |#2|))) 148) (($ $ |#2| (-543 |#2|)) 147) (($ |#1| (-543 |#2|)) 132) (($ $ |#2| (-783)) 115) (($ $ (-656 |#2|) (-656 (-783))) 114)) (-4116 (($ (-1 |#1| |#1|) $) 130)) (-3744 (($ $) 105 (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) 128)) (-2091 ((|#1| $) 127)) (-2046 (((-1179) $) 10)) (-4160 (($ $ |#2|) 109 (|has| |#1| (-38 (-419 (-576)))))) (-1450 (((-1141) $) 11)) (-1743 (($ $ (-783)) 116)) (-3475 (((-3 $ "failed") $ $) 143 (|has| |#1| (-568)))) (-4103 (($ $) 106 (|has| |#1| (-38 (-419 (-576)))))) (-3282 (($ $ |#2| $) 124) (($ $ (-656 |#2|) (-656 $)) 123) (($ $ (-656 (-304 $))) 122) (($ $ (-304 $)) 121) (($ $ $ $) 120) (($ $ (-656 $) (-656 $)) 119)) (-2774 (($ $ (-656 |#2|) (-656 (-783))) 44) (($ $ |#2| (-783)) 43) (($ $ (-656 |#2|)) 42) (($ $ |#2|) 40)) (-2683 (((-543 |#2|) $) 129)) (-4060 (($ $) 95 (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) 84 (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) 94 (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) 85 (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) 93 (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) 86 (|has| |#1| (-38 (-419 (-576)))))) (-2539 (($ $) 151)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 146 (|has| |#1| (-174))) (($ $) 144 (|has| |#1| (-568))) (($ (-419 (-576))) 136 (|has| |#1| (-38 (-419 (-576)))))) (-1822 ((|#1| $ (-543 |#2|)) 134) (($ $ |#2| (-783)) 118) (($ $ (-656 |#2|) (-656 (-783))) 117)) (-3390 (((-3 $ "failed") $) 145 (|has| |#1| (-146)))) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-2790 (($ $) 104 (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) 92 (|has| |#1| (-38 (-419 (-576)))))) (-1505 (((-112) $ $) 140 (|has| |#1| (-568)))) (-4070 (($ $) 103 (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) 91 (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) 102 (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) 90 (|has| |#1| (-38 (-419 (-576)))))) (-4387 (($ $) 101 (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) 89 (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) 100 (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) 88 (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) 99 (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) 87 (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2020 (($ $ (-656 |#2|) (-656 (-783))) 47) (($ $ |#2| (-783)) 46) (($ $ (-656 |#2|)) 45) (($ $ |#2|) 41)) (-2924 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 135 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ $) 107 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 78 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 138 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 137 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 126) (($ $ |#1|) 125))) (((-752 |#1| |#2|) (-141) (-1070) (-861)) (T -752)) -((-3177 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1070)) (-4 *2 (-861)))) (-3177 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-861)))) (-1749 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-752 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-861)))) (-1945 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1070)) (-4 *2 (-861)))) (-1945 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-861)))) (-3917 (*1 *2 *1 *3) (-12 (-4 *1 (-752 *4 *3)) (-4 *4 (-1070)) (-4 *3 (-861)) (-5 *2 (-783)))) (-3917 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-783)) (-4 *1 (-752 *4 *3)) (-4 *4 (-1070)) (-4 *3 (-861)))) (-2383 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-861)) (-5 *2 (-971 *4)))) (-2383 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-861)) (-5 *2 (-971 *4)))) (-1491 (*1 *1 *1 *2) (-12 (-4 *1 (-752 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-861)) (-4 *3 (-38 (-419 (-576))))))) -(-13 (-917 |t#2|) (-994 |t#1| (-543 |t#2|) |t#2|) (-526 |t#2| $) (-319 $) (-10 -8 (-15 -3177 ($ $ |t#2| (-783))) (-15 -3177 ($ $ (-656 |t#2|) (-656 (-783)))) (-15 -1749 ($ $ (-783))) (-15 -1945 ($ $ |t#2| (-783))) (-15 -1945 ($ $ (-656 |t#2|) (-656 (-783)))) (-15 -3917 ((-783) $ |t#2|)) (-15 -3917 ((-783) $ |t#2| (-783))) (-15 -2383 ((-971 |t#1|) $ (-783))) (-15 -2383 ((-971 |t#1|) $ (-783) (-783))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -1491 ($ $ |t#2|)) (-6 (-1023)) (-6 (-1223))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-543 |#2|)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2760 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) -2760 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-300) |has| |#1| (-568)) ((-319 $) . T) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-526 |#2| $) . T) ((-526 $ $) . T) ((-568) |has| |#1| (-568)) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-911 $ |#2|) . T) ((-917 |#2|) . T) ((-919 |#2|) . T) ((-994 |#1| #0# |#2|) . T) ((-1023) |has| |#1| (-38 (-419 (-576)))) ((-1072 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1077 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1223) |has| |#1| (-38 (-419 (-576)))) ((-1226) |has| |#1| (-38 (-419 (-576)))) ((-1238) . T)) +((-1822 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1070)) (-4 *2 (-861)))) (-1822 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-861)))) (-1743 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-752 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-861)))) (-1944 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1070)) (-4 *2 (-861)))) (-1944 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-861)))) (-3726 (*1 *2 *1 *3) (-12 (-4 *1 (-752 *4 *3)) (-4 *4 (-1070)) (-4 *3 (-861)) (-5 *2 (-783)))) (-3726 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-783)) (-4 *1 (-752 *4 *3)) (-4 *4 (-1070)) (-4 *3 (-861)))) (-2383 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-861)) (-5 *2 (-971 *4)))) (-2383 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-861)) (-5 *2 (-971 *4)))) (-4160 (*1 *1 *1 *2) (-12 (-4 *1 (-752 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-861)) (-4 *3 (-38 (-419 (-576))))))) +(-13 (-917 |t#2|) (-994 |t#1| (-543 |t#2|) |t#2|) (-526 |t#2| $) (-319 $) (-10 -8 (-15 -1822 ($ $ |t#2| (-783))) (-15 -1822 ($ $ (-656 |t#2|) (-656 (-783)))) (-15 -1743 ($ $ (-783))) (-15 -1944 ($ $ |t#2| (-783))) (-15 -1944 ($ $ (-656 |t#2|) (-656 (-783)))) (-15 -3726 ((-783) $ |t#2|)) (-15 -3726 ((-783) $ |t#2| (-783))) (-15 -2383 ((-971 |t#1|) $ (-783))) (-15 -2383 ((-971 |t#1|) $ (-783) (-783))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -4160 ($ $ |t#2|)) (-6 (-1023)) (-6 (-1223))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-543 |#2|)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2759 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) -2759 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-300) |has| |#1| (-568)) ((-319 $) . T) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-526 |#2| $) . T) ((-526 $ $) . T) ((-568) |has| |#1| (-568)) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-911 $ |#2|) . T) ((-917 |#2|) . T) ((-919 |#2|) . T) ((-994 |#1| #0# |#2|) . T) ((-1023) |has| |#1| (-38 (-419 (-576)))) ((-1072 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1077 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1223) |has| |#1| (-38 (-419 (-576)))) ((-1226) |has| |#1| (-38 (-419 (-576)))) ((-1238) . T)) ((-1828 (((-430 (-1193 |#4|)) (-1193 |#4|)) 30) (((-430 |#4|) |#4|) 26))) (((-753 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1828 ((-430 |#4|) |#4|)) (-15 -1828 ((-430 (-1193 |#4|)) (-1193 |#4|)))) (-861) (-805) (-13 (-317) (-148)) (-968 |#3| |#2| |#1|)) (T -753)) ((-1828 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-968 *6 *5 *4)) (-5 *2 (-430 (-1193 *7))) (-5 *1 (-753 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) (-1828 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-753 *4 *5 *6 *3)) (-4 *3 (-968 *6 *5 *4))))) (-10 -7 (-15 -1828 ((-430 |#4|) |#4|)) (-15 -1828 ((-430 (-1193 |#4|)) (-1193 |#4|)))) -((-3879 (((-430 |#4|) |#4| |#2|) 140)) (-3435 (((-430 |#4|) |#4|) NIL)) (-3921 (((-430 (-1193 |#4|)) (-1193 |#4|)) 127) (((-430 |#4|) |#4|) 52)) (-3184 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -1828 (-1193 |#4|)) (|:| -3422 (-576)))))) (-1193 |#4|) (-656 |#2|) (-656 (-656 |#3|))) 81)) (-4348 (((-1193 |#3|) (-1193 |#3|) (-576)) 166)) (-3098 (((-656 (-783)) (-1193 |#4|) (-656 |#2|) (-783)) 75)) (-3672 (((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-1193 |#3|) (-1193 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|)) 79)) (-1546 (((-2 (|:| |upol| (-1193 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -3422 (-576))))) (|:| |ctpol| |#3|)) (-1193 |#4|) (-656 |#2|) (-656 (-656 |#3|))) 27)) (-3512 (((-2 (|:| -3307 (-1193 |#4|)) (|:| |polval| (-1193 |#3|))) (-1193 |#4|) (-1193 |#3|) (-576)) 72)) (-2529 (((-576) (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -3422 (-576))))) 162)) (-1379 ((|#4| (-576) (-430 |#4|)) 73)) (-4181 (((-112) (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -3422 (-576)))) (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -3422 (-576))))) NIL))) -(((-754 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3921 ((-430 |#4|) |#4|)) (-15 -3921 ((-430 (-1193 |#4|)) (-1193 |#4|))) (-15 -3435 ((-430 |#4|) |#4|)) (-15 -2529 ((-576) (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -3422 (-576)))))) (-15 -3879 ((-430 |#4|) |#4| |#2|)) (-15 -3512 ((-2 (|:| -3307 (-1193 |#4|)) (|:| |polval| (-1193 |#3|))) (-1193 |#4|) (-1193 |#3|) (-576))) (-15 -3184 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -1828 (-1193 |#4|)) (|:| -3422 (-576)))))) (-1193 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -1546 ((-2 (|:| |upol| (-1193 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -3422 (-576))))) (|:| |ctpol| |#3|)) (-1193 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -1379 (|#4| (-576) (-430 |#4|))) (-15 -4181 ((-112) (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -3422 (-576)))) (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -3422 (-576)))))) (-15 -3672 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-1193 |#3|) (-1193 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|))) (-15 -3098 ((-656 (-783)) (-1193 |#4|) (-656 |#2|) (-783))) (-15 -4348 ((-1193 |#3|) (-1193 |#3|) (-576)))) (-805) (-861) (-317) (-968 |#3| |#1| |#2|)) (T -754)) -((-4348 (*1 *2 *2 *3) (-12 (-5 *2 (-1193 *6)) (-5 *3 (-576)) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) (-3098 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1193 *9)) (-5 *4 (-656 *7)) (-4 *7 (-861)) (-4 *9 (-968 *8 *6 *7)) (-4 *6 (-805)) (-4 *8 (-317)) (-5 *2 (-656 (-783))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *5 (-783)))) (-3672 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1193 *11)) (-5 *6 (-656 *10)) (-5 *7 (-656 (-783))) (-5 *8 (-656 *11)) (-4 *10 (-861)) (-4 *11 (-317)) (-4 *9 (-805)) (-4 *5 (-968 *11 *9 *10)) (-5 *2 (-656 (-1193 *5))) (-5 *1 (-754 *9 *10 *11 *5)) (-5 *3 (-1193 *5)))) (-4181 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-2 (|:| -1828 (-1193 *6)) (|:| -3422 (-576))))) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) (-1379 (*1 *2 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-430 *2)) (-4 *2 (-968 *7 *5 *6)) (-5 *1 (-754 *5 *6 *7 *2)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-317)))) (-1546 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1193 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-861)) (-4 *8 (-317)) (-4 *9 (-968 *8 *6 *7)) (-4 *6 (-805)) (-5 *2 (-2 (|:| |upol| (-1193 *8)) (|:| |Lval| (-656 *8)) (|:| |Lfact| (-656 (-2 (|:| -1828 (-1193 *8)) (|:| -3422 (-576))))) (|:| |ctpol| *8))) (-5 *1 (-754 *6 *7 *8 *9)))) (-3184 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-861)) (-4 *8 (-317)) (-4 *6 (-805)) (-4 *9 (-968 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-656 (-2 (|:| -1828 (-1193 *9)) (|:| -3422 (-576))))))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1193 *9)))) (-3512 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-576)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-317)) (-4 *9 (-968 *8 *6 *7)) (-5 *2 (-2 (|:| -3307 (-1193 *9)) (|:| |polval| (-1193 *8)))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1193 *9)) (-5 *4 (-1193 *8)))) (-3879 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *5 *4 *6 *3)) (-4 *3 (-968 *6 *5 *4)))) (-2529 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -1828 (-1193 *6)) (|:| -3422 (-576))))) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-576)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) (-3435 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-968 *6 *4 *5)))) (-3921 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-430 (-1193 *7))) (-5 *1 (-754 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) (-3921 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-968 *6 *4 *5))))) -(-10 -7 (-15 -3921 ((-430 |#4|) |#4|)) (-15 -3921 ((-430 (-1193 |#4|)) (-1193 |#4|))) (-15 -3435 ((-430 |#4|) |#4|)) (-15 -2529 ((-576) (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -3422 (-576)))))) (-15 -3879 ((-430 |#4|) |#4| |#2|)) (-15 -3512 ((-2 (|:| -3307 (-1193 |#4|)) (|:| |polval| (-1193 |#3|))) (-1193 |#4|) (-1193 |#3|) (-576))) (-15 -3184 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -1828 (-1193 |#4|)) (|:| -3422 (-576)))))) (-1193 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -1546 ((-2 (|:| |upol| (-1193 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -3422 (-576))))) (|:| |ctpol| |#3|)) (-1193 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -1379 (|#4| (-576) (-430 |#4|))) (-15 -4181 ((-112) (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -3422 (-576)))) (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -3422 (-576)))))) (-15 -3672 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-1193 |#3|) (-1193 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|))) (-15 -3098 ((-656 (-783)) (-1193 |#4|) (-656 |#2|) (-783))) (-15 -4348 ((-1193 |#3|) (-1193 |#3|) (-576)))) -((-4017 (($ $ (-940)) 17))) -(((-755 |#1| |#2|) (-10 -8 (-15 -4017 (|#1| |#1| (-940)))) (-756 |#2|) (-174)) (T -755)) -NIL -(-10 -8 (-15 -4017 (|#1| |#1| (-940)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-3377 (($ $ (-940)) 31)) (-4017 (($ $ (-940)) 38)) (-1783 (($ $ (-940)) 32)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2076 (($ $ $) 28)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-3790 (($ $ $ $) 29)) (-4064 (($ $ $) 27)) (-2721 (($) 19 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 33)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +((-1443 (((-430 |#4|) |#4| |#2|) 140)) (-1447 (((-430 |#4|) |#4|) NIL)) (-3760 (((-430 (-1193 |#4|)) (-1193 |#4|)) 127) (((-430 |#4|) |#4|) 52)) (-1897 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -1828 (-1193 |#4|)) (|:| -2508 (-576)))))) (-1193 |#4|) (-656 |#2|) (-656 (-656 |#3|))) 81)) (-2237 (((-1193 |#3|) (-1193 |#3|) (-576)) 166)) (-2296 (((-656 (-783)) (-1193 |#4|) (-656 |#2|) (-783)) 75)) (-3671 (((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-1193 |#3|) (-1193 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|)) 79)) (-3496 (((-2 (|:| |upol| (-1193 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -2508 (-576))))) (|:| |ctpol| |#3|)) (-1193 |#4|) (-656 |#2|) (-656 (-656 |#3|))) 27)) (-4072 (((-2 (|:| -3896 (-1193 |#4|)) (|:| |polval| (-1193 |#3|))) (-1193 |#4|) (-1193 |#3|) (-576)) 72)) (-3911 (((-576) (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -2508 (-576))))) 162)) (-4122 ((|#4| (-576) (-430 |#4|)) 73)) (-4352 (((-112) (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -2508 (-576)))) (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -2508 (-576))))) NIL))) +(((-754 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3760 ((-430 |#4|) |#4|)) (-15 -3760 ((-430 (-1193 |#4|)) (-1193 |#4|))) (-15 -1447 ((-430 |#4|) |#4|)) (-15 -3911 ((-576) (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -2508 (-576)))))) (-15 -1443 ((-430 |#4|) |#4| |#2|)) (-15 -4072 ((-2 (|:| -3896 (-1193 |#4|)) (|:| |polval| (-1193 |#3|))) (-1193 |#4|) (-1193 |#3|) (-576))) (-15 -1897 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -1828 (-1193 |#4|)) (|:| -2508 (-576)))))) (-1193 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -3496 ((-2 (|:| |upol| (-1193 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -2508 (-576))))) (|:| |ctpol| |#3|)) (-1193 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -4122 (|#4| (-576) (-430 |#4|))) (-15 -4352 ((-112) (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -2508 (-576)))) (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -2508 (-576)))))) (-15 -3671 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-1193 |#3|) (-1193 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|))) (-15 -2296 ((-656 (-783)) (-1193 |#4|) (-656 |#2|) (-783))) (-15 -2237 ((-1193 |#3|) (-1193 |#3|) (-576)))) (-805) (-861) (-317) (-968 |#3| |#1| |#2|)) (T -754)) +((-2237 (*1 *2 *2 *3) (-12 (-5 *2 (-1193 *6)) (-5 *3 (-576)) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) (-2296 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1193 *9)) (-5 *4 (-656 *7)) (-4 *7 (-861)) (-4 *9 (-968 *8 *6 *7)) (-4 *6 (-805)) (-4 *8 (-317)) (-5 *2 (-656 (-783))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *5 (-783)))) (-3671 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1193 *11)) (-5 *6 (-656 *10)) (-5 *7 (-656 (-783))) (-5 *8 (-656 *11)) (-4 *10 (-861)) (-4 *11 (-317)) (-4 *9 (-805)) (-4 *5 (-968 *11 *9 *10)) (-5 *2 (-656 (-1193 *5))) (-5 *1 (-754 *9 *10 *11 *5)) (-5 *3 (-1193 *5)))) (-4352 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-2 (|:| -1828 (-1193 *6)) (|:| -2508 (-576))))) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) (-4122 (*1 *2 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-430 *2)) (-4 *2 (-968 *7 *5 *6)) (-5 *1 (-754 *5 *6 *7 *2)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-317)))) (-3496 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1193 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-861)) (-4 *8 (-317)) (-4 *9 (-968 *8 *6 *7)) (-4 *6 (-805)) (-5 *2 (-2 (|:| |upol| (-1193 *8)) (|:| |Lval| (-656 *8)) (|:| |Lfact| (-656 (-2 (|:| -1828 (-1193 *8)) (|:| -2508 (-576))))) (|:| |ctpol| *8))) (-5 *1 (-754 *6 *7 *8 *9)))) (-1897 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-861)) (-4 *8 (-317)) (-4 *6 (-805)) (-4 *9 (-968 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-656 (-2 (|:| -1828 (-1193 *9)) (|:| -2508 (-576))))))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1193 *9)))) (-4072 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-576)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-317)) (-4 *9 (-968 *8 *6 *7)) (-5 *2 (-2 (|:| -3896 (-1193 *9)) (|:| |polval| (-1193 *8)))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1193 *9)) (-5 *4 (-1193 *8)))) (-1443 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *5 *4 *6 *3)) (-4 *3 (-968 *6 *5 *4)))) (-3911 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -1828 (-1193 *6)) (|:| -2508 (-576))))) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-576)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) (-1447 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-968 *6 *4 *5)))) (-3760 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-430 (-1193 *7))) (-5 *1 (-754 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) (-3760 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-968 *6 *4 *5))))) +(-10 -7 (-15 -3760 ((-430 |#4|) |#4|)) (-15 -3760 ((-430 (-1193 |#4|)) (-1193 |#4|))) (-15 -1447 ((-430 |#4|) |#4|)) (-15 -3911 ((-576) (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -2508 (-576)))))) (-15 -1443 ((-430 |#4|) |#4| |#2|)) (-15 -4072 ((-2 (|:| -3896 (-1193 |#4|)) (|:| |polval| (-1193 |#3|))) (-1193 |#4|) (-1193 |#3|) (-576))) (-15 -1897 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -1828 (-1193 |#4|)) (|:| -2508 (-576)))))) (-1193 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -3496 ((-2 (|:| |upol| (-1193 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -2508 (-576))))) (|:| |ctpol| |#3|)) (-1193 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -4122 (|#4| (-576) (-430 |#4|))) (-15 -4352 ((-112) (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -2508 (-576)))) (-656 (-2 (|:| -1828 (-1193 |#3|)) (|:| -2508 (-576)))))) (-15 -3671 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-1193 |#3|) (-1193 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|))) (-15 -2296 ((-656 (-783)) (-1193 |#4|) (-656 |#2|) (-783))) (-15 -2237 ((-1193 |#3|) (-1193 |#3|) (-576)))) +((-3343 (($ $ (-940)) 17))) +(((-755 |#1| |#2|) (-10 -8 (-15 -3343 (|#1| |#1| (-940)))) (-756 |#2|) (-174)) (T -755)) +NIL +(-10 -8 (-15 -3343 (|#1| |#1| (-940)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-2029 (($ $ (-940)) 31)) (-3343 (($ $ (-940)) 38)) (-4050 (($ $ (-940)) 32)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-1758 (($ $ $) 28)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-1783 (($ $ $ $) 29)) (-2487 (($ $ $) 27)) (-2721 (($) 19 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 33)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) (((-756 |#1|) (-141) (-174)) (T -756)) -((-4017 (*1 *1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-756 *3)) (-4 *3 (-174))))) -(-13 (-773) (-729 |t#1|) (-10 -8 (-15 -4017 ($ $ (-940))))) +((-3343 (*1 *1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-756 *3)) (-4 *3 (-174))))) +(-13 (-773) (-729 |t#1|) (-10 -8 (-15 -3343 ($ $ (-940))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-732) . T) ((-773) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-2685 (((-1056) (-701 (-227)) (-576) (-112) (-576)) 25)) (-2779 (((-1056) (-701 (-227)) (-576) (-112) (-576)) 24))) -(((-757) (-10 -7 (-15 -2779 ((-1056) (-701 (-227)) (-576) (-112) (-576))) (-15 -2685 ((-1056) (-701 (-227)) (-576) (-112) (-576))))) (T -757)) -((-2685 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) (-5 *2 (-1056)) (-5 *1 (-757)))) (-2779 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) (-5 *2 (-1056)) (-5 *1 (-757))))) -(-10 -7 (-15 -2779 ((-1056) (-701 (-227)) (-576) (-112) (-576))) (-15 -2685 ((-1056) (-701 (-227)) (-576) (-112) (-576)))) -((-2334 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) 43)) (-2198 (((-1056) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) 39)) (-1507 (((-1056) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1962)))) 32))) -(((-758) (-10 -7 (-15 -1507 ((-1056) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1962))))) (-15 -2198 ((-1056) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN))))) (-15 -2334 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN))))))) (T -758)) -((-2334 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1056)) (-5 *1 (-758)))) (-2198 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1056)) (-5 *1 (-758)))) (-1507 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1962)))) (-5 *2 (-1056)) (-5 *1 (-758))))) -(-10 -7 (-15 -1507 ((-1056) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1962))))) (-15 -2198 ((-1056) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN))))) (-15 -2334 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))))) -((-1498 (((-1056) (-576) (-576) (-701 (-227)) (-576)) 34)) (-2150 (((-1056) (-576) (-576) (-701 (-227)) (-576)) 33)) (-1886 (((-1056) (-576) (-701 (-227)) (-576)) 32)) (-2473 (((-1056) (-576) (-701 (-227)) (-576)) 31)) (-2116 (((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 30)) (-2777 (((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-2027 (((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-2309 (((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-576)) 27)) (-1925 (((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 24)) (-3754 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576)) 23)) (-3626 (((-1056) (-576) (-701 (-227)) (-576)) 22)) (-3607 (((-1056) (-576) (-701 (-227)) (-576)) 21))) -(((-759) (-10 -7 (-15 -3607 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -3626 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -3754 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1925 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2309 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2027 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2777 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2116 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2473 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -1886 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -2150 ((-1056) (-576) (-576) (-701 (-227)) (-576))) (-15 -1498 ((-1056) (-576) (-576) (-701 (-227)) (-576))))) (T -759)) -((-1498 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-2150 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-1886 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-2473 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-2116 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-2777 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-2027 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-2309 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-1925 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-3754 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-3626 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-3607 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759))))) -(-10 -7 (-15 -3607 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -3626 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -3754 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1925 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2309 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2027 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2777 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2116 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2473 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -1886 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -2150 ((-1056) (-576) (-576) (-701 (-227)) (-576))) (-15 -1498 ((-1056) (-576) (-576) (-701 (-227)) (-576)))) -((-3668 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) 52)) (-3779 (((-1056) (-701 (-227)) (-701 (-227)) (-576) (-576)) 51)) (-4266 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) 50)) (-1397 (((-1056) (-227) (-227) (-576) (-576) (-576) (-576)) 46)) (-3198 (((-1056) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 45)) (-3661 (((-1056) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 44)) (-3127 (((-1056) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 43)) (-2837 (((-1056) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 42)) (-4048 (((-1056) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1962)))) 38)) (-1746 (((-1056) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1962)))) 37)) (-3621 (((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1962)))) 33)) (-2227 (((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1962)))) 32))) -(((-760) (-10 -7 (-15 -2227 ((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1962))))) (-15 -3621 ((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1962))))) (-15 -1746 ((-1056) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1962))))) (-15 -4048 ((-1056) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1962))))) (-15 -2837 ((-1056) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3127 ((-1056) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3661 ((-1056) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3198 ((-1056) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -1397 ((-1056) (-227) (-227) (-576) (-576) (-576) (-576))) (-15 -4266 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))) (-15 -3779 ((-1056) (-701 (-227)) (-701 (-227)) (-576) (-576))) (-15 -3668 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))))) (T -760)) -((-3668 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-3779 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-760)))) (-4266 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-1397 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-760)))) (-3198 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-3661 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-3127 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-2837 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-4048 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1962)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-1746 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1962)))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-760)))) (-3621 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1962)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-2227 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1962)))) (-5 *2 (-1056)) (-5 *1 (-760))))) -(-10 -7 (-15 -2227 ((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1962))))) (-15 -3621 ((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1962))))) (-15 -1746 ((-1056) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1962))))) (-15 -4048 ((-1056) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1962))))) (-15 -2837 ((-1056) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3127 ((-1056) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3661 ((-1056) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3198 ((-1056) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -1397 ((-1056) (-227) (-227) (-576) (-576) (-576) (-576))) (-15 -4266 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))) (-15 -3779 ((-1056) (-701 (-227)) (-701 (-227)) (-576) (-576))) (-15 -3668 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))))) -((-1730 (((-1056) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-1477 (((-1056) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400)) 69) (((-1056) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) 68)) (-3956 (((-1056) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) 57)) (-3453 (((-1056) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) 50)) (-3345 (((-1056) (-227) (-576) (-576) (-1179) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 49)) (-2774 (((-1056) (-227) (-576) (-576) (-227) (-1179) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 45)) (-2586 (((-1056) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) 42)) (-2656 (((-1056) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 38))) -(((-761) (-10 -7 (-15 -2656 ((-1056) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2586 ((-1056) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -2774 ((-1056) (-227) (-576) (-576) (-227) (-1179) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3345 ((-1056) (-227) (-576) (-576) (-1179) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3453 ((-1056) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -3956 ((-1056) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG))))) (-15 -1477 ((-1056) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))) (-15 -1477 ((-1056) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400))) (-15 -1730 ((-1056) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -761)) -((-1730 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-761)))) (-1477 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-400)) (-5 *2 (-1056)) (-5 *1 (-761)))) (-1477 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1056)) (-5 *1 (-761)))) (-3956 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761)))) (-3453 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1056)) (-5 *1 (-761)))) (-3345 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-576)) (-5 *5 (-1179)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761)))) (-2774 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-576)) (-5 *5 (-1179)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761)))) (-2586 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761)))) (-2656 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761))))) -(-10 -7 (-15 -2656 ((-1056) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2586 ((-1056) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -2774 ((-1056) (-227) (-576) (-576) (-227) (-1179) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3345 ((-1056) (-227) (-576) (-576) (-1179) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3453 ((-1056) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -3956 ((-1056) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG))))) (-15 -1477 ((-1056) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))) (-15 -1477 ((-1056) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400))) (-15 -1730 ((-1056) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))))) -((-4162 (((-1056) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576)) 45)) (-2444 (((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1179) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) 41)) (-2782 (((-1056) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 23))) -(((-762) (-10 -7 (-15 -2782 ((-1056) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2444 ((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1179) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY))))) (-15 -4162 ((-1056) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576))))) (T -762)) -((-4162 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-687 (-227))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-762)))) (-2444 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-1179)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1056)) (-5 *1 (-762)))) (-2782 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-762))))) -(-10 -7 (-15 -2782 ((-1056) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2444 ((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1179) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY))))) (-15 -4162 ((-1056) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576)))) -((-2593 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576)) 35)) (-3764 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576)) 34)) (-1696 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576)) 33)) (-2045 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-2425 (((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-1847 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576)) 27)) (-3606 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576)) 24)) (-4241 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576)) 23)) (-2404 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576)) 22)) (-2524 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 21))) -(((-763) (-10 -7 (-15 -2524 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -2404 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4241 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -3606 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -1847 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576))) (-15 -2425 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2045 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1696 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576))) (-15 -3764 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576))) (-15 -2593 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576))))) (T -763)) -((-2593 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1056)) (-5 *1 (-763)))) (-3764 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1056)) (-5 *1 (-763)))) (-1696 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-763)))) (-2045 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-763)))) (-2425 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-763)))) (-1847 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1056)) (-5 *1 (-763)))) (-3606 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-763)))) (-4241 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-763)))) (-2404 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-763)))) (-2524 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-763))))) -(-10 -7 (-15 -2524 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -2404 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4241 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -3606 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -1847 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576))) (-15 -2425 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2045 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1696 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576))) (-15 -3764 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576))) (-15 -2593 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576)))) -((-3567 (((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 45)) (-3360 (((-1056) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576)) 44)) (-3421 (((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 43)) (-1354 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 42)) (-3916 (((-1056) (-1179) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576)) 41)) (-3235 (((-1056) (-1179) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576)) 40)) (-3103 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576)) 39)) (-3733 (((-1056) (-1179) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576))) 38)) (-3865 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576)) 35)) (-1856 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576)) 34)) (-2430 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576)) 33)) (-4114 (((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 32)) (-2287 (((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576)) 31)) (-4163 (((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576)) 30)) (-4186 (((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576)) 29)) (-2540 (((-1056) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576)) 28)) (-3405 (((-1056) (-576) (-701 (-227)) (-227) (-576)) 24)) (-3197 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 21))) -(((-764) (-10 -7 (-15 -3197 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3405 ((-1056) (-576) (-701 (-227)) (-227) (-576))) (-15 -2540 ((-1056) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576))) (-15 -4186 ((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -4163 ((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576))) (-15 -2287 ((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576))) (-15 -4114 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2430 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576))) (-15 -1856 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576))) (-15 -3865 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3733 ((-1056) (-1179) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)))) (-15 -3103 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576))) (-15 -3235 ((-1056) (-1179) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -3916 ((-1056) (-1179) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1354 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3421 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -3360 ((-1056) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3567 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))))) (T -764)) -((-3567 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-764)))) (-3360 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-3421 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-764)))) (-1354 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-764)))) (-3916 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-3235 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1179)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-3103 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-3733 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1179)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-3865 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-764)))) (-1856 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-2430 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-4114 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-764)))) (-2287 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-4163 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-4186 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-2540 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-3405 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-3197 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-764))))) -(-10 -7 (-15 -3197 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3405 ((-1056) (-576) (-701 (-227)) (-227) (-576))) (-15 -2540 ((-1056) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576))) (-15 -4186 ((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -4163 ((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576))) (-15 -2287 ((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576))) (-15 -4114 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2430 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576))) (-15 -1856 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576))) (-15 -3865 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3733 ((-1056) (-1179) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)))) (-15 -3103 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576))) (-15 -3235 ((-1056) (-1179) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -3916 ((-1056) (-1179) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1354 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3421 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -3360 ((-1056) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3567 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)))) -((-2354 (((-1056) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576)) 63)) (-3158 (((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) 62)) (-1790 (((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) 58)) (-2320 (((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576)) 51)) (-1724 (((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) 50)) (-3353 (((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) 46)) (-4444 (((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) 42)) (-3454 (((-1056) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) 38))) -(((-765) (-10 -7 (-15 -3454 ((-1056) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -4444 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1))))) (-15 -3353 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2))))) (-15 -1724 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1))))) (-15 -2320 ((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576))) (-15 -1790 ((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS))))) (-15 -3158 ((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -2354 ((-1056) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576))))) (T -765)) -((-2354 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-765)))) (-3158 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-765)))) (-1790 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-701 (-227))) (-5 *6 (-112)) (-5 *7 (-701 (-576))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-765)))) (-2320 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *2 (-1056)) (-5 *1 (-765)))) (-1724 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1056)) (-5 *1 (-765)))) (-3353 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1056)) (-5 *1 (-765)))) (-4444 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1056)) (-5 *1 (-765)))) (-3454 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-765))))) -(-10 -7 (-15 -3454 ((-1056) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -4444 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1))))) (-15 -3353 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2))))) (-15 -1724 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1))))) (-15 -2320 ((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576))) (-15 -1790 ((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS))))) (-15 -3158 ((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -2354 ((-1056) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576)))) -((-2870 (((-1056) (-1179) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)) 47)) (-3821 (((-1056) (-1179) (-1179) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576)) 46)) (-4058 (((-1056) (-576) (-576) (-576) (-701 (-171 (-227))) (-576)) 45)) (-3484 (((-1056) (-1179) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 40)) (-3382 (((-1056) (-1179) (-1179) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576)) 39)) (-3171 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-576)) 36)) (-3299 (((-1056) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576)) 35)) (-2559 (((-1056) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576)) 34)) (-3016 (((-1056) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576)) 33)) (-3957 (((-1056) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576)) 32))) -(((-766) (-10 -7 (-15 -3957 ((-1056) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576))) (-15 -3016 ((-1056) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576))) (-15 -2559 ((-1056) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576))) (-15 -3299 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576))) (-15 -3171 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -3382 ((-1056) (-1179) (-1179) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576))) (-15 -3484 ((-1056) (-1179) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4058 ((-1056) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -3821 ((-1056) (-1179) (-1179) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -2870 ((-1056) (-1179) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576))))) (T -766)) -((-2870 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1056)) (-5 *1 (-766)))) (-3821 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1056)) (-5 *1 (-766)))) (-4058 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1056)) (-5 *1 (-766)))) (-3484 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-766)))) (-3382 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-766)))) (-3171 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-766)))) (-3299 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-766)))) (-2559 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-656 (-112))) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *7 (-227)) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-766)))) (-3016 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-701 (-576))) (-5 *5 (-112)) (-5 *7 (-701 (-227))) (-5 *3 (-576)) (-5 *6 (-227)) (-5 *2 (-1056)) (-5 *1 (-766)))) (-3957 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-656 (-112))) (-5 *7 (-701 (-227))) (-5 *8 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *5 (-112)) (-5 *2 (-1056)) (-5 *1 (-766))))) -(-10 -7 (-15 -3957 ((-1056) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576))) (-15 -3016 ((-1056) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576))) (-15 -2559 ((-1056) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576))) (-15 -3299 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576))) (-15 -3171 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -3382 ((-1056) (-1179) (-1179) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576))) (-15 -3484 ((-1056) (-1179) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4058 ((-1056) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -3821 ((-1056) (-1179) (-1179) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -2870 ((-1056) (-1179) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)))) -((-4387 (((-1056) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)) 79)) (-3711 (((-1056) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576)) 68)) (-2360 (((-1056) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400)) 56) (((-1056) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) 55)) (-2011 (((-1056) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576)) 37)) (-1904 (((-1056) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576)) 33)) (-3539 (((-1056) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576)) 30)) (-4342 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-1399 (((-1056) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-1936 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 27)) (-2544 (((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576)) 26)) (-3082 (((-1056) (-576) (-576) (-701 (-227)) (-576)) 25)) (-2702 (((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 24)) (-2410 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 23)) (-3402 (((-1056) (-701 (-227)) (-576) (-576) (-576) (-576)) 22)) (-4392 (((-1056) (-576) (-576) (-701 (-227)) (-576)) 21))) -(((-767) (-10 -7 (-15 -4392 ((-1056) (-576) (-576) (-701 (-227)) (-576))) (-15 -3402 ((-1056) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -2410 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2702 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3082 ((-1056) (-576) (-576) (-701 (-227)) (-576))) (-15 -2544 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -1936 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1399 ((-1056) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4342 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3539 ((-1056) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -1904 ((-1056) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576))) (-15 -2011 ((-1056) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2360 ((-1056) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))))) (-15 -2360 ((-1056) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400))) (-15 -3711 ((-1056) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4387 ((-1056) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576))))) (T -767)) -((-4387 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-3711 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2360 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-400)) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2360 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2011 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-767)))) (-1904 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-767)))) (-3539 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-767)))) (-4342 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-1399 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-1936 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2544 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-3082 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2702 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2410 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-3402 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-767)))) (-4392 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767))))) -(-10 -7 (-15 -4392 ((-1056) (-576) (-576) (-701 (-227)) (-576))) (-15 -3402 ((-1056) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -2410 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2702 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3082 ((-1056) (-576) (-576) (-701 (-227)) (-576))) (-15 -2544 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -1936 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1399 ((-1056) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4342 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3539 ((-1056) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -1904 ((-1056) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576))) (-15 -2011 ((-1056) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2360 ((-1056) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))))) (-15 -2360 ((-1056) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400))) (-15 -3711 ((-1056) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4387 ((-1056) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)))) -((-1976 (((-1056) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) 64)) (-4407 (((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576)) 60)) (-2548 (((-1056) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) 59)) (-3495 (((-1056) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576)) 37)) (-2228 (((-1056) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576)) 36)) (-3002 (((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 33)) (-2963 (((-1056) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227))) 32)) (-2341 (((-1056) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576)) 28)) (-3432 (((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576)) 27)) (-2163 (((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576)) 26)) (-3216 (((-1056) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576)) 22))) -(((-768) (-10 -7 (-15 -3216 ((-1056) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -2163 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -3432 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -2341 ((-1056) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576))) (-15 -2963 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)))) (-15 -3002 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2228 ((-1056) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3495 ((-1056) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -2548 ((-1056) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE))))) (-15 -4407 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -1976 ((-1056) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD))))))) (T -768)) -((-1976 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-768)))) (-4407 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-768)))) (-2548 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1056)) (-5 *1 (-768)))) (-3495 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-768)))) (-2228 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-768)))) (-3002 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-768)))) (-2963 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-768)))) (-2341 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-768)))) (-3432 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-768)))) (-2163 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-768)))) (-3216 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1056)) (-5 *1 (-768))))) -(-10 -7 (-15 -3216 ((-1056) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -2163 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -3432 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -2341 ((-1056) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576))) (-15 -2963 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)))) (-15 -3002 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2228 ((-1056) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3495 ((-1056) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -2548 ((-1056) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE))))) (-15 -4407 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -1976 ((-1056) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))))) -((-3611 (((-1056) (-1179) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227))) 29)) (-4256 (((-1056) (-1179) (-576) (-576) (-701 (-227))) 28)) (-2716 (((-1056) (-1179) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227))) 27)) (-1472 (((-1056) (-576) (-576) (-576) (-701 (-227))) 21))) -(((-769) (-10 -7 (-15 -1472 ((-1056) (-576) (-576) (-576) (-701 (-227)))) (-15 -2716 ((-1056) (-1179) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227)))) (-15 -4256 ((-1056) (-1179) (-576) (-576) (-701 (-227)))) (-15 -3611 ((-1056) (-1179) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)))))) (T -769)) -((-3611 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-769)))) (-4256 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-769)))) (-2716 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1179)) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-769)))) (-1472 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-769))))) -(-10 -7 (-15 -1472 ((-1056) (-576) (-576) (-576) (-701 (-227)))) (-15 -2716 ((-1056) (-1179) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227)))) (-15 -4256 ((-1056) (-1179) (-576) (-576) (-701 (-227)))) (-15 -3611 ((-1056) (-1179) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227))))) -((-3984 (((-1056) (-227) (-227) (-227) (-227) (-576)) 62)) (-3348 (((-1056) (-227) (-227) (-227) (-576)) 61)) (-3389 (((-1056) (-227) (-227) (-227) (-576)) 60)) (-2728 (((-1056) (-227) (-227) (-576)) 59)) (-2184 (((-1056) (-227) (-576)) 58)) (-2285 (((-1056) (-227) (-576)) 57)) (-1935 (((-1056) (-227) (-576)) 56)) (-4416 (((-1056) (-227) (-576)) 55)) (-3342 (((-1056) (-227) (-576)) 54)) (-4280 (((-1056) (-227) (-576)) 53)) (-3436 (((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576)) 52)) (-4445 (((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576)) 51)) (-2626 (((-1056) (-227) (-576)) 50)) (-1562 (((-1056) (-227) (-576)) 49)) (-4088 (((-1056) (-227) (-576)) 48)) (-2422 (((-1056) (-227) (-576)) 47)) (-3488 (((-1056) (-576) (-227) (-171 (-227)) (-576) (-1179) (-576)) 46)) (-2555 (((-1056) (-1179) (-171 (-227)) (-1179) (-576)) 45)) (-3222 (((-1056) (-1179) (-171 (-227)) (-1179) (-576)) 44)) (-3705 (((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576)) 43)) (-3281 (((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576)) 42)) (-1520 (((-1056) (-227) (-576)) 39)) (-3922 (((-1056) (-227) (-576)) 38)) (-2748 (((-1056) (-227) (-576)) 37)) (-2967 (((-1056) (-227) (-576)) 36)) (-2933 (((-1056) (-227) (-576)) 35)) (-4099 (((-1056) (-227) (-576)) 34)) (-2843 (((-1056) (-227) (-576)) 33)) (-2374 (((-1056) (-227) (-576)) 32)) (-3497 (((-1056) (-227) (-576)) 31)) (-1866 (((-1056) (-227) (-576)) 30)) (-3784 (((-1056) (-227) (-227) (-227) (-576)) 29)) (-1504 (((-1056) (-227) (-576)) 28)) (-3400 (((-1056) (-227) (-576)) 27)) (-3128 (((-1056) (-227) (-576)) 26)) (-2331 (((-1056) (-227) (-576)) 25)) (-2126 (((-1056) (-227) (-576)) 24)) (-4039 (((-1056) (-171 (-227)) (-576)) 21))) -(((-770) (-10 -7 (-15 -4039 ((-1056) (-171 (-227)) (-576))) (-15 -2126 ((-1056) (-227) (-576))) (-15 -2331 ((-1056) (-227) (-576))) (-15 -3128 ((-1056) (-227) (-576))) (-15 -3400 ((-1056) (-227) (-576))) (-15 -1504 ((-1056) (-227) (-576))) (-15 -3784 ((-1056) (-227) (-227) (-227) (-576))) (-15 -1866 ((-1056) (-227) (-576))) (-15 -3497 ((-1056) (-227) (-576))) (-15 -2374 ((-1056) (-227) (-576))) (-15 -2843 ((-1056) (-227) (-576))) (-15 -4099 ((-1056) (-227) (-576))) (-15 -2933 ((-1056) (-227) (-576))) (-15 -2967 ((-1056) (-227) (-576))) (-15 -2748 ((-1056) (-227) (-576))) (-15 -3922 ((-1056) (-227) (-576))) (-15 -1520 ((-1056) (-227) (-576))) (-15 -3281 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -3705 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -3222 ((-1056) (-1179) (-171 (-227)) (-1179) (-576))) (-15 -2555 ((-1056) (-1179) (-171 (-227)) (-1179) (-576))) (-15 -3488 ((-1056) (-576) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -2422 ((-1056) (-227) (-576))) (-15 -4088 ((-1056) (-227) (-576))) (-15 -1562 ((-1056) (-227) (-576))) (-15 -2626 ((-1056) (-227) (-576))) (-15 -4445 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -3436 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -4280 ((-1056) (-227) (-576))) (-15 -3342 ((-1056) (-227) (-576))) (-15 -4416 ((-1056) (-227) (-576))) (-15 -1935 ((-1056) (-227) (-576))) (-15 -2285 ((-1056) (-227) (-576))) (-15 -2184 ((-1056) (-227) (-576))) (-15 -2728 ((-1056) (-227) (-227) (-576))) (-15 -3389 ((-1056) (-227) (-227) (-227) (-576))) (-15 -3348 ((-1056) (-227) (-227) (-227) (-576))) (-15 -3984 ((-1056) (-227) (-227) (-227) (-227) (-576))))) (T -770)) -((-3984 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3348 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3389 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2728 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2184 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2285 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1935 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-4416 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3342 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-4280 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3436 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-4445 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2626 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1562 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-4088 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3488 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-576)) (-5 *5 (-171 (-227))) (-5 *6 (-1179)) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2555 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1179)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3222 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1179)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3705 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3281 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1520 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3922 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2748 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2967 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2933 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-4099 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2843 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2374 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3497 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1866 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3784 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3400 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3128 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2331 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2126 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-4039 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(-10 -7 (-15 -4039 ((-1056) (-171 (-227)) (-576))) (-15 -2126 ((-1056) (-227) (-576))) (-15 -2331 ((-1056) (-227) (-576))) (-15 -3128 ((-1056) (-227) (-576))) (-15 -3400 ((-1056) (-227) (-576))) (-15 -1504 ((-1056) (-227) (-576))) (-15 -3784 ((-1056) (-227) (-227) (-227) (-576))) (-15 -1866 ((-1056) (-227) (-576))) (-15 -3497 ((-1056) (-227) (-576))) (-15 -2374 ((-1056) (-227) (-576))) (-15 -2843 ((-1056) (-227) (-576))) (-15 -4099 ((-1056) (-227) (-576))) (-15 -2933 ((-1056) (-227) (-576))) (-15 -2967 ((-1056) (-227) (-576))) (-15 -2748 ((-1056) (-227) (-576))) (-15 -3922 ((-1056) (-227) (-576))) (-15 -1520 ((-1056) (-227) (-576))) (-15 -3281 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -3705 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -3222 ((-1056) (-1179) (-171 (-227)) (-1179) (-576))) (-15 -2555 ((-1056) (-1179) (-171 (-227)) (-1179) (-576))) (-15 -3488 ((-1056) (-576) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -2422 ((-1056) (-227) (-576))) (-15 -4088 ((-1056) (-227) (-576))) (-15 -1562 ((-1056) (-227) (-576))) (-15 -2626 ((-1056) (-227) (-576))) (-15 -4445 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -3436 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -4280 ((-1056) (-227) (-576))) (-15 -3342 ((-1056) (-227) (-576))) (-15 -4416 ((-1056) (-227) (-576))) (-15 -1935 ((-1056) (-227) (-576))) (-15 -2285 ((-1056) (-227) (-576))) (-15 -2184 ((-1056) (-227) (-576))) (-15 -2728 ((-1056) (-227) (-227) (-576))) (-15 -3389 ((-1056) (-227) (-227) (-227) (-576))) (-15 -3348 ((-1056) (-227) (-227) (-227) (-576))) (-15 -3984 ((-1056) (-227) (-227) (-227) (-227) (-576)))) -((-3246 (((-1293)) 20)) (-4004 (((-1179)) 34)) (-3191 (((-1179)) 33)) (-2061 (((-1125) (-1197) (-701 (-576))) 47) (((-1125) (-1197) (-701 (-227))) 43)) (-3406 (((-112)) 19)) (-1484 (((-1179) (-1179)) 37))) -(((-771) (-10 -7 (-15 -3191 ((-1179))) (-15 -4004 ((-1179))) (-15 -1484 ((-1179) (-1179))) (-15 -2061 ((-1125) (-1197) (-701 (-227)))) (-15 -2061 ((-1125) (-1197) (-701 (-576)))) (-15 -3406 ((-112))) (-15 -3246 ((-1293))))) (T -771)) -((-3246 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-771)))) (-3406 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-771)))) (-2061 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-701 (-576))) (-5 *2 (-1125)) (-5 *1 (-771)))) (-2061 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-701 (-227))) (-5 *2 (-1125)) (-5 *1 (-771)))) (-1484 (*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-771)))) (-4004 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-771)))) (-3191 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-771))))) -(-10 -7 (-15 -3191 ((-1179))) (-15 -4004 ((-1179))) (-15 -1484 ((-1179) (-1179))) (-15 -2061 ((-1125) (-1197) (-701 (-227)))) (-15 -2061 ((-1125) (-1197) (-701 (-576)))) (-15 -3406 ((-112))) (-15 -3246 ((-1293)))) -((-2076 (($ $ $) 10)) (-3790 (($ $ $ $) 9)) (-4064 (($ $ $) 12))) -(((-772 |#1|) (-10 -8 (-15 -4064 (|#1| |#1| |#1|)) (-15 -2076 (|#1| |#1| |#1|)) (-15 -3790 (|#1| |#1| |#1| |#1|))) (-773)) (T -772)) -NIL -(-10 -8 (-15 -4064 (|#1| |#1| |#1|)) (-15 -2076 (|#1| |#1| |#1|)) (-15 -3790 (|#1| |#1| |#1| |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-3377 (($ $ (-940)) 31)) (-1783 (($ $ (-940)) 32)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2076 (($ $ $) 28)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-3790 (($ $ $ $) 29)) (-4064 (($ $ $) 27)) (-2721 (($) 19 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 33)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30))) +((-1607 (((-1056) (-701 (-227)) (-576) (-112) (-576)) 25)) (-4358 (((-1056) (-701 (-227)) (-576) (-112) (-576)) 24))) +(((-757) (-10 -7 (-15 -4358 ((-1056) (-701 (-227)) (-576) (-112) (-576))) (-15 -1607 ((-1056) (-701 (-227)) (-576) (-112) (-576))))) (T -757)) +((-1607 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) (-5 *2 (-1056)) (-5 *1 (-757)))) (-4358 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) (-5 *2 (-1056)) (-5 *1 (-757))))) +(-10 -7 (-15 -4358 ((-1056) (-701 (-227)) (-576) (-112) (-576))) (-15 -1607 ((-1056) (-701 (-227)) (-576) (-112) (-576)))) +((-2465 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) 43)) (-3607 (((-1056) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) 39)) (-4311 (((-1056) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1963)))) 32))) +(((-758) (-10 -7 (-15 -4311 ((-1056) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1963))))) (-15 -3607 ((-1056) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN))))) (-15 -2465 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN))))))) (T -758)) +((-2465 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1056)) (-5 *1 (-758)))) (-3607 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1056)) (-5 *1 (-758)))) (-4311 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1963)))) (-5 *2 (-1056)) (-5 *1 (-758))))) +(-10 -7 (-15 -4311 ((-1056) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1963))))) (-15 -3607 ((-1056) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN))))) (-15 -2465 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))))) +((-4220 (((-1056) (-576) (-576) (-701 (-227)) (-576)) 34)) (-4384 (((-1056) (-576) (-576) (-701 (-227)) (-576)) 33)) (-3761 (((-1056) (-576) (-701 (-227)) (-576)) 32)) (-1403 (((-1056) (-576) (-701 (-227)) (-576)) 31)) (-4089 (((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 30)) (-4336 (((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-2520 (((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-2229 (((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-576)) 27)) (-2841 (((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 24)) (-2610 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576)) 23)) (-3912 (((-1056) (-576) (-701 (-227)) (-576)) 22)) (-3695 (((-1056) (-576) (-701 (-227)) (-576)) 21))) +(((-759) (-10 -7 (-15 -3695 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -3912 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -2610 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2841 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2229 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2520 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4336 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4089 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1403 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -3761 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -4384 ((-1056) (-576) (-576) (-701 (-227)) (-576))) (-15 -4220 ((-1056) (-576) (-576) (-701 (-227)) (-576))))) (T -759)) +((-4220 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-4384 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-3761 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-1403 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-4089 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-4336 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-2520 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-2229 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-2841 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-2610 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-3912 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-3695 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759))))) +(-10 -7 (-15 -3695 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -3912 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -2610 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2841 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2229 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2520 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4336 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4089 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1403 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -3761 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -4384 ((-1056) (-576) (-576) (-701 (-227)) (-576))) (-15 -4220 ((-1056) (-576) (-576) (-701 (-227)) (-576)))) +((-3052 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) 52)) (-1673 (((-1056) (-701 (-227)) (-701 (-227)) (-576) (-576)) 51)) (-4009 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) 50)) (-3704 (((-1056) (-227) (-227) (-576) (-576) (-576) (-576)) 46)) (-4019 (((-1056) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 45)) (-2958 (((-1056) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 44)) (-2546 (((-1056) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 43)) (-3703 (((-1056) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 42)) (-2325 (((-1056) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1963)))) 38)) (-1725 (((-1056) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1963)))) 37)) (-3853 (((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1963)))) 33)) (-3916 (((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1963)))) 32))) +(((-760) (-10 -7 (-15 -3916 ((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1963))))) (-15 -3853 ((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1963))))) (-15 -1725 ((-1056) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1963))))) (-15 -2325 ((-1056) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1963))))) (-15 -3703 ((-1056) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2546 ((-1056) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2958 ((-1056) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -4019 ((-1056) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3704 ((-1056) (-227) (-227) (-576) (-576) (-576) (-576))) (-15 -4009 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))) (-15 -1673 ((-1056) (-701 (-227)) (-701 (-227)) (-576) (-576))) (-15 -3052 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))))) (T -760)) +((-3052 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-1673 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-760)))) (-4009 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-3704 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-760)))) (-4019 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-2958 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-2546 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-3703 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-2325 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1963)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-1725 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1963)))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-760)))) (-3853 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1963)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-3916 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1963)))) (-5 *2 (-1056)) (-5 *1 (-760))))) +(-10 -7 (-15 -3916 ((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1963))))) (-15 -3853 ((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1963))))) (-15 -1725 ((-1056) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1963))))) (-15 -2325 ((-1056) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1963))))) (-15 -3703 ((-1056) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2546 ((-1056) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2958 ((-1056) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -4019 ((-1056) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3704 ((-1056) (-227) (-227) (-576) (-576) (-576) (-576))) (-15 -4009 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))) (-15 -1673 ((-1056) (-701 (-227)) (-701 (-227)) (-576) (-576))) (-15 -3052 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))))) +((-1559 (((-1056) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-4018 (((-1056) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400)) 69) (((-1056) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) 68)) (-2777 (((-1056) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) 57)) (-1583 (((-1056) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) 50)) (-2980 (((-1056) (-227) (-576) (-576) (-1179) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 49)) (-4312 (((-1056) (-227) (-576) (-576) (-227) (-1179) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 45)) (-3190 (((-1056) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) 42)) (-2547 (((-1056) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 38))) +(((-761) (-10 -7 (-15 -2547 ((-1056) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3190 ((-1056) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -4312 ((-1056) (-227) (-576) (-576) (-227) (-1179) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2980 ((-1056) (-227) (-576) (-576) (-1179) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -1583 ((-1056) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -2777 ((-1056) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG))))) (-15 -4018 ((-1056) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))) (-15 -4018 ((-1056) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400))) (-15 -1559 ((-1056) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -761)) +((-1559 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-761)))) (-4018 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-400)) (-5 *2 (-1056)) (-5 *1 (-761)))) (-4018 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1056)) (-5 *1 (-761)))) (-2777 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761)))) (-1583 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1056)) (-5 *1 (-761)))) (-2980 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-576)) (-5 *5 (-1179)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761)))) (-4312 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-576)) (-5 *5 (-1179)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761)))) (-3190 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761)))) (-2547 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761))))) +(-10 -7 (-15 -2547 ((-1056) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3190 ((-1056) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -4312 ((-1056) (-227) (-576) (-576) (-227) (-1179) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2980 ((-1056) (-227) (-576) (-576) (-1179) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -1583 ((-1056) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -2777 ((-1056) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG))))) (-15 -4018 ((-1056) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))) (-15 -4018 ((-1056) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400))) (-15 -1559 ((-1056) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))))) +((-4200 (((-1056) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576)) 45)) (-4246 (((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1179) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) 41)) (-4386 (((-1056) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 23))) +(((-762) (-10 -7 (-15 -4386 ((-1056) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4246 ((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1179) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY))))) (-15 -4200 ((-1056) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576))))) (T -762)) +((-4200 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-687 (-227))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-762)))) (-4246 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-1179)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1056)) (-5 *1 (-762)))) (-4386 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-762))))) +(-10 -7 (-15 -4386 ((-1056) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4246 ((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1179) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY))))) (-15 -4200 ((-1056) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576)))) +((-3264 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576)) 35)) (-1522 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576)) 34)) (-2429 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576)) 33)) (-1494 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-4073 (((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-3387 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576)) 27)) (-3681 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576)) 24)) (-3743 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576)) 23)) (-1894 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576)) 22)) (-3855 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 21))) +(((-763) (-10 -7 (-15 -3855 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -1894 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3743 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -3681 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -3387 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576))) (-15 -4073 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1494 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2429 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576))) (-15 -1522 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576))) (-15 -3264 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576))))) (T -763)) +((-3264 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1056)) (-5 *1 (-763)))) (-1522 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1056)) (-5 *1 (-763)))) (-2429 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-763)))) (-1494 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-763)))) (-4073 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-763)))) (-3387 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1056)) (-5 *1 (-763)))) (-3681 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-763)))) (-3743 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-763)))) (-1894 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-763)))) (-3855 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-763))))) +(-10 -7 (-15 -3855 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -1894 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3743 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -3681 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -3387 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576))) (-15 -4073 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1494 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2429 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576))) (-15 -1522 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576))) (-15 -3264 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576)))) +((-1420 (((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 45)) (-3162 (((-1056) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576)) 44)) (-2496 (((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 43)) (-1377 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 42)) (-3714 (((-1056) (-1179) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576)) 41)) (-4385 (((-1056) (-1179) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576)) 40)) (-2344 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576)) 39)) (-2411 (((-1056) (-1179) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576))) 38)) (-4443 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576)) 35)) (-3476 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576)) 34)) (-4113 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576)) 33)) (-1778 (((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 32)) (-3269 (((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576)) 31)) (-4209 (((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576)) 30)) (-4401 (((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576)) 29)) (-2703 (((-1056) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576)) 28)) (-2339 (((-1056) (-576) (-701 (-227)) (-227) (-576)) 24)) (-4012 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 21))) +(((-764) (-10 -7 (-15 -4012 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2339 ((-1056) (-576) (-701 (-227)) (-227) (-576))) (-15 -2703 ((-1056) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576))) (-15 -4401 ((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -4209 ((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576))) (-15 -3269 ((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576))) (-15 -1778 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4113 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576))) (-15 -3476 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576))) (-15 -4443 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2411 ((-1056) (-1179) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)))) (-15 -2344 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576))) (-15 -4385 ((-1056) (-1179) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -3714 ((-1056) (-1179) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1377 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2496 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -3162 ((-1056) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1420 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))))) (T -764)) +((-1420 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-764)))) (-3162 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-2496 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-764)))) (-1377 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-764)))) (-3714 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-4385 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1179)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-2344 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-2411 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1179)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-4443 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-764)))) (-3476 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-4113 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-1778 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-764)))) (-3269 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-4209 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-4401 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-2703 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-2339 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-4012 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-764))))) +(-10 -7 (-15 -4012 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2339 ((-1056) (-576) (-701 (-227)) (-227) (-576))) (-15 -2703 ((-1056) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576))) (-15 -4401 ((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -4209 ((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576))) (-15 -3269 ((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576))) (-15 -1778 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4113 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576))) (-15 -3476 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576))) (-15 -4443 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2411 ((-1056) (-1179) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)))) (-15 -2344 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576))) (-15 -4385 ((-1056) (-1179) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -3714 ((-1056) (-1179) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1377 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2496 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -3162 ((-1056) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1420 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)))) +((-1467 (((-1056) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576)) 63)) (-1647 (((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) 62)) (-4112 (((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) 58)) (-2340 (((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576)) 51)) (-1506 (((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) 50)) (-3080 (((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) 46)) (-1951 (((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) 42)) (-1592 (((-1056) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) 38))) +(((-765) (-10 -7 (-15 -1592 ((-1056) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -1951 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1))))) (-15 -3080 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2))))) (-15 -1506 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1))))) (-15 -2340 ((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576))) (-15 -4112 ((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS))))) (-15 -1647 ((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -1467 ((-1056) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576))))) (T -765)) +((-1467 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-765)))) (-1647 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-765)))) (-4112 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-701 (-227))) (-5 *6 (-112)) (-5 *7 (-701 (-576))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-765)))) (-2340 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *2 (-1056)) (-5 *1 (-765)))) (-1506 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1056)) (-5 *1 (-765)))) (-3080 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1056)) (-5 *1 (-765)))) (-1951 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1056)) (-5 *1 (-765)))) (-1592 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-765))))) +(-10 -7 (-15 -1592 ((-1056) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -1951 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1))))) (-15 -3080 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2))))) (-15 -1506 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1))))) (-15 -2340 ((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576))) (-15 -4112 ((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS))))) (-15 -1647 ((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -1467 ((-1056) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576)))) +((-2698 (((-1056) (-1179) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)) 47)) (-4069 (((-1056) (-1179) (-1179) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576)) 46)) (-2432 (((-1056) (-576) (-576) (-576) (-701 (-171 (-227))) (-576)) 45)) (-1849 (((-1056) (-1179) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 40)) (-2078 (((-1056) (-1179) (-1179) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576)) 39)) (-1770 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-576)) 36)) (-3800 (((-1056) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576)) 35)) (-2920 (((-1056) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576)) 34)) (-2727 (((-1056) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576)) 33)) (-2788 (((-1056) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576)) 32))) +(((-766) (-10 -7 (-15 -2788 ((-1056) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576))) (-15 -2727 ((-1056) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576))) (-15 -2920 ((-1056) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576))) (-15 -3800 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576))) (-15 -1770 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -2078 ((-1056) (-1179) (-1179) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576))) (-15 -1849 ((-1056) (-1179) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2432 ((-1056) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -4069 ((-1056) (-1179) (-1179) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -2698 ((-1056) (-1179) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576))))) (T -766)) +((-2698 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1056)) (-5 *1 (-766)))) (-4069 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1056)) (-5 *1 (-766)))) (-2432 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1056)) (-5 *1 (-766)))) (-1849 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-766)))) (-2078 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-766)))) (-1770 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-766)))) (-3800 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-766)))) (-2920 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-656 (-112))) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *7 (-227)) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-766)))) (-2727 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-701 (-576))) (-5 *5 (-112)) (-5 *7 (-701 (-227))) (-5 *3 (-576)) (-5 *6 (-227)) (-5 *2 (-1056)) (-5 *1 (-766)))) (-2788 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-656 (-112))) (-5 *7 (-701 (-227))) (-5 *8 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *5 (-112)) (-5 *2 (-1056)) (-5 *1 (-766))))) +(-10 -7 (-15 -2788 ((-1056) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576))) (-15 -2727 ((-1056) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576))) (-15 -2920 ((-1056) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576))) (-15 -3800 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576))) (-15 -1770 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -2078 ((-1056) (-1179) (-1179) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576))) (-15 -1849 ((-1056) (-1179) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2432 ((-1056) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -4069 ((-1056) (-1179) (-1179) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -2698 ((-1056) (-1179) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)))) +((-2620 (((-1056) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)) 79)) (-2180 (((-1056) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576)) 68)) (-1500 (((-1056) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400)) 56) (((-1056) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) 55)) (-2392 (((-1056) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576)) 37)) (-2627 (((-1056) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576)) 33)) (-4297 (((-1056) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576)) 30)) (-2182 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-2877 (((-1056) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-2970 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 27)) (-2755 (((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576)) 26)) (-2115 (((-1056) (-576) (-576) (-701 (-227)) (-576)) 25)) (-1761 (((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 24)) (-1955 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 23)) (-2303 (((-1056) (-701 (-227)) (-576) (-576) (-576) (-576)) 22)) (-2662 (((-1056) (-576) (-576) (-701 (-227)) (-576)) 21))) +(((-767) (-10 -7 (-15 -2662 ((-1056) (-576) (-576) (-701 (-227)) (-576))) (-15 -2303 ((-1056) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -1955 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1761 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2115 ((-1056) (-576) (-576) (-701 (-227)) (-576))) (-15 -2755 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -2970 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2877 ((-1056) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2182 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4297 ((-1056) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -2627 ((-1056) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576))) (-15 -2392 ((-1056) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1500 ((-1056) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))))) (-15 -1500 ((-1056) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400))) (-15 -2180 ((-1056) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2620 ((-1056) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576))))) (T -767)) +((-2620 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2180 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-1500 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-400)) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-767)))) (-1500 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2392 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2627 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-767)))) (-4297 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2182 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2877 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2970 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2755 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2115 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-1761 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-1955 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2303 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2662 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767))))) +(-10 -7 (-15 -2662 ((-1056) (-576) (-576) (-701 (-227)) (-576))) (-15 -2303 ((-1056) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -1955 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1761 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2115 ((-1056) (-576) (-576) (-701 (-227)) (-576))) (-15 -2755 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -2970 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2877 ((-1056) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2182 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4297 ((-1056) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -2627 ((-1056) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576))) (-15 -2392 ((-1056) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1500 ((-1056) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))))) (-15 -1500 ((-1056) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400))) (-15 -2180 ((-1056) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2620 ((-1056) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)))) +((-2043 (((-1056) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) 64)) (-1621 (((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576)) 60)) (-2805 (((-1056) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) 59)) (-1943 (((-1056) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576)) 37)) (-3926 (((-1056) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576)) 36)) (-2596 (((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 33)) (-3540 (((-1056) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227))) 32)) (-2526 (((-1056) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576)) 28)) (-2584 (((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576)) 27)) (-1375 (((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576)) 26)) (-4202 (((-1056) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576)) 22))) +(((-768) (-10 -7 (-15 -4202 ((-1056) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -1375 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -2584 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -2526 ((-1056) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576))) (-15 -3540 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)))) (-15 -2596 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3926 ((-1056) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1943 ((-1056) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -2805 ((-1056) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE))))) (-15 -1621 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -2043 ((-1056) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD))))))) (T -768)) +((-2043 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-768)))) (-1621 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-768)))) (-2805 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1056)) (-5 *1 (-768)))) (-1943 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-768)))) (-3926 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-768)))) (-2596 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-768)))) (-3540 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-768)))) (-2526 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-768)))) (-2584 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-768)))) (-1375 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-768)))) (-4202 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1056)) (-5 *1 (-768))))) +(-10 -7 (-15 -4202 ((-1056) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -1375 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -2584 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -2526 ((-1056) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576))) (-15 -3540 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)))) (-15 -2596 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3926 ((-1056) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1943 ((-1056) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -2805 ((-1056) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE))))) (-15 -1621 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -2043 ((-1056) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))))) +((-3741 (((-1056) (-1179) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227))) 29)) (-3903 (((-1056) (-1179) (-576) (-576) (-701 (-227))) 28)) (-1867 (((-1056) (-1179) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227))) 27)) (-3967 (((-1056) (-576) (-576) (-576) (-701 (-227))) 21))) +(((-769) (-10 -7 (-15 -3967 ((-1056) (-576) (-576) (-576) (-701 (-227)))) (-15 -1867 ((-1056) (-1179) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227)))) (-15 -3903 ((-1056) (-1179) (-576) (-576) (-701 (-227)))) (-15 -3741 ((-1056) (-1179) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)))))) (T -769)) +((-3741 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-769)))) (-3903 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-769)))) (-1867 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1179)) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-769)))) (-3967 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-769))))) +(-10 -7 (-15 -3967 ((-1056) (-576) (-576) (-576) (-701 (-227)))) (-15 -1867 ((-1056) (-1179) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227)))) (-15 -3903 ((-1056) (-1179) (-576) (-576) (-701 (-227)))) (-15 -3741 ((-1056) (-1179) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227))))) +((-3048 (((-1056) (-227) (-227) (-227) (-227) (-576)) 62)) (-3018 (((-1056) (-227) (-227) (-227) (-576)) 61)) (-2161 (((-1056) (-227) (-227) (-227) (-576)) 60)) (-1962 (((-1056) (-227) (-227) (-576)) 59)) (-3459 (((-1056) (-227) (-576)) 58)) (-3247 (((-1056) (-227) (-576)) 57)) (-2956 (((-1056) (-227) (-576)) 56)) (-1714 (((-1056) (-227) (-576)) 55)) (-2938 (((-1056) (-227) (-576)) 54)) (-2844 (((-1056) (-227) (-576)) 53)) (-1458 (((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576)) 52)) (-1964 (((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576)) 51)) (-2288 (((-1056) (-227) (-576)) 50)) (-3686 (((-1056) (-227) (-576)) 49)) (-1526 (((-1056) (-227) (-576)) 48)) (-4039 (((-1056) (-227) (-576)) 47)) (-1883 (((-1056) (-576) (-227) (-171 (-227)) (-576) (-1179) (-576)) 46)) (-2880 (((-1056) (-1179) (-171 (-227)) (-1179) (-576)) 45)) (-4260 (((-1056) (-1179) (-171 (-227)) (-1179) (-576)) 44)) (-2107 (((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576)) 43)) (-3616 (((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576)) 42)) (-4444 (((-1056) (-227) (-576)) 39)) (-3771 (((-1056) (-227) (-576)) 38)) (-4110 (((-1056) (-227) (-576)) 37)) (-3575 (((-1056) (-227) (-576)) 36)) (-3353 (((-1056) (-227) (-576)) 35)) (-1634 (((-1056) (-227) (-576)) 34)) (-3748 (((-1056) (-227) (-576)) 33)) (-1624 (((-1056) (-227) (-576)) 32)) (-1968 (((-1056) (-227) (-576)) 31)) (-3563 (((-1056) (-227) (-576)) 30)) (-1723 (((-1056) (-227) (-227) (-227) (-576)) 29)) (-4279 (((-1056) (-227) (-576)) 28)) (-2282 (((-1056) (-227) (-576)) 27)) (-2557 (((-1056) (-227) (-576)) 26)) (-2430 (((-1056) (-227) (-576)) 25)) (-4174 (((-1056) (-227) (-576)) 24)) (-2241 (((-1056) (-171 (-227)) (-576)) 21))) +(((-770) (-10 -7 (-15 -2241 ((-1056) (-171 (-227)) (-576))) (-15 -4174 ((-1056) (-227) (-576))) (-15 -2430 ((-1056) (-227) (-576))) (-15 -2557 ((-1056) (-227) (-576))) (-15 -2282 ((-1056) (-227) (-576))) (-15 -4279 ((-1056) (-227) (-576))) (-15 -1723 ((-1056) (-227) (-227) (-227) (-576))) (-15 -3563 ((-1056) (-227) (-576))) (-15 -1968 ((-1056) (-227) (-576))) (-15 -1624 ((-1056) (-227) (-576))) (-15 -3748 ((-1056) (-227) (-576))) (-15 -1634 ((-1056) (-227) (-576))) (-15 -3353 ((-1056) (-227) (-576))) (-15 -3575 ((-1056) (-227) (-576))) (-15 -4110 ((-1056) (-227) (-576))) (-15 -3771 ((-1056) (-227) (-576))) (-15 -4444 ((-1056) (-227) (-576))) (-15 -3616 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -2107 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -4260 ((-1056) (-1179) (-171 (-227)) (-1179) (-576))) (-15 -2880 ((-1056) (-1179) (-171 (-227)) (-1179) (-576))) (-15 -1883 ((-1056) (-576) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -4039 ((-1056) (-227) (-576))) (-15 -1526 ((-1056) (-227) (-576))) (-15 -3686 ((-1056) (-227) (-576))) (-15 -2288 ((-1056) (-227) (-576))) (-15 -1964 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -1458 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -2844 ((-1056) (-227) (-576))) (-15 -2938 ((-1056) (-227) (-576))) (-15 -1714 ((-1056) (-227) (-576))) (-15 -2956 ((-1056) (-227) (-576))) (-15 -3247 ((-1056) (-227) (-576))) (-15 -3459 ((-1056) (-227) (-576))) (-15 -1962 ((-1056) (-227) (-227) (-576))) (-15 -2161 ((-1056) (-227) (-227) (-227) (-576))) (-15 -3018 ((-1056) (-227) (-227) (-227) (-576))) (-15 -3048 ((-1056) (-227) (-227) (-227) (-227) (-576))))) (T -770)) +((-3048 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3018 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2161 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1962 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3459 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3247 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2956 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1714 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2938 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2844 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1458 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1964 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2288 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3686 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1526 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-4039 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1883 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-576)) (-5 *5 (-171 (-227))) (-5 *6 (-1179)) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2880 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1179)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-4260 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1179)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2107 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3616 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-4444 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3771 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-4110 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3353 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1634 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3748 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1624 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1968 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3563 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1723 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-4279 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2282 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2557 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2430 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-4174 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2241 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(-10 -7 (-15 -2241 ((-1056) (-171 (-227)) (-576))) (-15 -4174 ((-1056) (-227) (-576))) (-15 -2430 ((-1056) (-227) (-576))) (-15 -2557 ((-1056) (-227) (-576))) (-15 -2282 ((-1056) (-227) (-576))) (-15 -4279 ((-1056) (-227) (-576))) (-15 -1723 ((-1056) (-227) (-227) (-227) (-576))) (-15 -3563 ((-1056) (-227) (-576))) (-15 -1968 ((-1056) (-227) (-576))) (-15 -1624 ((-1056) (-227) (-576))) (-15 -3748 ((-1056) (-227) (-576))) (-15 -1634 ((-1056) (-227) (-576))) (-15 -3353 ((-1056) (-227) (-576))) (-15 -3575 ((-1056) (-227) (-576))) (-15 -4110 ((-1056) (-227) (-576))) (-15 -3771 ((-1056) (-227) (-576))) (-15 -4444 ((-1056) (-227) (-576))) (-15 -3616 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -2107 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -4260 ((-1056) (-1179) (-171 (-227)) (-1179) (-576))) (-15 -2880 ((-1056) (-1179) (-171 (-227)) (-1179) (-576))) (-15 -1883 ((-1056) (-576) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -4039 ((-1056) (-227) (-576))) (-15 -1526 ((-1056) (-227) (-576))) (-15 -3686 ((-1056) (-227) (-576))) (-15 -2288 ((-1056) (-227) (-576))) (-15 -1964 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -1458 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -2844 ((-1056) (-227) (-576))) (-15 -2938 ((-1056) (-227) (-576))) (-15 -1714 ((-1056) (-227) (-576))) (-15 -2956 ((-1056) (-227) (-576))) (-15 -3247 ((-1056) (-227) (-576))) (-15 -3459 ((-1056) (-227) (-576))) (-15 -1962 ((-1056) (-227) (-227) (-576))) (-15 -2161 ((-1056) (-227) (-227) (-227) (-576))) (-15 -3018 ((-1056) (-227) (-227) (-227) (-576))) (-15 -3048 ((-1056) (-227) (-227) (-227) (-227) (-576)))) +((-1376 (((-1293)) 20)) (-3239 (((-1179)) 34)) (-3947 (((-1179)) 33)) (-1627 (((-1125) (-1197) (-701 (-576))) 47) (((-1125) (-1197) (-701 (-227))) 43)) (-3405 (((-112)) 19)) (-4088 (((-1179) (-1179)) 37))) +(((-771) (-10 -7 (-15 -3947 ((-1179))) (-15 -3239 ((-1179))) (-15 -4088 ((-1179) (-1179))) (-15 -1627 ((-1125) (-1197) (-701 (-227)))) (-15 -1627 ((-1125) (-1197) (-701 (-576)))) (-15 -3405 ((-112))) (-15 -1376 ((-1293))))) (T -771)) +((-1376 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-771)))) (-3405 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-771)))) (-1627 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-701 (-576))) (-5 *2 (-1125)) (-5 *1 (-771)))) (-1627 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-701 (-227))) (-5 *2 (-1125)) (-5 *1 (-771)))) (-4088 (*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-771)))) (-3239 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-771)))) (-3947 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-771))))) +(-10 -7 (-15 -3947 ((-1179))) (-15 -3239 ((-1179))) (-15 -4088 ((-1179) (-1179))) (-15 -1627 ((-1125) (-1197) (-701 (-227)))) (-15 -1627 ((-1125) (-1197) (-701 (-576)))) (-15 -3405 ((-112))) (-15 -1376 ((-1293)))) +((-1758 (($ $ $) 10)) (-1783 (($ $ $ $) 9)) (-2487 (($ $ $) 12))) +(((-772 |#1|) (-10 -8 (-15 -2487 (|#1| |#1| |#1|)) (-15 -1758 (|#1| |#1| |#1|)) (-15 -1783 (|#1| |#1| |#1| |#1|))) (-773)) (T -772)) +NIL +(-10 -8 (-15 -2487 (|#1| |#1| |#1|)) (-15 -1758 (|#1| |#1| |#1|)) (-15 -1783 (|#1| |#1| |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-2029 (($ $ (-940)) 31)) (-4050 (($ $ (-940)) 32)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-1758 (($ $ $) 28)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-1783 (($ $ $ $) 29)) (-2487 (($ $ $) 27)) (-2721 (($) 19 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 33)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30))) (((-773) (-141)) (T -773)) -((-3790 (*1 *1 *1 *1 *1) (-4 *1 (-773))) (-2076 (*1 *1 *1 *1) (-4 *1 (-773))) (-4064 (*1 *1 *1 *1) (-4 *1 (-773)))) -(-13 (-21) (-732) (-10 -8 (-15 -3790 ($ $ $ $)) (-15 -2076 ($ $ $)) (-15 -4064 ($ $ $)))) +((-1783 (*1 *1 *1 *1 *1) (-4 *1 (-773))) (-1758 (*1 *1 *1 *1) (-4 *1 (-773))) (-2487 (*1 *1 *1 *1) (-4 *1 (-773)))) +(-13 (-21) (-732) (-10 -8 (-15 -1783 ($ $ $ $)) (-15 -1758 ($ $ $)) (-15 -2487 ($ $ $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-732) . T) ((-1121) . T) ((-1238) . T)) -((-3570 (((-876) $) NIL) (($ (-576)) 10))) -(((-774 |#1|) (-10 -8 (-15 -3570 (|#1| (-576))) (-15 -3570 ((-876) |#1|))) (-775)) (T -774)) +((-3569 (((-876) $) NIL) (($ (-576)) 10))) +(((-774 |#1|) (-10 -8 (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) (-775)) (T -774)) NIL -(-10 -8 (-15 -3570 (|#1| (-576))) (-15 -3570 ((-876) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-2454 (((-3 $ "failed") $) 43)) (-3377 (($ $ (-940)) 31) (($ $ (-783)) 38)) (-1561 (((-3 $ "failed") $) 41)) (-4193 (((-112) $) 37)) (-2941 (((-3 $ "failed") $) 42)) (-1783 (($ $ (-940)) 32) (($ $ (-783)) 39)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2076 (($ $ $) 28)) (-3570 (((-876) $) 12) (($ (-576)) 34)) (-3996 (((-783)) 35 T CONST)) (-4055 (((-112) $ $) 6)) (-3790 (($ $ $ $) 29)) (-4064 (($ $ $) 27)) (-2721 (($) 19 T CONST)) (-2732 (($) 36 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 33) (($ $ (-783)) 40)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30))) +(-10 -8 (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-4339 (((-3 $ "failed") $) 43)) (-2029 (($ $ (-940)) 31) (($ $ (-783)) 38)) (-3673 (((-3 $ "failed") $) 41)) (-1351 (((-112) $) 37)) (-3334 (((-3 $ "failed") $) 42)) (-4050 (($ $ (-940)) 32) (($ $ (-783)) 39)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-1758 (($ $ $) 28)) (-3569 (((-876) $) 12) (($ (-576)) 34)) (-3154 (((-783)) 35 T CONST)) (-2399 (((-112) $ $) 6)) (-1783 (($ $ $ $) 29)) (-2487 (($ $ $) 27)) (-2721 (($) 19 T CONST)) (-2731 (($) 36 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 33) (($ $ (-783)) 40)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30))) (((-775) (-141)) (T -775)) -((-3996 (*1 *2) (-12 (-4 *1 (-775)) (-5 *2 (-783)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-775))))) -(-13 (-773) (-734) (-10 -8 (-15 -3996 ((-783)) -1480) (-15 -3570 ($ (-576))))) +((-3154 (*1 *2) (-12 (-4 *1 (-775)) (-5 *2 (-783)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-775))))) +(-13 (-773) (-734) (-10 -8 (-15 -3154 ((-783)) -1480) (-15 -3569 ($ (-576))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-732) . T) ((-734) . T) ((-773) . T) ((-1121) . T) ((-1238) . T)) -((-2463 (((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|) 33)) (-2650 (((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|) 23)) (-4281 (((-971 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1197)) 20) (((-971 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576))))) 19))) -(((-776 |#1|) (-10 -7 (-15 -4281 ((-971 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))))) (-15 -4281 ((-971 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1197))) (-15 -2650 ((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|)) (-15 -2463 ((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|))) (-13 (-374) (-860))) (T -776)) -((-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 *4))))))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860))))) (-2650 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860))))) (-4281 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *4 (-1197)) (-5 *2 (-971 (-171 (-419 (-576))))) (-5 *1 (-776 *5)) (-4 *5 (-13 (-374) (-860))))) (-4281 (*1 *2 *3) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-971 (-171 (-419 (-576))))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860)))))) -(-10 -7 (-15 -4281 ((-971 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))))) (-15 -4281 ((-971 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1197))) (-15 -2650 ((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|)) (-15 -2463 ((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|))) -((-3091 (((-176 (-576)) |#1|) 27))) -(((-777 |#1|) (-10 -7 (-15 -3091 ((-176 (-576)) |#1|))) (-416)) (T -777)) -((-3091 (*1 *2 *3) (-12 (-5 *2 (-176 (-576))) (-5 *1 (-777 *3)) (-4 *3 (-416))))) -(-10 -7 (-15 -3091 ((-176 (-576)) |#1|))) -((-1764 ((|#1| |#1| |#1|) 28)) (-2849 ((|#1| |#1| |#1|) 27)) (-2296 ((|#1| |#1| |#1|) 38)) (-1857 ((|#1| |#1| |#1|) 34)) (-3215 (((-3 |#1| "failed") |#1| |#1|) 31)) (-4258 (((-2 (|:| -2715 |#1|) (|:| -3624 |#1|)) |#1| |#1|) 26))) -(((-778 |#1| |#2|) (-10 -7 (-15 -4258 ((-2 (|:| -2715 |#1|) (|:| -3624 |#1|)) |#1| |#1|)) (-15 -2849 (|#1| |#1| |#1|)) (-15 -1764 (|#1| |#1| |#1|)) (-15 -3215 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1857 (|#1| |#1| |#1|)) (-15 -2296 (|#1| |#1| |#1|))) (-720 |#2|) (-374)) (T -778)) -((-2296 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-1857 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-3215 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-1764 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-2849 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-4258 (*1 *2 *3 *3) (-12 (-4 *4 (-374)) (-5 *2 (-2 (|:| -2715 *3) (|:| -3624 *3))) (-5 *1 (-778 *3 *4)) (-4 *3 (-720 *4))))) -(-10 -7 (-15 -4258 ((-2 (|:| -2715 |#1|) (|:| -3624 |#1|)) |#1| |#1|)) (-15 -2849 (|#1| |#1| |#1|)) (-15 -1764 (|#1| |#1| |#1|)) (-15 -3215 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1857 (|#1| |#1| |#1|)) (-15 -2296 (|#1| |#1| |#1|))) -((-3431 (((-703 (-1246)) $ (-1246)) 26)) (-3559 (((-703 (-561)) $ (-561)) 25)) (-3000 (((-783) $ (-129)) 27)) (-4175 (((-703 (-130)) $ (-130)) 24)) (-1436 (((-703 (-1246)) $) 12)) (-2362 (((-703 (-1244)) $) 8)) (-4205 (((-703 (-1243)) $) 10)) (-1729 (((-703 (-561)) $) 13)) (-1833 (((-703 (-559)) $) 9)) (-3918 (((-703 (-558)) $) 11)) (-4261 (((-783) $ (-129)) 7)) (-3578 (((-703 (-130)) $) 14)) (-1398 (((-112) $) 31)) (-2372 (((-703 $) |#1| (-973)) 32)) (-3423 (($ $) 6))) +((-4429 (((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|) 33)) (-2501 (((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|) 23)) (-2857 (((-971 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1197)) 20) (((-971 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576))))) 19))) +(((-776 |#1|) (-10 -7 (-15 -2857 ((-971 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))))) (-15 -2857 ((-971 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1197))) (-15 -2501 ((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|)) (-15 -4429 ((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|))) (-13 (-374) (-860))) (T -776)) +((-4429 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 *4))))))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860))))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860))))) (-2857 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *4 (-1197)) (-5 *2 (-971 (-171 (-419 (-576))))) (-5 *1 (-776 *5)) (-4 *5 (-13 (-374) (-860))))) (-2857 (*1 *2 *3) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-971 (-171 (-419 (-576))))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860)))))) +(-10 -7 (-15 -2857 ((-971 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))))) (-15 -2857 ((-971 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1197))) (-15 -2501 ((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|)) (-15 -4429 ((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|))) +((-2223 (((-176 (-576)) |#1|) 27))) +(((-777 |#1|) (-10 -7 (-15 -2223 ((-176 (-576)) |#1|))) (-416)) (T -777)) +((-2223 (*1 *2 *3) (-12 (-5 *2 (-176 (-576))) (-5 *1 (-777 *3)) (-4 *3 (-416))))) +(-10 -7 (-15 -2223 ((-176 (-576)) |#1|))) +((-1882 ((|#1| |#1| |#1|) 28)) (-3814 ((|#1| |#1| |#1|) 27)) (-2079 ((|#1| |#1| |#1|) 38)) (-3490 ((|#1| |#1| |#1|) 34)) (-4193 (((-3 |#1| "failed") |#1| |#1|) 31)) (-3923 (((-2 (|:| -1855 |#1|) (|:| -3891 |#1|)) |#1| |#1|) 26))) +(((-778 |#1| |#2|) (-10 -7 (-15 -3923 ((-2 (|:| -1855 |#1|) (|:| -3891 |#1|)) |#1| |#1|)) (-15 -3814 (|#1| |#1| |#1|)) (-15 -1882 (|#1| |#1| |#1|)) (-15 -4193 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3490 (|#1| |#1| |#1|)) (-15 -2079 (|#1| |#1| |#1|))) (-720 |#2|) (-374)) (T -778)) +((-2079 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-3490 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-4193 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-1882 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-3814 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-3923 (*1 *2 *3 *3) (-12 (-4 *4 (-374)) (-5 *2 (-2 (|:| -1855 *3) (|:| -3891 *3))) (-5 *1 (-778 *3 *4)) (-4 *3 (-720 *4))))) +(-10 -7 (-15 -3923 ((-2 (|:| -1855 |#1|) (|:| -3891 |#1|)) |#1| |#1|)) (-15 -3814 (|#1| |#1| |#1|)) (-15 -1882 (|#1| |#1| |#1|)) (-15 -4193 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3490 (|#1| |#1| |#1|)) (-15 -2079 (|#1| |#1| |#1|))) +((-2574 (((-703 (-1246)) $ (-1246)) 26)) (-1350 (((-703 (-561)) $ (-561)) 25)) (-3890 (((-783) $ (-129)) 27)) (-4299 (((-703 (-130)) $ (-130)) 24)) (-2242 (((-703 (-1246)) $) 12)) (-1507 (((-703 (-1244)) $) 8)) (-1459 (((-703 (-1243)) $) 10)) (-1549 (((-703 (-561)) $) 13)) (-3272 (((-703 (-559)) $) 9)) (-3737 (((-703 (-558)) $) 11)) (-3954 (((-783) $ (-129)) 7)) (-3409 (((-703 (-130)) $) 14)) (-3716 (((-112) $) 31)) (-1603 (((-703 $) |#1| (-973)) 32)) (-2516 (($ $) 6))) (((-779 |#1|) (-141) (-1121)) (T -779)) -((-2372 (*1 *2 *3 *4) (-12 (-5 *4 (-973)) (-4 *3 (-1121)) (-5 *2 (-703 *1)) (-4 *1 (-779 *3)))) (-1398 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-1121)) (-5 *2 (-112))))) -(-13 (-588) (-10 -8 (-15 -2372 ((-703 $) |t#1| (-973))) (-15 -1398 ((-112) $)))) +((-1603 (*1 *2 *3 *4) (-12 (-5 *4 (-973)) (-4 *3 (-1121)) (-5 *2 (-703 *1)) (-4 *1 (-779 *3)))) (-3716 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-1121)) (-5 *2 (-112))))) +(-13 (-588) (-10 -8 (-15 -1603 ((-703 $) |t#1| (-973))) (-15 -3716 ((-112) $)))) (((-175) . T) ((-539) . T) ((-588) . T) ((-874) . T)) -((-1908 (((-2 (|:| -1593 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)) 71)) (-3573 (((-2 (|:| -1593 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576))))) 69)) (-4352 (((-576)) 85))) -(((-780 |#1| |#2|) (-10 -7 (-15 -4352 ((-576))) (-15 -3573 ((-2 (|:| -1593 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))))) (-15 -1908 ((-2 (|:| -1593 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)))) (-1264 (-576)) (-421 (-576) |#1|)) (T -780)) -((-1908 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-1264 *3)) (-5 *2 (-2 (|:| -1593 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-780 *4 *5)) (-4 *5 (-421 *3 *4)))) (-3573 (*1 *2) (-12 (-4 *3 (-1264 (-576))) (-5 *2 (-2 (|:| -1593 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576))))) (-5 *1 (-780 *3 *4)) (-4 *4 (-421 (-576) *3)))) (-4352 (*1 *2) (-12 (-4 *3 (-1264 *2)) (-5 *2 (-576)) (-5 *1 (-780 *3 *4)) (-4 *4 (-421 *2 *3))))) -(-10 -7 (-15 -4352 ((-576))) (-15 -3573 ((-2 (|:| -1593 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))))) (-15 -1908 ((-2 (|:| -1593 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)))) -((-3489 (((-112) $ $) NIL)) (-2860 (((-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $) 21)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 20) (($ (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 13) (($ (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) 18)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-781) (-13 (-1121) (-10 -8 (-15 -3570 ($ (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3570 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3570 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2860 ((-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))) (T -781)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-781)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-781)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-781)))) (-2860 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-781))))) -(-13 (-1121) (-10 -8 (-15 -3570 ($ (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3570 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3570 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2860 ((-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $)))) -((-1676 (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|))) 18) (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)) (-656 (-1197))) 17)) (-2767 (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|))) 20) (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)) (-656 (-1197))) 19))) -(((-782 |#1|) (-10 -7 (-15 -1676 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -1676 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)))) (-15 -2767 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -2767 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|))))) (-568)) (T -782)) -((-2767 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-782 *4)))) (-2767 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-656 (-1197))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-782 *5)))) (-1676 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-782 *4)))) (-1676 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-656 (-1197))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-782 *5))))) -(-10 -7 (-15 -1676 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -1676 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)))) (-15 -2767 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -2767 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|))))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2324 (($ $ $) 10)) (-4367 (((-3 $ "failed") $ $) 15)) (-2745 (($ $ (-576)) 11)) (-3886 (($) NIL T CONST)) (-3429 (($ $ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-1836 (($ $) NIL)) (-3441 (($ $ $) NIL)) (-4193 (((-112) $) NIL)) (-3125 (($ $ $) NIL)) (-3133 (($ $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3498 (($ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2721 (($) 6 T CONST)) (-2732 (($) NIL T CONST)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-940)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ $ $) NIL))) -(((-783) (-13 (-805) (-738) (-10 -8 (-15 -3441 ($ $ $)) (-15 -3429 ($ $ $)) (-15 -3498 ($ $ $)) (-15 -3274 ((-2 (|:| -2715 $) (|:| -3624 $)) $ $)) (-15 -3476 ((-3 $ "failed") $ $)) (-15 -2745 ($ $ (-576))) (-15 -1836 ($ $)) (-6 (-4467 "*"))))) (T -783)) -((-3441 (*1 *1 *1 *1) (-5 *1 (-783))) (-3429 (*1 *1 *1 *1) (-5 *1 (-783))) (-3498 (*1 *1 *1 *1) (-5 *1 (-783))) (-3274 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2715 (-783)) (|:| -3624 (-783)))) (-5 *1 (-783)))) (-3476 (*1 *1 *1 *1) (|partial| -5 *1 (-783))) (-2745 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-783)))) (-1836 (*1 *1 *1) (-5 *1 (-783)))) -(-13 (-805) (-738) (-10 -8 (-15 -3441 ($ $ $)) (-15 -3429 ($ $ $)) (-15 -3498 ($ $ $)) (-15 -3274 ((-2 (|:| -2715 $) (|:| -3624 $)) $ $)) (-15 -3476 ((-3 $ "failed") $ $)) (-15 -2745 ($ $ (-576))) (-15 -1836 ($ $)) (-6 (-4467 "*")))) +((-2659 (((-2 (|:| -2675 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)) 71)) (-3358 (((-2 (|:| -2675 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576))))) 69)) (-2269 (((-576)) 85))) +(((-780 |#1| |#2|) (-10 -7 (-15 -2269 ((-576))) (-15 -3358 ((-2 (|:| -2675 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))))) (-15 -2659 ((-2 (|:| -2675 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)))) (-1264 (-576)) (-421 (-576) |#1|)) (T -780)) +((-2659 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-1264 *3)) (-5 *2 (-2 (|:| -2675 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-780 *4 *5)) (-4 *5 (-421 *3 *4)))) (-3358 (*1 *2) (-12 (-4 *3 (-1264 (-576))) (-5 *2 (-2 (|:| -2675 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576))))) (-5 *1 (-780 *3 *4)) (-4 *4 (-421 (-576) *3)))) (-2269 (*1 *2) (-12 (-4 *3 (-1264 *2)) (-5 *2 (-576)) (-5 *1 (-780 *3 *4)) (-4 *4 (-421 *2 *3))))) +(-10 -7 (-15 -2269 ((-576))) (-15 -3358 ((-2 (|:| -2675 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))))) (-15 -2659 ((-2 (|:| -2675 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)))) +((-3488 (((-112) $ $) NIL)) (-2859 (((-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $) 21)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 20) (($ (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 13) (($ (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) 18)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-781) (-13 (-1121) (-10 -8 (-15 -3569 ($ (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3569 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3569 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2859 ((-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))) (T -781)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-781)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-781)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-781)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-781))))) +(-13 (-1121) (-10 -8 (-15 -3569 ($ (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3569 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3569 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2859 ((-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $)))) +((-2227 (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|))) 18) (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)) (-656 (-1197))) 17)) (-4263 (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|))) 20) (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)) (-656 (-1197))) 19))) +(((-782 |#1|) (-10 -7 (-15 -2227 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -2227 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)))) (-15 -4263 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -4263 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|))))) (-568)) (T -782)) +((-4263 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-782 *4)))) (-4263 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-656 (-1197))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-782 *5)))) (-2227 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-782 *4)))) (-2227 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-656 (-1197))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-782 *5))))) +(-10 -7 (-15 -2227 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -2227 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)))) (-15 -4263 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -4263 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2386 (($ $ $) 10)) (-2428 (((-3 $ "failed") $ $) 15)) (-2743 (($ $ (-576)) 11)) (-3404 (($) NIL T CONST)) (-3428 (($ $ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1836 (($ $) NIL)) (-3440 (($ $ $) NIL)) (-1351 (((-112) $) NIL)) (-3124 (($ $ $) NIL)) (-1441 (($ $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3497 (($ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2721 (($) 6 T CONST)) (-2731 (($) NIL T CONST)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-940)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ $ $) NIL))) +(((-783) (-13 (-805) (-738) (-10 -8 (-15 -3440 ($ $ $)) (-15 -3428 ($ $ $)) (-15 -3497 ($ $ $)) (-15 -3536 ((-2 (|:| -1855 $) (|:| -3891 $)) $ $)) (-15 -3475 ((-3 $ "failed") $ $)) (-15 -2743 ($ $ (-576))) (-15 -1836 ($ $)) (-6 (-4466 "*"))))) (T -783)) +((-3440 (*1 *1 *1 *1) (-5 *1 (-783))) (-3428 (*1 *1 *1 *1) (-5 *1 (-783))) (-3497 (*1 *1 *1 *1) (-5 *1 (-783))) (-3536 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1855 (-783)) (|:| -3891 (-783)))) (-5 *1 (-783)))) (-3475 (*1 *1 *1 *1) (|partial| -5 *1 (-783))) (-2743 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-783)))) (-1836 (*1 *1 *1) (-5 *1 (-783)))) +(-13 (-805) (-738) (-10 -8 (-15 -3440 ($ $ $)) (-15 -3428 ($ $ $)) (-15 -3497 ($ $ $)) (-15 -3536 ((-2 (|:| -1855 $) (|:| -3891 $)) $ $)) (-15 -3475 ((-3 $ "failed") $ $)) (-15 -2743 ($ $ (-576))) (-15 -1836 ($ $)) (-6 (-4466 "*")))) ((|Integer|) (|%ige| |#1| 0)) -((-2767 (((-3 |#2| "failed") |#2| |#2| (-115) (-1197)) 37))) -(((-784 |#1| |#2|) (-10 -7 (-15 -2767 ((-3 |#2| "failed") |#2| |#2| (-115) (-1197)))) (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1223) (-978))) (T -784)) -((-2767 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *1 (-784 *5 *2)) (-4 *2 (-13 (-29 *5) (-1223) (-978)))))) -(-10 -7 (-15 -2767 ((-3 |#2| "failed") |#2| |#2| (-115) (-1197)))) -((-3570 (((-786) |#1|) 8))) -(((-785 |#1|) (-10 -7 (-15 -3570 ((-786) |#1|))) (-1238)) (T -785)) -((-3570 (*1 *2 *3) (-12 (-5 *2 (-786)) (-5 *1 (-785 *3)) (-4 *3 (-1238))))) -(-10 -7 (-15 -3570 ((-786) |#1|))) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 7)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 9))) +((-4263 (((-3 |#2| "failed") |#2| |#2| (-115) (-1197)) 37))) +(((-784 |#1| |#2|) (-10 -7 (-15 -4263 ((-3 |#2| "failed") |#2| |#2| (-115) (-1197)))) (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1223) (-978))) (T -784)) +((-4263 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *1 (-784 *5 *2)) (-4 *2 (-13 (-29 *5) (-1223) (-978)))))) +(-10 -7 (-15 -4263 ((-3 |#2| "failed") |#2| |#2| (-115) (-1197)))) +((-3569 (((-786) |#1|) 8))) +(((-785 |#1|) (-10 -7 (-15 -3569 ((-786) |#1|))) (-1238)) (T -785)) +((-3569 (*1 *2 *3) (-12 (-5 *2 (-786)) (-5 *1 (-785 *3)) (-4 *3 (-1238))))) +(-10 -7 (-15 -3569 ((-786) |#1|))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 7)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 9))) (((-786) (-1121)) (T -786)) NIL (-1121) -((-1381 ((|#2| |#4|) 35))) -(((-787 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1381 (|#2| |#4|))) (-464) (-1264 |#1|) (-736 |#1| |#2|) (-1264 |#3|)) (T -787)) -((-1381 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-736 *4 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-787 *4 *2 *5 *3)) (-4 *3 (-1264 *5))))) -(-10 -7 (-15 -1381 (|#2| |#4|))) -((-1561 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-2935 (((-1293) (-1179) (-1179) |#4| |#5|) 33)) (-1462 ((|#4| |#4| |#5|) 74)) (-2923 (((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) |#4| |#5|) 79)) (-4086 (((-656 (-2 (|:| |val| (-112)) (|:| -3988 |#5|))) |#4| |#5|) 16))) -(((-788 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1561 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1462 (|#4| |#4| |#5|)) (-15 -2923 ((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) |#4| |#5|)) (-15 -2935 ((-1293) (-1179) (-1179) |#4| |#5|)) (-15 -4086 ((-656 (-2 (|:| |val| (-112)) (|:| -3988 |#5|))) |#4| |#5|))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -788)) -((-4086 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3988 *4)))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-2935 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1179)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *4 (-1086 *6 *7 *8)) (-5 *2 (-1293)) (-5 *1 (-788 *6 *7 *8 *4 *5)) (-4 *5 (-1092 *6 *7 *8 *4)))) (-2923 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3988 *4)))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-1462 (*1 *2 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *2 (-1086 *4 *5 *6)) (-5 *1 (-788 *4 *5 *6 *2 *3)) (-4 *3 (-1092 *4 *5 *6 *2)))) (-1561 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(-10 -7 (-15 -1561 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1462 (|#4| |#4| |#5|)) (-15 -2923 ((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) |#4| |#5|)) (-15 -2935 ((-1293) (-1179) (-1179) |#4| |#5|)) (-15 -4086 ((-656 (-2 (|:| |val| (-112)) (|:| -3988 |#5|))) |#4| |#5|))) -((-1572 (((-3 (-1193 (-1193 |#1|)) "failed") |#4|) 51)) (-3555 (((-656 |#4|) |#4|) 22)) (-3051 ((|#4| |#4|) 17))) -(((-789 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3555 ((-656 |#4|) |#4|)) (-15 -1572 ((-3 (-1193 (-1193 |#1|)) "failed") |#4|)) (-15 -3051 (|#4| |#4|))) (-360) (-339 |#1|) (-1264 |#2|) (-1264 |#3|) (-940)) (T -789)) -((-3051 (*1 *2 *2) (-12 (-4 *3 (-360)) (-4 *4 (-339 *3)) (-4 *5 (-1264 *4)) (-5 *1 (-789 *3 *4 *5 *2 *6)) (-4 *2 (-1264 *5)) (-14 *6 (-940)))) (-1572 (*1 *2 *3) (|partial| -12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1264 *5)) (-5 *2 (-1193 (-1193 *4))) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1264 *6)) (-14 *7 (-940)))) (-3555 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1264 *5)) (-5 *2 (-656 *3)) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1264 *6)) (-14 *7 (-940))))) -(-10 -7 (-15 -3555 ((-656 |#4|) |#4|)) (-15 -1572 ((-3 (-1193 (-1193 |#1|)) "failed") |#4|)) (-15 -3051 (|#4| |#4|))) -((-2479 (((-2 (|:| |deter| (-656 (-1193 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -2743 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1193 |#5|) (-656 |#1|) (-656 |#5|)) 72)) (-3134 (((-656 (-783)) |#1|) 20))) -(((-790 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2479 ((-2 (|:| |deter| (-656 (-1193 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -2743 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1193 |#5|) (-656 |#1|) (-656 |#5|))) (-15 -3134 ((-656 (-783)) |#1|))) (-1264 |#4|) (-805) (-861) (-317) (-968 |#4| |#2| |#3|)) (T -790)) -((-3134 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-656 (-783))) (-5 *1 (-790 *3 *4 *5 *6 *7)) (-4 *3 (-1264 *6)) (-4 *7 (-968 *6 *4 *5)))) (-2479 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1264 *9)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-317)) (-4 *10 (-968 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-656 (-1193 *10))) (|:| |dterm| (-656 (-656 (-2 (|:| -2743 (-783)) (|:| |pcoef| *10))))) (|:| |nfacts| (-656 *6)) (|:| |nlead| (-656 *10)))) (-5 *1 (-790 *6 *7 *8 *9 *10)) (-5 *3 (-1193 *10)) (-5 *4 (-656 *6)) (-5 *5 (-656 *10))))) -(-10 -7 (-15 -2479 ((-2 (|:| |deter| (-656 (-1193 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -2743 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1193 |#5|) (-656 |#1|) (-656 |#5|))) (-15 -3134 ((-656 (-783)) |#1|))) -((-3902 (((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|) 31)) (-3798 (((-656 |#1|) (-701 (-419 (-576))) |#1|) 21)) (-4281 (((-971 (-419 (-576))) (-701 (-419 (-576))) (-1197)) 18) (((-971 (-419 (-576))) (-701 (-419 (-576)))) 17))) -(((-791 |#1|) (-10 -7 (-15 -4281 ((-971 (-419 (-576))) (-701 (-419 (-576))))) (-15 -4281 ((-971 (-419 (-576))) (-701 (-419 (-576))) (-1197))) (-15 -3798 ((-656 |#1|) (-701 (-419 (-576))) |#1|)) (-15 -3902 ((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|))) (-13 (-374) (-860))) (T -791)) -((-3902 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 (-2 (|:| |outval| *4) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 *4)))))) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) (-3798 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) (-4281 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *4 (-1197)) (-5 *2 (-971 (-419 (-576)))) (-5 *1 (-791 *5)) (-4 *5 (-13 (-374) (-860))))) (-4281 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-971 (-419 (-576)))) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860)))))) -(-10 -7 (-15 -4281 ((-971 (-419 (-576))) (-701 (-419 (-576))))) (-15 -4281 ((-971 (-419 (-576))) (-701 (-419 (-576))) (-1197))) (-15 -3798 ((-656 |#1|) (-701 (-419 (-576))) |#1|)) (-15 -3902 ((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 36)) (-1969 (((-656 |#2|) $) NIL)) (-1798 (((-1193 $) $ |#2|) NIL) (((-1193 |#1|) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2757 (($ $) NIL (|has| |#1| (-568)))) (-3788 (((-112) $) NIL (|has| |#1| (-568)))) (-3543 (((-783) $) NIL) (((-783) $ (-656 |#2|)) NIL)) (-4426 (($ $) 30)) (-3048 (((-112) $ $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3049 (($ $ $) 110 (|has| |#1| (-568)))) (-2733 (((-656 $) $ $) 123 (|has| |#1| (-568)))) (-3601 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2487 (($ $) NIL (|has| |#1| (-464)))) (-3921 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-971 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197))))) (((-3 $ "failed") (-971 (-576))) NIL (-2760 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1197))) (-2663 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197)))))) (((-3 $ "failed") (-971 |#1|)) NIL (-2760 (-12 (|has| |#2| (-626 (-1197))) (-2663 (|has| |#1| (-38 (-419 (-576))))) (-2663 (|has| |#1| (-38 (-576))))) (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1197))) (-2663 (|has| |#1| (-38 (-419 (-576))))) (-2663 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197))) (-2663 (|has| |#1| (-1013 (-576))))))) (((-3 (-1146 |#1| |#2|) "failed") $) 21)) (-2860 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) ((|#2| $) NIL) (($ (-971 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197))))) (($ (-971 (-576))) NIL (-2760 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1197))) (-2663 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197)))))) (($ (-971 |#1|)) NIL (-2760 (-12 (|has| |#2| (-626 (-1197))) (-2663 (|has| |#1| (-38 (-419 (-576))))) (-2663 (|has| |#1| (-38 (-576))))) (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1197))) (-2663 (|has| |#1| (-38 (-419 (-576))))) (-2663 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197))) (-2663 (|has| |#1| (-1013 (-576))))))) (((-1146 |#1| |#2|) $) NIL)) (-3230 (($ $ $ |#2|) NIL (|has| |#1| (-174))) (($ $ $) 121 (|has| |#1| (-568)))) (-2114 (($ $) NIL) (($ $ |#2|) NIL)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3439 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-4339 (((-112) $) NIL)) (-2865 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 81)) (-1933 (($ $) 136 (|has| |#1| (-464)))) (-3767 (($ $) NIL (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-2103 (((-656 $) $) NIL)) (-4249 (((-112) $) NIL (|has| |#1| (-928)))) (-3508 (($ $) NIL (|has| |#1| (-568)))) (-3608 (($ $) NIL (|has| |#1| (-568)))) (-2135 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-2678 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-2431 (($ $ |#1| (-543 |#2|) $) NIL)) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| |#1| (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| |#1| (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-4193 (((-112) $) 57)) (-2217 (((-783) $) NIL)) (-3186 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-3189 (($ $ $ $ $) 107 (|has| |#1| (-568)))) (-2620 ((|#2| $) 22)) (-1955 (($ (-1193 |#1|) |#2|) NIL) (($ (-1193 $) |#2|) NIL)) (-1608 (((-656 $) $) NIL)) (-2823 (((-112) $) NIL)) (-1945 (($ |#1| (-543 |#2|)) NIL) (($ $ |#2| (-783)) 38) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-2589 (($ $ $) 63)) (-4130 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $ |#2|) NIL)) (-3592 (((-112) $) NIL)) (-3751 (((-543 |#2|) $) NIL) (((-783) $ |#2|) NIL) (((-656 (-783)) $ (-656 |#2|)) NIL)) (-2269 (((-783) $) 23)) (-2999 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-3721 (((-3 |#2| "failed") $) NIL)) (-3199 (($ $) NIL (|has| |#1| (-464)))) (-2415 (($ $) NIL (|has| |#1| (-464)))) (-4211 (((-656 $) $) NIL)) (-4390 (($ $) 39)) (-4068 (($ $) NIL (|has| |#1| (-464)))) (-2272 (((-656 $) $) 43)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-1543 (($ $) 41)) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL) (($ $ |#2|) 48)) (-3458 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3124 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2066 (-783))) $ $) 96)) (-3491 (((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -2715 $) (|:| -3624 $)) $ $) 78) (((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -2715 $) (|:| -3624 $)) $ $ |#2|) NIL)) (-2315 (((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -3624 $)) $ $) NIL) (((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -3624 $)) $ $ |#2|) NIL)) (-2560 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-1439 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-3699 (((-1179) $) NIL)) (-1540 (($ $ $) 125 (|has| |#1| (-568)))) (-1596 (((-656 $) $) 32)) (-1385 (((-3 (-656 $) "failed") $) NIL)) (-1690 (((-3 (-656 $) "failed") $) NIL)) (-2040 (((-3 (-2 (|:| |var| |#2|) (|:| -3422 (-783))) "failed") $) NIL)) (-1603 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-3909 (($ $ $) NIL)) (-3540 (($ $) 24)) (-1438 (((-112) $ $) NIL)) (-3579 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-1522 (($ $ $) NIL)) (-3811 (($ $) 26)) (-1450 (((-1141) $) NIL)) (-2284 (((-2 (|:| -3498 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-568)))) (-4140 (((-2 (|:| -3498 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-568)))) (-2060 (((-112) $) 56)) (-2070 ((|#1| $) 58)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3498 ((|#1| |#1| $) 133 (|has| |#1| (-464))) (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4100 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-928)))) (-2093 (((-2 (|:| -3498 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-568)))) (-3476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-568)))) (-1880 (($ $ |#1|) 129 (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-4357 (($ $ |#1|) 128 (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-3284 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-656 |#2|) (-656 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-656 |#2|) (-656 $)) NIL)) (-4352 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-2775 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-3634 (((-543 |#2|) $) NIL) (((-783) $ |#2|) 45) (((-656 (-783)) $ (-656 |#2|)) NIL)) (-2132 (($ $) NIL)) (-1769 (($ $) 35)) (-4172 (((-907 (-390)) $) NIL (-12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548))))) (($ (-971 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197))))) (($ (-971 (-576))) NIL (-2760 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1197))) (-2663 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197)))))) (($ (-971 |#1|)) NIL (|has| |#2| (-626 (-1197)))) (((-1179) $) NIL (-12 (|has| |#1| (-1059 (-576))) (|has| |#2| (-626 (-1197))))) (((-971 |#1|) $) NIL (|has| |#2| (-626 (-1197))))) (-2457 ((|#1| $) 132 (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-971 |#1|) $) NIL (|has| |#2| (-626 (-1197)))) (((-1146 |#1| |#2|) $) 18) (($ (-1146 |#1| |#2|)) 19) (($ (-419 (-576))) NIL (-2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-1618 (((-656 |#1|) $) NIL)) (-3177 ((|#1| $ (-543 |#2|)) NIL) (($ $ |#2| (-783)) 47) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-4336 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3996 (((-783)) NIL T CONST)) (-2541 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2721 (($) 13 T CONST)) (-2448 (((-3 (-112) "failed") $ $) NIL)) (-2732 (($) 37 T CONST)) (-4235 (($ $ $ $ (-783)) 105 (|has| |#1| (-568)))) (-4078 (($ $ $ (-783)) 104 (|has| |#1| (-568)))) (-2020 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3044 (($ $) NIL) (($ $ $) 75)) (-3030 (($ $ $) 85)) (** (($ $ (-940)) NIL) (($ $ (-783)) 70)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 62) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) +((-2738 ((|#2| |#4|) 35))) +(((-787 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2738 (|#2| |#4|))) (-464) (-1264 |#1|) (-736 |#1| |#2|) (-1264 |#3|)) (T -787)) +((-2738 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-736 *4 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-787 *4 *2 *5 *3)) (-4 *3 (-1264 *5))))) +(-10 -7 (-15 -2738 (|#2| |#4|))) +((-3673 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-3273 (((-1293) (-1179) (-1179) |#4| |#5|) 33)) (-2500 ((|#4| |#4| |#5|) 74)) (-3270 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#5|) 79)) (-1509 (((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|) 16))) +(((-788 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3673 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2500 (|#4| |#4| |#5|)) (-15 -3270 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#5|)) (-15 -3273 ((-1293) (-1179) (-1179) |#4| |#5|)) (-15 -1509 ((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -788)) +((-1509 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3987 *4)))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3273 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1179)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *4 (-1086 *6 *7 *8)) (-5 *2 (-1293)) (-5 *1 (-788 *6 *7 *8 *4 *5)) (-4 *5 (-1092 *6 *7 *8 *4)))) (-3270 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-2500 (*1 *2 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *2 (-1086 *4 *5 *6)) (-5 *1 (-788 *4 *5 *6 *2 *3)) (-4 *3 (-1092 *4 *5 *6 *2)))) (-3673 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(-10 -7 (-15 -3673 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2500 (|#4| |#4| |#5|)) (-15 -3270 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#5|)) (-15 -3273 ((-1293) (-1179) (-1179) |#4| |#5|)) (-15 -1509 ((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|))) +((-1572 (((-3 (-1193 (-1193 |#1|)) "failed") |#4|) 51)) (-4430 (((-656 |#4|) |#4|) 22)) (-3108 ((|#4| |#4|) 17))) +(((-789 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4430 ((-656 |#4|) |#4|)) (-15 -1572 ((-3 (-1193 (-1193 |#1|)) "failed") |#4|)) (-15 -3108 (|#4| |#4|))) (-360) (-339 |#1|) (-1264 |#2|) (-1264 |#3|) (-940)) (T -789)) +((-3108 (*1 *2 *2) (-12 (-4 *3 (-360)) (-4 *4 (-339 *3)) (-4 *5 (-1264 *4)) (-5 *1 (-789 *3 *4 *5 *2 *6)) (-4 *2 (-1264 *5)) (-14 *6 (-940)))) (-1572 (*1 *2 *3) (|partial| -12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1264 *5)) (-5 *2 (-1193 (-1193 *4))) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1264 *6)) (-14 *7 (-940)))) (-4430 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1264 *5)) (-5 *2 (-656 *3)) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1264 *6)) (-14 *7 (-940))))) +(-10 -7 (-15 -4430 ((-656 |#4|) |#4|)) (-15 -1572 ((-3 (-1193 (-1193 |#1|)) "failed") |#4|)) (-15 -3108 (|#4| |#4|))) +((-3357 (((-2 (|:| |deter| (-656 (-1193 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -4080 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1193 |#5|) (-656 |#1|) (-656 |#5|)) 72)) (-1451 (((-656 (-783)) |#1|) 20))) +(((-790 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3357 ((-2 (|:| |deter| (-656 (-1193 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -4080 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1193 |#5|) (-656 |#1|) (-656 |#5|))) (-15 -1451 ((-656 (-783)) |#1|))) (-1264 |#4|) (-805) (-861) (-317) (-968 |#4| |#2| |#3|)) (T -790)) +((-1451 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-656 (-783))) (-5 *1 (-790 *3 *4 *5 *6 *7)) (-4 *3 (-1264 *6)) (-4 *7 (-968 *6 *4 *5)))) (-3357 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1264 *9)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-317)) (-4 *10 (-968 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-656 (-1193 *10))) (|:| |dterm| (-656 (-656 (-2 (|:| -4080 (-783)) (|:| |pcoef| *10))))) (|:| |nfacts| (-656 *6)) (|:| |nlead| (-656 *10)))) (-5 *1 (-790 *6 *7 *8 *9 *10)) (-5 *3 (-1193 *10)) (-5 *4 (-656 *6)) (-5 *5 (-656 *10))))) +(-10 -7 (-15 -3357 ((-2 (|:| |deter| (-656 (-1193 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -4080 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1193 |#5|) (-656 |#1|) (-656 |#5|))) (-15 -1451 ((-656 (-783)) |#1|))) +((-3560 (((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|) 31)) (-1868 (((-656 |#1|) (-701 (-419 (-576))) |#1|) 21)) (-2857 (((-971 (-419 (-576))) (-701 (-419 (-576))) (-1197)) 18) (((-971 (-419 (-576))) (-701 (-419 (-576)))) 17))) +(((-791 |#1|) (-10 -7 (-15 -2857 ((-971 (-419 (-576))) (-701 (-419 (-576))))) (-15 -2857 ((-971 (-419 (-576))) (-701 (-419 (-576))) (-1197))) (-15 -1868 ((-656 |#1|) (-701 (-419 (-576))) |#1|)) (-15 -3560 ((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|))) (-13 (-374) (-860))) (T -791)) +((-3560 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 (-2 (|:| |outval| *4) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 *4)))))) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) (-1868 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) (-2857 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *4 (-1197)) (-5 *2 (-971 (-419 (-576)))) (-5 *1 (-791 *5)) (-4 *5 (-13 (-374) (-860))))) (-2857 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-971 (-419 (-576)))) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860)))))) +(-10 -7 (-15 -2857 ((-971 (-419 (-576))) (-701 (-419 (-576))))) (-15 -2857 ((-971 (-419 (-576))) (-701 (-419 (-576))) (-1197))) (-15 -1868 ((-656 |#1|) (-701 (-419 (-576))) |#1|)) (-15 -3560 ((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 36)) (-1969 (((-656 |#2|) $) NIL)) (-1797 (((-1193 $) $ |#2|) NIL) (((-1193 |#1|) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4195 (($ $) NIL (|has| |#1| (-568)))) (-1760 (((-112) $) NIL (|has| |#1| (-568)))) (-4329 (((-783) $) NIL) (((-783) $ (-656 |#2|)) NIL)) (-4424 (($ $) 30)) (-3074 (((-112) $ $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3085 (($ $ $) 110 (|has| |#1| (-568)))) (-1998 (((-656 $) $ $) 123 (|has| |#1| (-568)))) (-3646 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3444 (($ $) NIL (|has| |#1| (-464)))) (-3760 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-971 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197))))) (((-3 $ "failed") (-971 (-576))) NIL (-2759 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1197))) (-2663 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197)))))) (((-3 $ "failed") (-971 |#1|)) NIL (-2759 (-12 (|has| |#2| (-626 (-1197))) (-2663 (|has| |#1| (-38 (-419 (-576))))) (-2663 (|has| |#1| (-38 (-576))))) (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1197))) (-2663 (|has| |#1| (-38 (-419 (-576))))) (-2663 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197))) (-2663 (|has| |#1| (-1013 (-576))))))) (((-3 (-1146 |#1| |#2|) "failed") $) 21)) (-2859 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) ((|#2| $) NIL) (($ (-971 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197))))) (($ (-971 (-576))) NIL (-2759 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1197))) (-2663 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197)))))) (($ (-971 |#1|)) NIL (-2759 (-12 (|has| |#2| (-626 (-1197))) (-2663 (|has| |#1| (-38 (-419 (-576))))) (-2663 (|has| |#1| (-38 (-576))))) (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1197))) (-2663 (|has| |#1| (-38 (-419 (-576))))) (-2663 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197))) (-2663 (|has| |#1| (-1013 (-576))))))) (((-1146 |#1| |#2|) $) NIL)) (-4334 (($ $ $ |#2|) NIL (|has| |#1| (-174))) (($ $ $) 121 (|has| |#1| (-568)))) (-2114 (($ $) NIL) (($ $ |#2|) NIL)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-1483 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-2146 (((-112) $) NIL)) (-3958 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 81)) (-2931 (($ $) 136 (|has| |#1| (-464)))) (-1547 (($ $) NIL (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-2103 (((-656 $) $) NIL)) (-3833 (((-112) $) NIL (|has| |#1| (-928)))) (-4027 (($ $) NIL (|has| |#1| (-568)))) (-3708 (($ $) NIL (|has| |#1| (-568)))) (-4261 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-1546 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-4124 (($ $ |#1| (-543 |#2|) $) NIL)) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| |#1| (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| |#1| (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-1351 (((-112) $) 57)) (-3799 (((-783) $) NIL)) (-1918 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-1947 (($ $ $ $ $) 107 (|has| |#1| (-568)))) (-2235 ((|#2| $) 22)) (-1956 (($ (-1193 |#1|) |#2|) NIL) (($ (-1193 $) |#2|) NIL)) (-2846 (((-656 $) $) NIL)) (-3538 (((-112) $) NIL)) (-1944 (($ |#1| (-543 |#2|)) NIL) (($ $ |#2| (-783)) 38) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-3222 (($ $ $) 63)) (-1915 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $ |#2|) NIL)) (-3555 (((-112) $) NIL)) (-2578 (((-543 |#2|) $) NIL) (((-783) $ |#2|) NIL) (((-656 (-783)) $ (-656 |#2|)) NIL)) (-3081 (((-783) $) 23)) (-3878 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2289 (((-3 |#2| "failed") $) NIL)) (-4032 (($ $) NIL (|has| |#1| (-464)))) (-3985 (($ $) NIL (|has| |#1| (-464)))) (-3421 (((-656 $) $) NIL)) (-2643 (($ $) 39)) (-2527 (($ $) NIL (|has| |#1| (-464)))) (-3115 (((-656 $) $) 43)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-3458 (($ $) 41)) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL) (($ $ |#2|) 48)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2529 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1679 (-783))) $ $) 96)) (-1905 (((-2 (|:| -1715 $) (|:| |gap| (-783)) (|:| -1855 $) (|:| -3891 $)) $ $) 78) (((-2 (|:| -1715 $) (|:| |gap| (-783)) (|:| -1855 $) (|:| -3891 $)) $ $ |#2|) NIL)) (-2283 (((-2 (|:| -1715 $) (|:| |gap| (-783)) (|:| -3891 $)) $ $) NIL) (((-2 (|:| -1715 $) (|:| |gap| (-783)) (|:| -3891 $)) $ $ |#2|) NIL)) (-2933 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-2275 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-2046 (((-1179) $) NIL)) (-3422 (($ $ $) 125 (|has| |#1| (-568)))) (-2709 (((-656 $) $) 32)) (-3845 (((-3 (-656 $) "failed") $) NIL)) (-2363 (((-3 (-656 $) "failed") $) NIL)) (-1452 (((-3 (-2 (|:| |var| |#2|) (|:| -2508 (-783))) "failed") $) NIL)) (-2785 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-3640 (($ $ $) NIL)) (-3539 (($ $) 24)) (-2264 (((-112) $ $) NIL)) (-3420 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-3235 (($ $ $) NIL)) (-1982 (($ $) 26)) (-1450 (((-1141) $) NIL)) (-3236 (((-2 (|:| -3497 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-568)))) (-2000 (((-2 (|:| -3497 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-568)))) (-2060 (((-112) $) 56)) (-2070 ((|#1| $) 58)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3497 ((|#1| |#1| $) 133 (|has| |#1| (-464))) (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1644 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-928)))) (-1908 (((-2 (|:| -3497 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-568)))) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-568)))) (-3693 (($ $ |#1|) 129 (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-2311 (($ $ |#1|) 128 (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-3282 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-656 |#2|) (-656 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-656 |#2|) (-656 $)) NIL)) (-2269 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-2774 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-2683 (((-543 |#2|) $) NIL) (((-783) $ |#2|) 45) (((-656 (-783)) $ (-656 |#2|)) NIL)) (-4231 (($ $) NIL)) (-3910 (($ $) 35)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548))))) (($ (-971 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197))))) (($ (-971 (-576))) NIL (-2759 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1197))) (-2663 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197)))))) (($ (-971 |#1|)) NIL (|has| |#2| (-626 (-1197)))) (((-1179) $) NIL (-12 (|has| |#1| (-1059 (-576))) (|has| |#2| (-626 (-1197))))) (((-971 |#1|) $) NIL (|has| |#2| (-626 (-1197))))) (-4370 ((|#1| $) 132 (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-971 |#1|) $) NIL (|has| |#2| (-626 (-1197)))) (((-1146 |#1| |#2|) $) 18) (($ (-1146 |#1| |#2|)) 19) (($ (-419 (-576))) NIL (-2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2937 (((-656 |#1|) $) NIL)) (-1822 ((|#1| $ (-543 |#2|)) NIL) (($ $ |#2| (-783)) 47) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-3390 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3154 (((-783)) NIL T CONST)) (-2717 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2721 (($) 13 T CONST)) (-4275 (((-3 (-112) "failed") $ $) NIL)) (-2731 (($) 37 T CONST)) (-3683 (($ $ $ $ (-783)) 105 (|has| |#1| (-568)))) (-2615 (($ $ $ (-783)) 104 (|has| |#1| (-568)))) (-2020 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) 75)) (-3029 (($ $ $) 85)) (** (($ $ (-940)) NIL) (($ $ (-783)) 70)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 62) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) (((-792 |#1| |#2|) (-13 (-1086 |#1| (-543 |#2|) |#2|) (-625 (-1146 |#1| |#2|)) (-1059 (-1146 |#1| |#2|))) (-1070) (-861)) (T -792)) NIL (-13 (-1086 |#1| (-543 |#2|) |#2|) (-625 (-1146 |#1| |#2|)) (-1059 (-1146 |#1| |#2|))) -((-4117 (((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)) 13))) -(((-793 |#1| |#2|) (-10 -7 (-15 -4117 ((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)))) (-1070) (-1070)) (T -793)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-794 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-5 *2 (-794 *6)) (-5 *1 (-793 *5 *6))))) -(-10 -7 (-15 -4117 ((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 12)) (-2516 (((-1288 |#1|) $ (-783)) NIL)) (-1969 (((-656 (-1103)) $) NIL)) (-3591 (($ (-1193 |#1|)) NIL)) (-1798 (((-1193 $) $ (-1103)) NIL) (((-1193 |#1|) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2757 (($ $) NIL (|has| |#1| (-568)))) (-3788 (((-112) $) NIL (|has| |#1| (-568)))) (-3543 (((-783) $) NIL) (((-783) $ (-656 (-1103))) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-1659 (((-656 $) $ $) 54 (|has| |#1| (-568)))) (-3049 (($ $ $) 50 (|has| |#1| (-568)))) (-3601 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2487 (($ $) NIL (|has| |#1| (-464)))) (-3921 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-4016 (((-112) $ $) NIL (|has| |#1| (-374)))) (-1533 (($ $ (-783)) NIL)) (-2266 (($ $ (-783)) NIL)) (-2772 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-1103) "failed") $) NIL) (((-3 (-1193 |#1|) "failed") $) 10)) (-2860 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-1103) $) NIL) (((-1193 |#1|) $) NIL)) (-3230 (($ $ $ (-1103)) NIL (|has| |#1| (-174))) ((|#1| $ $) 58 (|has| |#1| (-174)))) (-3429 (($ $ $) NIL (|has| |#1| (-374)))) (-2114 (($ $) NIL)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-3441 (($ $ $) NIL (|has| |#1| (-374)))) (-1898 (($ $ $) NIL)) (-1804 (($ $ $) 87 (|has| |#1| (-568)))) (-2865 (((-2 (|:| -1714 |#1|) (|:| -2715 $) (|:| -3624 $)) $ $) 86 (|has| |#1| (-568)))) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3767 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1103)) NIL (|has| |#1| (-464)))) (-2103 (((-656 $) $) NIL)) (-4249 (((-112) $) NIL (|has| |#1| (-928)))) (-2431 (($ $ |#1| (-783) $) NIL)) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1103) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1103) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3917 (((-783) $ $) NIL (|has| |#1| (-568)))) (-4193 (((-112) $) NIL)) (-2217 (((-783) $) NIL)) (-2240 (((-3 $ "failed") $) NIL (|has| |#1| (-1173)))) (-1955 (($ (-1193 |#1|) (-1103)) NIL) (($ (-1193 $) (-1103)) NIL)) (-4116 (($ $ (-783)) NIL)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1608 (((-656 $) $) NIL)) (-2823 (((-112) $) NIL)) (-1945 (($ |#1| (-783)) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-2589 (($ $ $) 27)) (-4130 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $ (-1103)) NIL) (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-3751 (((-783) $) NIL) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-2999 (($ (-1 (-783) (-783)) $) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-1732 (((-1193 |#1|) $) NIL)) (-3721 (((-3 (-1103) "failed") $) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-3458 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3124 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2066 (-783))) $ $) 37)) (-1794 (($ $ $) 41)) (-4009 (($ $ $) 47)) (-3491 (((-2 (|:| -1714 |#1|) (|:| |gap| (-783)) (|:| -2715 $) (|:| -3624 $)) $ $) 46)) (-3699 (((-1179) $) NIL)) (-1540 (($ $ $) 56 (|has| |#1| (-568)))) (-2015 (((-2 (|:| -2715 $) (|:| -3624 $)) $ (-783)) NIL)) (-1385 (((-3 (-656 $) "failed") $) NIL)) (-1690 (((-3 (-656 $) "failed") $) NIL)) (-2040 (((-3 (-2 (|:| |var| (-1103)) (|:| -3422 (-783))) "failed") $) NIL)) (-1491 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3540 (($) NIL (|has| |#1| (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-2284 (((-2 (|:| -3498 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-568)))) (-4140 (((-2 (|:| -3498 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-568)))) (-3231 (((-2 (|:| -3230 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-568)))) (-3589 (((-2 (|:| -3230 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-568)))) (-2060 (((-112) $) 13)) (-2070 ((|#1| $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2598 (($ $ (-783) |#1| $) 26)) (-4100 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-928)))) (-2093 (((-2 (|:| -3498 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-568)))) (-2709 (((-2 (|:| -3230 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-568)))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| |#1| (-374)))) (-3476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3284 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1103) |#1|) NIL) (($ $ (-656 (-1103)) (-656 |#1|)) NIL) (($ $ (-1103) $) NIL) (($ $ (-656 (-1103)) (-656 $)) NIL)) (-1967 (((-783) $) NIL (|has| |#1| (-374)))) (-2797 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-4177 (((-3 $ "failed") $ (-783)) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#1| (-374)))) (-4352 (($ $ (-1103)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-2775 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-3634 (((-783) $) NIL) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-4172 (((-907 (-390)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-1103) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-2457 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1103)) NIL (|has| |#1| (-464)))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-2507 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1103)) NIL) (((-1193 |#1|) $) 7) (($ (-1193 |#1|)) 8) (($ (-419 (-576))) NIL (-2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-1618 (((-656 |#1|) $) NIL)) (-3177 ((|#1| $ (-783)) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-4336 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3996 (((-783)) NIL T CONST)) (-2541 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2721 (($) 28 T CONST)) (-2732 (($) 32 T CONST)) (-2020 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3044 (($ $) 40) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) -(((-794 |#1|) (-13 (-1264 |#1|) (-625 (-1193 |#1|)) (-1059 (-1193 |#1|)) (-10 -8 (-15 -2598 ($ $ (-783) |#1| $)) (-15 -2589 ($ $ $)) (-15 -3124 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2066 (-783))) $ $)) (-15 -1794 ($ $ $)) (-15 -3491 ((-2 (|:| -1714 |#1|) (|:| |gap| (-783)) (|:| -2715 $) (|:| -3624 $)) $ $)) (-15 -4009 ($ $ $)) (IF (|has| |#1| (-568)) (PROGN (-15 -1659 ((-656 $) $ $)) (-15 -1540 ($ $ $)) (-15 -2093 ((-2 (|:| -3498 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4140 ((-2 (|:| -3498 $) (|:| |coef1| $)) $ $)) (-15 -2284 ((-2 (|:| -3498 $) (|:| |coef2| $)) $ $)) (-15 -2709 ((-2 (|:| -3230 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3589 ((-2 (|:| -3230 |#1|) (|:| |coef1| $)) $ $)) (-15 -3231 ((-2 (|:| -3230 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1070)) (T -794)) -((-2598 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-794 *3)) (-4 *3 (-1070)))) (-2589 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1070)))) (-3124 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-794 *3)) (|:| |polden| *3) (|:| -2066 (-783)))) (-5 *1 (-794 *3)) (-4 *3 (-1070)))) (-1794 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1070)))) (-3491 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1714 *3) (|:| |gap| (-783)) (|:| -2715 (-794 *3)) (|:| -3624 (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-1070)))) (-4009 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1070)))) (-1659 (*1 *2 *1 *1) (-12 (-5 *2 (-656 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) (-1540 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-568)) (-4 *2 (-1070)))) (-2093 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3498 (-794 *3)) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) (-4140 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3498 (-794 *3)) (|:| |coef1| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) (-2284 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3498 (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) (-2709 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3230 *3) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) (-3589 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3230 *3) (|:| |coef1| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) (-3231 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3230 *3) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070))))) -(-13 (-1264 |#1|) (-625 (-1193 |#1|)) (-1059 (-1193 |#1|)) (-10 -8 (-15 -2598 ($ $ (-783) |#1| $)) (-15 -2589 ($ $ $)) (-15 -3124 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2066 (-783))) $ $)) (-15 -1794 ($ $ $)) (-15 -3491 ((-2 (|:| -1714 |#1|) (|:| |gap| (-783)) (|:| -2715 $) (|:| -3624 $)) $ $)) (-15 -4009 ($ $ $)) (IF (|has| |#1| (-568)) (PROGN (-15 -1659 ((-656 $) $ $)) (-15 -1540 ($ $ $)) (-15 -2093 ((-2 (|:| -3498 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4140 ((-2 (|:| -3498 $) (|:| |coef1| $)) $ $)) (-15 -2284 ((-2 (|:| -3498 $) (|:| |coef2| $)) $ $)) (-15 -2709 ((-2 (|:| -3230 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3589 ((-2 (|:| -3230 |#1|) (|:| |coef1| $)) $ $)) (-15 -3231 ((-2 (|:| -3230 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-1750 ((|#1| (-783) |#1|) 33 (|has| |#1| (-38 (-419 (-576)))))) (-1849 ((|#1| (-783) |#1|) 23)) (-4213 ((|#1| (-783) |#1|) 35 (|has| |#1| (-38 (-419 (-576))))))) -(((-795 |#1|) (-10 -7 (-15 -1849 (|#1| (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4213 (|#1| (-783) |#1|)) (-15 -1750 (|#1| (-783) |#1|))) |%noBranch|)) (-174)) (T -795)) -((-1750 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-4213 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-1849 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-174))))) -(-10 -7 (-15 -1849 (|#1| (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4213 (|#1| (-783) |#1|)) (-15 -1750 (|#1| (-783) |#1|))) |%noBranch|)) -((-3489 (((-112) $ $) 7)) (-1788 (((-656 (-2 (|:| -1958 $) (|:| -3257 (-656 |#4|)))) (-656 |#4|)) 86)) (-3603 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1969 (((-656 |#3|) $) 34)) (-1807 (((-112) $) 27)) (-4026 (((-112) $) 18 (|has| |#1| (-568)))) (-1613 (((-112) |#4| $) 102) (((-112) $) 98)) (-1377 ((|#4| |#4| $) 93)) (-2487 (((-656 (-2 (|:| |val| |#4|) (|:| -3988 $))) |#4| $) 127)) (-1795 (((-2 (|:| |under| $) (|:| -2443 $) (|:| |upper| $)) $ |#3|) 28)) (-1808 (((-112) $ (-783)) 45)) (-1974 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4465))) (((-3 |#4| "failed") $ |#3|) 80)) (-3886 (($) 46 T CONST)) (-3713 (((-112) $) 23 (|has| |#1| (-568)))) (-2813 (((-112) $ $) 25 (|has| |#1| (-568)))) (-3812 (((-112) $ $) 24 (|has| |#1| (-568)))) (-1884 (((-112) $) 26 (|has| |#1| (-568)))) (-3388 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2311 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-4376 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) 37)) (-2860 (($ (-656 |#4|)) 36)) (-3593 (((-3 $ "failed") $) 83)) (-3994 ((|#4| |#4| $) 90)) (-1415 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465))))) (-3946 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4465)))) (-3624 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3439 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2737 ((|#4| |#4| $) 88)) (-3686 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4465))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4465))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4405 (((-2 (|:| -1958 (-656 |#4|)) (|:| -3257 (-656 |#4|))) $) 106)) (-4148 (((-112) |#4| $) 137)) (-3773 (((-112) |#4| $) 134)) (-4441 (((-112) |#4| $) 138) (((-112) $) 135)) (-3966 (((-656 |#4|) $) 53 (|has| $ (-6 -4465)))) (-3186 (((-112) |#4| $) 105) (((-112) $) 104)) (-2620 ((|#3| $) 35)) (-3870 (((-112) $ (-783)) 44)) (-2014 (((-656 |#4|) $) 54 (|has| $ (-6 -4465)))) (-1612 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465))))) (-4323 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#4| |#4|) $) 48)) (-2234 (((-656 |#3|) $) 33)) (-2106 (((-112) |#3| $) 32)) (-1330 (((-112) $ (-783)) 43)) (-3699 (((-1179) $) 10)) (-2166 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-1540 (((-656 (-2 (|:| |val| |#4|) (|:| -3988 $))) |#4| |#4| $) 128)) (-3969 (((-3 |#4| "failed") $) 84)) (-1471 (((-656 $) |#4| $) 130)) (-3179 (((-3 (-112) (-656 $)) |#4| $) 133)) (-3787 (((-656 (-2 (|:| |val| (-112)) (|:| -3988 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3285 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-2008 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-4275 (((-656 |#4|) $) 108)) (-1603 (((-112) |#4| $) 100) (((-112) $) 96)) (-3909 ((|#4| |#4| $) 91)) (-1438 (((-112) $ $) 111)) (-2280 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3579 (((-112) |#4| $) 101) (((-112) $) 97)) (-1522 ((|#4| |#4| $) 92)) (-1450 (((-1141) $) 11)) (-3581 (((-3 |#4| "failed") $) 85)) (-1541 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3384 (((-3 $ "failed") $ |#4|) 79)) (-1749 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-4320 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-4040 (((-112) $ $) 39)) (-3973 (((-112) $) 42)) (-4225 (($) 41)) (-3634 (((-783) $) 107)) (-1460 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4465)))) (-1870 (($ $) 40)) (-4172 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3582 (($ (-656 |#4|)) 61)) (-3118 (($ $ |#3|) 29)) (-2637 (($ $ |#3|) 31)) (-1584 (($ $) 89)) (-3317 (($ $ |#3|) 30)) (-3570 (((-876) $) 12) (((-656 |#4|) $) 38)) (-3891 (((-783) $) 77 (|has| |#3| (-379)))) (-4055 (((-112) $ $) 6)) (-3765 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2833 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-3298 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-3321 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4465)))) (-1583 (((-656 |#3|) $) 82)) (-2392 (((-112) |#4| $) 136)) (-3419 (((-112) |#3| $) 81)) (-2925 (((-112) $ $) 8)) (-3503 (((-783) $) 47 (|has| $ (-6 -4465))))) +((-4116 (((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)) 13))) +(((-793 |#1| |#2|) (-10 -7 (-15 -4116 ((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)))) (-1070) (-1070)) (T -793)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-794 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-5 *2 (-794 *6)) (-5 *1 (-793 *5 *6))))) +(-10 -7 (-15 -4116 ((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 12)) (-3764 (((-1288 |#1|) $ (-783)) NIL)) (-1969 (((-656 (-1103)) $) NIL)) (-3543 (($ (-1193 |#1|)) NIL)) (-1797 (((-1193 $) $ (-1103)) NIL) (((-1193 |#1|) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4195 (($ $) NIL (|has| |#1| (-568)))) (-1760 (((-112) $) NIL (|has| |#1| (-568)))) (-4329 (((-783) $) NIL) (((-783) $ (-656 (-1103))) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-2067 (((-656 $) $ $) 54 (|has| |#1| (-568)))) (-3085 (($ $ $) 50 (|has| |#1| (-568)))) (-3646 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3444 (($ $) NIL (|has| |#1| (-464)))) (-3760 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3330 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3350 (($ $ (-783)) NIL)) (-3046 (($ $ (-783)) NIL)) (-4306 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-1103) "failed") $) NIL) (((-3 (-1193 |#1|) "failed") $) 10)) (-2859 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-1103) $) NIL) (((-1193 |#1|) $) NIL)) (-4334 (($ $ $ (-1103)) NIL (|has| |#1| (-174))) ((|#1| $ $) 58 (|has| |#1| (-174)))) (-3428 (($ $ $) NIL (|has| |#1| (-374)))) (-2114 (($ $) NIL)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-3440 (($ $ $) NIL (|has| |#1| (-374)))) (-3879 (($ $ $) NIL)) (-4235 (($ $ $) 87 (|has| |#1| (-568)))) (-3958 (((-2 (|:| -1715 |#1|) (|:| -1855 $) (|:| -3891 $)) $ $) 86 (|has| |#1| (-568)))) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-1547 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1103)) NIL (|has| |#1| (-464)))) (-2103 (((-656 $) $) NIL)) (-3833 (((-112) $) NIL (|has| |#1| (-928)))) (-4124 (($ $ |#1| (-783) $) NIL)) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1103) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1103) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3726 (((-783) $ $) NIL (|has| |#1| (-568)))) (-1351 (((-112) $) NIL)) (-3799 (((-783) $) NIL)) (-2734 (((-3 $ "failed") $) NIL (|has| |#1| (-1173)))) (-1956 (($ (-1193 |#1|) (-1103)) NIL) (($ (-1193 $) (-1103)) NIL)) (-1800 (($ $ (-783)) NIL)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2846 (((-656 $) $) NIL)) (-3538 (((-112) $) NIL)) (-1944 (($ |#1| (-783)) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-3222 (($ $ $) 27)) (-1915 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $ (-1103)) NIL) (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-2578 (((-783) $) NIL) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-3878 (($ (-1 (-783) (-783)) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-1582 (((-1193 |#1|) $) NIL)) (-2289 (((-3 (-1103) "failed") $) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2529 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1679 (-783))) $ $) 37)) (-4156 (($ $ $) 41)) (-3271 (($ $ $) 47)) (-1905 (((-2 (|:| -1715 |#1|) (|:| |gap| (-783)) (|:| -1855 $) (|:| -3891 $)) $ $) 46)) (-2046 (((-1179) $) NIL)) (-3422 (($ $ $) 56 (|has| |#1| (-568)))) (-2436 (((-2 (|:| -1855 $) (|:| -3891 $)) $ (-783)) NIL)) (-3845 (((-3 (-656 $) "failed") $) NIL)) (-2363 (((-3 (-656 $) "failed") $) NIL)) (-1452 (((-3 (-2 (|:| |var| (-1103)) (|:| -2508 (-783))) "failed") $) NIL)) (-4160 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3539 (($) NIL (|has| |#1| (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-3236 (((-2 (|:| -3497 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-568)))) (-2000 (((-2 (|:| -3497 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-568)))) (-4344 (((-2 (|:| -4334 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-568)))) (-3519 (((-2 (|:| -4334 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-568)))) (-2060 (((-112) $) 13)) (-2070 ((|#1| $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3497 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3317 (($ $ (-783) |#1| $) 26)) (-1644 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-928)))) (-1908 (((-2 (|:| -3497 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-568)))) (-1803 (((-2 (|:| -4334 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-568)))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3282 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1103) |#1|) NIL) (($ $ (-656 (-1103)) (-656 |#1|)) NIL) (($ $ (-1103) $) NIL) (($ $ (-656 (-1103)) (-656 $)) NIL)) (-1979 (((-783) $) NIL (|has| |#1| (-374)))) (-2796 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-4320 (((-3 $ "failed") $ (-783)) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#1| (-374)))) (-2269 (($ $ (-1103)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-2774 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-2683 (((-783) $) NIL) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-1103) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-4370 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1103)) NIL (|has| |#1| (-464)))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-3657 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1103)) NIL) (((-1193 |#1|) $) 7) (($ (-1193 |#1|)) 8) (($ (-419 (-576))) NIL (-2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2937 (((-656 |#1|) $) NIL)) (-1822 ((|#1| $ (-783)) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-3390 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3154 (((-783)) NIL T CONST)) (-2717 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2721 (($) 28 T CONST)) (-2731 (($) 32 T CONST)) (-2020 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $) 40) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) +(((-794 |#1|) (-13 (-1264 |#1|) (-625 (-1193 |#1|)) (-1059 (-1193 |#1|)) (-10 -8 (-15 -3317 ($ $ (-783) |#1| $)) (-15 -3222 ($ $ $)) (-15 -2529 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1679 (-783))) $ $)) (-15 -4156 ($ $ $)) (-15 -1905 ((-2 (|:| -1715 |#1|) (|:| |gap| (-783)) (|:| -1855 $) (|:| -3891 $)) $ $)) (-15 -3271 ($ $ $)) (IF (|has| |#1| (-568)) (PROGN (-15 -2067 ((-656 $) $ $)) (-15 -3422 ($ $ $)) (-15 -1908 ((-2 (|:| -3497 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2000 ((-2 (|:| -3497 $) (|:| |coef1| $)) $ $)) (-15 -3236 ((-2 (|:| -3497 $) (|:| |coef2| $)) $ $)) (-15 -1803 ((-2 (|:| -4334 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3519 ((-2 (|:| -4334 |#1|) (|:| |coef1| $)) $ $)) (-15 -4344 ((-2 (|:| -4334 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1070)) (T -794)) +((-3317 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-794 *3)) (-4 *3 (-1070)))) (-3222 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1070)))) (-2529 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-794 *3)) (|:| |polden| *3) (|:| -1679 (-783)))) (-5 *1 (-794 *3)) (-4 *3 (-1070)))) (-4156 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1070)))) (-1905 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1715 *3) (|:| |gap| (-783)) (|:| -1855 (-794 *3)) (|:| -3891 (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-1070)))) (-3271 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1070)))) (-2067 (*1 *2 *1 *1) (-12 (-5 *2 (-656 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) (-3422 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-568)) (-4 *2 (-1070)))) (-1908 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3497 (-794 *3)) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) (-2000 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3497 (-794 *3)) (|:| |coef1| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) (-3236 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3497 (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) (-1803 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4334 *3) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) (-3519 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4334 *3) (|:| |coef1| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) (-4344 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4334 *3) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070))))) +(-13 (-1264 |#1|) (-625 (-1193 |#1|)) (-1059 (-1193 |#1|)) (-10 -8 (-15 -3317 ($ $ (-783) |#1| $)) (-15 -3222 ($ $ $)) (-15 -2529 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1679 (-783))) $ $)) (-15 -4156 ($ $ $)) (-15 -1905 ((-2 (|:| -1715 |#1|) (|:| |gap| (-783)) (|:| -1855 $) (|:| -3891 $)) $ $)) (-15 -3271 ($ $ $)) (IF (|has| |#1| (-568)) (PROGN (-15 -2067 ((-656 $) $ $)) (-15 -3422 ($ $ $)) (-15 -1908 ((-2 (|:| -3497 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2000 ((-2 (|:| -3497 $) (|:| |coef1| $)) $ $)) (-15 -3236 ((-2 (|:| -3497 $) (|:| |coef2| $)) $ $)) (-15 -1803 ((-2 (|:| -4334 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3519 ((-2 (|:| -4334 |#1|) (|:| |coef1| $)) $ $)) (-15 -4344 ((-2 (|:| -4334 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-1753 ((|#1| (-783) |#1|) 33 (|has| |#1| (-38 (-419 (-576)))))) (-3408 ((|#1| (-783) |#1|) 23)) (-3442 ((|#1| (-783) |#1|) 35 (|has| |#1| (-38 (-419 (-576))))))) +(((-795 |#1|) (-10 -7 (-15 -3408 (|#1| (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3442 (|#1| (-783) |#1|)) (-15 -1753 (|#1| (-783) |#1|))) |%noBranch|)) (-174)) (T -795)) +((-1753 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-3442 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-3408 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-174))))) +(-10 -7 (-15 -3408 (|#1| (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3442 (|#1| (-783) |#1|)) (-15 -1753 (|#1| (-783) |#1|))) |%noBranch|)) +((-3488 (((-112) $ $) 7)) (-4093 (((-656 (-2 (|:| -1958 $) (|:| -3256 (-656 |#4|)))) (-656 |#4|)) 86)) (-3668 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1969 (((-656 |#3|) $) 34)) (-4255 (((-112) $) 27)) (-2136 (((-112) $) 18 (|has| |#1| (-568)))) (-2899 (((-112) |#4| $) 102) (((-112) $) 98)) (-3798 ((|#4| |#4| $) 93)) (-3444 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 $))) |#4| $) 127)) (-1795 (((-2 (|:| |under| $) (|:| -4236 $) (|:| |upper| $)) $ |#3|) 28)) (-4264 (((-112) $ (-783)) 45)) (-1974 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4464))) (((-3 |#4| "failed") $ |#3|) 80)) (-3404 (($) 46 T CONST)) (-2203 (((-112) $) 23 (|has| |#1| (-568)))) (-3438 (((-112) $ $) 25 (|has| |#1| (-568)))) (-1990 (((-112) $ $) 24 (|has| |#1| (-568)))) (-3740 (((-112) $) 26 (|has| |#1| (-568)))) (-2149 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2239 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-2514 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) 37)) (-2859 (($ (-656 |#4|)) 36)) (-3592 (((-3 $ "failed") $) 83)) (-3142 ((|#4| |#4| $) 90)) (-2034 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4464)))) (-3891 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-1483 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4022 ((|#4| |#4| $) 88)) (-3685 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4464))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1599 (((-2 (|:| -1958 (-656 |#4|)) (|:| -3256 (-656 |#4|))) $) 106)) (-4064 (((-112) |#4| $) 137)) (-1608 (((-112) |#4| $) 134)) (-1921 (((-112) |#4| $) 138) (((-112) $) 135)) (-3965 (((-656 |#4|) $) 53 (|has| $ (-6 -4464)))) (-1918 (((-112) |#4| $) 105) (((-112) $) 104)) (-2235 ((|#3| $) 35)) (-1368 (((-112) $ (-783)) 44)) (-2425 (((-656 |#4|) $) 54 (|has| $ (-6 -4464)))) (-2885 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-4326 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#4| |#4|) $) 48)) (-2666 (((-656 |#3|) $) 33)) (-4001 (((-112) |#3| $) 32)) (-2883 (((-112) $ (-783)) 43)) (-2046 (((-1179) $) 10)) (-3299 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-3422 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 $))) |#4| |#4| $) 128)) (-3968 (((-3 |#4| "failed") $) 84)) (-3955 (((-656 $) |#4| $) 130)) (-1843 (((-3 (-112) (-656 $)) |#4| $) 133)) (-1751 (((-656 (-2 (|:| |val| (-112)) (|:| -3987 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3651 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-2381 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-2795 (((-656 |#4|) $) 108)) (-2785 (((-112) |#4| $) 100) (((-112) $) 96)) (-3640 ((|#4| |#4| $) 91)) (-2264 (((-112) $ $) 111)) (-3196 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3420 (((-112) |#4| $) 101) (((-112) $) 97)) (-3235 ((|#4| |#4| $) 92)) (-1450 (((-1141) $) 11)) (-3580 (((-3 |#4| "failed") $) 85)) (-3434 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2101 (((-3 $ "failed") $ |#4|) 79)) (-1743 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-3252 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-2252 (((-112) $ $) 39)) (-2940 (((-112) $) 42)) (-3579 (($) 41)) (-2683 (((-783) $) 107)) (-1460 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4464)))) (-1870 (($ $) 40)) (-4171 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3581 (($ (-656 |#4|)) 61)) (-2479 (($ $ |#3|) 29)) (-2394 (($ $ |#3|) 31)) (-2582 (($ $) 89)) (-2665 (($ $ |#3|) 30)) (-3569 (((-876) $) 12) (((-656 |#4|) $) 38)) (-3451 (((-783) $) 77 (|has| |#3| (-379)))) (-2399 (((-112) $ $) 6)) (-1530 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3653 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-3788 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2708 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4464)))) (-2572 (((-656 |#3|) $) 82)) (-1777 (((-112) |#4| $) 136)) (-2476 (((-112) |#3| $) 81)) (-2924 (((-112) $ $) 8)) (-3502 (((-783) $) 47 (|has| $ (-6 -4464))))) (((-796 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-861) (-1086 |t#1| |t#2| |t#3|)) (T -796)) NIL (-13 (-1092 |t#1| |t#2| |t#3| |t#4|)) (((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-876)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-997 |#1| |#2| |#3| |#4|) . T) ((-1092 |#1| |#2| |#3| |#4|) . T) ((-1121) . T) ((-1231 |#1| |#2| |#3| |#4|) . T) ((-1238) . T)) -((-1852 (((-3 (-390) "failed") (-326 |#1|) (-940)) 62 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-390) "failed") (-326 |#1|)) 54 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-390) "failed") (-419 (-971 |#1|)) (-940)) 41 (|has| |#1| (-568))) (((-3 (-390) "failed") (-419 (-971 |#1|))) 40 (|has| |#1| (-568))) (((-3 (-390) "failed") (-971 |#1|) (-940)) 31 (|has| |#1| (-1070))) (((-3 (-390) "failed") (-971 |#1|)) 30 (|has| |#1| (-1070)))) (-2550 (((-390) (-326 |#1|) (-940)) 99 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-390) (-326 |#1|)) 94 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-390) (-419 (-971 |#1|)) (-940)) 91 (|has| |#1| (-568))) (((-390) (-419 (-971 |#1|))) 90 (|has| |#1| (-568))) (((-390) (-971 |#1|) (-940)) 86 (|has| |#1| (-1070))) (((-390) (-971 |#1|)) 85 (|has| |#1| (-1070))) (((-390) |#1| (-940)) 76) (((-390) |#1|) 22)) (-1558 (((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-940)) 71 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-171 (-390)) "failed") (-326 (-171 |#1|))) 70 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-171 (-390)) "failed") (-326 |#1|) (-940)) 63 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-171 (-390)) "failed") (-326 |#1|)) 61 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-171 (-390)) "failed") (-419 (-971 (-171 |#1|))) (-940)) 46 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-971 (-171 |#1|)))) 45 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-971 |#1|)) (-940)) 39 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-971 |#1|))) 38 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-971 |#1|) (-940)) 28 (|has| |#1| (-1070))) (((-3 (-171 (-390)) "failed") (-971 |#1|)) 26 (|has| |#1| (-1070))) (((-3 (-171 (-390)) "failed") (-971 (-171 |#1|)) (-940)) 18 (|has| |#1| (-174))) (((-3 (-171 (-390)) "failed") (-971 (-171 |#1|))) 15 (|has| |#1| (-174)))) (-4043 (((-171 (-390)) (-326 (-171 |#1|)) (-940)) 102 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-171 (-390)) (-326 (-171 |#1|))) 101 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-171 (-390)) (-326 |#1|) (-940)) 100 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-171 (-390)) (-326 |#1|)) 98 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-171 (-390)) (-419 (-971 (-171 |#1|))) (-940)) 93 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-971 (-171 |#1|)))) 92 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-971 |#1|)) (-940)) 89 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-971 |#1|))) 88 (|has| |#1| (-568))) (((-171 (-390)) (-971 |#1|) (-940)) 84 (|has| |#1| (-1070))) (((-171 (-390)) (-971 |#1|)) 83 (|has| |#1| (-1070))) (((-171 (-390)) (-971 (-171 |#1|)) (-940)) 78 (|has| |#1| (-174))) (((-171 (-390)) (-971 (-171 |#1|))) 77 (|has| |#1| (-174))) (((-171 (-390)) (-171 |#1|) (-940)) 80 (|has| |#1| (-174))) (((-171 (-390)) (-171 |#1|)) 79 (|has| |#1| (-174))) (((-171 (-390)) |#1| (-940)) 27) (((-171 (-390)) |#1|) 25))) -(((-797 |#1|) (-10 -7 (-15 -2550 ((-390) |#1|)) (-15 -2550 ((-390) |#1| (-940))) (-15 -4043 ((-171 (-390)) |#1|)) (-15 -4043 ((-171 (-390)) |#1| (-940))) (IF (|has| |#1| (-174)) (PROGN (-15 -4043 ((-171 (-390)) (-171 |#1|))) (-15 -4043 ((-171 (-390)) (-171 |#1|) (-940))) (-15 -4043 ((-171 (-390)) (-971 (-171 |#1|)))) (-15 -4043 ((-171 (-390)) (-971 (-171 |#1|)) (-940)))) |%noBranch|) (IF (|has| |#1| (-1070)) (PROGN (-15 -2550 ((-390) (-971 |#1|))) (-15 -2550 ((-390) (-971 |#1|) (-940))) (-15 -4043 ((-171 (-390)) (-971 |#1|))) (-15 -4043 ((-171 (-390)) (-971 |#1|) (-940)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -2550 ((-390) (-419 (-971 |#1|)))) (-15 -2550 ((-390) (-419 (-971 |#1|)) (-940))) (-15 -4043 ((-171 (-390)) (-419 (-971 |#1|)))) (-15 -4043 ((-171 (-390)) (-419 (-971 |#1|)) (-940))) (-15 -4043 ((-171 (-390)) (-419 (-971 (-171 |#1|))))) (-15 -4043 ((-171 (-390)) (-419 (-971 (-171 |#1|))) (-940))) (IF (|has| |#1| (-861)) (PROGN (-15 -2550 ((-390) (-326 |#1|))) (-15 -2550 ((-390) (-326 |#1|) (-940))) (-15 -4043 ((-171 (-390)) (-326 |#1|))) (-15 -4043 ((-171 (-390)) (-326 |#1|) (-940))) (-15 -4043 ((-171 (-390)) (-326 (-171 |#1|)))) (-15 -4043 ((-171 (-390)) (-326 (-171 |#1|)) (-940)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -1558 ((-3 (-171 (-390)) "failed") (-971 (-171 |#1|)))) (-15 -1558 ((-3 (-171 (-390)) "failed") (-971 (-171 |#1|)) (-940)))) |%noBranch|) (IF (|has| |#1| (-1070)) (PROGN (-15 -1852 ((-3 (-390) "failed") (-971 |#1|))) (-15 -1852 ((-3 (-390) "failed") (-971 |#1|) (-940))) (-15 -1558 ((-3 (-171 (-390)) "failed") (-971 |#1|))) (-15 -1558 ((-3 (-171 (-390)) "failed") (-971 |#1|) (-940)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -1852 ((-3 (-390) "failed") (-419 (-971 |#1|)))) (-15 -1852 ((-3 (-390) "failed") (-419 (-971 |#1|)) (-940))) (-15 -1558 ((-3 (-171 (-390)) "failed") (-419 (-971 |#1|)))) (-15 -1558 ((-3 (-171 (-390)) "failed") (-419 (-971 |#1|)) (-940))) (-15 -1558 ((-3 (-171 (-390)) "failed") (-419 (-971 (-171 |#1|))))) (-15 -1558 ((-3 (-171 (-390)) "failed") (-419 (-971 (-171 |#1|))) (-940))) (IF (|has| |#1| (-861)) (PROGN (-15 -1852 ((-3 (-390) "failed") (-326 |#1|))) (-15 -1852 ((-3 (-390) "failed") (-326 |#1|) (-940))) (-15 -1558 ((-3 (-171 (-390)) "failed") (-326 |#1|))) (-15 -1558 ((-3 (-171 (-390)) "failed") (-326 |#1|) (-940))) (-15 -1558 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)))) (-15 -1558 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-940)))) |%noBranch|)) |%noBranch|)) (-626 (-390))) (T -797)) -((-1558 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1558 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1558 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1558 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1852 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-1852 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-1558 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-971 (-171 *5)))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1558 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-971 (-171 *4)))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1558 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1558 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1852 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-1852 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-1558 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1558 (*1 *2 *3) (|partial| -12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1852 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-1852 (*1 *2 *3) (|partial| -12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-1558 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-971 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1558 (*1 *2 *3) (|partial| -12 (-5 *3 (-971 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4043 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4043 (*1 *2 *3) (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4043 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4043 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-2550 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-4043 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 (-171 *5)))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4043 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 (-171 *4)))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4043 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4043 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-2550 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-4043 (*1 *2 *3 *4) (-12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4043 (*1 *2 *3) (-12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-2550 (*1 *2 *3) (-12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-4043 (*1 *2 *3 *4) (-12 (-5 *3 (-971 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4043 (*1 *2 *3) (-12 (-5 *3 (-971 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4043 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-940)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4043 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4043 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390))))) (-4043 (*1 *2 *3) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390))))) (-2550 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2)))) (-2550 (*1 *2 *3) (-12 (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2))))) -(-10 -7 (-15 -2550 ((-390) |#1|)) (-15 -2550 ((-390) |#1| (-940))) (-15 -4043 ((-171 (-390)) |#1|)) (-15 -4043 ((-171 (-390)) |#1| (-940))) (IF (|has| |#1| (-174)) (PROGN (-15 -4043 ((-171 (-390)) (-171 |#1|))) (-15 -4043 ((-171 (-390)) (-171 |#1|) (-940))) (-15 -4043 ((-171 (-390)) (-971 (-171 |#1|)))) (-15 -4043 ((-171 (-390)) (-971 (-171 |#1|)) (-940)))) |%noBranch|) (IF (|has| |#1| (-1070)) (PROGN (-15 -2550 ((-390) (-971 |#1|))) (-15 -2550 ((-390) (-971 |#1|) (-940))) (-15 -4043 ((-171 (-390)) (-971 |#1|))) (-15 -4043 ((-171 (-390)) (-971 |#1|) (-940)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -2550 ((-390) (-419 (-971 |#1|)))) (-15 -2550 ((-390) (-419 (-971 |#1|)) (-940))) (-15 -4043 ((-171 (-390)) (-419 (-971 |#1|)))) (-15 -4043 ((-171 (-390)) (-419 (-971 |#1|)) (-940))) (-15 -4043 ((-171 (-390)) (-419 (-971 (-171 |#1|))))) (-15 -4043 ((-171 (-390)) (-419 (-971 (-171 |#1|))) (-940))) (IF (|has| |#1| (-861)) (PROGN (-15 -2550 ((-390) (-326 |#1|))) (-15 -2550 ((-390) (-326 |#1|) (-940))) (-15 -4043 ((-171 (-390)) (-326 |#1|))) (-15 -4043 ((-171 (-390)) (-326 |#1|) (-940))) (-15 -4043 ((-171 (-390)) (-326 (-171 |#1|)))) (-15 -4043 ((-171 (-390)) (-326 (-171 |#1|)) (-940)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -1558 ((-3 (-171 (-390)) "failed") (-971 (-171 |#1|)))) (-15 -1558 ((-3 (-171 (-390)) "failed") (-971 (-171 |#1|)) (-940)))) |%noBranch|) (IF (|has| |#1| (-1070)) (PROGN (-15 -1852 ((-3 (-390) "failed") (-971 |#1|))) (-15 -1852 ((-3 (-390) "failed") (-971 |#1|) (-940))) (-15 -1558 ((-3 (-171 (-390)) "failed") (-971 |#1|))) (-15 -1558 ((-3 (-171 (-390)) "failed") (-971 |#1|) (-940)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -1852 ((-3 (-390) "failed") (-419 (-971 |#1|)))) (-15 -1852 ((-3 (-390) "failed") (-419 (-971 |#1|)) (-940))) (-15 -1558 ((-3 (-171 (-390)) "failed") (-419 (-971 |#1|)))) (-15 -1558 ((-3 (-171 (-390)) "failed") (-419 (-971 |#1|)) (-940))) (-15 -1558 ((-3 (-171 (-390)) "failed") (-419 (-971 (-171 |#1|))))) (-15 -1558 ((-3 (-171 (-390)) "failed") (-419 (-971 (-171 |#1|))) (-940))) (IF (|has| |#1| (-861)) (PROGN (-15 -1852 ((-3 (-390) "failed") (-326 |#1|))) (-15 -1852 ((-3 (-390) "failed") (-326 |#1|) (-940))) (-15 -1558 ((-3 (-171 (-390)) "failed") (-326 |#1|))) (-15 -1558 ((-3 (-171 (-390)) "failed") (-326 |#1|) (-940))) (-15 -1558 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)))) (-15 -1558 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-940)))) |%noBranch|)) |%noBranch|)) -((-1941 (((-940) (-1179)) 89)) (-3287 (((-3 (-390) "failed") (-1179)) 36)) (-2535 (((-390) (-1179)) 34)) (-2965 (((-940) (-1179)) 63)) (-1842 (((-1179) (-940)) 73)) (-2879 (((-1179) (-940)) 62))) -(((-798) (-10 -7 (-15 -2879 ((-1179) (-940))) (-15 -2965 ((-940) (-1179))) (-15 -1842 ((-1179) (-940))) (-15 -1941 ((-940) (-1179))) (-15 -2535 ((-390) (-1179))) (-15 -3287 ((-3 (-390) "failed") (-1179))))) (T -798)) -((-3287 (*1 *2 *3) (|partial| -12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-798)))) (-2535 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-798)))) (-1941 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-940)) (-5 *1 (-798)))) (-1842 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1179)) (-5 *1 (-798)))) (-2965 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-940)) (-5 *1 (-798)))) (-2879 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1179)) (-5 *1 (-798))))) -(-10 -7 (-15 -2879 ((-1179) (-940))) (-15 -2965 ((-940) (-1179))) (-15 -1842 ((-1179) (-940))) (-15 -1941 ((-940) (-1179))) (-15 -2535 ((-390) (-1179))) (-15 -3287 ((-3 (-390) "failed") (-1179)))) -((-3489 (((-112) $ $) 7)) (-2162 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 16) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 14)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 17) (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2925 (((-112) $ $) 8))) +((-3429 (((-3 (-390) "failed") (-326 |#1|) (-940)) 62 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-390) "failed") (-326 |#1|)) 54 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-390) "failed") (-419 (-971 |#1|)) (-940)) 41 (|has| |#1| (-568))) (((-3 (-390) "failed") (-419 (-971 |#1|))) 40 (|has| |#1| (-568))) (((-3 (-390) "failed") (-971 |#1|) (-940)) 31 (|has| |#1| (-1070))) (((-3 (-390) "failed") (-971 |#1|)) 30 (|has| |#1| (-1070)))) (-2549 (((-390) (-326 |#1|) (-940)) 99 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-390) (-326 |#1|)) 94 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-390) (-419 (-971 |#1|)) (-940)) 91 (|has| |#1| (-568))) (((-390) (-419 (-971 |#1|))) 90 (|has| |#1| (-568))) (((-390) (-971 |#1|) (-940)) 86 (|has| |#1| (-1070))) (((-390) (-971 |#1|)) 85 (|has| |#1| (-1070))) (((-390) |#1| (-940)) 76) (((-390) |#1|) 22)) (-3636 (((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-940)) 71 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-171 (-390)) "failed") (-326 (-171 |#1|))) 70 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-171 (-390)) "failed") (-326 |#1|) (-940)) 63 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-171 (-390)) "failed") (-326 |#1|)) 61 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-171 (-390)) "failed") (-419 (-971 (-171 |#1|))) (-940)) 46 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-971 (-171 |#1|)))) 45 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-971 |#1|)) (-940)) 39 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-971 |#1|))) 38 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-971 |#1|) (-940)) 28 (|has| |#1| (-1070))) (((-3 (-171 (-390)) "failed") (-971 |#1|)) 26 (|has| |#1| (-1070))) (((-3 (-171 (-390)) "failed") (-971 (-171 |#1|)) (-940)) 18 (|has| |#1| (-174))) (((-3 (-171 (-390)) "failed") (-971 (-171 |#1|))) 15 (|has| |#1| (-174)))) (-4042 (((-171 (-390)) (-326 (-171 |#1|)) (-940)) 102 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-171 (-390)) (-326 (-171 |#1|))) 101 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-171 (-390)) (-326 |#1|) (-940)) 100 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-171 (-390)) (-326 |#1|)) 98 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-171 (-390)) (-419 (-971 (-171 |#1|))) (-940)) 93 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-971 (-171 |#1|)))) 92 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-971 |#1|)) (-940)) 89 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-971 |#1|))) 88 (|has| |#1| (-568))) (((-171 (-390)) (-971 |#1|) (-940)) 84 (|has| |#1| (-1070))) (((-171 (-390)) (-971 |#1|)) 83 (|has| |#1| (-1070))) (((-171 (-390)) (-971 (-171 |#1|)) (-940)) 78 (|has| |#1| (-174))) (((-171 (-390)) (-971 (-171 |#1|))) 77 (|has| |#1| (-174))) (((-171 (-390)) (-171 |#1|) (-940)) 80 (|has| |#1| (-174))) (((-171 (-390)) (-171 |#1|)) 79 (|has| |#1| (-174))) (((-171 (-390)) |#1| (-940)) 27) (((-171 (-390)) |#1|) 25))) +(((-797 |#1|) (-10 -7 (-15 -2549 ((-390) |#1|)) (-15 -2549 ((-390) |#1| (-940))) (-15 -4042 ((-171 (-390)) |#1|)) (-15 -4042 ((-171 (-390)) |#1| (-940))) (IF (|has| |#1| (-174)) (PROGN (-15 -4042 ((-171 (-390)) (-171 |#1|))) (-15 -4042 ((-171 (-390)) (-171 |#1|) (-940))) (-15 -4042 ((-171 (-390)) (-971 (-171 |#1|)))) (-15 -4042 ((-171 (-390)) (-971 (-171 |#1|)) (-940)))) |%noBranch|) (IF (|has| |#1| (-1070)) (PROGN (-15 -2549 ((-390) (-971 |#1|))) (-15 -2549 ((-390) (-971 |#1|) (-940))) (-15 -4042 ((-171 (-390)) (-971 |#1|))) (-15 -4042 ((-171 (-390)) (-971 |#1|) (-940)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -2549 ((-390) (-419 (-971 |#1|)))) (-15 -2549 ((-390) (-419 (-971 |#1|)) (-940))) (-15 -4042 ((-171 (-390)) (-419 (-971 |#1|)))) (-15 -4042 ((-171 (-390)) (-419 (-971 |#1|)) (-940))) (-15 -4042 ((-171 (-390)) (-419 (-971 (-171 |#1|))))) (-15 -4042 ((-171 (-390)) (-419 (-971 (-171 |#1|))) (-940))) (IF (|has| |#1| (-861)) (PROGN (-15 -2549 ((-390) (-326 |#1|))) (-15 -2549 ((-390) (-326 |#1|) (-940))) (-15 -4042 ((-171 (-390)) (-326 |#1|))) (-15 -4042 ((-171 (-390)) (-326 |#1|) (-940))) (-15 -4042 ((-171 (-390)) (-326 (-171 |#1|)))) (-15 -4042 ((-171 (-390)) (-326 (-171 |#1|)) (-940)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -3636 ((-3 (-171 (-390)) "failed") (-971 (-171 |#1|)))) (-15 -3636 ((-3 (-171 (-390)) "failed") (-971 (-171 |#1|)) (-940)))) |%noBranch|) (IF (|has| |#1| (-1070)) (PROGN (-15 -3429 ((-3 (-390) "failed") (-971 |#1|))) (-15 -3429 ((-3 (-390) "failed") (-971 |#1|) (-940))) (-15 -3636 ((-3 (-171 (-390)) "failed") (-971 |#1|))) (-15 -3636 ((-3 (-171 (-390)) "failed") (-971 |#1|) (-940)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -3429 ((-3 (-390) "failed") (-419 (-971 |#1|)))) (-15 -3429 ((-3 (-390) "failed") (-419 (-971 |#1|)) (-940))) (-15 -3636 ((-3 (-171 (-390)) "failed") (-419 (-971 |#1|)))) (-15 -3636 ((-3 (-171 (-390)) "failed") (-419 (-971 |#1|)) (-940))) (-15 -3636 ((-3 (-171 (-390)) "failed") (-419 (-971 (-171 |#1|))))) (-15 -3636 ((-3 (-171 (-390)) "failed") (-419 (-971 (-171 |#1|))) (-940))) (IF (|has| |#1| (-861)) (PROGN (-15 -3429 ((-3 (-390) "failed") (-326 |#1|))) (-15 -3429 ((-3 (-390) "failed") (-326 |#1|) (-940))) (-15 -3636 ((-3 (-171 (-390)) "failed") (-326 |#1|))) (-15 -3636 ((-3 (-171 (-390)) "failed") (-326 |#1|) (-940))) (-15 -3636 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)))) (-15 -3636 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-940)))) |%noBranch|)) |%noBranch|)) (-626 (-390))) (T -797)) +((-3636 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3636 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3636 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3636 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3429 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-3429 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-3636 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-971 (-171 *5)))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3636 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-971 (-171 *4)))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3636 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3636 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3429 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-3429 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-3636 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3636 (*1 *2 *3) (|partial| -12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3429 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-3429 (*1 *2 *3) (|partial| -12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-3636 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-971 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3636 (*1 *2 *3) (|partial| -12 (-5 *3 (-971 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4042 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4042 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2549 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-2549 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-4042 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 (-171 *5)))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 (-171 *4)))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4042 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2549 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-2549 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-4042 (*1 *2 *3 *4) (-12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2549 (*1 *2 *3 *4) (-12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-2549 (*1 *2 *3) (-12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-4042 (*1 *2 *3 *4) (-12 (-5 *3 (-971 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-971 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4042 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-940)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4042 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390))))) (-4042 (*1 *2 *3) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390))))) (-2549 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2)))) (-2549 (*1 *2 *3) (-12 (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2))))) +(-10 -7 (-15 -2549 ((-390) |#1|)) (-15 -2549 ((-390) |#1| (-940))) (-15 -4042 ((-171 (-390)) |#1|)) (-15 -4042 ((-171 (-390)) |#1| (-940))) (IF (|has| |#1| (-174)) (PROGN (-15 -4042 ((-171 (-390)) (-171 |#1|))) (-15 -4042 ((-171 (-390)) (-171 |#1|) (-940))) (-15 -4042 ((-171 (-390)) (-971 (-171 |#1|)))) (-15 -4042 ((-171 (-390)) (-971 (-171 |#1|)) (-940)))) |%noBranch|) (IF (|has| |#1| (-1070)) (PROGN (-15 -2549 ((-390) (-971 |#1|))) (-15 -2549 ((-390) (-971 |#1|) (-940))) (-15 -4042 ((-171 (-390)) (-971 |#1|))) (-15 -4042 ((-171 (-390)) (-971 |#1|) (-940)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -2549 ((-390) (-419 (-971 |#1|)))) (-15 -2549 ((-390) (-419 (-971 |#1|)) (-940))) (-15 -4042 ((-171 (-390)) (-419 (-971 |#1|)))) (-15 -4042 ((-171 (-390)) (-419 (-971 |#1|)) (-940))) (-15 -4042 ((-171 (-390)) (-419 (-971 (-171 |#1|))))) (-15 -4042 ((-171 (-390)) (-419 (-971 (-171 |#1|))) (-940))) (IF (|has| |#1| (-861)) (PROGN (-15 -2549 ((-390) (-326 |#1|))) (-15 -2549 ((-390) (-326 |#1|) (-940))) (-15 -4042 ((-171 (-390)) (-326 |#1|))) (-15 -4042 ((-171 (-390)) (-326 |#1|) (-940))) (-15 -4042 ((-171 (-390)) (-326 (-171 |#1|)))) (-15 -4042 ((-171 (-390)) (-326 (-171 |#1|)) (-940)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -3636 ((-3 (-171 (-390)) "failed") (-971 (-171 |#1|)))) (-15 -3636 ((-3 (-171 (-390)) "failed") (-971 (-171 |#1|)) (-940)))) |%noBranch|) (IF (|has| |#1| (-1070)) (PROGN (-15 -3429 ((-3 (-390) "failed") (-971 |#1|))) (-15 -3429 ((-3 (-390) "failed") (-971 |#1|) (-940))) (-15 -3636 ((-3 (-171 (-390)) "failed") (-971 |#1|))) (-15 -3636 ((-3 (-171 (-390)) "failed") (-971 |#1|) (-940)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -3429 ((-3 (-390) "failed") (-419 (-971 |#1|)))) (-15 -3429 ((-3 (-390) "failed") (-419 (-971 |#1|)) (-940))) (-15 -3636 ((-3 (-171 (-390)) "failed") (-419 (-971 |#1|)))) (-15 -3636 ((-3 (-171 (-390)) "failed") (-419 (-971 |#1|)) (-940))) (-15 -3636 ((-3 (-171 (-390)) "failed") (-419 (-971 (-171 |#1|))))) (-15 -3636 ((-3 (-171 (-390)) "failed") (-419 (-971 (-171 |#1|))) (-940))) (IF (|has| |#1| (-861)) (PROGN (-15 -3429 ((-3 (-390) "failed") (-326 |#1|))) (-15 -3429 ((-3 (-390) "failed") (-326 |#1|) (-940))) (-15 -3636 ((-3 (-171 (-390)) "failed") (-326 |#1|))) (-15 -3636 ((-3 (-171 (-390)) "failed") (-326 |#1|) (-940))) (-15 -3636 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)))) (-15 -3636 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-940)))) |%noBranch|)) |%noBranch|)) +((-3036 (((-940) (-1179)) 89)) (-3675 (((-3 (-390) "failed") (-1179)) 36)) (-3964 (((-390) (-1179)) 34)) (-3553 (((-940) (-1179)) 63)) (-3346 (((-1179) (-940)) 73)) (-2813 (((-1179) (-940)) 62))) +(((-798) (-10 -7 (-15 -2813 ((-1179) (-940))) (-15 -3553 ((-940) (-1179))) (-15 -3346 ((-1179) (-940))) (-15 -3036 ((-940) (-1179))) (-15 -3964 ((-390) (-1179))) (-15 -3675 ((-3 (-390) "failed") (-1179))))) (T -798)) +((-3675 (*1 *2 *3) (|partial| -12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-798)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-798)))) (-3036 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-940)) (-5 *1 (-798)))) (-3346 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1179)) (-5 *1 (-798)))) (-3553 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-940)) (-5 *1 (-798)))) (-2813 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1179)) (-5 *1 (-798))))) +(-10 -7 (-15 -2813 ((-1179) (-940))) (-15 -3553 ((-940) (-1179))) (-15 -3346 ((-1179) (-940))) (-15 -3036 ((-940) (-1179))) (-15 -3964 ((-390) (-1179))) (-15 -3675 ((-3 (-390) "failed") (-1179)))) +((-3488 (((-112) $ $) 7)) (-1365 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 16) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 14)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 17) (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2924 (((-112) $ $) 8))) (((-799) (-141)) (T -799)) -((-2012 (*1 *2 *3 *4) (-12 (-4 *1 (-799)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056)))))) (-2162 (*1 *2 *3 *2) (-12 (-4 *1 (-799)) (-5 *2 (-1056)) (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-2012 (*1 *2 *3 *4) (-12 (-4 *1 (-799)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056)))))) (-2162 (*1 *2 *3 *2) (-12 (-4 *1 (-799)) (-5 *2 (-1056)) (-5 *3 (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) -(-13 (-1121) (-10 -7 (-15 -2012 ((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2162 ((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056))) (-15 -2012 ((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2162 ((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056))))) +((-2402 (*1 *2 *3 *4) (-12 (-4 *1 (-799)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056)))))) (-1365 (*1 *2 *3 *2) (-12 (-4 *1 (-799)) (-5 *2 (-1056)) (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-2402 (*1 *2 *3 *4) (-12 (-4 *1 (-799)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056)))))) (-1365 (*1 *2 *3 *2) (-12 (-4 *1 (-799)) (-5 *2 (-1056)) (-5 *3 (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) +(-13 (-1121) (-10 -7 (-15 -2402 ((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1365 ((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056))) (-15 -2402 ((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1365 ((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056))))) (((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-3077 (((-1293) (-1288 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4296 (-390))) (-390) (-1288 (-390)) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390))) 55) (((-1293) (-1288 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4296 (-390))) (-390) (-1288 (-390)) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390))) 52)) (-3529 (((-1293) (-1288 (-390)) (-576) (-390) (-390) (-576) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390))) 61)) (-1695 (((-1293) (-1288 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390))) 50)) (-2632 (((-1293) (-1288 (-390)) (-576) (-390) (-390) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390))) 63) (((-1293) (-1288 (-390)) (-576) (-390) (-390) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390))) 62))) -(((-800) (-10 -7 (-15 -2632 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))) (-15 -2632 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)))) (-15 -1695 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))) (-15 -3077 ((-1293) (-1288 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4296 (-390))) (-390) (-1288 (-390)) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))) (-15 -3077 ((-1293) (-1288 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4296 (-390))) (-390) (-1288 (-390)) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)))) (-15 -3529 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-576) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))))) (T -800)) -((-3529 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) (-5 *1 (-800)))) (-3077 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-576)) (-5 *6 (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4296 (-390)))) (-5 *7 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) (-5 *1 (-800)))) (-3077 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-576)) (-5 *6 (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4296 (-390)))) (-5 *7 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) (-5 *1 (-800)))) (-1695 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) (-5 *1 (-800)))) (-2632 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) (-5 *1 (-800)))) (-2632 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) (-5 *1 (-800))))) -(-10 -7 (-15 -2632 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))) (-15 -2632 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)))) (-15 -1695 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))) (-15 -3077 ((-1293) (-1288 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4296 (-390))) (-390) (-1288 (-390)) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))) (-15 -3077 ((-1293) (-1288 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4296 (-390))) (-390) (-1288 (-390)) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)))) (-15 -3529 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-576) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390))))) -((-2156 (((-2 (|:| -3106 (-390)) (|:| -3314 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 64)) (-3965 (((-2 (|:| -3106 (-390)) (|:| -3314 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 40)) (-3121 (((-2 (|:| -3106 (-390)) (|:| -3314 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 63)) (-4191 (((-2 (|:| -3106 (-390)) (|:| -3314 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 38)) (-4222 (((-2 (|:| -3106 (-390)) (|:| -3314 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 62)) (-3937 (((-2 (|:| -3106 (-390)) (|:| -3314 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 24)) (-2138 (((-2 (|:| -3106 (-390)) (|:| -3314 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 41)) (-3986 (((-2 (|:| -3106 (-390)) (|:| -3314 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 39)) (-3628 (((-2 (|:| -3106 (-390)) (|:| -3314 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 37))) -(((-801) (-10 -7 (-15 -3628 ((-2 (|:| -3106 (-390)) (|:| -3314 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3986 ((-2 (|:| -3106 (-390)) (|:| -3314 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -2138 ((-2 (|:| -3106 (-390)) (|:| -3314 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3937 ((-2 (|:| -3106 (-390)) (|:| -3314 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -4191 ((-2 (|:| -3106 (-390)) (|:| -3314 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3965 ((-2 (|:| -3106 (-390)) (|:| -3314 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -4222 ((-2 (|:| -3106 (-390)) (|:| -3314 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3121 ((-2 (|:| -3106 (-390)) (|:| -3314 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2156 ((-2 (|:| -3106 (-390)) (|:| -3314 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))))) (T -801)) -((-2156 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3106 *4) (|:| -3314 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3121 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3106 *4) (|:| -3314 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-4222 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3106 *4) (|:| -3314 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3965 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3106 *4) (|:| -3314 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-4191 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3106 *4) (|:| -3314 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3937 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3106 *4) (|:| -3314 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-2138 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3106 *4) (|:| -3314 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3986 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3106 *4) (|:| -3314 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3628 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3106 *4) (|:| -3314 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576))))) -(-10 -7 (-15 -3628 ((-2 (|:| -3106 (-390)) (|:| -3314 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3986 ((-2 (|:| -3106 (-390)) (|:| -3314 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -2138 ((-2 (|:| -3106 (-390)) (|:| -3314 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3937 ((-2 (|:| -3106 (-390)) (|:| -3314 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -4191 ((-2 (|:| -3106 (-390)) (|:| -3314 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3965 ((-2 (|:| -3106 (-390)) (|:| -3314 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -4222 ((-2 (|:| -3106 (-390)) (|:| -3314 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3121 ((-2 (|:| -3106 (-390)) (|:| -3314 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2156 ((-2 (|:| -3106 (-390)) (|:| -3314 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)))) -((-2182 (((-1233 |#1|) |#1| (-227) (-576)) 69))) -(((-802 |#1|) (-10 -7 (-15 -2182 ((-1233 |#1|) |#1| (-227) (-576)))) (-995)) (T -802)) -((-2182 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-227)) (-5 *5 (-576)) (-5 *2 (-1233 *3)) (-5 *1 (-802 *3)) (-4 *3 (-995))))) -(-10 -7 (-15 -2182 ((-1233 |#1|) |#1| (-227) (-576)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 26)) (-4367 (((-3 $ "failed") $ $) 28)) (-3886 (($) 25 T CONST)) (-3125 (($ $ $) 20)) (-3133 (($ $ $) 19)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2721 (($) 24 T CONST)) (-2992 (((-112) $ $) 18)) (-2964 (((-112) $ $) 16)) (-2925 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2950 (((-112) $ $) 15)) (-3044 (($ $ $) 32) (($ $) 31)) (-3030 (($ $ $) 22)) (* (($ (-940) $) 23) (($ (-783) $) 27) (($ (-576) $) 30))) +((-2073 (((-1293) (-1288 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4295 (-390))) (-390) (-1288 (-390)) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390))) 55) (((-1293) (-1288 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4295 (-390))) (-390) (-1288 (-390)) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390))) 52)) (-4208 (((-1293) (-1288 (-390)) (-576) (-390) (-390) (-576) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390))) 61)) (-2418 (((-1293) (-1288 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390))) 50)) (-2335 (((-1293) (-1288 (-390)) (-576) (-390) (-390) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390))) 63) (((-1293) (-1288 (-390)) (-576) (-390) (-390) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390))) 62))) +(((-800) (-10 -7 (-15 -2335 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))) (-15 -2335 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)))) (-15 -2418 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))) (-15 -2073 ((-1293) (-1288 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4295 (-390))) (-390) (-1288 (-390)) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))) (-15 -2073 ((-1293) (-1288 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4295 (-390))) (-390) (-1288 (-390)) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)))) (-15 -4208 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-576) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))))) (T -800)) +((-4208 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) (-5 *1 (-800)))) (-2073 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-576)) (-5 *6 (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4295 (-390)))) (-5 *7 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) (-5 *1 (-800)))) (-2073 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-576)) (-5 *6 (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4295 (-390)))) (-5 *7 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) (-5 *1 (-800)))) (-2418 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) (-5 *1 (-800)))) (-2335 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) (-5 *1 (-800)))) (-2335 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) (-5 *1 (-800))))) +(-10 -7 (-15 -2335 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))) (-15 -2335 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)))) (-15 -2418 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))) (-15 -2073 ((-1293) (-1288 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4295 (-390))) (-390) (-1288 (-390)) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))) (-15 -2073 ((-1293) (-1288 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4295 (-390))) (-390) (-1288 (-390)) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)))) (-15 -4208 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-576) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390))))) +((-4433 (((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 64)) (-2863 (((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 40)) (-2511 (((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 63)) (-1331 (((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 38)) (-3545 (((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 62)) (-3927 (((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 24)) (-4291 (((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 41)) (-3071 (((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 39)) (-3932 (((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 37))) +(((-801) (-10 -7 (-15 -3932 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3071 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -4291 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3927 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -1331 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2863 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3545 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2511 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -4433 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))))) (T -801)) +((-4433 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-2511 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3545 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-2863 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-1331 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3927 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-4291 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3071 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3932 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576))))) +(-10 -7 (-15 -3932 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3071 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -4291 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3927 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -1331 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2863 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3545 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2511 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -4433 ((-2 (|:| -3104 (-390)) (|:| -3313 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)))) +((-3436 (((-1233 |#1|) |#1| (-227) (-576)) 69))) +(((-802 |#1|) (-10 -7 (-15 -3436 ((-1233 |#1|) |#1| (-227) (-576)))) (-995)) (T -802)) +((-3436 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-227)) (-5 *5 (-576)) (-5 *2 (-1233 *3)) (-5 *1 (-802 *3)) (-4 *3 (-995))))) +(-10 -7 (-15 -3436 ((-1233 |#1|) |#1| (-227) (-576)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 26)) (-2428 (((-3 $ "failed") $ $) 28)) (-3404 (($) 25 T CONST)) (-3124 (($ $ $) 20)) (-1441 (($ $ $) 19)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2721 (($) 24 T CONST)) (-2990 (((-112) $ $) 18)) (-2962 (((-112) $ $) 16)) (-2924 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2949 (((-112) $ $) 15)) (-3043 (($ $ $) 32) (($ $) 31)) (-3029 (($ $ $) 22)) (* (($ (-940) $) 23) (($ (-783) $) 27) (($ (-576) $) 30))) (((-803) (-141)) (T -803)) NIL (-13 (-807) (-21)) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-861) . T) ((-864) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 26)) (-3886 (($) 25 T CONST)) (-3125 (($ $ $) 20)) (-3133 (($ $ $) 19)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2721 (($) 24 T CONST)) (-2992 (((-112) $ $) 18)) (-2964 (((-112) $ $) 16)) (-2925 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2950 (((-112) $ $) 15)) (-3030 (($ $ $) 22)) (* (($ (-940) $) 23) (($ (-783) $) 27))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 26)) (-3404 (($) 25 T CONST)) (-3124 (($ $ $) 20)) (-1441 (($ $ $) 19)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2721 (($) 24 T CONST)) (-2990 (((-112) $ $) 18)) (-2962 (((-112) $ $) 16)) (-2924 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2949 (((-112) $ $) 15)) (-3029 (($ $ $) 22)) (* (($ (-940) $) 23) (($ (-783) $) 27))) (((-804) (-141)) (T -804)) NIL (-13 (-806) (-23)) (((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-876)) . T) ((-806) . T) ((-861) . T) ((-864) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 26)) (-2324 (($ $ $) 29)) (-4367 (((-3 $ "failed") $ $) 28)) (-3886 (($) 25 T CONST)) (-3125 (($ $ $) 20)) (-3133 (($ $ $) 19)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2721 (($) 24 T CONST)) (-2992 (((-112) $ $) 18)) (-2964 (((-112) $ $) 16)) (-2925 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2950 (((-112) $ $) 15)) (-3030 (($ $ $) 22)) (* (($ (-940) $) 23) (($ (-783) $) 27))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 26)) (-2386 (($ $ $) 29)) (-2428 (((-3 $ "failed") $ $) 28)) (-3404 (($) 25 T CONST)) (-3124 (($ $ $) 20)) (-1441 (($ $ $) 19)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2721 (($) 24 T CONST)) (-2990 (((-112) $ $) 18)) (-2962 (((-112) $ $) 16)) (-2924 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2949 (((-112) $ $) 15)) (-3029 (($ $ $) 22)) (* (($ (-940) $) 23) (($ (-783) $) 27))) (((-805) (-141)) (T -805)) -((-2324 (*1 *1 *1 *1) (-4 *1 (-805)))) -(-13 (-807) (-10 -8 (-15 -2324 ($ $ $)))) +((-2386 (*1 *1 *1 *1) (-4 *1 (-805)))) +(-13 (-807) (-10 -8 (-15 -2386 ($ $ $)))) (((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-861) . T) ((-864) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) 7)) (-3125 (($ $ $) 20)) (-3133 (($ $ $) 19)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2992 (((-112) $ $) 18)) (-2964 (((-112) $ $) 16)) (-2925 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2950 (((-112) $ $) 15)) (-3030 (($ $ $) 22)) (* (($ (-940) $) 23))) +((-3488 (((-112) $ $) 7)) (-3124 (($ $ $) 20)) (-1441 (($ $ $) 19)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2990 (((-112) $ $) 18)) (-2962 (((-112) $ $) 16)) (-2924 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2949 (((-112) $ $) 15)) (-3029 (($ $ $) 22)) (* (($ (-940) $) 23))) (((-806) (-141)) (T -806)) NIL (-13 (-861) (-25)) (((-25) . T) ((-102) . T) ((-625 (-876)) . T) ((-861) . T) ((-864) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 26)) (-4367 (((-3 $ "failed") $ $) 28)) (-3886 (($) 25 T CONST)) (-3125 (($ $ $) 20)) (-3133 (($ $ $) 19)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2721 (($) 24 T CONST)) (-2992 (((-112) $ $) 18)) (-2964 (((-112) $ $) 16)) (-2925 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2950 (((-112) $ $) 15)) (-3030 (($ $ $) 22)) (* (($ (-940) $) 23) (($ (-783) $) 27))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 26)) (-2428 (((-3 $ "failed") $ $) 28)) (-3404 (($) 25 T CONST)) (-3124 (($ $ $) 20)) (-1441 (($ $ $) 19)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2721 (($) 24 T CONST)) (-2990 (((-112) $ $) 18)) (-2962 (((-112) $ $) 16)) (-2924 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2949 (((-112) $ $) 15)) (-3029 (($ $ $) 22)) (* (($ (-940) $) 23) (($ (-783) $) 27))) (((-807) (-141)) (T -807)) NIL (-13 (-804) (-132)) (((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-804) . T) ((-806) . T) ((-861) . T) ((-864) . T) ((-1121) . T) ((-1238) . T)) -((-4308 (((-112) $) 42)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2860 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 43)) (-3104 (((-3 (-419 (-576)) "failed") $) 78)) (-2545 (((-112) $) 72)) (-2568 (((-419 (-576)) $) 76)) (-1381 ((|#2| $) 26)) (-4117 (($ (-1 |#2| |#2|) $) 23)) (-2050 (($ $) 58)) (-4172 (((-548) $) 67)) (-2314 (($ $) 21)) (-3570 (((-876) $) 53) (($ (-576)) 40) (($ |#2|) 38) (($ (-419 (-576))) NIL)) (-3996 (((-783)) 10)) (-2122 ((|#2| $) 71)) (-2925 (((-112) $ $) 30)) (-2950 (((-112) $ $) 69)) (-3044 (($ $) 32) (($ $ $) NIL)) (-3030 (($ $ $) 31)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) -(((-808 |#1| |#2|) (-10 -8 (-15 -2950 ((-112) |#1| |#1|)) (-15 -4172 ((-548) |#1|)) (-15 -2050 (|#1| |#1|)) (-15 -3104 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2568 ((-419 (-576)) |#1|)) (-15 -2545 ((-112) |#1|)) (-15 -2122 (|#2| |#1|)) (-15 -1381 (|#2| |#1|)) (-15 -2314 (|#1| |#1|)) (-15 -4117 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2860 (|#2| |#1|)) (-15 -2860 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3570 (|#1| (-419 (-576)))) (-15 -2860 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -3570 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3996 ((-783))) (-15 -3570 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -4308 ((-112) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -3030 (|#1| |#1| |#1|)) (-15 -3570 ((-876) |#1|)) (-15 -2925 ((-112) |#1| |#1|))) (-809 |#2|) (-174)) (T -808)) -((-3996 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-808 *3 *4)) (-4 *3 (-809 *4))))) -(-10 -8 (-15 -2950 ((-112) |#1| |#1|)) (-15 -4172 ((-548) |#1|)) (-15 -2050 (|#1| |#1|)) (-15 -3104 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2568 ((-419 (-576)) |#1|)) (-15 -2545 ((-112) |#1|)) (-15 -2122 (|#2| |#1|)) (-15 -1381 (|#2| |#1|)) (-15 -2314 (|#1| |#1|)) (-15 -4117 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2860 (|#2| |#1|)) (-15 -2860 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3570 (|#1| (-419 (-576)))) (-15 -2860 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -3570 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3996 ((-783))) (-15 -3570 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -4308 ((-112) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -3030 (|#1| |#1| |#1|)) (-15 -3570 ((-876) |#1|)) (-15 -2925 ((-112) |#1| |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-2098 (((-783)) 59 (|has| |#1| (-379)))) (-3886 (($) 18 T CONST)) (-1572 (((-3 (-576) "failed") $) 101 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 98 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 95)) (-2860 (((-576) $) 100 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 97 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 96)) (-1561 (((-3 $ "failed") $) 37)) (-1850 ((|#1| $) 85)) (-3104 (((-3 (-419 (-576)) "failed") $) 72 (|has| |#1| (-557)))) (-2545 (((-112) $) 74 (|has| |#1| (-557)))) (-2568 (((-419 (-576)) $) 73 (|has| |#1| (-557)))) (-1836 (($) 62 (|has| |#1| (-379)))) (-4193 (((-112) $) 35)) (-1861 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 76)) (-1381 ((|#1| $) 77)) (-3125 (($ $ $) 63 (|has| |#1| (-861)))) (-3133 (($ $ $) 64 (|has| |#1| (-861)))) (-4117 (($ (-1 |#1| |#1|) $) 87)) (-4401 (((-940) $) 61 (|has| |#1| (-379)))) (-3699 (((-1179) $) 10)) (-2050 (($ $) 71 (|has| |#1| (-374)))) (-3224 (($ (-940)) 60 (|has| |#1| (-379)))) (-2459 ((|#1| $) 82)) (-3332 ((|#1| $) 83)) (-1338 ((|#1| $) 84)) (-1745 ((|#1| $) 78)) (-1985 ((|#1| $) 79)) (-3614 ((|#1| $) 80)) (-2243 ((|#1| $) 81)) (-1450 (((-1141) $) 11)) (-3284 (($ $ (-656 |#1|) (-656 |#1|)) 93 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 92 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 91 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 90 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 89 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) 88 (|has| |#1| (-526 (-1197) |#1|)))) (-2797 (($ $ |#1|) 94 (|has| |#1| (-296 |#1| |#1|)))) (-4172 (((-548) $) 69 (|has| |#1| (-626 (-548))))) (-2314 (($ $) 86)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 99 (|has| |#1| (-1059 (-419 (-576)))))) (-4336 (((-3 $ "failed") $) 70 (|has| |#1| (-146)))) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2122 ((|#1| $) 75 (|has| |#1| (-1081)))) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2992 (((-112) $ $) 65 (|has| |#1| (-861)))) (-2964 (((-112) $ $) 67 (|has| |#1| (-861)))) (-2925 (((-112) $ $) 8)) (-2978 (((-112) $ $) 66 (|has| |#1| (-861)))) (-2950 (((-112) $ $) 68 (|has| |#1| (-861)))) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +((-3135 (((-112) $) 42)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2859 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 43)) (-2358 (((-3 (-419 (-576)) "failed") $) 78)) (-2769 (((-112) $) 72)) (-3025 (((-419 (-576)) $) 76)) (-2738 ((|#2| $) 26)) (-4116 (($ (-1 |#2| |#2|) $) 23)) (-2050 (($ $) 58)) (-4171 (((-548) $) 67)) (-2272 (($ $) 21)) (-3569 (((-876) $) 53) (($ (-576)) 40) (($ |#2|) 38) (($ (-419 (-576))) NIL)) (-3154 (((-783)) 10)) (-4143 ((|#2| $) 71)) (-2924 (((-112) $ $) 30)) (-2949 (((-112) $ $) 69)) (-3043 (($ $) 32) (($ $ $) NIL)) (-3029 (($ $ $) 31)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) +(((-808 |#1| |#2|) (-10 -8 (-15 -2949 ((-112) |#1| |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -2050 (|#1| |#1|)) (-15 -2358 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3025 ((-419 (-576)) |#1|)) (-15 -2769 ((-112) |#1|)) (-15 -4143 (|#2| |#1|)) (-15 -2738 (|#2| |#1|)) (-15 -2272 (|#1| |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -3569 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3154 ((-783))) (-15 -3569 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -3135 ((-112) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -3029 (|#1| |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -2924 ((-112) |#1| |#1|))) (-809 |#2|) (-174)) (T -808)) +((-3154 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-808 *3 *4)) (-4 *3 (-809 *4))))) +(-10 -8 (-15 -2949 ((-112) |#1| |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -2050 (|#1| |#1|)) (-15 -2358 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3025 ((-419 (-576)) |#1|)) (-15 -2769 ((-112) |#1|)) (-15 -4143 (|#2| |#1|)) (-15 -2738 (|#2| |#1|)) (-15 -2272 (|#1| |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -3569 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3154 ((-783))) (-15 -3569 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -3135 ((-112) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -3029 (|#1| |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -2924 ((-112) |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-2098 (((-783)) 59 (|has| |#1| (-379)))) (-3404 (($) 18 T CONST)) (-1572 (((-3 (-576) "failed") $) 101 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 98 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 95)) (-2859 (((-576) $) 100 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 97 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 96)) (-3673 (((-3 $ "failed") $) 37)) (-1850 ((|#1| $) 85)) (-2358 (((-3 (-419 (-576)) "failed") $) 72 (|has| |#1| (-557)))) (-2769 (((-112) $) 74 (|has| |#1| (-557)))) (-3025 (((-419 (-576)) $) 73 (|has| |#1| (-557)))) (-1836 (($) 62 (|has| |#1| (-379)))) (-1351 (((-112) $) 35)) (-3528 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 76)) (-2738 ((|#1| $) 77)) (-3124 (($ $ $) 63 (|has| |#1| (-861)))) (-1441 (($ $ $) 64 (|has| |#1| (-861)))) (-4116 (($ (-1 |#1| |#1|) $) 87)) (-1558 (((-940) $) 61 (|has| |#1| (-379)))) (-2046 (((-1179) $) 10)) (-2050 (($ $) 71 (|has| |#1| (-374)))) (-3223 (($ (-940)) 60 (|has| |#1| (-379)))) (-4390 ((|#1| $) 82)) (-2847 ((|#1| $) 83)) (-2988 ((|#1| $) 84)) (-1716 ((|#1| $) 78)) (-2129 ((|#1| $) 79)) (-3775 ((|#1| $) 80)) (-2763 ((|#1| $) 81)) (-1450 (((-1141) $) 11)) (-3282 (($ $ (-656 |#1|) (-656 |#1|)) 93 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 92 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 91 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 90 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 89 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) 88 (|has| |#1| (-526 (-1197) |#1|)))) (-2796 (($ $ |#1|) 94 (|has| |#1| (-296 |#1| |#1|)))) (-4171 (((-548) $) 69 (|has| |#1| (-626 (-548))))) (-2272 (($ $) 86)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 99 (|has| |#1| (-1059 (-419 (-576)))))) (-3390 (((-3 $ "failed") $) 70 (|has| |#1| (-146)))) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-4143 ((|#1| $) 75 (|has| |#1| (-1081)))) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2990 (((-112) $ $) 65 (|has| |#1| (-861)))) (-2962 (((-112) $ $) 67 (|has| |#1| (-861)))) (-2924 (((-112) $ $) 8)) (-2978 (((-112) $ $) 66 (|has| |#1| (-861)))) (-2949 (((-112) $ $) 68 (|has| |#1| (-861)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) (((-809 |#1|) (-141) (-174)) (T -809)) -((-2314 (*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-1850 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2459 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2243 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-3614 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-1985 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-1745 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-1381 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-1861 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2122 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-1081)))) (-2545 (*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-2568 (*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-3104 (*1 *2 *1) (|partial| -12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-2050 (*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) -(-13 (-38 |t#1|) (-423 |t#1|) (-349 |t#1|) (-10 -8 (-15 -2314 ($ $)) (-15 -1850 (|t#1| $)) (-15 -1338 (|t#1| $)) (-15 -3332 (|t#1| $)) (-15 -2459 (|t#1| $)) (-15 -2243 (|t#1| $)) (-15 -3614 (|t#1| $)) (-15 -1985 (|t#1| $)) (-15 -1745 (|t#1| $)) (-15 -1381 (|t#1| $)) (-15 -1861 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1081)) (-15 -2122 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -2545 ((-112) $)) (-15 -2568 ((-419 (-576)) $)) (-15 -3104 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-374)) (-15 -2050 ($ $)) |%noBranch|))) +((-2272 (*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-1850 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2988 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2847 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-4390 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2763 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2129 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-1716 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2738 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-3528 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-1081)))) (-2769 (*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-2358 (*1 *2 *1) (|partial| -12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-2050 (*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) +(-13 (-38 |t#1|) (-423 |t#1|) (-349 |t#1|) (-10 -8 (-15 -2272 ($ $)) (-15 -1850 (|t#1| $)) (-15 -2988 (|t#1| $)) (-15 -2847 (|t#1| $)) (-15 -4390 (|t#1| $)) (-15 -2763 (|t#1| $)) (-15 -3775 (|t#1| $)) (-15 -2129 (|t#1| $)) (-15 -1716 (|t#1| $)) (-15 -2738 (|t#1| $)) (-15 -3528 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1081)) (-15 -4143 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -2769 ((-112) $)) (-15 -3025 ((-419 (-576)) $)) (-15 -2358 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-374)) (-15 -2050 ($ $)) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0=(-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-379) |has| |#1| (-379)) ((-349 |#1|) . T) ((-423 |#1|) . T) ((-526 (-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1059 #0#) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-4117 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-810 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4117 (|#3| (-1 |#4| |#2|) |#1|))) (-809 |#2|) (-174) (-809 |#4|) (-174)) (T -810)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-809 *6)) (-5 *1 (-810 *4 *5 *2 *6)) (-4 *4 (-809 *5))))) -(-10 -7 (-15 -4117 (|#3| (-1 |#4| |#2|) |#1|))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-2098 (((-783)) NIL (|has| |#1| (-379)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL) (((-3 (-1020 |#1|) "failed") $) 35) (((-3 (-576) "failed") $) NIL (-2760 (|has| (-1020 |#1|) (-1059 (-576))) (|has| |#1| (-1059 (-576))))) (((-3 (-419 (-576)) "failed") $) NIL (-2760 (|has| (-1020 |#1|) (-1059 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-2860 ((|#1| $) NIL) (((-1020 |#1|) $) 33) (((-576) $) NIL (-2760 (|has| (-1020 |#1|) (-1059 (-576))) (|has| |#1| (-1059 (-576))))) (((-419 (-576)) $) NIL (-2760 (|has| (-1020 |#1|) (-1059 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-1561 (((-3 $ "failed") $) NIL)) (-1850 ((|#1| $) 16)) (-3104 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-2545 (((-112) $) NIL (|has| |#1| (-557)))) (-2568 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-1836 (($) NIL (|has| |#1| (-379)))) (-4193 (((-112) $) NIL)) (-1861 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1020 |#1|) (-1020 |#1|)) 29)) (-1381 ((|#1| $) NIL)) (-3125 (($ $ $) NIL (|has| |#1| (-861)))) (-3133 (($ $ $) NIL (|has| |#1| (-861)))) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-4401 (((-940) $) NIL (|has| |#1| (-379)))) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL (|has| |#1| (-374)))) (-3224 (($ (-940)) NIL (|has| |#1| (-379)))) (-2459 ((|#1| $) 22)) (-3332 ((|#1| $) 20)) (-1338 ((|#1| $) 18)) (-1745 ((|#1| $) 26)) (-1985 ((|#1| $) 25)) (-3614 ((|#1| $) 24)) (-2243 ((|#1| $) 23)) (-1450 (((-1141) $) NIL)) (-3284 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-526 (-1197) |#1|)))) (-2797 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-4172 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2314 (($ $) NIL)) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1020 |#1|)) 30) (($ (-419 (-576))) NIL (-2760 (|has| (-1020 |#1|) (-1059 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-4336 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-2122 ((|#1| $) NIL (|has| |#1| (-1081)))) (-2721 (($) 8 T CONST)) (-2732 (($) 12 T CONST)) (-2992 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2950 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-811 |#1|) (-13 (-809 |#1|) (-423 (-1020 |#1|)) (-10 -8 (-15 -1861 ($ (-1020 |#1|) (-1020 |#1|))))) (-174)) (T -811)) -((-1861 (*1 *1 *2 *2) (-12 (-5 *2 (-1020 *3)) (-4 *3 (-174)) (-5 *1 (-811 *3))))) -(-13 (-809 |#1|) (-423 (-1020 |#1|)) (-10 -8 (-15 -1861 ($ (-1020 |#1|) (-1020 |#1|))))) -((-3489 (((-112) $ $) 7)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2446 (((-1056) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 14)) (-2925 (((-112) $ $) 8))) +((-4116 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-810 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4116 (|#3| (-1 |#4| |#2|) |#1|))) (-809 |#2|) (-174) (-809 |#4|) (-174)) (T -810)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-809 *6)) (-5 *1 (-810 *4 *5 *2 *6)) (-4 *4 (-809 *5))))) +(-10 -7 (-15 -4116 (|#3| (-1 |#4| |#2|) |#1|))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-2098 (((-783)) NIL (|has| |#1| (-379)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL) (((-3 (-1020 |#1|) "failed") $) 35) (((-3 (-576) "failed") $) NIL (-2759 (|has| (-1020 |#1|) (-1059 (-576))) (|has| |#1| (-1059 (-576))))) (((-3 (-419 (-576)) "failed") $) NIL (-2759 (|has| (-1020 |#1|) (-1059 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-2859 ((|#1| $) NIL) (((-1020 |#1|) $) 33) (((-576) $) NIL (-2759 (|has| (-1020 |#1|) (-1059 (-576))) (|has| |#1| (-1059 (-576))))) (((-419 (-576)) $) NIL (-2759 (|has| (-1020 |#1|) (-1059 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-3673 (((-3 $ "failed") $) NIL)) (-1850 ((|#1| $) 16)) (-2358 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-2769 (((-112) $) NIL (|has| |#1| (-557)))) (-3025 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-1836 (($) NIL (|has| |#1| (-379)))) (-1351 (((-112) $) NIL)) (-3528 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1020 |#1|) (-1020 |#1|)) 29)) (-2738 ((|#1| $) NIL)) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-1441 (($ $ $) NIL (|has| |#1| (-861)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-1558 (((-940) $) NIL (|has| |#1| (-379)))) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL (|has| |#1| (-374)))) (-3223 (($ (-940)) NIL (|has| |#1| (-379)))) (-4390 ((|#1| $) 22)) (-2847 ((|#1| $) 20)) (-2988 ((|#1| $) 18)) (-1716 ((|#1| $) 26)) (-2129 ((|#1| $) 25)) (-3775 ((|#1| $) 24)) (-2763 ((|#1| $) 23)) (-1450 (((-1141) $) NIL)) (-3282 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-526 (-1197) |#1|)))) (-2796 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-4171 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2272 (($ $) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1020 |#1|)) 30) (($ (-419 (-576))) NIL (-2759 (|has| (-1020 |#1|) (-1059 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-3390 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-4143 ((|#1| $) NIL (|has| |#1| (-1081)))) (-2721 (($) 8 T CONST)) (-2731 (($) 12 T CONST)) (-2990 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2949 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-811 |#1|) (-13 (-809 |#1|) (-423 (-1020 |#1|)) (-10 -8 (-15 -3528 ($ (-1020 |#1|) (-1020 |#1|))))) (-174)) (T -811)) +((-3528 (*1 *1 *2 *2) (-12 (-5 *2 (-1020 *3)) (-4 *3 (-174)) (-5 *1 (-811 *3))))) +(-13 (-809 |#1|) (-423 (-1020 |#1|)) (-10 -8 (-15 -3528 ($ (-1020 |#1|) (-1020 |#1|))))) +((-3488 (((-112) $ $) 7)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-4256 (((-1056) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 14)) (-2924 (((-112) $ $) 8))) (((-812) (-141)) (T -812)) -((-2012 (*1 *2 *3 *4) (-12 (-4 *1 (-812)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)))))) (-2446 (*1 *2 *3) (-12 (-4 *1 (-812)) (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1056))))) -(-13 (-1121) (-10 -7 (-15 -2012 ((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2446 ((-1056) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) +((-2402 (*1 *2 *3 *4) (-12 (-4 *1 (-812)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)))))) (-4256 (*1 *2 *3) (-12 (-4 *1 (-812)) (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1056))))) +(-13 (-1121) (-10 -7 (-15 -2402 ((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4256 ((-1056) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-2603 (((-2 (|:| |particular| |#2|) (|:| -1593 (-656 |#2|))) |#3| |#2| (-1197)) 19))) -(((-813 |#1| |#2| |#3|) (-10 -7 (-15 -2603 ((-2 (|:| |particular| |#2|) (|:| -1593 (-656 |#2|))) |#3| |#2| (-1197)))) (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1223) (-978)) (-668 |#2|)) (T -813)) -((-2603 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1197)) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-4 *4 (-13 (-29 *6) (-1223) (-978))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1593 (-656 *4)))) (-5 *1 (-813 *6 *4 *3)) (-4 *3 (-668 *4))))) -(-10 -7 (-15 -2603 ((-2 (|:| |particular| |#2|) (|:| -1593 (-656 |#2|))) |#3| |#2| (-1197)))) -((-2767 (((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)) 28) (((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -1593 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1197)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -1593 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1197)) 18) (((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -1593 (-656 (-1288 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1197)) 24) (((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -1593 (-656 (-1288 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1197)) 26) (((-3 (-656 (-1288 |#2|)) "failed") (-701 |#2|) (-1197)) 37) (((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -1593 (-656 (-1288 |#2|)))) "failed") (-701 |#2|) (-1288 |#2|) (-1197)) 35))) -(((-814 |#1| |#2|) (-10 -7 (-15 -2767 ((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -1593 (-656 (-1288 |#2|)))) "failed") (-701 |#2|) (-1288 |#2|) (-1197))) (-15 -2767 ((-3 (-656 (-1288 |#2|)) "failed") (-701 |#2|) (-1197))) (-15 -2767 ((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -1593 (-656 (-1288 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1197))) (-15 -2767 ((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -1593 (-656 (-1288 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1197))) (-15 -2767 ((-3 (-2 (|:| |particular| |#2|) (|:| -1593 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1197))) (-15 -2767 ((-3 (-2 (|:| |particular| |#2|) (|:| -1593 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1197))) (-15 -2767 ((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -2767 ((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)))) (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1223) (-978))) (T -814)) -((-2767 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-304 *2)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *1 (-814 *6 *2)))) (-2767 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-304 *2)) (-5 *4 (-115)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1223) (-978))) (-5 *1 (-814 *6 *2)) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))))) (-2767 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1197)) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1593 (-656 *3))) *3 "failed")) (-5 *1 (-814 *6 *3)) (-4 *3 (-13 (-29 *6) (-1223) (-978))))) (-2767 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1593 (-656 *7))) *7 "failed")) (-5 *1 (-814 *6 *7)))) (-2767 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1288 *7)) (|:| -1593 (-656 (-1288 *7))))) (-5 *1 (-814 *6 *7)))) (-2767 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1288 *7)) (|:| -1593 (-656 (-1288 *7))))) (-5 *1 (-814 *6 *7)))) (-2767 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-701 *6)) (-5 *4 (-1197)) (-4 *6 (-13 (-29 *5) (-1223) (-978))) (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-1288 *6))) (-5 *1 (-814 *5 *6)))) (-2767 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-701 *7)) (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1288 *7)) (|:| -1593 (-656 (-1288 *7))))) (-5 *1 (-814 *6 *7)) (-5 *4 (-1288 *7))))) -(-10 -7 (-15 -2767 ((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -1593 (-656 (-1288 |#2|)))) "failed") (-701 |#2|) (-1288 |#2|) (-1197))) (-15 -2767 ((-3 (-656 (-1288 |#2|)) "failed") (-701 |#2|) (-1197))) (-15 -2767 ((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -1593 (-656 (-1288 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1197))) (-15 -2767 ((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -1593 (-656 (-1288 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1197))) (-15 -2767 ((-3 (-2 (|:| |particular| |#2|) (|:| -1593 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1197))) (-15 -2767 ((-3 (-2 (|:| |particular| |#2|) (|:| -1593 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1197))) (-15 -2767 ((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -2767 ((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)))) -((-2793 (($) 9)) (-1547 (((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 30)) (-3203 (((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 27)) (-1901 (($ (-2 (|:| -4301 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))) 24)) (-1376 (($ (-656 (-2 (|:| -4301 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) 22)) (-3931 (((-1293)) 11))) -(((-815) (-10 -8 (-15 -2793 ($)) (-15 -3931 ((-1293))) (-15 -3203 ((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1376 ($ (-656 (-2 (|:| -4301 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))))) (-15 -1901 ($ (-2 (|:| -4301 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-15 -1547 ((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -815)) -((-1547 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) (-5 *1 (-815)))) (-1901 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4301 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))) (-5 *1 (-815)))) (-1376 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4301 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-5 *1 (-815)))) (-3203 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-815)))) (-3931 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-815)))) (-2793 (*1 *1) (-5 *1 (-815)))) -(-10 -8 (-15 -2793 ($)) (-15 -3931 ((-1293))) (-15 -3203 ((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1376 ($ (-656 (-2 (|:| -4301 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))))) (-15 -1901 ($ (-2 (|:| -4301 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-15 -1547 ((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-3896 ((|#2| |#2| (-1197)) 17)) (-2801 ((|#2| |#2| (-1197)) 56)) (-3850 (((-1 |#2| |#2|) (-1197)) 11))) -(((-816 |#1| |#2|) (-10 -7 (-15 -3896 (|#2| |#2| (-1197))) (-15 -2801 (|#2| |#2| (-1197))) (-15 -3850 ((-1 |#2| |#2|) (-1197)))) (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1223) (-978))) (T -816)) -((-3850 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-816 *4 *5)) (-4 *5 (-13 (-29 *4) (-1223) (-978))))) (-2801 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1223) (-978))))) (-3896 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1223) (-978)))))) -(-10 -7 (-15 -3896 (|#2| |#2| (-1197))) (-15 -2801 (|#2| |#2| (-1197))) (-15 -3850 ((-1 |#2| |#2|) (-1197)))) -((-2767 (((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390)) 128) (((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390)) 129) (((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390)) 131) (((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390)) 133) (((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390)) 134) (((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390))) 136) (((-1056) (-820) (-1084)) 120) (((-1056) (-820)) 121)) (-2012 (((-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179)))) (-820) (-1084)) 80) (((-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179)))) (-820)) 82))) -(((-817) (-10 -7 (-15 -2767 ((-1056) (-820))) (-15 -2767 ((-1056) (-820) (-1084))) (-15 -2767 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)))) (-15 -2767 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390))) (-15 -2767 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390))) (-15 -2767 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390))) (-15 -2767 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390))) (-15 -2767 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390))) (-15 -2012 ((-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179)))) (-820))) (-15 -2012 ((-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179)))) (-820) (-1084))))) (T -817)) -((-2012 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-1084)) (-5 *2 (-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *1 (-817)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *1 (-817)))) (-2767 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-2767 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-2767 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1288 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-2767 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-2767 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1288 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-2767 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1288 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-2767 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-2767 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1056)) (-5 *1 (-817))))) -(-10 -7 (-15 -2767 ((-1056) (-820))) (-15 -2767 ((-1056) (-820) (-1084))) (-15 -2767 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)))) (-15 -2767 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390))) (-15 -2767 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390))) (-15 -2767 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390))) (-15 -2767 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390))) (-15 -2767 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390))) (-15 -2012 ((-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179)))) (-820))) (-15 -2012 ((-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179)))) (-820) (-1084)))) -((-3185 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1593 (-656 |#4|))) (-665 |#4|) |#4|) 33))) -(((-818 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3185 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1593 (-656 |#4|))) (-665 |#4|) |#4|))) (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576)))) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -818)) -((-3185 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *4)) (-4 *4 (-353 *5 *6 *7)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1593 (-656 *4)))) (-5 *1 (-818 *5 *6 *7 *4))))) -(-10 -7 (-15 -3185 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1593 (-656 |#4|))) (-665 |#4|) |#4|))) -((-2435 (((-2 (|:| -4027 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))) 53)) (-3797 (((-656 (-2 (|:| -2396 |#2|) (|:| -2337 |#2|))) |#4| |#2|) 62) (((-656 (-2 (|:| -2396 |#2|) (|:| -2337 |#2|))) |#4|) 61) (((-656 (-2 (|:| -2396 |#2|) (|:| -2337 |#2|))) |#3| |#2|) 20) (((-656 (-2 (|:| -2396 |#2|) (|:| -2337 |#2|))) |#3|) 21)) (-2177 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-3673 ((|#2| |#3| (-656 (-419 |#2|))) 109) (((-3 |#2| "failed") |#3| (-419 |#2|)) 105))) -(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3673 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -3673 (|#2| |#3| (-656 (-419 |#2|)))) (-15 -3797 ((-656 (-2 (|:| -2396 |#2|) (|:| -2337 |#2|))) |#3|)) (-15 -3797 ((-656 (-2 (|:| -2396 |#2|) (|:| -2337 |#2|))) |#3| |#2|)) (-15 -2177 (|#2| |#3| |#1|)) (-15 -3797 ((-656 (-2 (|:| -2396 |#2|) (|:| -2337 |#2|))) |#4|)) (-15 -3797 ((-656 (-2 (|:| -2396 |#2|) (|:| -2337 |#2|))) |#4| |#2|)) (-15 -2177 (|#2| |#4| |#1|)) (-15 -2435 ((-2 (|:| -4027 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))))) (-13 (-374) (-148) (-1059 (-419 (-576)))) (-1264 |#1|) (-668 |#2|) (-668 (-419 |#2|))) (T -819)) -((-2435 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-2 (|:| -4027 *7) (|:| |rh| (-656 (-419 *6))))) (-5 *1 (-819 *5 *6 *7 *3)) (-5 *4 (-656 (-419 *6))) (-4 *7 (-668 *6)) (-4 *3 (-668 (-419 *6))))) (-2177 (*1 *2 *3 *4) (-12 (-4 *2 (-1264 *4)) (-5 *1 (-819 *4 *2 *5 *3)) (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-668 *2)) (-4 *3 (-668 (-419 *2))))) (-3797 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *4 (-1264 *5)) (-5 *2 (-656 (-2 (|:| -2396 *4) (|:| -2337 *4)))) (-5 *1 (-819 *5 *4 *6 *3)) (-4 *6 (-668 *4)) (-4 *3 (-668 (-419 *4))))) (-3797 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *2 (-656 (-2 (|:| -2396 *5) (|:| -2337 *5)))) (-5 *1 (-819 *4 *5 *6 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 (-419 *5))))) (-2177 (*1 *2 *3 *4) (-12 (-4 *2 (-1264 *4)) (-5 *1 (-819 *4 *2 *3 *5)) (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *5 (-668 (-419 *2))))) (-3797 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *4 (-1264 *5)) (-5 *2 (-656 (-2 (|:| -2396 *4) (|:| -2337 *4)))) (-5 *1 (-819 *5 *4 *3 *6)) (-4 *3 (-668 *4)) (-4 *6 (-668 (-419 *4))))) (-3797 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *2 (-656 (-2 (|:| -2396 *5) (|:| -2337 *5)))) (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-668 (-419 *5))))) (-3673 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-419 *2))) (-4 *2 (-1264 *5)) (-5 *1 (-819 *5 *2 *3 *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *6 (-668 (-419 *2))))) (-3673 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1264 *5)) (-5 *1 (-819 *5 *2 *3 *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *6 (-668 *4))))) -(-10 -7 (-15 -3673 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -3673 (|#2| |#3| (-656 (-419 |#2|)))) (-15 -3797 ((-656 (-2 (|:| -2396 |#2|) (|:| -2337 |#2|))) |#3|)) (-15 -3797 ((-656 (-2 (|:| -2396 |#2|) (|:| -2337 |#2|))) |#3| |#2|)) (-15 -2177 (|#2| |#3| |#1|)) (-15 -3797 ((-656 (-2 (|:| -2396 |#2|) (|:| -2337 |#2|))) |#4|)) (-15 -3797 ((-656 (-2 (|:| -2396 |#2|) (|:| -2337 |#2|))) |#4| |#2|)) (-15 -2177 (|#2| |#4| |#1|)) (-15 -2435 ((-2 (|:| -4027 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))))) -((-3489 (((-112) $ $) NIL)) (-2860 (((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $) 13)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 15) (($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 12)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-820) (-13 (-1121) (-10 -8 (-15 -3570 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2860 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))) (T -820)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-820)))) (-2860 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-820))))) -(-13 (-1121) (-10 -8 (-15 -3570 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2860 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $)))) -((-1721 (((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -4027 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1193 |#2|)) (-1 (-430 |#2|) |#2|)) 154)) (-3074 (((-656 (-2 (|:| |poly| |#2|) (|:| -4027 |#3|))) |#3| (-1 (-656 |#1|) |#2|)) 52)) (-4194 (((-656 (-2 (|:| |deg| (-783)) (|:| -4027 |#2|))) |#3|) 122)) (-4015 ((|#2| |#3|) 42)) (-2534 (((-656 (-2 (|:| -1480 |#1|) (|:| -4027 |#3|))) |#3| (-1 (-656 |#1|) |#2|)) 99)) (-1874 ((|#3| |#3| (-419 |#2|)) 72) ((|#3| |#3| |#2|) 96))) -(((-821 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4015 (|#2| |#3|)) (-15 -4194 ((-656 (-2 (|:| |deg| (-783)) (|:| -4027 |#2|))) |#3|)) (-15 -2534 ((-656 (-2 (|:| -1480 |#1|) (|:| -4027 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -3074 ((-656 (-2 (|:| |poly| |#2|) (|:| -4027 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -1721 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -4027 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1193 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -1874 (|#3| |#3| |#2|)) (-15 -1874 (|#3| |#3| (-419 |#2|)))) (-13 (-374) (-148) (-1059 (-419 (-576)))) (-1264 |#1|) (-668 |#2|) (-668 (-419 |#2|))) (T -821)) -((-1874 (*1 *2 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *1 (-821 *4 *5 *2 *6)) (-4 *2 (-668 *5)) (-4 *6 (-668 *3)))) (-1874 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-1264 *4)) (-5 *1 (-821 *4 *3 *2 *5)) (-4 *2 (-668 *3)) (-4 *5 (-668 (-419 *3))))) (-1721 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-656 *7) *7 (-1193 *7))) (-5 *5 (-1 (-430 *7) *7)) (-4 *7 (-1264 *6)) (-4 *6 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |frac| (-419 *7)) (|:| -4027 *3)))) (-5 *1 (-821 *6 *7 *3 *8)) (-4 *3 (-668 *7)) (-4 *8 (-668 (-419 *7))))) (-3074 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -4027 *3)))) (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) (-4 *7 (-668 (-419 *6))))) (-2534 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-2 (|:| -1480 *5) (|:| -4027 *3)))) (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) (-4 *7 (-668 (-419 *6))))) (-4194 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -4027 *5)))) (-5 *1 (-821 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-668 (-419 *5))))) (-4015 (*1 *2 *3) (-12 (-4 *2 (-1264 *4)) (-5 *1 (-821 *4 *2 *3 *5)) (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *5 (-668 (-419 *2)))))) -(-10 -7 (-15 -4015 (|#2| |#3|)) (-15 -4194 ((-656 (-2 (|:| |deg| (-783)) (|:| -4027 |#2|))) |#3|)) (-15 -2534 ((-656 (-2 (|:| -1480 |#1|) (|:| -4027 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -3074 ((-656 (-2 (|:| |poly| |#2|) (|:| -4027 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -1721 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -4027 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1193 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -1874 (|#3| |#3| |#2|)) (-15 -1874 (|#3| |#3| (-419 |#2|)))) -((-2357 (((-2 (|:| -1593 (-656 (-419 |#2|))) (|:| -2590 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|))) 146) (((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -1593 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|)) 145) (((-2 (|:| -1593 (-656 (-419 |#2|))) (|:| -2590 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|))) 140) (((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -1593 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|)) 138)) (-1766 ((|#2| (-666 |#2| (-419 |#2|))) 87) ((|#2| (-665 (-419 |#2|))) 90))) -(((-822 |#1| |#2|) (-10 -7 (-15 -2357 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -1593 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|))) (-15 -2357 ((-2 (|:| -1593 (-656 (-419 |#2|))) (|:| -2590 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -2357 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -1593 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -2357 ((-2 (|:| -1593 (-656 (-419 |#2|))) (|:| -2590 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -1766 (|#2| (-665 (-419 |#2|)))) (-15 -1766 (|#2| (-666 |#2| (-419 |#2|))))) (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576)))) (-1264 |#1|)) (T -822)) -((-1766 (*1 *2 *3) (-12 (-5 *3 (-666 *2 (-419 *2))) (-4 *2 (-1264 *4)) (-5 *1 (-822 *4 *2)) (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))))) (-1766 (*1 *2 *3) (-12 (-5 *3 (-665 (-419 *2))) (-4 *2 (-1264 *4)) (-5 *1 (-822 *4 *2)) (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))))) (-2357 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-2 (|:| -1593 (-656 (-419 *6))) (|:| -2590 (-701 *5)))) (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) (-2357 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1593 (-656 *4)))) (-5 *1 (-822 *5 *6)))) (-2357 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-2 (|:| -1593 (-656 (-419 *6))) (|:| -2590 (-701 *5)))) (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) (-2357 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1593 (-656 *4)))) (-5 *1 (-822 *5 *6))))) -(-10 -7 (-15 -2357 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -1593 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|))) (-15 -2357 ((-2 (|:| -1593 (-656 (-419 |#2|))) (|:| -2590 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -2357 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -1593 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -2357 ((-2 (|:| -1593 (-656 (-419 |#2|))) (|:| -2590 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -1766 (|#2| (-665 (-419 |#2|)))) (-15 -1766 (|#2| (-666 |#2| (-419 |#2|))))) -((-4142 (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#1|))) |#5| |#4|) 49))) -(((-823 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4142 ((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#1|))) |#5| |#4|))) (-374) (-668 |#1|) (-1264 |#1|) (-736 |#1| |#3|) (-668 |#4|)) (T -823)) -((-4142 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *7 (-1264 *5)) (-4 *4 (-736 *5 *7)) (-5 *2 (-2 (|:| -2590 (-701 *6)) (|:| |vec| (-1288 *5)))) (-5 *1 (-823 *5 *6 *7 *4 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 *4))))) -(-10 -7 (-15 -4142 ((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#1|))) |#5| |#4|))) -((-1721 (((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -4027 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 47)) (-3417 (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 167 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|))) 164 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 168 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-665 (-419 |#2|))) 166 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|)) 38) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 39) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|)) 36) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 37)) (-3074 (((-656 (-2 (|:| |poly| |#2|) (|:| -4027 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 96))) -(((-824 |#1| |#2|) (-10 -7 (-15 -3417 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -3417 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -3417 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -3417 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -1721 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -4027 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3074 ((-656 (-2 (|:| |poly| |#2|) (|:| -4027 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3417 ((-656 (-419 |#2|)) (-665 (-419 |#2|)))) (-15 -3417 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3417 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)))) (-15 -3417 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)))) |%noBranch|)) (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576)))) (-1264 |#1|)) (T -824)) -((-3417 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-3417 (*1 *2 *3) (-12 (-5 *3 (-666 *5 (-419 *5))) (-4 *5 (-1264 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) (-3417 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-3417 (*1 *2 *3) (-12 (-5 *3 (-665 (-419 *5))) (-4 *5 (-1264 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) (-3074 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -4027 (-666 *6 (-419 *6)))))) (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6))))) (-1721 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |frac| (-419 *6)) (|:| -4027 (-666 *6 (-419 *6)))))) (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6))))) (-3417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-666 *7 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) (-5 *5 (-1 (-430 *7) *7)) (-4 *6 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *7 (-1264 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) (-3417 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-3417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) (-5 *5 (-1 (-430 *7) *7)) (-4 *6 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *7 (-1264 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) (-3417 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6))))) -(-10 -7 (-15 -3417 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -3417 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -3417 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -3417 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -1721 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -4027 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3074 ((-656 (-2 (|:| |poly| |#2|) (|:| -4027 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3417 ((-656 (-419 |#2|)) (-665 (-419 |#2|)))) (-15 -3417 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3417 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)))) (-15 -3417 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)))) |%noBranch|)) -((-3322 (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#1|))) (-701 |#2|) (-1288 |#1|)) 110) (((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1288 |#1|)) (|:| -4027 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1288 |#1|)) 15)) (-1676 (((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -1593 (-656 (-1288 |#1|)))) (-701 |#2|) (-1288 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1593 (-656 |#1|))) |#2| |#1|)) 116)) (-2767 (((-3 (-2 (|:| |particular| (-1288 |#1|)) (|:| -1593 (-701 |#1|))) "failed") (-701 |#1|) (-1288 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1593 (-656 |#1|))) "failed") |#2| |#1|)) 54))) -(((-825 |#1| |#2|) (-10 -7 (-15 -3322 ((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1288 |#1|)) (|:| -4027 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1288 |#1|))) (-15 -3322 ((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#1|))) (-701 |#2|) (-1288 |#1|))) (-15 -2767 ((-3 (-2 (|:| |particular| (-1288 |#1|)) (|:| -1593 (-701 |#1|))) "failed") (-701 |#1|) (-1288 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1593 (-656 |#1|))) "failed") |#2| |#1|))) (-15 -1676 ((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -1593 (-656 (-1288 |#1|)))) (-701 |#2|) (-1288 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1593 (-656 |#1|))) |#2| |#1|)))) (-374) (-668 |#1|)) (T -825)) -((-1676 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1593 (-656 *6))) *7 *6)) (-4 *6 (-374)) (-4 *7 (-668 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1288 *6) "failed")) (|:| -1593 (-656 (-1288 *6))))) (-5 *1 (-825 *6 *7)) (-5 *4 (-1288 *6)))) (-2767 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1593 (-656 *6))) "failed") *7 *6)) (-4 *6 (-374)) (-4 *7 (-668 *6)) (-5 *2 (-2 (|:| |particular| (-1288 *6)) (|:| -1593 (-701 *6)))) (-5 *1 (-825 *6 *7)) (-5 *3 (-701 *6)) (-5 *4 (-1288 *6)))) (-3322 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-668 *5)) (-5 *2 (-2 (|:| -2590 (-701 *6)) (|:| |vec| (-1288 *5)))) (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *6)) (-5 *4 (-1288 *5)))) (-3322 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| A (-701 *5)) (|:| |eqs| (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1288 *5)) (|:| -4027 *6) (|:| |rh| *5)))))) (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *5)) (-5 *4 (-1288 *5)) (-4 *6 (-668 *5))))) -(-10 -7 (-15 -3322 ((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1288 |#1|)) (|:| -4027 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1288 |#1|))) (-15 -3322 ((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#1|))) (-701 |#2|) (-1288 |#1|))) (-15 -2767 ((-3 (-2 (|:| |particular| (-1288 |#1|)) (|:| -1593 (-701 |#1|))) "failed") (-701 |#1|) (-1288 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1593 (-656 |#1|))) "failed") |#2| |#1|))) (-15 -1676 ((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -1593 (-656 (-1288 |#1|)))) (-701 |#2|) (-1288 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1593 (-656 |#1|))) |#2| |#1|)))) -((-2788 (((-701 |#1|) (-656 |#1|) (-783)) 14) (((-701 |#1|) (-656 |#1|)) 15)) (-2370 (((-3 (-1288 |#1|) "failed") |#2| |#1| (-656 |#1|)) 39)) (-1483 (((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)) 46))) -(((-826 |#1| |#2|) (-10 -7 (-15 -2788 ((-701 |#1|) (-656 |#1|))) (-15 -2788 ((-701 |#1|) (-656 |#1|) (-783))) (-15 -2370 ((-3 (-1288 |#1|) "failed") |#2| |#1| (-656 |#1|))) (-15 -1483 ((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)))) (-374) (-668 |#1|)) (T -826)) -((-1483 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-656 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-374)) (-5 *1 (-826 *2 *3)) (-4 *3 (-668 *2)))) (-2370 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-1288 *4)) (-5 *1 (-826 *4 *3)) (-4 *3 (-668 *4)))) (-2788 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-374)) (-5 *2 (-701 *5)) (-5 *1 (-826 *5 *6)) (-4 *6 (-668 *5)))) (-2788 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)) (-5 *1 (-826 *4 *5)) (-4 *5 (-668 *4))))) -(-10 -7 (-15 -2788 ((-701 |#1|) (-656 |#1|))) (-15 -2788 ((-701 |#1|) (-656 |#1|) (-783))) (-15 -2370 ((-3 (-1288 |#1|) "failed") |#2| |#1| (-656 |#1|))) (-15 -1483 ((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)))) -((-3489 (((-112) $ $) NIL (|has| |#2| (-102)))) (-4308 (((-112) $) NIL (|has| |#2| (-23)))) (-2052 (($ (-940)) NIL (|has| |#2| (-1070)))) (-2047 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4466)))) (-2324 (($ $ $) NIL (|has| |#2| (-805)))) (-4367 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-1808 (((-112) $ (-783)) NIL)) (-2098 (((-783)) NIL (|has| |#2| (-379)))) (-3756 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4466)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1121)))) (-2860 (((-576) $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) ((|#2| $) NIL (|has| |#2| (-1121)))) (-2204 (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL (|has| |#2| (-1070))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1070)))) (-1561 (((-3 $ "failed") $) NIL (|has| |#2| (-1070)))) (-1836 (($) NIL (|has| |#2| (-379)))) (-4335 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4466)))) (-4274 ((|#2| $ (-576)) NIL)) (-3966 (((-656 |#2|) $) NIL (|has| $ (-6 -4465)))) (-4193 (((-112) $) NIL (|has| |#2| (-1070)))) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-576) $) NIL (|has| (-576) (-861)))) (-3125 (($ $ $) NIL (|has| |#2| (-861)))) (-2014 (((-656 |#2|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-2137 (((-576) $) NIL (|has| (-576) (-861)))) (-3133 (($ $ $) NIL (|has| |#2| (-861)))) (-4323 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#2| |#2|) $) NIL)) (-4401 (((-940) $) NIL (|has| |#2| (-379)))) (-1330 (((-112) $ (-783)) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL (|has| |#2| (-1070))) (((-701 |#2|) (-1288 $)) NIL (|has| |#2| (-1070)))) (-3699 (((-1179) $) NIL (|has| |#2| (-1121)))) (-4234 (((-656 (-576)) $) NIL)) (-3354 (((-112) (-576) $) NIL)) (-3224 (($ (-940)) NIL (|has| |#2| (-379)))) (-1450 (((-1141) $) NIL (|has| |#2| (-1121)))) (-3581 ((|#2| $) NIL (|has| (-576) (-861)))) (-4046 (($ $ |#2|) NIL (|has| $ (-6 -4466)))) (-4320 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-2281 (((-656 |#2|) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL)) (-2118 ((|#2| $ $) NIL (|has| |#2| (-1070)))) (-1872 (($ (-1288 |#2|)) NIL)) (-2003 (((-135)) NIL (|has| |#2| (-374)))) (-2775 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1070)))) (-1460 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-1870 (($ $) NIL)) (-3570 (((-1288 |#2|) $) NIL) (($ (-576)) NIL (-2760 (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (($ |#2|) NIL (|has| |#2| (-1121))) (((-876) $) NIL (|has| |#2| (-625 (-876))))) (-3996 (((-783)) NIL (|has| |#2| (-1070)) CONST)) (-4055 (((-112) $ $) NIL (|has| |#2| (-102)))) (-3321 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465)))) (-2721 (($) NIL (|has| |#2| (-23)) CONST)) (-2732 (($) NIL (|has| |#2| (-1070)) CONST)) (-2020 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1070)))) (-2992 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2964 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2925 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2950 (((-112) $ $) 11 (|has| |#2| (-861)))) (-3057 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3044 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-3030 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1070))) (($ $ (-940)) NIL (|has| |#2| (-1070)))) (* (($ $ $) NIL (|has| |#2| (-1070))) (($ $ |#2|) NIL (|has| |#2| (-738))) (($ |#2| $) NIL (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-940) $) NIL (|has| |#2| (-25)))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) +((-2076 (((-2 (|:| |particular| |#2|) (|:| -2675 (-656 |#2|))) |#3| |#2| (-1197)) 19))) +(((-813 |#1| |#2| |#3|) (-10 -7 (-15 -2076 ((-2 (|:| |particular| |#2|) (|:| -2675 (-656 |#2|))) |#3| |#2| (-1197)))) (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1223) (-978)) (-668 |#2|)) (T -813)) +((-2076 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1197)) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-4 *4 (-13 (-29 *6) (-1223) (-978))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2675 (-656 *4)))) (-5 *1 (-813 *6 *4 *3)) (-4 *3 (-668 *4))))) +(-10 -7 (-15 -2076 ((-2 (|:| |particular| |#2|) (|:| -2675 (-656 |#2|))) |#3| |#2| (-1197)))) +((-4263 (((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)) 28) (((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2675 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1197)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2675 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1197)) 18) (((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -2675 (-656 (-1288 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1197)) 24) (((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -2675 (-656 (-1288 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1197)) 26) (((-3 (-656 (-1288 |#2|)) "failed") (-701 |#2|) (-1197)) 37) (((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -2675 (-656 (-1288 |#2|)))) "failed") (-701 |#2|) (-1288 |#2|) (-1197)) 35))) +(((-814 |#1| |#2|) (-10 -7 (-15 -4263 ((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -2675 (-656 (-1288 |#2|)))) "failed") (-701 |#2|) (-1288 |#2|) (-1197))) (-15 -4263 ((-3 (-656 (-1288 |#2|)) "failed") (-701 |#2|) (-1197))) (-15 -4263 ((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -2675 (-656 (-1288 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1197))) (-15 -4263 ((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -2675 (-656 (-1288 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1197))) (-15 -4263 ((-3 (-2 (|:| |particular| |#2|) (|:| -2675 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1197))) (-15 -4263 ((-3 (-2 (|:| |particular| |#2|) (|:| -2675 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1197))) (-15 -4263 ((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -4263 ((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)))) (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1223) (-978))) (T -814)) +((-4263 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-304 *2)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *1 (-814 *6 *2)))) (-4263 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-304 *2)) (-5 *4 (-115)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1223) (-978))) (-5 *1 (-814 *6 *2)) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))))) (-4263 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1197)) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2675 (-656 *3))) *3 "failed")) (-5 *1 (-814 *6 *3)) (-4 *3 (-13 (-29 *6) (-1223) (-978))))) (-4263 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2675 (-656 *7))) *7 "failed")) (-5 *1 (-814 *6 *7)))) (-4263 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1288 *7)) (|:| -2675 (-656 (-1288 *7))))) (-5 *1 (-814 *6 *7)))) (-4263 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1288 *7)) (|:| -2675 (-656 (-1288 *7))))) (-5 *1 (-814 *6 *7)))) (-4263 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-701 *6)) (-5 *4 (-1197)) (-4 *6 (-13 (-29 *5) (-1223) (-978))) (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-1288 *6))) (-5 *1 (-814 *5 *6)))) (-4263 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-701 *7)) (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1288 *7)) (|:| -2675 (-656 (-1288 *7))))) (-5 *1 (-814 *6 *7)) (-5 *4 (-1288 *7))))) +(-10 -7 (-15 -4263 ((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -2675 (-656 (-1288 |#2|)))) "failed") (-701 |#2|) (-1288 |#2|) (-1197))) (-15 -4263 ((-3 (-656 (-1288 |#2|)) "failed") (-701 |#2|) (-1197))) (-15 -4263 ((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -2675 (-656 (-1288 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1197))) (-15 -4263 ((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -2675 (-656 (-1288 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1197))) (-15 -4263 ((-3 (-2 (|:| |particular| |#2|) (|:| -2675 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1197))) (-15 -4263 ((-3 (-2 (|:| |particular| |#2|) (|:| -2675 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1197))) (-15 -4263 ((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -4263 ((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)))) +((-1355 (($) 9)) (-3510 (((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 30)) (-3200 (((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 27)) (-2597 (($ (-2 (|:| -4300 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4439 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))) 24)) (-2151 (($ (-656 (-2 (|:| -4300 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4439 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) 22)) (-3862 (((-1293)) 11))) +(((-815) (-10 -8 (-15 -1355 ($)) (-15 -3862 ((-1293))) (-15 -3200 ((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2151 ($ (-656 (-2 (|:| -4300 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4439 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))))) (-15 -2597 ($ (-2 (|:| -4300 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4439 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-15 -3510 ((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -815)) +((-3510 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) (-5 *1 (-815)))) (-2597 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4300 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4439 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))) (-5 *1 (-815)))) (-2151 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4300 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4439 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-5 *1 (-815)))) (-3200 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-815)))) (-3862 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-815)))) (-1355 (*1 *1) (-5 *1 (-815)))) +(-10 -8 (-15 -1355 ($)) (-15 -3862 ((-1293))) (-15 -3200 ((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2151 ($ (-656 (-2 (|:| -4300 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4439 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))))) (-15 -2597 ($ (-2 (|:| -4300 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4439 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-15 -3510 ((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-3894 ((|#2| |#2| (-1197)) 17)) (-1425 ((|#2| |#2| (-1197)) 56)) (-4337 (((-1 |#2| |#2|) (-1197)) 11))) +(((-816 |#1| |#2|) (-10 -7 (-15 -3894 (|#2| |#2| (-1197))) (-15 -1425 (|#2| |#2| (-1197))) (-15 -4337 ((-1 |#2| |#2|) (-1197)))) (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1223) (-978))) (T -816)) +((-4337 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-816 *4 *5)) (-4 *5 (-13 (-29 *4) (-1223) (-978))))) (-1425 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1223) (-978))))) (-3894 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1223) (-978)))))) +(-10 -7 (-15 -3894 (|#2| |#2| (-1197))) (-15 -1425 (|#2| |#2| (-1197))) (-15 -4337 ((-1 |#2| |#2|) (-1197)))) +((-4263 (((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390)) 128) (((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390)) 129) (((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390)) 131) (((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390)) 133) (((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390)) 134) (((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390))) 136) (((-1056) (-820) (-1084)) 120) (((-1056) (-820)) 121)) (-2402 (((-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179)))) (-820) (-1084)) 80) (((-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179)))) (-820)) 82))) +(((-817) (-10 -7 (-15 -4263 ((-1056) (-820))) (-15 -4263 ((-1056) (-820) (-1084))) (-15 -4263 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)))) (-15 -4263 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390))) (-15 -4263 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390))) (-15 -4263 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390))) (-15 -4263 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390))) (-15 -4263 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390))) (-15 -2402 ((-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179)))) (-820))) (-15 -2402 ((-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179)))) (-820) (-1084))))) (T -817)) +((-2402 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-1084)) (-5 *2 (-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *1 (-817)))) (-2402 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *1 (-817)))) (-4263 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-4263 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-4263 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1288 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-4263 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-4263 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1288 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-4263 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1288 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-4263 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-4263 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1056)) (-5 *1 (-817))))) +(-10 -7 (-15 -4263 ((-1056) (-820))) (-15 -4263 ((-1056) (-820) (-1084))) (-15 -4263 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)))) (-15 -4263 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390))) (-15 -4263 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390))) (-15 -4263 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390))) (-15 -4263 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390))) (-15 -4263 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390))) (-15 -2402 ((-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179)))) (-820))) (-15 -2402 ((-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179)))) (-820) (-1084)))) +((-1907 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2675 (-656 |#4|))) (-665 |#4|) |#4|) 33))) +(((-818 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1907 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2675 (-656 |#4|))) (-665 |#4|) |#4|))) (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576)))) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -818)) +((-1907 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *4)) (-4 *4 (-353 *5 *6 *7)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2675 (-656 *4)))) (-5 *1 (-818 *5 *6 *7 *4))))) +(-10 -7 (-15 -1907 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2675 (-656 |#4|))) (-665 |#4|) |#4|))) +((-4169 (((-2 (|:| -4026 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))) 53)) (-1856 (((-656 (-2 (|:| -2396 |#2|) (|:| -2337 |#2|))) |#4| |#2|) 62) (((-656 (-2 (|:| -2396 |#2|) (|:| -2337 |#2|))) |#4|) 61) (((-656 (-2 (|:| -2396 |#2|) (|:| -2337 |#2|))) |#3| |#2|) 20) (((-656 (-2 (|:| -2396 |#2|) (|:| -2337 |#2|))) |#3|) 21)) (-3383 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-3087 ((|#2| |#3| (-656 (-419 |#2|))) 109) (((-3 |#2| "failed") |#3| (-419 |#2|)) 105))) +(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3087 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -3087 (|#2| |#3| (-656 (-419 |#2|)))) (-15 -1856 ((-656 (-2 (|:| -2396 |#2|) (|:| -2337 |#2|))) |#3|)) (-15 -1856 ((-656 (-2 (|:| -2396 |#2|) (|:| -2337 |#2|))) |#3| |#2|)) (-15 -3383 (|#2| |#3| |#1|)) (-15 -1856 ((-656 (-2 (|:| -2396 |#2|) (|:| -2337 |#2|))) |#4|)) (-15 -1856 ((-656 (-2 (|:| -2396 |#2|) (|:| -2337 |#2|))) |#4| |#2|)) (-15 -3383 (|#2| |#4| |#1|)) (-15 -4169 ((-2 (|:| -4026 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))))) (-13 (-374) (-148) (-1059 (-419 (-576)))) (-1264 |#1|) (-668 |#2|) (-668 (-419 |#2|))) (T -819)) +((-4169 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-2 (|:| -4026 *7) (|:| |rh| (-656 (-419 *6))))) (-5 *1 (-819 *5 *6 *7 *3)) (-5 *4 (-656 (-419 *6))) (-4 *7 (-668 *6)) (-4 *3 (-668 (-419 *6))))) (-3383 (*1 *2 *3 *4) (-12 (-4 *2 (-1264 *4)) (-5 *1 (-819 *4 *2 *5 *3)) (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-668 *2)) (-4 *3 (-668 (-419 *2))))) (-1856 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *4 (-1264 *5)) (-5 *2 (-656 (-2 (|:| -2396 *4) (|:| -2337 *4)))) (-5 *1 (-819 *5 *4 *6 *3)) (-4 *6 (-668 *4)) (-4 *3 (-668 (-419 *4))))) (-1856 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *2 (-656 (-2 (|:| -2396 *5) (|:| -2337 *5)))) (-5 *1 (-819 *4 *5 *6 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 (-419 *5))))) (-3383 (*1 *2 *3 *4) (-12 (-4 *2 (-1264 *4)) (-5 *1 (-819 *4 *2 *3 *5)) (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *5 (-668 (-419 *2))))) (-1856 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *4 (-1264 *5)) (-5 *2 (-656 (-2 (|:| -2396 *4) (|:| -2337 *4)))) (-5 *1 (-819 *5 *4 *3 *6)) (-4 *3 (-668 *4)) (-4 *6 (-668 (-419 *4))))) (-1856 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *2 (-656 (-2 (|:| -2396 *5) (|:| -2337 *5)))) (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-668 (-419 *5))))) (-3087 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-419 *2))) (-4 *2 (-1264 *5)) (-5 *1 (-819 *5 *2 *3 *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *6 (-668 (-419 *2))))) (-3087 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1264 *5)) (-5 *1 (-819 *5 *2 *3 *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *6 (-668 *4))))) +(-10 -7 (-15 -3087 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -3087 (|#2| |#3| (-656 (-419 |#2|)))) (-15 -1856 ((-656 (-2 (|:| -2396 |#2|) (|:| -2337 |#2|))) |#3|)) (-15 -1856 ((-656 (-2 (|:| -2396 |#2|) (|:| -2337 |#2|))) |#3| |#2|)) (-15 -3383 (|#2| |#3| |#1|)) (-15 -1856 ((-656 (-2 (|:| -2396 |#2|) (|:| -2337 |#2|))) |#4|)) (-15 -1856 ((-656 (-2 (|:| -2396 |#2|) (|:| -2337 |#2|))) |#4| |#2|)) (-15 -3383 (|#2| |#4| |#1|)) (-15 -4169 ((-2 (|:| -4026 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))))) +((-3488 (((-112) $ $) NIL)) (-2859 (((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $) 13)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 15) (($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 12)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-820) (-13 (-1121) (-10 -8 (-15 -3569 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2859 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))) (T -820)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-820)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-820))))) +(-13 (-1121) (-10 -8 (-15 -3569 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2859 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $)))) +((-1481 (((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -4026 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1193 |#2|)) (-1 (-430 |#2|) |#2|)) 154)) (-2044 (((-656 (-2 (|:| |poly| |#2|) (|:| -4026 |#3|))) |#3| (-1 (-656 |#1|) |#2|)) 52)) (-1363 (((-656 (-2 (|:| |deg| (-783)) (|:| -4026 |#2|))) |#3|) 122)) (-3322 ((|#2| |#3|) 42)) (-3952 (((-656 (-2 (|:| -1480 |#1|) (|:| -4026 |#3|))) |#3| (-1 (-656 |#1|) |#2|)) 99)) (-3630 ((|#3| |#3| (-419 |#2|)) 72) ((|#3| |#3| |#2|) 96))) +(((-821 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3322 (|#2| |#3|)) (-15 -1363 ((-656 (-2 (|:| |deg| (-783)) (|:| -4026 |#2|))) |#3|)) (-15 -3952 ((-656 (-2 (|:| -1480 |#1|) (|:| -4026 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -2044 ((-656 (-2 (|:| |poly| |#2|) (|:| -4026 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -1481 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -4026 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1193 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3630 (|#3| |#3| |#2|)) (-15 -3630 (|#3| |#3| (-419 |#2|)))) (-13 (-374) (-148) (-1059 (-419 (-576)))) (-1264 |#1|) (-668 |#2|) (-668 (-419 |#2|))) (T -821)) +((-3630 (*1 *2 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *1 (-821 *4 *5 *2 *6)) (-4 *2 (-668 *5)) (-4 *6 (-668 *3)))) (-3630 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-1264 *4)) (-5 *1 (-821 *4 *3 *2 *5)) (-4 *2 (-668 *3)) (-4 *5 (-668 (-419 *3))))) (-1481 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-656 *7) *7 (-1193 *7))) (-5 *5 (-1 (-430 *7) *7)) (-4 *7 (-1264 *6)) (-4 *6 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |frac| (-419 *7)) (|:| -4026 *3)))) (-5 *1 (-821 *6 *7 *3 *8)) (-4 *3 (-668 *7)) (-4 *8 (-668 (-419 *7))))) (-2044 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -4026 *3)))) (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) (-4 *7 (-668 (-419 *6))))) (-3952 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-2 (|:| -1480 *5) (|:| -4026 *3)))) (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) (-4 *7 (-668 (-419 *6))))) (-1363 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -4026 *5)))) (-5 *1 (-821 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-668 (-419 *5))))) (-3322 (*1 *2 *3) (-12 (-4 *2 (-1264 *4)) (-5 *1 (-821 *4 *2 *3 *5)) (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *5 (-668 (-419 *2)))))) +(-10 -7 (-15 -3322 (|#2| |#3|)) (-15 -1363 ((-656 (-2 (|:| |deg| (-783)) (|:| -4026 |#2|))) |#3|)) (-15 -3952 ((-656 (-2 (|:| -1480 |#1|) (|:| -4026 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -2044 ((-656 (-2 (|:| |poly| |#2|) (|:| -4026 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -1481 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -4026 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1193 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3630 (|#3| |#3| |#2|)) (-15 -3630 (|#3| |#3| (-419 |#2|)))) +((-1473 (((-2 (|:| -2675 (-656 (-419 |#2|))) (|:| -3232 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|))) 146) (((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -2675 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|)) 145) (((-2 (|:| -2675 (-656 (-419 |#2|))) (|:| -3232 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|))) 140) (((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -2675 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|)) 138)) (-1902 ((|#2| (-666 |#2| (-419 |#2|))) 87) ((|#2| (-665 (-419 |#2|))) 90))) +(((-822 |#1| |#2|) (-10 -7 (-15 -1473 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -2675 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|))) (-15 -1473 ((-2 (|:| -2675 (-656 (-419 |#2|))) (|:| -3232 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -1473 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -2675 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -1473 ((-2 (|:| -2675 (-656 (-419 |#2|))) (|:| -3232 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -1902 (|#2| (-665 (-419 |#2|)))) (-15 -1902 (|#2| (-666 |#2| (-419 |#2|))))) (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576)))) (-1264 |#1|)) (T -822)) +((-1902 (*1 *2 *3) (-12 (-5 *3 (-666 *2 (-419 *2))) (-4 *2 (-1264 *4)) (-5 *1 (-822 *4 *2)) (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-665 (-419 *2))) (-4 *2 (-1264 *4)) (-5 *1 (-822 *4 *2)) (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))))) (-1473 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-2 (|:| -2675 (-656 (-419 *6))) (|:| -3232 (-701 *5)))) (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) (-1473 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2675 (-656 *4)))) (-5 *1 (-822 *5 *6)))) (-1473 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-2 (|:| -2675 (-656 (-419 *6))) (|:| -3232 (-701 *5)))) (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) (-1473 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2675 (-656 *4)))) (-5 *1 (-822 *5 *6))))) +(-10 -7 (-15 -1473 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -2675 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|))) (-15 -1473 ((-2 (|:| -2675 (-656 (-419 |#2|))) (|:| -3232 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -1473 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -2675 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -1473 ((-2 (|:| -2675 (-656 (-419 |#2|))) (|:| -3232 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -1902 (|#2| (-665 (-419 |#2|)))) (-15 -1902 (|#2| (-666 |#2| (-419 |#2|))))) +((-2011 (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#1|))) |#5| |#4|) 49))) +(((-823 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2011 ((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#1|))) |#5| |#4|))) (-374) (-668 |#1|) (-1264 |#1|) (-736 |#1| |#3|) (-668 |#4|)) (T -823)) +((-2011 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *7 (-1264 *5)) (-4 *4 (-736 *5 *7)) (-5 *2 (-2 (|:| -3232 (-701 *6)) (|:| |vec| (-1288 *5)))) (-5 *1 (-823 *5 *6 *7 *4 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 *4))))) +(-10 -7 (-15 -2011 ((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#1|))) |#5| |#4|))) +((-1481 (((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -4026 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 47)) (-2453 (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 167 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|))) 164 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 168 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-665 (-419 |#2|))) 166 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|)) 38) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 39) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|)) 36) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 37)) (-2044 (((-656 (-2 (|:| |poly| |#2|) (|:| -4026 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 96))) +(((-824 |#1| |#2|) (-10 -7 (-15 -2453 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -2453 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -2453 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -2453 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -1481 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -4026 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -2044 ((-656 (-2 (|:| |poly| |#2|) (|:| -4026 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2453 ((-656 (-419 |#2|)) (-665 (-419 |#2|)))) (-15 -2453 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -2453 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)))) (-15 -2453 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)))) |%noBranch|)) (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576)))) (-1264 |#1|)) (T -824)) +((-2453 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-666 *5 (-419 *5))) (-4 *5 (-1264 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) (-2453 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-665 (-419 *5))) (-4 *5 (-1264 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) (-2044 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -4026 (-666 *6 (-419 *6)))))) (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6))))) (-1481 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |frac| (-419 *6)) (|:| -4026 (-666 *6 (-419 *6)))))) (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6))))) (-2453 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-666 *7 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) (-5 *5 (-1 (-430 *7) *7)) (-4 *6 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *7 (-1264 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) (-2453 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-2453 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) (-5 *5 (-1 (-430 *7) *7)) (-4 *6 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *7 (-1264 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) (-2453 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6))))) +(-10 -7 (-15 -2453 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -2453 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -2453 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -2453 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -1481 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -4026 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -2044 ((-656 (-2 (|:| |poly| |#2|) (|:| -4026 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2453 ((-656 (-419 |#2|)) (-665 (-419 |#2|)))) (-15 -2453 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -2453 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)))) (-15 -2453 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)))) |%noBranch|)) +((-2724 (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#1|))) (-701 |#2|) (-1288 |#1|)) 110) (((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1288 |#1|)) (|:| -4026 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1288 |#1|)) 15)) (-2227 (((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2675 (-656 (-1288 |#1|)))) (-701 |#2|) (-1288 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2675 (-656 |#1|))) |#2| |#1|)) 116)) (-4263 (((-3 (-2 (|:| |particular| (-1288 |#1|)) (|:| -2675 (-701 |#1|))) "failed") (-701 |#1|) (-1288 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2675 (-656 |#1|))) "failed") |#2| |#1|)) 54))) +(((-825 |#1| |#2|) (-10 -7 (-15 -2724 ((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1288 |#1|)) (|:| -4026 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1288 |#1|))) (-15 -2724 ((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#1|))) (-701 |#2|) (-1288 |#1|))) (-15 -4263 ((-3 (-2 (|:| |particular| (-1288 |#1|)) (|:| -2675 (-701 |#1|))) "failed") (-701 |#1|) (-1288 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2675 (-656 |#1|))) "failed") |#2| |#1|))) (-15 -2227 ((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2675 (-656 (-1288 |#1|)))) (-701 |#2|) (-1288 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2675 (-656 |#1|))) |#2| |#1|)))) (-374) (-668 |#1|)) (T -825)) +((-2227 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2675 (-656 *6))) *7 *6)) (-4 *6 (-374)) (-4 *7 (-668 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1288 *6) "failed")) (|:| -2675 (-656 (-1288 *6))))) (-5 *1 (-825 *6 *7)) (-5 *4 (-1288 *6)))) (-4263 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2675 (-656 *6))) "failed") *7 *6)) (-4 *6 (-374)) (-4 *7 (-668 *6)) (-5 *2 (-2 (|:| |particular| (-1288 *6)) (|:| -2675 (-701 *6)))) (-5 *1 (-825 *6 *7)) (-5 *3 (-701 *6)) (-5 *4 (-1288 *6)))) (-2724 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-668 *5)) (-5 *2 (-2 (|:| -3232 (-701 *6)) (|:| |vec| (-1288 *5)))) (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *6)) (-5 *4 (-1288 *5)))) (-2724 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| A (-701 *5)) (|:| |eqs| (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1288 *5)) (|:| -4026 *6) (|:| |rh| *5)))))) (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *5)) (-5 *4 (-1288 *5)) (-4 *6 (-668 *5))))) +(-10 -7 (-15 -2724 ((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1288 |#1|)) (|:| -4026 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1288 |#1|))) (-15 -2724 ((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#1|))) (-701 |#2|) (-1288 |#1|))) (-15 -4263 ((-3 (-2 (|:| |particular| (-1288 |#1|)) (|:| -2675 (-701 |#1|))) "failed") (-701 |#1|) (-1288 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2675 (-656 |#1|))) "failed") |#2| |#1|))) (-15 -2227 ((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2675 (-656 (-1288 |#1|)))) (-701 |#2|) (-1288 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2675 (-656 |#1|))) |#2| |#1|)))) +((-1325 (((-701 |#1|) (-656 |#1|) (-783)) 14) (((-701 |#1|) (-656 |#1|)) 15)) (-1584 (((-3 (-1288 |#1|) "failed") |#2| |#1| (-656 |#1|)) 39)) (-4077 (((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)) 46))) +(((-826 |#1| |#2|) (-10 -7 (-15 -1325 ((-701 |#1|) (-656 |#1|))) (-15 -1325 ((-701 |#1|) (-656 |#1|) (-783))) (-15 -1584 ((-3 (-1288 |#1|) "failed") |#2| |#1| (-656 |#1|))) (-15 -4077 ((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)))) (-374) (-668 |#1|)) (T -826)) +((-4077 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-656 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-374)) (-5 *1 (-826 *2 *3)) (-4 *3 (-668 *2)))) (-1584 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-1288 *4)) (-5 *1 (-826 *4 *3)) (-4 *3 (-668 *4)))) (-1325 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-374)) (-5 *2 (-701 *5)) (-5 *1 (-826 *5 *6)) (-4 *6 (-668 *5)))) (-1325 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)) (-5 *1 (-826 *4 *5)) (-4 *5 (-668 *4))))) +(-10 -7 (-15 -1325 ((-701 |#1|) (-656 |#1|))) (-15 -1325 ((-701 |#1|) (-656 |#1|) (-783))) (-15 -1584 ((-3 (-1288 |#1|) "failed") |#2| |#1| (-656 |#1|))) (-15 -4077 ((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)))) +((-3488 (((-112) $ $) NIL (|has| |#2| (-102)))) (-3135 (((-112) $) NIL (|has| |#2| (-23)))) (-1545 (($ (-940)) NIL (|has| |#2| (-1070)))) (-1512 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2386 (($ $ $) NIL (|has| |#2| (-805)))) (-2428 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-4264 (((-112) $ (-783)) NIL)) (-2098 (((-783)) NIL (|has| |#2| (-379)))) (-3755 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4465)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1121)))) (-2859 (((-576) $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) ((|#2| $) NIL (|has| |#2| (-1121)))) (-3674 (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL (|has| |#2| (-1070))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1070)))) (-3673 (((-3 $ "failed") $) NIL (|has| |#2| (-1070)))) (-1836 (($) NIL (|has| |#2| (-379)))) (-4332 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#2| $ (-576)) NIL)) (-3965 (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-1351 (((-112) $) NIL (|has| |#2| (-1070)))) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#2| (-861)))) (-2425 (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-4280 (((-576) $) NIL (|has| (-576) (-861)))) (-1441 (($ $ $) NIL (|has| |#2| (-861)))) (-4326 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#2| |#2|) $) NIL)) (-1558 (((-940) $) NIL (|has| |#2| (-379)))) (-2883 (((-112) $ (-783)) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL (|has| |#2| (-1070))) (((-701 |#2|) (-1288 $)) NIL (|has| |#2| (-1070)))) (-2046 (((-1179) $) NIL (|has| |#2| (-1121)))) (-3669 (((-656 (-576)) $) NIL)) (-3090 (((-112) (-576) $) NIL)) (-3223 (($ (-940)) NIL (|has| |#2| (-379)))) (-1450 (((-1141) $) NIL (|has| |#2| (-1121)))) (-3580 ((|#2| $) NIL (|has| (-576) (-861)))) (-2304 (($ $ |#2|) NIL (|has| $ (-6 -4465)))) (-3252 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-3207 (((-656 |#2|) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL)) (-4099 ((|#2| $ $) NIL (|has| |#2| (-1070)))) (-1871 (($ (-1288 |#2|)) NIL)) (-2319 (((-135)) NIL (|has| |#2| (-374)))) (-2774 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1070)))) (-1460 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1870 (($ $) NIL)) (-3569 (((-1288 |#2|) $) NIL) (($ (-576)) NIL (-2759 (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (($ |#2|) NIL (|has| |#2| (-1121))) (((-876) $) NIL (|has| |#2| (-625 (-876))))) (-3154 (((-783)) NIL (|has| |#2| (-1070)) CONST)) (-2399 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2708 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2721 (($) NIL (|has| |#2| (-23)) CONST)) (-2731 (($) NIL (|has| |#2| (-1070)) CONST)) (-2020 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1070)))) (-2990 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2924 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2949 (((-112) $ $) 11 (|has| |#2| (-861)))) (-3056 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3043 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-3029 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1070))) (($ $ (-940)) NIL (|has| |#2| (-1070)))) (* (($ $ $) NIL (|has| |#2| (-1070))) (($ $ |#2|) NIL (|has| |#2| (-738))) (($ |#2| $) NIL (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-940) $) NIL (|has| |#2| (-25)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) (((-827 |#1| |#2| |#3|) (-243 |#1| |#2|) (-783) (-805) (-1 (-112) (-1288 |#2|) (-1288 |#2|))) (T -827)) NIL (-243 |#1| |#2|) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-4433 (((-656 (-783)) $) NIL) (((-656 (-783)) $ (-1197)) NIL)) (-1920 (((-783) $) NIL) (((-783) $ (-1197)) NIL)) (-1969 (((-656 (-830 (-1197))) $) NIL)) (-1798 (((-1193 $) $ (-830 (-1197))) NIL) (((-1193 |#1|) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2757 (($ $) NIL (|has| |#1| (-568)))) (-3788 (((-112) $) NIL (|has| |#1| (-568)))) (-3543 (((-783) $) NIL) (((-783) $ (-656 (-830 (-1197)))) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3601 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2487 (($ $) NIL (|has| |#1| (-464)))) (-3921 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2104 (($ $) NIL)) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-830 (-1197)) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL) (((-3 (-1146 |#1| (-1197)) "failed") $) NIL)) (-2860 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-830 (-1197)) $) NIL) (((-1197) $) NIL) (((-1146 |#1| (-1197)) $) NIL)) (-3230 (($ $ $ (-830 (-1197))) NIL (|has| |#1| (-174)))) (-2114 (($ $) NIL)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-3767 (($ $) NIL (|has| |#1| (-464))) (($ $ (-830 (-1197))) NIL (|has| |#1| (-464)))) (-2103 (((-656 $) $) NIL)) (-4249 (((-112) $) NIL (|has| |#1| (-928)))) (-2431 (($ $ |#1| (-543 (-830 (-1197))) $) NIL)) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-830 (-1197)) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-830 (-1197)) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3917 (((-783) $ (-1197)) NIL) (((-783) $) NIL)) (-4193 (((-112) $) NIL)) (-2217 (((-783) $) NIL)) (-1955 (($ (-1193 |#1|) (-830 (-1197))) NIL) (($ (-1193 $) (-830 (-1197))) NIL)) (-1608 (((-656 $) $) NIL)) (-2823 (((-112) $) NIL)) (-1945 (($ |#1| (-543 (-830 (-1197)))) NIL) (($ $ (-830 (-1197)) (-783)) NIL) (($ $ (-656 (-830 (-1197))) (-656 (-783))) NIL)) (-4130 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $ (-830 (-1197))) NIL)) (-3751 (((-543 (-830 (-1197))) $) NIL) (((-783) $ (-830 (-1197))) NIL) (((-656 (-783)) $ (-656 (-830 (-1197)))) NIL)) (-2999 (($ (-1 (-543 (-830 (-1197))) (-543 (-830 (-1197)))) $) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-4028 (((-1 $ (-783)) (-1197)) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-238)))) (-3721 (((-3 (-830 (-1197)) "failed") $) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-2759 (((-830 (-1197)) $) NIL)) (-3458 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3699 (((-1179) $) NIL)) (-4136 (((-112) $) NIL)) (-1385 (((-3 (-656 $) "failed") $) NIL)) (-1690 (((-3 (-656 $) "failed") $) NIL)) (-2040 (((-3 (-2 (|:| |var| (-830 (-1197))) (|:| -3422 (-783))) "failed") $) NIL)) (-4286 (($ $) NIL)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) NIL)) (-2070 ((|#1| $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4100 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-928)))) (-3476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3284 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-830 (-1197)) |#1|) NIL) (($ $ (-656 (-830 (-1197))) (-656 |#1|)) NIL) (($ $ (-830 (-1197)) $) NIL) (($ $ (-656 (-830 (-1197))) (-656 $)) NIL) (($ $ (-1197) $) NIL (|has| |#1| (-238))) (($ $ (-656 (-1197)) (-656 $)) NIL (|has| |#1| (-238))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-238))) (($ $ (-656 (-1197)) (-656 |#1|)) NIL (|has| |#1| (-238)))) (-4352 (($ $ (-830 (-1197))) NIL (|has| |#1| (-174)))) (-2775 (($ $ (-656 (-830 (-1197))) (-656 (-783))) NIL) (($ $ (-830 (-1197)) (-783)) NIL) (($ $ (-656 (-830 (-1197)))) NIL) (($ $ (-830 (-1197))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2570 (((-656 (-1197)) $) NIL)) (-3634 (((-543 (-830 (-1197))) $) NIL) (((-783) $ (-830 (-1197))) NIL) (((-656 (-783)) $ (-656 (-830 (-1197)))) NIL) (((-783) $ (-1197)) NIL)) (-4172 (((-907 (-390)) $) NIL (-12 (|has| (-830 (-1197)) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-830 (-1197)) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-830 (-1197)) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-2457 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-830 (-1197))) NIL (|has| |#1| (-464)))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-830 (-1197))) NIL) (($ (-1197)) NIL) (($ (-1146 |#1| (-1197))) NIL) (($ (-419 (-576))) NIL (-2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-1618 (((-656 |#1|) $) NIL)) (-3177 ((|#1| $ (-543 (-830 (-1197)))) NIL) (($ $ (-830 (-1197)) (-783)) NIL) (($ $ (-656 (-830 (-1197))) (-656 (-783))) NIL)) (-4336 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3996 (((-783)) NIL T CONST)) (-2541 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2020 (($ $ (-656 (-830 (-1197))) (-656 (-783))) NIL) (($ $ (-830 (-1197)) (-783)) NIL) (($ $ (-656 (-830 (-1197)))) NIL) (($ $ (-830 (-1197))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-1857 (((-656 (-783)) $) NIL) (((-656 (-783)) $ (-1197)) NIL)) (-2791 (((-783) $) NIL) (((-783) $ (-1197)) NIL)) (-1969 (((-656 (-830 (-1197))) $) NIL)) (-1797 (((-1193 $) $ (-830 (-1197))) NIL) (((-1193 |#1|) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4195 (($ $) NIL (|has| |#1| (-568)))) (-1760 (((-112) $) NIL (|has| |#1| (-568)))) (-4329 (((-783) $) NIL) (((-783) $ (-656 (-830 (-1197)))) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3646 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3444 (($ $) NIL (|has| |#1| (-464)))) (-3760 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3979 (($ $) NIL)) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-830 (-1197)) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL) (((-3 (-1146 |#1| (-1197)) "failed") $) NIL)) (-2859 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-830 (-1197)) $) NIL) (((-1197) $) NIL) (((-1146 |#1| (-1197)) $) NIL)) (-4334 (($ $ $ (-830 (-1197))) NIL (|has| |#1| (-174)))) (-2114 (($ $) NIL)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1547 (($ $) NIL (|has| |#1| (-464))) (($ $ (-830 (-1197))) NIL (|has| |#1| (-464)))) (-2103 (((-656 $) $) NIL)) (-3833 (((-112) $) NIL (|has| |#1| (-928)))) (-4124 (($ $ |#1| (-543 (-830 (-1197))) $) NIL)) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-830 (-1197)) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-830 (-1197)) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3726 (((-783) $ (-1197)) NIL) (((-783) $) NIL)) (-1351 (((-112) $) NIL)) (-3799 (((-783) $) NIL)) (-1956 (($ (-1193 |#1|) (-830 (-1197))) NIL) (($ (-1193 $) (-830 (-1197))) NIL)) (-2846 (((-656 $) $) NIL)) (-3538 (((-112) $) NIL)) (-1944 (($ |#1| (-543 (-830 (-1197)))) NIL) (($ $ (-830 (-1197)) (-783)) NIL) (($ $ (-656 (-830 (-1197))) (-656 (-783))) NIL)) (-1915 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $ (-830 (-1197))) NIL)) (-2578 (((-543 (-830 (-1197))) $) NIL) (((-783) $ (-830 (-1197))) NIL) (((-656 (-783)) $ (-656 (-830 (-1197)))) NIL)) (-3878 (($ (-1 (-543 (-830 (-1197))) (-543 (-830 (-1197)))) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2150 (((-1 $ (-783)) (-1197)) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-238)))) (-2289 (((-3 (-830 (-1197)) "failed") $) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-2758 (((-830 (-1197)) $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2046 (((-1179) $) NIL)) (-1970 (((-112) $) NIL)) (-3845 (((-3 (-656 $) "failed") $) NIL)) (-2363 (((-3 (-656 $) "failed") $) NIL)) (-1452 (((-3 (-2 (|:| |var| (-830 (-1197))) (|:| -2508 (-783))) "failed") $) NIL)) (-4286 (($ $) NIL)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) NIL)) (-2070 ((|#1| $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3497 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1644 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-928)))) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3282 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-830 (-1197)) |#1|) NIL) (($ $ (-656 (-830 (-1197))) (-656 |#1|)) NIL) (($ $ (-830 (-1197)) $) NIL) (($ $ (-656 (-830 (-1197))) (-656 $)) NIL) (($ $ (-1197) $) NIL (|has| |#1| (-238))) (($ $ (-656 (-1197)) (-656 $)) NIL (|has| |#1| (-238))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-238))) (($ $ (-656 (-1197)) (-656 |#1|)) NIL (|has| |#1| (-238)))) (-2269 (($ $ (-830 (-1197))) NIL (|has| |#1| (-174)))) (-2774 (($ $ (-656 (-830 (-1197))) (-656 (-783))) NIL) (($ $ (-830 (-1197)) (-783)) NIL) (($ $ (-656 (-830 (-1197)))) NIL) (($ $ (-830 (-1197))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-3051 (((-656 (-1197)) $) NIL)) (-2683 (((-543 (-830 (-1197))) $) NIL) (((-783) $ (-830 (-1197))) NIL) (((-656 (-783)) $ (-656 (-830 (-1197)))) NIL) (((-783) $ (-1197)) NIL)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| (-830 (-1197)) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-830 (-1197)) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-830 (-1197)) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-4370 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-830 (-1197))) NIL (|has| |#1| (-464)))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-830 (-1197))) NIL) (($ (-1197)) NIL) (($ (-1146 |#1| (-1197))) NIL) (($ (-419 (-576))) NIL (-2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2937 (((-656 |#1|) $) NIL)) (-1822 ((|#1| $ (-543 (-830 (-1197)))) NIL) (($ $ (-830 (-1197)) (-783)) NIL) (($ $ (-656 (-830 (-1197))) (-656 (-783))) NIL)) (-3390 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3154 (((-783)) NIL T CONST)) (-2717 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2020 (($ $ (-656 (-830 (-1197))) (-656 (-783))) NIL) (($ $ (-830 (-1197)) (-783)) NIL) (($ $ (-656 (-830 (-1197)))) NIL) (($ $ (-830 (-1197))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) (((-828 |#1|) (-13 (-260 |#1| (-1197) (-830 (-1197)) (-543 (-830 (-1197)))) (-1059 (-1146 |#1| (-1197)))) (-1070)) (T -828)) NIL (-13 (-260 |#1| (-1197) (-830 (-1197)) (-543 (-830 (-1197)))) (-1059 (-1146 |#1| (-1197)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#2| (-374)))) (-2757 (($ $) NIL (|has| |#2| (-374)))) (-3788 (((-112) $) NIL (|has| |#2| (-374)))) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL (|has| |#2| (-374)))) (-3921 (((-430 $) $) NIL (|has| |#2| (-374)))) (-4016 (((-112) $ $) NIL (|has| |#2| (-374)))) (-3886 (($) NIL T CONST)) (-3429 (($ $ $) NIL (|has| |#2| (-374)))) (-1561 (((-3 $ "failed") $) NIL)) (-3441 (($ $ $) NIL (|has| |#2| (-374)))) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL (|has| |#2| (-374)))) (-4249 (((-112) $) NIL (|has| |#2| (-374)))) (-4193 (((-112) $) NIL)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-3458 (($ (-656 $)) NIL (|has| |#2| (-374))) (($ $ $) NIL (|has| |#2| (-374)))) (-3699 (((-1179) $) NIL)) (-2050 (($ $) 20 (|has| |#2| (-374)))) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#2| (-374)))) (-3498 (($ (-656 $)) NIL (|has| |#2| (-374))) (($ $ $) NIL (|has| |#2| (-374)))) (-1828 (((-430 $) $) NIL (|has| |#2| (-374)))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| |#2| (-374)))) (-3476 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-1967 (((-783) $) NIL (|has| |#2| (-374)))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#2| (-374)))) (-2775 (($ $) 13) (($ $ (-783)) NIL)) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-419 (-576))) NIL (|has| |#2| (-374))) (($ $) NIL (|has| |#2| (-374)))) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL (|has| |#2| (-374)))) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2020 (($ $) NIL) (($ $ (-783)) NIL)) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ $) 15 (|has| |#2| (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-940)) NIL) (($ $ (-576)) 18 (|has| |#2| (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-419 (-576)) $) NIL (|has| |#2| (-374))) (($ $ (-419 (-576))) NIL (|has| |#2| (-374))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#2| (-374)))) (-4195 (($ $) NIL (|has| |#2| (-374)))) (-1760 (((-112) $) NIL (|has| |#2| (-374)))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL (|has| |#2| (-374)))) (-3760 (((-430 $) $) NIL (|has| |#2| (-374)))) (-3330 (((-112) $ $) NIL (|has| |#2| (-374)))) (-3404 (($) NIL T CONST)) (-3428 (($ $ $) NIL (|has| |#2| (-374)))) (-3673 (((-3 $ "failed") $) NIL)) (-3440 (($ $ $) NIL (|has| |#2| (-374)))) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#2| (-374)))) (-3833 (((-112) $) NIL (|has| |#2| (-374)))) (-1351 (((-112) $) NIL)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-3457 (($ (-656 $)) NIL (|has| |#2| (-374))) (($ $ $) NIL (|has| |#2| (-374)))) (-2046 (((-1179) $) NIL)) (-2050 (($ $) 20 (|has| |#2| (-374)))) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#2| (-374)))) (-3497 (($ (-656 $)) NIL (|has| |#2| (-374))) (($ $ $) NIL (|has| |#2| (-374)))) (-1828 (((-430 $) $) NIL (|has| |#2| (-374)))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#2| (-374)))) (-3475 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-1979 (((-783) $) NIL (|has| |#2| (-374)))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#2| (-374)))) (-2774 (($ $) 13) (($ $ (-783)) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-419 (-576))) NIL (|has| |#2| (-374))) (($ $) NIL (|has| |#2| (-374)))) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL (|has| |#2| (-374)))) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2020 (($ $) NIL) (($ $ (-783)) NIL)) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ $) 15 (|has| |#2| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-940)) NIL) (($ $ (-576)) 18 (|has| |#2| (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-419 (-576)) $) NIL (|has| |#2| (-374))) (($ $ (-419 (-576))) NIL (|has| |#2| (-374))))) (((-829 |#1| |#2| |#3|) (-13 (-111 $ $) (-238) (-502 |#2|) (-10 -7 (IF (|has| |#2| (-374)) (-6 (-374)) |%noBranch|))) (-1121) (-917 |#1|) |#1|) (T -829)) NIL (-13 (-111 $ $) (-238) (-502 |#2|) (-10 -7 (IF (|has| |#2| (-374)) (-6 (-374)) |%noBranch|))) -((-3489 (((-112) $ $) NIL)) (-1920 (((-783) $) NIL)) (-3055 ((|#1| $) 10)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2860 ((|#1| $) NIL)) (-3917 (((-783) $) 11)) (-3125 (($ $ $) NIL)) (-3133 (($ $ $) NIL)) (-4028 (($ |#1| (-783)) 9)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2775 (($ $ (-783)) NIL) (($ $) NIL)) (-3570 (((-876) $) NIL) (($ |#1|) NIL)) (-4055 (((-112) $ $) NIL)) (-2020 (($ $ (-783)) NIL) (($ $) NIL)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-2791 (((-783) $) NIL)) (-3054 ((|#1| $) 10)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2859 ((|#1| $) NIL)) (-3726 (((-783) $) 11)) (-3124 (($ $ $) NIL)) (-1441 (($ $ $) NIL)) (-2150 (($ |#1| (-783)) 9)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2774 (($ $ (-783)) NIL) (($ $) NIL)) (-3569 (((-876) $) NIL) (($ |#1|) NIL)) (-2399 (((-112) $ $) NIL)) (-2020 (($ $ (-783)) NIL) (($ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) NIL))) (((-830 |#1|) (-275 |#1|) (-861)) (T -830)) NIL (-275 |#1|) -((-3489 (((-112) $ $) NIL)) (-3447 (((-656 |#1|) $) 38)) (-2098 (((-783) $) NIL)) (-3886 (($) NIL T CONST)) (-4442 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2860 ((|#1| $) NIL)) (-3593 (($ $) 42)) (-1561 (((-3 $ "failed") $) NIL)) (-2202 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-4193 (((-112) $) NIL)) (-4276 ((|#1| $ (-576)) NIL)) (-2414 (((-783) $ (-576)) NIL)) (-1372 (($ $) 54)) (-3125 (($ $ $) NIL)) (-3133 (($ $ $) NIL)) (-3310 (($ (-1 |#1| |#1|) $) NIL)) (-2053 (($ (-1 (-783) (-783)) $) NIL)) (-2054 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-4292 (((-112) $ $) 51)) (-2437 (((-783) $) 34)) (-3699 (((-1179) $) NIL)) (-2336 (($ $ $) NIL)) (-3136 (($ $ $) NIL)) (-1450 (((-1141) $) NIL)) (-3581 ((|#1| $) 41)) (-2761 (((-656 (-2 (|:| |gen| |#1|) (|:| -4104 (-783)))) $) NIL)) (-3274 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3465 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3570 (((-876) $) NIL) (($ |#1|) NIL)) (-4055 (((-112) $ $) NIL)) (-2732 (($) 20 T CONST)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) 53)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ |#1| (-783)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-831 |#1|) (-13 (-397 |#1|) (-858) (-10 -8 (-15 -3581 (|#1| $)) (-15 -3593 ($ $)) (-15 -1372 ($ $)) (-15 -4292 ((-112) $ $)) (-15 -2054 ((-3 $ "failed") $ |#1|)) (-15 -4442 ((-3 $ "failed") $ |#1|)) (-15 -3465 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2437 ((-783) $)) (-15 -3447 ((-656 |#1|) $)))) (-861)) (T -831)) -((-3581 (*1 *2 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) (-3593 (*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) (-1372 (*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) (-4292 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-861)))) (-2054 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) (-4442 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) (-3465 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-831 *3)) (|:| |rm| (-831 *3)))) (-5 *1 (-831 *3)) (-4 *3 (-861)))) (-2437 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-831 *3)) (-4 *3 (-861)))) (-3447 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-831 *3)) (-4 *3 (-861))))) -(-13 (-397 |#1|) (-858) (-10 -8 (-15 -3581 (|#1| $)) (-15 -3593 ($ $)) (-15 -1372 ($ $)) (-15 -4292 ((-112) $ $)) (-15 -2054 ((-3 $ "failed") $ |#1|)) (-15 -4442 ((-3 $ "failed") $ |#1|)) (-15 -3465 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2437 ((-783) $)) (-15 -3447 ((-656 |#1|) $)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 47)) (-2757 (($ $) 46)) (-3788 (((-112) $) 44)) (-4367 (((-3 $ "failed") $ $) 20)) (-3308 (((-576) $) 60)) (-3886 (($) 18 T CONST)) (-1561 (((-3 $ "failed") $) 37)) (-2087 (((-112) $) 58)) (-4193 (((-112) $) 35)) (-1634 (((-112) $) 59)) (-3125 (($ $ $) 52)) (-3133 (($ $ $) 53)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3476 (((-3 $ "failed") $ $) 48)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2672 (((-112) $ $) 45)) (-2122 (($ $) 61)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2992 (((-112) $ $) 54)) (-2964 (((-112) $ $) 56)) (-2925 (((-112) $ $) 8)) (-2978 (((-112) $ $) 55)) (-2950 (((-112) $ $) 57)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3488 (((-112) $ $) NIL)) (-3446 (((-656 |#1|) $) 38)) (-2098 (((-783) $) NIL)) (-3404 (($) NIL T CONST)) (-1932 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2859 ((|#1| $) NIL)) (-3592 (($ $) 42)) (-3673 (((-3 $ "failed") $) NIL)) (-3650 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-1351 (((-112) $) NIL)) (-2807 ((|#1| $ (-576)) NIL)) (-1993 (((-783) $ (-576)) NIL)) (-3187 (($ $) 54)) (-3124 (($ $ $) NIL)) (-1441 (($ $ $) NIL)) (-3925 (($ (-1 |#1| |#1|) $) NIL)) (-1555 (($ (-1 (-783) (-783)) $) NIL)) (-1566 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2989 (((-112) $ $) 51)) (-2435 (((-783) $) 34)) (-2046 (((-1179) $) NIL)) (-2485 (($ $ $) NIL)) (-1461 (($ $ $) NIL)) (-1450 (((-1141) $) NIL)) (-3580 ((|#1| $) 41)) (-4213 (((-656 (-2 (|:| |gen| |#1|) (|:| -4103 (-783)))) $) NIL)) (-3536 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3464 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3569 (((-876) $) NIL) (($ |#1|) NIL)) (-2399 (((-112) $ $) NIL)) (-2731 (($) 20 T CONST)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) 53)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ |#1| (-783)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-831 |#1|) (-13 (-397 |#1|) (-858) (-10 -8 (-15 -3580 (|#1| $)) (-15 -3592 ($ $)) (-15 -3187 ($ $)) (-15 -2989 ((-112) $ $)) (-15 -1566 ((-3 $ "failed") $ |#1|)) (-15 -1932 ((-3 $ "failed") $ |#1|)) (-15 -3464 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2435 ((-783) $)) (-15 -3446 ((-656 |#1|) $)))) (-861)) (T -831)) +((-3580 (*1 *2 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) (-3592 (*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) (-3187 (*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) (-2989 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-861)))) (-1566 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) (-1932 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) (-3464 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-831 *3)) (|:| |rm| (-831 *3)))) (-5 *1 (-831 *3)) (-4 *3 (-861)))) (-2435 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-831 *3)) (-4 *3 (-861)))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-831 *3)) (-4 *3 (-861))))) +(-13 (-397 |#1|) (-858) (-10 -8 (-15 -3580 (|#1| $)) (-15 -3592 ($ $)) (-15 -3187 ($ $)) (-15 -2989 ((-112) $ $)) (-15 -1566 ((-3 $ "failed") $ |#1|)) (-15 -1932 ((-3 $ "failed") $ |#1|)) (-15 -3464 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2435 ((-783) $)) (-15 -3446 ((-656 |#1|) $)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-4195 (($ $) 46)) (-1760 (((-112) $) 44)) (-2428 (((-3 $ "failed") $ $) 20)) (-3906 (((-576) $) 60)) (-3404 (($) 18 T CONST)) (-3673 (((-3 $ "failed") $) 37)) (-1866 (((-112) $) 58)) (-1351 (((-112) $) 35)) (-3137 (((-112) $) 59)) (-3124 (($ $ $) 52)) (-1441 (($ $ $) 53)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3475 (((-3 $ "failed") $ $) 48)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-1505 (((-112) $ $) 45)) (-4143 (($ $) 61)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2990 (((-112) $ $) 54)) (-2962 (((-112) $ $) 56)) (-2924 (((-112) $ $) 8)) (-2978 (((-112) $ $) 55)) (-2949 (((-112) $ $) 57)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-832) (-141)) (T -832)) NIL (-13 (-568) (-860)) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-861) . T) ((-864) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-1802 (($ (-1141)) 7)) (-3243 (((-112) $ (-1179) (-1141)) 15)) (-3195 (((-834) $) 12)) (-2514 (((-834) $) 11)) (-2735 (((-1293) $) 9)) (-3140 (((-112) $ (-1141)) 16))) -(((-833) (-10 -8 (-15 -1802 ($ (-1141))) (-15 -2735 ((-1293) $)) (-15 -2514 ((-834) $)) (-15 -3195 ((-834) $)) (-15 -3243 ((-112) $ (-1179) (-1141))) (-15 -3140 ((-112) $ (-1141))))) (T -833)) -((-3140 (*1 *2 *1 *3) (-12 (-5 *3 (-1141)) (-5 *2 (-112)) (-5 *1 (-833)))) (-3243 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-1141)) (-5 *2 (-112)) (-5 *1 (-833)))) (-3195 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833)))) (-2514 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-833)))) (-1802 (*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-833))))) -(-10 -8 (-15 -1802 ($ (-1141))) (-15 -2735 ((-1293) $)) (-15 -2514 ((-834) $)) (-15 -3195 ((-834) $)) (-15 -3243 ((-112) $ (-1179) (-1141))) (-15 -3140 ((-112) $ (-1141)))) -((-4350 (((-1293) $ (-835)) 12)) (-4077 (((-1293) $ (-1197)) 32)) (-2829 (((-1293) $ (-1179) (-1179)) 34)) (-2565 (((-1293) $ (-1179)) 33)) (-1624 (((-1293) $) 19)) (-2450 (((-1293) $ (-576)) 28)) (-3061 (((-1293) $ (-227)) 30)) (-2725 (((-1293) $) 18)) (-2912 (((-1293) $) 26)) (-4051 (((-1293) $) 25)) (-2082 (((-1293) $) 23)) (-3737 (((-1293) $) 24)) (-1521 (((-1293) $) 22)) (-3192 (((-1293) $) 21)) (-4150 (((-1293) $) 20)) (-3780 (((-1293) $) 16)) (-4184 (((-1293) $) 17)) (-3300 (((-1293) $) 15)) (-2882 (((-1293) $) 14)) (-3335 (((-1293) $) 13)) (-1555 (($ (-1179) (-835)) 9)) (-1911 (($ (-1179) (-1179) (-835)) 8)) (-3415 (((-1197) $) 51)) (-2990 (((-1197) $) 55)) (-3666 (((-2 (|:| |cd| (-1179)) (|:| -2629 (-1179))) $) 54)) (-1528 (((-1179) $) 52)) (-2502 (((-1293) $) 41)) (-1565 (((-576) $) 49)) (-3846 (((-227) $) 50)) (-1637 (((-1293) $) 40)) (-2289 (((-1293) $) 48)) (-1948 (((-1293) $) 47)) (-2929 (((-1293) $) 45)) (-1342 (((-1293) $) 46)) (-1343 (((-1293) $) 44)) (-2938 (((-1293) $) 43)) (-3304 (((-1293) $) 42)) (-1551 (((-1293) $) 38)) (-2895 (((-1293) $) 39)) (-3019 (((-1293) $) 37)) (-3815 (((-1293) $) 36)) (-3028 (((-1293) $) 35)) (-1500 (((-1293) $) 11))) -(((-834) (-10 -8 (-15 -1911 ($ (-1179) (-1179) (-835))) (-15 -1555 ($ (-1179) (-835))) (-15 -1500 ((-1293) $)) (-15 -4350 ((-1293) $ (-835))) (-15 -3335 ((-1293) $)) (-15 -2882 ((-1293) $)) (-15 -3300 ((-1293) $)) (-15 -3780 ((-1293) $)) (-15 -4184 ((-1293) $)) (-15 -2725 ((-1293) $)) (-15 -1624 ((-1293) $)) (-15 -4150 ((-1293) $)) (-15 -3192 ((-1293) $)) (-15 -1521 ((-1293) $)) (-15 -2082 ((-1293) $)) (-15 -3737 ((-1293) $)) (-15 -4051 ((-1293) $)) (-15 -2912 ((-1293) $)) (-15 -2450 ((-1293) $ (-576))) (-15 -3061 ((-1293) $ (-227))) (-15 -4077 ((-1293) $ (-1197))) (-15 -2565 ((-1293) $ (-1179))) (-15 -2829 ((-1293) $ (-1179) (-1179))) (-15 -3028 ((-1293) $)) (-15 -3815 ((-1293) $)) (-15 -3019 ((-1293) $)) (-15 -1551 ((-1293) $)) (-15 -2895 ((-1293) $)) (-15 -1637 ((-1293) $)) (-15 -2502 ((-1293) $)) (-15 -3304 ((-1293) $)) (-15 -2938 ((-1293) $)) (-15 -1343 ((-1293) $)) (-15 -2929 ((-1293) $)) (-15 -1342 ((-1293) $)) (-15 -1948 ((-1293) $)) (-15 -2289 ((-1293) $)) (-15 -1565 ((-576) $)) (-15 -3846 ((-227) $)) (-15 -3415 ((-1197) $)) (-15 -1528 ((-1179) $)) (-15 -3666 ((-2 (|:| |cd| (-1179)) (|:| -2629 (-1179))) $)) (-15 -2990 ((-1197) $)))) (T -834)) -((-2990 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-834)))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1179)) (|:| -2629 (-1179)))) (-5 *1 (-834)))) (-1528 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-834)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-834)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-834)))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-834)))) (-2289 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-1948 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-1342 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2929 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-1343 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2938 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3304 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2502 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-1637 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2895 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-1551 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3815 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3028 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2829 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-834)))) (-2565 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-834)))) (-4077 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-834)))) (-3061 (*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1293)) (-5 *1 (-834)))) (-2450 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-834)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-4051 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-1521 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3192 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-4150 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-1624 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-4184 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3780 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3300 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3335 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-4350 (*1 *2 *1 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1293)) (-5 *1 (-834)))) (-1500 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-1555 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-835)) (-5 *1 (-834)))) (-1911 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-835)) (-5 *1 (-834))))) -(-10 -8 (-15 -1911 ($ (-1179) (-1179) (-835))) (-15 -1555 ($ (-1179) (-835))) (-15 -1500 ((-1293) $)) (-15 -4350 ((-1293) $ (-835))) (-15 -3335 ((-1293) $)) (-15 -2882 ((-1293) $)) (-15 -3300 ((-1293) $)) (-15 -3780 ((-1293) $)) (-15 -4184 ((-1293) $)) (-15 -2725 ((-1293) $)) (-15 -1624 ((-1293) $)) (-15 -4150 ((-1293) $)) (-15 -3192 ((-1293) $)) (-15 -1521 ((-1293) $)) (-15 -2082 ((-1293) $)) (-15 -3737 ((-1293) $)) (-15 -4051 ((-1293) $)) (-15 -2912 ((-1293) $)) (-15 -2450 ((-1293) $ (-576))) (-15 -3061 ((-1293) $ (-227))) (-15 -4077 ((-1293) $ (-1197))) (-15 -2565 ((-1293) $ (-1179))) (-15 -2829 ((-1293) $ (-1179) (-1179))) (-15 -3028 ((-1293) $)) (-15 -3815 ((-1293) $)) (-15 -3019 ((-1293) $)) (-15 -1551 ((-1293) $)) (-15 -2895 ((-1293) $)) (-15 -1637 ((-1293) $)) (-15 -2502 ((-1293) $)) (-15 -3304 ((-1293) $)) (-15 -2938 ((-1293) $)) (-15 -1343 ((-1293) $)) (-15 -2929 ((-1293) $)) (-15 -1342 ((-1293) $)) (-15 -1948 ((-1293) $)) (-15 -2289 ((-1293) $)) (-15 -1565 ((-576) $)) (-15 -3846 ((-227) $)) (-15 -3415 ((-1197) $)) (-15 -1528 ((-1179) $)) (-15 -3666 ((-2 (|:| |cd| (-1179)) (|:| -2629 (-1179))) $)) (-15 -2990 ((-1197) $))) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 13)) (-4055 (((-112) $ $) NIL)) (-3632 (($) 16)) (-4305 (($) 14)) (-3730 (($) 17)) (-3433 (($) 15)) (-2925 (((-112) $ $) 9))) -(((-835) (-13 (-1121) (-10 -8 (-15 -4305 ($)) (-15 -3632 ($)) (-15 -3730 ($)) (-15 -3433 ($))))) (T -835)) -((-4305 (*1 *1) (-5 *1 (-835))) (-3632 (*1 *1) (-5 *1 (-835))) (-3730 (*1 *1) (-5 *1 (-835))) (-3433 (*1 *1) (-5 *1 (-835)))) -(-13 (-1121) (-10 -8 (-15 -4305 ($)) (-15 -3632 ($)) (-15 -3730 ($)) (-15 -3433 ($)))) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 23) (($ (-1197)) 19)) (-4055 (((-112) $ $) NIL)) (-4023 (((-112) $) 10)) (-3093 (((-112) $) 9)) (-1900 (((-112) $) 11)) (-4404 (((-112) $) 8)) (-2925 (((-112) $ $) 21))) -(((-836) (-13 (-1121) (-10 -8 (-15 -3570 ($ (-1197))) (-15 -4404 ((-112) $)) (-15 -3093 ((-112) $)) (-15 -4023 ((-112) $)) (-15 -1900 ((-112) $))))) (T -836)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-836)))) (-4404 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-3093 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) -(-13 (-1121) (-10 -8 (-15 -3570 ($ (-1197))) (-15 -4404 ((-112) $)) (-15 -3093 ((-112) $)) (-15 -4023 ((-112) $)) (-15 -1900 ((-112) $)))) -((-3489 (((-112) $ $) NIL)) (-1759 (($ (-836) (-656 (-1197))) 32)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2713 (((-836) $) 33)) (-2062 (((-656 (-1197)) $) 34)) (-3570 (((-876) $) 31)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-837) (-13 (-1121) (-10 -8 (-15 -2713 ((-836) $)) (-15 -2062 ((-656 (-1197)) $)) (-15 -1759 ($ (-836) (-656 (-1197))))))) (T -837)) -((-2713 (*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-837)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-837)))) (-1759 (*1 *1 *2 *3) (-12 (-5 *2 (-836)) (-5 *3 (-656 (-1197))) (-5 *1 (-837))))) -(-13 (-1121) (-10 -8 (-15 -2713 ((-836) $)) (-15 -2062 ((-656 (-1197)) $)) (-15 -1759 ($ (-836) (-656 (-1197)))))) -((-1636 (((-1293) (-834) (-326 |#1|) (-112)) 23) (((-1293) (-834) (-326 |#1|)) 89) (((-1179) (-326 |#1|) (-112)) 88) (((-1179) (-326 |#1|)) 87))) -(((-838 |#1|) (-10 -7 (-15 -1636 ((-1179) (-326 |#1|))) (-15 -1636 ((-1179) (-326 |#1|) (-112))) (-15 -1636 ((-1293) (-834) (-326 |#1|))) (-15 -1636 ((-1293) (-834) (-326 |#1|) (-112)))) (-13 (-840) (-1070))) (T -838)) -((-1636 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-834)) (-5 *4 (-326 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-840) (-1070))) (-5 *2 (-1293)) (-5 *1 (-838 *6)))) (-1636 (*1 *2 *3 *4) (-12 (-5 *3 (-834)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-840) (-1070))) (-5 *2 (-1293)) (-5 *1 (-838 *5)))) (-1636 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-840) (-1070))) (-5 *2 (-1179)) (-5 *1 (-838 *5)))) (-1636 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-840) (-1070))) (-5 *2 (-1179)) (-5 *1 (-838 *4))))) -(-10 -7 (-15 -1636 ((-1179) (-326 |#1|))) (-15 -1636 ((-1179) (-326 |#1|) (-112))) (-15 -1636 ((-1293) (-834) (-326 |#1|))) (-15 -1636 ((-1293) (-834) (-326 |#1|) (-112)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-3890 ((|#1| $) 10)) (-1757 (($ |#1|) 9)) (-4193 (((-112) $) NIL)) (-1945 (($ |#2| (-783)) NIL)) (-3751 (((-783) $) NIL)) (-2091 ((|#2| $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2775 (($ $) NIL (|has| |#1| (-238))) (($ $ (-783)) NIL (|has| |#1| (-238)))) (-3634 (((-783) $) NIL)) (-3570 (((-876) $) 17) (($ (-576)) NIL) (($ |#2|) NIL (|has| |#2| (-174)))) (-3177 ((|#2| $ (-783)) NIL)) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2020 (($ $) NIL (|has| |#1| (-238))) (($ $ (-783)) NIL (|has| |#1| (-238)))) (-2925 (((-112) $ $) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-839 |#1| |#2|) (-13 (-720 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -1757 ($ |#1|)) (-15 -3890 (|#1| $)))) (-720 |#2|) (-1070)) (T -839)) -((-1757 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-839 *2 *3)) (-4 *2 (-720 *3)))) (-3890 (*1 *2 *1) (-12 (-4 *2 (-720 *3)) (-5 *1 (-839 *2 *3)) (-4 *3 (-1070))))) -(-13 (-720 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -1757 ($ |#1|)) (-15 -3890 (|#1| $)))) -((-1636 (((-1293) (-834) $ (-112)) 9) (((-1293) (-834) $) 8) (((-1179) $ (-112)) 7) (((-1179) $) 6))) +((-4215 (($ (-1141)) 7)) (-1343 (((-112) $ (-1179) (-1141)) 15)) (-3990 (((-834) $) 12)) (-3742 (((-834) $) 11)) (-2014 (((-1293) $) 9)) (-1485 (((-112) $ (-1141)) 16))) +(((-833) (-10 -8 (-15 -4215 ($ (-1141))) (-15 -2014 ((-1293) $)) (-15 -3742 ((-834) $)) (-15 -3990 ((-834) $)) (-15 -1343 ((-112) $ (-1179) (-1141))) (-15 -1485 ((-112) $ (-1141))))) (T -833)) +((-1485 (*1 *2 *1 *3) (-12 (-5 *3 (-1141)) (-5 *2 (-112)) (-5 *1 (-833)))) (-1343 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-1141)) (-5 *2 (-112)) (-5 *1 (-833)))) (-3990 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833)))) (-2014 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-833)))) (-4215 (*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-833))))) +(-10 -8 (-15 -4215 ($ (-1141))) (-15 -2014 ((-1293) $)) (-15 -3742 ((-834) $)) (-15 -3990 ((-834) $)) (-15 -1343 ((-112) $ (-1179) (-1141))) (-15 -1485 ((-112) $ (-1141)))) +((-2248 (((-1293) $ (-835)) 12)) (-2606 (((-1293) $ (-1197)) 32)) (-3609 (((-1293) $ (-1179) (-1179)) 34)) (-2999 (((-1293) $ (-1179)) 33)) (-3017 (((-1293) $) 19)) (-4298 (((-1293) $ (-576)) 28)) (-3201 (((-1293) $ (-227)) 30)) (-1931 (((-1293) $) 18)) (-3176 (((-1293) $) 26)) (-2352 (((-1293) $) 25)) (-1811 (((-1293) $) 23)) (-2449 (((-1293) $) 24)) (-3225 (((-1293) $) 22)) (-3956 (((-1293) $) 21)) (-4074 (((-1293) $) 20)) (-1682 (((-1293) $) 16)) (-4381 (((-1293) $) 17)) (-3813 (((-1293) $) 15)) (-2850 (((-1293) $) 14)) (-2872 (((-1293) $) 13)) (-3605 (($ (-1179) (-835)) 9)) (-2689 (($ (-1179) (-1179) (-835)) 8)) (-2431 (((-1197) $) 51)) (-3783 (((-1197) $) 55)) (-3024 (((-2 (|:| |cd| (-1179)) (|:| -2628 (-1179))) $) 54)) (-3297 (((-1179) $) 52)) (-3612 (((-1293) $) 41)) (-3710 (((-576) $) 49)) (-4292 (((-227) $) 50)) (-3171 (((-1293) $) 40)) (-2008 (((-1293) $) 48)) (-3095 (((-1293) $) 47)) (-3323 (((-1293) $) 45)) (-3027 (((-1293) $) 46)) (-3040 (((-1293) $) 44)) (-3303 (((-1293) $) 43)) (-3860 (((-1293) $) 42)) (-3557 (((-1293) $) 38)) (-2981 (((-1293) $) 39)) (-2766 (((-1293) $) 37)) (-2015 (((-1293) $) 36)) (-2878 (((-1293) $) 35)) (-4240 (((-1293) $) 11))) +(((-834) (-10 -8 (-15 -2689 ($ (-1179) (-1179) (-835))) (-15 -3605 ($ (-1179) (-835))) (-15 -4240 ((-1293) $)) (-15 -2248 ((-1293) $ (-835))) (-15 -2872 ((-1293) $)) (-15 -2850 ((-1293) $)) (-15 -3813 ((-1293) $)) (-15 -1682 ((-1293) $)) (-15 -4381 ((-1293) $)) (-15 -1931 ((-1293) $)) (-15 -3017 ((-1293) $)) (-15 -4074 ((-1293) $)) (-15 -3956 ((-1293) $)) (-15 -3225 ((-1293) $)) (-15 -1811 ((-1293) $)) (-15 -2449 ((-1293) $)) (-15 -2352 ((-1293) $)) (-15 -3176 ((-1293) $)) (-15 -4298 ((-1293) $ (-576))) (-15 -3201 ((-1293) $ (-227))) (-15 -2606 ((-1293) $ (-1197))) (-15 -2999 ((-1293) $ (-1179))) (-15 -3609 ((-1293) $ (-1179) (-1179))) (-15 -2878 ((-1293) $)) (-15 -2015 ((-1293) $)) (-15 -2766 ((-1293) $)) (-15 -3557 ((-1293) $)) (-15 -2981 ((-1293) $)) (-15 -3171 ((-1293) $)) (-15 -3612 ((-1293) $)) (-15 -3860 ((-1293) $)) (-15 -3303 ((-1293) $)) (-15 -3040 ((-1293) $)) (-15 -3323 ((-1293) $)) (-15 -3027 ((-1293) $)) (-15 -3095 ((-1293) $)) (-15 -2008 ((-1293) $)) (-15 -3710 ((-576) $)) (-15 -4292 ((-227) $)) (-15 -2431 ((-1197) $)) (-15 -3297 ((-1179) $)) (-15 -3024 ((-2 (|:| |cd| (-1179)) (|:| -2628 (-1179))) $)) (-15 -3783 ((-1197) $)))) (T -834)) +((-3783 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-834)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1179)) (|:| -2628 (-1179)))) (-5 *1 (-834)))) (-3297 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-834)))) (-2431 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-834)))) (-4292 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-834)))) (-3710 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-834)))) (-2008 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3095 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3027 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3323 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3040 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3303 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3612 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3171 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3557 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2766 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2015 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2878 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3609 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-834)))) (-2999 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-834)))) (-2606 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-834)))) (-3201 (*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1293)) (-5 *1 (-834)))) (-4298 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-834)))) (-3176 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2352 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2449 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-1811 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3225 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3956 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-4074 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3017 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-1931 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-4381 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-1682 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3813 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2248 (*1 *2 *1 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1293)) (-5 *1 (-834)))) (-4240 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3605 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-835)) (-5 *1 (-834)))) (-2689 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-835)) (-5 *1 (-834))))) +(-10 -8 (-15 -2689 ($ (-1179) (-1179) (-835))) (-15 -3605 ($ (-1179) (-835))) (-15 -4240 ((-1293) $)) (-15 -2248 ((-1293) $ (-835))) (-15 -2872 ((-1293) $)) (-15 -2850 ((-1293) $)) (-15 -3813 ((-1293) $)) (-15 -1682 ((-1293) $)) (-15 -4381 ((-1293) $)) (-15 -1931 ((-1293) $)) (-15 -3017 ((-1293) $)) (-15 -4074 ((-1293) $)) (-15 -3956 ((-1293) $)) (-15 -3225 ((-1293) $)) (-15 -1811 ((-1293) $)) (-15 -2449 ((-1293) $)) (-15 -2352 ((-1293) $)) (-15 -3176 ((-1293) $)) (-15 -4298 ((-1293) $ (-576))) (-15 -3201 ((-1293) $ (-227))) (-15 -2606 ((-1293) $ (-1197))) (-15 -2999 ((-1293) $ (-1179))) (-15 -3609 ((-1293) $ (-1179) (-1179))) (-15 -2878 ((-1293) $)) (-15 -2015 ((-1293) $)) (-15 -2766 ((-1293) $)) (-15 -3557 ((-1293) $)) (-15 -2981 ((-1293) $)) (-15 -3171 ((-1293) $)) (-15 -3612 ((-1293) $)) (-15 -3860 ((-1293) $)) (-15 -3303 ((-1293) $)) (-15 -3040 ((-1293) $)) (-15 -3323 ((-1293) $)) (-15 -3027 ((-1293) $)) (-15 -3095 ((-1293) $)) (-15 -2008 ((-1293) $)) (-15 -3710 ((-576) $)) (-15 -4292 ((-227) $)) (-15 -2431 ((-1197) $)) (-15 -3297 ((-1179) $)) (-15 -3024 ((-2 (|:| |cd| (-1179)) (|:| -2628 (-1179))) $)) (-15 -3783 ((-1197) $))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 13)) (-2399 (((-112) $ $) NIL)) (-2660 (($) 16)) (-3111 (($) 14)) (-2382 (($) 17)) (-2594 (($) 15)) (-2924 (((-112) $ $) 9))) +(((-835) (-13 (-1121) (-10 -8 (-15 -3111 ($)) (-15 -2660 ($)) (-15 -2382 ($)) (-15 -2594 ($))))) (T -835)) +((-3111 (*1 *1) (-5 *1 (-835))) (-2660 (*1 *1) (-5 *1 (-835))) (-2382 (*1 *1) (-5 *1 (-835))) (-2594 (*1 *1) (-5 *1 (-835)))) +(-13 (-1121) (-10 -8 (-15 -3111 ($)) (-15 -2660 ($)) (-15 -2382 ($)) (-15 -2594 ($)))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 23) (($ (-1197)) 19)) (-2399 (((-112) $ $) NIL)) (-2126 (((-112) $) 10)) (-2245 (((-112) $) 9)) (-2587 (((-112) $) 11)) (-1590 (((-112) $) 8)) (-2924 (((-112) $ $) 21))) +(((-836) (-13 (-1121) (-10 -8 (-15 -3569 ($ (-1197))) (-15 -1590 ((-112) $)) (-15 -2245 ((-112) $)) (-15 -2126 ((-112) $)) (-15 -2587 ((-112) $))))) (T -836)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-836)))) (-1590 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-2245 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-2126 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-2587 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) +(-13 (-1121) (-10 -8 (-15 -3569 ($ (-1197))) (-15 -1590 ((-112) $)) (-15 -2245 ((-112) $)) (-15 -2126 ((-112) $)) (-15 -2587 ((-112) $)))) +((-3488 (((-112) $ $) NIL)) (-1838 (($ (-836) (-656 (-1197))) 32)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1834 (((-836) $) 33)) (-1636 (((-656 (-1197)) $) 34)) (-3569 (((-876) $) 31)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-837) (-13 (-1121) (-10 -8 (-15 -1834 ((-836) $)) (-15 -1636 ((-656 (-1197)) $)) (-15 -1838 ($ (-836) (-656 (-1197))))))) (T -837)) +((-1834 (*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-837)))) (-1636 (*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-837)))) (-1838 (*1 *1 *2 *3) (-12 (-5 *2 (-836)) (-5 *3 (-656 (-1197))) (-5 *1 (-837))))) +(-13 (-1121) (-10 -8 (-15 -1834 ((-836) $)) (-15 -1636 ((-656 (-1197)) $)) (-15 -1838 ($ (-836) (-656 (-1197)))))) +((-3160 (((-1293) (-834) (-326 |#1|) (-112)) 23) (((-1293) (-834) (-326 |#1|)) 89) (((-1179) (-326 |#1|) (-112)) 88) (((-1179) (-326 |#1|)) 87))) +(((-838 |#1|) (-10 -7 (-15 -3160 ((-1179) (-326 |#1|))) (-15 -3160 ((-1179) (-326 |#1|) (-112))) (-15 -3160 ((-1293) (-834) (-326 |#1|))) (-15 -3160 ((-1293) (-834) (-326 |#1|) (-112)))) (-13 (-840) (-1070))) (T -838)) +((-3160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-834)) (-5 *4 (-326 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-840) (-1070))) (-5 *2 (-1293)) (-5 *1 (-838 *6)))) (-3160 (*1 *2 *3 *4) (-12 (-5 *3 (-834)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-840) (-1070))) (-5 *2 (-1293)) (-5 *1 (-838 *5)))) (-3160 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-840) (-1070))) (-5 *2 (-1179)) (-5 *1 (-838 *5)))) (-3160 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-840) (-1070))) (-5 *2 (-1179)) (-5 *1 (-838 *4))))) +(-10 -7 (-15 -3160 ((-1179) (-326 |#1|))) (-15 -3160 ((-1179) (-326 |#1|) (-112))) (-15 -3160 ((-1293) (-834) (-326 |#1|))) (-15 -3160 ((-1293) (-834) (-326 |#1|) (-112)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-3437 ((|#1| $) 10)) (-1757 (($ |#1|) 9)) (-1351 (((-112) $) NIL)) (-1944 (($ |#2| (-783)) NIL)) (-2578 (((-783) $) NIL)) (-2091 ((|#2| $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2774 (($ $) NIL (|has| |#1| (-238))) (($ $ (-783)) NIL (|has| |#1| (-238)))) (-2683 (((-783) $) NIL)) (-3569 (((-876) $) 17) (($ (-576)) NIL) (($ |#2|) NIL (|has| |#2| (-174)))) (-1822 ((|#2| $ (-783)) NIL)) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2020 (($ $) NIL (|has| |#1| (-238))) (($ $ (-783)) NIL (|has| |#1| (-238)))) (-2924 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-839 |#1| |#2|) (-13 (-720 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -1757 ($ |#1|)) (-15 -3437 (|#1| $)))) (-720 |#2|) (-1070)) (T -839)) +((-1757 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-839 *2 *3)) (-4 *2 (-720 *3)))) (-3437 (*1 *2 *1) (-12 (-4 *2 (-720 *3)) (-5 *1 (-839 *2 *3)) (-4 *3 (-1070))))) +(-13 (-720 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -1757 ($ |#1|)) (-15 -3437 (|#1| $)))) +((-3160 (((-1293) (-834) $ (-112)) 9) (((-1293) (-834) $) 8) (((-1179) $ (-112)) 7) (((-1179) $) 6))) (((-840) (-141)) (T -840)) -((-1636 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *4 (-112)) (-5 *2 (-1293)))) (-1636 (*1 *2 *3 *1) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *2 (-1293)))) (-1636 (*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-112)) (-5 *2 (-1179)))) (-1636 (*1 *2 *1) (-12 (-4 *1 (-840)) (-5 *2 (-1179))))) -(-13 (-10 -8 (-15 -1636 ((-1179) $)) (-15 -1636 ((-1179) $ (-112))) (-15 -1636 ((-1293) (-834) $)) (-15 -1636 ((-1293) (-834) $ (-112))))) -((-3160 (((-322) (-1179) (-1179)) 12)) (-3794 (((-112) (-1179) (-1179)) 34)) (-1946 (((-112) (-1179)) 33)) (-1485 (((-52) (-1179)) 25)) (-1663 (((-52) (-1179)) 23)) (-4238 (((-52) (-834)) 17)) (-3580 (((-656 (-1179)) (-1179)) 28)) (-3041 (((-656 (-1179))) 27))) -(((-841) (-10 -7 (-15 -4238 ((-52) (-834))) (-15 -1663 ((-52) (-1179))) (-15 -1485 ((-52) (-1179))) (-15 -3041 ((-656 (-1179)))) (-15 -3580 ((-656 (-1179)) (-1179))) (-15 -1946 ((-112) (-1179))) (-15 -3794 ((-112) (-1179) (-1179))) (-15 -3160 ((-322) (-1179) (-1179))))) (T -841)) -((-3160 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-322)) (-5 *1 (-841)))) (-3794 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-112)) (-5 *1 (-841)))) (-1946 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-112)) (-5 *1 (-841)))) (-3580 (*1 *2 *3) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-841)) (-5 *3 (-1179)))) (-3041 (*1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-841)))) (-1485 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-841)))) (-1663 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-841)))) (-4238 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-52)) (-5 *1 (-841))))) -(-10 -7 (-15 -4238 ((-52) (-834))) (-15 -1663 ((-52) (-1179))) (-15 -1485 ((-52) (-1179))) (-15 -3041 ((-656 (-1179)))) (-15 -3580 ((-656 (-1179)) (-1179))) (-15 -1946 ((-112) (-1179))) (-15 -3794 ((-112) (-1179) (-1179))) (-15 -3160 ((-322) (-1179) (-1179)))) -((-3489 (((-112) $ $) 20)) (-1820 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3319 (($ $ $) 73)) (-1928 (((-112) $ $) 74)) (-1808 (((-112) $ (-783)) 8)) (-2071 (($ (-656 |#1|)) 69) (($) 68)) (-2300 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4465)))) (-3886 (($) 7 T CONST)) (-1703 (($ $) 63)) (-1415 (($ $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1671 (($ |#1| $) 48 (|has| $ (-6 -4465))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4465)))) (-3946 (($ |#1| $) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4465)))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4465)))) (-3966 (((-656 |#1|) $) 31 (|has| $ (-6 -4465)))) (-4248 (((-112) $ $) 65)) (-3870 (((-112) $ (-783)) 9)) (-3125 ((|#1| $) 79)) (-2453 (($ $ $) 82)) (-3391 (($ $ $) 81)) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-3133 ((|#1| $) 80)) (-4323 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 36)) (-1330 (((-112) $ (-783)) 10)) (-3699 (((-1179) $) 23)) (-3285 (($ $ $) 70)) (-1597 ((|#1| $) 40)) (-1901 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-1450 (((-1141) $) 22)) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3449 ((|#1| $) 42)) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-1621 (((-656 (-2 (|:| -4440 |#1|) (|:| -1460 (-783)))) $) 62)) (-3204 (($ $ |#1|) 72) (($ $ $) 71)) (-2271 (($) 50) (($ (-656 |#1|)) 49)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 13)) (-4172 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) 51)) (-3570 (((-876) $) 18)) (-1893 (($ (-656 |#1|)) 67) (($) 66)) (-4055 (((-112) $ $) 21)) (-3943 (($ (-656 |#1|)) 43)) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 19)) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-3160 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *4 (-112)) (-5 *2 (-1293)))) (-3160 (*1 *2 *3 *1) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *2 (-1293)))) (-3160 (*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-112)) (-5 *2 (-1179)))) (-3160 (*1 *2 *1) (-12 (-4 *1 (-840)) (-5 *2 (-1179))))) +(-13 (-10 -8 (-15 -3160 ((-1179) $)) (-15 -3160 ((-1179) $ (-112))) (-15 -3160 ((-1293) (-834) $)) (-15 -3160 ((-1293) (-834) $ (-112))))) +((-1671 (((-322) (-1179) (-1179)) 12)) (-1823 (((-112) (-1179) (-1179)) 34)) (-3073 (((-112) (-1179)) 33)) (-4097 (((-52) (-1179)) 25)) (-2099 (((-52) (-1179)) 23)) (-3721 (((-52) (-834)) 17)) (-3432 (((-656 (-1179)) (-1179)) 28)) (-3022 (((-656 (-1179))) 27))) +(((-841) (-10 -7 (-15 -3721 ((-52) (-834))) (-15 -2099 ((-52) (-1179))) (-15 -4097 ((-52) (-1179))) (-15 -3022 ((-656 (-1179)))) (-15 -3432 ((-656 (-1179)) (-1179))) (-15 -3073 ((-112) (-1179))) (-15 -1823 ((-112) (-1179) (-1179))) (-15 -1671 ((-322) (-1179) (-1179))))) (T -841)) +((-1671 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-322)) (-5 *1 (-841)))) (-1823 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-112)) (-5 *1 (-841)))) (-3073 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-112)) (-5 *1 (-841)))) (-3432 (*1 *2 *3) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-841)) (-5 *3 (-1179)))) (-3022 (*1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-841)))) (-4097 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-841)))) (-2099 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-841)))) (-3721 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-52)) (-5 *1 (-841))))) +(-10 -7 (-15 -3721 ((-52) (-834))) (-15 -2099 ((-52) (-1179))) (-15 -4097 ((-52) (-1179))) (-15 -3022 ((-656 (-1179)))) (-15 -3432 ((-656 (-1179)) (-1179))) (-15 -3073 ((-112) (-1179))) (-15 -1823 ((-112) (-1179) (-1179))) (-15 -1671 ((-322) (-1179) (-1179)))) +((-3488 (((-112) $ $) 20)) (-1820 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2688 (($ $ $) 73)) (-2866 (((-112) $ $) 74)) (-4264 (((-112) $ (-783)) 8)) (-2071 (($ (-656 |#1|)) 69) (($) 68)) (-2123 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4464)))) (-1974 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4464)))) (-3404 (($) 7 T CONST)) (-2495 (($ $) 63)) (-2034 (($ $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2172 (($ |#1| $) 48 (|has| $ (-6 -4464))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4464)))) (-3945 (($ |#1| $) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4464)))) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-3820 (((-112) $ $) 65)) (-1368 (((-112) $ (-783)) 9)) (-3124 ((|#1| $) 79)) (-4330 (($ $ $) 82)) (-2185 (($ $ $) 81)) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1441 ((|#1| $) 80)) (-4326 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-2883 (((-112) $ (-783)) 10)) (-2046 (((-1179) $) 23)) (-3651 (($ $ $) 70)) (-2722 ((|#1| $) 40)) (-2597 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-1450 (((-1141) $) 22)) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1541 ((|#1| $) 42)) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-2977 (((-656 (-2 (|:| -4439 |#1|) (|:| -1460 (-783)))) $) 62)) (-4079 (($ $ |#1|) 72) (($ $ $) 71)) (-3101 (($) 50) (($ (-656 |#1|)) 49)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-4171 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 51)) (-3569 (((-876) $) 18)) (-1895 (($ (-656 |#1|)) 67) (($) 66)) (-2399 (((-112) $ $) 21)) (-3972 (($ (-656 |#1|)) 43)) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 19)) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-842 |#1|) (-141) (-861)) (T -842)) -((-3125 (*1 *2 *1) (-12 (-4 *1 (-842 *2)) (-4 *2 (-861))))) -(-13 (-748 |t#1|) (-989 |t#1|) (-10 -8 (-15 -3125 (|t#1| $)))) +((-3124 (*1 *2 *1) (-12 (-4 *1 (-842 *2)) (-4 *2 (-861))))) +(-13 (-748 |t#1|) (-989 |t#1|) (-10 -8 (-15 -3124 (|t#1| $)))) (((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-876)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-707 |#1|) . T) ((-748 |#1|) . T) ((-989 |#1|) . T) ((-1119 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-3647 (((-1293) (-1141) (-1141)) 48)) (-2034 (((-1293) (-833) (-52)) 45)) (-2160 (((-52) (-833)) 16))) -(((-843) (-10 -7 (-15 -2160 ((-52) (-833))) (-15 -2034 ((-1293) (-833) (-52))) (-15 -3647 ((-1293) (-1141) (-1141))))) (T -843)) -((-3647 (*1 *2 *3 *3) (-12 (-5 *3 (-1141)) (-5 *2 (-1293)) (-5 *1 (-843)))) (-2034 (*1 *2 *3 *4) (-12 (-5 *3 (-833)) (-5 *4 (-52)) (-5 *2 (-1293)) (-5 *1 (-843)))) (-2160 (*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-52)) (-5 *1 (-843))))) -(-10 -7 (-15 -2160 ((-52) (-833))) (-15 -2034 ((-1293) (-833) (-52))) (-15 -3647 ((-1293) (-1141) (-1141)))) -((-4117 (((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)) 12) (((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|)) 13))) -(((-844 |#1| |#2|) (-10 -7 (-15 -4117 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|))) (-15 -4117 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)))) (-1121) (-1121)) (T -844)) -((-4117 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-845 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *1 (-844 *5 *6)))) (-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-845 *6)) (-5 *1 (-844 *5 *6))))) -(-10 -7 (-15 -4117 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|))) (-15 -4117 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL (|has| |#1| (-21)))) (-4367 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3308 (((-576) $) NIL (|has| |#1| (-860)))) (-3886 (($) NIL (|has| |#1| (-21)) CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 15)) (-2860 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 9)) (-1561 (((-3 $ "failed") $) 42 (|has| |#1| (-860)))) (-3104 (((-3 (-419 (-576)) "failed") $) 52 (|has| |#1| (-557)))) (-2545 (((-112) $) 46 (|has| |#1| (-557)))) (-2568 (((-419 (-576)) $) 49 (|has| |#1| (-557)))) (-2087 (((-112) $) NIL (|has| |#1| (-860)))) (-4193 (((-112) $) NIL (|has| |#1| (-860)))) (-1634 (((-112) $) NIL (|has| |#1| (-860)))) (-3125 (($ $ $) NIL (|has| |#1| (-860)))) (-3133 (($ $ $) NIL (|has| |#1| (-860)))) (-3699 (((-1179) $) NIL)) (-1610 (($) 13)) (-2804 (((-112) $) 12)) (-1450 (((-1141) $) NIL)) (-2681 (((-112) $) 11)) (-3570 (((-876) $) 18) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) 8) (($ (-576)) NIL (-2760 (|has| |#1| (-860)) (|has| |#1| (-1059 (-576)))))) (-3996 (((-783)) 36 (|has| |#1| (-860)) CONST)) (-4055 (((-112) $ $) 54)) (-2122 (($ $) NIL (|has| |#1| (-860)))) (-2721 (($) 23 (|has| |#1| (-21)) CONST)) (-2732 (($) 33 (|has| |#1| (-860)) CONST)) (-2992 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2925 (((-112) $ $) 21)) (-2978 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2950 (((-112) $ $) 45 (|has| |#1| (-860)))) (-3044 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3030 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-940)) NIL (|has| |#1| (-860))) (($ $ (-783)) NIL (|has| |#1| (-860)))) (* (($ $ $) 39 (|has| |#1| (-860))) (($ (-576) $) 27 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-940) $) NIL (|has| |#1| (-21))))) -(((-845 |#1|) (-13 (-1121) (-423 |#1|) (-10 -8 (-15 -1610 ($)) (-15 -2681 ((-112) $)) (-15 -2804 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -2545 ((-112) $)) (-15 -2568 ((-419 (-576)) $)) (-15 -3104 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) (-1121)) (T -845)) -((-1610 (*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1121)))) (-2681 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1121)))) (-2804 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1121)))) (-2545 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) (-2568 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) (-3104 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1121))))) -(-13 (-1121) (-423 |#1|) (-10 -8 (-15 -1610 ($)) (-15 -2681 ((-112) $)) (-15 -2804 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -2545 ((-112) $)) (-15 -2568 ((-419 (-576)) $)) (-15 -3104 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) -((-1322 (((-112) $ |#2|) 14)) (-3570 (((-876) $) 11))) -(((-846 |#1| |#2|) (-10 -8 (-15 -1322 ((-112) |#1| |#2|)) (-15 -3570 ((-876) |#1|))) (-847 |#2|) (-1121)) (T -846)) -NIL -(-10 -8 (-15 -1322 ((-112) |#1| |#2|)) (-15 -3570 ((-876) |#1|))) -((-3489 (((-112) $ $) 7)) (-2629 ((|#1| $) 16)) (-3699 (((-1179) $) 10)) (-1322 (((-112) $ |#1|) 14)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-4045 (((-55) $) 15)) (-2925 (((-112) $ $) 8))) +((-2806 (((-1293) (-1141) (-1141)) 48)) (-2568 (((-1293) (-833) (-52)) 45)) (-1344 (((-52) (-833)) 16))) +(((-843) (-10 -7 (-15 -1344 ((-52) (-833))) (-15 -2568 ((-1293) (-833) (-52))) (-15 -2806 ((-1293) (-1141) (-1141))))) (T -843)) +((-2806 (*1 *2 *3 *3) (-12 (-5 *3 (-1141)) (-5 *2 (-1293)) (-5 *1 (-843)))) (-2568 (*1 *2 *3 *4) (-12 (-5 *3 (-833)) (-5 *4 (-52)) (-5 *2 (-1293)) (-5 *1 (-843)))) (-1344 (*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-52)) (-5 *1 (-843))))) +(-10 -7 (-15 -1344 ((-52) (-833))) (-15 -2568 ((-1293) (-833) (-52))) (-15 -2806 ((-1293) (-1141) (-1141)))) +((-4116 (((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)) 12) (((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|)) 13))) +(((-844 |#1| |#2|) (-10 -7 (-15 -4116 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|))) (-15 -4116 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)))) (-1121) (-1121)) (T -844)) +((-4116 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-845 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *1 (-844 *5 *6)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-845 *6)) (-5 *1 (-844 *5 *6))))) +(-10 -7 (-15 -4116 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|))) (-15 -4116 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL (|has| |#1| (-21)))) (-2428 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3906 (((-576) $) NIL (|has| |#1| (-860)))) (-3404 (($) NIL (|has| |#1| (-21)) CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 15)) (-2859 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 9)) (-3673 (((-3 $ "failed") $) 42 (|has| |#1| (-860)))) (-2358 (((-3 (-419 (-576)) "failed") $) 52 (|has| |#1| (-557)))) (-2769 (((-112) $) 46 (|has| |#1| (-557)))) (-3025 (((-419 (-576)) $) 49 (|has| |#1| (-557)))) (-1866 (((-112) $) NIL (|has| |#1| (-860)))) (-1351 (((-112) $) NIL (|has| |#1| (-860)))) (-3137 (((-112) $) NIL (|has| |#1| (-860)))) (-3124 (($ $ $) NIL (|has| |#1| (-860)))) (-1441 (($ $ $) NIL (|has| |#1| (-860)))) (-2046 (((-1179) $) NIL)) (-1610 (($) 13)) (-1444 (((-112) $) 12)) (-1450 (((-1141) $) NIL)) (-1568 (((-112) $) 11)) (-3569 (((-876) $) 18) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) 8) (($ (-576)) NIL (-2759 (|has| |#1| (-860)) (|has| |#1| (-1059 (-576)))))) (-3154 (((-783)) 36 (|has| |#1| (-860)) CONST)) (-2399 (((-112) $ $) 54)) (-4143 (($ $) NIL (|has| |#1| (-860)))) (-2721 (($) 23 (|has| |#1| (-21)) CONST)) (-2731 (($) 33 (|has| |#1| (-860)) CONST)) (-2990 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2924 (((-112) $ $) 21)) (-2978 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2949 (((-112) $ $) 45 (|has| |#1| (-860)))) (-3043 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3029 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-940)) NIL (|has| |#1| (-860))) (($ $ (-783)) NIL (|has| |#1| (-860)))) (* (($ $ $) 39 (|has| |#1| (-860))) (($ (-576) $) 27 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-940) $) NIL (|has| |#1| (-21))))) +(((-845 |#1|) (-13 (-1121) (-423 |#1|) (-10 -8 (-15 -1610 ($)) (-15 -1568 ((-112) $)) (-15 -1444 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -2769 ((-112) $)) (-15 -3025 ((-419 (-576)) $)) (-15 -2358 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) (-1121)) (T -845)) +((-1610 (*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1121)))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1121)))) (-1444 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1121)))) (-2769 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) (-2358 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1121))))) +(-13 (-1121) (-423 |#1|) (-10 -8 (-15 -1610 ($)) (-15 -1568 ((-112) $)) (-15 -1444 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -2769 ((-112) $)) (-15 -3025 ((-419 (-576)) $)) (-15 -2358 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) +((-2808 (((-112) $ |#2|) 14)) (-3569 (((-876) $) 11))) +(((-846 |#1| |#2|) (-10 -8 (-15 -2808 ((-112) |#1| |#2|)) (-15 -3569 ((-876) |#1|))) (-847 |#2|) (-1121)) (T -846)) +NIL +(-10 -8 (-15 -2808 ((-112) |#1| |#2|)) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-2628 ((|#1| $) 16)) (-2046 (((-1179) $) 10)) (-2808 (((-112) $ |#1|) 14)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2294 (((-55) $) 15)) (-2924 (((-112) $ $) 8))) (((-847 |#1|) (-141) (-1121)) (T -847)) -((-2629 (*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1121)))) (-4045 (*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1121)) (-5 *2 (-55)))) (-1322 (*1 *2 *1 *3) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1121)) (-5 *2 (-112))))) -(-13 (-1121) (-10 -8 (-15 -2629 (|t#1| $)) (-15 -4045 ((-55) $)) (-15 -1322 ((-112) $ |t#1|)))) +((-2628 (*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1121)))) (-2294 (*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1121)) (-5 *2 (-55)))) (-2808 (*1 *2 *1 *3) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1121)) (-5 *2 (-112))))) +(-13 (-1121) (-10 -8 (-15 -2628 (|t#1| $)) (-15 -2294 ((-55) $)) (-15 -2808 ((-112) $ |t#1|)))) (((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL) (((-3 (-115) "failed") $) NIL)) (-2860 ((|#1| $) NIL) (((-115) $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-4069 ((|#1| (-115) |#1|) NIL)) (-4193 (((-112) $) NIL)) (-2108 (($ |#1| (-372 (-115))) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-4137 (($ $ (-1 |#1| |#1|)) NIL)) (-2533 (($ $ (-1 |#1| |#1|)) NIL)) (-2797 ((|#1| $ |#1|) NIL)) (-3088 ((|#1| |#1|) NIL (|has| |#1| (-174)))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-115)) NIL)) (-4336 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-3960 (($ $) NIL (|has| |#1| (-174))) (($ $ $) NIL (|has| |#1| (-174)))) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2925 (((-112) $ $) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ (-115) (-576)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-848 |#1|) (-13 (-1070) (-1059 |#1|) (-1059 (-115)) (-296 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3960 ($ $)) (-15 -3960 ($ $ $)) (-15 -3088 (|#1| |#1|))) |%noBranch|) (-15 -2533 ($ $ (-1 |#1| |#1|))) (-15 -4137 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -4069 (|#1| (-115) |#1|)) (-15 -2108 ($ |#1| (-372 (-115)))))) (-1070)) (T -848)) -((-3960 (*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1070)))) (-3960 (*1 *1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1070)))) (-3088 (*1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1070)))) (-2533 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-848 *3)))) (-4137 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-848 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-5 *1 (-848 *4)) (-4 *4 (-1070)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-848 *3)) (-4 *3 (-1070)))) (-4069 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-848 *2)) (-4 *2 (-1070)))) (-2108 (*1 *1 *2 *3) (-12 (-5 *3 (-372 (-115))) (-5 *1 (-848 *2)) (-4 *2 (-1070))))) -(-13 (-1070) (-1059 |#1|) (-1059 (-115)) (-296 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3960 ($ $)) (-15 -3960 ($ $ $)) (-15 -3088 (|#1| |#1|))) |%noBranch|) (-15 -2533 ($ $ (-1 |#1| |#1|))) (-15 -4137 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -4069 (|#1| (-115) |#1|)) (-15 -2108 ($ |#1| (-372 (-115)))))) -((-3746 (((-216 (-514)) (-1179)) 9))) -(((-849) (-10 -7 (-15 -3746 ((-216 (-514)) (-1179))))) (T -849)) -((-3746 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-216 (-514))) (-5 *1 (-849))))) -(-10 -7 (-15 -3746 ((-216 (-514)) (-1179)))) -((-3489 (((-112) $ $) NIL)) (-2705 (((-1139) $) 10)) (-2629 (((-518) $) 9)) (-3699 (((-1179) $) NIL)) (-1322 (((-112) $ (-518)) NIL)) (-1450 (((-1141) $) NIL)) (-3582 (($ (-518) (-1139)) 8)) (-3570 (((-876) $) 25)) (-4055 (((-112) $ $) NIL)) (-4045 (((-55) $) 20)) (-2925 (((-112) $ $) 12))) -(((-850) (-13 (-847 (-518)) (-10 -8 (-15 -2705 ((-1139) $)) (-15 -3582 ($ (-518) (-1139)))))) (T -850)) -((-2705 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-850)))) (-3582 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1139)) (-5 *1 (-850))))) -(-13 (-847 (-518)) (-10 -8 (-15 -2705 ((-1139) $)) (-15 -3582 ($ (-518) (-1139))))) -((-3489 (((-112) $ $) 7)) (-2927 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) 15) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 14)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 17) (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) 16)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2925 (((-112) $ $) 8))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL) (((-3 (-115) "failed") $) NIL)) (-2859 ((|#1| $) NIL) (((-115) $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-2537 ((|#1| (-115) |#1|) NIL)) (-1351 (((-112) $) NIL)) (-4020 (($ |#1| (-372 (-115))) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1978 (($ $ (-1 |#1| |#1|)) NIL)) (-3941 (($ $ (-1 |#1| |#1|)) NIL)) (-2796 ((|#1| $ |#1|) NIL)) (-2190 ((|#1| |#1|) NIL (|has| |#1| (-174)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-115)) NIL)) (-3390 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-2825 (($ $) NIL (|has| |#1| (-174))) (($ $ $) NIL (|has| |#1| (-174)))) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2924 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ (-115) (-576)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-848 |#1|) (-13 (-1070) (-1059 |#1|) (-1059 (-115)) (-296 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2825 ($ $)) (-15 -2825 ($ $ $)) (-15 -2190 (|#1| |#1|))) |%noBranch|) (-15 -3941 ($ $ (-1 |#1| |#1|))) (-15 -1978 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -2537 (|#1| (-115) |#1|)) (-15 -4020 ($ |#1| (-372 (-115)))))) (-1070)) (T -848)) +((-2825 (*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1070)))) (-2825 (*1 *1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1070)))) (-2190 (*1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1070)))) (-3941 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-848 *3)))) (-1978 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-848 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-5 *1 (-848 *4)) (-4 *4 (-1070)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-848 *3)) (-4 *3 (-1070)))) (-2537 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-848 *2)) (-4 *2 (-1070)))) (-4020 (*1 *1 *2 *3) (-12 (-5 *3 (-372 (-115))) (-5 *1 (-848 *2)) (-4 *2 (-1070))))) +(-13 (-1070) (-1059 |#1|) (-1059 (-115)) (-296 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2825 ($ $)) (-15 -2825 ($ $ $)) (-15 -2190 (|#1| |#1|))) |%noBranch|) (-15 -3941 ($ $ (-1 |#1| |#1|))) (-15 -1978 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -2537 (|#1| (-115) |#1|)) (-15 -4020 ($ |#1| (-372 (-115)))))) +((-2532 (((-216 (-514)) (-1179)) 9))) +(((-849) (-10 -7 (-15 -2532 ((-216 (-514)) (-1179))))) (T -849)) +((-2532 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-216 (-514))) (-5 *1 (-849))))) +(-10 -7 (-15 -2532 ((-216 (-514)) (-1179)))) +((-3488 (((-112) $ $) NIL)) (-2704 (((-1139) $) 10)) (-2628 (((-518) $) 9)) (-2046 (((-1179) $) NIL)) (-2808 (((-112) $ (-518)) NIL)) (-1450 (((-1141) $) NIL)) (-3581 (($ (-518) (-1139)) 8)) (-3569 (((-876) $) 25)) (-2399 (((-112) $ $) NIL)) (-2294 (((-55) $) 20)) (-2924 (((-112) $ $) 12))) +(((-850) (-13 (-847 (-518)) (-10 -8 (-15 -2704 ((-1139) $)) (-15 -3581 ($ (-518) (-1139)))))) (T -850)) +((-2704 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-850)))) (-3581 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1139)) (-5 *1 (-850))))) +(-13 (-847 (-518)) (-10 -8 (-15 -2704 ((-1139) $)) (-15 -3581 ($ (-518) (-1139))))) +((-3488 (((-112) $ $) 7)) (-3301 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) 15) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 14)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 17) (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) 16)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2924 (((-112) $ $) 8))) (((-851) (-141)) (T -851)) -((-2012 (*1 *2 *3 *4) (-12 (-4 *1 (-851)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *2 (-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)))))) (-2012 (*1 *2 *3 *4) (-12 (-4 *1 (-851)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) (-5 *2 (-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)))))) (-2927 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) (-5 *2 (-1056)))) (-2927 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *3 (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *2 (-1056))))) -(-13 (-1121) (-10 -7 (-15 -2012 ((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2012 ((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227)))))) (-15 -2927 ((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227)))))) (-15 -2927 ((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))))) +((-2402 (*1 *2 *3 *4) (-12 (-4 *1 (-851)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *2 (-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)))))) (-2402 (*1 *2 *3 *4) (-12 (-4 *1 (-851)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) (-5 *2 (-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)))))) (-3301 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) (-5 *2 (-1056)))) (-3301 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *3 (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *2 (-1056))))) +(-13 (-1121) (-10 -7 (-15 -2402 ((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2402 ((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))) (-15 -3301 ((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))) (-15 -3301 ((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))))) (((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-3333 (((-1056) (-656 (-326 (-390))) (-656 (-390))) 166) (((-1056) (-326 (-390)) (-656 (-390))) 164) (((-1056) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390)))) 162) (((-1056) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390)))) 160) (((-1056) (-853)) 125) (((-1056) (-853) (-1084)) 124)) (-2012 (((-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179)))) (-853) (-1084)) 85) (((-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179)))) (-853)) 87)) (-2651 (((-1056) (-656 (-326 (-390))) (-656 (-390))) 167) (((-1056) (-853)) 150))) -(((-852) (-10 -7 (-15 -2012 ((-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179)))) (-853))) (-15 -2012 ((-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179)))) (-853) (-1084))) (-15 -3333 ((-1056) (-853) (-1084))) (-15 -3333 ((-1056) (-853))) (-15 -2651 ((-1056) (-853))) (-15 -3333 ((-1056) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390))))) (-15 -3333 ((-1056) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390))))) (-15 -3333 ((-1056) (-326 (-390)) (-656 (-390)))) (-15 -3333 ((-1056) (-656 (-326 (-390))) (-656 (-390)))) (-15 -2651 ((-1056) (-656 (-326 (-390))) (-656 (-390)))))) (T -852)) -((-2651 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) (-5 *2 (-1056)) (-5 *1 (-852)))) (-3333 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) (-5 *2 (-1056)) (-5 *1 (-852)))) (-3333 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *2 (-1056)) (-5 *1 (-852)))) (-3333 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390)))) (-5 *2 (-1056)) (-5 *1 (-852)))) (-3333 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390)))) (-5 *6 (-656 (-326 (-390)))) (-5 *3 (-326 (-390))) (-5 *2 (-1056)) (-5 *1 (-852)))) (-2651 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1056)) (-5 *1 (-852)))) (-3333 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1056)) (-5 *1 (-852)))) (-3333 (*1 *2 *3 *4) (-12 (-5 *3 (-853)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-852)))) (-2012 (*1 *2 *3 *4) (-12 (-5 *3 (-853)) (-5 *4 (-1084)) (-5 *2 (-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *1 (-852)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *1 (-852))))) -(-10 -7 (-15 -2012 ((-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179)))) (-853))) (-15 -2012 ((-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179)))) (-853) (-1084))) (-15 -3333 ((-1056) (-853) (-1084))) (-15 -3333 ((-1056) (-853))) (-15 -2651 ((-1056) (-853))) (-15 -3333 ((-1056) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390))))) (-15 -3333 ((-1056) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390))))) (-15 -3333 ((-1056) (-326 (-390)) (-656 (-390)))) (-15 -3333 ((-1056) (-656 (-326 (-390))) (-656 (-390)))) (-15 -2651 ((-1056) (-656 (-326 (-390))) (-656 (-390))))) -((-3489 (((-112) $ $) NIL)) (-2860 (((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227)))))) $) 21)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 20) (($ (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 14) (($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))))) 18)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-853) (-13 (-1121) (-10 -8 (-15 -3570 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -3570 ($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227)))))) (-15 -3570 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227)))))))) (-15 -2860 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227)))))) $))))) (T -853)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *1 (-853)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) (-5 *1 (-853)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))))) (-5 *1 (-853)))) (-2860 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))))) (-5 *1 (-853))))) -(-13 (-1121) (-10 -8 (-15 -3570 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -3570 ($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227)))))) (-15 -3570 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227)))))))) (-15 -2860 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227)))))) $)))) -((-4117 (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)) 13) (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)) 14))) -(((-854 |#1| |#2|) (-10 -7 (-15 -4117 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|))) (-15 -4117 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)))) (-1121) (-1121)) (T -854)) -((-4117 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-855 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *1 (-854 *5 *6)))) (-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6))))) -(-10 -7 (-15 -4117 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|))) (-15 -4117 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL (|has| |#1| (-21)))) (-1914 (((-1141) $) 31)) (-4367 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3308 (((-576) $) NIL (|has| |#1| (-860)))) (-3886 (($) NIL (|has| |#1| (-21)) CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 18)) (-2860 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 9)) (-1561 (((-3 $ "failed") $) 58 (|has| |#1| (-860)))) (-3104 (((-3 (-419 (-576)) "failed") $) 65 (|has| |#1| (-557)))) (-2545 (((-112) $) 60 (|has| |#1| (-557)))) (-2568 (((-419 (-576)) $) 63 (|has| |#1| (-557)))) (-2087 (((-112) $) NIL (|has| |#1| (-860)))) (-2955 (($) 14)) (-4193 (((-112) $) NIL (|has| |#1| (-860)))) (-1634 (((-112) $) NIL (|has| |#1| (-860)))) (-2970 (($) 16)) (-3125 (($ $ $) NIL (|has| |#1| (-860)))) (-3133 (($ $ $) NIL (|has| |#1| (-860)))) (-3699 (((-1179) $) NIL)) (-2804 (((-112) $) 12)) (-1450 (((-1141) $) NIL)) (-2681 (((-112) $) 11)) (-3570 (((-876) $) 24) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) 8) (($ (-576)) NIL (-2760 (|has| |#1| (-860)) (|has| |#1| (-1059 (-576)))))) (-3996 (((-783)) 51 (|has| |#1| (-860)) CONST)) (-4055 (((-112) $ $) NIL)) (-2122 (($ $) NIL (|has| |#1| (-860)))) (-2721 (($) 37 (|has| |#1| (-21)) CONST)) (-2732 (($) 48 (|has| |#1| (-860)) CONST)) (-2992 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2925 (((-112) $ $) 35)) (-2978 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2950 (((-112) $ $) 59 (|has| |#1| (-860)))) (-3044 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3030 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-940)) NIL (|has| |#1| (-860))) (($ $ (-783)) NIL (|has| |#1| (-860)))) (* (($ $ $) 55 (|has| |#1| (-860))) (($ (-576) $) 42 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-940) $) NIL (|has| |#1| (-21))))) -(((-855 |#1|) (-13 (-1121) (-423 |#1|) (-10 -8 (-15 -2955 ($)) (-15 -2970 ($)) (-15 -2681 ((-112) $)) (-15 -2804 ((-112) $)) (-15 -1914 ((-1141) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -2545 ((-112) $)) (-15 -2568 ((-419 (-576)) $)) (-15 -3104 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) (-1121)) (T -855)) -((-2955 (*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1121)))) (-2970 (*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1121)))) (-2681 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1121)))) (-2804 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1121)))) (-1914 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-855 *3)) (-4 *3 (-1121)))) (-2545 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) (-2568 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) (-3104 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1121))))) -(-13 (-1121) (-423 |#1|) (-10 -8 (-15 -2955 ($)) (-15 -2970 ($)) (-15 -2681 ((-112) $)) (-15 -2804 ((-112) $)) (-15 -1914 ((-1141) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -2545 ((-112) $)) (-15 -2568 ((-419 (-576)) $)) (-15 -3104 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) -((-3489 (((-112) $ $) 7)) (-2098 (((-783)) 24)) (-1836 (($) 27)) (-3125 (($ $ $) 20) (($) 23 T CONST)) (-3133 (($ $ $) 19) (($) 22 T CONST)) (-4401 (((-940) $) 26)) (-3699 (((-1179) $) 10)) (-3224 (($ (-940)) 25)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2992 (((-112) $ $) 18)) (-2964 (((-112) $ $) 16)) (-2925 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2950 (((-112) $ $) 15))) +((-3332 (((-1056) (-656 (-326 (-390))) (-656 (-390))) 166) (((-1056) (-326 (-390)) (-656 (-390))) 164) (((-1056) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390)))) 162) (((-1056) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390)))) 160) (((-1056) (-853)) 125) (((-1056) (-853) (-1084)) 124)) (-2402 (((-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179)))) (-853) (-1084)) 85) (((-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179)))) (-853)) 87)) (-2512 (((-1056) (-656 (-326 (-390))) (-656 (-390))) 167) (((-1056) (-853)) 150))) +(((-852) (-10 -7 (-15 -2402 ((-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179)))) (-853))) (-15 -2402 ((-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179)))) (-853) (-1084))) (-15 -3332 ((-1056) (-853) (-1084))) (-15 -3332 ((-1056) (-853))) (-15 -2512 ((-1056) (-853))) (-15 -3332 ((-1056) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390))))) (-15 -3332 ((-1056) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390))))) (-15 -3332 ((-1056) (-326 (-390)) (-656 (-390)))) (-15 -3332 ((-1056) (-656 (-326 (-390))) (-656 (-390)))) (-15 -2512 ((-1056) (-656 (-326 (-390))) (-656 (-390)))))) (T -852)) +((-2512 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) (-5 *2 (-1056)) (-5 *1 (-852)))) (-3332 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) (-5 *2 (-1056)) (-5 *1 (-852)))) (-3332 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *2 (-1056)) (-5 *1 (-852)))) (-3332 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390)))) (-5 *2 (-1056)) (-5 *1 (-852)))) (-3332 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390)))) (-5 *6 (-656 (-326 (-390)))) (-5 *3 (-326 (-390))) (-5 *2 (-1056)) (-5 *1 (-852)))) (-2512 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1056)) (-5 *1 (-852)))) (-3332 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1056)) (-5 *1 (-852)))) (-3332 (*1 *2 *3 *4) (-12 (-5 *3 (-853)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-852)))) (-2402 (*1 *2 *3 *4) (-12 (-5 *3 (-853)) (-5 *4 (-1084)) (-5 *2 (-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *1 (-852)))) (-2402 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *1 (-852))))) +(-10 -7 (-15 -2402 ((-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179)))) (-853))) (-15 -2402 ((-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179)))) (-853) (-1084))) (-15 -3332 ((-1056) (-853) (-1084))) (-15 -3332 ((-1056) (-853))) (-15 -2512 ((-1056) (-853))) (-15 -3332 ((-1056) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390))))) (-15 -3332 ((-1056) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390))))) (-15 -3332 ((-1056) (-326 (-390)) (-656 (-390)))) (-15 -3332 ((-1056) (-656 (-326 (-390))) (-656 (-390)))) (-15 -2512 ((-1056) (-656 (-326 (-390))) (-656 (-390))))) +((-3488 (((-112) $ $) NIL)) (-2859 (((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))) $) 21)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 20) (($ (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 14) (($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))))) 18)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-853) (-13 (-1121) (-10 -8 (-15 -3569 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -3569 ($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))) (-15 -3569 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))))) (-15 -2859 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))) $))))) (T -853)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *1 (-853)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) (-5 *1 (-853)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))))) (-5 *1 (-853)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))))) (-5 *1 (-853))))) +(-13 (-1121) (-10 -8 (-15 -3569 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -3569 ($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))) (-15 -3569 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))))) (-15 -2859 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227)))))) $)))) +((-4116 (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)) 13) (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)) 14))) +(((-854 |#1| |#2|) (-10 -7 (-15 -4116 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|))) (-15 -4116 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)))) (-1121) (-1121)) (T -854)) +((-4116 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-855 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *1 (-854 *5 *6)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6))))) +(-10 -7 (-15 -4116 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|))) (-15 -4116 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL (|has| |#1| (-21)))) (-2728 (((-1141) $) 31)) (-2428 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3906 (((-576) $) NIL (|has| |#1| (-860)))) (-3404 (($) NIL (|has| |#1| (-21)) CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 18)) (-2859 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 9)) (-3673 (((-3 $ "failed") $) 58 (|has| |#1| (-860)))) (-2358 (((-3 (-419 (-576)) "failed") $) 65 (|has| |#1| (-557)))) (-2769 (((-112) $) 60 (|has| |#1| (-557)))) (-3025 (((-419 (-576)) $) 63 (|has| |#1| (-557)))) (-1866 (((-112) $) NIL (|has| |#1| (-860)))) (-2954 (($) 14)) (-1351 (((-112) $) NIL (|has| |#1| (-860)))) (-3137 (((-112) $) NIL (|has| |#1| (-860)))) (-2969 (($) 16)) (-3124 (($ $ $) NIL (|has| |#1| (-860)))) (-1441 (($ $ $) NIL (|has| |#1| (-860)))) (-2046 (((-1179) $) NIL)) (-1444 (((-112) $) 12)) (-1450 (((-1141) $) NIL)) (-1568 (((-112) $) 11)) (-3569 (((-876) $) 24) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) 8) (($ (-576)) NIL (-2759 (|has| |#1| (-860)) (|has| |#1| (-1059 (-576)))))) (-3154 (((-783)) 51 (|has| |#1| (-860)) CONST)) (-2399 (((-112) $ $) NIL)) (-4143 (($ $) NIL (|has| |#1| (-860)))) (-2721 (($) 37 (|has| |#1| (-21)) CONST)) (-2731 (($) 48 (|has| |#1| (-860)) CONST)) (-2990 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2924 (((-112) $ $) 35)) (-2978 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2949 (((-112) $ $) 59 (|has| |#1| (-860)))) (-3043 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3029 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-940)) NIL (|has| |#1| (-860))) (($ $ (-783)) NIL (|has| |#1| (-860)))) (* (($ $ $) 55 (|has| |#1| (-860))) (($ (-576) $) 42 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-940) $) NIL (|has| |#1| (-21))))) +(((-855 |#1|) (-13 (-1121) (-423 |#1|) (-10 -8 (-15 -2954 ($)) (-15 -2969 ($)) (-15 -1568 ((-112) $)) (-15 -1444 ((-112) $)) (-15 -2728 ((-1141) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -2769 ((-112) $)) (-15 -3025 ((-419 (-576)) $)) (-15 -2358 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) (-1121)) (T -855)) +((-2954 (*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1121)))) (-2969 (*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1121)))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1121)))) (-1444 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1121)))) (-2728 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-855 *3)) (-4 *3 (-1121)))) (-2769 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) (-2358 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1121))))) +(-13 (-1121) (-423 |#1|) (-10 -8 (-15 -2954 ($)) (-15 -2969 ($)) (-15 -1568 ((-112) $)) (-15 -1444 ((-112) $)) (-15 -2728 ((-1141) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -2769 ((-112) $)) (-15 -3025 ((-419 (-576)) $)) (-15 -2358 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) +((-3488 (((-112) $ $) 7)) (-2098 (((-783)) 24)) (-1836 (($) 27)) (-3124 (($ $ $) 20) (($) 23 T CONST)) (-1441 (($ $ $) 19) (($) 22 T CONST)) (-1558 (((-940) $) 26)) (-2046 (((-1179) $) 10)) (-3223 (($ (-940)) 25)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2990 (((-112) $ $) 18)) (-2962 (((-112) $ $) 16)) (-2924 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2949 (((-112) $ $) 15))) (((-856) (-141)) (T -856)) -((-3125 (*1 *1) (-4 *1 (-856))) (-3133 (*1 *1) (-4 *1 (-856)))) -(-13 (-861) (-379) (-10 -8 (-15 -3125 ($) -1480) (-15 -3133 ($) -1480))) +((-3124 (*1 *1) (-4 *1 (-856))) (-1441 (*1 *1) (-4 *1 (-856)))) +(-13 (-861) (-379) (-10 -8 (-15 -3124 ($) -1480) (-15 -1441 ($) -1480))) (((-102) . T) ((-625 (-876)) . T) ((-379) . T) ((-861) . T) ((-864) . T) ((-1121) . T) ((-1238) . T)) -((-3021 (((-112) (-1288 |#2|) (-1288 |#2|)) 19)) (-2729 (((-112) (-1288 |#2|) (-1288 |#2|)) 20)) (-2536 (((-112) (-1288 |#2|) (-1288 |#2|)) 16))) -(((-857 |#1| |#2|) (-10 -7 (-15 -2536 ((-112) (-1288 |#2|) (-1288 |#2|))) (-15 -3021 ((-112) (-1288 |#2|) (-1288 |#2|))) (-15 -2729 ((-112) (-1288 |#2|) (-1288 |#2|)))) (-783) (-804)) (T -857)) -((-2729 (*1 *2 *3 *3) (-12 (-5 *3 (-1288 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))) (-3021 (*1 *2 *3 *3) (-12 (-5 *3 (-1288 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))) (-2536 (*1 *2 *3 *3) (-12 (-5 *3 (-1288 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) -(-10 -7 (-15 -2536 ((-112) (-1288 |#2|) (-1288 |#2|))) (-15 -3021 ((-112) (-1288 |#2|) (-1288 |#2|))) (-15 -2729 ((-112) (-1288 |#2|) (-1288 |#2|)))) -((-3489 (((-112) $ $) 7)) (-3886 (($) 25 T CONST)) (-1561 (((-3 $ "failed") $) 28)) (-4193 (((-112) $) 26)) (-3125 (($ $ $) 20)) (-3133 (($ $ $) 19)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2732 (($) 24 T CONST)) (-2992 (((-112) $ $) 18)) (-2964 (((-112) $ $) 16)) (-2925 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2950 (((-112) $ $) 15)) (** (($ $ (-940)) 23) (($ $ (-783)) 27)) (* (($ $ $) 22))) +((-2792 (((-112) (-1288 |#2|) (-1288 |#2|)) 19)) (-1972 (((-112) (-1288 |#2|) (-1288 |#2|)) 20)) (-2661 (((-112) (-1288 |#2|) (-1288 |#2|)) 16))) +(((-857 |#1| |#2|) (-10 -7 (-15 -2661 ((-112) (-1288 |#2|) (-1288 |#2|))) (-15 -2792 ((-112) (-1288 |#2|) (-1288 |#2|))) (-15 -1972 ((-112) (-1288 |#2|) (-1288 |#2|)))) (-783) (-804)) (T -857)) +((-1972 (*1 *2 *3 *3) (-12 (-5 *3 (-1288 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))) (-2792 (*1 *2 *3 *3) (-12 (-5 *3 (-1288 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))) (-2661 (*1 *2 *3 *3) (-12 (-5 *3 (-1288 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) +(-10 -7 (-15 -2661 ((-112) (-1288 |#2|) (-1288 |#2|))) (-15 -2792 ((-112) (-1288 |#2|) (-1288 |#2|))) (-15 -1972 ((-112) (-1288 |#2|) (-1288 |#2|)))) +((-3488 (((-112) $ $) 7)) (-3404 (($) 25 T CONST)) (-3673 (((-3 $ "failed") $) 28)) (-1351 (((-112) $) 26)) (-3124 (($ $ $) 20)) (-1441 (($ $ $) 19)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2731 (($) 24 T CONST)) (-2990 (((-112) $ $) 18)) (-2962 (((-112) $ $) 16)) (-2924 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2949 (((-112) $ $) 15)) (** (($ $ (-940)) 23) (($ $ (-783)) 27)) (* (($ $ $) 22))) (((-858) (-141)) (T -858)) NIL (-13 (-871) (-738)) (((-102) . T) ((-625 (-876)) . T) ((-738) . T) ((-871) . T) ((-861) . T) ((-864) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-3308 (((-576) $) 21)) (-2087 (((-112) $) 10)) (-1634 (((-112) $) 12)) (-2122 (($ $) 23))) -(((-859 |#1|) (-10 -8 (-15 -2122 (|#1| |#1|)) (-15 -3308 ((-576) |#1|)) (-15 -1634 ((-112) |#1|)) (-15 -2087 ((-112) |#1|))) (-860)) (T -859)) +((-3906 (((-576) $) 21)) (-1866 (((-112) $) 10)) (-3137 (((-112) $) 12)) (-4143 (($ $) 23))) +(((-859 |#1|) (-10 -8 (-15 -4143 (|#1| |#1|)) (-15 -3906 ((-576) |#1|)) (-15 -3137 ((-112) |#1|)) (-15 -1866 ((-112) |#1|))) (-860)) (T -859)) NIL -(-10 -8 (-15 -2122 (|#1| |#1|)) (-15 -3308 ((-576) |#1|)) (-15 -1634 ((-112) |#1|)) (-15 -2087 ((-112) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 26)) (-4367 (((-3 $ "failed") $ $) 28)) (-3308 (((-576) $) 38)) (-3886 (($) 25 T CONST)) (-1561 (((-3 $ "failed") $) 43)) (-2087 (((-112) $) 40)) (-4193 (((-112) $) 45)) (-1634 (((-112) $) 39)) (-3125 (($ $ $) 20)) (-3133 (($ $ $) 19)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12) (($ (-576)) 47)) (-3996 (((-783)) 48 T CONST)) (-4055 (((-112) $ $) 6)) (-2122 (($ $) 37)) (-2721 (($) 24 T CONST)) (-2732 (($) 46 T CONST)) (-2992 (((-112) $ $) 18)) (-2964 (((-112) $ $) 16)) (-2925 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2950 (((-112) $ $) 15)) (-3044 (($ $ $) 32) (($ $) 31)) (-3030 (($ $ $) 22)) (** (($ $ (-783)) 44) (($ $ (-940)) 41)) (* (($ (-940) $) 23) (($ (-783) $) 27) (($ (-576) $) 30) (($ $ $) 42))) +(-10 -8 (-15 -4143 (|#1| |#1|)) (-15 -3906 ((-576) |#1|)) (-15 -3137 ((-112) |#1|)) (-15 -1866 ((-112) |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 26)) (-2428 (((-3 $ "failed") $ $) 28)) (-3906 (((-576) $) 38)) (-3404 (($) 25 T CONST)) (-3673 (((-3 $ "failed") $) 43)) (-1866 (((-112) $) 40)) (-1351 (((-112) $) 45)) (-3137 (((-112) $) 39)) (-3124 (($ $ $) 20)) (-1441 (($ $ $) 19)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ (-576)) 47)) (-3154 (((-783)) 48 T CONST)) (-2399 (((-112) $ $) 6)) (-4143 (($ $) 37)) (-2721 (($) 24 T CONST)) (-2731 (($) 46 T CONST)) (-2990 (((-112) $ $) 18)) (-2962 (((-112) $ $) 16)) (-2924 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2949 (((-112) $ $) 15)) (-3043 (($ $ $) 32) (($ $) 31)) (-3029 (($ $ $) 22)) (** (($ $ (-783)) 44) (($ $ (-940)) 41)) (* (($ (-940) $) 23) (($ (-783) $) 27) (($ (-576) $) 30) (($ $ $) 42))) (((-860) (-141)) (T -860)) -((-2087 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-1634 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-576)))) (-2122 (*1 *1 *1) (-4 *1 (-860)))) -(-13 (-803) (-1070) (-738) (-10 -8 (-15 -2087 ((-112) $)) (-15 -1634 ((-112) $)) (-15 -3308 ((-576) $)) (-15 -2122 ($ $)))) +((-1866 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3137 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3906 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-576)))) (-4143 (*1 *1 *1) (-4 *1 (-860)))) +(-13 (-803) (-1070) (-738) (-10 -8 (-15 -1866 ((-112) $)) (-15 -3137 ((-112) $)) (-15 -3906 ((-576) $)) (-15 -4143 ($ $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-861) . T) ((-864) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) 7)) (-3125 (($ $ $) 20)) (-3133 (($ $ $) 19)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2992 (((-112) $ $) 18)) (-2964 (((-112) $ $) 16)) (-2925 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2950 (((-112) $ $) 15))) +((-3488 (((-112) $ $) 7)) (-3124 (($ $ $) 20)) (-1441 (($ $ $) 19)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2990 (((-112) $ $) 18)) (-2962 (((-112) $ $) 16)) (-2924 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2949 (((-112) $ $) 15))) (((-861) (-141)) (T -861)) NIL (-13 (-1121) (-864)) (((-102) . T) ((-625 (-876)) . T) ((-864) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-3125 (($ $ $) NIL)) (-3133 (($ $ $) NIL)) (-3570 (($ |#1|) 9) ((|#1| $) 8)) (-4055 (((-112) $ $) NIL)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) 11))) +((-3488 (((-112) $ $) NIL)) (-3124 (($ $ $) NIL)) (-1441 (($ $ $) NIL)) (-3569 (($ |#1|) 10) ((|#1| $) 9)) (-2399 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) 12))) (((-862 |#1| |#2|) (-13 (-864) (-502 |#1|)) (-1238) (-1 (-112) |#1| |#1|)) (T -862)) NIL (-13 (-864) (-502 |#1|)) -((-3125 (($ $ $) 16)) (-3133 (($ $ $) 15)) (-4055 (((-112) $ $) 17)) (-2992 (((-112) $ $) 12)) (-2964 (((-112) $ $) 9)) (-2925 (((-112) $ $) 14)) (-2978 (((-112) $ $) 11))) -(((-863 |#1|) (-10 -8 (-15 -3125 (|#1| |#1| |#1|)) (-15 -3133 (|#1| |#1| |#1|)) (-15 -2992 ((-112) |#1| |#1|)) (-15 -2978 ((-112) |#1| |#1|)) (-15 -2964 ((-112) |#1| |#1|)) (-15 -4055 ((-112) |#1| |#1|)) (-15 -2925 ((-112) |#1| |#1|))) (-864)) (T -863)) +((-3124 (($ $ $) 16)) (-1441 (($ $ $) 15)) (-2399 (((-112) $ $) 17)) (-2990 (((-112) $ $) 12)) (-2962 (((-112) $ $) 9)) (-2924 (((-112) $ $) 14)) (-2978 (((-112) $ $) 11))) +(((-863 |#1|) (-10 -8 (-15 -3124 (|#1| |#1| |#1|)) (-15 -1441 (|#1| |#1| |#1|)) (-15 -2990 ((-112) |#1| |#1|)) (-15 -2978 ((-112) |#1| |#1|)) (-15 -2962 ((-112) |#1| |#1|)) (-15 -2399 ((-112) |#1| |#1|)) (-15 -2924 ((-112) |#1| |#1|))) (-864)) (T -863)) NIL -(-10 -8 (-15 -3125 (|#1| |#1| |#1|)) (-15 -3133 (|#1| |#1| |#1|)) (-15 -2992 ((-112) |#1| |#1|)) (-15 -2978 ((-112) |#1| |#1|)) (-15 -2964 ((-112) |#1| |#1|)) (-15 -4055 ((-112) |#1| |#1|)) (-15 -2925 ((-112) |#1| |#1|))) -((-3489 (((-112) $ $) 7)) (-3125 (($ $ $) 9)) (-3133 (($ $ $) 10)) (-4055 (((-112) $ $) 6)) (-2992 (((-112) $ $) 11)) (-2964 (((-112) $ $) 13)) (-2925 (((-112) $ $) 8)) (-2978 (((-112) $ $) 12)) (-2950 (((-112) $ $) 14))) +(-10 -8 (-15 -3124 (|#1| |#1| |#1|)) (-15 -1441 (|#1| |#1| |#1|)) (-15 -2990 ((-112) |#1| |#1|)) (-15 -2978 ((-112) |#1| |#1|)) (-15 -2962 ((-112) |#1| |#1|)) (-15 -2399 ((-112) |#1| |#1|)) (-15 -2924 ((-112) |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-3124 (($ $ $) 9)) (-1441 (($ $ $) 10)) (-2399 (((-112) $ $) 6)) (-2990 (((-112) $ $) 11)) (-2962 (((-112) $ $) 13)) (-2924 (((-112) $ $) 8)) (-2978 (((-112) $ $) 12)) (-2949 (((-112) $ $) 14))) (((-864) (-141)) (T -864)) -((-2950 (*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) (-2964 (*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) (-2978 (*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) (-2992 (*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) (-3133 (*1 *1 *1 *1) (-4 *1 (-864))) (-3125 (*1 *1 *1 *1) (-4 *1 (-864)))) -(-13 (-102) (-10 -8 (-15 -2950 ((-112) $ $)) (-15 -2964 ((-112) $ $)) (-15 -2978 ((-112) $ $)) (-15 -2992 ((-112) $ $)) (-15 -3133 ($ $ $)) (-15 -3125 ($ $ $)))) +((-2949 (*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) (-2962 (*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) (-2978 (*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) (-2990 (*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) (-1441 (*1 *1 *1 *1) (-4 *1 (-864))) (-3124 (*1 *1 *1 *1) (-4 *1 (-864)))) +(-13 (-102) (-10 -8 (-15 -2949 ((-112) $ $)) (-15 -2962 ((-112) $ $)) (-15 -2978 ((-112) $ $)) (-15 -2990 ((-112) $ $)) (-15 -1441 ($ $ $)) (-15 -3124 ($ $ $)))) (((-102) . T) ((-1238) . T)) -((-3620 (($ $ $) 49)) (-3112 (($ $ $) 48)) (-2209 (($ $ $) 46)) (-2367 (($ $ $) 55)) (-3703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 50)) (-2881 (((-3 $ "failed") $ $) 53)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-3767 (($ $) 39)) (-1764 (($ $ $) 43)) (-2849 (($ $ $) 42)) (-2296 (($ $ $) 51)) (-1857 (($ $ $) 57)) (-1566 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 45)) (-3215 (((-3 $ "failed") $ $) 52)) (-3476 (((-3 $ "failed") $ |#2|) 32)) (-2457 ((|#2| $) 36)) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#2|) 13)) (-1618 (((-656 |#2|) $) 21)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) -(((-865 |#1| |#2|) (-10 -8 (-15 -2296 (|#1| |#1| |#1|)) (-15 -3703 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4129 |#1|)) |#1| |#1|)) (-15 -2367 (|#1| |#1| |#1|)) (-15 -2881 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3620 (|#1| |#1| |#1|)) (-15 -3112 (|#1| |#1| |#1|)) (-15 -2209 (|#1| |#1| |#1|)) (-15 -1566 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4129 |#1|)) |#1| |#1|)) (-15 -1857 (|#1| |#1| |#1|)) (-15 -3215 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1764 (|#1| |#1| |#1|)) (-15 -2849 (|#1| |#1| |#1|)) (-15 -3767 (|#1| |#1|)) (-15 -2457 (|#2| |#1|)) (-15 -3476 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1618 ((-656 |#2|) |#1|)) (-15 -3570 (|#1| |#2|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3570 (|#1| (-419 (-576)))) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3570 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -3570 ((-876) |#1|))) (-866 |#2|) (-1070)) (T -865)) +((-3842 (($ $ $) 49)) (-2424 (($ $ $) 48)) (-3723 (($ $ $) 46)) (-1550 (($ $ $) 55)) (-2086 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 50)) (-2836 (((-3 $ "failed") $ $) 53)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-1547 (($ $) 39)) (-1882 (($ $ $) 43)) (-3814 (($ $ $) 42)) (-2079 (($ $ $) 51)) (-3490 (($ $ $) 57)) (-3722 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 45)) (-4193 (((-3 $ "failed") $ $) 52)) (-3475 (((-3 $ "failed") $ |#2|) 32)) (-4370 ((|#2| $) 36)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#2|) 13)) (-2937 (((-656 |#2|) $) 21)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) +(((-865 |#1| |#2|) (-10 -8 (-15 -2079 (|#1| |#1| |#1|)) (-15 -2086 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4128 |#1|)) |#1| |#1|)) (-15 -1550 (|#1| |#1| |#1|)) (-15 -2836 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3842 (|#1| |#1| |#1|)) (-15 -2424 (|#1| |#1| |#1|)) (-15 -3723 (|#1| |#1| |#1|)) (-15 -3722 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4128 |#1|)) |#1| |#1|)) (-15 -3490 (|#1| |#1| |#1|)) (-15 -4193 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1882 (|#1| |#1| |#1|)) (-15 -3814 (|#1| |#1| |#1|)) (-15 -1547 (|#1| |#1|)) (-15 -4370 (|#2| |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2937 ((-656 |#2|) |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3569 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -3569 ((-876) |#1|))) (-866 |#2|) (-1070)) (T -865)) NIL -(-10 -8 (-15 -2296 (|#1| |#1| |#1|)) (-15 -3703 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4129 |#1|)) |#1| |#1|)) (-15 -2367 (|#1| |#1| |#1|)) (-15 -2881 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3620 (|#1| |#1| |#1|)) (-15 -3112 (|#1| |#1| |#1|)) (-15 -2209 (|#1| |#1| |#1|)) (-15 -1566 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4129 |#1|)) |#1| |#1|)) (-15 -1857 (|#1| |#1| |#1|)) (-15 -3215 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1764 (|#1| |#1| |#1|)) (-15 -2849 (|#1| |#1| |#1|)) (-15 -3767 (|#1| |#1|)) (-15 -2457 (|#2| |#1|)) (-15 -3476 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1618 ((-656 |#2|) |#1|)) (-15 -3570 (|#1| |#2|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3570 (|#1| (-419 (-576)))) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3570 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -3570 ((-876) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-3620 (($ $ $) 50 (|has| |#1| (-374)))) (-3112 (($ $ $) 51 (|has| |#1| (-374)))) (-2209 (($ $ $) 53 (|has| |#1| (-374)))) (-2367 (($ $ $) 48 (|has| |#1| (-374)))) (-3703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 47 (|has| |#1| (-374)))) (-2881 (((-3 $ "failed") $ $) 49 (|has| |#1| (-374)))) (-3054 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 52 (|has| |#1| (-374)))) (-1572 (((-3 (-576) "failed") $) 80 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 77 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 74)) (-2860 (((-576) $) 79 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 76 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 75)) (-2114 (($ $) 69)) (-1561 (((-3 $ "failed") $) 37)) (-3767 (($ $) 60 (|has| |#1| (-464)))) (-4193 (((-112) $) 35)) (-1945 (($ |#1| (-783)) 67)) (-3684 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 62 (|has| |#1| (-568)))) (-3358 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 63 (|has| |#1| (-568)))) (-3751 (((-783) $) 71)) (-1764 (($ $ $) 57 (|has| |#1| (-374)))) (-2849 (($ $ $) 58 (|has| |#1| (-374)))) (-2296 (($ $ $) 46 (|has| |#1| (-374)))) (-1857 (($ $ $) 55 (|has| |#1| (-374)))) (-1566 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 54 (|has| |#1| (-374)))) (-3215 (((-3 $ "failed") $ $) 56 (|has| |#1| (-374)))) (-4258 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 59 (|has| |#1| (-374)))) (-2091 ((|#1| $) 70)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3476 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-568)))) (-3634 (((-783) $) 72)) (-2457 ((|#1| $) 61 (|has| |#1| (-464)))) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 78 (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) 73)) (-1618 (((-656 |#1|) $) 66)) (-3177 ((|#1| $ (-783)) 68)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-3569 ((|#1| $ |#1| |#1|) 65)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(-10 -8 (-15 -2079 (|#1| |#1| |#1|)) (-15 -2086 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4128 |#1|)) |#1| |#1|)) (-15 -1550 (|#1| |#1| |#1|)) (-15 -2836 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3842 (|#1| |#1| |#1|)) (-15 -2424 (|#1| |#1| |#1|)) (-15 -3723 (|#1| |#1| |#1|)) (-15 -3722 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4128 |#1|)) |#1| |#1|)) (-15 -3490 (|#1| |#1| |#1|)) (-15 -4193 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1882 (|#1| |#1| |#1|)) (-15 -3814 (|#1| |#1| |#1|)) (-15 -1547 (|#1| |#1|)) (-15 -4370 (|#2| |#1|)) (-15 -3475 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2937 ((-656 |#2|) |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3569 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-3842 (($ $ $) 50 (|has| |#1| (-374)))) (-2424 (($ $ $) 51 (|has| |#1| (-374)))) (-3723 (($ $ $) 53 (|has| |#1| (-374)))) (-1550 (($ $ $) 48 (|has| |#1| (-374)))) (-2086 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 47 (|has| |#1| (-374)))) (-2836 (((-3 $ "failed") $ $) 49 (|has| |#1| (-374)))) (-3143 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 52 (|has| |#1| (-374)))) (-1572 (((-3 (-576) "failed") $) 80 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 77 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 74)) (-2859 (((-576) $) 79 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 76 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 75)) (-2114 (($ $) 69)) (-3673 (((-3 $ "failed") $) 37)) (-1547 (($ $) 60 (|has| |#1| (-464)))) (-1351 (((-112) $) 35)) (-1944 (($ |#1| (-783)) 67)) (-3202 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 62 (|has| |#1| (-568)))) (-3140 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 63 (|has| |#1| (-568)))) (-2578 (((-783) $) 71)) (-1882 (($ $ $) 57 (|has| |#1| (-374)))) (-3814 (($ $ $) 58 (|has| |#1| (-374)))) (-2079 (($ $ $) 46 (|has| |#1| (-374)))) (-3490 (($ $ $) 55 (|has| |#1| (-374)))) (-3722 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 54 (|has| |#1| (-374)))) (-4193 (((-3 $ "failed") $ $) 56 (|has| |#1| (-374)))) (-3923 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 59 (|has| |#1| (-374)))) (-2091 ((|#1| $) 70)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3475 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-568)))) (-2683 (((-783) $) 72)) (-4370 ((|#1| $) 61 (|has| |#1| (-464)))) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 78 (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) 73)) (-2937 (((-656 |#1|) $) 66)) (-1822 ((|#1| $ (-783)) 68)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-3568 ((|#1| $ |#1| |#1|) 65)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) (((-866 |#1|) (-141) (-1070)) (T -866)) -((-3634 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) (-3751 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)))) (-2114 (*1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)))) (-3177 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-866 *2)) (-4 *2 (-1070)))) (-1945 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-866 *2)) (-4 *2 (-1070)))) (-1618 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-656 *3)))) (-3569 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)))) (-3476 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-568)))) (-3358 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -2715 *1) (|:| -3624 *1))) (-4 *1 (-866 *3)))) (-3684 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -2715 *1) (|:| -3624 *1))) (-4 *1 (-866 *3)))) (-2457 (*1 *2 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-464)))) (-3767 (*1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-464)))) (-4258 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -2715 *1) (|:| -3624 *1))) (-4 *1 (-866 *3)))) (-2849 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-1764 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-3215 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-1857 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-1566 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4129 *1))) (-4 *1 (-866 *3)))) (-2209 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-3054 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -2715 *1) (|:| -3624 *1))) (-4 *1 (-866 *3)))) (-3112 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-3620 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-2881 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-2367 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-3703 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4129 *1))) (-4 *1 (-866 *3)))) (-2296 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) -(-13 (-1070) (-111 |t#1| |t#1|) (-423 |t#1|) (-10 -8 (-15 -3634 ((-783) $)) (-15 -3751 ((-783) $)) (-15 -2091 (|t#1| $)) (-15 -2114 ($ $)) (-15 -3177 (|t#1| $ (-783))) (-15 -1945 ($ |t#1| (-783))) (-15 -1618 ((-656 |t#1|) $)) (-15 -3569 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -3476 ((-3 $ "failed") $ |t#1|)) (-15 -3358 ((-2 (|:| -2715 $) (|:| -3624 $)) $ $)) (-15 -3684 ((-2 (|:| -2715 $) (|:| -3624 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -2457 (|t#1| $)) (-15 -3767 ($ $))) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-15 -4258 ((-2 (|:| -2715 $) (|:| -3624 $)) $ $)) (-15 -2849 ($ $ $)) (-15 -1764 ($ $ $)) (-15 -3215 ((-3 $ "failed") $ $)) (-15 -1857 ($ $ $)) (-15 -1566 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $)) (-15 -2209 ($ $ $)) (-15 -3054 ((-2 (|:| -2715 $) (|:| -3624 $)) $ $)) (-15 -3112 ($ $ $)) (-15 -3620 ($ $ $)) (-15 -2881 ((-3 $ "failed") $ $)) (-15 -2367 ($ $ $)) (-15 -3703 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $)) (-15 -2296 ($ $ $))) |%noBranch|))) +((-2683 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) (-2578 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)))) (-2114 (*1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)))) (-1822 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-866 *2)) (-4 *2 (-1070)))) (-1944 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-866 *2)) (-4 *2 (-1070)))) (-2937 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-656 *3)))) (-3568 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)))) (-3475 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-568)))) (-3140 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -1855 *1) (|:| -3891 *1))) (-4 *1 (-866 *3)))) (-3202 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -1855 *1) (|:| -3891 *1))) (-4 *1 (-866 *3)))) (-4370 (*1 *2 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-464)))) (-1547 (*1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-464)))) (-3923 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -1855 *1) (|:| -3891 *1))) (-4 *1 (-866 *3)))) (-3814 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-1882 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-4193 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-3490 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-3722 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4128 *1))) (-4 *1 (-866 *3)))) (-3723 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-3143 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -1855 *1) (|:| -3891 *1))) (-4 *1 (-866 *3)))) (-2424 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-3842 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-2836 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-1550 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-2086 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4128 *1))) (-4 *1 (-866 *3)))) (-2079 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) +(-13 (-1070) (-111 |t#1| |t#1|) (-423 |t#1|) (-10 -8 (-15 -2683 ((-783) $)) (-15 -2578 ((-783) $)) (-15 -2091 (|t#1| $)) (-15 -2114 ($ $)) (-15 -1822 (|t#1| $ (-783))) (-15 -1944 ($ |t#1| (-783))) (-15 -2937 ((-656 |t#1|) $)) (-15 -3568 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -3475 ((-3 $ "failed") $ |t#1|)) (-15 -3140 ((-2 (|:| -1855 $) (|:| -3891 $)) $ $)) (-15 -3202 ((-2 (|:| -1855 $) (|:| -3891 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -4370 (|t#1| $)) (-15 -1547 ($ $))) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-15 -3923 ((-2 (|:| -1855 $) (|:| -3891 $)) $ $)) (-15 -3814 ($ $ $)) (-15 -1882 ($ $ $)) (-15 -4193 ((-3 $ "failed") $ $)) (-15 -3490 ($ $ $)) (-15 -3722 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $)) (-15 -3723 ($ $ $)) (-15 -3143 ((-2 (|:| -1855 $) (|:| -3891 $)) $ $)) (-15 -2424 ($ $ $)) (-15 -3842 ($ $ $)) (-15 -2836 ((-3 $ "failed") $ $)) (-15 -1550 ($ $ $)) (-15 -2086 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $)) (-15 -2079 ($ $ $))) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-423 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1059 #0#) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-3636 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-3054 (((-2 (|:| -2715 |#2|) (|:| -3624 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-374)))) (-3684 (((-2 (|:| -2715 |#2|) (|:| -3624 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-568)))) (-3358 (((-2 (|:| -2715 |#2|) (|:| -3624 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-568)))) (-4258 (((-2 (|:| -2715 |#2|) (|:| -3624 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-374)))) (-3569 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33))) -(((-867 |#1| |#2|) (-10 -7 (-15 -3636 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3569 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-568)) (PROGN (-15 -3358 ((-2 (|:| -2715 |#2|) (|:| -3624 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3684 ((-2 (|:| -2715 |#2|) (|:| -3624 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -4258 ((-2 (|:| -2715 |#2|) (|:| -3624 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3054 ((-2 (|:| -2715 |#2|) (|:| -3624 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1070) (-866 |#1|)) (T -867)) -((-3054 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1070)) (-5 *2 (-2 (|:| -2715 *3) (|:| -3624 *3))) (-5 *1 (-867 *5 *3)) (-4 *3 (-866 *5)))) (-4258 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1070)) (-5 *2 (-2 (|:| -2715 *3) (|:| -3624 *3))) (-5 *1 (-867 *5 *3)) (-4 *3 (-866 *5)))) (-3684 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1070)) (-5 *2 (-2 (|:| -2715 *3) (|:| -3624 *3))) (-5 *1 (-867 *5 *3)) (-4 *3 (-866 *5)))) (-3358 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1070)) (-5 *2 (-2 (|:| -2715 *3) (|:| -3624 *3))) (-5 *1 (-867 *5 *3)) (-4 *3 (-866 *5)))) (-3569 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1070)) (-5 *1 (-867 *2 *3)) (-4 *3 (-866 *2)))) (-3636 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1070)) (-5 *1 (-867 *5 *2)) (-4 *2 (-866 *5))))) -(-10 -7 (-15 -3636 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3569 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-568)) (PROGN (-15 -3358 ((-2 (|:| -2715 |#2|) (|:| -3624 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3684 ((-2 (|:| -2715 |#2|) (|:| -3624 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -4258 ((-2 (|:| -2715 |#2|) (|:| -3624 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3054 ((-2 (|:| -2715 |#2|) (|:| -3624 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-3620 (($ $ $) NIL (|has| |#1| (-374)))) (-3112 (($ $ $) NIL (|has| |#1| (-374)))) (-2209 (($ $ $) NIL (|has| |#1| (-374)))) (-2367 (($ $ $) NIL (|has| |#1| (-374)))) (-3703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| |#1| (-374)))) (-2881 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3054 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 34 (|has| |#1| (-374)))) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2860 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-2114 (($ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-3767 (($ $) NIL (|has| |#1| (-464)))) (-3234 (((-876) $ (-876)) NIL)) (-4193 (((-112) $) NIL)) (-1945 (($ |#1| (-783)) NIL)) (-3684 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 30 (|has| |#1| (-568)))) (-3358 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 28 (|has| |#1| (-568)))) (-3751 (((-783) $) NIL)) (-1764 (($ $ $) NIL (|has| |#1| (-374)))) (-2849 (($ $ $) NIL (|has| |#1| (-374)))) (-2296 (($ $ $) NIL (|has| |#1| (-374)))) (-1857 (($ $ $) NIL (|has| |#1| (-374)))) (-1566 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| |#1| (-374)))) (-3215 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4258 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 32 (|has| |#1| (-374)))) (-2091 ((|#1| $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-3634 (((-783) $) NIL)) (-2457 ((|#1| $) NIL (|has| |#1| (-464)))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) NIL)) (-1618 (((-656 |#1|) $) NIL)) (-3177 ((|#1| $ (-783)) NIL)) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-3569 ((|#1| $ |#1| |#1|) 15)) (-2721 (($) NIL T CONST)) (-2732 (($) 23 T CONST)) (-2925 (((-112) $ $) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) 19) (($ $ (-783)) 24)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-868 |#1| |#2| |#3|) (-13 (-866 |#1|) (-10 -8 (-15 -3234 ((-876) $ (-876))))) (-1070) (-99 |#1|) (-1 |#1| |#1|)) (T -868)) -((-3234 (*1 *2 *1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-866 |#1|) (-10 -8 (-15 -3234 ((-876) $ (-876))))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-3620 (($ $ $) NIL (|has| |#2| (-374)))) (-3112 (($ $ $) NIL (|has| |#2| (-374)))) (-2209 (($ $ $) NIL (|has| |#2| (-374)))) (-2367 (($ $ $) NIL (|has| |#2| (-374)))) (-3703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| |#2| (-374)))) (-2881 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-3054 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#2| (-374)))) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-2860 (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) ((|#2| $) NIL)) (-2114 (($ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-3767 (($ $) NIL (|has| |#2| (-464)))) (-4193 (((-112) $) NIL)) (-1945 (($ |#2| (-783)) 17)) (-3684 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#2| (-568)))) (-3358 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#2| (-568)))) (-3751 (((-783) $) NIL)) (-1764 (($ $ $) NIL (|has| |#2| (-374)))) (-2849 (($ $ $) NIL (|has| |#2| (-374)))) (-2296 (($ $ $) NIL (|has| |#2| (-374)))) (-1857 (($ $ $) NIL (|has| |#2| (-374)))) (-1566 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| |#2| (-374)))) (-3215 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-4258 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#2| (-374)))) (-2091 ((|#2| $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-3634 (((-783) $) NIL)) (-2457 ((|#2| $) NIL (|has| |#2| (-464)))) (-3570 (((-876) $) 24) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1059 (-419 (-576))))) (($ |#2|) NIL) (($ (-1284 |#1|)) 19)) (-1618 (((-656 |#2|) $) NIL)) (-3177 ((|#2| $ (-783)) NIL)) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-3569 ((|#2| $ |#2| |#2|) NIL)) (-2721 (($) NIL T CONST)) (-2732 (($) 13 T CONST)) (-2925 (((-112) $ $) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +((-3635 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-3143 (((-2 (|:| -1855 |#2|) (|:| -3891 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-374)))) (-3202 (((-2 (|:| -1855 |#2|) (|:| -3891 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-568)))) (-3140 (((-2 (|:| -1855 |#2|) (|:| -3891 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-568)))) (-3923 (((-2 (|:| -1855 |#2|) (|:| -3891 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-374)))) (-3568 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33))) +(((-867 |#1| |#2|) (-10 -7 (-15 -3635 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3568 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-568)) (PROGN (-15 -3140 ((-2 (|:| -1855 |#2|) (|:| -3891 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3202 ((-2 (|:| -1855 |#2|) (|:| -3891 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -3923 ((-2 (|:| -1855 |#2|) (|:| -3891 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3143 ((-2 (|:| -1855 |#2|) (|:| -3891 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1070) (-866 |#1|)) (T -867)) +((-3143 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1070)) (-5 *2 (-2 (|:| -1855 *3) (|:| -3891 *3))) (-5 *1 (-867 *5 *3)) (-4 *3 (-866 *5)))) (-3923 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1070)) (-5 *2 (-2 (|:| -1855 *3) (|:| -3891 *3))) (-5 *1 (-867 *5 *3)) (-4 *3 (-866 *5)))) (-3202 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1070)) (-5 *2 (-2 (|:| -1855 *3) (|:| -3891 *3))) (-5 *1 (-867 *5 *3)) (-4 *3 (-866 *5)))) (-3140 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1070)) (-5 *2 (-2 (|:| -1855 *3) (|:| -3891 *3))) (-5 *1 (-867 *5 *3)) (-4 *3 (-866 *5)))) (-3568 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1070)) (-5 *1 (-867 *2 *3)) (-4 *3 (-866 *2)))) (-3635 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1070)) (-5 *1 (-867 *5 *2)) (-4 *2 (-866 *5))))) +(-10 -7 (-15 -3635 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3568 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-568)) (PROGN (-15 -3140 ((-2 (|:| -1855 |#2|) (|:| -3891 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3202 ((-2 (|:| -1855 |#2|) (|:| -3891 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -3923 ((-2 (|:| -1855 |#2|) (|:| -3891 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3143 ((-2 (|:| -1855 |#2|) (|:| -3891 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-3842 (($ $ $) NIL (|has| |#1| (-374)))) (-2424 (($ $ $) NIL (|has| |#1| (-374)))) (-3723 (($ $ $) NIL (|has| |#1| (-374)))) (-1550 (($ $ $) NIL (|has| |#1| (-374)))) (-2086 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-2836 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3143 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 34 (|has| |#1| (-374)))) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2859 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-2114 (($ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1547 (($ $) NIL (|has| |#1| (-464)))) (-4375 (((-876) $ (-876)) NIL)) (-1351 (((-112) $) NIL)) (-1944 (($ |#1| (-783)) NIL)) (-3202 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 30 (|has| |#1| (-568)))) (-3140 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 28 (|has| |#1| (-568)))) (-2578 (((-783) $) NIL)) (-1882 (($ $ $) NIL (|has| |#1| (-374)))) (-3814 (($ $ $) NIL (|has| |#1| (-374)))) (-2079 (($ $ $) NIL (|has| |#1| (-374)))) (-3490 (($ $ $) NIL (|has| |#1| (-374)))) (-3722 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-4193 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3923 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 32 (|has| |#1| (-374)))) (-2091 ((|#1| $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2683 (((-783) $) NIL)) (-4370 ((|#1| $) NIL (|has| |#1| (-464)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) NIL)) (-2937 (((-656 |#1|) $) NIL)) (-1822 ((|#1| $ (-783)) NIL)) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-3568 ((|#1| $ |#1| |#1|) 15)) (-2721 (($) NIL T CONST)) (-2731 (($) 23 T CONST)) (-2924 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) 19) (($ $ (-783)) 24)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-868 |#1| |#2| |#3|) (-13 (-866 |#1|) (-10 -8 (-15 -4375 ((-876) $ (-876))))) (-1070) (-99 |#1|) (-1 |#1| |#1|)) (T -868)) +((-4375 (*1 *2 *1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-866 |#1|) (-10 -8 (-15 -4375 ((-876) $ (-876))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-3842 (($ $ $) NIL (|has| |#2| (-374)))) (-2424 (($ $ $) NIL (|has| |#2| (-374)))) (-3723 (($ $ $) NIL (|has| |#2| (-374)))) (-1550 (($ $ $) NIL (|has| |#2| (-374)))) (-2086 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#2| (-374)))) (-2836 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-3143 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#2| (-374)))) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-2859 (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) ((|#2| $) NIL)) (-2114 (($ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1547 (($ $) NIL (|has| |#2| (-464)))) (-1351 (((-112) $) NIL)) (-1944 (($ |#2| (-783)) 17)) (-3202 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#2| (-568)))) (-3140 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#2| (-568)))) (-2578 (((-783) $) NIL)) (-1882 (($ $ $) NIL (|has| |#2| (-374)))) (-3814 (($ $ $) NIL (|has| |#2| (-374)))) (-2079 (($ $ $) NIL (|has| |#2| (-374)))) (-3490 (($ $ $) NIL (|has| |#2| (-374)))) (-3722 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#2| (-374)))) (-4193 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-3923 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#2| (-374)))) (-2091 ((|#2| $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3475 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-2683 (((-783) $) NIL)) (-4370 ((|#2| $) NIL (|has| |#2| (-464)))) (-3569 (((-876) $) 24) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1059 (-419 (-576))))) (($ |#2|) NIL) (($ (-1284 |#1|)) 19)) (-2937 (((-656 |#2|) $) NIL)) (-1822 ((|#2| $ (-783)) NIL)) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-3568 ((|#2| $ |#2| |#2|) NIL)) (-2721 (($) NIL T CONST)) (-2731 (($) 13 T CONST)) (-2924 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) (((-869 |#1| |#2| |#3| |#4|) (-13 (-866 |#2|) (-628 (-1284 |#1|))) (-1197) (-1070) (-99 |#2|) (-1 |#2| |#2|)) (T -869)) NIL (-13 (-866 |#2|) (-628 (-1284 |#1|))) -((-1591 ((|#1| (-783) |#1|) 45 (|has| |#1| (-38 (-419 (-576)))))) (-1697 ((|#1| (-783) (-783) |#1|) 36) ((|#1| (-783) |#1|) 24)) (-1365 ((|#1| (-783) |#1|) 40)) (-3695 ((|#1| (-783) |#1|) 38)) (-2321 ((|#1| (-783) |#1|) 37))) -(((-870 |#1|) (-10 -7 (-15 -2321 (|#1| (-783) |#1|)) (-15 -3695 (|#1| (-783) |#1|)) (-15 -1365 (|#1| (-783) |#1|)) (-15 -1697 (|#1| (-783) |#1|)) (-15 -1697 (|#1| (-783) (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1591 (|#1| (-783) |#1|)) |%noBranch|)) (-174)) (T -870)) -((-1591 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-1697 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) (-1697 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) (-1365 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) (-3695 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) (-2321 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174))))) -(-10 -7 (-15 -2321 (|#1| (-783) |#1|)) (-15 -3695 (|#1| (-783) |#1|)) (-15 -1365 (|#1| (-783) |#1|)) (-15 -1697 (|#1| (-783) |#1|)) (-15 -1697 (|#1| (-783) (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1591 (|#1| (-783) |#1|)) |%noBranch|)) -((-3489 (((-112) $ $) 7)) (-3125 (($ $ $) 20)) (-3133 (($ $ $) 19)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2992 (((-112) $ $) 18)) (-2964 (((-112) $ $) 16)) (-2925 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2950 (((-112) $ $) 15)) (** (($ $ (-940)) 23)) (* (($ $ $) 22))) +((-2653 ((|#1| (-783) |#1|) 45 (|has| |#1| (-38 (-419 (-576)))))) (-2440 ((|#1| (-783) (-783) |#1|) 36) ((|#1| (-783) |#1|) 24)) (-1453 ((|#1| (-783) |#1|) 40)) (-3294 ((|#1| (-783) |#1|) 38)) (-2350 ((|#1| (-783) |#1|) 37))) +(((-870 |#1|) (-10 -7 (-15 -2350 (|#1| (-783) |#1|)) (-15 -3294 (|#1| (-783) |#1|)) (-15 -1453 (|#1| (-783) |#1|)) (-15 -2440 (|#1| (-783) |#1|)) (-15 -2440 (|#1| (-783) (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2653 (|#1| (-783) |#1|)) |%noBranch|)) (-174)) (T -870)) +((-2653 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-2440 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) (-2440 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) (-1453 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) (-3294 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) (-2350 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174))))) +(-10 -7 (-15 -2350 (|#1| (-783) |#1|)) (-15 -3294 (|#1| (-783) |#1|)) (-15 -1453 (|#1| (-783) |#1|)) (-15 -2440 (|#1| (-783) |#1|)) (-15 -2440 (|#1| (-783) (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2653 (|#1| (-783) |#1|)) |%noBranch|)) +((-3488 (((-112) $ $) 7)) (-3124 (($ $ $) 20)) (-1441 (($ $ $) 19)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2990 (((-112) $ $) 18)) (-2962 (((-112) $ $) 16)) (-2924 (((-112) $ $) 8)) (-2978 (((-112) $ $) 17)) (-2949 (((-112) $ $) 15)) (** (($ $ (-940)) 23)) (* (($ $ $) 22))) (((-871) (-141)) (T -871)) NIL (-13 (-861) (-1133)) (((-102) . T) ((-625 (-876)) . T) ((-861) . T) ((-864) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-3106 (((-576) $) 14)) (-3125 (($ $ $) NIL)) (-3133 (($ $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 20) (($ (-576)) 13)) (-4055 (((-112) $ $) NIL)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 9)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) 11))) -(((-872) (-13 (-861) (-10 -8 (-15 -3570 ($ (-576))) (-15 -3106 ((-576) $))))) (T -872)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-872)))) (-3106 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-872))))) -(-13 (-861) (-10 -8 (-15 -3570 ($ (-576))) (-15 -3106 ((-576) $)))) -((-3431 (((-703 (-1246)) $ (-1246)) 15)) (-3559 (((-703 (-561)) $ (-561)) 12)) (-3000 (((-783) $ (-129)) 30))) -(((-873 |#1|) (-10 -8 (-15 -3000 ((-783) |#1| (-129))) (-15 -3431 ((-703 (-1246)) |#1| (-1246))) (-15 -3559 ((-703 (-561)) |#1| (-561)))) (-874)) (T -873)) -NIL -(-10 -8 (-15 -3000 ((-783) |#1| (-129))) (-15 -3431 ((-703 (-1246)) |#1| (-1246))) (-15 -3559 ((-703 (-561)) |#1| (-561)))) -((-3431 (((-703 (-1246)) $ (-1246)) 8)) (-3559 (((-703 (-561)) $ (-561)) 9)) (-3000 (((-783) $ (-129)) 7)) (-4175 (((-703 (-130)) $ (-130)) 10)) (-3423 (($ $) 6))) +((-3488 (((-112) $ $) NIL)) (-3104 (((-576) $) 14)) (-3124 (($ $ $) NIL)) (-1441 (($ $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 20) (($ (-576)) 13)) (-2399 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 9)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) 11))) +(((-872) (-13 (-861) (-10 -8 (-15 -3569 ($ (-576))) (-15 -3104 ((-576) $))))) (T -872)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-872)))) (-3104 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-872))))) +(-13 (-861) (-10 -8 (-15 -3569 ($ (-576))) (-15 -3104 ((-576) $)))) +((-2574 (((-703 (-1246)) $ (-1246)) 15)) (-1350 (((-703 (-561)) $ (-561)) 12)) (-3890 (((-783) $ (-129)) 30))) +(((-873 |#1|) (-10 -8 (-15 -3890 ((-783) |#1| (-129))) (-15 -2574 ((-703 (-1246)) |#1| (-1246))) (-15 -1350 ((-703 (-561)) |#1| (-561)))) (-874)) (T -873)) +NIL +(-10 -8 (-15 -3890 ((-783) |#1| (-129))) (-15 -2574 ((-703 (-1246)) |#1| (-1246))) (-15 -1350 ((-703 (-561)) |#1| (-561)))) +((-2574 (((-703 (-1246)) $ (-1246)) 8)) (-1350 (((-703 (-561)) $ (-561)) 9)) (-3890 (((-783) $ (-129)) 7)) (-4299 (((-703 (-130)) $ (-130)) 10)) (-2516 (($ $) 6))) (((-874) (-141)) (T -874)) -((-4175 (*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *2 (-703 (-130))) (-5 *3 (-130)))) (-3559 (*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *2 (-703 (-561))) (-5 *3 (-561)))) (-3431 (*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *2 (-703 (-1246))) (-5 *3 (-1246)))) (-3000 (*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *3 (-129)) (-5 *2 (-783))))) -(-13 (-175) (-10 -8 (-15 -4175 ((-703 (-130)) $ (-130))) (-15 -3559 ((-703 (-561)) $ (-561))) (-15 -3431 ((-703 (-1246)) $ (-1246))) (-15 -3000 ((-783) $ (-129))))) +((-4299 (*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *2 (-703 (-130))) (-5 *3 (-130)))) (-1350 (*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *2 (-703 (-561))) (-5 *3 (-561)))) (-2574 (*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *2 (-703 (-1246))) (-5 *3 (-1246)))) (-3890 (*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *3 (-129)) (-5 *2 (-783))))) +(-13 (-175) (-10 -8 (-15 -4299 ((-703 (-130)) $ (-130))) (-15 -1350 ((-703 (-561)) $ (-561))) (-15 -2574 ((-703 (-1246)) $ (-1246))) (-15 -3890 ((-783) $ (-129))))) (((-175) . T)) -((-3431 (((-703 (-1246)) $ (-1246)) NIL)) (-3559 (((-703 (-561)) $ (-561)) NIL)) (-3000 (((-783) $ (-129)) NIL)) (-4175 (((-703 (-130)) $ (-130)) 22)) (-3009 (($ (-400)) 12) (($ (-1179)) 14)) (-2105 (((-112) $) 19)) (-3570 (((-876) $) 26)) (-3423 (($ $) 23))) -(((-875) (-13 (-874) (-625 (-876)) (-10 -8 (-15 -3009 ($ (-400))) (-15 -3009 ($ (-1179))) (-15 -2105 ((-112) $))))) (T -875)) -((-3009 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-875)))) (-3009 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-875)))) (-2105 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-875))))) -(-13 (-874) (-625 (-876)) (-10 -8 (-15 -3009 ($ (-400))) (-15 -3009 ($ (-1179))) (-15 -2105 ((-112) $)))) -((-3489 (((-112) $ $) NIL) (($ $ $) 85)) (-2988 (($ $ $) 125)) (-3361 (((-576) $) 31) (((-576)) 36)) (-4299 (($ (-576)) 53)) (-4321 (($ $ $) 54) (($ (-656 $)) 84)) (-1862 (($ $ (-656 $)) 82)) (-4126 (((-576) $) 34)) (-1863 (($ $ $) 73)) (-1369 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-2291 (((-576) $) 33)) (-2229 (($ $ $) 72)) (-1327 (($ $) 114)) (-2063 (($ $ $) 129)) (-1595 (($ (-656 $)) 61)) (-2445 (($ $ (-656 $)) 79)) (-2764 (($ (-576) (-576)) 55)) (-4260 (($ $) 126) (($ $ $) 127)) (-4250 (($ $ (-576)) 43) (($ $) 46)) (-3429 (($ $ $) 97)) (-3720 (($ $ $) 132)) (-3691 (($ $) 115)) (-3441 (($ $ $) 98)) (-2812 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-2113 (((-1293) $) 10)) (-2304 (($ $) 118) (($ $ (-783)) 122)) (-3650 (($ $ $) 75)) (-3509 (($ $ $) 74)) (-4005 (($ $ (-656 $)) 110)) (-3556 (($ $ $) 113)) (-3187 (($ (-656 $)) 59)) (-2236 (($ $) 70) (($ (-656 $)) 71)) (-2657 (($ $ $) 123)) (-3924 (($ $) 116)) (-2464 (($ $ $) 128)) (-3234 (($ (-576)) 21) (($ (-1197)) 23) (($ (-1179)) 30) (($ (-227)) 25)) (-2686 (($ $ $) 101)) (-2663 (($ $) 102)) (-1490 (((-1293) (-1179)) 15)) (-2771 (($ (-1179)) 14)) (-2467 (($ (-656 (-656 $))) 58)) (-4240 (($ $ (-576)) 42) (($ $) 45)) (-3699 (((-1179) $) NIL)) (-2504 (($ $ $) 131)) (-3896 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-2232 (((-112) $) 108)) (-1557 (($ $ (-656 $)) 111) (($ $ $ $) 112)) (-2477 (($ (-576)) 39)) (-2327 (((-576) $) 32) (((-576)) 35)) (-3290 (($ $ $) 40) (($ (-656 $)) 83)) (-1450 (((-1141) $) NIL)) (-3476 (($ $ $) 99)) (-4225 (($) 13)) (-2797 (($ $ (-656 $)) 109)) (-4377 (((-1179) (-1179)) 8)) (-2118 (($ $) 117) (($ $ (-783)) 121)) (-3465 (($ $ $) 96)) (-2775 (($ $ (-783)) 139)) (-2595 (($ (-656 $)) 60)) (-3570 (((-876) $) 19)) (-2396 (($ $ (-576)) 41) (($ $) 44)) (-3858 (($ $) 68) (($ (-656 $)) 69)) (-1893 (($ $) 66) (($ (-656 $)) 67)) (-3681 (($ $) 124)) (-4011 (($ (-656 $)) 65)) (-2979 (($ $ $) 105)) (-4055 (((-112) $ $) NIL)) (-3782 (($ $ $) 130)) (-2675 (($ $ $) 100)) (-1785 (($ $ $) 103) (($ $) 104)) (-2992 (($ $ $) 89)) (-2964 (($ $ $) 87)) (-2925 (((-112) $ $) 16) (($ $ $) 17)) (-2978 (($ $ $) 88)) (-2950 (($ $ $) 86)) (-3057 (($ $ $) 94)) (-3044 (($ $ $) 91) (($ $) 92)) (-3030 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) -(((-876) (-13 (-1121) (-10 -8 (-15 -2113 ((-1293) $)) (-15 -2771 ($ (-1179))) (-15 -1490 ((-1293) (-1179))) (-15 -3234 ($ (-576))) (-15 -3234 ($ (-1197))) (-15 -3234 ($ (-1179))) (-15 -3234 ($ (-227))) (-15 -4225 ($)) (-15 -4377 ((-1179) (-1179))) (-15 -3361 ((-576) $)) (-15 -2327 ((-576) $)) (-15 -3361 ((-576))) (-15 -2327 ((-576))) (-15 -2291 ((-576) $)) (-15 -4126 ((-576) $)) (-15 -2477 ($ (-576))) (-15 -4299 ($ (-576))) (-15 -2764 ($ (-576) (-576))) (-15 -4240 ($ $ (-576))) (-15 -4250 ($ $ (-576))) (-15 -2396 ($ $ (-576))) (-15 -4240 ($ $)) (-15 -4250 ($ $)) (-15 -2396 ($ $)) (-15 -3290 ($ $ $)) (-15 -4321 ($ $ $)) (-15 -3290 ($ (-656 $))) (-15 -4321 ($ (-656 $))) (-15 -4005 ($ $ (-656 $))) (-15 -1557 ($ $ (-656 $))) (-15 -1557 ($ $ $ $)) (-15 -3556 ($ $ $)) (-15 -2232 ((-112) $)) (-15 -2797 ($ $ (-656 $))) (-15 -1327 ($ $)) (-15 -2504 ($ $ $)) (-15 -3681 ($ $)) (-15 -2467 ($ (-656 (-656 $)))) (-15 -2988 ($ $ $)) (-15 -4260 ($ $)) (-15 -4260 ($ $ $)) (-15 -2464 ($ $ $)) (-15 -2063 ($ $ $)) (-15 -3782 ($ $ $)) (-15 -3720 ($ $ $)) (-15 -2775 ($ $ (-783))) (-15 -2979 ($ $ $)) (-15 -2229 ($ $ $)) (-15 -1863 ($ $ $)) (-15 -3509 ($ $ $)) (-15 -3650 ($ $ $)) (-15 -2445 ($ $ (-656 $))) (-15 -1862 ($ $ (-656 $))) (-15 -3691 ($ $)) (-15 -2118 ($ $)) (-15 -2118 ($ $ (-783))) (-15 -2304 ($ $)) (-15 -2304 ($ $ (-783))) (-15 -3924 ($ $)) (-15 -2657 ($ $ $)) (-15 -1369 ($ $)) (-15 -1369 ($ $ $)) (-15 -1369 ($ $ $ $)) (-15 -2812 ($ $)) (-15 -2812 ($ $ $)) (-15 -2812 ($ $ $ $)) (-15 -3896 ($ $)) (-15 -3896 ($ $ $)) (-15 -3896 ($ $ $ $)) (-15 -1893 ($ $)) (-15 -1893 ($ (-656 $))) (-15 -3858 ($ $)) (-15 -3858 ($ (-656 $))) (-15 -2236 ($ $)) (-15 -2236 ($ (-656 $))) (-15 -3187 ($ (-656 $))) (-15 -2595 ($ (-656 $))) (-15 -1595 ($ (-656 $))) (-15 -4011 ($ (-656 $))) (-15 -2925 ($ $ $)) (-15 -3489 ($ $ $)) (-15 -2950 ($ $ $)) (-15 -2964 ($ $ $)) (-15 -2978 ($ $ $)) (-15 -2992 ($ $ $)) (-15 -3030 ($ $ $)) (-15 -3044 ($ $ $)) (-15 -3044 ($ $)) (-15 * ($ $ $)) (-15 -3057 ($ $ $)) (-15 ** ($ $ $)) (-15 -3465 ($ $ $)) (-15 -3429 ($ $ $)) (-15 -3441 ($ $ $)) (-15 -3476 ($ $ $)) (-15 -2675 ($ $ $)) (-15 -2686 ($ $ $)) (-15 -2663 ($ $)) (-15 -1785 ($ $ $)) (-15 -1785 ($ $))))) (T -876)) -((-2113 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-876)))) (-2771 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876)))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-876)))) (-3234 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-3234 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-876)))) (-3234 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876)))) (-3234 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-876)))) (-4225 (*1 *1) (-5 *1 (-876))) (-4377 (*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876)))) (-3361 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-2327 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-3361 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-2327 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-2291 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-4126 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-2477 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-4299 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-2764 (*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-4240 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-4250 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-2396 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-4240 (*1 *1 *1) (-5 *1 (-876))) (-4250 (*1 *1 *1) (-5 *1 (-876))) (-2396 (*1 *1 *1) (-5 *1 (-876))) (-3290 (*1 *1 *1 *1) (-5 *1 (-876))) (-4321 (*1 *1 *1 *1) (-5 *1 (-876))) (-3290 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-4321 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-4005 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-1557 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-1557 (*1 *1 *1 *1 *1) (-5 *1 (-876))) (-3556 (*1 *1 *1 *1) (-5 *1 (-876))) (-2232 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876)))) (-2797 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-1327 (*1 *1 *1) (-5 *1 (-876))) (-2504 (*1 *1 *1 *1) (-5 *1 (-876))) (-3681 (*1 *1 *1) (-5 *1 (-876))) (-2467 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-876)))) (-5 *1 (-876)))) (-2988 (*1 *1 *1 *1) (-5 *1 (-876))) (-4260 (*1 *1 *1) (-5 *1 (-876))) (-4260 (*1 *1 *1 *1) (-5 *1 (-876))) (-2464 (*1 *1 *1 *1) (-5 *1 (-876))) (-2063 (*1 *1 *1 *1) (-5 *1 (-876))) (-3782 (*1 *1 *1 *1) (-5 *1 (-876))) (-3720 (*1 *1 *1 *1) (-5 *1 (-876))) (-2775 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-876)))) (-2979 (*1 *1 *1 *1) (-5 *1 (-876))) (-2229 (*1 *1 *1 *1) (-5 *1 (-876))) (-1863 (*1 *1 *1 *1) (-5 *1 (-876))) (-3509 (*1 *1 *1 *1) (-5 *1 (-876))) (-3650 (*1 *1 *1 *1) (-5 *1 (-876))) (-2445 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-1862 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-3691 (*1 *1 *1) (-5 *1 (-876))) (-2118 (*1 *1 *1) (-5 *1 (-876))) (-2118 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-876)))) (-2304 (*1 *1 *1) (-5 *1 (-876))) (-2304 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-876)))) (-3924 (*1 *1 *1) (-5 *1 (-876))) (-2657 (*1 *1 *1 *1) (-5 *1 (-876))) (-1369 (*1 *1 *1) (-5 *1 (-876))) (-1369 (*1 *1 *1 *1) (-5 *1 (-876))) (-1369 (*1 *1 *1 *1 *1) (-5 *1 (-876))) (-2812 (*1 *1 *1) (-5 *1 (-876))) (-2812 (*1 *1 *1 *1) (-5 *1 (-876))) (-2812 (*1 *1 *1 *1 *1) (-5 *1 (-876))) (-3896 (*1 *1 *1) (-5 *1 (-876))) (-3896 (*1 *1 *1 *1) (-5 *1 (-876))) (-3896 (*1 *1 *1 *1 *1) (-5 *1 (-876))) (-1893 (*1 *1 *1) (-5 *1 (-876))) (-1893 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-3858 (*1 *1 *1) (-5 *1 (-876))) (-3858 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-2236 (*1 *1 *1) (-5 *1 (-876))) (-2236 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-3187 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-2595 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-1595 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-4011 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-2925 (*1 *1 *1 *1) (-5 *1 (-876))) (-3489 (*1 *1 *1 *1) (-5 *1 (-876))) (-2950 (*1 *1 *1 *1) (-5 *1 (-876))) (-2964 (*1 *1 *1 *1) (-5 *1 (-876))) (-2978 (*1 *1 *1 *1) (-5 *1 (-876))) (-2992 (*1 *1 *1 *1) (-5 *1 (-876))) (-3030 (*1 *1 *1 *1) (-5 *1 (-876))) (-3044 (*1 *1 *1 *1) (-5 *1 (-876))) (-3044 (*1 *1 *1) (-5 *1 (-876))) (* (*1 *1 *1 *1) (-5 *1 (-876))) (-3057 (*1 *1 *1 *1) (-5 *1 (-876))) (** (*1 *1 *1 *1) (-5 *1 (-876))) (-3465 (*1 *1 *1 *1) (-5 *1 (-876))) (-3429 (*1 *1 *1 *1) (-5 *1 (-876))) (-3441 (*1 *1 *1 *1) (-5 *1 (-876))) (-3476 (*1 *1 *1 *1) (-5 *1 (-876))) (-2675 (*1 *1 *1 *1) (-5 *1 (-876))) (-2686 (*1 *1 *1 *1) (-5 *1 (-876))) (-2663 (*1 *1 *1) (-5 *1 (-876))) (-1785 (*1 *1 *1 *1) (-5 *1 (-876))) (-1785 (*1 *1 *1) (-5 *1 (-876)))) -(-13 (-1121) (-10 -8 (-15 -2113 ((-1293) $)) (-15 -2771 ($ (-1179))) (-15 -1490 ((-1293) (-1179))) (-15 -3234 ($ (-576))) (-15 -3234 ($ (-1197))) (-15 -3234 ($ (-1179))) (-15 -3234 ($ (-227))) (-15 -4225 ($)) (-15 -4377 ((-1179) (-1179))) (-15 -3361 ((-576) $)) (-15 -2327 ((-576) $)) (-15 -3361 ((-576))) (-15 -2327 ((-576))) (-15 -2291 ((-576) $)) (-15 -4126 ((-576) $)) (-15 -2477 ($ (-576))) (-15 -4299 ($ (-576))) (-15 -2764 ($ (-576) (-576))) (-15 -4240 ($ $ (-576))) (-15 -4250 ($ $ (-576))) (-15 -2396 ($ $ (-576))) (-15 -4240 ($ $)) (-15 -4250 ($ $)) (-15 -2396 ($ $)) (-15 -3290 ($ $ $)) (-15 -4321 ($ $ $)) (-15 -3290 ($ (-656 $))) (-15 -4321 ($ (-656 $))) (-15 -4005 ($ $ (-656 $))) (-15 -1557 ($ $ (-656 $))) (-15 -1557 ($ $ $ $)) (-15 -3556 ($ $ $)) (-15 -2232 ((-112) $)) (-15 -2797 ($ $ (-656 $))) (-15 -1327 ($ $)) (-15 -2504 ($ $ $)) (-15 -3681 ($ $)) (-15 -2467 ($ (-656 (-656 $)))) (-15 -2988 ($ $ $)) (-15 -4260 ($ $)) (-15 -4260 ($ $ $)) (-15 -2464 ($ $ $)) (-15 -2063 ($ $ $)) (-15 -3782 ($ $ $)) (-15 -3720 ($ $ $)) (-15 -2775 ($ $ (-783))) (-15 -2979 ($ $ $)) (-15 -2229 ($ $ $)) (-15 -1863 ($ $ $)) (-15 -3509 ($ $ $)) (-15 -3650 ($ $ $)) (-15 -2445 ($ $ (-656 $))) (-15 -1862 ($ $ (-656 $))) (-15 -3691 ($ $)) (-15 -2118 ($ $)) (-15 -2118 ($ $ (-783))) (-15 -2304 ($ $)) (-15 -2304 ($ $ (-783))) (-15 -3924 ($ $)) (-15 -2657 ($ $ $)) (-15 -1369 ($ $)) (-15 -1369 ($ $ $)) (-15 -1369 ($ $ $ $)) (-15 -2812 ($ $)) (-15 -2812 ($ $ $)) (-15 -2812 ($ $ $ $)) (-15 -3896 ($ $)) (-15 -3896 ($ $ $)) (-15 -3896 ($ $ $ $)) (-15 -1893 ($ $)) (-15 -1893 ($ (-656 $))) (-15 -3858 ($ $)) (-15 -3858 ($ (-656 $))) (-15 -2236 ($ $)) (-15 -2236 ($ (-656 $))) (-15 -3187 ($ (-656 $))) (-15 -2595 ($ (-656 $))) (-15 -1595 ($ (-656 $))) (-15 -4011 ($ (-656 $))) (-15 -2925 ($ $ $)) (-15 -3489 ($ $ $)) (-15 -2950 ($ $ $)) (-15 -2964 ($ $ $)) (-15 -2978 ($ $ $)) (-15 -2992 ($ $ $)) (-15 -3030 ($ $ $)) (-15 -3044 ($ $ $)) (-15 -3044 ($ $)) (-15 * ($ $ $)) (-15 -3057 ($ $ $)) (-15 ** ($ $ $)) (-15 -3465 ($ $ $)) (-15 -3429 ($ $ $)) (-15 -3441 ($ $ $)) (-15 -3476 ($ $ $)) (-15 -2675 ($ $ $)) (-15 -2686 ($ $ $)) (-15 -2663 ($ $)) (-15 -1785 ($ $ $)) (-15 -1785 ($ $)))) -((-2679 (((-1293) (-656 (-52))) 23)) (-2751 (((-1293) (-1179) (-876)) 13) (((-1293) (-876)) 8) (((-1293) (-1179)) 10))) -(((-877) (-10 -7 (-15 -2751 ((-1293) (-1179))) (-15 -2751 ((-1293) (-876))) (-15 -2751 ((-1293) (-1179) (-876))) (-15 -2679 ((-1293) (-656 (-52)))))) (T -877)) -((-2679 (*1 *2 *3) (-12 (-5 *3 (-656 (-52))) (-5 *2 (-1293)) (-5 *1 (-877)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-876)) (-5 *2 (-1293)) (-5 *1 (-877)))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-877)))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-877))))) -(-10 -7 (-15 -2751 ((-1293) (-1179))) (-15 -2751 ((-1293) (-876))) (-15 -2751 ((-1293) (-1179) (-876))) (-15 -2679 ((-1293) (-656 (-52))))) -((-3489 (((-112) $ $) NIL)) (-3055 (((-3 $ "failed") (-1197)) 36)) (-2098 (((-783)) 32)) (-1836 (($) NIL)) (-3125 (($ $ $) NIL) (($) NIL T CONST)) (-3133 (($ $ $) NIL) (($) NIL T CONST)) (-4401 (((-940) $) 29)) (-3699 (((-1179) $) 43)) (-3224 (($ (-940)) 28)) (-1450 (((-1141) $) NIL)) (-4172 (((-1197) $) 13) (((-548) $) 19) (((-907 (-390)) $) 26) (((-907 (-576)) $) 22)) (-3570 (((-876) $) 16)) (-4055 (((-112) $ $) NIL)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 40)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) 38))) -(((-878 |#1|) (-13 (-856) (-626 (-1197)) (-626 (-548)) (-626 (-907 (-390))) (-626 (-907 (-576))) (-10 -8 (-15 -3055 ((-3 $ "failed") (-1197))))) (-656 (-1197))) (T -878)) -((-3055 (*1 *1 *2) (|partial| -12 (-5 *2 (-1197)) (-5 *1 (-878 *3)) (-14 *3 (-656 *2))))) -(-13 (-856) (-626 (-1197)) (-626 (-548)) (-626 (-907 (-390))) (-626 (-907 (-576))) (-10 -8 (-15 -3055 ((-3 $ "failed") (-1197))))) -((-3489 (((-112) $ $) NIL)) (-2629 (((-518) $) 9)) (-2014 (((-656 (-451)) $) 13)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 21)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 16))) -(((-879) (-13 (-1121) (-10 -8 (-15 -2629 ((-518) $)) (-15 -2014 ((-656 (-451)) $))))) (T -879)) -((-2629 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-879)))) (-2014 (*1 *2 *1) (-12 (-5 *2 (-656 (-451))) (-5 *1 (-879))))) -(-13 (-1121) (-10 -8 (-15 -2629 ((-518) $)) (-15 -2014 ((-656 (-451)) $)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-1561 (((-3 $ "failed") $) NIL)) (-4193 (((-112) $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ (-971 |#1|)) NIL) (((-971 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-174)))) (-3996 (((-783)) NIL T CONST)) (-3759 (((-1293) (-783)) NIL)) (-4055 (((-112) $ $) NIL)) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2925 (((-112) $ $) NIL)) (-3057 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-880 |#1| |#2| |#3| |#4|) (-13 (-1070) (-502 (-971 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3057 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3759 ((-1293) (-783))))) (-1070) (-656 (-1197)) (-656 (-783)) (-783)) (T -880)) -((-3057 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-880 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *2 (-1070)) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-783))) (-14 *5 (-783)))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-880 *4 *5 *6 *7)) (-4 *4 (-1070)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 *3)) (-14 *7 *3)))) -(-13 (-1070) (-502 (-971 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3057 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3759 ((-1293) (-783))))) -((-4239 (((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|) 38)) (-1648 (((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|) 29))) -(((-881 |#1| |#2| |#3|) (-10 -7 (-15 -1648 ((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|)) (-15 -4239 ((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|))) (-374) (-1279 |#1|) (-1264 |#1|)) (T -881)) -((-4239 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-176 *6)) (-5 *1 (-881 *5 *4 *6)) (-4 *4 (-1279 *5)) (-4 *6 (-1264 *5)))) (-1648 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-419 *6)) (-5 *1 (-881 *5 *4 *6)) (-4 *4 (-1279 *5)) (-4 *6 (-1264 *5))))) -(-10 -7 (-15 -1648 ((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|)) (-15 -4239 ((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|))) -((-1648 (((-3 (-419 (-1261 |#2| |#1|)) "failed") (-783) (-783) (-1280 |#1| |#2| |#3|)) 30) (((-3 (-419 (-1261 |#2| |#1|)) "failed") (-783) (-783) (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|)) 28))) -(((-882 |#1| |#2| |#3|) (-10 -7 (-15 -1648 ((-3 (-419 (-1261 |#2| |#1|)) "failed") (-783) (-783) (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|))) (-15 -1648 ((-3 (-419 (-1261 |#2| |#1|)) "failed") (-783) (-783) (-1280 |#1| |#2| |#3|)))) (-374) (-1197) |#1|) (T -882)) -((-1648 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1280 *5 *6 *7)) (-4 *5 (-374)) (-14 *6 (-1197)) (-14 *7 *5) (-5 *2 (-419 (-1261 *6 *5))) (-5 *1 (-882 *5 *6 *7)))) (-1648 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1280 *5 *6 *7)) (-4 *5 (-374)) (-14 *6 (-1197)) (-14 *7 *5) (-5 *2 (-419 (-1261 *6 *5))) (-5 *1 (-882 *5 *6 *7))))) -(-10 -7 (-15 -1648 ((-3 (-419 (-1261 |#2| |#1|)) "failed") (-783) (-783) (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|))) (-15 -1648 ((-3 (-419 (-1261 |#2| |#1|)) "failed") (-783) (-783) (-1280 |#1| |#2| |#3|)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 47)) (-2757 (($ $) 46)) (-3788 (((-112) $) 44)) (-4367 (((-3 $ "failed") $ $) 20)) (-1839 (($ $ (-576)) 68)) (-4016 (((-112) $ $) 65)) (-3886 (($) 18 T CONST)) (-4260 (($ (-1193 (-576)) (-576)) 67)) (-3429 (($ $ $) 61)) (-1561 (((-3 $ "failed") $) 37)) (-2462 (($ $) 70)) (-3441 (($ $ $) 62)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) 57)) (-3917 (((-783) $) 75)) (-4193 (((-112) $) 35)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-1633 (((-576)) 72)) (-4325 (((-576) $) 71)) (-3458 (($ $ $) 52) (($ (-656 $)) 51)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1749 (($ $ (-576)) 74)) (-3476 (((-3 $ "failed") $ $) 48)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1967 (((-783) $) 64)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 63)) (-4326 (((-1178 (-576)) $) 76)) (-3126 (($ $) 73)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2672 (((-112) $ $) 45)) (-4166 (((-576) $ (-576)) 69)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-2574 (((-703 (-1246)) $ (-1246)) NIL)) (-1350 (((-703 (-561)) $ (-561)) NIL)) (-3890 (((-783) $ (-129)) NIL)) (-4299 (((-703 (-130)) $ (-130)) 22)) (-2658 (($ (-400)) 12) (($ (-1179)) 14)) (-3991 (((-112) $) 19)) (-3569 (((-876) $) 26)) (-2516 (($ $) 23))) +(((-875) (-13 (-874) (-625 (-876)) (-10 -8 (-15 -2658 ($ (-400))) (-15 -2658 ($ (-1179))) (-15 -3991 ((-112) $))))) (T -875)) +((-2658 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-875)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-875)))) (-3991 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-875))))) +(-13 (-874) (-625 (-876)) (-10 -8 (-15 -2658 ($ (-400))) (-15 -2658 ($ (-1179))) (-15 -3991 ((-112) $)))) +((-3488 (((-112) $ $) NIL) (($ $ $) 85)) (-3762 (($ $ $) 125)) (-3360 (((-576) $) 31) (((-576)) 36)) (-3053 (($ (-576)) 53)) (-3266 (($ $ $) 54) (($ (-656 $)) 84)) (-3541 (($ $ (-656 $)) 82)) (-1896 (((-576) $) 34)) (-1863 (($ $ $) 73)) (-1369 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-2030 (((-576) $) 33)) (-2624 (($ $ $) 72)) (-1328 (($ $) 114)) (-1648 (($ $ $) 129)) (-2695 (($ (-656 $)) 61)) (-2447 (($ $ (-656 $)) 79)) (-4233 (($ (-576) (-576)) 55)) (-3943 (($ $) 126) (($ $ $) 127)) (-4249 (($ $ (-576)) 43) (($ $) 46)) (-3428 (($ $ $) 97)) (-2278 (($ $ $) 132)) (-3250 (($ $) 115)) (-3440 (($ $ $) 98)) (-3425 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-2113 (((-1293) $) 10)) (-2173 (($ $) 118) (($ $ (-783)) 122)) (-2829 (($ $ $) 75)) (-4040 (($ $ $) 74)) (-4002 (($ $ (-656 $)) 110)) (-4441 (($ $ $) 113)) (-1929 (($ (-656 $)) 59)) (-2687 (($ $) 70) (($ (-656 $)) 71)) (-2560 (($ $ $) 123)) (-3790 (($ $) 116)) (-4440 (($ $ $) 128)) (-4375 (($ (-576)) 21) (($ (-1197)) 23) (($ (-1179)) 30) (($ (-227)) 25)) (-2685 (($ $ $) 101)) (-2663 (($ $) 102)) (-4151 (((-1293) (-1179)) 15)) (-2770 (($ (-1179)) 14)) (-2466 (($ (-656 (-656 $))) 58)) (-4239 (($ $ (-576)) 42) (($ $) 45)) (-2046 (((-1179) $) NIL)) (-2503 (($ $ $) 131)) (-3894 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-2232 (((-112) $) 108)) (-3625 (($ $ (-656 $)) 111) (($ $ $ $) 112)) (-3336 (($ (-576)) 39)) (-2327 (((-576) $) 32) (((-576)) 35)) (-3712 (($ $ $) 40) (($ (-656 $)) 83)) (-1450 (((-1141) $) NIL)) (-3475 (($ $ $) 99)) (-3579 (($) 13)) (-2796 (($ $ (-656 $)) 109)) (-2523 (((-1179) (-1179)) 8)) (-4099 (($ $) 117) (($ $ (-783)) 121)) (-3464 (($ $ $) 96)) (-2774 (($ $ (-783)) 139)) (-3285 (($ (-656 $)) 60)) (-3569 (((-876) $) 19)) (-2396 (($ $ (-576)) 41) (($ $) 44)) (-4396 (($ $) 68) (($ (-656 $)) 69)) (-1895 (($ $) 66) (($ (-656 $)) 67)) (-3680 (($ $) 124)) (-3290 (($ (-656 $)) 65)) (-3679 (($ $ $) 105)) (-2399 (((-112) $ $) NIL)) (-1703 (($ $ $) 130)) (-2674 (($ $ $) 100)) (-1785 (($ $ $) 103) (($ $) 104)) (-2990 (($ $ $) 89)) (-2962 (($ $ $) 87)) (-2924 (((-112) $ $) 16) (($ $ $) 17)) (-2978 (($ $ $) 88)) (-2949 (($ $ $) 86)) (-3056 (($ $ $) 94)) (-3043 (($ $ $) 91) (($ $) 92)) (-3029 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) +(((-876) (-13 (-1121) (-10 -8 (-15 -2113 ((-1293) $)) (-15 -2770 ($ (-1179))) (-15 -4151 ((-1293) (-1179))) (-15 -4375 ($ (-576))) (-15 -4375 ($ (-1197))) (-15 -4375 ($ (-1179))) (-15 -4375 ($ (-227))) (-15 -3579 ($)) (-15 -2523 ((-1179) (-1179))) (-15 -3360 ((-576) $)) (-15 -2327 ((-576) $)) (-15 -3360 ((-576))) (-15 -2327 ((-576))) (-15 -2030 ((-576) $)) (-15 -1896 ((-576) $)) (-15 -3336 ($ (-576))) (-15 -3053 ($ (-576))) (-15 -4233 ($ (-576) (-576))) (-15 -4239 ($ $ (-576))) (-15 -4249 ($ $ (-576))) (-15 -2396 ($ $ (-576))) (-15 -4239 ($ $)) (-15 -4249 ($ $)) (-15 -2396 ($ $)) (-15 -3712 ($ $ $)) (-15 -3266 ($ $ $)) (-15 -3712 ($ (-656 $))) (-15 -3266 ($ (-656 $))) (-15 -4002 ($ $ (-656 $))) (-15 -3625 ($ $ (-656 $))) (-15 -3625 ($ $ $ $)) (-15 -4441 ($ $ $)) (-15 -2232 ((-112) $)) (-15 -2796 ($ $ (-656 $))) (-15 -1328 ($ $)) (-15 -2503 ($ $ $)) (-15 -3680 ($ $)) (-15 -2466 ($ (-656 (-656 $)))) (-15 -3762 ($ $ $)) (-15 -3943 ($ $)) (-15 -3943 ($ $ $)) (-15 -4440 ($ $ $)) (-15 -1648 ($ $ $)) (-15 -1703 ($ $ $)) (-15 -2278 ($ $ $)) (-15 -2774 ($ $ (-783))) (-15 -3679 ($ $ $)) (-15 -2624 ($ $ $)) (-15 -1863 ($ $ $)) (-15 -4040 ($ $ $)) (-15 -2829 ($ $ $)) (-15 -2447 ($ $ (-656 $))) (-15 -3541 ($ $ (-656 $))) (-15 -3250 ($ $)) (-15 -4099 ($ $)) (-15 -4099 ($ $ (-783))) (-15 -2173 ($ $)) (-15 -2173 ($ $ (-783))) (-15 -3790 ($ $)) (-15 -2560 ($ $ $)) (-15 -1369 ($ $)) (-15 -1369 ($ $ $)) (-15 -1369 ($ $ $ $)) (-15 -3425 ($ $)) (-15 -3425 ($ $ $)) (-15 -3425 ($ $ $ $)) (-15 -3894 ($ $)) (-15 -3894 ($ $ $)) (-15 -3894 ($ $ $ $)) (-15 -1895 ($ $)) (-15 -1895 ($ (-656 $))) (-15 -4396 ($ $)) (-15 -4396 ($ (-656 $))) (-15 -2687 ($ $)) (-15 -2687 ($ (-656 $))) (-15 -1929 ($ (-656 $))) (-15 -3285 ($ (-656 $))) (-15 -2695 ($ (-656 $))) (-15 -3290 ($ (-656 $))) (-15 -2924 ($ $ $)) (-15 -3488 ($ $ $)) (-15 -2949 ($ $ $)) (-15 -2962 ($ $ $)) (-15 -2978 ($ $ $)) (-15 -2990 ($ $ $)) (-15 -3029 ($ $ $)) (-15 -3043 ($ $ $)) (-15 -3043 ($ $)) (-15 * ($ $ $)) (-15 -3056 ($ $ $)) (-15 ** ($ $ $)) (-15 -3464 ($ $ $)) (-15 -3428 ($ $ $)) (-15 -3440 ($ $ $)) (-15 -3475 ($ $ $)) (-15 -2674 ($ $ $)) (-15 -2685 ($ $ $)) (-15 -2663 ($ $)) (-15 -1785 ($ $ $)) (-15 -1785 ($ $))))) (T -876)) +((-2113 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-876)))) (-2770 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876)))) (-4151 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-876)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-876)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-876)))) (-3579 (*1 *1) (-5 *1 (-876))) (-2523 (*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876)))) (-3360 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-2327 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-3360 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-2327 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-2030 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-1896 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-3336 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-3053 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-4233 (*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-4239 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-4249 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-2396 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-4239 (*1 *1 *1) (-5 *1 (-876))) (-4249 (*1 *1 *1) (-5 *1 (-876))) (-2396 (*1 *1 *1) (-5 *1 (-876))) (-3712 (*1 *1 *1 *1) (-5 *1 (-876))) (-3266 (*1 *1 *1 *1) (-5 *1 (-876))) (-3712 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-3266 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-4002 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-3625 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-3625 (*1 *1 *1 *1 *1) (-5 *1 (-876))) (-4441 (*1 *1 *1 *1) (-5 *1 (-876))) (-2232 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876)))) (-2796 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-1328 (*1 *1 *1) (-5 *1 (-876))) (-2503 (*1 *1 *1 *1) (-5 *1 (-876))) (-3680 (*1 *1 *1) (-5 *1 (-876))) (-2466 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-876)))) (-5 *1 (-876)))) (-3762 (*1 *1 *1 *1) (-5 *1 (-876))) (-3943 (*1 *1 *1) (-5 *1 (-876))) (-3943 (*1 *1 *1 *1) (-5 *1 (-876))) (-4440 (*1 *1 *1 *1) (-5 *1 (-876))) (-1648 (*1 *1 *1 *1) (-5 *1 (-876))) (-1703 (*1 *1 *1 *1) (-5 *1 (-876))) (-2278 (*1 *1 *1 *1) (-5 *1 (-876))) (-2774 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-876)))) (-3679 (*1 *1 *1 *1) (-5 *1 (-876))) (-2624 (*1 *1 *1 *1) (-5 *1 (-876))) (-1863 (*1 *1 *1 *1) (-5 *1 (-876))) (-4040 (*1 *1 *1 *1) (-5 *1 (-876))) (-2829 (*1 *1 *1 *1) (-5 *1 (-876))) (-2447 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-3541 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-3250 (*1 *1 *1) (-5 *1 (-876))) (-4099 (*1 *1 *1) (-5 *1 (-876))) (-4099 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-876)))) (-2173 (*1 *1 *1) (-5 *1 (-876))) (-2173 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-876)))) (-3790 (*1 *1 *1) (-5 *1 (-876))) (-2560 (*1 *1 *1 *1) (-5 *1 (-876))) (-1369 (*1 *1 *1) (-5 *1 (-876))) (-1369 (*1 *1 *1 *1) (-5 *1 (-876))) (-1369 (*1 *1 *1 *1 *1) (-5 *1 (-876))) (-3425 (*1 *1 *1) (-5 *1 (-876))) (-3425 (*1 *1 *1 *1) (-5 *1 (-876))) (-3425 (*1 *1 *1 *1 *1) (-5 *1 (-876))) (-3894 (*1 *1 *1) (-5 *1 (-876))) (-3894 (*1 *1 *1 *1) (-5 *1 (-876))) (-3894 (*1 *1 *1 *1 *1) (-5 *1 (-876))) (-1895 (*1 *1 *1) (-5 *1 (-876))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-4396 (*1 *1 *1) (-5 *1 (-876))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-2687 (*1 *1 *1) (-5 *1 (-876))) (-2687 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-1929 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-3285 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-2695 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-3290 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-2924 (*1 *1 *1 *1) (-5 *1 (-876))) (-3488 (*1 *1 *1 *1) (-5 *1 (-876))) (-2949 (*1 *1 *1 *1) (-5 *1 (-876))) (-2962 (*1 *1 *1 *1) (-5 *1 (-876))) (-2978 (*1 *1 *1 *1) (-5 *1 (-876))) (-2990 (*1 *1 *1 *1) (-5 *1 (-876))) (-3029 (*1 *1 *1 *1) (-5 *1 (-876))) (-3043 (*1 *1 *1 *1) (-5 *1 (-876))) (-3043 (*1 *1 *1) (-5 *1 (-876))) (* (*1 *1 *1 *1) (-5 *1 (-876))) (-3056 (*1 *1 *1 *1) (-5 *1 (-876))) (** (*1 *1 *1 *1) (-5 *1 (-876))) (-3464 (*1 *1 *1 *1) (-5 *1 (-876))) (-3428 (*1 *1 *1 *1) (-5 *1 (-876))) (-3440 (*1 *1 *1 *1) (-5 *1 (-876))) (-3475 (*1 *1 *1 *1) (-5 *1 (-876))) (-2674 (*1 *1 *1 *1) (-5 *1 (-876))) (-2685 (*1 *1 *1 *1) (-5 *1 (-876))) (-2663 (*1 *1 *1) (-5 *1 (-876))) (-1785 (*1 *1 *1 *1) (-5 *1 (-876))) (-1785 (*1 *1 *1) (-5 *1 (-876)))) +(-13 (-1121) (-10 -8 (-15 -2113 ((-1293) $)) (-15 -2770 ($ (-1179))) (-15 -4151 ((-1293) (-1179))) (-15 -4375 ($ (-576))) (-15 -4375 ($ (-1197))) (-15 -4375 ($ (-1179))) (-15 -4375 ($ (-227))) (-15 -3579 ($)) (-15 -2523 ((-1179) (-1179))) (-15 -3360 ((-576) $)) (-15 -2327 ((-576) $)) (-15 -3360 ((-576))) (-15 -2327 ((-576))) (-15 -2030 ((-576) $)) (-15 -1896 ((-576) $)) (-15 -3336 ($ (-576))) (-15 -3053 ($ (-576))) (-15 -4233 ($ (-576) (-576))) (-15 -4239 ($ $ (-576))) (-15 -4249 ($ $ (-576))) (-15 -2396 ($ $ (-576))) (-15 -4239 ($ $)) (-15 -4249 ($ $)) (-15 -2396 ($ $)) (-15 -3712 ($ $ $)) (-15 -3266 ($ $ $)) (-15 -3712 ($ (-656 $))) (-15 -3266 ($ (-656 $))) (-15 -4002 ($ $ (-656 $))) (-15 -3625 ($ $ (-656 $))) (-15 -3625 ($ $ $ $)) (-15 -4441 ($ $ $)) (-15 -2232 ((-112) $)) (-15 -2796 ($ $ (-656 $))) (-15 -1328 ($ $)) (-15 -2503 ($ $ $)) (-15 -3680 ($ $)) (-15 -2466 ($ (-656 (-656 $)))) (-15 -3762 ($ $ $)) (-15 -3943 ($ $)) (-15 -3943 ($ $ $)) (-15 -4440 ($ $ $)) (-15 -1648 ($ $ $)) (-15 -1703 ($ $ $)) (-15 -2278 ($ $ $)) (-15 -2774 ($ $ (-783))) (-15 -3679 ($ $ $)) (-15 -2624 ($ $ $)) (-15 -1863 ($ $ $)) (-15 -4040 ($ $ $)) (-15 -2829 ($ $ $)) (-15 -2447 ($ $ (-656 $))) (-15 -3541 ($ $ (-656 $))) (-15 -3250 ($ $)) (-15 -4099 ($ $)) (-15 -4099 ($ $ (-783))) (-15 -2173 ($ $)) (-15 -2173 ($ $ (-783))) (-15 -3790 ($ $)) (-15 -2560 ($ $ $)) (-15 -1369 ($ $)) (-15 -1369 ($ $ $)) (-15 -1369 ($ $ $ $)) (-15 -3425 ($ $)) (-15 -3425 ($ $ $)) (-15 -3425 ($ $ $ $)) (-15 -3894 ($ $)) (-15 -3894 ($ $ $)) (-15 -3894 ($ $ $ $)) (-15 -1895 ($ $)) (-15 -1895 ($ (-656 $))) (-15 -4396 ($ $)) (-15 -4396 ($ (-656 $))) (-15 -2687 ($ $)) (-15 -2687 ($ (-656 $))) (-15 -1929 ($ (-656 $))) (-15 -3285 ($ (-656 $))) (-15 -2695 ($ (-656 $))) (-15 -3290 ($ (-656 $))) (-15 -2924 ($ $ $)) (-15 -3488 ($ $ $)) (-15 -2949 ($ $ $)) (-15 -2962 ($ $ $)) (-15 -2978 ($ $ $)) (-15 -2990 ($ $ $)) (-15 -3029 ($ $ $)) (-15 -3043 ($ $ $)) (-15 -3043 ($ $)) (-15 * ($ $ $)) (-15 -3056 ($ $ $)) (-15 ** ($ $ $)) (-15 -3464 ($ $ $)) (-15 -3428 ($ $ $)) (-15 -3440 ($ $ $)) (-15 -3475 ($ $ $)) (-15 -2674 ($ $ $)) (-15 -2685 ($ $ $)) (-15 -2663 ($ $)) (-15 -1785 ($ $ $)) (-15 -1785 ($ $)))) +((-2679 (((-1293) (-656 (-52))) 23)) (-2750 (((-1293) (-1179) (-876)) 13) (((-1293) (-876)) 8) (((-1293) (-1179)) 10))) +(((-877) (-10 -7 (-15 -2750 ((-1293) (-1179))) (-15 -2750 ((-1293) (-876))) (-15 -2750 ((-1293) (-1179) (-876))) (-15 -2679 ((-1293) (-656 (-52)))))) (T -877)) +((-2679 (*1 *2 *3) (-12 (-5 *3 (-656 (-52))) (-5 *2 (-1293)) (-5 *1 (-877)))) (-2750 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-876)) (-5 *2 (-1293)) (-5 *1 (-877)))) (-2750 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-877)))) (-2750 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-877))))) +(-10 -7 (-15 -2750 ((-1293) (-1179))) (-15 -2750 ((-1293) (-876))) (-15 -2750 ((-1293) (-1179) (-876))) (-15 -2679 ((-1293) (-656 (-52))))) +((-3488 (((-112) $ $) NIL)) (-3054 (((-3 $ "failed") (-1197)) 36)) (-2098 (((-783)) 32)) (-1836 (($) NIL)) (-3124 (($ $ $) NIL) (($) NIL T CONST)) (-1441 (($ $ $) NIL) (($) NIL T CONST)) (-1558 (((-940) $) 29)) (-2046 (((-1179) $) 43)) (-3223 (($ (-940)) 28)) (-1450 (((-1141) $) NIL)) (-4171 (((-1197) $) 13) (((-548) $) 19) (((-907 (-390)) $) 26) (((-907 (-576)) $) 22)) (-3569 (((-876) $) 16)) (-2399 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 40)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) 38))) +(((-878 |#1|) (-13 (-856) (-626 (-1197)) (-626 (-548)) (-626 (-907 (-390))) (-626 (-907 (-576))) (-10 -8 (-15 -3054 ((-3 $ "failed") (-1197))))) (-656 (-1197))) (T -878)) +((-3054 (*1 *1 *2) (|partial| -12 (-5 *2 (-1197)) (-5 *1 (-878 *3)) (-14 *3 (-656 *2))))) +(-13 (-856) (-626 (-1197)) (-626 (-548)) (-626 (-907 (-390))) (-626 (-907 (-576))) (-10 -8 (-15 -3054 ((-3 $ "failed") (-1197))))) +((-3488 (((-112) $ $) NIL)) (-2628 (((-518) $) 9)) (-2425 (((-656 (-451)) $) 13)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 21)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 16))) +(((-879) (-13 (-1121) (-10 -8 (-15 -2628 ((-518) $)) (-15 -2425 ((-656 (-451)) $))))) (T -879)) +((-2628 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-879)))) (-2425 (*1 *2 *1) (-12 (-5 *2 (-656 (-451))) (-5 *1 (-879))))) +(-13 (-1121) (-10 -8 (-15 -2628 ((-518) $)) (-15 -2425 ((-656 (-451)) $)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-3673 (((-3 $ "failed") $) NIL)) (-1351 (((-112) $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ (-971 |#1|)) NIL) (((-971 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-174)))) (-3154 (((-783)) NIL T CONST)) (-1479 (((-1293) (-783)) NIL)) (-2399 (((-112) $ $) NIL)) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2924 (((-112) $ $) NIL)) (-3056 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-880 |#1| |#2| |#3| |#4|) (-13 (-1070) (-502 (-971 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3056 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1479 ((-1293) (-783))))) (-1070) (-656 (-1197)) (-656 (-783)) (-783)) (T -880)) +((-3056 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-880 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *2 (-1070)) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-783))) (-14 *5 (-783)))) (-1479 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-880 *4 *5 *6 *7)) (-4 *4 (-1070)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 *3)) (-14 *7 *3)))) +(-13 (-1070) (-502 (-971 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3056 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1479 ((-1293) (-783))))) +((-3732 (((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|) 38)) (-1991 (((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|) 29))) +(((-881 |#1| |#2| |#3|) (-10 -7 (-15 -1991 ((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|)) (-15 -3732 ((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|))) (-374) (-1279 |#1|) (-1264 |#1|)) (T -881)) +((-3732 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-176 *6)) (-5 *1 (-881 *5 *4 *6)) (-4 *4 (-1279 *5)) (-4 *6 (-1264 *5)))) (-1991 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-419 *6)) (-5 *1 (-881 *5 *4 *6)) (-4 *4 (-1279 *5)) (-4 *6 (-1264 *5))))) +(-10 -7 (-15 -1991 ((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|)) (-15 -3732 ((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|))) +((-1991 (((-3 (-419 (-1261 |#2| |#1|)) "failed") (-783) (-783) (-1280 |#1| |#2| |#3|)) 30) (((-3 (-419 (-1261 |#2| |#1|)) "failed") (-783) (-783) (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|)) 28))) +(((-882 |#1| |#2| |#3|) (-10 -7 (-15 -1991 ((-3 (-419 (-1261 |#2| |#1|)) "failed") (-783) (-783) (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|))) (-15 -1991 ((-3 (-419 (-1261 |#2| |#1|)) "failed") (-783) (-783) (-1280 |#1| |#2| |#3|)))) (-374) (-1197) |#1|) (T -882)) +((-1991 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1280 *5 *6 *7)) (-4 *5 (-374)) (-14 *6 (-1197)) (-14 *7 *5) (-5 *2 (-419 (-1261 *6 *5))) (-5 *1 (-882 *5 *6 *7)))) (-1991 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1280 *5 *6 *7)) (-4 *5 (-374)) (-14 *6 (-1197)) (-14 *7 *5) (-5 *2 (-419 (-1261 *6 *5))) (-5 *1 (-882 *5 *6 *7))))) +(-10 -7 (-15 -1991 ((-3 (-419 (-1261 |#2| |#1|)) "failed") (-783) (-783) (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|))) (-15 -1991 ((-3 (-419 (-1261 |#2| |#1|)) "failed") (-783) (-783) (-1280 |#1| |#2| |#3|)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-4195 (($ $) 46)) (-1760 (((-112) $) 44)) (-2428 (((-3 $ "failed") $ $) 20)) (-1840 (($ $ (-576)) 68)) (-3330 (((-112) $ $) 65)) (-3404 (($) 18 T CONST)) (-3943 (($ (-1193 (-576)) (-576)) 67)) (-3428 (($ $ $) 61)) (-3673 (((-3 $ "failed") $) 37)) (-4416 (($ $) 70)) (-3440 (($ $ $) 62)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) 57)) (-3726 (((-783) $) 75)) (-1351 (((-112) $) 35)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3125 (((-576)) 72)) (-3287 (((-576) $) 71)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3497 (($ $ $) 54) (($ (-656 $)) 53)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1743 (($ $ (-576)) 74)) (-3475 (((-3 $ "failed") $ $) 48)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1979 (((-783) $) 64)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 63)) (-3295 (((-1178 (-576)) $) 76)) (-2539 (($ $) 73)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-1505 (((-112) $ $) 45)) (-4165 (((-576) $ (-576)) 69)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-883 |#1|) (-141) (-576)) (T -883)) -((-4326 (*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-1178 (-576))))) (-3917 (*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-783)))) (-1749 (*1 *1 *1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576)))) (-3126 (*1 *1 *1) (-4 *1 (-883 *2))) (-1633 (*1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576)))) (-4325 (*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576)))) (-2462 (*1 *1 *1) (-4 *1 (-883 *2))) (-4166 (*1 *2 *1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576)))) (-1839 (*1 *1 *1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576)))) (-4260 (*1 *1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *3 (-576)) (-4 *1 (-883 *4))))) -(-13 (-317) (-148) (-10 -8 (-15 -4326 ((-1178 (-576)) $)) (-15 -3917 ((-783) $)) (-15 -1749 ($ $ (-576))) (-15 -3126 ($ $)) (-15 -1633 ((-576))) (-15 -4325 ((-576) $)) (-15 -2462 ($ $)) (-15 -4166 ((-576) $ (-576))) (-15 -1839 ($ $ (-576))) (-15 -4260 ($ (-1193 (-576)) (-576))))) +((-3295 (*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-1178 (-576))))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-783)))) (-1743 (*1 *1 *1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576)))) (-2539 (*1 *1 *1) (-4 *1 (-883 *2))) (-3125 (*1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576)))) (-3287 (*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576)))) (-4416 (*1 *1 *1) (-4 *1 (-883 *2))) (-4165 (*1 *2 *1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576)))) (-1840 (*1 *1 *1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576)))) (-3943 (*1 *1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *3 (-576)) (-4 *1 (-883 *4))))) +(-13 (-317) (-148) (-10 -8 (-15 -3295 ((-1178 (-576)) $)) (-15 -3726 ((-783) $)) (-15 -1743 ($ $ (-576))) (-15 -2539 ($ $)) (-15 -3125 ((-576))) (-15 -3287 ((-576) $)) (-15 -4416 ($ $)) (-15 -4165 ((-576) $ (-576))) (-15 -1840 ($ $ (-576))) (-15 -3943 ($ (-1193 (-576)) (-576))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-939) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-1839 (($ $ (-576)) NIL)) (-4016 (((-112) $ $) NIL)) (-3886 (($) NIL T CONST)) (-4260 (($ (-1193 (-576)) (-576)) NIL)) (-3429 (($ $ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-2462 (($ $) NIL)) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-3917 (((-783) $) NIL)) (-4193 (((-112) $) NIL)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1633 (((-576)) NIL)) (-4325 (((-576) $) NIL)) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1749 (($ $ (-576)) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1967 (((-783) $) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-4326 (((-1178 (-576)) $) NIL)) (-3126 (($ $) NIL)) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL)) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL)) (-4166 (((-576) $ (-576)) NIL)) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2925 (((-112) $ $) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-1840 (($ $ (-576)) NIL)) (-3330 (((-112) $ $) NIL)) (-3404 (($) NIL T CONST)) (-3943 (($ (-1193 (-576)) (-576)) NIL)) (-3428 (($ $ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-4416 (($ $) NIL)) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3726 (((-783) $) NIL)) (-1351 (((-112) $) NIL)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3125 (((-576)) NIL)) (-3287 (((-576) $) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1743 (($ $ (-576)) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1979 (((-783) $) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-3295 (((-1178 (-576)) $) NIL)) (-2539 (($ $) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL)) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL)) (-4165 (((-576) $ (-576)) NIL)) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2924 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) (((-884 |#1|) (-883 |#1|) (-576)) (T -884)) NIL (-883 |#1|) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2575 (((-884 |#1|) $) NIL (|has| (-884 |#1|) (-317)))) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3601 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-884 |#1|) (-928)))) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-884 |#1|) (-928)))) (-4016 (((-112) $ $) NIL)) (-3308 (((-576) $) NIL (|has| (-884 |#1|) (-832)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-884 |#1|) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| (-884 |#1|) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-884 |#1|) (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-884 |#1|) (-1059 (-576))))) (-2860 (((-884 |#1|) $) NIL) (((-1197) $) NIL (|has| (-884 |#1|) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-884 |#1|) (-1059 (-576)))) (((-576) $) NIL (|has| (-884 |#1|) (-1059 (-576))))) (-2257 (($ $) NIL) (($ (-576) $) NIL)) (-3429 (($ $ $) NIL)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| (-884 |#1|) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-884 |#1|) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-884 |#1|))) (|:| |vec| (-1288 (-884 |#1|)))) (-701 $) (-1288 $)) NIL) (((-701 (-884 |#1|)) (-701 $)) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-884 |#1|) (-557)))) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-4249 (((-112) $) NIL)) (-2087 (((-112) $) NIL (|has| (-884 |#1|) (-832)))) (-1840 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-884 |#1|) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-884 |#1|) (-901 (-390))))) (-4193 (((-112) $) NIL)) (-2171 (($ $) NIL)) (-1570 (((-884 |#1|) $) NIL)) (-2240 (((-3 $ "failed") $) NIL (|has| (-884 |#1|) (-1173)))) (-1634 (((-112) $) NIL (|has| (-884 |#1|) (-832)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3125 (($ $ $) NIL (|has| (-884 |#1|) (-861)))) (-3133 (($ $ $) NIL (|has| (-884 |#1|) (-861)))) (-4117 (($ (-1 (-884 |#1|) (-884 |#1|)) $) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| (-884 |#1|) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-884 |#1|) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-884 |#1|))) (|:| |vec| (-1288 (-884 |#1|)))) (-1288 $) $) NIL) (((-701 (-884 |#1|)) (-1288 $)) NIL)) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3540 (($) NIL (|has| (-884 |#1|) (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2393 (($ $) NIL (|has| (-884 |#1|) (-317)))) (-2443 (((-884 |#1|) $) NIL (|has| (-884 |#1|) (-557)))) (-4100 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-884 |#1|) (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-884 |#1|) (-928)))) (-1828 (((-430 $) $) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3284 (($ $ (-656 (-884 |#1|)) (-656 (-884 |#1|))) NIL (|has| (-884 |#1|) (-319 (-884 |#1|)))) (($ $ (-884 |#1|) (-884 |#1|)) NIL (|has| (-884 |#1|) (-319 (-884 |#1|)))) (($ $ (-304 (-884 |#1|))) NIL (|has| (-884 |#1|) (-319 (-884 |#1|)))) (($ $ (-656 (-304 (-884 |#1|)))) NIL (|has| (-884 |#1|) (-319 (-884 |#1|)))) (($ $ (-656 (-1197)) (-656 (-884 |#1|))) NIL (|has| (-884 |#1|) (-526 (-1197) (-884 |#1|)))) (($ $ (-1197) (-884 |#1|)) NIL (|has| (-884 |#1|) (-526 (-1197) (-884 |#1|))))) (-1967 (((-783) $) NIL)) (-2797 (($ $ (-884 |#1|)) NIL (|has| (-884 |#1|) (-296 (-884 |#1|) (-884 |#1|))))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-2775 (($ $ (-1 (-884 |#1|) (-884 |#1|))) NIL) (($ $ (-1 (-884 |#1|) (-884 |#1|)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $) NIL (|has| (-884 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-884 |#1|) (-237)))) (-2143 (($ $) NIL)) (-1581 (((-884 |#1|) $) NIL)) (-4172 (((-907 (-576)) $) NIL (|has| (-884 |#1|) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-884 |#1|) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-884 |#1|) (-626 (-548)))) (((-390) $) NIL (|has| (-884 |#1|) (-1043))) (((-227) $) NIL (|has| (-884 |#1|) (-1043)))) (-3091 (((-176 (-419 (-576))) $) NIL)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-884 |#1|) (-928))))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-884 |#1|)) NIL) (($ (-1197)) NIL (|has| (-884 |#1|) (-1059 (-1197))))) (-4336 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| $ (-146)) (|has| (-884 |#1|) (-928))) (|has| (-884 |#1|) (-146))))) (-3996 (((-783)) NIL T CONST)) (-4118 (((-884 |#1|) $) NIL (|has| (-884 |#1|) (-557)))) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL)) (-4166 (((-419 (-576)) $ (-576)) NIL)) (-2122 (($ $) NIL (|has| (-884 |#1|) (-832)))) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2020 (($ $ (-1 (-884 |#1|) (-884 |#1|))) NIL) (($ $ (-1 (-884 |#1|) (-884 |#1|)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $) NIL (|has| (-884 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-884 |#1|) (-237)))) (-2992 (((-112) $ $) NIL (|has| (-884 |#1|) (-861)))) (-2964 (((-112) $ $) NIL (|has| (-884 |#1|) (-861)))) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| (-884 |#1|) (-861)))) (-2950 (((-112) $ $) NIL (|has| (-884 |#1|) (-861)))) (-3057 (($ $ $) NIL) (($ (-884 |#1|) (-884 |#1|)) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-884 |#1|) $) NIL) (($ $ (-884 |#1|)) NIL))) -(((-885 |#1|) (-13 (-1013 (-884 |#1|)) (-10 -8 (-15 -4166 ((-419 (-576)) $ (-576))) (-15 -3091 ((-176 (-419 (-576))) $)) (-15 -2257 ($ $)) (-15 -2257 ($ (-576) $)))) (-576)) (T -885)) -((-4166 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-885 *4)) (-14 *4 *3) (-5 *3 (-576)))) (-3091 (*1 *2 *1) (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-885 *3)) (-14 *3 (-576)))) (-2257 (*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-14 *2 (-576)))) (-2257 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-885 *3)) (-14 *3 *2)))) -(-13 (-1013 (-884 |#1|)) (-10 -8 (-15 -4166 ((-419 (-576)) $ (-576))) (-15 -3091 ((-176 (-419 (-576))) $)) (-15 -2257 ($ $)) (-15 -2257 ($ (-576) $)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2575 ((|#2| $) NIL (|has| |#2| (-317)))) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3601 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-4016 (((-112) $ $) NIL)) (-3308 (((-576) $) NIL (|has| |#2| (-832)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| |#2| (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576))))) (-2860 ((|#2| $) NIL) (((-1197) $) NIL (|has| |#2| (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-576)))) (((-576) $) NIL (|has| |#2| (-1059 (-576))))) (-2257 (($ $) 35) (($ (-576) $) 38)) (-3429 (($ $ $) NIL)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-1561 (((-3 $ "failed") $) 64)) (-1836 (($) NIL (|has| |#2| (-557)))) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-4249 (((-112) $) NIL)) (-2087 (((-112) $) NIL (|has| |#2| (-832)))) (-1840 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| |#2| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| |#2| (-901 (-390))))) (-4193 (((-112) $) NIL)) (-2171 (($ $) NIL)) (-1570 ((|#2| $) NIL)) (-2240 (((-3 $ "failed") $) NIL (|has| |#2| (-1173)))) (-1634 (((-112) $) NIL (|has| |#2| (-832)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3125 (($ $ $) NIL (|has| |#2| (-861)))) (-3133 (($ $ $) NIL (|has| |#2| (-861)))) (-4117 (($ (-1 |#2| |#2|) $) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) 60)) (-3540 (($) NIL (|has| |#2| (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2393 (($ $) NIL (|has| |#2| (-317)))) (-2443 ((|#2| $) NIL (|has| |#2| (-557)))) (-4100 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1828 (((-430 $) $) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3284 (($ $ (-656 |#2|) (-656 |#2|)) NIL (|has| |#2| (-319 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-319 |#2|))) (($ $ (-304 |#2|)) NIL (|has| |#2| (-319 |#2|))) (($ $ (-656 (-304 |#2|))) NIL (|has| |#2| (-319 |#2|))) (($ $ (-656 (-1197)) (-656 |#2|)) NIL (|has| |#2| (-526 (-1197) |#2|))) (($ $ (-1197) |#2|) NIL (|has| |#2| (-526 (-1197) |#2|)))) (-1967 (((-783) $) NIL)) (-2797 (($ $ |#2|) NIL (|has| |#2| (-296 |#2| |#2|)))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-2775 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197)))) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237)))) (-2143 (($ $) NIL)) (-1581 ((|#2| $) NIL)) (-4172 (((-907 (-576)) $) NIL (|has| |#2| (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| |#2| (-626 (-907 (-390))))) (((-548) $) NIL (|has| |#2| (-626 (-548)))) (((-390) $) NIL (|has| |#2| (-1043))) (((-227) $) NIL (|has| |#2| (-1043)))) (-3091 (((-176 (-419 (-576))) $) 78)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928))))) (-3570 (((-876) $) 106) (($ (-576)) 20) (($ $) NIL) (($ (-419 (-576))) 25) (($ |#2|) 19) (($ (-1197)) NIL (|has| |#2| (-1059 (-1197))))) (-4336 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#2| (-146))))) (-3996 (((-783)) NIL T CONST)) (-4118 ((|#2| $) NIL (|has| |#2| (-557)))) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL)) (-4166 (((-419 (-576)) $ (-576)) 71)) (-2122 (($ $) NIL (|has| |#2| (-832)))) (-2721 (($) 15 T CONST)) (-2732 (($) 17 T CONST)) (-2020 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197)))) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237)))) (-2992 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2964 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2925 (((-112) $ $) 46)) (-2978 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2950 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3057 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3044 (($ $) 50) (($ $ $) 52)) (-3030 (($ $ $) 48)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 61)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 53) (($ $ $) 55) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) -(((-886 |#1| |#2|) (-13 (-1013 |#2|) (-10 -8 (-15 -4166 ((-419 (-576)) $ (-576))) (-15 -3091 ((-176 (-419 (-576))) $)) (-15 -2257 ($ $)) (-15 -2257 ($ (-576) $)))) (-576) (-883 |#1|)) (T -886)) -((-4166 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-419 (-576))) (-5 *1 (-886 *4 *5)) (-5 *3 (-576)) (-4 *5 (-883 *4)))) (-3091 (*1 *2 *1) (-12 (-14 *3 (-576)) (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-886 *3 *4)) (-4 *4 (-883 *3)))) (-2257 (*1 *1 *1) (-12 (-14 *2 (-576)) (-5 *1 (-886 *2 *3)) (-4 *3 (-883 *2)))) (-2257 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-14 *3 *2) (-5 *1 (-886 *3 *4)) (-4 *4 (-883 *3))))) -(-13 (-1013 |#2|) (-10 -8 (-15 -4166 ((-419 (-576)) $ (-576))) (-15 -3091 ((-176 (-419 (-576))) $)) (-15 -2257 ($ $)) (-15 -2257 ($ (-576) $)))) -((-3489 (((-112) $ $) NIL (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))))) (-2883 ((|#2| $) 12)) (-3253 (($ |#1| |#2|) 9)) (-3699 (((-1179) $) NIL (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))))) (-1450 (((-1141) $) NIL (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))))) (-3581 ((|#1| $) 11)) (-3582 (($ |#1| |#2|) 10)) (-3570 (((-876) $) 18 (-2760 (-12 (|has| |#1| (-625 (-876))) (|has| |#2| (-625 (-876)))) (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121)))))) (-4055 (((-112) $ $) NIL (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))))) (-2925 (((-112) $ $) 23 (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121)))))) -(((-887 |#1| |#2|) (-13 (-1238) (-10 -8 (IF (|has| |#1| (-625 (-876))) (IF (|has| |#2| (-625 (-876))) (-6 (-625 (-876))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1121)) (IF (|has| |#2| (-1121)) (-6 (-1121)) |%noBranch|) |%noBranch|) (-15 -3253 ($ |#1| |#2|)) (-15 -3582 ($ |#1| |#2|)) (-15 -3581 (|#1| $)) (-15 -2883 (|#2| $)))) (-1238) (-1238)) (T -887)) -((-3253 (*1 *1 *2 *3) (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1238)) (-4 *3 (-1238)))) (-3582 (*1 *1 *2 *3) (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1238)) (-4 *3 (-1238)))) (-3581 (*1 *2 *1) (-12 (-4 *2 (-1238)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1238)))) (-2883 (*1 *2 *1) (-12 (-4 *2 (-1238)) (-5 *1 (-887 *3 *2)) (-4 *3 (-1238))))) -(-13 (-1238) (-10 -8 (IF (|has| |#1| (-625 (-876))) (IF (|has| |#2| (-625 (-876))) (-6 (-625 (-876))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1121)) (IF (|has| |#2| (-1121)) (-6 (-1121)) |%noBranch|) |%noBranch|) (-15 -3253 ($ |#1| |#2|)) (-15 -3582 ($ |#1| |#2|)) (-15 -3581 (|#1| $)) (-15 -2883 (|#2| $)))) -((-3489 (((-112) $ $) NIL)) (-2503 (((-576) $) 16)) (-3904 (($ (-158)) 13)) (-2919 (($ (-158)) 14)) (-3699 (((-1179) $) NIL)) (-3381 (((-158) $) 15)) (-1450 (((-1141) $) NIL)) (-2706 (($ (-158)) 11)) (-2073 (($ (-158)) 10)) (-3570 (((-876) $) 24) (($ (-158)) 17)) (-3263 (($ (-158)) 12)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-888) (-13 (-1121) (-10 -8 (-15 -2073 ($ (-158))) (-15 -2706 ($ (-158))) (-15 -3263 ($ (-158))) (-15 -3904 ($ (-158))) (-15 -2919 ($ (-158))) (-15 -3381 ((-158) $)) (-15 -2503 ((-576) $)) (-15 -3570 ($ (-158)))))) (T -888)) -((-2073 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) (-2706 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) (-3263 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) (-3904 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) (-2919 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) (-3381 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) (-2503 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-888)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888))))) -(-13 (-1121) (-10 -8 (-15 -2073 ($ (-158))) (-15 -2706 ($ (-158))) (-15 -3263 ($ (-158))) (-15 -3904 ($ (-158))) (-15 -2919 ($ (-158))) (-15 -3381 ((-158) $)) (-15 -2503 ((-576) $)) (-15 -3570 ($ (-158))))) -((-3570 (((-326 (-576)) (-419 (-971 (-48)))) 23) (((-326 (-576)) (-971 (-48))) 18))) -(((-889) (-10 -7 (-15 -3570 ((-326 (-576)) (-971 (-48)))) (-15 -3570 ((-326 (-576)) (-419 (-971 (-48))))))) (T -889)) -((-3570 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 (-48)))) (-5 *2 (-326 (-576))) (-5 *1 (-889)))) (-3570 (*1 *2 *3) (-12 (-5 *3 (-971 (-48))) (-5 *2 (-326 (-576))) (-5 *1 (-889))))) -(-10 -7 (-15 -3570 ((-326 (-576)) (-971 (-48)))) (-15 -3570 ((-326 (-576)) (-419 (-971 (-48)))))) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 18) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2708 (((-112) $ (|[\|\|]| (-518))) 9) (((-112) $ (|[\|\|]| (-1179))) 13)) (-4055 (((-112) $ $) NIL)) (-1922 (((-518) $) 10) (((-1179) $) 14)) (-2925 (((-112) $ $) 15))) -(((-890) (-13 (-1104) (-1283) (-10 -8 (-15 -2708 ((-112) $ (|[\|\|]| (-518)))) (-15 -1922 ((-518) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-1179)))) (-15 -1922 ((-1179) $))))) (T -890)) -((-2708 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-890)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-890)))) (-2708 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-112)) (-5 *1 (-890)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-890))))) -(-13 (-1104) (-1283) (-10 -8 (-15 -2708 ((-112) $ (|[\|\|]| (-518)))) (-15 -1922 ((-518) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-1179)))) (-15 -1922 ((-1179) $)))) -((-4117 (((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)) 15))) -(((-891 |#1| |#2|) (-10 -7 (-15 -4117 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) (-1238) (-1238)) (T -891)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6))))) -(-10 -7 (-15 -4117 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) -((-1739 (($ |#1| |#1|) 8)) (-3448 ((|#1| $ (-783)) 15))) -(((-892 |#1|) (-10 -8 (-15 -1739 ($ |#1| |#1|)) (-15 -3448 (|#1| $ (-783)))) (-1238)) (T -892)) -((-3448 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-892 *2)) (-4 *2 (-1238)))) (-1739 (*1 *1 *2 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1238))))) -(-10 -8 (-15 -1739 ($ |#1| |#1|)) (-15 -3448 (|#1| $ (-783)))) -((-4117 (((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)) 15))) -(((-893 |#1| |#2|) (-10 -7 (-15 -4117 ((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)))) (-1238) (-1238)) (T -893)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-894 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-894 *6)) (-5 *1 (-893 *5 *6))))) -(-10 -7 (-15 -4117 ((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)))) -((-1739 (($ |#1| |#1| |#1|) 8)) (-3448 ((|#1| $ (-783)) 15))) -(((-894 |#1|) (-10 -8 (-15 -1739 ($ |#1| |#1| |#1|)) (-15 -3448 (|#1| $ (-783)))) (-1238)) (T -894)) -((-3448 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-894 *2)) (-4 *2 (-1238)))) (-1739 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1238))))) -(-10 -8 (-15 -1739 ($ |#1| |#1| |#1|)) (-15 -3448 (|#1| $ (-783)))) -((-2220 (((-656 (-1202)) (-1179)) 9))) -(((-895) (-10 -7 (-15 -2220 ((-656 (-1202)) (-1179))))) (T -895)) -((-2220 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-656 (-1202))) (-5 *1 (-895))))) -(-10 -7 (-15 -2220 ((-656 (-1202)) (-1179)))) -((-4117 (((-897 |#2|) (-1 |#2| |#1|) (-897 |#1|)) 15))) -(((-896 |#1| |#2|) (-10 -7 (-15 -4117 ((-897 |#2|) (-1 |#2| |#1|) (-897 |#1|)))) (-1238) (-1238)) (T -896)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-897 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-897 *6)) (-5 *1 (-896 *5 *6))))) -(-10 -7 (-15 -4117 ((-897 |#2|) (-1 |#2| |#1|) (-897 |#1|)))) -((-4356 (($ |#1| |#1| |#1|) 8)) (-3448 ((|#1| $ (-783)) 15))) -(((-897 |#1|) (-10 -8 (-15 -4356 ($ |#1| |#1| |#1|)) (-15 -3448 (|#1| $ (-783)))) (-1238)) (T -897)) -((-3448 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-897 *2)) (-4 *2 (-1238)))) (-4356 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1238))))) -(-10 -8 (-15 -4356 ($ |#1| |#1| |#1|)) (-15 -3448 (|#1| $ (-783)))) -((-1345 (((-1178 (-656 (-576))) (-656 (-576)) (-1178 (-656 (-576)))) 41)) (-1388 (((-1178 (-656 (-576))) (-656 (-576)) (-656 (-576))) 31)) (-2800 (((-1178 (-656 (-576))) (-656 (-576))) 53) (((-1178 (-656 (-576))) (-656 (-576)) (-656 (-576))) 50)) (-4066 (((-1178 (-656 (-576))) (-576)) 55)) (-3452 (((-1178 (-656 (-940))) (-1178 (-656 (-940)))) 22)) (-2314 (((-656 (-940)) (-656 (-940))) 18))) -(((-898) (-10 -7 (-15 -2314 ((-656 (-940)) (-656 (-940)))) (-15 -3452 ((-1178 (-656 (-940))) (-1178 (-656 (-940))))) (-15 -1388 ((-1178 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -1345 ((-1178 (-656 (-576))) (-656 (-576)) (-1178 (-656 (-576))))) (-15 -2800 ((-1178 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -2800 ((-1178 (-656 (-576))) (-656 (-576)))) (-15 -4066 ((-1178 (-656 (-576))) (-576))))) (T -898)) -((-4066 (*1 *2 *3) (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) (-5 *3 (-576)))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) (-5 *3 (-656 (-576))))) (-2800 (*1 *2 *3 *3) (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) (-5 *3 (-656 (-576))))) (-1345 (*1 *2 *3 *2) (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *3 (-656 (-576))) (-5 *1 (-898)))) (-1388 (*1 *2 *3 *3) (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) (-5 *3 (-656 (-576))))) (-3452 (*1 *2 *2) (-12 (-5 *2 (-1178 (-656 (-940)))) (-5 *1 (-898)))) (-2314 (*1 *2 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-898))))) -(-10 -7 (-15 -2314 ((-656 (-940)) (-656 (-940)))) (-15 -3452 ((-1178 (-656 (-940))) (-1178 (-656 (-940))))) (-15 -1388 ((-1178 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -1345 ((-1178 (-656 (-576))) (-656 (-576)) (-1178 (-656 (-576))))) (-15 -2800 ((-1178 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -2800 ((-1178 (-656 (-576))) (-656 (-576)))) (-15 -4066 ((-1178 (-656 (-576))) (-576)))) -((-4172 (((-907 (-390)) $) 9 (|has| |#1| (-626 (-907 (-390))))) (((-907 (-576)) $) 8 (|has| |#1| (-626 (-907 (-576))))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-3110 (((-884 |#1|) $) NIL (|has| (-884 |#1|) (-317)))) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3646 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-884 |#1|) (-928)))) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-884 |#1|) (-928)))) (-3330 (((-112) $ $) NIL)) (-3906 (((-576) $) NIL (|has| (-884 |#1|) (-832)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-884 |#1|) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| (-884 |#1|) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-884 |#1|) (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-884 |#1|) (-1059 (-576))))) (-2859 (((-884 |#1|) $) NIL) (((-1197) $) NIL (|has| (-884 |#1|) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-884 |#1|) (-1059 (-576)))) (((-576) $) NIL (|has| (-884 |#1|) (-1059 (-576))))) (-2926 (($ $) NIL) (($ (-576) $) NIL)) (-3428 (($ $ $) NIL)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| (-884 |#1|) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-884 |#1|) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-884 |#1|))) (|:| |vec| (-1288 (-884 |#1|)))) (-701 $) (-1288 $)) NIL) (((-701 (-884 |#1|)) (-701 $)) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-884 |#1|) (-557)))) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3833 (((-112) $) NIL)) (-1866 (((-112) $) NIL (|has| (-884 |#1|) (-832)))) (-3325 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-884 |#1|) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-884 |#1|) (-901 (-390))))) (-1351 (((-112) $) NIL)) (-3328 (($ $) NIL)) (-1570 (((-884 |#1|) $) NIL)) (-2734 (((-3 $ "failed") $) NIL (|has| (-884 |#1|) (-1173)))) (-3137 (((-112) $) NIL (|has| (-884 |#1|) (-832)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3124 (($ $ $) NIL (|has| (-884 |#1|) (-861)))) (-1441 (($ $ $) NIL (|has| (-884 |#1|) (-861)))) (-4116 (($ (-1 (-884 |#1|) (-884 |#1|)) $) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| (-884 |#1|) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-884 |#1|) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-884 |#1|))) (|:| |vec| (-1288 (-884 |#1|)))) (-1288 $) $) NIL) (((-701 (-884 |#1|)) (-1288 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3539 (($) NIL (|has| (-884 |#1|) (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1788 (($ $) NIL (|has| (-884 |#1|) (-317)))) (-4236 (((-884 |#1|) $) NIL (|has| (-884 |#1|) (-557)))) (-1644 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-884 |#1|) (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-884 |#1|) (-928)))) (-1828 (((-430 $) $) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3282 (($ $ (-656 (-884 |#1|)) (-656 (-884 |#1|))) NIL (|has| (-884 |#1|) (-319 (-884 |#1|)))) (($ $ (-884 |#1|) (-884 |#1|)) NIL (|has| (-884 |#1|) (-319 (-884 |#1|)))) (($ $ (-304 (-884 |#1|))) NIL (|has| (-884 |#1|) (-319 (-884 |#1|)))) (($ $ (-656 (-304 (-884 |#1|)))) NIL (|has| (-884 |#1|) (-319 (-884 |#1|)))) (($ $ (-656 (-1197)) (-656 (-884 |#1|))) NIL (|has| (-884 |#1|) (-526 (-1197) (-884 |#1|)))) (($ $ (-1197) (-884 |#1|)) NIL (|has| (-884 |#1|) (-526 (-1197) (-884 |#1|))))) (-1979 (((-783) $) NIL)) (-2796 (($ $ (-884 |#1|)) NIL (|has| (-884 |#1|) (-296 (-884 |#1|) (-884 |#1|))))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-2774 (($ $ (-1 (-884 |#1|) (-884 |#1|))) NIL) (($ $ (-1 (-884 |#1|) (-884 |#1|)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $) NIL (|has| (-884 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-884 |#1|) (-237)))) (-4325 (($ $) NIL)) (-1581 (((-884 |#1|) $) NIL)) (-4171 (((-907 (-576)) $) NIL (|has| (-884 |#1|) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-884 |#1|) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-884 |#1|) (-626 (-548)))) (((-390) $) NIL (|has| (-884 |#1|) (-1043))) (((-227) $) NIL (|has| (-884 |#1|) (-1043)))) (-2223 (((-176 (-419 (-576))) $) NIL)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-884 |#1|) (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-884 |#1|)) NIL) (($ (-1197)) NIL (|has| (-884 |#1|) (-1059 (-1197))))) (-3390 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| $ (-146)) (|has| (-884 |#1|) (-928))) (|has| (-884 |#1|) (-146))))) (-3154 (((-783)) NIL T CONST)) (-1810 (((-884 |#1|) $) NIL (|has| (-884 |#1|) (-557)))) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL)) (-4165 (((-419 (-576)) $ (-576)) NIL)) (-4143 (($ $) NIL (|has| (-884 |#1|) (-832)))) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2020 (($ $ (-1 (-884 |#1|) (-884 |#1|))) NIL) (($ $ (-1 (-884 |#1|) (-884 |#1|)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $) NIL (|has| (-884 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-884 |#1|) (-237)))) (-2990 (((-112) $ $) NIL (|has| (-884 |#1|) (-861)))) (-2962 (((-112) $ $) NIL (|has| (-884 |#1|) (-861)))) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| (-884 |#1|) (-861)))) (-2949 (((-112) $ $) NIL (|has| (-884 |#1|) (-861)))) (-3056 (($ $ $) NIL) (($ (-884 |#1|) (-884 |#1|)) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-884 |#1|) $) NIL) (($ $ (-884 |#1|)) NIL))) +(((-885 |#1|) (-13 (-1013 (-884 |#1|)) (-10 -8 (-15 -4165 ((-419 (-576)) $ (-576))) (-15 -2223 ((-176 (-419 (-576))) $)) (-15 -2926 ($ $)) (-15 -2926 ($ (-576) $)))) (-576)) (T -885)) +((-4165 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-885 *4)) (-14 *4 *3) (-5 *3 (-576)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-885 *3)) (-14 *3 (-576)))) (-2926 (*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-14 *2 (-576)))) (-2926 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-885 *3)) (-14 *3 *2)))) +(-13 (-1013 (-884 |#1|)) (-10 -8 (-15 -4165 ((-419 (-576)) $ (-576))) (-15 -2223 ((-176 (-419 (-576))) $)) (-15 -2926 ($ $)) (-15 -2926 ($ (-576) $)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-3110 ((|#2| $) NIL (|has| |#2| (-317)))) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3646 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3330 (((-112) $ $) NIL)) (-3906 (((-576) $) NIL (|has| |#2| (-832)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| |#2| (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576))))) (-2859 ((|#2| $) NIL) (((-1197) $) NIL (|has| |#2| (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-576)))) (((-576) $) NIL (|has| |#2| (-1059 (-576))))) (-2926 (($ $) 35) (($ (-576) $) 38)) (-3428 (($ $ $) NIL)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-3673 (((-3 $ "failed") $) 64)) (-1836 (($) NIL (|has| |#2| (-557)))) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3833 (((-112) $) NIL)) (-1866 (((-112) $) NIL (|has| |#2| (-832)))) (-3325 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| |#2| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| |#2| (-901 (-390))))) (-1351 (((-112) $) NIL)) (-3328 (($ $) NIL)) (-1570 ((|#2| $) NIL)) (-2734 (((-3 $ "failed") $) NIL (|has| |#2| (-1173)))) (-3137 (((-112) $) NIL (|has| |#2| (-832)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3124 (($ $ $) NIL (|has| |#2| (-861)))) (-1441 (($ $ $) NIL (|has| |#2| (-861)))) (-4116 (($ (-1 |#2| |#2|) $) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) 60)) (-3539 (($) NIL (|has| |#2| (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1788 (($ $) NIL (|has| |#2| (-317)))) (-4236 ((|#2| $) NIL (|has| |#2| (-557)))) (-1644 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1828 (((-430 $) $) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3282 (($ $ (-656 |#2|) (-656 |#2|)) NIL (|has| |#2| (-319 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-319 |#2|))) (($ $ (-304 |#2|)) NIL (|has| |#2| (-319 |#2|))) (($ $ (-656 (-304 |#2|))) NIL (|has| |#2| (-319 |#2|))) (($ $ (-656 (-1197)) (-656 |#2|)) NIL (|has| |#2| (-526 (-1197) |#2|))) (($ $ (-1197) |#2|) NIL (|has| |#2| (-526 (-1197) |#2|)))) (-1979 (((-783) $) NIL)) (-2796 (($ $ |#2|) NIL (|has| |#2| (-296 |#2| |#2|)))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-2774 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197)))) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237)))) (-4325 (($ $) NIL)) (-1581 ((|#2| $) NIL)) (-4171 (((-907 (-576)) $) NIL (|has| |#2| (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| |#2| (-626 (-907 (-390))))) (((-548) $) NIL (|has| |#2| (-626 (-548)))) (((-390) $) NIL (|has| |#2| (-1043))) (((-227) $) NIL (|has| |#2| (-1043)))) (-2223 (((-176 (-419 (-576))) $) 78)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928))))) (-3569 (((-876) $) 106) (($ (-576)) 20) (($ $) NIL) (($ (-419 (-576))) 25) (($ |#2|) 19) (($ (-1197)) NIL (|has| |#2| (-1059 (-1197))))) (-3390 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#2| (-146))))) (-3154 (((-783)) NIL T CONST)) (-1810 ((|#2| $) NIL (|has| |#2| (-557)))) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL)) (-4165 (((-419 (-576)) $ (-576)) 71)) (-4143 (($ $) NIL (|has| |#2| (-832)))) (-2721 (($) 15 T CONST)) (-2731 (($) 17 T CONST)) (-2020 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197)))) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237)))) (-2990 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2924 (((-112) $ $) 46)) (-2978 (((-112) $ $) NIL (|has| |#2| (-861)))) (-2949 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3056 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3043 (($ $) 50) (($ $ $) 52)) (-3029 (($ $ $) 48)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 61)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 53) (($ $ $) 55) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) +(((-886 |#1| |#2|) (-13 (-1013 |#2|) (-10 -8 (-15 -4165 ((-419 (-576)) $ (-576))) (-15 -2223 ((-176 (-419 (-576))) $)) (-15 -2926 ($ $)) (-15 -2926 ($ (-576) $)))) (-576) (-883 |#1|)) (T -886)) +((-4165 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-419 (-576))) (-5 *1 (-886 *4 *5)) (-5 *3 (-576)) (-4 *5 (-883 *4)))) (-2223 (*1 *2 *1) (-12 (-14 *3 (-576)) (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-886 *3 *4)) (-4 *4 (-883 *3)))) (-2926 (*1 *1 *1) (-12 (-14 *2 (-576)) (-5 *1 (-886 *2 *3)) (-4 *3 (-883 *2)))) (-2926 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-14 *3 *2) (-5 *1 (-886 *3 *4)) (-4 *4 (-883 *3))))) +(-13 (-1013 |#2|) (-10 -8 (-15 -4165 ((-419 (-576)) $ (-576))) (-15 -2223 ((-176 (-419 (-576))) $)) (-15 -2926 ($ $)) (-15 -2926 ($ (-576) $)))) +((-3488 (((-112) $ $) NIL (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))))) (-2882 ((|#2| $) 12)) (-3253 (($ |#1| |#2|) 9)) (-2046 (((-1179) $) NIL (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))))) (-1450 (((-1141) $) NIL (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))))) (-3580 ((|#1| $) 11)) (-3581 (($ |#1| |#2|) 10)) (-3569 (((-876) $) 18 (-2759 (-12 (|has| |#1| (-625 (-876))) (|has| |#2| (-625 (-876)))) (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121)))))) (-2399 (((-112) $ $) NIL (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))))) (-2924 (((-112) $ $) 23 (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121)))))) +(((-887 |#1| |#2|) (-13 (-1238) (-10 -8 (IF (|has| |#1| (-625 (-876))) (IF (|has| |#2| (-625 (-876))) (-6 (-625 (-876))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1121)) (IF (|has| |#2| (-1121)) (-6 (-1121)) |%noBranch|) |%noBranch|) (-15 -3253 ($ |#1| |#2|)) (-15 -3581 ($ |#1| |#2|)) (-15 -3580 (|#1| $)) (-15 -2882 (|#2| $)))) (-1238) (-1238)) (T -887)) +((-3253 (*1 *1 *2 *3) (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1238)) (-4 *3 (-1238)))) (-3581 (*1 *1 *2 *3) (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1238)) (-4 *3 (-1238)))) (-3580 (*1 *2 *1) (-12 (-4 *2 (-1238)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1238)))) (-2882 (*1 *2 *1) (-12 (-4 *2 (-1238)) (-5 *1 (-887 *3 *2)) (-4 *3 (-1238))))) +(-13 (-1238) (-10 -8 (IF (|has| |#1| (-625 (-876))) (IF (|has| |#2| (-625 (-876))) (-6 (-625 (-876))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1121)) (IF (|has| |#2| (-1121)) (-6 (-1121)) |%noBranch|) |%noBranch|) (-15 -3253 ($ |#1| |#2|)) (-15 -3581 ($ |#1| |#2|)) (-15 -3580 (|#1| $)) (-15 -2882 (|#2| $)))) +((-3488 (((-112) $ $) NIL)) (-3623 (((-576) $) 16)) (-3585 (($ (-158)) 13)) (-3229 (($ (-158)) 14)) (-2046 (((-1179) $) NIL)) (-2068 (((-158) $) 15)) (-1450 (((-1141) $) NIL)) (-2705 (($ (-158)) 11)) (-1730 (($ (-158)) 10)) (-3569 (((-876) $) 24) (($ (-158)) 17)) (-3261 (($ (-158)) 12)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-888) (-13 (-1121) (-10 -8 (-15 -1730 ($ (-158))) (-15 -2705 ($ (-158))) (-15 -3261 ($ (-158))) (-15 -3585 ($ (-158))) (-15 -3229 ($ (-158))) (-15 -2068 ((-158) $)) (-15 -3623 ((-576) $)) (-15 -3569 ($ (-158)))))) (T -888)) +((-1730 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) (-2705 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) (-3261 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) (-3585 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) (-3229 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) (-2068 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-888)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888))))) +(-13 (-1121) (-10 -8 (-15 -1730 ($ (-158))) (-15 -2705 ($ (-158))) (-15 -3261 ($ (-158))) (-15 -3585 ($ (-158))) (-15 -3229 ($ (-158))) (-15 -2068 ((-158) $)) (-15 -3623 ((-576) $)) (-15 -3569 ($ (-158))))) +((-3569 (((-326 (-576)) (-419 (-971 (-48)))) 23) (((-326 (-576)) (-971 (-48))) 18))) +(((-889) (-10 -7 (-15 -3569 ((-326 (-576)) (-971 (-48)))) (-15 -3569 ((-326 (-576)) (-419 (-971 (-48))))))) (T -889)) +((-3569 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 (-48)))) (-5 *2 (-326 (-576))) (-5 *1 (-889)))) (-3569 (*1 *2 *3) (-12 (-5 *3 (-971 (-48))) (-5 *2 (-326 (-576))) (-5 *1 (-889))))) +(-10 -7 (-15 -3569 ((-326 (-576)) (-971 (-48)))) (-15 -3569 ((-326 (-576)) (-419 (-971 (-48)))))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 18) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2707 (((-112) $ (|[\|\|]| (-518))) 9) (((-112) $ (|[\|\|]| (-1179))) 13)) (-2399 (((-112) $ $) NIL)) (-1922 (((-518) $) 10) (((-1179) $) 14)) (-2924 (((-112) $ $) 15))) +(((-890) (-13 (-1104) (-1283) (-10 -8 (-15 -2707 ((-112) $ (|[\|\|]| (-518)))) (-15 -1922 ((-518) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-1179)))) (-15 -1922 ((-1179) $))))) (T -890)) +((-2707 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-890)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-890)))) (-2707 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-112)) (-5 *1 (-890)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-890))))) +(-13 (-1104) (-1283) (-10 -8 (-15 -2707 ((-112) $ (|[\|\|]| (-518)))) (-15 -1922 ((-518) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-1179)))) (-15 -1922 ((-1179) $)))) +((-4116 (((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)) 15))) +(((-891 |#1| |#2|) (-10 -7 (-15 -4116 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) (-1238) (-1238)) (T -891)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6))))) +(-10 -7 (-15 -4116 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) +((-1653 (($ |#1| |#1|) 8)) (-1533 ((|#1| $ (-783)) 15))) +(((-892 |#1|) (-10 -8 (-15 -1653 ($ |#1| |#1|)) (-15 -1533 (|#1| $ (-783)))) (-1238)) (T -892)) +((-1533 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-892 *2)) (-4 *2 (-1238)))) (-1653 (*1 *1 *2 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1238))))) +(-10 -8 (-15 -1653 ($ |#1| |#1|)) (-15 -1533 (|#1| $ (-783)))) +((-4116 (((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)) 15))) +(((-893 |#1| |#2|) (-10 -7 (-15 -4116 ((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)))) (-1238) (-1238)) (T -893)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-894 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-894 *6)) (-5 *1 (-893 *5 *6))))) +(-10 -7 (-15 -4116 ((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)))) +((-1653 (($ |#1| |#1| |#1|) 8)) (-1533 ((|#1| $ (-783)) 15))) +(((-894 |#1|) (-10 -8 (-15 -1653 ($ |#1| |#1| |#1|)) (-15 -1533 (|#1| $ (-783)))) (-1238)) (T -894)) +((-1533 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-894 *2)) (-4 *2 (-1238)))) (-1653 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1238))))) +(-10 -8 (-15 -1653 ($ |#1| |#1| |#1|)) (-15 -1533 (|#1| $ (-783)))) +((-3836 (((-656 (-1202)) (-1179)) 9))) +(((-895) (-10 -7 (-15 -3836 ((-656 (-1202)) (-1179))))) (T -895)) +((-3836 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-656 (-1202))) (-5 *1 (-895))))) +(-10 -7 (-15 -3836 ((-656 (-1202)) (-1179)))) +((-4116 (((-897 |#2|) (-1 |#2| |#1|) (-897 |#1|)) 15))) +(((-896 |#1| |#2|) (-10 -7 (-15 -4116 ((-897 |#2|) (-1 |#2| |#1|) (-897 |#1|)))) (-1238) (-1238)) (T -896)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-897 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-897 *6)) (-5 *1 (-896 *5 *6))))) +(-10 -7 (-15 -4116 ((-897 |#2|) (-1 |#2| |#1|) (-897 |#1|)))) +((-2300 (($ |#1| |#1| |#1|) 8)) (-1533 ((|#1| $ (-783)) 15))) +(((-897 |#1|) (-10 -8 (-15 -2300 ($ |#1| |#1| |#1|)) (-15 -1533 (|#1| $ (-783)))) (-1238)) (T -897)) +((-1533 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-897 *2)) (-4 *2 (-1238)))) (-2300 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1238))))) +(-10 -8 (-15 -2300 ($ |#1| |#1| |#1|)) (-15 -1533 (|#1| $ (-783)))) +((-3147 (((-1178 (-656 (-576))) (-656 (-576)) (-1178 (-656 (-576)))) 41)) (-1501 (((-1178 (-656 (-576))) (-656 (-576)) (-656 (-576))) 31)) (-1416 (((-1178 (-656 (-576))) (-656 (-576))) 53) (((-1178 (-656 (-576))) (-656 (-576)) (-656 (-576))) 50)) (-2509 (((-1178 (-656 (-576))) (-576)) 55)) (-1574 (((-1178 (-656 (-940))) (-1178 (-656 (-940)))) 22)) (-2272 (((-656 (-940)) (-656 (-940))) 18))) +(((-898) (-10 -7 (-15 -2272 ((-656 (-940)) (-656 (-940)))) (-15 -1574 ((-1178 (-656 (-940))) (-1178 (-656 (-940))))) (-15 -1501 ((-1178 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -3147 ((-1178 (-656 (-576))) (-656 (-576)) (-1178 (-656 (-576))))) (-15 -1416 ((-1178 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -1416 ((-1178 (-656 (-576))) (-656 (-576)))) (-15 -2509 ((-1178 (-656 (-576))) (-576))))) (T -898)) +((-2509 (*1 *2 *3) (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) (-5 *3 (-576)))) (-1416 (*1 *2 *3) (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) (-5 *3 (-656 (-576))))) (-1416 (*1 *2 *3 *3) (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) (-5 *3 (-656 (-576))))) (-3147 (*1 *2 *3 *2) (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *3 (-656 (-576))) (-5 *1 (-898)))) (-1501 (*1 *2 *3 *3) (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) (-5 *3 (-656 (-576))))) (-1574 (*1 *2 *2) (-12 (-5 *2 (-1178 (-656 (-940)))) (-5 *1 (-898)))) (-2272 (*1 *2 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-898))))) +(-10 -7 (-15 -2272 ((-656 (-940)) (-656 (-940)))) (-15 -1574 ((-1178 (-656 (-940))) (-1178 (-656 (-940))))) (-15 -1501 ((-1178 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -3147 ((-1178 (-656 (-576))) (-656 (-576)) (-1178 (-656 (-576))))) (-15 -1416 ((-1178 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -1416 ((-1178 (-656 (-576))) (-656 (-576)))) (-15 -2509 ((-1178 (-656 (-576))) (-576)))) +((-4171 (((-907 (-390)) $) 9 (|has| |#1| (-626 (-907 (-390))))) (((-907 (-576)) $) 8 (|has| |#1| (-626 (-907 (-576))))))) (((-899 |#1|) (-141) (-1238)) (T -899)) NIL (-13 (-10 -7 (IF (|has| |t#1| (-626 (-907 (-576)))) (-6 (-626 (-907 (-576)))) |%noBranch|) (IF (|has| |t#1| (-626 (-907 (-390)))) (-6 (-626 (-907 (-390)))) |%noBranch|))) (((-626 (-907 (-390))) |has| |#1| (-626 (-907 (-390)))) ((-626 (-907 (-576))) |has| |#1| (-626 (-907 (-576))))) -((-3489 (((-112) $ $) NIL)) (-4141 (($) 14)) (-1587 (($ (-904 |#1| |#2|) (-904 |#1| |#3|)) 28)) (-3810 (((-904 |#1| |#3|) $) 16)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2673 (((-112) $) 22)) (-4197 (($) 19)) (-3570 (((-876) $) 31)) (-4055 (((-112) $ $) NIL)) (-3012 (((-904 |#1| |#2|) $) 15)) (-2925 (((-112) $ $) 26))) -(((-900 |#1| |#2| |#3|) (-13 (-1121) (-10 -8 (-15 -2673 ((-112) $)) (-15 -4197 ($)) (-15 -4141 ($)) (-15 -1587 ($ (-904 |#1| |#2|) (-904 |#1| |#3|))) (-15 -3012 ((-904 |#1| |#2|) $)) (-15 -3810 ((-904 |#1| |#3|) $)))) (-1121) (-1121) (-678 |#2|)) (T -900)) -((-2673 (*1 *2 *1) (-12 (-4 *4 (-1121)) (-5 *2 (-112)) (-5 *1 (-900 *3 *4 *5)) (-4 *3 (-1121)) (-4 *5 (-678 *4)))) (-4197 (*1 *1) (-12 (-4 *3 (-1121)) (-5 *1 (-900 *2 *3 *4)) (-4 *2 (-1121)) (-4 *4 (-678 *3)))) (-4141 (*1 *1) (-12 (-4 *3 (-1121)) (-5 *1 (-900 *2 *3 *4)) (-4 *2 (-1121)) (-4 *4 (-678 *3)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-904 *4 *5)) (-5 *3 (-904 *4 *6)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-678 *5)) (-5 *1 (-900 *4 *5 *6)))) (-3012 (*1 *2 *1) (-12 (-4 *4 (-1121)) (-5 *2 (-904 *3 *4)) (-5 *1 (-900 *3 *4 *5)) (-4 *3 (-1121)) (-4 *5 (-678 *4)))) (-3810 (*1 *2 *1) (-12 (-4 *4 (-1121)) (-5 *2 (-904 *3 *5)) (-5 *1 (-900 *3 *4 *5)) (-4 *3 (-1121)) (-4 *5 (-678 *4))))) -(-13 (-1121) (-10 -8 (-15 -2673 ((-112) $)) (-15 -4197 ($)) (-15 -4141 ($)) (-15 -1587 ($ (-904 |#1| |#2|) (-904 |#1| |#3|))) (-15 -3012 ((-904 |#1| |#2|) $)) (-15 -3810 ((-904 |#1| |#3|) $)))) -((-3489 (((-112) $ $) 7)) (-1840 (((-904 |#1| $) $ (-907 |#1|) (-904 |#1| $)) 14)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2925 (((-112) $ $) 8))) +((-3488 (((-112) $ $) NIL)) (-4140 (($) 14)) (-2614 (($ (-904 |#1| |#2|) (-904 |#1| |#3|)) 28)) (-3809 (((-904 |#1| |#3|) $) 16)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1514 (((-112) $) 22)) (-4196 (($) 19)) (-3569 (((-876) $) 31)) (-2399 (((-112) $ $) NIL)) (-2690 (((-904 |#1| |#2|) $) 15)) (-2924 (((-112) $ $) 26))) +(((-900 |#1| |#2| |#3|) (-13 (-1121) (-10 -8 (-15 -1514 ((-112) $)) (-15 -4196 ($)) (-15 -4140 ($)) (-15 -2614 ($ (-904 |#1| |#2|) (-904 |#1| |#3|))) (-15 -2690 ((-904 |#1| |#2|) $)) (-15 -3809 ((-904 |#1| |#3|) $)))) (-1121) (-1121) (-678 |#2|)) (T -900)) +((-1514 (*1 *2 *1) (-12 (-4 *4 (-1121)) (-5 *2 (-112)) (-5 *1 (-900 *3 *4 *5)) (-4 *3 (-1121)) (-4 *5 (-678 *4)))) (-4196 (*1 *1) (-12 (-4 *3 (-1121)) (-5 *1 (-900 *2 *3 *4)) (-4 *2 (-1121)) (-4 *4 (-678 *3)))) (-4140 (*1 *1) (-12 (-4 *3 (-1121)) (-5 *1 (-900 *2 *3 *4)) (-4 *2 (-1121)) (-4 *4 (-678 *3)))) (-2614 (*1 *1 *2 *3) (-12 (-5 *2 (-904 *4 *5)) (-5 *3 (-904 *4 *6)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-678 *5)) (-5 *1 (-900 *4 *5 *6)))) (-2690 (*1 *2 *1) (-12 (-4 *4 (-1121)) (-5 *2 (-904 *3 *4)) (-5 *1 (-900 *3 *4 *5)) (-4 *3 (-1121)) (-4 *5 (-678 *4)))) (-3809 (*1 *2 *1) (-12 (-4 *4 (-1121)) (-5 *2 (-904 *3 *5)) (-5 *1 (-900 *3 *4 *5)) (-4 *3 (-1121)) (-4 *5 (-678 *4))))) +(-13 (-1121) (-10 -8 (-15 -1514 ((-112) $)) (-15 -4196 ($)) (-15 -4140 ($)) (-15 -2614 ($ (-904 |#1| |#2|) (-904 |#1| |#3|))) (-15 -2690 ((-904 |#1| |#2|) $)) (-15 -3809 ((-904 |#1| |#3|) $)))) +((-3488 (((-112) $ $) 7)) (-3325 (((-904 |#1| $) $ (-907 |#1|) (-904 |#1| $)) 14)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2924 (((-112) $ $) 8))) (((-901 |#1|) (-141) (-1121)) (T -901)) -((-1840 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-904 *4 *1)) (-5 *3 (-907 *4)) (-4 *1 (-901 *4)) (-4 *4 (-1121))))) -(-13 (-1121) (-10 -8 (-15 -1840 ((-904 |t#1| $) $ (-907 |t#1|) (-904 |t#1| $))))) +((-3325 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-904 *4 *1)) (-5 *3 (-907 *4)) (-4 *1 (-901 *4)) (-4 *4 (-1121))))) +(-13 (-1121) (-10 -8 (-15 -3325 ((-904 |t#1| $) $ (-907 |t#1|) (-904 |t#1| $))))) (((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-1322 (((-112) (-656 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-3887 (((-904 |#1| |#2|) |#2| |#3|) 45 (-12 (-2663 (|has| |#2| (-1059 (-1197)))) (-2663 (|has| |#2| (-1070))))) (((-656 (-304 (-971 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1070)) (-2663 (|has| |#2| (-1059 (-1197)))))) (((-656 (-304 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1059 (-1197)))) (((-900 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|) 21))) -(((-902 |#1| |#2| |#3|) (-10 -7 (-15 -1322 ((-112) |#2| |#3|)) (-15 -1322 ((-112) (-656 |#2|) |#3|)) (-15 -3887 ((-900 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|)) (IF (|has| |#2| (-1059 (-1197))) (-15 -3887 ((-656 (-304 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1070)) (-15 -3887 ((-656 (-304 (-971 |#2|))) |#2| |#3|)) (-15 -3887 ((-904 |#1| |#2|) |#2| |#3|))))) (-1121) (-901 |#1|) (-626 (-907 |#1|))) (T -902)) -((-3887 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-5 *2 (-904 *5 *3)) (-5 *1 (-902 *5 *3 *4)) (-2663 (-4 *3 (-1059 (-1197)))) (-2663 (-4 *3 (-1070))) (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5))))) (-3887 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-5 *2 (-656 (-304 (-971 *3)))) (-5 *1 (-902 *5 *3 *4)) (-4 *3 (-1070)) (-2663 (-4 *3 (-1059 (-1197)))) (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5))))) (-3887 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-5 *2 (-656 (-304 *3))) (-5 *1 (-902 *5 *3 *4)) (-4 *3 (-1059 (-1197))) (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5))))) (-3887 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-4 *6 (-901 *5)) (-5 *2 (-900 *5 *6 (-656 *6))) (-5 *1 (-902 *5 *6 *4)) (-5 *3 (-656 *6)) (-4 *4 (-626 (-907 *5))))) (-1322 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-4 *6 (-901 *5)) (-4 *5 (-1121)) (-5 *2 (-112)) (-5 *1 (-902 *5 *6 *4)) (-4 *4 (-626 (-907 *5))))) (-1322 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-5 *2 (-112)) (-5 *1 (-902 *5 *3 *4)) (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5)))))) -(-10 -7 (-15 -1322 ((-112) |#2| |#3|)) (-15 -1322 ((-112) (-656 |#2|) |#3|)) (-15 -3887 ((-900 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|)) (IF (|has| |#2| (-1059 (-1197))) (-15 -3887 ((-656 (-304 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1070)) (-15 -3887 ((-656 (-304 (-971 |#2|))) |#2| |#3|)) (-15 -3887 ((-904 |#1| |#2|) |#2| |#3|))))) -((-4117 (((-904 |#1| |#3|) (-1 |#3| |#2|) (-904 |#1| |#2|)) 22))) -(((-903 |#1| |#2| |#3|) (-10 -7 (-15 -4117 ((-904 |#1| |#3|) (-1 |#3| |#2|) (-904 |#1| |#2|)))) (-1121) (-1121) (-1121)) (T -903)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-904 *5 *6)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-904 *5 *7)) (-5 *1 (-903 *5 *6 *7))))) -(-10 -7 (-15 -4117 ((-904 |#1| |#3|) (-1 |#3| |#2|) (-904 |#1| |#2|)))) -((-3489 (((-112) $ $) NIL)) (-1820 (($ $ $) 40)) (-4157 (((-3 (-112) "failed") $ (-907 |#1|)) 37)) (-4141 (($) 12)) (-3699 (((-1179) $) NIL)) (-1580 (($ (-907 |#1|) |#2| $) 20)) (-1450 (((-1141) $) NIL)) (-2214 (((-3 |#2| "failed") (-907 |#1|) $) 51)) (-2673 (((-112) $) 15)) (-4197 (($) 13)) (-1905 (((-656 (-2 (|:| -4301 (-1197)) (|:| -4440 |#2|))) $) 25)) (-3582 (($ (-656 (-2 (|:| -4301 (-1197)) (|:| -4440 |#2|)))) 23)) (-3570 (((-876) $) 45)) (-4055 (((-112) $ $) NIL)) (-2835 (($ (-907 |#1|) |#2| $ |#2|) 49)) (-2029 (($ (-907 |#1|) |#2| $) 48)) (-2925 (((-112) $ $) 42))) -(((-904 |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -2673 ((-112) $)) (-15 -4197 ($)) (-15 -4141 ($)) (-15 -1820 ($ $ $)) (-15 -2214 ((-3 |#2| "failed") (-907 |#1|) $)) (-15 -2029 ($ (-907 |#1|) |#2| $)) (-15 -1580 ($ (-907 |#1|) |#2| $)) (-15 -2835 ($ (-907 |#1|) |#2| $ |#2|)) (-15 -1905 ((-656 (-2 (|:| -4301 (-1197)) (|:| -4440 |#2|))) $)) (-15 -3582 ($ (-656 (-2 (|:| -4301 (-1197)) (|:| -4440 |#2|))))) (-15 -4157 ((-3 (-112) "failed") $ (-907 |#1|))))) (-1121) (-1121)) (T -904)) -((-2673 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-4197 (*1 *1) (-12 (-5 *1 (-904 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-4141 (*1 *1) (-12 (-5 *1 (-904 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-1820 (*1 *1 *1 *1) (-12 (-5 *1 (-904 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-2214 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-4 *2 (-1121)) (-5 *1 (-904 *4 *2)))) (-2029 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-904 *4 *3)) (-4 *3 (-1121)))) (-1580 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-904 *4 *3)) (-4 *3 (-1121)))) (-2835 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-904 *4 *3)) (-4 *3 (-1121)))) (-1905 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -4301 (-1197)) (|:| -4440 *4)))) (-5 *1 (-904 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-3582 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4301 (-1197)) (|:| -4440 *4)))) (-4 *4 (-1121)) (-5 *1 (-904 *3 *4)) (-4 *3 (-1121)))) (-4157 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-5 *2 (-112)) (-5 *1 (-904 *4 *5)) (-4 *5 (-1121))))) -(-13 (-1121) (-10 -8 (-15 -2673 ((-112) $)) (-15 -4197 ($)) (-15 -4141 ($)) (-15 -1820 ($ $ $)) (-15 -2214 ((-3 |#2| "failed") (-907 |#1|) $)) (-15 -2029 ($ (-907 |#1|) |#2| $)) (-15 -1580 ($ (-907 |#1|) |#2| $)) (-15 -2835 ($ (-907 |#1|) |#2| $ |#2|)) (-15 -1905 ((-656 (-2 (|:| -4301 (-1197)) (|:| -4440 |#2|))) $)) (-15 -3582 ($ (-656 (-2 (|:| -4301 (-1197)) (|:| -4440 |#2|))))) (-15 -4157 ((-3 (-112) "failed") $ (-907 |#1|))))) -((-2930 (((-907 |#1|) (-907 |#1|) (-656 (-1197)) (-1 (-112) (-656 |#2|))) 32) (((-907 |#1|) (-907 |#1|) (-656 (-1 (-112) |#2|))) 46) (((-907 |#1|) (-907 |#1|) (-1 (-112) |#2|)) 35)) (-4157 (((-112) (-656 |#2|) (-907 |#1|)) 42) (((-112) |#2| (-907 |#1|)) 36)) (-2001 (((-1 (-112) |#2|) (-907 |#1|)) 16)) (-2302 (((-656 |#2|) (-907 |#1|)) 24)) (-3949 (((-907 |#1|) (-907 |#1|) |#2|) 20))) -(((-905 |#1| |#2|) (-10 -7 (-15 -2930 ((-907 |#1|) (-907 |#1|) (-1 (-112) |#2|))) (-15 -2930 ((-907 |#1|) (-907 |#1|) (-656 (-1 (-112) |#2|)))) (-15 -2930 ((-907 |#1|) (-907 |#1|) (-656 (-1197)) (-1 (-112) (-656 |#2|)))) (-15 -2001 ((-1 (-112) |#2|) (-907 |#1|))) (-15 -4157 ((-112) |#2| (-907 |#1|))) (-15 -4157 ((-112) (-656 |#2|) (-907 |#1|))) (-15 -3949 ((-907 |#1|) (-907 |#1|) |#2|)) (-15 -2302 ((-656 |#2|) (-907 |#1|)))) (-1121) (-1238)) (T -905)) -((-2302 (*1 *2 *3) (-12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-5 *2 (-656 *5)) (-5 *1 (-905 *4 *5)) (-4 *5 (-1238)))) (-3949 (*1 *2 *2 *3) (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-905 *4 *3)) (-4 *3 (-1238)))) (-4157 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-4 *6 (-1238)) (-5 *2 (-112)) (-5 *1 (-905 *5 *6)))) (-4157 (*1 *2 *3 *4) (-12 (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-5 *2 (-112)) (-5 *1 (-905 *5 *3)) (-4 *3 (-1238)))) (-2001 (*1 *2 *3) (-12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-905 *4 *5)) (-4 *5 (-1238)))) (-2930 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-907 *5)) (-5 *3 (-656 (-1197))) (-5 *4 (-1 (-112) (-656 *6))) (-4 *5 (-1121)) (-4 *6 (-1238)) (-5 *1 (-905 *5 *6)))) (-2930 (*1 *2 *2 *3) (-12 (-5 *2 (-907 *4)) (-5 *3 (-656 (-1 (-112) *5))) (-4 *4 (-1121)) (-4 *5 (-1238)) (-5 *1 (-905 *4 *5)))) (-2930 (*1 *2 *2 *3) (-12 (-5 *2 (-907 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1121)) (-4 *5 (-1238)) (-5 *1 (-905 *4 *5))))) -(-10 -7 (-15 -2930 ((-907 |#1|) (-907 |#1|) (-1 (-112) |#2|))) (-15 -2930 ((-907 |#1|) (-907 |#1|) (-656 (-1 (-112) |#2|)))) (-15 -2930 ((-907 |#1|) (-907 |#1|) (-656 (-1197)) (-1 (-112) (-656 |#2|)))) (-15 -2001 ((-1 (-112) |#2|) (-907 |#1|))) (-15 -4157 ((-112) |#2| (-907 |#1|))) (-15 -4157 ((-112) (-656 |#2|) (-907 |#1|))) (-15 -3949 ((-907 |#1|) (-907 |#1|) |#2|)) (-15 -2302 ((-656 |#2|) (-907 |#1|)))) -((-4117 (((-907 |#2|) (-1 |#2| |#1|) (-907 |#1|)) 19))) -(((-906 |#1| |#2|) (-10 -7 (-15 -4117 ((-907 |#2|) (-1 |#2| |#1|) (-907 |#1|)))) (-1121) (-1121)) (T -906)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-907 *6)) (-5 *1 (-906 *5 *6))))) -(-10 -7 (-15 -4117 ((-907 |#2|) (-1 |#2| |#1|) (-907 |#1|)))) -((-3489 (((-112) $ $) NIL)) (-1751 (($ $ (-656 (-52))) 74)) (-1969 (((-656 $) $) 139)) (-2634 (((-2 (|:| |var| (-656 (-1197))) (|:| |pred| (-52))) $) 30)) (-2820 (((-112) $) 35)) (-2244 (($ $ (-656 (-1197)) (-52)) 31)) (-4294 (($ $ (-656 (-52))) 73)) (-1572 (((-3 |#1| "failed") $) 71) (((-3 (-1197) "failed") $) 164)) (-2860 ((|#1| $) 68) (((-1197) $) NIL)) (-3554 (($ $) 126)) (-1355 (((-112) $) 55)) (-2203 (((-656 (-52)) $) 50)) (-3740 (($ (-1197) (-112) (-112) (-112)) 75)) (-1423 (((-3 (-656 $) "failed") (-656 $)) 82)) (-3640 (((-112) $) 58)) (-1949 (((-112) $) 57)) (-3699 (((-1179) $) NIL)) (-1385 (((-3 (-656 $) "failed") $) 41)) (-2274 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-3349 (((-3 (-2 (|:| |val| $) (|:| -3422 $)) "failed") $) 97)) (-1690 (((-3 (-656 $) "failed") $) 40)) (-2588 (((-3 (-656 $) "failed") $ (-115)) 124) (((-3 (-2 (|:| -1757 (-115)) (|:| |arg| (-656 $))) "failed") $) 107)) (-2899 (((-3 (-656 $) "failed") $) 42)) (-2040 (((-3 (-2 (|:| |val| $) (|:| -3422 (-783))) "failed") $) 45)) (-2405 (((-112) $) 34)) (-1450 (((-1141) $) NIL)) (-4092 (((-112) $) 28)) (-3560 (((-112) $) 52)) (-2752 (((-656 (-52)) $) 130)) (-2175 (((-112) $) 56)) (-2797 (($ (-115) (-656 $)) 104)) (-1888 (((-783) $) 33)) (-1870 (($ $) 72)) (-4172 (($ (-656 $)) 69)) (-3535 (((-112) $) 32)) (-3570 (((-876) $) 63) (($ |#1|) 23) (($ (-1197)) 76)) (-4055 (((-112) $ $) NIL)) (-3949 (($ $ (-52)) 129)) (-2721 (($) 103 T CONST)) (-2732 (($) 83 T CONST)) (-2925 (((-112) $ $) 93)) (-3057 (($ $ $) 117)) (-3030 (($ $ $) 121)) (** (($ $ (-783)) 115) (($ $ $) 64)) (* (($ $ $) 122))) -(((-907 |#1|) (-13 (-1121) (-1059 |#1|) (-1059 (-1197)) (-10 -8 (-15 0 ($) -1480) (-15 1 ($) -1480) (-15 -1690 ((-3 (-656 $) "failed") $)) (-15 -1385 ((-3 (-656 $) "failed") $)) (-15 -2588 ((-3 (-656 $) "failed") $ (-115))) (-15 -2588 ((-3 (-2 (|:| -1757 (-115)) (|:| |arg| (-656 $))) "failed") $)) (-15 -2040 ((-3 (-2 (|:| |val| $) (|:| -3422 (-783))) "failed") $)) (-15 -2274 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2899 ((-3 (-656 $) "failed") $)) (-15 -3349 ((-3 (-2 (|:| |val| $) (|:| -3422 $)) "failed") $)) (-15 -2797 ($ (-115) (-656 $))) (-15 -3030 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ $)) (-15 -3057 ($ $ $)) (-15 -1888 ((-783) $)) (-15 -4172 ($ (-656 $))) (-15 -1870 ($ $)) (-15 -2405 ((-112) $)) (-15 -1355 ((-112) $)) (-15 -2820 ((-112) $)) (-15 -3535 ((-112) $)) (-15 -2175 ((-112) $)) (-15 -1949 ((-112) $)) (-15 -3640 ((-112) $)) (-15 -3560 ((-112) $)) (-15 -2203 ((-656 (-52)) $)) (-15 -4294 ($ $ (-656 (-52)))) (-15 -1751 ($ $ (-656 (-52)))) (-15 -3740 ($ (-1197) (-112) (-112) (-112))) (-15 -2244 ($ $ (-656 (-1197)) (-52))) (-15 -2634 ((-2 (|:| |var| (-656 (-1197))) (|:| |pred| (-52))) $)) (-15 -4092 ((-112) $)) (-15 -3554 ($ $)) (-15 -3949 ($ $ (-52))) (-15 -2752 ((-656 (-52)) $)) (-15 -1969 ((-656 $) $)) (-15 -1423 ((-3 (-656 $) "failed") (-656 $))))) (-1121)) (T -907)) -((-2721 (*1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (-2732 (*1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (-1690 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-1385 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2588 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-907 *4))) (-5 *1 (-907 *4)) (-4 *4 (-1121)))) (-2588 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1757 (-115)) (|:| |arg| (-656 (-907 *3))))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2040 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-907 *3)) (|:| -3422 (-783)))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2274 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-907 *3)) (|:| |den| (-907 *3)))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2899 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3349 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-907 *3)) (|:| -3422 (-907 *3)))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2797 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 (-907 *4))) (-5 *1 (-907 *4)) (-4 *4 (-1121)))) (-3030 (*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (-3057 (*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (-1888 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-4172 (*1 *1 *2) (-12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-1870 (*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (-2405 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2820 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3535 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2175 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-1949 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3640 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3560 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2203 (*1 *2 *1) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-4294 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-1751 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3740 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-112)) (-5 *1 (-907 *4)) (-4 *4 (-1121)))) (-2244 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-52)) (-5 *1 (-907 *4)) (-4 *4 (-1121)))) (-2634 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-656 (-1197))) (|:| |pred| (-52)))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3554 (*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (-3949 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2752 (*1 *2 *1) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-1969 (*1 *2 *1) (-12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-1423 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) -(-13 (-1121) (-1059 |#1|) (-1059 (-1197)) (-10 -8 (-15 (-2721) ($) -1480) (-15 (-2732) ($) -1480) (-15 -1690 ((-3 (-656 $) "failed") $)) (-15 -1385 ((-3 (-656 $) "failed") $)) (-15 -2588 ((-3 (-656 $) "failed") $ (-115))) (-15 -2588 ((-3 (-2 (|:| -1757 (-115)) (|:| |arg| (-656 $))) "failed") $)) (-15 -2040 ((-3 (-2 (|:| |val| $) (|:| -3422 (-783))) "failed") $)) (-15 -2274 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2899 ((-3 (-656 $) "failed") $)) (-15 -3349 ((-3 (-2 (|:| |val| $) (|:| -3422 $)) "failed") $)) (-15 -2797 ($ (-115) (-656 $))) (-15 -3030 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ $)) (-15 -3057 ($ $ $)) (-15 -1888 ((-783) $)) (-15 -4172 ($ (-656 $))) (-15 -1870 ($ $)) (-15 -2405 ((-112) $)) (-15 -1355 ((-112) $)) (-15 -2820 ((-112) $)) (-15 -3535 ((-112) $)) (-15 -2175 ((-112) $)) (-15 -1949 ((-112) $)) (-15 -3640 ((-112) $)) (-15 -3560 ((-112) $)) (-15 -2203 ((-656 (-52)) $)) (-15 -4294 ($ $ (-656 (-52)))) (-15 -1751 ($ $ (-656 (-52)))) (-15 -3740 ($ (-1197) (-112) (-112) (-112))) (-15 -2244 ($ $ (-656 (-1197)) (-52))) (-15 -2634 ((-2 (|:| |var| (-656 (-1197))) (|:| |pred| (-52))) $)) (-15 -4092 ((-112) $)) (-15 -3554 ($ $)) (-15 -3949 ($ $ (-52))) (-15 -2752 ((-656 (-52)) $)) (-15 -1969 ((-656 $) $)) (-15 -1423 ((-3 (-656 $) "failed") (-656 $))))) -((-3489 (((-112) $ $) NIL)) (-3447 (((-656 |#1|) $) 19)) (-1579 (((-112) $) 49)) (-1572 (((-3 (-684 |#1|) "failed") $) 56)) (-2860 (((-684 |#1|) $) 54)) (-3593 (($ $) 23)) (-3125 (($ $ $) NIL)) (-3133 (($ $ $) NIL)) (-2437 (((-783) $) 61)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3581 (((-684 |#1|) $) 21)) (-3570 (((-876) $) 47) (($ (-684 |#1|)) 26) (((-831 |#1|) $) 36) (($ |#1|) 25)) (-4055 (((-112) $ $) NIL)) (-2732 (($) 9 T CONST)) (-3071 (((-656 (-684 |#1|)) $) 28)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 12)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) 67))) -(((-908 |#1|) (-13 (-861) (-1059 (-684 |#1|)) (-10 -8 (-15 1 ($) -1480) (-15 -3570 ((-831 |#1|) $)) (-15 -3570 ($ |#1|)) (-15 -3581 ((-684 |#1|) $)) (-15 -2437 ((-783) $)) (-15 -3071 ((-656 (-684 |#1|)) $)) (-15 -3593 ($ $)) (-15 -1579 ((-112) $)) (-15 -3447 ((-656 |#1|) $)))) (-861)) (T -908)) -((-2732 (*1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-861)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) (-3570 (*1 *1 *2) (-12 (-5 *1 (-908 *2)) (-4 *2 (-861)))) (-3581 (*1 *2 *1) (-12 (-5 *2 (-684 *3)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) (-2437 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) (-3071 (*1 *2 *1) (-12 (-5 *2 (-656 (-684 *3))) (-5 *1 (-908 *3)) (-4 *3 (-861)))) (-3593 (*1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-861)))) (-1579 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) (-3447 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-908 *3)) (-4 *3 (-861))))) -(-13 (-861) (-1059 (-684 |#1|)) (-10 -8 (-15 (-2732) ($) -1480) (-15 -3570 ((-831 |#1|) $)) (-15 -3570 ($ |#1|)) (-15 -3581 ((-684 |#1|) $)) (-15 -2437 ((-783) $)) (-15 -3071 ((-656 (-684 |#1|)) $)) (-15 -3593 ($ $)) (-15 -1579 ((-112) $)) (-15 -3447 ((-656 |#1|) $)))) -((-2265 ((|#1| |#1| |#1|) 19))) -(((-909 |#1| |#2|) (-10 -7 (-15 -2265 (|#1| |#1| |#1|))) (-1264 |#2|) (-1070)) (T -909)) -((-2265 (*1 *2 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-909 *2 *3)) (-4 *2 (-1264 *3))))) -(-10 -7 (-15 -2265 (|#1| |#1| |#1|))) +((-2808 (((-112) (-656 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-3416 (((-904 |#1| |#2|) |#2| |#3|) 45 (-12 (-2663 (|has| |#2| (-1059 (-1197)))) (-2663 (|has| |#2| (-1070))))) (((-656 (-304 (-971 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1070)) (-2663 (|has| |#2| (-1059 (-1197)))))) (((-656 (-304 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1059 (-1197)))) (((-900 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|) 21))) +(((-902 |#1| |#2| |#3|) (-10 -7 (-15 -2808 ((-112) |#2| |#3|)) (-15 -2808 ((-112) (-656 |#2|) |#3|)) (-15 -3416 ((-900 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|)) (IF (|has| |#2| (-1059 (-1197))) (-15 -3416 ((-656 (-304 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1070)) (-15 -3416 ((-656 (-304 (-971 |#2|))) |#2| |#3|)) (-15 -3416 ((-904 |#1| |#2|) |#2| |#3|))))) (-1121) (-901 |#1|) (-626 (-907 |#1|))) (T -902)) +((-3416 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-5 *2 (-904 *5 *3)) (-5 *1 (-902 *5 *3 *4)) (-2663 (-4 *3 (-1059 (-1197)))) (-2663 (-4 *3 (-1070))) (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5))))) (-3416 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-5 *2 (-656 (-304 (-971 *3)))) (-5 *1 (-902 *5 *3 *4)) (-4 *3 (-1070)) (-2663 (-4 *3 (-1059 (-1197)))) (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5))))) (-3416 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-5 *2 (-656 (-304 *3))) (-5 *1 (-902 *5 *3 *4)) (-4 *3 (-1059 (-1197))) (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5))))) (-3416 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-4 *6 (-901 *5)) (-5 *2 (-900 *5 *6 (-656 *6))) (-5 *1 (-902 *5 *6 *4)) (-5 *3 (-656 *6)) (-4 *4 (-626 (-907 *5))))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-4 *6 (-901 *5)) (-4 *5 (-1121)) (-5 *2 (-112)) (-5 *1 (-902 *5 *6 *4)) (-4 *4 (-626 (-907 *5))))) (-2808 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-5 *2 (-112)) (-5 *1 (-902 *5 *3 *4)) (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5)))))) +(-10 -7 (-15 -2808 ((-112) |#2| |#3|)) (-15 -2808 ((-112) (-656 |#2|) |#3|)) (-15 -3416 ((-900 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|)) (IF (|has| |#2| (-1059 (-1197))) (-15 -3416 ((-656 (-304 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1070)) (-15 -3416 ((-656 (-304 (-971 |#2|))) |#2| |#3|)) (-15 -3416 ((-904 |#1| |#2|) |#2| |#3|))))) +((-4116 (((-904 |#1| |#3|) (-1 |#3| |#2|) (-904 |#1| |#2|)) 22))) +(((-903 |#1| |#2| |#3|) (-10 -7 (-15 -4116 ((-904 |#1| |#3|) (-1 |#3| |#2|) (-904 |#1| |#2|)))) (-1121) (-1121) (-1121)) (T -903)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-904 *5 *6)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-904 *5 *7)) (-5 *1 (-903 *5 *6 *7))))) +(-10 -7 (-15 -4116 ((-904 |#1| |#3|) (-1 |#3| |#2|) (-904 |#1| |#2|)))) +((-3488 (((-112) $ $) NIL)) (-1820 (($ $ $) 40)) (-4150 (((-3 (-112) "failed") $ (-907 |#1|)) 37)) (-4140 (($) 12)) (-2046 (((-1179) $) NIL)) (-2552 (($ (-907 |#1|) |#2| $) 20)) (-1450 (((-1141) $) NIL)) (-3769 (((-3 |#2| "failed") (-907 |#1|) $) 51)) (-1514 (((-112) $) 15)) (-4196 (($) 13)) (-1903 (((-656 (-2 (|:| -4300 (-1197)) (|:| -4439 |#2|))) $) 25)) (-3581 (($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4439 |#2|)))) 23)) (-3569 (((-876) $) 45)) (-2399 (((-112) $ $) NIL)) (-3677 (($ (-907 |#1|) |#2| $ |#2|) 49)) (-2538 (($ (-907 |#1|) |#2| $) 48)) (-2924 (((-112) $ $) 42))) +(((-904 |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -1514 ((-112) $)) (-15 -4196 ($)) (-15 -4140 ($)) (-15 -1820 ($ $ $)) (-15 -3769 ((-3 |#2| "failed") (-907 |#1|) $)) (-15 -2538 ($ (-907 |#1|) |#2| $)) (-15 -2552 ($ (-907 |#1|) |#2| $)) (-15 -3677 ($ (-907 |#1|) |#2| $ |#2|)) (-15 -1903 ((-656 (-2 (|:| -4300 (-1197)) (|:| -4439 |#2|))) $)) (-15 -3581 ($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4439 |#2|))))) (-15 -4150 ((-3 (-112) "failed") $ (-907 |#1|))))) (-1121) (-1121)) (T -904)) +((-1514 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-4196 (*1 *1) (-12 (-5 *1 (-904 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-4140 (*1 *1) (-12 (-5 *1 (-904 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-1820 (*1 *1 *1 *1) (-12 (-5 *1 (-904 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-3769 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-4 *2 (-1121)) (-5 *1 (-904 *4 *2)))) (-2538 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-904 *4 *3)) (-4 *3 (-1121)))) (-2552 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-904 *4 *3)) (-4 *3 (-1121)))) (-3677 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-904 *4 *3)) (-4 *3 (-1121)))) (-1903 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -4300 (-1197)) (|:| -4439 *4)))) (-5 *1 (-904 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-3581 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4300 (-1197)) (|:| -4439 *4)))) (-4 *4 (-1121)) (-5 *1 (-904 *3 *4)) (-4 *3 (-1121)))) (-4150 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-5 *2 (-112)) (-5 *1 (-904 *4 *5)) (-4 *5 (-1121))))) +(-13 (-1121) (-10 -8 (-15 -1514 ((-112) $)) (-15 -4196 ($)) (-15 -4140 ($)) (-15 -1820 ($ $ $)) (-15 -3769 ((-3 |#2| "failed") (-907 |#1|) $)) (-15 -2538 ($ (-907 |#1|) |#2| $)) (-15 -2552 ($ (-907 |#1|) |#2| $)) (-15 -3677 ($ (-907 |#1|) |#2| $ |#2|)) (-15 -1903 ((-656 (-2 (|:| -4300 (-1197)) (|:| -4439 |#2|))) $)) (-15 -3581 ($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4439 |#2|))))) (-15 -4150 ((-3 (-112) "failed") $ (-907 |#1|))))) +((-2929 (((-907 |#1|) (-907 |#1|) (-656 (-1197)) (-1 (-112) (-656 |#2|))) 32) (((-907 |#1|) (-907 |#1|) (-656 (-1 (-112) |#2|))) 46) (((-907 |#1|) (-907 |#1|) (-1 (-112) |#2|)) 35)) (-4150 (((-112) (-656 |#2|) (-907 |#1|)) 42) (((-112) |#2| (-907 |#1|)) 36)) (-2001 (((-1 (-112) |#2|) (-907 |#1|)) 16)) (-2148 (((-656 |#2|) (-907 |#1|)) 24)) (-2699 (((-907 |#1|) (-907 |#1|) |#2|) 20))) +(((-905 |#1| |#2|) (-10 -7 (-15 -2929 ((-907 |#1|) (-907 |#1|) (-1 (-112) |#2|))) (-15 -2929 ((-907 |#1|) (-907 |#1|) (-656 (-1 (-112) |#2|)))) (-15 -2929 ((-907 |#1|) (-907 |#1|) (-656 (-1197)) (-1 (-112) (-656 |#2|)))) (-15 -2001 ((-1 (-112) |#2|) (-907 |#1|))) (-15 -4150 ((-112) |#2| (-907 |#1|))) (-15 -4150 ((-112) (-656 |#2|) (-907 |#1|))) (-15 -2699 ((-907 |#1|) (-907 |#1|) |#2|)) (-15 -2148 ((-656 |#2|) (-907 |#1|)))) (-1121) (-1238)) (T -905)) +((-2148 (*1 *2 *3) (-12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-5 *2 (-656 *5)) (-5 *1 (-905 *4 *5)) (-4 *5 (-1238)))) (-2699 (*1 *2 *2 *3) (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-905 *4 *3)) (-4 *3 (-1238)))) (-4150 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-4 *6 (-1238)) (-5 *2 (-112)) (-5 *1 (-905 *5 *6)))) (-4150 (*1 *2 *3 *4) (-12 (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-5 *2 (-112)) (-5 *1 (-905 *5 *3)) (-4 *3 (-1238)))) (-2001 (*1 *2 *3) (-12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-905 *4 *5)) (-4 *5 (-1238)))) (-2929 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-907 *5)) (-5 *3 (-656 (-1197))) (-5 *4 (-1 (-112) (-656 *6))) (-4 *5 (-1121)) (-4 *6 (-1238)) (-5 *1 (-905 *5 *6)))) (-2929 (*1 *2 *2 *3) (-12 (-5 *2 (-907 *4)) (-5 *3 (-656 (-1 (-112) *5))) (-4 *4 (-1121)) (-4 *5 (-1238)) (-5 *1 (-905 *4 *5)))) (-2929 (*1 *2 *2 *3) (-12 (-5 *2 (-907 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1121)) (-4 *5 (-1238)) (-5 *1 (-905 *4 *5))))) +(-10 -7 (-15 -2929 ((-907 |#1|) (-907 |#1|) (-1 (-112) |#2|))) (-15 -2929 ((-907 |#1|) (-907 |#1|) (-656 (-1 (-112) |#2|)))) (-15 -2929 ((-907 |#1|) (-907 |#1|) (-656 (-1197)) (-1 (-112) (-656 |#2|)))) (-15 -2001 ((-1 (-112) |#2|) (-907 |#1|))) (-15 -4150 ((-112) |#2| (-907 |#1|))) (-15 -4150 ((-112) (-656 |#2|) (-907 |#1|))) (-15 -2699 ((-907 |#1|) (-907 |#1|) |#2|)) (-15 -2148 ((-656 |#2|) (-907 |#1|)))) +((-4116 (((-907 |#2|) (-1 |#2| |#1|) (-907 |#1|)) 19))) +(((-906 |#1| |#2|) (-10 -7 (-15 -4116 ((-907 |#2|) (-1 |#2| |#1|) (-907 |#1|)))) (-1121) (-1121)) (T -906)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-907 *6)) (-5 *1 (-906 *5 *6))))) +(-10 -7 (-15 -4116 ((-907 |#2|) (-1 |#2| |#1|) (-907 |#1|)))) +((-3488 (((-112) $ $) NIL)) (-1764 (($ $ (-656 (-52))) 74)) (-1969 (((-656 $) $) 139)) (-2359 (((-2 (|:| |var| (-656 (-1197))) (|:| |pred| (-52))) $) 30)) (-3500 (((-112) $) 35)) (-2775 (($ $ (-656 (-1197)) (-52)) 31)) (-3016 (($ $ (-656 (-52))) 73)) (-1572 (((-3 |#1| "failed") $) 71) (((-3 (-1197) "failed") $) 164)) (-2859 ((|#1| $) 68) (((-1197) $) NIL)) (-4418 (($ $) 126)) (-1388 (((-112) $) 55)) (-3662 (((-656 (-52)) $) 50)) (-2481 (($ (-1197) (-112) (-112) (-112)) 75)) (-2104 (((-3 (-656 $) "failed") (-656 $)) 82)) (-2741 (((-112) $) 58)) (-3107 (((-112) $) 57)) (-2046 (((-1179) $) NIL)) (-3845 (((-3 (-656 $) "failed") $) 41)) (-2274 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-3030 (((-3 (-2 (|:| |val| $) (|:| -2508 $)) "failed") $) 97)) (-2363 (((-3 (-656 $) "failed") $) 40)) (-3213 (((-3 (-656 $) "failed") $ (-115)) 124) (((-3 (-2 (|:| -1757 (-115)) (|:| |arg| (-656 $))) "failed") $) 107)) (-3021 (((-3 (-656 $) "failed") $) 42)) (-1452 (((-3 (-2 (|:| |val| $) (|:| -2508 (-783))) "failed") $) 45)) (-1904 (((-112) $) 34)) (-1450 (((-1141) $) NIL)) (-1562 (((-112) $) 28)) (-1360 (((-112) $) 52)) (-4145 (((-656 (-52)) $) 130)) (-3373 (((-112) $) 56)) (-2796 (($ (-115) (-656 $)) 104)) (-1887 (((-783) $) 33)) (-1870 (($ $) 72)) (-4171 (($ (-656 $)) 69)) (-4257 (((-112) $) 32)) (-3569 (((-876) $) 63) (($ |#1|) 23) (($ (-1197)) 76)) (-2399 (((-112) $ $) NIL)) (-2699 (($ $ (-52)) 129)) (-2721 (($) 103 T CONST)) (-2731 (($) 83 T CONST)) (-2924 (((-112) $ $) 93)) (-3056 (($ $ $) 117)) (-3029 (($ $ $) 121)) (** (($ $ (-783)) 115) (($ $ $) 64)) (* (($ $ $) 122))) +(((-907 |#1|) (-13 (-1121) (-1059 |#1|) (-1059 (-1197)) (-10 -8 (-15 0 ($) -1480) (-15 1 ($) -1480) (-15 -2363 ((-3 (-656 $) "failed") $)) (-15 -3845 ((-3 (-656 $) "failed") $)) (-15 -3213 ((-3 (-656 $) "failed") $ (-115))) (-15 -3213 ((-3 (-2 (|:| -1757 (-115)) (|:| |arg| (-656 $))) "failed") $)) (-15 -1452 ((-3 (-2 (|:| |val| $) (|:| -2508 (-783))) "failed") $)) (-15 -2274 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3021 ((-3 (-656 $) "failed") $)) (-15 -3030 ((-3 (-2 (|:| |val| $) (|:| -2508 $)) "failed") $)) (-15 -2796 ($ (-115) (-656 $))) (-15 -3029 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ $)) (-15 -3056 ($ $ $)) (-15 -1887 ((-783) $)) (-15 -4171 ($ (-656 $))) (-15 -1870 ($ $)) (-15 -1904 ((-112) $)) (-15 -1388 ((-112) $)) (-15 -3500 ((-112) $)) (-15 -4257 ((-112) $)) (-15 -3373 ((-112) $)) (-15 -3107 ((-112) $)) (-15 -2741 ((-112) $)) (-15 -1360 ((-112) $)) (-15 -3662 ((-656 (-52)) $)) (-15 -3016 ($ $ (-656 (-52)))) (-15 -1764 ($ $ (-656 (-52)))) (-15 -2481 ($ (-1197) (-112) (-112) (-112))) (-15 -2775 ($ $ (-656 (-1197)) (-52))) (-15 -2359 ((-2 (|:| |var| (-656 (-1197))) (|:| |pred| (-52))) $)) (-15 -1562 ((-112) $)) (-15 -4418 ($ $)) (-15 -2699 ($ $ (-52))) (-15 -4145 ((-656 (-52)) $)) (-15 -1969 ((-656 $) $)) (-15 -2104 ((-3 (-656 $) "failed") (-656 $))))) (-1121)) (T -907)) +((-2721 (*1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (-2731 (*1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (-2363 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3845 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3213 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-907 *4))) (-5 *1 (-907 *4)) (-4 *4 (-1121)))) (-3213 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1757 (-115)) (|:| |arg| (-656 (-907 *3))))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-1452 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-907 *3)) (|:| -2508 (-783)))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2274 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-907 *3)) (|:| |den| (-907 *3)))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3021 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3030 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-907 *3)) (|:| -2508 (-907 *3)))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2796 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 (-907 *4))) (-5 *1 (-907 *4)) (-4 *4 (-1121)))) (-3029 (*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (-3056 (*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (-1887 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-4171 (*1 *1 *2) (-12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-1870 (*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (-1904 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-1388 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3500 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-4257 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3373 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2741 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-1360 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3662 (*1 *2 *1) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3016 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-1764 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2481 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-112)) (-5 *1 (-907 *4)) (-4 *4 (-1121)))) (-2775 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-52)) (-5 *1 (-907 *4)) (-4 *4 (-1121)))) (-2359 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-656 (-1197))) (|:| |pred| (-52)))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-4418 (*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (-2699 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-4145 (*1 *2 *1) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-1969 (*1 *2 *1) (-12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2104 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(-13 (-1121) (-1059 |#1|) (-1059 (-1197)) (-10 -8 (-15 (-2721) ($) -1480) (-15 (-2731) ($) -1480) (-15 -2363 ((-3 (-656 $) "failed") $)) (-15 -3845 ((-3 (-656 $) "failed") $)) (-15 -3213 ((-3 (-656 $) "failed") $ (-115))) (-15 -3213 ((-3 (-2 (|:| -1757 (-115)) (|:| |arg| (-656 $))) "failed") $)) (-15 -1452 ((-3 (-2 (|:| |val| $) (|:| -2508 (-783))) "failed") $)) (-15 -2274 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3021 ((-3 (-656 $) "failed") $)) (-15 -3030 ((-3 (-2 (|:| |val| $) (|:| -2508 $)) "failed") $)) (-15 -2796 ($ (-115) (-656 $))) (-15 -3029 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ $)) (-15 -3056 ($ $ $)) (-15 -1887 ((-783) $)) (-15 -4171 ($ (-656 $))) (-15 -1870 ($ $)) (-15 -1904 ((-112) $)) (-15 -1388 ((-112) $)) (-15 -3500 ((-112) $)) (-15 -4257 ((-112) $)) (-15 -3373 ((-112) $)) (-15 -3107 ((-112) $)) (-15 -2741 ((-112) $)) (-15 -1360 ((-112) $)) (-15 -3662 ((-656 (-52)) $)) (-15 -3016 ($ $ (-656 (-52)))) (-15 -1764 ($ $ (-656 (-52)))) (-15 -2481 ($ (-1197) (-112) (-112) (-112))) (-15 -2775 ($ $ (-656 (-1197)) (-52))) (-15 -2359 ((-2 (|:| |var| (-656 (-1197))) (|:| |pred| (-52))) $)) (-15 -1562 ((-112) $)) (-15 -4418 ($ $)) (-15 -2699 ($ $ (-52))) (-15 -4145 ((-656 (-52)) $)) (-15 -1969 ((-656 $) $)) (-15 -2104 ((-3 (-656 $) "failed") (-656 $))))) +((-3488 (((-112) $ $) NIL)) (-3446 (((-656 |#1|) $) 19)) (-3847 (((-112) $) 49)) (-1572 (((-3 (-684 |#1|) "failed") $) 56)) (-2859 (((-684 |#1|) $) 54)) (-3592 (($ $) 23)) (-3124 (($ $ $) NIL)) (-1441 (($ $ $) NIL)) (-2435 (((-783) $) 61)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3580 (((-684 |#1|) $) 21)) (-3569 (((-876) $) 47) (($ (-684 |#1|)) 26) (((-831 |#1|) $) 36) (($ |#1|) 25)) (-2399 (((-112) $ $) NIL)) (-2731 (($) 9 T CONST)) (-2012 (((-656 (-684 |#1|)) $) 28)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 12)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) 67))) +(((-908 |#1|) (-13 (-861) (-1059 (-684 |#1|)) (-10 -8 (-15 1 ($) -1480) (-15 -3569 ((-831 |#1|) $)) (-15 -3569 ($ |#1|)) (-15 -3580 ((-684 |#1|) $)) (-15 -2435 ((-783) $)) (-15 -2012 ((-656 (-684 |#1|)) $)) (-15 -3592 ($ $)) (-15 -3847 ((-112) $)) (-15 -3446 ((-656 |#1|) $)))) (-861)) (T -908)) +((-2731 (*1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-861)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) (-3569 (*1 *1 *2) (-12 (-5 *1 (-908 *2)) (-4 *2 (-861)))) (-3580 (*1 *2 *1) (-12 (-5 *2 (-684 *3)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) (-2435 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) (-2012 (*1 *2 *1) (-12 (-5 *2 (-656 (-684 *3))) (-5 *1 (-908 *3)) (-4 *3 (-861)))) (-3592 (*1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-861)))) (-3847 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-908 *3)) (-4 *3 (-861))))) +(-13 (-861) (-1059 (-684 |#1|)) (-10 -8 (-15 (-2731) ($) -1480) (-15 -3569 ((-831 |#1|) $)) (-15 -3569 ($ |#1|)) (-15 -3580 ((-684 |#1|) $)) (-15 -2435 ((-783) $)) (-15 -2012 ((-656 (-684 |#1|)) $)) (-15 -3592 ($ $)) (-15 -3847 ((-112) $)) (-15 -3446 ((-656 |#1|) $)))) +((-3031 ((|#1| |#1| |#1|) 19))) +(((-909 |#1| |#2|) (-10 -7 (-15 -3031 (|#1| |#1| |#1|))) (-1264 |#2|) (-1070)) (T -909)) +((-3031 (*1 *2 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-909 *2 *3)) (-4 *2 (-1264 *3))))) +(-10 -7 (-15 -3031 (|#1| |#1| |#1|))) ((-2020 ((|#2| $ |#3|) 10))) (((-910 |#1| |#2| |#3|) (-10 -8 (-15 -2020 (|#2| |#1| |#3|))) (-911 |#2| |#3|) (-1238) (-1238)) (T -910)) NIL (-10 -8 (-15 -2020 (|#2| |#1| |#3|))) -((-2775 ((|#1| $ |#2|) 7)) (-2020 ((|#1| $ |#2|) 6))) +((-2774 ((|#1| $ |#2|) 7)) (-2020 ((|#1| $ |#2|) 6))) (((-911 |#1| |#2|) (-141) (-1238) (-1238)) (T -911)) -((-2775 (*1 *2 *1 *3) (-12 (-4 *1 (-911 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1238)))) (-2020 (*1 *2 *1 *3) (-12 (-4 *1 (-911 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1238))))) -(-13 (-1238) (-10 -8 (-15 -2775 (|t#1| $ |t#2|)) (-15 -2020 (|t#1| $ |t#2|)))) +((-2774 (*1 *2 *1 *3) (-12 (-4 *1 (-911 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1238)))) (-2020 (*1 *2 *1 *3) (-12 (-4 *1 (-911 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1238))))) +(-13 (-1238) (-10 -8 (-15 -2774 (|t#1| $ |t#2|)) (-15 -2020 (|t#1| $ |t#2|)))) (((-1238) . T)) -((-3489 (((-112) $ $) 7)) (-2012 (((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 15)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-3277 (((-1056) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 14)) (-2925 (((-112) $ $) 8))) +((-3488 (((-112) $ $) 7)) (-2402 (((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 15)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-3571 (((-1056) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 14)) (-2924 (((-112) $ $) 8))) (((-912) (-141)) (T -912)) -((-2012 (*1 *2 *3 *4) (-12 (-4 *1 (-912)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) (-5 *2 (-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)))))) (-3277 (*1 *2 *3) (-12 (-4 *1 (-912)) (-5 *3 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) (-5 *2 (-1056))))) -(-13 (-1121) (-10 -7 (-15 -2012 ((-2 (|:| -2012 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))))) (-15 -3277 ((-1056) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))))))) +((-2402 (*1 *2 *3 *4) (-12 (-4 *1 (-912)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) (-5 *2 (-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)))))) (-3571 (*1 *2 *3) (-12 (-4 *1 (-912)) (-5 *3 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) (-5 *2 (-1056))))) +(-13 (-1121) (-10 -7 (-15 -2402 ((-2 (|:| -2402 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))))) (-15 -3571 ((-1056) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))))))) (((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-2397 ((|#1| |#1| (-783)) 27)) (-2900 (((-3 |#1| "failed") |#1| |#1|) 24)) (-1508 (((-3 (-2 (|:| -4240 |#1|) (|:| -4250 |#1|)) "failed") |#1| (-783) (-783)) 30) (((-656 |#1|) |#1|) 38))) -(((-913 |#1| |#2|) (-10 -7 (-15 -1508 ((-656 |#1|) |#1|)) (-15 -1508 ((-3 (-2 (|:| -4240 |#1|) (|:| -4250 |#1|)) "failed") |#1| (-783) (-783))) (-15 -2900 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2397 (|#1| |#1| (-783)))) (-1264 |#2|) (-374)) (T -913)) -((-2397 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-5 *1 (-913 *2 *4)) (-4 *2 (-1264 *4)))) (-2900 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-374)) (-5 *1 (-913 *2 *3)) (-4 *2 (-1264 *3)))) (-1508 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-783)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -4240 *3) (|:| -4250 *3))) (-5 *1 (-913 *3 *5)) (-4 *3 (-1264 *5)))) (-1508 (*1 *2 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-913 *3 *4)) (-4 *3 (-1264 *4))))) -(-10 -7 (-15 -1508 ((-656 |#1|) |#1|)) (-15 -1508 ((-3 (-2 (|:| -4240 |#1|) (|:| -4250 |#1|)) "failed") |#1| (-783) (-783))) (-15 -2900 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2397 (|#1| |#1| (-783)))) -((-2767 (((-1056) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1179)) 104) (((-1056) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1179) (-227)) 100) (((-1056) (-915) (-1084)) 92) (((-1056) (-915)) 93)) (-2012 (((-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179)))) (-915) (-1084)) 62) (((-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179)))) (-915)) 64))) -(((-914) (-10 -7 (-15 -2767 ((-1056) (-915))) (-15 -2767 ((-1056) (-915) (-1084))) (-15 -2767 ((-1056) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1179) (-227))) (-15 -2767 ((-1056) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1179))) (-15 -2012 ((-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179)))) (-915))) (-15 -2012 ((-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179)))) (-915) (-1084))))) (T -914)) -((-2012 (*1 *2 *3 *4) (-12 (-5 *3 (-915)) (-5 *4 (-1084)) (-5 *2 (-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *1 (-914)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *1 (-914)))) (-2767 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1179)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1056)) (-5 *1 (-914)))) (-2767 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1179)) (-5 *8 (-227)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1056)) (-5 *1 (-914)))) (-2767 (*1 *2 *3 *4) (-12 (-5 *3 (-915)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-914)))) (-2767 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1056)) (-5 *1 (-914))))) -(-10 -7 (-15 -2767 ((-1056) (-915))) (-15 -2767 ((-1056) (-915) (-1084))) (-15 -2767 ((-1056) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1179) (-227))) (-15 -2767 ((-1056) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1179))) (-15 -2012 ((-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179)))) (-915))) (-15 -2012 ((-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) (|:| |explanations| (-656 (-1179)))) (-915) (-1084)))) -((-3489 (((-112) $ $) NIL)) (-2860 (((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))) $) 19)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 21) (($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 18)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-915) (-13 (-1121) (-10 -8 (-15 -3570 ($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))))) (-15 -2860 ((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))) $))))) (T -915)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) (-5 *1 (-915)))) (-2860 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) (-5 *1 (-915))))) -(-13 (-1121) (-10 -8 (-15 -3570 ($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))))) (-15 -2860 ((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))) $)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2775 (($ $ (-656 |#2|) (-656 (-783))) 39) (($ $ |#2| (-783)) 38) (($ $ (-656 |#2|)) 37) (($ $ |#2|) 35)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2020 (($ $ (-656 |#2|) (-656 (-783))) 42) (($ $ |#2| (-783)) 41) (($ $ (-656 |#2|)) 40) (($ $ |#2|) 36)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +((-1817 ((|#1| |#1| (-783)) 27)) (-3033 (((-3 |#1| "failed") |#1| |#1|) 24)) (-4323 (((-3 (-2 (|:| -4239 |#1|) (|:| -4249 |#1|)) "failed") |#1| (-783) (-783)) 30) (((-656 |#1|) |#1|) 38))) +(((-913 |#1| |#2|) (-10 -7 (-15 -4323 ((-656 |#1|) |#1|)) (-15 -4323 ((-3 (-2 (|:| -4239 |#1|) (|:| -4249 |#1|)) "failed") |#1| (-783) (-783))) (-15 -3033 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1817 (|#1| |#1| (-783)))) (-1264 |#2|) (-374)) (T -913)) +((-1817 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-5 *1 (-913 *2 *4)) (-4 *2 (-1264 *4)))) (-3033 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-374)) (-5 *1 (-913 *2 *3)) (-4 *2 (-1264 *3)))) (-4323 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-783)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -4239 *3) (|:| -4249 *3))) (-5 *1 (-913 *3 *5)) (-4 *3 (-1264 *5)))) (-4323 (*1 *2 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-913 *3 *4)) (-4 *3 (-1264 *4))))) +(-10 -7 (-15 -4323 ((-656 |#1|) |#1|)) (-15 -4323 ((-3 (-2 (|:| -4239 |#1|) (|:| -4249 |#1|)) "failed") |#1| (-783) (-783))) (-15 -3033 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1817 (|#1| |#1| (-783)))) +((-4263 (((-1056) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1179)) 104) (((-1056) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1179) (-227)) 100) (((-1056) (-915) (-1084)) 92) (((-1056) (-915)) 93)) (-2402 (((-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179)))) (-915) (-1084)) 62) (((-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179)))) (-915)) 64))) +(((-914) (-10 -7 (-15 -4263 ((-1056) (-915))) (-15 -4263 ((-1056) (-915) (-1084))) (-15 -4263 ((-1056) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1179) (-227))) (-15 -4263 ((-1056) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1179))) (-15 -2402 ((-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179)))) (-915))) (-15 -2402 ((-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179)))) (-915) (-1084))))) (T -914)) +((-2402 (*1 *2 *3 *4) (-12 (-5 *3 (-915)) (-5 *4 (-1084)) (-5 *2 (-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *1 (-914)))) (-2402 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *1 (-914)))) (-4263 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1179)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1056)) (-5 *1 (-914)))) (-4263 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1179)) (-5 *8 (-227)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1056)) (-5 *1 (-914)))) (-4263 (*1 *2 *3 *4) (-12 (-5 *3 (-915)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-914)))) (-4263 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1056)) (-5 *1 (-914))))) +(-10 -7 (-15 -4263 ((-1056) (-915))) (-15 -4263 ((-1056) (-915) (-1084))) (-15 -4263 ((-1056) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1179) (-227))) (-15 -4263 ((-1056) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1179))) (-15 -2402 ((-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179)))) (-915))) (-15 -2402 ((-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) (|:| |explanations| (-656 (-1179)))) (-915) (-1084)))) +((-3488 (((-112) $ $) NIL)) (-2859 (((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))) $) 19)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 21) (($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 18)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-915) (-13 (-1121) (-10 -8 (-15 -3569 ($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))))) (-15 -2859 ((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))) $))))) (T -915)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) (-5 *1 (-915)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) (-5 *1 (-915))))) +(-13 (-1121) (-10 -8 (-15 -3569 ($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))))) (-15 -2859 ((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))) $)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2774 (($ $ (-656 |#2|) (-656 (-783))) 39) (($ $ |#2| (-783)) 38) (($ $ (-656 |#2|)) 37) (($ $ |#2|) 35)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2020 (($ $ (-656 |#2|) (-656 (-783))) 42) (($ $ |#2| (-783)) 41) (($ $ (-656 |#2|)) 40) (($ $ |#2|) 36)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) (((-916 |#1| |#2|) (-141) (-1070) (-1121)) (T -916)) NIL (-13 (-111 |t#1| |t#1|) (-919 |t#2|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-729 |t#1|)) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-911 $ |#2|) . T) ((-919 |#2|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-1561 (((-3 $ "failed") $) 37)) (-4193 (((-112) $) 35)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2775 (($ $ (-656 |#1|) (-656 (-783))) 44) (($ $ |#1| (-783)) 43) (($ $ (-656 |#1|)) 42) (($ $ |#1|) 40)) (-3570 (((-876) $) 12) (($ (-576)) 33)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2020 (($ $ (-656 |#1|) (-656 (-783))) 47) (($ $ |#1| (-783)) 46) (($ $ (-656 |#1|)) 45) (($ $ |#1|) 41)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-3673 (((-3 $ "failed") $) 37)) (-1351 (((-112) $) 35)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2774 (($ $ (-656 |#1|) (-656 (-783))) 44) (($ $ |#1| (-783)) 43) (($ $ (-656 |#1|)) 42) (($ $ |#1|) 40)) (-3569 (((-876) $) 12) (($ (-576)) 33)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2020 (($ $ (-656 |#1|) (-656 (-783))) 47) (($ $ |#1| (-783)) 46) (($ $ (-656 |#1|)) 45) (($ $ |#1|) 41)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-917 |#1|) (-141) (-1121)) (T -917)) NIL (-13 (-1070) (-919 |t#1|)) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-911 $ |#1|) . T) ((-919 |#1|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-2775 (($ $ |#2|) NIL) (($ $ (-656 |#2|)) 10) (($ $ |#2| (-783)) 12) (($ $ (-656 |#2|) (-656 (-783))) 15)) (-2020 (($ $ |#2|) 16) (($ $ (-656 |#2|)) 18) (($ $ |#2| (-783)) 19) (($ $ (-656 |#2|) (-656 (-783))) 21))) -(((-918 |#1| |#2|) (-10 -8 (-15 -2020 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -2020 (|#1| |#1| |#2| (-783))) (-15 -2020 (|#1| |#1| (-656 |#2|))) (-15 -2775 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -2775 (|#1| |#1| |#2| (-783))) (-15 -2775 (|#1| |#1| (-656 |#2|))) (-15 -2020 (|#1| |#1| |#2|)) (-15 -2775 (|#1| |#1| |#2|))) (-919 |#2|) (-1121)) (T -918)) +((-2774 (($ $ |#2|) NIL) (($ $ (-656 |#2|)) 10) (($ $ |#2| (-783)) 12) (($ $ (-656 |#2|) (-656 (-783))) 15)) (-2020 (($ $ |#2|) 16) (($ $ (-656 |#2|)) 18) (($ $ |#2| (-783)) 19) (($ $ (-656 |#2|) (-656 (-783))) 21))) +(((-918 |#1| |#2|) (-10 -8 (-15 -2020 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -2020 (|#1| |#1| |#2| (-783))) (-15 -2020 (|#1| |#1| (-656 |#2|))) (-15 -2774 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -2774 (|#1| |#1| |#2| (-783))) (-15 -2774 (|#1| |#1| (-656 |#2|))) (-15 -2020 (|#1| |#1| |#2|)) (-15 -2774 (|#1| |#1| |#2|))) (-919 |#2|) (-1121)) (T -918)) NIL -(-10 -8 (-15 -2020 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -2020 (|#1| |#1| |#2| (-783))) (-15 -2020 (|#1| |#1| (-656 |#2|))) (-15 -2775 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -2775 (|#1| |#1| |#2| (-783))) (-15 -2775 (|#1| |#1| (-656 |#2|))) (-15 -2020 (|#1| |#1| |#2|)) (-15 -2775 (|#1| |#1| |#2|))) -((-2775 (($ $ |#1|) 7) (($ $ (-656 |#1|)) 15) (($ $ |#1| (-783)) 14) (($ $ (-656 |#1|) (-656 (-783))) 13)) (-2020 (($ $ |#1|) 6) (($ $ (-656 |#1|)) 12) (($ $ |#1| (-783)) 11) (($ $ (-656 |#1|) (-656 (-783))) 10))) +(-10 -8 (-15 -2020 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -2020 (|#1| |#1| |#2| (-783))) (-15 -2020 (|#1| |#1| (-656 |#2|))) (-15 -2774 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -2774 (|#1| |#1| |#2| (-783))) (-15 -2774 (|#1| |#1| (-656 |#2|))) (-15 -2020 (|#1| |#1| |#2|)) (-15 -2774 (|#1| |#1| |#2|))) +((-2774 (($ $ |#1|) 7) (($ $ (-656 |#1|)) 15) (($ $ |#1| (-783)) 14) (($ $ (-656 |#1|) (-656 (-783))) 13)) (-2020 (($ $ |#1|) 6) (($ $ (-656 |#1|)) 12) (($ $ |#1| (-783)) 11) (($ $ (-656 |#1|) (-656 (-783))) 10))) (((-919 |#1|) (-141) (-1121)) (T -919)) -((-2775 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-919 *3)) (-4 *3 (-1121)))) (-2775 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-919 *2)) (-4 *2 (-1121)))) (-2775 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-919 *4)) (-4 *4 (-1121)))) (-2020 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-919 *3)) (-4 *3 (-1121)))) (-2020 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-919 *2)) (-4 *2 (-1121)))) (-2020 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-919 *4)) (-4 *4 (-1121))))) -(-13 (-911 $ |t#1|) (-10 -8 (-15 -2775 ($ $ (-656 |t#1|))) (-15 -2775 ($ $ |t#1| (-783))) (-15 -2775 ($ $ (-656 |t#1|) (-656 (-783)))) (-15 -2020 ($ $ (-656 |t#1|))) (-15 -2020 ($ $ |t#1| (-783))) (-15 -2020 ($ $ (-656 |t#1|) (-656 (-783)))))) +((-2774 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-919 *3)) (-4 *3 (-1121)))) (-2774 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-919 *2)) (-4 *2 (-1121)))) (-2774 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-919 *4)) (-4 *4 (-1121)))) (-2020 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-919 *3)) (-4 *3 (-1121)))) (-2020 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-919 *2)) (-4 *2 (-1121)))) (-2020 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-919 *4)) (-4 *4 (-1121))))) +(-13 (-911 $ |t#1|) (-10 -8 (-15 -2774 ($ $ (-656 |t#1|))) (-15 -2774 ($ $ |t#1| (-783))) (-15 -2774 ($ $ (-656 |t#1|) (-656 (-783)))) (-15 -2020 ($ $ (-656 |t#1|))) (-15 -2020 ($ $ |t#1| (-783))) (-15 -2020 ($ $ (-656 |t#1|) (-656 (-783)))))) (((-911 $ |#1|) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3106 ((|#1| $) 26)) (-1808 (((-112) $ (-783)) NIL)) (-2647 ((|#1| $ |#1|) NIL (|has| $ (-6 -4466)))) (-4121 (($ $ $) NIL (|has| $ (-6 -4466)))) (-3523 (($ $ $) NIL (|has| $ (-6 -4466)))) (-3756 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4466))) (($ $ "left" $) NIL (|has| $ (-6 -4466))) (($ $ "right" $) NIL (|has| $ (-6 -4466)))) (-1894 (($ $ (-656 $)) NIL (|has| $ (-6 -4466)))) (-3886 (($) NIL T CONST)) (-4250 (($ $) 25)) (-1651 (($ |#1|) 12) (($ $ $) 17)) (-3966 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-2387 (((-656 $) $) NIL)) (-3295 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-3870 (((-112) $ (-783)) NIL)) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-4323 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-4240 (($ $) 23)) (-2353 (((-656 |#1|) $) NIL)) (-3443 (((-112) $) 20)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2789 (((-576) $ $) NIL)) (-3617 (((-112) $) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3570 (((-1224 |#1|) $) 9) (((-876) $) 29 (|has| |#1| (-625 (-876))))) (-2902 (((-656 $) $) NIL)) (-2621 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3104 ((|#1| $) 26)) (-4264 (((-112) $ (-783)) NIL)) (-2482 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-1841 (($ $ $) NIL (|has| $ (-6 -4465)))) (-4158 (($ $ $) NIL (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465))) (($ $ "left" $) NIL (|has| $ (-6 -4465))) (($ $ "right" $) NIL (|has| $ (-6 -4465)))) (-3829 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-3404 (($) NIL T CONST)) (-4249 (($ $) 25)) (-1651 (($ |#1|) 12) (($ $ $) 17)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1736 (((-656 $) $) NIL)) (-3768 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-1368 (((-112) $ (-783)) NIL)) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4326 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-4239 (($ $) 23)) (-2353 (((-656 |#1|) $) NIL)) (-1508 (((-112) $) 20)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1335 (((-576) $ $) NIL)) (-3806 (((-112) $) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3569 (((-1224 |#1|) $) 9) (((-876) $) 29 (|has| |#1| (-625 (-876))))) (-3059 (((-656 $) $) NIL)) (-2247 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) (((-920 |#1|) (-13 (-120 |#1|) (-625 (-1224 |#1|)) (-10 -8 (-15 -1651 ($ |#1|)) (-15 -1651 ($ $ $)))) (-1121)) (T -920)) ((-1651 (*1 *1 *2) (-12 (-5 *1 (-920 *2)) (-4 *2 (-1121)))) (-1651 (*1 *1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-1121))))) (-13 (-120 |#1|) (-625 (-1224 |#1|)) (-10 -8 (-15 -1651 ($ |#1|)) (-15 -1651 ($ $ $)))) -((-1875 ((|#2| (-1163 |#1| |#2|)) 48))) -(((-921 |#1| |#2|) (-10 -7 (-15 -1875 (|#2| (-1163 |#1| |#2|)))) (-940) (-13 (-1070) (-10 -7 (-6 (-4467 "*"))))) (T -921)) -((-1875 (*1 *2 *3) (-12 (-5 *3 (-1163 *4 *2)) (-14 *4 (-940)) (-4 *2 (-13 (-1070) (-10 -7 (-6 (-4467 "*"))))) (-5 *1 (-921 *4 *2))))) -(-10 -7 (-15 -1875 (|#2| (-1163 |#1| |#2|)))) -((-3489 (((-112) $ $) 7)) (-4018 (((-1123 |#1|) $) 36)) (-3886 (($) 19 T CONST)) (-1561 (((-3 $ "failed") $) 16)) (-2461 (((-1123 |#1|) $ |#1|) 35)) (-4193 (((-112) $) 18)) (-3125 (($ $ $) 29 (-2760 (|has| |#1| (-861)) (|has| |#1| (-379))))) (-3133 (($ $ $) 30 (-2760 (|has| |#1| (-861)) (|has| |#1| (-379))))) (-3699 (((-1179) $) 10)) (-2050 (($ $) 25)) (-1450 (((-1141) $) 11)) (-2797 ((|#1| $ |#1|) 39)) (-3141 (($ (-656 (-656 |#1|))) 37)) (-3742 (($ (-656 |#1|)) 38)) (-2314 (($ $ $) 22)) (-2076 (($ $ $) 21)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2732 (($) 20 T CONST)) (-2992 (((-112) $ $) 31 (-2760 (|has| |#1| (-861)) (|has| |#1| (-379))))) (-2964 (((-112) $ $) 33 (-2760 (|has| |#1| (-861)) (|has| |#1| (-379))))) (-2925 (((-112) $ $) 8)) (-2978 (((-112) $ $) 32 (-2760 (|has| |#1| (-861)) (|has| |#1| (-379))))) (-2950 (((-112) $ $) 34)) (-3057 (($ $ $) 24)) (** (($ $ (-940)) 14) (($ $ (-783)) 17) (($ $ (-576)) 23)) (* (($ $ $) 15))) +((-3643 ((|#2| (-1163 |#1| |#2|)) 48))) +(((-921 |#1| |#2|) (-10 -7 (-15 -3643 (|#2| (-1163 |#1| |#2|)))) (-940) (-13 (-1070) (-10 -7 (-6 (-4466 "*"))))) (T -921)) +((-3643 (*1 *2 *3) (-12 (-5 *3 (-1163 *4 *2)) (-14 *4 (-940)) (-4 *2 (-13 (-1070) (-10 -7 (-6 (-4466 "*"))))) (-5 *1 (-921 *4 *2))))) +(-10 -7 (-15 -3643 (|#2| (-1163 |#1| |#2|)))) +((-3488 (((-112) $ $) 7)) (-3354 (((-1123 |#1|) $) 36)) (-3404 (($) 19 T CONST)) (-3673 (((-3 $ "failed") $) 16)) (-4409 (((-1123 |#1|) $ |#1|) 35)) (-1351 (((-112) $) 18)) (-3124 (($ $ $) 29 (-2759 (|has| |#1| (-861)) (|has| |#1| (-379))))) (-1441 (($ $ $) 30 (-2759 (|has| |#1| (-861)) (|has| |#1| (-379))))) (-2046 (((-1179) $) 10)) (-2050 (($ $) 25)) (-1450 (((-1141) $) 11)) (-2796 ((|#1| $ |#1|) 39)) (-1495 (($ (-656 (-656 |#1|))) 37)) (-2504 (($ (-656 |#1|)) 38)) (-2272 (($ $ $) 22)) (-1758 (($ $ $) 21)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2731 (($) 20 T CONST)) (-2990 (((-112) $ $) 31 (-2759 (|has| |#1| (-861)) (|has| |#1| (-379))))) (-2962 (((-112) $ $) 33 (-2759 (|has| |#1| (-861)) (|has| |#1| (-379))))) (-2924 (((-112) $ $) 8)) (-2978 (((-112) $ $) 32 (-2759 (|has| |#1| (-861)) (|has| |#1| (-379))))) (-2949 (((-112) $ $) 34)) (-3056 (($ $ $) 24)) (** (($ $ (-940)) 14) (($ $ (-783)) 17) (($ $ (-576)) 23)) (* (($ $ $) 15))) (((-922 |#1|) (-141) (-1121)) (T -922)) -((-3742 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-922 *3)))) (-3141 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-4 *1 (-922 *3)))) (-4018 (*1 *2 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-1123 *3)))) (-2461 (*1 *2 *1 *3) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-1123 *3)))) (-2950 (*1 *2 *1 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-112))))) -(-13 (-485) (-296 |t#1| |t#1|) (-10 -8 (-15 -3742 ($ (-656 |t#1|))) (-15 -3141 ($ (-656 (-656 |t#1|)))) (-15 -4018 ((-1123 |t#1|) $)) (-15 -2461 ((-1123 |t#1|) $ |t#1|)) (-15 -2950 ((-112) $ $)) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-379)) (-6 (-861)) |%noBranch|))) -(((-102) . T) ((-625 (-876)) . T) ((-296 |#1| |#1|) . T) ((-485) . T) ((-738) . T) ((-861) -2760 (|has| |#1| (-861)) (|has| |#1| (-379))) ((-864) -2760 (|has| |#1| (-861)) (|has| |#1| (-379))) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-1984 (((-656 (-656 (-783))) $) 160)) (-2666 (((-656 (-783)) (-924 |#1|) $) 188)) (-3723 (((-656 (-783)) (-924 |#1|) $) 189)) (-4018 (((-1123 |#1|) $) 152)) (-3926 (((-656 (-924 |#1|)) $) 149)) (-1836 (((-924 |#1|) $ (-576)) 154) (((-924 |#1|) $) 155)) (-1553 (($ (-656 (-924 |#1|))) 162)) (-3917 (((-783) $) 156)) (-3527 (((-1123 (-1123 |#1|)) $) 186)) (-2461 (((-1123 |#1|) $ |#1|) 177) (((-1123 (-1123 |#1|)) $ (-1123 |#1|)) 197) (((-1123 (-656 |#1|)) $ (-656 |#1|)) 200)) (-1612 (((-112) (-924 |#1|) $) 137)) (-3699 (((-1179) $) NIL)) (-3662 (((-1293) $) 142) (((-1293) $ (-576) (-576)) 201)) (-1450 (((-1141) $) NIL)) (-3225 (((-656 (-924 |#1|)) $) 143)) (-2797 (((-924 |#1|) $ (-783)) 150)) (-3634 (((-783) $) 157)) (-3570 (((-876) $) 174) (((-656 (-924 |#1|)) $) 28) (($ (-656 (-924 |#1|))) 161)) (-4055 (((-112) $ $) NIL)) (-3516 (((-656 |#1|) $) 159)) (-2925 (((-112) $ $) 194)) (-2978 (((-112) $ $) 192)) (-2950 (((-112) $ $) 191))) -(((-923 |#1|) (-13 (-1121) (-10 -8 (-15 -3570 ((-656 (-924 |#1|)) $)) (-15 -3225 ((-656 (-924 |#1|)) $)) (-15 -2797 ((-924 |#1|) $ (-783))) (-15 -1836 ((-924 |#1|) $ (-576))) (-15 -1836 ((-924 |#1|) $)) (-15 -3917 ((-783) $)) (-15 -3634 ((-783) $)) (-15 -3516 ((-656 |#1|) $)) (-15 -3926 ((-656 (-924 |#1|)) $)) (-15 -1984 ((-656 (-656 (-783))) $)) (-15 -3570 ($ (-656 (-924 |#1|)))) (-15 -1553 ($ (-656 (-924 |#1|)))) (-15 -2461 ((-1123 |#1|) $ |#1|)) (-15 -3527 ((-1123 (-1123 |#1|)) $)) (-15 -2461 ((-1123 (-1123 |#1|)) $ (-1123 |#1|))) (-15 -2461 ((-1123 (-656 |#1|)) $ (-656 |#1|))) (-15 -1612 ((-112) (-924 |#1|) $)) (-15 -2666 ((-656 (-783)) (-924 |#1|) $)) (-15 -3723 ((-656 (-783)) (-924 |#1|) $)) (-15 -4018 ((-1123 |#1|) $)) (-15 -2950 ((-112) $ $)) (-15 -2978 ((-112) $ $)) (-15 -3662 ((-1293) $)) (-15 -3662 ((-1293) $ (-576) (-576))))) (-1121)) (T -923)) -((-3570 (*1 *2 *1) (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3225 (*1 *2 *1) (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-2797 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-924 *4)) (-5 *1 (-923 *4)) (-4 *4 (-1121)))) (-1836 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-924 *4)) (-5 *1 (-923 *4)) (-4 *4 (-1121)))) (-1836 (*1 *2 *1) (-12 (-5 *2 (-924 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3917 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3516 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3926 (*1 *2 *1) (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-1984 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-783)))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-656 (-924 *3))) (-4 *3 (-1121)) (-5 *1 (-923 *3)))) (-1553 (*1 *1 *2) (-12 (-5 *2 (-656 (-924 *3))) (-4 *3 (-1121)) (-5 *1 (-923 *3)))) (-2461 (*1 *2 *1 *3) (-12 (-5 *2 (-1123 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-1123 (-1123 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-2461 (*1 *2 *1 *3) (-12 (-4 *4 (-1121)) (-5 *2 (-1123 (-1123 *4))) (-5 *1 (-923 *4)) (-5 *3 (-1123 *4)))) (-2461 (*1 *2 *1 *3) (-12 (-4 *4 (-1121)) (-5 *2 (-1123 (-656 *4))) (-5 *1 (-923 *4)) (-5 *3 (-656 *4)))) (-1612 (*1 *2 *3 *1) (-12 (-5 *3 (-924 *4)) (-4 *4 (-1121)) (-5 *2 (-112)) (-5 *1 (-923 *4)))) (-2666 (*1 *2 *3 *1) (-12 (-5 *3 (-924 *4)) (-4 *4 (-1121)) (-5 *2 (-656 (-783))) (-5 *1 (-923 *4)))) (-3723 (*1 *2 *3 *1) (-12 (-5 *3 (-924 *4)) (-4 *4 (-1121)) (-5 *2 (-656 (-783))) (-5 *1 (-923 *4)))) (-4018 (*1 *2 *1) (-12 (-5 *2 (-1123 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-2950 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-2978 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3662 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3662 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-923 *4)) (-4 *4 (-1121))))) -(-13 (-1121) (-10 -8 (-15 -3570 ((-656 (-924 |#1|)) $)) (-15 -3225 ((-656 (-924 |#1|)) $)) (-15 -2797 ((-924 |#1|) $ (-783))) (-15 -1836 ((-924 |#1|) $ (-576))) (-15 -1836 ((-924 |#1|) $)) (-15 -3917 ((-783) $)) (-15 -3634 ((-783) $)) (-15 -3516 ((-656 |#1|) $)) (-15 -3926 ((-656 (-924 |#1|)) $)) (-15 -1984 ((-656 (-656 (-783))) $)) (-15 -3570 ($ (-656 (-924 |#1|)))) (-15 -1553 ($ (-656 (-924 |#1|)))) (-15 -2461 ((-1123 |#1|) $ |#1|)) (-15 -3527 ((-1123 (-1123 |#1|)) $)) (-15 -2461 ((-1123 (-1123 |#1|)) $ (-1123 |#1|))) (-15 -2461 ((-1123 (-656 |#1|)) $ (-656 |#1|))) (-15 -1612 ((-112) (-924 |#1|) $)) (-15 -2666 ((-656 (-783)) (-924 |#1|) $)) (-15 -3723 ((-656 (-783)) (-924 |#1|) $)) (-15 -4018 ((-1123 |#1|) $)) (-15 -2950 ((-112) $ $)) (-15 -2978 ((-112) $ $)) (-15 -3662 ((-1293) $)) (-15 -3662 ((-1293) $ (-576) (-576))))) -((-3489 (((-112) $ $) NIL)) (-4018 (((-1123 |#1|) $) 60)) (-1795 (((-656 $) (-656 $)) 103)) (-3308 (((-576) $) 83)) (-3886 (($) NIL T CONST)) (-1561 (((-3 $ "failed") $) NIL)) (-3917 (((-783) $) 80)) (-2461 (((-1123 |#1|) $ |#1|) 70)) (-4193 (((-112) $) NIL)) (-2946 (((-112) $) 88)) (-3676 (((-783) $) 84)) (-3125 (($ $ $) NIL (-2760 (|has| |#1| (-379)) (|has| |#1| (-861))))) (-3133 (($ $ $) NIL (-2760 (|has| |#1| (-379)) (|has| |#1| (-861))))) (-4109 (((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $) 55)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) 130)) (-1450 (((-1141) $) NIL)) (-1574 (((-1123 |#1|) $) 136 (|has| |#1| (-379)))) (-3644 (((-112) $) 81)) (-2797 ((|#1| $ |#1|) 68)) (-3634 (((-783) $) 62)) (-3141 (($ (-656 (-656 |#1|))) 118)) (-3467 (((-992) $) 74)) (-3742 (($ (-656 |#1|)) 32)) (-2314 (($ $ $) NIL)) (-2076 (($ $ $) NIL)) (-2086 (($ (-656 (-656 |#1|))) 57)) (-2809 (($ (-656 (-656 |#1|))) 123)) (-1401 (($ (-656 |#1|)) 132)) (-3570 (((-876) $) 117) (($ (-656 (-656 |#1|))) 91) (($ (-656 |#1|)) 92)) (-4055 (((-112) $ $) NIL)) (-2732 (($) 24 T CONST)) (-2992 (((-112) $ $) NIL (-2760 (|has| |#1| (-379)) (|has| |#1| (-861))))) (-2964 (((-112) $ $) NIL (-2760 (|has| |#1| (-379)) (|has| |#1| (-861))))) (-2925 (((-112) $ $) 66)) (-2978 (((-112) $ $) NIL (-2760 (|has| |#1| (-379)) (|has| |#1| (-861))))) (-2950 (((-112) $ $) 90)) (-3057 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 33))) -(((-924 |#1|) (-13 (-922 |#1|) (-10 -8 (-15 -4109 ((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $)) (-15 -2086 ($ (-656 (-656 |#1|)))) (-15 -3570 ($ (-656 (-656 |#1|)))) (-15 -3570 ($ (-656 |#1|))) (-15 -2809 ($ (-656 (-656 |#1|)))) (-15 -3634 ((-783) $)) (-15 -3467 ((-992) $)) (-15 -3917 ((-783) $)) (-15 -3676 ((-783) $)) (-15 -3308 ((-576) $)) (-15 -3644 ((-112) $)) (-15 -2946 ((-112) $)) (-15 -1795 ((-656 $) (-656 $))) (IF (|has| |#1| (-379)) (-15 -1574 ((-1123 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -1401 ($ (-656 |#1|))) (IF (|has| |#1| (-379)) (-15 -1401 ($ (-656 |#1|))) |%noBranch|)))) (-1121)) (T -924)) -((-4109 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-656 *3)) (|:| |image| (-656 *3)))) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-2086 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-924 *3)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-924 *3)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-924 *3)))) (-2809 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-924 *3)))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-3467 (*1 *2 *1) (-12 (-5 *2 (-992)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-3917 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-3676 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-3308 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-3644 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-2946 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-1795 (*1 *2 *2) (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-1574 (*1 *2 *1) (-12 (-5 *2 (-1123 *3)) (-5 *1 (-924 *3)) (-4 *3 (-379)) (-4 *3 (-1121)))) (-1401 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-924 *3))))) -(-13 (-922 |#1|) (-10 -8 (-15 -4109 ((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $)) (-15 -2086 ($ (-656 (-656 |#1|)))) (-15 -3570 ($ (-656 (-656 |#1|)))) (-15 -3570 ($ (-656 |#1|))) (-15 -2809 ($ (-656 (-656 |#1|)))) (-15 -3634 ((-783) $)) (-15 -3467 ((-992) $)) (-15 -3917 ((-783) $)) (-15 -3676 ((-783) $)) (-15 -3308 ((-576) $)) (-15 -3644 ((-112) $)) (-15 -2946 ((-112) $)) (-15 -1795 ((-656 $) (-656 $))) (IF (|has| |#1| (-379)) (-15 -1574 ((-1123 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -1401 ($ (-656 |#1|))) (IF (|has| |#1| (-379)) (-15 -1401 ($ (-656 |#1|))) |%noBranch|)))) -((-2292 (((-3 (-656 (-1193 |#4|)) "failed") (-656 (-1193 |#4|)) (-1193 |#4|)) 160)) (-1980 ((|#1|) 97)) (-2609 (((-430 (-1193 |#4|)) (-1193 |#4|)) 169)) (-2571 (((-430 (-1193 |#4|)) (-656 |#3|) (-1193 |#4|)) 84)) (-1532 (((-430 (-1193 |#4|)) (-1193 |#4|)) 179)) (-2646 (((-3 (-656 (-1193 |#4|)) "failed") (-656 (-1193 |#4|)) (-1193 |#4|) |#3|) 113))) -(((-925 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2292 ((-3 (-656 (-1193 |#4|)) "failed") (-656 (-1193 |#4|)) (-1193 |#4|))) (-15 -1532 ((-430 (-1193 |#4|)) (-1193 |#4|))) (-15 -2609 ((-430 (-1193 |#4|)) (-1193 |#4|))) (-15 -1980 (|#1|)) (-15 -2646 ((-3 (-656 (-1193 |#4|)) "failed") (-656 (-1193 |#4|)) (-1193 |#4|) |#3|)) (-15 -2571 ((-430 (-1193 |#4|)) (-656 |#3|) (-1193 |#4|)))) (-928) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -925)) -((-2571 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *7)) (-4 *7 (-861)) (-4 *5 (-928)) (-4 *6 (-805)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-430 (-1193 *8))) (-5 *1 (-925 *5 *6 *7 *8)) (-5 *4 (-1193 *8)))) (-2646 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-656 (-1193 *7))) (-5 *3 (-1193 *7)) (-4 *7 (-968 *5 *6 *4)) (-4 *5 (-928)) (-4 *6 (-805)) (-4 *4 (-861)) (-5 *1 (-925 *5 *6 *4 *7)))) (-1980 (*1 *2) (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-928)) (-5 *1 (-925 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-2609 (*1 *2 *3) (-12 (-4 *4 (-928)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-430 (-1193 *7))) (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) (-1532 (*1 *2 *3) (-12 (-4 *4 (-928)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-430 (-1193 *7))) (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) (-2292 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1193 *7))) (-5 *3 (-1193 *7)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-928)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-925 *4 *5 *6 *7))))) -(-10 -7 (-15 -2292 ((-3 (-656 (-1193 |#4|)) "failed") (-656 (-1193 |#4|)) (-1193 |#4|))) (-15 -1532 ((-430 (-1193 |#4|)) (-1193 |#4|))) (-15 -2609 ((-430 (-1193 |#4|)) (-1193 |#4|))) (-15 -1980 (|#1|)) (-15 -2646 ((-3 (-656 (-1193 |#4|)) "failed") (-656 (-1193 |#4|)) (-1193 |#4|) |#3|)) (-15 -2571 ((-430 (-1193 |#4|)) (-656 |#3|) (-1193 |#4|)))) -((-2292 (((-3 (-656 (-1193 |#2|)) "failed") (-656 (-1193 |#2|)) (-1193 |#2|)) 39)) (-1980 ((|#1|) 72)) (-2609 (((-430 (-1193 |#2|)) (-1193 |#2|)) 121)) (-2571 (((-430 (-1193 |#2|)) (-1193 |#2|)) 105)) (-1532 (((-430 (-1193 |#2|)) (-1193 |#2|)) 132))) -(((-926 |#1| |#2|) (-10 -7 (-15 -2292 ((-3 (-656 (-1193 |#2|)) "failed") (-656 (-1193 |#2|)) (-1193 |#2|))) (-15 -1532 ((-430 (-1193 |#2|)) (-1193 |#2|))) (-15 -2609 ((-430 (-1193 |#2|)) (-1193 |#2|))) (-15 -1980 (|#1|)) (-15 -2571 ((-430 (-1193 |#2|)) (-1193 |#2|)))) (-928) (-1264 |#1|)) (T -926)) -((-2571 (*1 *2 *3) (-12 (-4 *4 (-928)) (-4 *5 (-1264 *4)) (-5 *2 (-430 (-1193 *5))) (-5 *1 (-926 *4 *5)) (-5 *3 (-1193 *5)))) (-1980 (*1 *2) (-12 (-4 *2 (-928)) (-5 *1 (-926 *2 *3)) (-4 *3 (-1264 *2)))) (-2609 (*1 *2 *3) (-12 (-4 *4 (-928)) (-4 *5 (-1264 *4)) (-5 *2 (-430 (-1193 *5))) (-5 *1 (-926 *4 *5)) (-5 *3 (-1193 *5)))) (-1532 (*1 *2 *3) (-12 (-4 *4 (-928)) (-4 *5 (-1264 *4)) (-5 *2 (-430 (-1193 *5))) (-5 *1 (-926 *4 *5)) (-5 *3 (-1193 *5)))) (-2292 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1193 *5))) (-5 *3 (-1193 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-928)) (-5 *1 (-926 *4 *5))))) -(-10 -7 (-15 -2292 ((-3 (-656 (-1193 |#2|)) "failed") (-656 (-1193 |#2|)) (-1193 |#2|))) (-15 -1532 ((-430 (-1193 |#2|)) (-1193 |#2|))) (-15 -2609 ((-430 (-1193 |#2|)) (-1193 |#2|))) (-15 -1980 (|#1|)) (-15 -2571 ((-430 (-1193 |#2|)) (-1193 |#2|)))) -((-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 42)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 18)) (-4336 (((-3 $ "failed") $) 36))) -(((-927 |#1|) (-10 -8 (-15 -4336 ((-3 |#1| "failed") |#1|)) (-15 -1963 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -1531 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|)))) (-928)) (T -927)) -NIL -(-10 -8 (-15 -4336 ((-3 |#1| "failed") |#1|)) (-15 -1963 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -1531 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 47)) (-2757 (($ $) 46)) (-3788 (((-112) $) 44)) (-4367 (((-3 $ "failed") $ $) 20)) (-3601 (((-430 (-1193 $)) (-1193 $)) 66)) (-2487 (($ $) 57)) (-3921 (((-430 $) $) 58)) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 63)) (-3886 (($) 18 T CONST)) (-1561 (((-3 $ "failed") $) 37)) (-4249 (((-112) $) 59)) (-4193 (((-112) $) 35)) (-3458 (($ $ $) 52) (($ (-656 $)) 51)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-4100 (((-430 (-1193 $)) (-1193 $)) 64)) (-1811 (((-430 (-1193 $)) (-1193 $)) 65)) (-1828 (((-430 $) $) 56)) (-3476 (((-3 $ "failed") $ $) 48)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) 62 (|has| $ (-146)))) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-4336 (((-3 $ "failed") $) 61 (|has| $ (-146)))) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2672 (((-112) $ $) 45)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-2504 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-922 *3)))) (-1495 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-4 *1 (-922 *3)))) (-3354 (*1 *2 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-1123 *3)))) (-4409 (*1 *2 *1 *3) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-1123 *3)))) (-2949 (*1 *2 *1 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-112))))) +(-13 (-485) (-296 |t#1| |t#1|) (-10 -8 (-15 -2504 ($ (-656 |t#1|))) (-15 -1495 ($ (-656 (-656 |t#1|)))) (-15 -3354 ((-1123 |t#1|) $)) (-15 -4409 ((-1123 |t#1|) $ |t#1|)) (-15 -2949 ((-112) $ $)) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-379)) (-6 (-861)) |%noBranch|))) +(((-102) . T) ((-625 (-876)) . T) ((-296 |#1| |#1|) . T) ((-485) . T) ((-738) . T) ((-861) -2759 (|has| |#1| (-861)) (|has| |#1| (-379))) ((-864) -2759 (|has| |#1| (-861)) (|has| |#1| (-379))) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-3488 (((-112) $ $) NIL)) (-2117 (((-656 (-656 (-783))) $) 160)) (-2630 (((-656 (-783)) (-924 |#1|) $) 188)) (-2308 (((-656 (-783)) (-924 |#1|) $) 189)) (-3354 (((-1123 |#1|) $) 152)) (-3815 (((-656 (-924 |#1|)) $) 149)) (-1836 (((-924 |#1|) $ (-576)) 154) (((-924 |#1|) $) 155)) (-3582 (($ (-656 (-924 |#1|))) 162)) (-3726 (((-783) $) 156)) (-4199 (((-1123 (-1123 |#1|)) $) 186)) (-4409 (((-1123 |#1|) $ |#1|) 177) (((-1123 (-1123 |#1|)) $ (-1123 |#1|)) 197) (((-1123 (-656 |#1|)) $ (-656 |#1|)) 200)) (-2885 (((-112) (-924 |#1|) $) 137)) (-2046 (((-1179) $) NIL)) (-2972 (((-1293) $) 142) (((-1293) $ (-576) (-576)) 201)) (-1450 (((-1141) $) NIL)) (-4281 (((-656 (-924 |#1|)) $) 143)) (-2796 (((-924 |#1|) $ (-783)) 150)) (-2683 (((-783) $) 157)) (-3569 (((-876) $) 174) (((-656 (-924 |#1|)) $) 28) (($ (-656 (-924 |#1|))) 161)) (-2399 (((-112) $ $) NIL)) (-3515 (((-656 |#1|) $) 159)) (-2924 (((-112) $ $) 194)) (-2978 (((-112) $ $) 192)) (-2949 (((-112) $ $) 191))) +(((-923 |#1|) (-13 (-1121) (-10 -8 (-15 -3569 ((-656 (-924 |#1|)) $)) (-15 -4281 ((-656 (-924 |#1|)) $)) (-15 -2796 ((-924 |#1|) $ (-783))) (-15 -1836 ((-924 |#1|) $ (-576))) (-15 -1836 ((-924 |#1|) $)) (-15 -3726 ((-783) $)) (-15 -2683 ((-783) $)) (-15 -3515 ((-656 |#1|) $)) (-15 -3815 ((-656 (-924 |#1|)) $)) (-15 -2117 ((-656 (-656 (-783))) $)) (-15 -3569 ($ (-656 (-924 |#1|)))) (-15 -3582 ($ (-656 (-924 |#1|)))) (-15 -4409 ((-1123 |#1|) $ |#1|)) (-15 -4199 ((-1123 (-1123 |#1|)) $)) (-15 -4409 ((-1123 (-1123 |#1|)) $ (-1123 |#1|))) (-15 -4409 ((-1123 (-656 |#1|)) $ (-656 |#1|))) (-15 -2885 ((-112) (-924 |#1|) $)) (-15 -2630 ((-656 (-783)) (-924 |#1|) $)) (-15 -2308 ((-656 (-783)) (-924 |#1|) $)) (-15 -3354 ((-1123 |#1|) $)) (-15 -2949 ((-112) $ $)) (-15 -2978 ((-112) $ $)) (-15 -2972 ((-1293) $)) (-15 -2972 ((-1293) $ (-576) (-576))))) (-1121)) (T -923)) +((-3569 (*1 *2 *1) (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-4281 (*1 *2 *1) (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-2796 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-924 *4)) (-5 *1 (-923 *4)) (-4 *4 (-1121)))) (-1836 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-924 *4)) (-5 *1 (-923 *4)) (-4 *4 (-1121)))) (-1836 (*1 *2 *1) (-12 (-5 *2 (-924 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-2683 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3815 (*1 *2 *1) (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-2117 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-783)))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-924 *3))) (-4 *3 (-1121)) (-5 *1 (-923 *3)))) (-3582 (*1 *1 *2) (-12 (-5 *2 (-656 (-924 *3))) (-4 *3 (-1121)) (-5 *1 (-923 *3)))) (-4409 (*1 *2 *1 *3) (-12 (-5 *2 (-1123 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-4199 (*1 *2 *1) (-12 (-5 *2 (-1123 (-1123 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-4409 (*1 *2 *1 *3) (-12 (-4 *4 (-1121)) (-5 *2 (-1123 (-1123 *4))) (-5 *1 (-923 *4)) (-5 *3 (-1123 *4)))) (-4409 (*1 *2 *1 *3) (-12 (-4 *4 (-1121)) (-5 *2 (-1123 (-656 *4))) (-5 *1 (-923 *4)) (-5 *3 (-656 *4)))) (-2885 (*1 *2 *3 *1) (-12 (-5 *3 (-924 *4)) (-4 *4 (-1121)) (-5 *2 (-112)) (-5 *1 (-923 *4)))) (-2630 (*1 *2 *3 *1) (-12 (-5 *3 (-924 *4)) (-4 *4 (-1121)) (-5 *2 (-656 (-783))) (-5 *1 (-923 *4)))) (-2308 (*1 *2 *3 *1) (-12 (-5 *3 (-924 *4)) (-4 *4 (-1121)) (-5 *2 (-656 (-783))) (-5 *1 (-923 *4)))) (-3354 (*1 *2 *1) (-12 (-5 *2 (-1123 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-2949 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-2978 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-2972 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-2972 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-923 *4)) (-4 *4 (-1121))))) +(-13 (-1121) (-10 -8 (-15 -3569 ((-656 (-924 |#1|)) $)) (-15 -4281 ((-656 (-924 |#1|)) $)) (-15 -2796 ((-924 |#1|) $ (-783))) (-15 -1836 ((-924 |#1|) $ (-576))) (-15 -1836 ((-924 |#1|) $)) (-15 -3726 ((-783) $)) (-15 -2683 ((-783) $)) (-15 -3515 ((-656 |#1|) $)) (-15 -3815 ((-656 (-924 |#1|)) $)) (-15 -2117 ((-656 (-656 (-783))) $)) (-15 -3569 ($ (-656 (-924 |#1|)))) (-15 -3582 ($ (-656 (-924 |#1|)))) (-15 -4409 ((-1123 |#1|) $ |#1|)) (-15 -4199 ((-1123 (-1123 |#1|)) $)) (-15 -4409 ((-1123 (-1123 |#1|)) $ (-1123 |#1|))) (-15 -4409 ((-1123 (-656 |#1|)) $ (-656 |#1|))) (-15 -2885 ((-112) (-924 |#1|) $)) (-15 -2630 ((-656 (-783)) (-924 |#1|) $)) (-15 -2308 ((-656 (-783)) (-924 |#1|) $)) (-15 -3354 ((-1123 |#1|) $)) (-15 -2949 ((-112) $ $)) (-15 -2978 ((-112) $ $)) (-15 -2972 ((-1293) $)) (-15 -2972 ((-1293) $ (-576) (-576))))) +((-3488 (((-112) $ $) NIL)) (-3354 (((-1123 |#1|) $) 60)) (-1795 (((-656 $) (-656 $)) 103)) (-3906 (((-576) $) 83)) (-3404 (($) NIL T CONST)) (-3673 (((-3 $ "failed") $) NIL)) (-3726 (((-783) $) 80)) (-4409 (((-1123 |#1|) $ |#1|) 70)) (-1351 (((-112) $) NIL)) (-3376 (((-112) $) 88)) (-3122 (((-783) $) 84)) (-3124 (($ $ $) NIL (-2759 (|has| |#1| (-379)) (|has| |#1| (-861))))) (-1441 (($ $ $) NIL (-2759 (|has| |#1| (-379)) (|has| |#1| (-861))))) (-1728 (((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $) 55)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) 130)) (-1450 (((-1141) $) NIL)) (-3787 (((-1123 |#1|) $) 136 (|has| |#1| (-379)))) (-2768 (((-112) $) 81)) (-2796 ((|#1| $ |#1|) 68)) (-2683 (((-783) $) 62)) (-1495 (($ (-656 (-656 |#1|))) 118)) (-1696 (((-992) $) 74)) (-2504 (($ (-656 |#1|)) 32)) (-2272 (($ $ $) NIL)) (-1758 (($ $ $) NIL)) (-1853 (($ (-656 (-656 |#1|))) 57)) (-3394 (($ (-656 (-656 |#1|))) 123)) (-3000 (($ (-656 |#1|)) 132)) (-3569 (((-876) $) 117) (($ (-656 (-656 |#1|))) 91) (($ (-656 |#1|)) 92)) (-2399 (((-112) $ $) NIL)) (-2731 (($) 24 T CONST)) (-2990 (((-112) $ $) NIL (-2759 (|has| |#1| (-379)) (|has| |#1| (-861))))) (-2962 (((-112) $ $) NIL (-2759 (|has| |#1| (-379)) (|has| |#1| (-861))))) (-2924 (((-112) $ $) 66)) (-2978 (((-112) $ $) NIL (-2759 (|has| |#1| (-379)) (|has| |#1| (-861))))) (-2949 (((-112) $ $) 90)) (-3056 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 33))) +(((-924 |#1|) (-13 (-922 |#1|) (-10 -8 (-15 -1728 ((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $)) (-15 -1853 ($ (-656 (-656 |#1|)))) (-15 -3569 ($ (-656 (-656 |#1|)))) (-15 -3569 ($ (-656 |#1|))) (-15 -3394 ($ (-656 (-656 |#1|)))) (-15 -2683 ((-783) $)) (-15 -1696 ((-992) $)) (-15 -3726 ((-783) $)) (-15 -3122 ((-783) $)) (-15 -3906 ((-576) $)) (-15 -2768 ((-112) $)) (-15 -3376 ((-112) $)) (-15 -1795 ((-656 $) (-656 $))) (IF (|has| |#1| (-379)) (-15 -3787 ((-1123 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -3000 ($ (-656 |#1|))) (IF (|has| |#1| (-379)) (-15 -3000 ($ (-656 |#1|))) |%noBranch|)))) (-1121)) (T -924)) +((-1728 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-656 *3)) (|:| |image| (-656 *3)))) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-1853 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-924 *3)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-924 *3)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-924 *3)))) (-3394 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-924 *3)))) (-2683 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-1696 (*1 *2 *1) (-12 (-5 *2 (-992)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-3906 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-2768 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-3376 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-1795 (*1 *2 *2) (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-3787 (*1 *2 *1) (-12 (-5 *2 (-1123 *3)) (-5 *1 (-924 *3)) (-4 *3 (-379)) (-4 *3 (-1121)))) (-3000 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-924 *3))))) +(-13 (-922 |#1|) (-10 -8 (-15 -1728 ((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $)) (-15 -1853 ($ (-656 (-656 |#1|)))) (-15 -3569 ($ (-656 (-656 |#1|)))) (-15 -3569 ($ (-656 |#1|))) (-15 -3394 ($ (-656 (-656 |#1|)))) (-15 -2683 ((-783) $)) (-15 -1696 ((-992) $)) (-15 -3726 ((-783) $)) (-15 -3122 ((-783) $)) (-15 -3906 ((-576) $)) (-15 -2768 ((-112) $)) (-15 -3376 ((-112) $)) (-15 -1795 ((-656 $) (-656 $))) (IF (|has| |#1| (-379)) (-15 -3787 ((-1123 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -3000 ($ (-656 |#1|))) (IF (|has| |#1| (-379)) (-15 -3000 ($ (-656 |#1|))) |%noBranch|)))) +((-2039 (((-3 (-656 (-1193 |#4|)) "failed") (-656 (-1193 |#4|)) (-1193 |#4|)) 160)) (-2074 ((|#1|) 97)) (-2130 (((-430 (-1193 |#4|)) (-1193 |#4|)) 169)) (-3063 (((-430 (-1193 |#4|)) (-656 |#3|) (-1193 |#4|)) 84)) (-3340 (((-430 (-1193 |#4|)) (-1193 |#4|)) 179)) (-2471 (((-3 (-656 (-1193 |#4|)) "failed") (-656 (-1193 |#4|)) (-1193 |#4|) |#3|) 113))) +(((-925 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2039 ((-3 (-656 (-1193 |#4|)) "failed") (-656 (-1193 |#4|)) (-1193 |#4|))) (-15 -3340 ((-430 (-1193 |#4|)) (-1193 |#4|))) (-15 -2130 ((-430 (-1193 |#4|)) (-1193 |#4|))) (-15 -2074 (|#1|)) (-15 -2471 ((-3 (-656 (-1193 |#4|)) "failed") (-656 (-1193 |#4|)) (-1193 |#4|) |#3|)) (-15 -3063 ((-430 (-1193 |#4|)) (-656 |#3|) (-1193 |#4|)))) (-928) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -925)) +((-3063 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *7)) (-4 *7 (-861)) (-4 *5 (-928)) (-4 *6 (-805)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-430 (-1193 *8))) (-5 *1 (-925 *5 *6 *7 *8)) (-5 *4 (-1193 *8)))) (-2471 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-656 (-1193 *7))) (-5 *3 (-1193 *7)) (-4 *7 (-968 *5 *6 *4)) (-4 *5 (-928)) (-4 *6 (-805)) (-4 *4 (-861)) (-5 *1 (-925 *5 *6 *4 *7)))) (-2074 (*1 *2) (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-928)) (-5 *1 (-925 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-2130 (*1 *2 *3) (-12 (-4 *4 (-928)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-430 (-1193 *7))) (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) (-3340 (*1 *2 *3) (-12 (-4 *4 (-928)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-430 (-1193 *7))) (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) (-2039 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1193 *7))) (-5 *3 (-1193 *7)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-928)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-925 *4 *5 *6 *7))))) +(-10 -7 (-15 -2039 ((-3 (-656 (-1193 |#4|)) "failed") (-656 (-1193 |#4|)) (-1193 |#4|))) (-15 -3340 ((-430 (-1193 |#4|)) (-1193 |#4|))) (-15 -2130 ((-430 (-1193 |#4|)) (-1193 |#4|))) (-15 -2074 (|#1|)) (-15 -2471 ((-3 (-656 (-1193 |#4|)) "failed") (-656 (-1193 |#4|)) (-1193 |#4|) |#3|)) (-15 -3063 ((-430 (-1193 |#4|)) (-656 |#3|) (-1193 |#4|)))) +((-2039 (((-3 (-656 (-1193 |#2|)) "failed") (-656 (-1193 |#2|)) (-1193 |#2|)) 39)) (-2074 ((|#1|) 72)) (-2130 (((-430 (-1193 |#2|)) (-1193 |#2|)) 121)) (-3063 (((-430 (-1193 |#2|)) (-1193 |#2|)) 105)) (-3340 (((-430 (-1193 |#2|)) (-1193 |#2|)) 132))) +(((-926 |#1| |#2|) (-10 -7 (-15 -2039 ((-3 (-656 (-1193 |#2|)) "failed") (-656 (-1193 |#2|)) (-1193 |#2|))) (-15 -3340 ((-430 (-1193 |#2|)) (-1193 |#2|))) (-15 -2130 ((-430 (-1193 |#2|)) (-1193 |#2|))) (-15 -2074 (|#1|)) (-15 -3063 ((-430 (-1193 |#2|)) (-1193 |#2|)))) (-928) (-1264 |#1|)) (T -926)) +((-3063 (*1 *2 *3) (-12 (-4 *4 (-928)) (-4 *5 (-1264 *4)) (-5 *2 (-430 (-1193 *5))) (-5 *1 (-926 *4 *5)) (-5 *3 (-1193 *5)))) (-2074 (*1 *2) (-12 (-4 *2 (-928)) (-5 *1 (-926 *2 *3)) (-4 *3 (-1264 *2)))) (-2130 (*1 *2 *3) (-12 (-4 *4 (-928)) (-4 *5 (-1264 *4)) (-5 *2 (-430 (-1193 *5))) (-5 *1 (-926 *4 *5)) (-5 *3 (-1193 *5)))) (-3340 (*1 *2 *3) (-12 (-4 *4 (-928)) (-4 *5 (-1264 *4)) (-5 *2 (-430 (-1193 *5))) (-5 *1 (-926 *4 *5)) (-5 *3 (-1193 *5)))) (-2039 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1193 *5))) (-5 *3 (-1193 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-928)) (-5 *1 (-926 *4 *5))))) +(-10 -7 (-15 -2039 ((-3 (-656 (-1193 |#2|)) "failed") (-656 (-1193 |#2|)) (-1193 |#2|))) (-15 -3340 ((-430 (-1193 |#2|)) (-1193 |#2|))) (-15 -2130 ((-430 (-1193 |#2|)) (-1193 |#2|))) (-15 -2074 (|#1|)) (-15 -3063 ((-430 (-1193 |#2|)) (-1193 |#2|)))) +((-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 42)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 18)) (-3390 (((-3 $ "failed") $) 36))) +(((-927 |#1|) (-10 -8 (-15 -3390 ((-3 |#1| "failed") |#1|)) (-15 -3220 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -3327 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|)))) (-928)) (T -927)) +NIL +(-10 -8 (-15 -3390 ((-3 |#1| "failed") |#1|)) (-15 -3220 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -3327 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-4195 (($ $) 46)) (-1760 (((-112) $) 44)) (-2428 (((-3 $ "failed") $ $) 20)) (-3646 (((-430 (-1193 $)) (-1193 $)) 66)) (-3444 (($ $) 57)) (-3760 (((-430 $) $) 58)) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 63)) (-3404 (($) 18 T CONST)) (-3673 (((-3 $ "failed") $) 37)) (-3833 (((-112) $) 59)) (-1351 (((-112) $) 35)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3497 (($ $ $) 54) (($ (-656 $)) 53)) (-1644 (((-430 (-1193 $)) (-1193 $)) 64)) (-4296 (((-430 (-1193 $)) (-1193 $)) 65)) (-1828 (((-430 $) $) 56)) (-3475 (((-3 $ "failed") $ $) 48)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) 62 (|has| $ (-146)))) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-3390 (((-3 $ "failed") $) 61 (|has| $ (-146)))) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-1505 (((-112) $ $) 45)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-928) (-141)) (T -928)) -((-1531 (*1 *2 *2 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-928)))) (-3601 (*1 *2 *3) (-12 (-4 *1 (-928)) (-5 *2 (-430 (-1193 *1))) (-5 *3 (-1193 *1)))) (-1811 (*1 *2 *3) (-12 (-4 *1 (-928)) (-5 *2 (-430 (-1193 *1))) (-5 *3 (-1193 *1)))) (-4100 (*1 *2 *3) (-12 (-4 *1 (-928)) (-5 *2 (-430 (-1193 *1))) (-5 *3 (-1193 *1)))) (-1963 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1193 *1))) (-5 *3 (-1193 *1)) (-4 *1 (-928)))) (-2887 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-146)) (-4 *1 (-928)) (-5 *2 (-1288 *1)))) (-4336 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-928))))) -(-13 (-1242) (-10 -8 (-15 -3601 ((-430 (-1193 $)) (-1193 $))) (-15 -1811 ((-430 (-1193 $)) (-1193 $))) (-15 -4100 ((-430 (-1193 $)) (-1193 $))) (-15 -1531 ((-1193 $) (-1193 $) (-1193 $))) (-15 -1963 ((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $))) (IF (|has| $ (-146)) (PROGN (-15 -2887 ((-3 (-1288 $) "failed") (-701 $))) (-15 -4336 ((-3 $ "failed") $))) |%noBranch|))) +((-3327 (*1 *2 *2 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-928)))) (-3646 (*1 *2 *3) (-12 (-4 *1 (-928)) (-5 *2 (-430 (-1193 *1))) (-5 *3 (-1193 *1)))) (-4296 (*1 *2 *3) (-12 (-4 *1 (-928)) (-5 *2 (-430 (-1193 *1))) (-5 *3 (-1193 *1)))) (-1644 (*1 *2 *3) (-12 (-4 *1 (-928)) (-5 *2 (-430 (-1193 *1))) (-5 *3 (-1193 *1)))) (-3220 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1193 *1))) (-5 *3 (-1193 *1)) (-4 *1 (-928)))) (-2889 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-146)) (-4 *1 (-928)) (-5 *2 (-1288 *1)))) (-3390 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-928))))) +(-13 (-1242) (-10 -8 (-15 -3646 ((-430 (-1193 $)) (-1193 $))) (-15 -4296 ((-430 (-1193 $)) (-1193 $))) (-15 -1644 ((-430 (-1193 $)) (-1193 $))) (-15 -3327 ((-1193 $) (-1193 $) (-1193 $))) (-15 -3220 ((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $))) (IF (|has| $ (-146)) (PROGN (-15 -2889 ((-3 (-1288 $) "failed") (-701 $))) (-15 -3390 ((-3 $ "failed") $))) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-2441 (((-112) $) NIL)) (-2664 (((-783)) NIL)) (-2210 (($ $ (-940)) NIL (|has| $ (-379))) (($ $) NIL)) (-4183 (((-1210 (-940) (-783)) (-576)) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-4016 (((-112) $ $) NIL)) (-2098 (((-783)) NIL)) (-3886 (($) NIL T CONST)) (-1572 (((-3 $ "failed") $) NIL)) (-2860 (($ $) NIL)) (-4119 (($ (-1288 $)) NIL)) (-2554 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3429 (($ $ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL)) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-2005 (($) NIL)) (-4090 (((-112) $) NIL)) (-2910 (($ $) NIL) (($ $ (-783)) NIL)) (-4249 (((-112) $) NIL)) (-3917 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-4193 (((-112) $) NIL)) (-4263 (($) NIL (|has| $ (-379)))) (-1536 (((-112) $) NIL (|has| $ (-379)))) (-1381 (($ $ (-940)) NIL (|has| $ (-379))) (($ $) NIL)) (-2240 (((-3 $ "failed") $) NIL)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2731 (((-1193 $) $ (-940)) NIL (|has| $ (-379))) (((-1193 $) $) NIL)) (-4401 (((-940) $) NIL)) (-1938 (((-1193 $) $) NIL (|has| $ (-379)))) (-2512 (((-3 (-1193 $) "failed") $ $) NIL (|has| $ (-379))) (((-1193 $) $) NIL (|has| $ (-379)))) (-1649 (($ $ (-1193 $)) NIL (|has| $ (-379)))) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3540 (($) NIL T CONST)) (-3224 (($ (-940)) NIL)) (-2844 (((-112) $) NIL)) (-1450 (((-1141) $) NIL)) (-4129 (($) NIL (|has| $ (-379)))) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2406 (((-656 (-2 (|:| -1828 (-576)) (|:| -3422 (-576))))) NIL)) (-1828 (((-430 $) $) NIL)) (-2301 (((-940)) NIL) (((-845 (-940))) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1967 (((-783) $) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-3793 (((-3 (-783) "failed") $ $) NIL) (((-783) $) NIL)) (-2003 (((-135)) NIL)) (-2775 (($ $) NIL) (($ $ (-783)) NIL)) (-3634 (((-940) $) NIL) (((-845 (-940)) $) NIL)) (-3867 (((-1193 $)) NIL)) (-1535 (($) NIL)) (-2532 (($) NIL (|has| $ (-379)))) (-4152 (((-701 $) (-1288 $)) NIL) (((-1288 $) $) NIL)) (-4172 (((-576) $) NIL)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL)) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL)) (-4336 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-1593 (((-1288 $) (-940)) NIL) (((-1288 $)) NIL)) (-2672 (((-112) $ $) NIL)) (-3419 (((-112) $) NIL)) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-3051 (($ $ (-783)) NIL (|has| $ (-379))) (($ $) NIL (|has| $ (-379)))) (-2020 (($ $) NIL) (($ $ (-783)) NIL)) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ $) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-4217 (((-112) $) NIL)) (-2611 (((-783)) NIL)) (-2210 (($ $ (-940)) NIL (|has| $ (-379))) (($ $) NIL)) (-4371 (((-1210 (-940) (-783)) (-576)) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3330 (((-112) $ $) NIL)) (-2098 (((-783)) NIL)) (-3404 (($) NIL T CONST)) (-1572 (((-3 $ "failed") $) NIL)) (-2859 (($ $) NIL)) (-1819 (($ (-1288 $)) NIL)) (-2868 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3428 (($ $ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL)) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-2345 (($) NIL)) (-1543 (((-112) $) NIL)) (-3153 (($ $) NIL) (($ $ (-783)) NIL)) (-3833 (((-112) $) NIL)) (-3726 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-1351 (((-112) $) NIL)) (-3975 (($) NIL (|has| $ (-379)))) (-3381 (((-112) $) NIL (|has| $ (-379)))) (-2738 (($ $ (-940)) NIL (|has| $ (-379))) (($ $) NIL)) (-2734 (((-3 $ "failed") $) NIL)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1989 (((-1193 $) $ (-940)) NIL (|has| $ (-379))) (((-1193 $) $) NIL)) (-1558 (((-940) $) NIL)) (-2997 (((-1193 $) $) NIL (|has| $ (-379)))) (-3720 (((-3 (-1193 $) "failed") $ $) NIL (|has| $ (-379))) (((-1193 $) $) NIL (|has| $ (-379)))) (-1999 (($ $ (-1193 $)) NIL (|has| $ (-379)))) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3539 (($) NIL T CONST)) (-3223 (($ (-940)) NIL)) (-3759 (((-112) $) NIL)) (-1450 (((-1141) $) NIL)) (-4128 (($) NIL (|has| $ (-379)))) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1913 (((-656 (-2 (|:| -1828 (-576)) (|:| -2508 (-576))))) NIL)) (-1828 (((-430 $) $) NIL)) (-2135 (((-940)) NIL) (((-845 (-940))) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1979 (((-783) $) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-1813 (((-3 (-783) "failed") $ $) NIL) (((-783) $) NIL)) (-2319 (((-135)) NIL)) (-2774 (($ $) NIL) (($ $ (-783)) NIL)) (-2683 (((-940) $) NIL) (((-845 (-940)) $) NIL)) (-1346 (((-1193 $)) NIL)) (-3371 (($) NIL)) (-3931 (($) NIL (|has| $ (-379)))) (-4096 (((-701 $) (-1288 $)) NIL) (((-1288 $) $) NIL)) (-4171 (((-576) $) NIL)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL)) (-3390 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-2675 (((-1288 $) (-940)) NIL) (((-1288 $)) NIL)) (-1505 (((-112) $ $) NIL)) (-2476 (((-112) $) NIL)) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-3108 (($ $ (-783)) NIL (|has| $ (-379))) (($ $) NIL (|has| $ (-379)))) (-2020 (($ $) NIL) (($ $ (-783)) NIL)) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) (((-929 |#1|) (-13 (-360) (-339 $) (-626 (-576))) (-940)) (T -929)) NIL (-13 (-360) (-339 $) (-626 (-576))) -((-4054 (((-3 (-2 (|:| -3917 (-783)) (|:| -3341 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)) 77)) (-3003 (((-112) (-347 |#2| |#3| |#4| |#5|)) 17)) (-3917 (((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|)) 15))) -(((-930 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3917 ((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|))) (-15 -3003 ((-112) (-347 |#2| |#3| |#4| |#5|))) (-15 -4054 ((-3 (-2 (|:| -3917 (-783)) (|:| -3341 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)))) (-13 (-568) (-1059 (-576))) (-442 |#1|) (-1264 |#2|) (-1264 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -930)) -((-4054 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-2 (|:| -3917 (-783)) (|:| -3341 *8))) (-5 *1 (-930 *4 *5 *6 *7 *8)))) (-3003 (*1 *2 *3) (-12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-112)) (-5 *1 (-930 *4 *5 *6 *7 *8)))) (-3917 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-783)) (-5 *1 (-930 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -3917 ((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|))) (-15 -3003 ((-112) (-347 |#2| |#3| |#4| |#5|))) (-15 -4054 ((-3 (-2 (|:| -3917 (-783)) (|:| -3341 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)))) -((-4054 (((-3 (-2 (|:| -3917 (-783)) (|:| -3341 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)) 64)) (-3003 (((-112) (-347 (-419 (-576)) |#1| |#2| |#3|)) 16)) (-3917 (((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)) 14))) -(((-931 |#1| |#2| |#3|) (-10 -7 (-15 -3917 ((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -3003 ((-112) (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -4054 ((-3 (-2 (|:| -3917 (-783)) (|:| -3341 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)))) (-1264 (-419 (-576))) (-1264 (-419 |#1|)) (-353 (-419 (-576)) |#1| |#2|)) (T -931)) -((-4054 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1264 (-419 (-576)))) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-2 (|:| -3917 (-783)) (|:| -3341 *6))) (-5 *1 (-931 *4 *5 *6)))) (-3003 (*1 *2 *3) (-12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1264 (-419 (-576)))) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-931 *4 *5 *6)))) (-3917 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1264 (-419 (-576)))) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-783)) (-5 *1 (-931 *4 *5 *6))))) -(-10 -7 (-15 -3917 ((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -3003 ((-112) (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -4054 ((-3 (-2 (|:| -3917 (-783)) (|:| -3341 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)))) -((-3089 ((|#2| |#2|) 26)) (-2668 (((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) 15)) (-2494 (((-940) (-576)) 38)) (-3094 (((-576) |#2|) 45)) (-2612 (((-576) |#2|) 21) (((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|) 20))) -(((-932 |#1| |#2|) (-10 -7 (-15 -2494 ((-940) (-576))) (-15 -2612 ((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|)) (-15 -2612 ((-576) |#2|)) (-15 -2668 ((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))))) (-15 -3094 ((-576) |#2|)) (-15 -3089 (|#2| |#2|))) (-1264 (-419 (-576))) (-1264 (-419 |#1|))) (T -932)) -((-3089 (*1 *2 *2) (-12 (-4 *3 (-1264 (-419 (-576)))) (-5 *1 (-932 *3 *2)) (-4 *2 (-1264 (-419 *3))))) (-3094 (*1 *2 *3) (-12 (-4 *4 (-1264 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-932 *4 *3)) (-4 *3 (-1264 (-419 *4))))) (-2668 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) (-4 *4 (-1264 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-932 *4 *5)) (-4 *5 (-1264 (-419 *4))))) (-2612 (*1 *2 *3) (-12 (-4 *4 (-1264 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-932 *4 *3)) (-4 *3 (-1264 (-419 *4))))) (-2612 (*1 *2 *3) (-12 (-4 *3 (-1264 (-419 (-576)))) (-5 *2 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))) (-5 *1 (-932 *3 *4)) (-4 *4 (-1264 (-419 *3))))) (-2494 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-1264 (-419 *3))) (-5 *2 (-940)) (-5 *1 (-932 *4 *5)) (-4 *5 (-1264 (-419 *4)))))) -(-10 -7 (-15 -2494 ((-940) (-576))) (-15 -2612 ((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|)) (-15 -2612 ((-576) |#2|)) (-15 -2668 ((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))))) (-15 -3094 ((-576) |#2|)) (-15 -3089 (|#2| |#2|))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2575 ((|#1| $) 100)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-4016 (((-112) $ $) NIL)) (-3886 (($) NIL T CONST)) (-3429 (($ $ $) NIL)) (-1561 (((-3 $ "failed") $) 94)) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-4249 (((-112) $) NIL)) (-3786 (($ |#1| (-430 |#1|)) 92)) (-4001 (((-1193 |#1|) |#1| |#1|) 53)) (-1883 (($ $) 61)) (-4193 (((-112) $) NIL)) (-2179 (((-576) $) 97)) (-1673 (($ $ (-576)) 99)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2255 ((|#1| $) 96)) (-3046 (((-430 |#1|) $) 95)) (-1828 (((-430 $) $) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) 93)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1967 (((-783) $) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-3316 (($ $) 50)) (-3570 (((-876) $) 124) (($ (-576)) 73) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 41) (((-419 |#1|) $) 78) (($ (-419 (-430 |#1|))) 86)) (-3996 (((-783)) 71 T CONST)) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL)) (-2721 (($) 26 T CONST)) (-2732 (($) 15 T CONST)) (-2925 (((-112) $ $) 87)) (-3057 (($ $ $) NIL)) (-3044 (($ $) 108) (($ $ $) NIL)) (-3030 (($ $ $) 49)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 110) (($ $ $) 48) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) -(((-933 |#1|) (-13 (-374) (-38 |#1|) (-10 -8 (-15 -3570 ((-419 |#1|) $)) (-15 -3570 ($ (-419 (-430 |#1|)))) (-15 -3316 ($ $)) (-15 -3046 ((-430 |#1|) $)) (-15 -2255 (|#1| $)) (-15 -1673 ($ $ (-576))) (-15 -2179 ((-576) $)) (-15 -4001 ((-1193 |#1|) |#1| |#1|)) (-15 -1883 ($ $)) (-15 -3786 ($ |#1| (-430 |#1|))) (-15 -2575 (|#1| $)))) (-317)) (T -933)) -((-3570 (*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-933 *3)) (-4 *3 (-317)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-419 (-430 *3))) (-4 *3 (-317)) (-5 *1 (-933 *3)))) (-3316 (*1 *1 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317)))) (-3046 (*1 *2 *1) (-12 (-5 *2 (-430 *3)) (-5 *1 (-933 *3)) (-4 *3 (-317)))) (-2255 (*1 *2 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317)))) (-1673 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-933 *3)) (-4 *3 (-317)))) (-2179 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-933 *3)) (-4 *3 (-317)))) (-4001 (*1 *2 *3 *3) (-12 (-5 *2 (-1193 *3)) (-5 *1 (-933 *3)) (-4 *3 (-317)))) (-1883 (*1 *1 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317)))) (-3786 (*1 *1 *2 *3) (-12 (-5 *3 (-430 *2)) (-4 *2 (-317)) (-5 *1 (-933 *2)))) (-2575 (*1 *2 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317))))) -(-13 (-374) (-38 |#1|) (-10 -8 (-15 -3570 ((-419 |#1|) $)) (-15 -3570 ($ (-419 (-430 |#1|)))) (-15 -3316 ($ $)) (-15 -3046 ((-430 |#1|) $)) (-15 -2255 (|#1| $)) (-15 -1673 ($ $ (-576))) (-15 -2179 ((-576) $)) (-15 -4001 ((-1193 |#1|) |#1| |#1|)) (-15 -1883 ($ $)) (-15 -3786 ($ |#1| (-430 |#1|))) (-15 -2575 (|#1| $)))) -((-3786 (((-52) (-971 |#1|) (-430 (-971 |#1|)) (-1197)) 17) (((-52) (-419 (-971 |#1|)) (-1197)) 18))) -(((-934 |#1|) (-10 -7 (-15 -3786 ((-52) (-419 (-971 |#1|)) (-1197))) (-15 -3786 ((-52) (-971 |#1|) (-430 (-971 |#1|)) (-1197)))) (-13 (-317) (-148))) (T -934)) -((-3786 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-430 (-971 *6))) (-5 *5 (-1197)) (-5 *3 (-971 *6)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-934 *6)))) (-3786 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-934 *5))))) -(-10 -7 (-15 -3786 ((-52) (-419 (-971 |#1|)) (-1197))) (-15 -3786 ((-52) (-971 |#1|) (-430 (-971 |#1|)) (-1197)))) -((-3374 ((|#4| (-656 |#4|)) 147) (((-1193 |#4|) (-1193 |#4|) (-1193 |#4|)) 84) ((|#4| |#4| |#4|) 146)) (-3498 (((-1193 |#4|) (-656 (-1193 |#4|))) 140) (((-1193 |#4|) (-1193 |#4|) (-1193 |#4|)) 61) ((|#4| (-656 |#4|)) 69) ((|#4| |#4| |#4|) 107))) -(((-935 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3498 (|#4| |#4| |#4|)) (-15 -3498 (|#4| (-656 |#4|))) (-15 -3498 ((-1193 |#4|) (-1193 |#4|) (-1193 |#4|))) (-15 -3498 ((-1193 |#4|) (-656 (-1193 |#4|)))) (-15 -3374 (|#4| |#4| |#4|)) (-15 -3374 ((-1193 |#4|) (-1193 |#4|) (-1193 |#4|))) (-15 -3374 (|#4| (-656 |#4|)))) (-805) (-861) (-317) (-968 |#3| |#1| |#2|)) (T -935)) -((-3374 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *6 *4 *5)) (-5 *1 (-935 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)))) (-3374 (*1 *2 *2 *2) (-12 (-5 *2 (-1193 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-935 *3 *4 *5 *6)))) (-3374 (*1 *2 *2 *2) (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-935 *3 *4 *5 *2)) (-4 *2 (-968 *5 *3 *4)))) (-3498 (*1 *2 *3) (-12 (-5 *3 (-656 (-1193 *7))) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-1193 *7)) (-5 *1 (-935 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) (-3498 (*1 *2 *2 *2) (-12 (-5 *2 (-1193 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-935 *3 *4 *5 *6)))) (-3498 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *6 *4 *5)) (-5 *1 (-935 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)))) (-3498 (*1 *2 *2 *2) (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-935 *3 *4 *5 *2)) (-4 *2 (-968 *5 *3 *4))))) -(-10 -7 (-15 -3498 (|#4| |#4| |#4|)) (-15 -3498 (|#4| (-656 |#4|))) (-15 -3498 ((-1193 |#4|) (-1193 |#4|) (-1193 |#4|))) (-15 -3498 ((-1193 |#4|) (-656 (-1193 |#4|)))) (-15 -3374 (|#4| |#4| |#4|)) (-15 -3374 ((-1193 |#4|) (-1193 |#4|) (-1193 |#4|))) (-15 -3374 (|#4| (-656 |#4|)))) -((-1970 (((-923 (-576)) (-992)) 38) (((-923 (-576)) (-656 (-576))) 34)) (-2084 (((-923 (-576)) (-656 (-576))) 67) (((-923 (-576)) (-940)) 68)) (-4110 (((-923 (-576))) 39)) (-2165 (((-923 (-576))) 53) (((-923 (-576)) (-656 (-576))) 52)) (-2553 (((-923 (-576))) 51) (((-923 (-576)) (-656 (-576))) 50)) (-3641 (((-923 (-576))) 49) (((-923 (-576)) (-656 (-576))) 48)) (-3282 (((-923 (-576))) 47) (((-923 (-576)) (-656 (-576))) 46)) (-3771 (((-923 (-576))) 45) (((-923 (-576)) (-656 (-576))) 44)) (-3688 (((-923 (-576))) 55) (((-923 (-576)) (-656 (-576))) 54)) (-3615 (((-923 (-576)) (-656 (-576))) 72) (((-923 (-576)) (-940)) 74)) (-1677 (((-923 (-576)) (-656 (-576))) 69) (((-923 (-576)) (-940)) 70)) (-2247 (((-923 (-576)) (-656 (-576))) 65) (((-923 (-576)) (-940)) 66)) (-3919 (((-923 (-576)) (-656 (-940))) 57))) -(((-936) (-10 -7 (-15 -2084 ((-923 (-576)) (-940))) (-15 -2084 ((-923 (-576)) (-656 (-576)))) (-15 -2247 ((-923 (-576)) (-940))) (-15 -2247 ((-923 (-576)) (-656 (-576)))) (-15 -3919 ((-923 (-576)) (-656 (-940)))) (-15 -1677 ((-923 (-576)) (-940))) (-15 -1677 ((-923 (-576)) (-656 (-576)))) (-15 -3615 ((-923 (-576)) (-940))) (-15 -3615 ((-923 (-576)) (-656 (-576)))) (-15 -3771 ((-923 (-576)) (-656 (-576)))) (-15 -3771 ((-923 (-576)))) (-15 -3282 ((-923 (-576)) (-656 (-576)))) (-15 -3282 ((-923 (-576)))) (-15 -3641 ((-923 (-576)) (-656 (-576)))) (-15 -3641 ((-923 (-576)))) (-15 -2553 ((-923 (-576)) (-656 (-576)))) (-15 -2553 ((-923 (-576)))) (-15 -2165 ((-923 (-576)) (-656 (-576)))) (-15 -2165 ((-923 (-576)))) (-15 -3688 ((-923 (-576)) (-656 (-576)))) (-15 -3688 ((-923 (-576)))) (-15 -4110 ((-923 (-576)))) (-15 -1970 ((-923 (-576)) (-656 (-576)))) (-15 -1970 ((-923 (-576)) (-992))))) (T -936)) -((-1970 (*1 *2 *3) (-12 (-5 *3 (-992)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-1970 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-4110 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3688 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-2165 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-2165 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-2553 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-2553 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3641 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3641 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3282 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3282 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3771 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3771 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3615 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3615 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-1677 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-1677 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3919 (*1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-2247 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-2247 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-2084 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-2084 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936))))) -(-10 -7 (-15 -2084 ((-923 (-576)) (-940))) (-15 -2084 ((-923 (-576)) (-656 (-576)))) (-15 -2247 ((-923 (-576)) (-940))) (-15 -2247 ((-923 (-576)) (-656 (-576)))) (-15 -3919 ((-923 (-576)) (-656 (-940)))) (-15 -1677 ((-923 (-576)) (-940))) (-15 -1677 ((-923 (-576)) (-656 (-576)))) (-15 -3615 ((-923 (-576)) (-940))) (-15 -3615 ((-923 (-576)) (-656 (-576)))) (-15 -3771 ((-923 (-576)) (-656 (-576)))) (-15 -3771 ((-923 (-576)))) (-15 -3282 ((-923 (-576)) (-656 (-576)))) (-15 -3282 ((-923 (-576)))) (-15 -3641 ((-923 (-576)) (-656 (-576)))) (-15 -3641 ((-923 (-576)))) (-15 -2553 ((-923 (-576)) (-656 (-576)))) (-15 -2553 ((-923 (-576)))) (-15 -2165 ((-923 (-576)) (-656 (-576)))) (-15 -2165 ((-923 (-576)))) (-15 -3688 ((-923 (-576)) (-656 (-576)))) (-15 -3688 ((-923 (-576)))) (-15 -4110 ((-923 (-576)))) (-15 -1970 ((-923 (-576)) (-656 (-576)))) (-15 -1970 ((-923 (-576)) (-992)))) -((-2915 (((-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197))) 14)) (-4247 (((-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197))) 13))) -(((-937 |#1|) (-10 -7 (-15 -4247 ((-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -2915 ((-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197))))) (-464)) (T -937)) -((-2915 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-971 *4))) (-5 *3 (-656 (-1197))) (-4 *4 (-464)) (-5 *1 (-937 *4)))) (-4247 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-971 *4))) (-5 *3 (-656 (-1197))) (-4 *4 (-464)) (-5 *1 (-937 *4))))) -(-10 -7 (-15 -4247 ((-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -2915 ((-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197))))) -((-3570 (((-326 |#1|) (-489)) 16))) -(((-938 |#1|) (-10 -7 (-15 -3570 ((-326 |#1|) (-489)))) (-568)) (T -938)) -((-3570 (*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-938 *4)) (-4 *4 (-568))))) -(-10 -7 (-15 -3570 ((-326 |#1|) (-489)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 47)) (-2757 (($ $) 46)) (-3788 (((-112) $) 44)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-1561 (((-3 $ "failed") $) 37)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) 57)) (-4193 (((-112) $) 35)) (-3458 (($ $ $) 52) (($ (-656 $)) 51)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-3476 (((-3 $ "failed") $ $) 48)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2672 (((-112) $ $) 45)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-2388 (((-3 (-2 (|:| -3726 (-783)) (|:| -3339 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)) 77)) (-2608 (((-112) (-347 |#2| |#3| |#4| |#5|)) 17)) (-3726 (((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|)) 15))) +(((-930 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3726 ((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|))) (-15 -2608 ((-112) (-347 |#2| |#3| |#4| |#5|))) (-15 -2388 ((-3 (-2 (|:| -3726 (-783)) (|:| -3339 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)))) (-13 (-568) (-1059 (-576))) (-442 |#1|) (-1264 |#2|) (-1264 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -930)) +((-2388 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-2 (|:| -3726 (-783)) (|:| -3339 *8))) (-5 *1 (-930 *4 *5 *6 *7 *8)))) (-2608 (*1 *2 *3) (-12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-112)) (-5 *1 (-930 *4 *5 *6 *7 *8)))) (-3726 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-783)) (-5 *1 (-930 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -3726 ((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|))) (-15 -2608 ((-112) (-347 |#2| |#3| |#4| |#5|))) (-15 -2388 ((-3 (-2 (|:| -3726 (-783)) (|:| -3339 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)))) +((-2388 (((-3 (-2 (|:| -3726 (-783)) (|:| -3339 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)) 64)) (-2608 (((-112) (-347 (-419 (-576)) |#1| |#2| |#3|)) 16)) (-3726 (((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)) 14))) +(((-931 |#1| |#2| |#3|) (-10 -7 (-15 -3726 ((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -2608 ((-112) (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -2388 ((-3 (-2 (|:| -3726 (-783)) (|:| -3339 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)))) (-1264 (-419 (-576))) (-1264 (-419 |#1|)) (-353 (-419 (-576)) |#1| |#2|)) (T -931)) +((-2388 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1264 (-419 (-576)))) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-2 (|:| -3726 (-783)) (|:| -3339 *6))) (-5 *1 (-931 *4 *5 *6)))) (-2608 (*1 *2 *3) (-12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1264 (-419 (-576)))) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-931 *4 *5 *6)))) (-3726 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1264 (-419 (-576)))) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-783)) (-5 *1 (-931 *4 *5 *6))))) +(-10 -7 (-15 -3726 ((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -2608 ((-112) (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -2388 ((-3 (-2 (|:| -3726 (-783)) (|:| -3339 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)))) +((-2201 ((|#2| |#2|) 26)) (-1478 (((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) 15)) (-3531 (((-940) (-576)) 38)) (-2255 (((-576) |#2|) 45)) (-2157 (((-576) |#2|) 21) (((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|) 20))) +(((-932 |#1| |#2|) (-10 -7 (-15 -3531 ((-940) (-576))) (-15 -2157 ((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|)) (-15 -2157 ((-576) |#2|)) (-15 -1478 ((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))))) (-15 -2255 ((-576) |#2|)) (-15 -2201 (|#2| |#2|))) (-1264 (-419 (-576))) (-1264 (-419 |#1|))) (T -932)) +((-2201 (*1 *2 *2) (-12 (-4 *3 (-1264 (-419 (-576)))) (-5 *1 (-932 *3 *2)) (-4 *2 (-1264 (-419 *3))))) (-2255 (*1 *2 *3) (-12 (-4 *4 (-1264 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-932 *4 *3)) (-4 *3 (-1264 (-419 *4))))) (-1478 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) (-4 *4 (-1264 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-932 *4 *5)) (-4 *5 (-1264 (-419 *4))))) (-2157 (*1 *2 *3) (-12 (-4 *4 (-1264 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-932 *4 *3)) (-4 *3 (-1264 (-419 *4))))) (-2157 (*1 *2 *3) (-12 (-4 *3 (-1264 (-419 (-576)))) (-5 *2 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))) (-5 *1 (-932 *3 *4)) (-4 *4 (-1264 (-419 *3))))) (-3531 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-1264 (-419 *3))) (-5 *2 (-940)) (-5 *1 (-932 *4 *5)) (-4 *5 (-1264 (-419 *4)))))) +(-10 -7 (-15 -3531 ((-940) (-576))) (-15 -2157 ((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|)) (-15 -2157 ((-576) |#2|)) (-15 -1478 ((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))))) (-15 -2255 ((-576) |#2|)) (-15 -2201 (|#2| |#2|))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-3110 ((|#1| $) 100)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3330 (((-112) $ $) NIL)) (-3404 (($) NIL T CONST)) (-3428 (($ $ $) NIL)) (-3673 (((-3 $ "failed") $) 94)) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3833 (((-112) $) NIL)) (-1740 (($ |#1| (-430 |#1|)) 92)) (-3208 (((-1193 |#1|) |#1| |#1|) 53)) (-3729 (($ $) 61)) (-1351 (((-112) $) NIL)) (-3402 (((-576) $) 97)) (-2194 (($ $ (-576)) 99)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2901 ((|#1| $) 96)) (-3050 (((-430 |#1|) $) 95)) (-1828 (((-430 $) $) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) 93)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1979 (((-783) $) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-2654 (($ $) 50)) (-3569 (((-876) $) 124) (($ (-576)) 73) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 41) (((-419 |#1|) $) 78) (($ (-419 (-430 |#1|))) 86)) (-3154 (((-783)) 71 T CONST)) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL)) (-2721 (($) 26 T CONST)) (-2731 (($) 15 T CONST)) (-2924 (((-112) $ $) 87)) (-3056 (($ $ $) NIL)) (-3043 (($ $) 108) (($ $ $) NIL)) (-3029 (($ $ $) 49)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 110) (($ $ $) 48) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) +(((-933 |#1|) (-13 (-374) (-38 |#1|) (-10 -8 (-15 -3569 ((-419 |#1|) $)) (-15 -3569 ($ (-419 (-430 |#1|)))) (-15 -2654 ($ $)) (-15 -3050 ((-430 |#1|) $)) (-15 -2901 (|#1| $)) (-15 -2194 ($ $ (-576))) (-15 -3402 ((-576) $)) (-15 -3208 ((-1193 |#1|) |#1| |#1|)) (-15 -3729 ($ $)) (-15 -1740 ($ |#1| (-430 |#1|))) (-15 -3110 (|#1| $)))) (-317)) (T -933)) +((-3569 (*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-933 *3)) (-4 *3 (-317)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-419 (-430 *3))) (-4 *3 (-317)) (-5 *1 (-933 *3)))) (-2654 (*1 *1 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317)))) (-3050 (*1 *2 *1) (-12 (-5 *2 (-430 *3)) (-5 *1 (-933 *3)) (-4 *3 (-317)))) (-2901 (*1 *2 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317)))) (-2194 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-933 *3)) (-4 *3 (-317)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-933 *3)) (-4 *3 (-317)))) (-3208 (*1 *2 *3 *3) (-12 (-5 *2 (-1193 *3)) (-5 *1 (-933 *3)) (-4 *3 (-317)))) (-3729 (*1 *1 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317)))) (-1740 (*1 *1 *2 *3) (-12 (-5 *3 (-430 *2)) (-4 *2 (-317)) (-5 *1 (-933 *2)))) (-3110 (*1 *2 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317))))) +(-13 (-374) (-38 |#1|) (-10 -8 (-15 -3569 ((-419 |#1|) $)) (-15 -3569 ($ (-419 (-430 |#1|)))) (-15 -2654 ($ $)) (-15 -3050 ((-430 |#1|) $)) (-15 -2901 (|#1| $)) (-15 -2194 ($ $ (-576))) (-15 -3402 ((-576) $)) (-15 -3208 ((-1193 |#1|) |#1| |#1|)) (-15 -3729 ($ $)) (-15 -1740 ($ |#1| (-430 |#1|))) (-15 -3110 (|#1| $)))) +((-1740 (((-52) (-971 |#1|) (-430 (-971 |#1|)) (-1197)) 17) (((-52) (-419 (-971 |#1|)) (-1197)) 18))) +(((-934 |#1|) (-10 -7 (-15 -1740 ((-52) (-419 (-971 |#1|)) (-1197))) (-15 -1740 ((-52) (-971 |#1|) (-430 (-971 |#1|)) (-1197)))) (-13 (-317) (-148))) (T -934)) +((-1740 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-430 (-971 *6))) (-5 *5 (-1197)) (-5 *3 (-971 *6)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-934 *6)))) (-1740 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-934 *5))))) +(-10 -7 (-15 -1740 ((-52) (-419 (-971 |#1|)) (-1197))) (-15 -1740 ((-52) (-971 |#1|) (-430 (-971 |#1|)) (-1197)))) +((-3279 ((|#4| (-656 |#4|)) 147) (((-1193 |#4|) (-1193 |#4|) (-1193 |#4|)) 84) ((|#4| |#4| |#4|) 146)) (-3497 (((-1193 |#4|) (-656 (-1193 |#4|))) 140) (((-1193 |#4|) (-1193 |#4|) (-1193 |#4|)) 61) ((|#4| (-656 |#4|)) 69) ((|#4| |#4| |#4|) 107))) +(((-935 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3497 (|#4| |#4| |#4|)) (-15 -3497 (|#4| (-656 |#4|))) (-15 -3497 ((-1193 |#4|) (-1193 |#4|) (-1193 |#4|))) (-15 -3497 ((-1193 |#4|) (-656 (-1193 |#4|)))) (-15 -3279 (|#4| |#4| |#4|)) (-15 -3279 ((-1193 |#4|) (-1193 |#4|) (-1193 |#4|))) (-15 -3279 (|#4| (-656 |#4|)))) (-805) (-861) (-317) (-968 |#3| |#1| |#2|)) (T -935)) +((-3279 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *6 *4 *5)) (-5 *1 (-935 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)))) (-3279 (*1 *2 *2 *2) (-12 (-5 *2 (-1193 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-935 *3 *4 *5 *6)))) (-3279 (*1 *2 *2 *2) (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-935 *3 *4 *5 *2)) (-4 *2 (-968 *5 *3 *4)))) (-3497 (*1 *2 *3) (-12 (-5 *3 (-656 (-1193 *7))) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-1193 *7)) (-5 *1 (-935 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) (-3497 (*1 *2 *2 *2) (-12 (-5 *2 (-1193 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-935 *3 *4 *5 *6)))) (-3497 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *6 *4 *5)) (-5 *1 (-935 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)))) (-3497 (*1 *2 *2 *2) (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-935 *3 *4 *5 *2)) (-4 *2 (-968 *5 *3 *4))))) +(-10 -7 (-15 -3497 (|#4| |#4| |#4|)) (-15 -3497 (|#4| (-656 |#4|))) (-15 -3497 ((-1193 |#4|) (-1193 |#4|) (-1193 |#4|))) (-15 -3497 ((-1193 |#4|) (-656 (-1193 |#4|)))) (-15 -3279 (|#4| |#4| |#4|)) (-15 -3279 ((-1193 |#4|) (-1193 |#4|) (-1193 |#4|))) (-15 -3279 (|#4| (-656 |#4|)))) +((-1996 (((-923 (-576)) (-992)) 38) (((-923 (-576)) (-656 (-576))) 34)) (-1832 (((-923 (-576)) (-656 (-576))) 67) (((-923 (-576)) (-940)) 68)) (-1737 (((-923 (-576))) 39)) (-1397 (((-923 (-576))) 53) (((-923 (-576)) (-656 (-576))) 52)) (-2855 (((-923 (-576))) 51) (((-923 (-576)) (-656 (-576))) 50)) (-2756 (((-923 (-576))) 49) (((-923 (-576)) (-656 (-576))) 48)) (-3627 (((-923 (-576))) 47) (((-923 (-576)) (-656 (-576))) 46)) (-1589 (((-923 (-576))) 45) (((-923 (-576)) (-656 (-576))) 44)) (-3221 (((-923 (-576))) 55) (((-923 (-576)) (-656 (-576))) 54)) (-3785 (((-923 (-576)) (-656 (-576))) 72) (((-923 (-576)) (-940)) 74)) (-2238 (((-923 (-576)) (-656 (-576))) 69) (((-923 (-576)) (-940)) 70)) (-2811 (((-923 (-576)) (-656 (-576))) 65) (((-923 (-576)) (-940)) 66)) (-3749 (((-923 (-576)) (-656 (-940))) 57))) +(((-936) (-10 -7 (-15 -1832 ((-923 (-576)) (-940))) (-15 -1832 ((-923 (-576)) (-656 (-576)))) (-15 -2811 ((-923 (-576)) (-940))) (-15 -2811 ((-923 (-576)) (-656 (-576)))) (-15 -3749 ((-923 (-576)) (-656 (-940)))) (-15 -2238 ((-923 (-576)) (-940))) (-15 -2238 ((-923 (-576)) (-656 (-576)))) (-15 -3785 ((-923 (-576)) (-940))) (-15 -3785 ((-923 (-576)) (-656 (-576)))) (-15 -1589 ((-923 (-576)) (-656 (-576)))) (-15 -1589 ((-923 (-576)))) (-15 -3627 ((-923 (-576)) (-656 (-576)))) (-15 -3627 ((-923 (-576)))) (-15 -2756 ((-923 (-576)) (-656 (-576)))) (-15 -2756 ((-923 (-576)))) (-15 -2855 ((-923 (-576)) (-656 (-576)))) (-15 -2855 ((-923 (-576)))) (-15 -1397 ((-923 (-576)) (-656 (-576)))) (-15 -1397 ((-923 (-576)))) (-15 -3221 ((-923 (-576)) (-656 (-576)))) (-15 -3221 ((-923 (-576)))) (-15 -1737 ((-923 (-576)))) (-15 -1996 ((-923 (-576)) (-656 (-576)))) (-15 -1996 ((-923 (-576)) (-992))))) (T -936)) +((-1996 (*1 *2 *3) (-12 (-5 *3 (-992)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-1996 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-1737 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3221 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3221 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-1397 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-1397 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-2855 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-2855 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-2756 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-2756 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3627 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3627 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-1589 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-1589 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3785 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3785 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-2238 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-2238 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-2811 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-2811 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-1832 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-1832 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936))))) +(-10 -7 (-15 -1832 ((-923 (-576)) (-940))) (-15 -1832 ((-923 (-576)) (-656 (-576)))) (-15 -2811 ((-923 (-576)) (-940))) (-15 -2811 ((-923 (-576)) (-656 (-576)))) (-15 -3749 ((-923 (-576)) (-656 (-940)))) (-15 -2238 ((-923 (-576)) (-940))) (-15 -2238 ((-923 (-576)) (-656 (-576)))) (-15 -3785 ((-923 (-576)) (-940))) (-15 -3785 ((-923 (-576)) (-656 (-576)))) (-15 -1589 ((-923 (-576)) (-656 (-576)))) (-15 -1589 ((-923 (-576)))) (-15 -3627 ((-923 (-576)) (-656 (-576)))) (-15 -3627 ((-923 (-576)))) (-15 -2756 ((-923 (-576)) (-656 (-576)))) (-15 -2756 ((-923 (-576)))) (-15 -2855 ((-923 (-576)) (-656 (-576)))) (-15 -2855 ((-923 (-576)))) (-15 -1397 ((-923 (-576)) (-656 (-576)))) (-15 -1397 ((-923 (-576)))) (-15 -3221 ((-923 (-576)) (-656 (-576)))) (-15 -3221 ((-923 (-576)))) (-15 -1737 ((-923 (-576)))) (-15 -1996 ((-923 (-576)) (-656 (-576)))) (-15 -1996 ((-923 (-576)) (-992)))) +((-3209 (((-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197))) 14)) (-3807 (((-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197))) 13))) +(((-937 |#1|) (-10 -7 (-15 -3807 ((-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -3209 ((-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197))))) (-464)) (T -937)) +((-3209 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-971 *4))) (-5 *3 (-656 (-1197))) (-4 *4 (-464)) (-5 *1 (-937 *4)))) (-3807 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-971 *4))) (-5 *3 (-656 (-1197))) (-4 *4 (-464)) (-5 *1 (-937 *4))))) +(-10 -7 (-15 -3807 ((-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -3209 ((-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197))))) +((-3569 (((-326 |#1|) (-489)) 16))) +(((-938 |#1|) (-10 -7 (-15 -3569 ((-326 |#1|) (-489)))) (-568)) (T -938)) +((-3569 (*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-938 *4)) (-4 *4 (-568))))) +(-10 -7 (-15 -3569 ((-326 |#1|) (-489)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-4195 (($ $) 46)) (-1760 (((-112) $) 44)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-3673 (((-3 $ "failed") $) 37)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) 57)) (-1351 (((-112) $) 35)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3497 (($ $ $) 54) (($ (-656 $)) 53)) (-3475 (((-3 $ "failed") $ $) 48)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-1505 (((-112) $ $) 45)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-939) (-141)) (T -939)) -((-2174 (*1 *2 *3) (-12 (-4 *1 (-939)) (-5 *2 (-2 (|:| -1714 (-656 *1)) (|:| -4129 *1))) (-5 *3 (-656 *1)))) (-2722 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-939))))) -(-13 (-464) (-10 -8 (-15 -2174 ((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $))) (-15 -2722 ((-3 (-656 $) "failed") (-656 $) $)))) +((-3363 (*1 *2 *3) (-12 (-4 *1 (-939)) (-5 *2 (-2 (|:| -1715 (-656 *1)) (|:| -4128 *1))) (-5 *3 (-656 *1)))) (-1899 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-939))))) +(-13 (-464) (-10 -8 (-15 -3363 ((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $))) (-15 -1899 ((-3 (-656 $) "failed") (-656 $) $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-3886 (($) NIL T CONST)) (-1561 (((-3 $ "failed") $) NIL)) (-4193 (((-112) $) NIL)) (-3125 (($ $ $) NIL)) (-3133 (($ $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3498 (($ $ $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2732 (($) NIL T CONST)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-940)) NIL)) (* (($ (-940) $) NIL) (($ $ $) NIL))) -(((-940) (-13 (-806) (-738) (-10 -8 (-15 -3498 ($ $ $)) (-6 (-4467 "*"))))) (T -940)) -((-3498 (*1 *1 *1 *1) (-5 *1 (-940)))) -(-13 (-806) (-738) (-10 -8 (-15 -3498 ($ $ $)) (-6 (-4467 "*")))) +((-3488 (((-112) $ $) NIL)) (-3404 (($) NIL T CONST)) (-3673 (((-3 $ "failed") $) NIL)) (-1351 (((-112) $) NIL)) (-3124 (($ $ $) NIL)) (-1441 (($ $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3497 (($ $ $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2731 (($) NIL T CONST)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-940)) NIL)) (* (($ (-940) $) NIL) (($ $ $) NIL))) +(((-940) (-13 (-806) (-738) (-10 -8 (-15 -3497 ($ $ $)) (-6 (-4466 "*"))))) (T -940)) +((-3497 (*1 *1 *1 *1) (-5 *1 (-940)))) +(-13 (-806) (-738) (-10 -8 (-15 -3497 ($ $ $)) (-6 (-4466 "*")))) ((|NonNegativeInteger|) (|%igt| |#1| 0)) -((-1740 ((|#2| (-656 |#1|) (-656 |#1|)) 28))) -(((-941 |#1| |#2|) (-10 -7 (-15 -1740 (|#2| (-656 |#1|) (-656 |#1|)))) (-374) (-1264 |#1|)) (T -941)) -((-1740 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-4 *2 (-1264 *4)) (-5 *1 (-941 *4 *2))))) -(-10 -7 (-15 -1740 (|#2| (-656 |#1|) (-656 |#1|)))) -((-3834 (((-1193 |#2|) (-656 |#2|) (-656 |#2|)) 17) (((-1261 |#1| |#2|) (-1261 |#1| |#2|) (-656 |#2|) (-656 |#2|)) 13))) -(((-942 |#1| |#2|) (-10 -7 (-15 -3834 ((-1261 |#1| |#2|) (-1261 |#1| |#2|) (-656 |#2|) (-656 |#2|))) (-15 -3834 ((-1193 |#2|) (-656 |#2|) (-656 |#2|)))) (-1197) (-374)) (T -942)) -((-3834 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-374)) (-5 *2 (-1193 *5)) (-5 *1 (-942 *4 *5)) (-14 *4 (-1197)))) (-3834 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1261 *4 *5)) (-5 *3 (-656 *5)) (-14 *4 (-1197)) (-4 *5 (-374)) (-5 *1 (-942 *4 *5))))) -(-10 -7 (-15 -3834 ((-1261 |#1| |#2|) (-1261 |#1| |#2|) (-656 |#2|) (-656 |#2|))) (-15 -3834 ((-1193 |#2|) (-656 |#2|) (-656 |#2|)))) -((-1324 (((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|))))))))) (-1179)) 174)) (-3328 ((|#4| |#4|) 193)) (-3174 (((-656 (-419 (-971 |#1|))) (-656 (-1197))) 146)) (-1817 (((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-971 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576)) 88)) (-3364 (((-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|)))))) (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|)))))) (-656 |#4|)) 69)) (-3596 (((-701 |#4|) (-701 |#4|) (-656 |#4|)) 65)) (-1510 (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|))))))))) (-1179)) 186)) (-4424 (((-576) (-701 |#4|) (-940) (-1179)) 166) (((-576) (-701 |#4|) (-656 (-1197)) (-940) (-1179)) 165) (((-576) (-701 |#4|) (-656 |#4|) (-940) (-1179)) 164) (((-576) (-701 |#4|) (-1179)) 154) (((-576) (-701 |#4|) (-656 (-1197)) (-1179)) 153) (((-576) (-701 |#4|) (-656 |#4|) (-1179)) 152) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-940)) 151) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 (-1197)) (-940)) 150) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-940)) 149) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|)) 148) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 (-1197))) 147) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 |#4|)) 143)) (-4124 ((|#4| (-971 |#1|)) 80)) (-1972 (((-112) (-656 |#4|) (-656 (-656 |#4|))) 190)) (-3677 (((-656 (-656 (-576))) (-576) (-576)) 159)) (-4341 (((-656 (-656 |#4|)) (-656 (-656 |#4|))) 106)) (-1781 (((-783) (-656 (-2 (|:| -3734 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|))))) 100)) (-3245 (((-783) (-656 (-2 (|:| -3734 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|))))) 99)) (-2699 (((-112) (-656 (-971 |#1|))) 19) (((-112) (-656 |#4|)) 15)) (-2862 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|)) 84)) (-2592 (((-656 |#4|) |#4|) 57)) (-3034 (((-656 (-419 (-971 |#1|))) (-656 |#4|)) 142) (((-701 (-419 (-971 |#1|))) (-701 |#4|)) 66) (((-419 (-971 |#1|)) |#4|) 139)) (-2474 (((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-971 |#1|))) (-783) (-1179) (-576)) 112)) (-2940 (((-656 (-2 (|:| -3734 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783)) 98)) (-4315 (((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783)) 121)) (-2671 (((-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|)))))) (-2 (|:| -2590 (-701 (-419 (-971 |#1|)))) (|:| |vec| (-656 (-419 (-971 |#1|)))) (|:| -3734 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) 56))) -(((-943 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4424 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 |#4|))) (-15 -4424 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 (-1197)))) (-15 -4424 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|))) (-15 -4424 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-940))) (-15 -4424 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 (-1197)) (-940))) (-15 -4424 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-940))) (-15 -4424 ((-576) (-701 |#4|) (-656 |#4|) (-1179))) (-15 -4424 ((-576) (-701 |#4|) (-656 (-1197)) (-1179))) (-15 -4424 ((-576) (-701 |#4|) (-1179))) (-15 -4424 ((-576) (-701 |#4|) (-656 |#4|) (-940) (-1179))) (-15 -4424 ((-576) (-701 |#4|) (-656 (-1197)) (-940) (-1179))) (-15 -4424 ((-576) (-701 |#4|) (-940) (-1179))) (-15 -1324 ((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|))))))))) (-1179))) (-15 -1510 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|))))))))) (-1179))) (-15 -2474 ((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-971 |#1|))) (-783) (-1179) (-576))) (-15 -3034 ((-419 (-971 |#1|)) |#4|)) (-15 -3034 ((-701 (-419 (-971 |#1|))) (-701 |#4|))) (-15 -3034 ((-656 (-419 (-971 |#1|))) (-656 |#4|))) (-15 -3174 ((-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -4124 (|#4| (-971 |#1|))) (-15 -2862 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|))) (-15 -2940 ((-656 (-2 (|:| -3734 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783))) (-15 -3364 ((-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|)))))) (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|)))))) (-656 |#4|))) (-15 -2671 ((-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|)))))) (-2 (|:| -2590 (-701 (-419 (-971 |#1|)))) (|:| |vec| (-656 (-419 (-971 |#1|)))) (|:| -3734 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-15 -2592 ((-656 |#4|) |#4|)) (-15 -3245 ((-783) (-656 (-2 (|:| -3734 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -1781 ((-783) (-656 (-2 (|:| -3734 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -4341 ((-656 (-656 |#4|)) (-656 (-656 |#4|)))) (-15 -3677 ((-656 (-656 (-576))) (-576) (-576))) (-15 -1972 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -4315 ((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783))) (-15 -3596 ((-701 |#4|) (-701 |#4|) (-656 |#4|))) (-15 -1817 ((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-971 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576))) (-15 -3328 (|#4| |#4|)) (-15 -2699 ((-112) (-656 |#4|))) (-15 -2699 ((-112) (-656 (-971 |#1|))))) (-13 (-317) (-148)) (-13 (-861) (-626 (-1197))) (-805) (-968 |#1| |#3| |#2|)) (T -943)) -((-2699 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5)))) (-2699 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-943 *4 *5 *6 *7)))) (-3328 (*1 *2 *2) (-12 (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-861) (-626 (-1197)))) (-4 *5 (-805)) (-5 *1 (-943 *3 *4 *5 *2)) (-4 *2 (-968 *3 *5 *4)))) (-1817 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-5 *4 (-701 *12)) (-5 *5 (-656 (-419 (-971 *9)))) (-5 *6 (-656 (-656 *12))) (-5 *7 (-783)) (-5 *8 (-576)) (-4 *9 (-13 (-317) (-148))) (-4 *12 (-968 *9 *11 *10)) (-4 *10 (-13 (-861) (-626 (-1197)))) (-4 *11 (-805)) (-5 *2 (-2 (|:| |eqzro| (-656 *12)) (|:| |neqzro| (-656 *12)) (|:| |wcond| (-656 (-971 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *9)))) (|:| -1593 (-656 (-1288 (-419 (-971 *9))))))))) (-5 *1 (-943 *9 *10 *11 *12)))) (-3596 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *7)) (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *1 (-943 *4 *5 *6 *7)))) (-4315 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-783)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-5 *1 (-943 *5 *6 *7 *8)))) (-1972 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-943 *5 *6 *7 *8)))) (-3677 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-656 (-656 (-576)))) (-5 *1 (-943 *4 *5 *6 *7)) (-5 *3 (-576)) (-4 *7 (-968 *4 *6 *5)))) (-4341 (*1 *2 *2) (-12 (-5 *2 (-656 (-656 *6))) (-4 *6 (-968 *3 *5 *4)) (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-861) (-626 (-1197)))) (-4 *5 (-805)) (-5 *1 (-943 *3 *4 *5 *6)))) (-1781 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -3734 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *7))))) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-783)) (-5 *1 (-943 *4 *5 *6 *7)))) (-3245 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -3734 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *7))))) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-783)) (-5 *1 (-943 *4 *5 *6 *7)))) (-2592 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-656 *3)) (-5 *1 (-943 *4 *5 *6 *3)) (-4 *3 (-968 *4 *6 *5)))) (-2671 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2590 (-701 (-419 (-971 *4)))) (|:| |vec| (-656 (-419 (-971 *4)))) (|:| -3734 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) (|:| -1593 (-656 (-1288 (-419 (-971 *4))))))) (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5)))) (-3364 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) (|:| -1593 (-656 (-1288 (-419 (-971 *4))))))) (-5 *3 (-656 *7)) (-4 *4 (-13 (-317) (-148))) (-4 *7 (-968 *4 *6 *5)) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *1 (-943 *4 *5 *6 *7)))) (-2940 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| -3734 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *8))))) (-5 *1 (-943 *5 *6 *7 *8)) (-5 *4 (-783)))) (-2862 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-4 *7 (-968 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-656 *7)) (|:| |n0| (-656 *7)))) (-5 *1 (-943 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-4124 (*1 *2 *3) (-12 (-5 *3 (-971 *4)) (-4 *4 (-13 (-317) (-148))) (-4 *2 (-968 *4 *6 *5)) (-5 *1 (-943 *4 *5 *6 *2)) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)))) (-3174 (*1 *2 *3) (-12 (-5 *3 (-656 (-1197))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-656 (-419 (-971 *4)))) (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5)))) (-3034 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-656 (-419 (-971 *4)))) (-5 *1 (-943 *4 *5 *6 *7)))) (-3034 (*1 *2 *3) (-12 (-5 *3 (-701 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-701 (-419 (-971 *4)))) (-5 *1 (-943 *4 *5 *6 *7)))) (-3034 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-419 (-971 *4))) (-5 *1 (-943 *4 *5 *6 *3)) (-4 *3 (-968 *4 *6 *5)))) (-2474 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-701 *11)) (-5 *4 (-656 (-419 (-971 *8)))) (-5 *5 (-783)) (-5 *6 (-1179)) (-4 *8 (-13 (-317) (-148))) (-4 *11 (-968 *8 *10 *9)) (-4 *9 (-13 (-861) (-626 (-1197)))) (-4 *10 (-805)) (-5 *2 (-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 *11)) (|:| |neqzro| (-656 *11)) (|:| |wcond| (-656 (-971 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *8)))) (|:| -1593 (-656 (-1288 (-419 (-971 *8)))))))))) (|:| |rgsz| (-576)))) (-5 *1 (-943 *8 *9 *10 *11)) (-5 *7 (-576)))) (-1510 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) (|:| |wcond| (-656 (-971 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) (|:| -1593 (-656 (-1288 (-419 (-971 *4)))))))))) (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5)))) (-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-971 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) (|:| -1593 (-656 (-1288 (-419 (-971 *5)))))))))) (-5 *4 (-1179)) (-4 *5 (-13 (-317) (-148))) (-4 *8 (-968 *5 *7 *6)) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *5 *6 *7 *8)))) (-4424 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-940)) (-5 *5 (-1179)) (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *6 *7 *8 *9)))) (-4424 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 (-1197))) (-5 *5 (-940)) (-5 *6 (-1179)) (-4 *10 (-968 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) (-4 *8 (-13 (-861) (-626 (-1197)))) (-4 *9 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *7 *8 *9 *10)))) (-4424 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 *10)) (-5 *5 (-940)) (-5 *6 (-1179)) (-4 *10 (-968 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) (-4 *8 (-13 (-861) (-626 (-1197)))) (-4 *9 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *7 *8 *9 *10)))) (-4424 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-1179)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *5 *6 *7 *8)))) (-4424 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1197))) (-5 *5 (-1179)) (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *6 *7 *8 *9)))) (-4424 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 *9)) (-5 *5 (-1179)) (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *6 *7 *8 *9)))) (-4424 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-940)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-971 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) (|:| -1593 (-656 (-1288 (-419 (-971 *5)))))))))) (-5 *1 (-943 *5 *6 *7 *8)))) (-4424 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1197))) (-5 *5 (-940)) (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) (|:| |wcond| (-656 (-971 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *6)))) (|:| -1593 (-656 (-1288 (-419 (-971 *6)))))))))) (-5 *1 (-943 *6 *7 *8 *9)))) (-4424 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *5 (-940)) (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) (|:| |wcond| (-656 (-971 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *6)))) (|:| -1593 (-656 (-1288 (-419 (-971 *6)))))))))) (-5 *1 (-943 *6 *7 *8 *9)) (-5 *4 (-656 *9)))) (-4424 (*1 *2 *3) (-12 (-5 *3 (-701 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) (|:| |wcond| (-656 (-971 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) (|:| -1593 (-656 (-1288 (-419 (-971 *4)))))))))) (-5 *1 (-943 *4 *5 *6 *7)))) (-4424 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-656 (-1197))) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-971 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) (|:| -1593 (-656 (-1288 (-419 (-971 *5)))))))))) (-5 *1 (-943 *5 *6 *7 *8)))) (-4424 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-971 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) (|:| -1593 (-656 (-1288 (-419 (-971 *5)))))))))) (-5 *1 (-943 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) -(-10 -7 (-15 -4424 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 |#4|))) (-15 -4424 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 (-1197)))) (-15 -4424 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|))) (-15 -4424 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-940))) (-15 -4424 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 (-1197)) (-940))) (-15 -4424 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-940))) (-15 -4424 ((-576) (-701 |#4|) (-656 |#4|) (-1179))) (-15 -4424 ((-576) (-701 |#4|) (-656 (-1197)) (-1179))) (-15 -4424 ((-576) (-701 |#4|) (-1179))) (-15 -4424 ((-576) (-701 |#4|) (-656 |#4|) (-940) (-1179))) (-15 -4424 ((-576) (-701 |#4|) (-656 (-1197)) (-940) (-1179))) (-15 -4424 ((-576) (-701 |#4|) (-940) (-1179))) (-15 -1324 ((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|))))))))) (-1179))) (-15 -1510 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|))))))))) (-1179))) (-15 -2474 ((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-971 |#1|))) (-783) (-1179) (-576))) (-15 -3034 ((-419 (-971 |#1|)) |#4|)) (-15 -3034 ((-701 (-419 (-971 |#1|))) (-701 |#4|))) (-15 -3034 ((-656 (-419 (-971 |#1|))) (-656 |#4|))) (-15 -3174 ((-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -4124 (|#4| (-971 |#1|))) (-15 -2862 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|))) (-15 -2940 ((-656 (-2 (|:| -3734 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783))) (-15 -3364 ((-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|)))))) (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|)))))) (-656 |#4|))) (-15 -2671 ((-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|)))))) (-2 (|:| -2590 (-701 (-419 (-971 |#1|)))) (|:| |vec| (-656 (-419 (-971 |#1|)))) (|:| -3734 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-15 -2592 ((-656 |#4|) |#4|)) (-15 -3245 ((-783) (-656 (-2 (|:| -3734 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -1781 ((-783) (-656 (-2 (|:| -3734 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -4341 ((-656 (-656 |#4|)) (-656 (-656 |#4|)))) (-15 -3677 ((-656 (-656 (-576))) (-576) (-576))) (-15 -1972 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -4315 ((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783))) (-15 -3596 ((-701 |#4|) (-701 |#4|) (-656 |#4|))) (-15 -1817 ((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -1593 (-656 (-1288 (-419 (-971 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-971 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576))) (-15 -3328 (|#4| |#4|)) (-15 -2699 ((-112) (-656 |#4|))) (-15 -2699 ((-112) (-656 (-971 |#1|))))) -((-3398 (((-946) |#1| (-1197)) 17) (((-946) |#1| (-1197) (-1115 (-227))) 21)) (-2825 (((-946) |#1| |#1| (-1197) (-1115 (-227))) 19) (((-946) |#1| (-1197) (-1115 (-227))) 15))) -(((-944 |#1|) (-10 -7 (-15 -2825 ((-946) |#1| (-1197) (-1115 (-227)))) (-15 -2825 ((-946) |#1| |#1| (-1197) (-1115 (-227)))) (-15 -3398 ((-946) |#1| (-1197) (-1115 (-227)))) (-15 -3398 ((-946) |#1| (-1197)))) (-626 (-548))) (T -944)) -((-3398 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-5 *2 (-946)) (-5 *1 (-944 *3)) (-4 *3 (-626 (-548))))) (-3398 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1197)) (-5 *5 (-1115 (-227))) (-5 *2 (-946)) (-5 *1 (-944 *3)) (-4 *3 (-626 (-548))))) (-2825 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1197)) (-5 *5 (-1115 (-227))) (-5 *2 (-946)) (-5 *1 (-944 *3)) (-4 *3 (-626 (-548))))) (-2825 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1197)) (-5 *5 (-1115 (-227))) (-5 *2 (-946)) (-5 *1 (-944 *3)) (-4 *3 (-626 (-548)))))) -(-10 -7 (-15 -2825 ((-946) |#1| (-1197) (-1115 (-227)))) (-15 -2825 ((-946) |#1| |#1| (-1197) (-1115 (-227)))) (-15 -3398 ((-946) |#1| (-1197) (-1115 (-227)))) (-15 -3398 ((-946) |#1| (-1197)))) -((-3652 (($ $ (-1115 (-227)) (-1115 (-227)) (-1115 (-227))) 121)) (-4316 (((-1115 (-227)) $) 64)) (-4307 (((-1115 (-227)) $) 63)) (-4295 (((-1115 (-227)) $) 62)) (-4385 (((-656 (-656 (-227))) $) 69)) (-2185 (((-1115 (-227)) $) 65)) (-2551 (((-576) (-576)) 57)) (-2492 (((-576) (-576)) 52)) (-2526 (((-576) (-576)) 55)) (-2952 (((-112) (-112)) 59)) (-1885 (((-576)) 56)) (-3823 (($ $ (-1115 (-227))) 124) (($ $) 125)) (-2238 (($ (-1 (-962 (-227)) (-227)) (-1115 (-227))) 131) (($ (-1 (-962 (-227)) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227))) 132)) (-2825 (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227))) 134) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227))) 135) (($ $ (-1115 (-227))) 127)) (-1529 (((-576)) 60)) (-3885 (((-576)) 50)) (-3717 (((-576)) 53)) (-3739 (((-656 (-656 (-962 (-227)))) $) 151)) (-1685 (((-112) (-112)) 61)) (-3570 (((-876) $) 149)) (-3168 (((-112)) 58))) -(((-945) (-13 (-995) (-10 -8 (-15 -2238 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)))) (-15 -2238 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -2825 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)))) (-15 -2825 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -2825 ($ $ (-1115 (-227)))) (-15 -3652 ($ $ (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -3823 ($ $ (-1115 (-227)))) (-15 -3823 ($ $)) (-15 -2185 ((-1115 (-227)) $)) (-15 -4385 ((-656 (-656 (-227))) $)) (-15 -3885 ((-576))) (-15 -2492 ((-576) (-576))) (-15 -3717 ((-576))) (-15 -2526 ((-576) (-576))) (-15 -1885 ((-576))) (-15 -2551 ((-576) (-576))) (-15 -3168 ((-112))) (-15 -2952 ((-112) (-112))) (-15 -1529 ((-576))) (-15 -1685 ((-112) (-112)))))) (T -945)) -((-2238 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-945)))) (-2238 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-945)))) (-2825 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-945)))) (-2825 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-945)))) (-2825 (*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) (-3652 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) (-3823 (*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) (-3823 (*1 *1 *1) (-5 *1 (-945))) (-2185 (*1 *2 *1) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) (-4385 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-945)))) (-3885 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-2492 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-3717 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-2526 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-1885 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-2551 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-3168 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945)))) (-2952 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945)))) (-1529 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-1685 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945))))) -(-13 (-995) (-10 -8 (-15 -2238 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)))) (-15 -2238 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -2825 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)))) (-15 -2825 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -2825 ($ $ (-1115 (-227)))) (-15 -3652 ($ $ (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -3823 ($ $ (-1115 (-227)))) (-15 -3823 ($ $)) (-15 -2185 ((-1115 (-227)) $)) (-15 -4385 ((-656 (-656 (-227))) $)) (-15 -3885 ((-576))) (-15 -2492 ((-576) (-576))) (-15 -3717 ((-576))) (-15 -2526 ((-576) (-576))) (-15 -1885 ((-576))) (-15 -2551 ((-576) (-576))) (-15 -3168 ((-112))) (-15 -2952 ((-112) (-112))) (-15 -1529 ((-576))) (-15 -1685 ((-112) (-112))))) -((-3652 (($ $ (-1115 (-227))) 122) (($ $ (-1115 (-227)) (-1115 (-227))) 123)) (-4307 (((-1115 (-227)) $) 73)) (-4295 (((-1115 (-227)) $) 72)) (-2185 (((-1115 (-227)) $) 74)) (-1805 (((-576) (-576)) 66)) (-4076 (((-576) (-576)) 61)) (-2802 (((-576) (-576)) 64)) (-4120 (((-112) (-112)) 68)) (-2224 (((-576)) 65)) (-3823 (($ $ (-1115 (-227))) 126) (($ $) 127)) (-2238 (($ (-1 (-962 (-227)) (-227)) (-1115 (-227))) 141) (($ (-1 (-962 (-227)) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227))) 142)) (-3398 (($ (-1 (-227) (-227)) (-1115 (-227))) 149) (($ (-1 (-227) (-227))) 153)) (-2825 (($ (-1 (-227) (-227)) (-1115 (-227))) 137) (($ (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227))) 138) (($ (-656 (-1 (-227) (-227))) (-1115 (-227))) 146) (($ (-656 (-1 (-227) (-227))) (-1115 (-227)) (-1115 (-227))) 147) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227))) 139) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227))) 140) (($ $ (-1115 (-227))) 128)) (-4227 (((-112) $) 69)) (-3068 (((-576)) 70)) (-3962 (((-576)) 59)) (-2323 (((-576)) 62)) (-3739 (((-656 (-656 (-962 (-227)))) $) 35)) (-2009 (((-112) (-112)) 71)) (-3570 (((-876) $) 167)) (-3005 (((-112)) 67))) -(((-946) (-13 (-974) (-10 -8 (-15 -2825 ($ (-1 (-227) (-227)) (-1115 (-227)))) (-15 -2825 ($ (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -2825 ($ (-656 (-1 (-227) (-227))) (-1115 (-227)))) (-15 -2825 ($ (-656 (-1 (-227) (-227))) (-1115 (-227)) (-1115 (-227)))) (-15 -2825 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)))) (-15 -2825 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -2238 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)))) (-15 -2238 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -3398 ($ (-1 (-227) (-227)) (-1115 (-227)))) (-15 -3398 ($ (-1 (-227) (-227)))) (-15 -2825 ($ $ (-1115 (-227)))) (-15 -4227 ((-112) $)) (-15 -3652 ($ $ (-1115 (-227)))) (-15 -3652 ($ $ (-1115 (-227)) (-1115 (-227)))) (-15 -3823 ($ $ (-1115 (-227)))) (-15 -3823 ($ $)) (-15 -2185 ((-1115 (-227)) $)) (-15 -3962 ((-576))) (-15 -4076 ((-576) (-576))) (-15 -2323 ((-576))) (-15 -2802 ((-576) (-576))) (-15 -2224 ((-576))) (-15 -1805 ((-576) (-576))) (-15 -3005 ((-112))) (-15 -4120 ((-112) (-112))) (-15 -3068 ((-576))) (-15 -2009 ((-112) (-112)))))) (T -946)) -((-2825 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-2825 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-2825 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-2825 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-2825 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-2825 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-2238 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-2238 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-3398 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-3398 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-946)))) (-2825 (*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) (-4227 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-946)))) (-3652 (*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) (-3652 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) (-3823 (*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) (-3823 (*1 *1 *1) (-5 *1 (-946))) (-2185 (*1 *2 *1) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) (-3962 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-4076 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-2323 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-2802 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-2224 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-1805 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-3005 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946)))) (-4120 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946)))) (-3068 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-2009 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946))))) -(-13 (-974) (-10 -8 (-15 -2825 ($ (-1 (-227) (-227)) (-1115 (-227)))) (-15 -2825 ($ (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -2825 ($ (-656 (-1 (-227) (-227))) (-1115 (-227)))) (-15 -2825 ($ (-656 (-1 (-227) (-227))) (-1115 (-227)) (-1115 (-227)))) (-15 -2825 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)))) (-15 -2825 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -2238 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)))) (-15 -2238 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -3398 ($ (-1 (-227) (-227)) (-1115 (-227)))) (-15 -3398 ($ (-1 (-227) (-227)))) (-15 -2825 ($ $ (-1115 (-227)))) (-15 -4227 ((-112) $)) (-15 -3652 ($ $ (-1115 (-227)))) (-15 -3652 ($ $ (-1115 (-227)) (-1115 (-227)))) (-15 -3823 ($ $ (-1115 (-227)))) (-15 -3823 ($ $)) (-15 -2185 ((-1115 (-227)) $)) (-15 -3962 ((-576))) (-15 -4076 ((-576) (-576))) (-15 -2323 ((-576))) (-15 -2802 ((-576) (-576))) (-15 -2224 ((-576))) (-15 -1805 ((-576) (-576))) (-15 -3005 ((-112))) (-15 -4120 ((-112) (-112))) (-15 -3068 ((-576))) (-15 -2009 ((-112) (-112))))) -((-2101 (((-656 (-1115 (-227))) (-656 (-656 (-962 (-227))))) 34))) -(((-947) (-10 -7 (-15 -2101 ((-656 (-1115 (-227))) (-656 (-656 (-962 (-227)))))))) (T -947)) -((-2101 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *2 (-656 (-1115 (-227)))) (-5 *1 (-947))))) -(-10 -7 (-15 -2101 ((-656 (-1115 (-227))) (-656 (-656 (-962 (-227))))))) -((-2159 ((|#2| |#2|) 28)) (-2839 ((|#2| |#2|) 29)) (-1480 ((|#2| |#2|) 27)) (-2712 ((|#2| |#2| (-518)) 26))) -(((-948 |#1| |#2|) (-10 -7 (-15 -2712 (|#2| |#2| (-518))) (-15 -1480 (|#2| |#2|)) (-15 -2159 (|#2| |#2|)) (-15 -2839 (|#2| |#2|))) (-1121) (-442 |#1|)) (T -948)) -((-2839 (*1 *2 *2) (-12 (-4 *3 (-1121)) (-5 *1 (-948 *3 *2)) (-4 *2 (-442 *3)))) (-2159 (*1 *2 *2) (-12 (-4 *3 (-1121)) (-5 *1 (-948 *3 *2)) (-4 *2 (-442 *3)))) (-1480 (*1 *2 *2) (-12 (-4 *3 (-1121)) (-5 *1 (-948 *3 *2)) (-4 *2 (-442 *3)))) (-2712 (*1 *2 *2 *3) (-12 (-5 *3 (-518)) (-4 *4 (-1121)) (-5 *1 (-948 *4 *2)) (-4 *2 (-442 *4))))) -(-10 -7 (-15 -2712 (|#2| |#2| (-518))) (-15 -1480 (|#2| |#2|)) (-15 -2159 (|#2| |#2|)) (-15 -2839 (|#2| |#2|))) -((-2159 (((-326 (-576)) (-1197)) 16)) (-2839 (((-326 (-576)) (-1197)) 14)) (-1480 (((-326 (-576)) (-1197)) 12)) (-2712 (((-326 (-576)) (-1197) (-518)) 19))) -(((-949) (-10 -7 (-15 -2712 ((-326 (-576)) (-1197) (-518))) (-15 -1480 ((-326 (-576)) (-1197))) (-15 -2159 ((-326 (-576)) (-1197))) (-15 -2839 ((-326 (-576)) (-1197))))) (T -949)) -((-2839 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-326 (-576))) (-5 *1 (-949)))) (-2159 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-326 (-576))) (-5 *1 (-949)))) (-1480 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-326 (-576))) (-5 *1 (-949)))) (-2712 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-518)) (-5 *2 (-326 (-576))) (-5 *1 (-949))))) -(-10 -7 (-15 -2712 ((-326 (-576)) (-1197) (-518))) (-15 -1480 ((-326 (-576)) (-1197))) (-15 -2159 ((-326 (-576)) (-1197))) (-15 -2839 ((-326 (-576)) (-1197)))) -((-1840 (((-904 |#1| |#3|) |#2| (-907 |#1|) (-904 |#1| |#3|)) 25)) (-1668 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) -(((-950 |#1| |#2| |#3|) (-10 -7 (-15 -1668 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1840 ((-904 |#1| |#3|) |#2| (-907 |#1|) (-904 |#1| |#3|)))) (-1121) (-901 |#1|) (-13 (-1121) (-1059 |#2|))) (T -950)) -((-1840 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 *6)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-4 *6 (-13 (-1121) (-1059 *3))) (-4 *3 (-901 *5)) (-5 *1 (-950 *5 *3 *6)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1121) (-1059 *5))) (-4 *5 (-901 *4)) (-4 *4 (-1121)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-950 *4 *5 *6))))) -(-10 -7 (-15 -1668 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1840 ((-904 |#1| |#3|) |#2| (-907 |#1|) (-904 |#1| |#3|)))) -((-1840 (((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)) 30))) -(((-951 |#1| |#2| |#3|) (-10 -7 (-15 -1840 ((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)))) (-1121) (-13 (-568) (-901 |#1|)) (-13 (-442 |#2|) (-626 (-907 |#1|)) (-901 |#1|) (-1059 (-624 $)))) (T -951)) -((-1840 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 *3)) (-4 *5 (-1121)) (-4 *3 (-13 (-442 *6) (-626 *4) (-901 *5) (-1059 (-624 $)))) (-5 *4 (-907 *5)) (-4 *6 (-13 (-568) (-901 *5))) (-5 *1 (-951 *5 *6 *3))))) -(-10 -7 (-15 -1840 ((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)))) -((-1840 (((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|)) 13))) -(((-952 |#1|) (-10 -7 (-15 -1840 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|)))) (-557)) (T -952)) -((-1840 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 (-576) *3)) (-5 *4 (-907 (-576))) (-4 *3 (-557)) (-5 *1 (-952 *3))))) -(-10 -7 (-15 -1840 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|)))) -((-1840 (((-904 |#1| |#2|) (-624 |#2|) (-907 |#1|) (-904 |#1| |#2|)) 57))) -(((-953 |#1| |#2|) (-10 -7 (-15 -1840 ((-904 |#1| |#2|) (-624 |#2|) (-907 |#1|) (-904 |#1| |#2|)))) (-1121) (-13 (-1121) (-1059 (-624 $)) (-626 (-907 |#1|)) (-901 |#1|))) (T -953)) -((-1840 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 *6)) (-5 *3 (-624 *6)) (-4 *5 (-1121)) (-4 *6 (-13 (-1121) (-1059 (-624 $)) (-626 *4) (-901 *5))) (-5 *4 (-907 *5)) (-5 *1 (-953 *5 *6))))) -(-10 -7 (-15 -1840 ((-904 |#1| |#2|) (-624 |#2|) (-907 |#1|) (-904 |#1| |#2|)))) -((-1840 (((-900 |#1| |#2| |#3|) |#3| (-907 |#1|) (-900 |#1| |#2| |#3|)) 17))) -(((-954 |#1| |#2| |#3|) (-10 -7 (-15 -1840 ((-900 |#1| |#2| |#3|) |#3| (-907 |#1|) (-900 |#1| |#2| |#3|)))) (-1121) (-901 |#1|) (-678 |#2|)) (T -954)) -((-1840 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *6 *3)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-4 *6 (-901 *5)) (-4 *3 (-678 *6)) (-5 *1 (-954 *5 *6 *3))))) -(-10 -7 (-15 -1840 ((-900 |#1| |#2| |#3|) |#3| (-907 |#1|) (-900 |#1| |#2| |#3|)))) -((-1840 (((-904 |#1| |#5|) |#5| (-907 |#1|) (-904 |#1| |#5|)) 17 (|has| |#3| (-901 |#1|))) (((-904 |#1| |#5|) |#5| (-907 |#1|) (-904 |#1| |#5|) (-1 (-904 |#1| |#5|) |#3| (-907 |#1|) (-904 |#1| |#5|))) 16))) -(((-955 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1840 ((-904 |#1| |#5|) |#5| (-907 |#1|) (-904 |#1| |#5|) (-1 (-904 |#1| |#5|) |#3| (-907 |#1|) (-904 |#1| |#5|)))) (IF (|has| |#3| (-901 |#1|)) (-15 -1840 ((-904 |#1| |#5|) |#5| (-907 |#1|) (-904 |#1| |#5|))) |%noBranch|)) (-1121) (-805) (-861) (-13 (-1070) (-901 |#1|)) (-13 (-968 |#4| |#2| |#3|) (-626 (-907 |#1|)))) (T -955)) -((-1840 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 *3)) (-4 *5 (-1121)) (-4 *3 (-13 (-968 *8 *6 *7) (-626 *4))) (-5 *4 (-907 *5)) (-4 *7 (-901 *5)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-13 (-1070) (-901 *5))) (-5 *1 (-955 *5 *6 *7 *8 *3)))) (-1840 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-904 *6 *3) *8 (-907 *6) (-904 *6 *3))) (-4 *8 (-861)) (-5 *2 (-904 *6 *3)) (-5 *4 (-907 *6)) (-4 *6 (-1121)) (-4 *3 (-13 (-968 *9 *7 *8) (-626 *4))) (-4 *7 (-805)) (-4 *9 (-13 (-1070) (-901 *6))) (-5 *1 (-955 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -1840 ((-904 |#1| |#5|) |#5| (-907 |#1|) (-904 |#1| |#5|) (-1 (-904 |#1| |#5|) |#3| (-907 |#1|) (-904 |#1| |#5|)))) (IF (|has| |#3| (-901 |#1|)) (-15 -1840 ((-904 |#1| |#5|) |#5| (-907 |#1|) (-904 |#1| |#5|))) |%noBranch|)) -((-2930 ((|#2| |#2| (-656 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) -(((-956 |#1| |#2| |#3|) (-10 -7 (-15 -2930 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2930 (|#2| |#2| (-656 (-1 (-112) |#3|))))) (-1121) (-442 |#1|) (-1238)) (T -956)) -((-2930 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-1 (-112) *5))) (-4 *5 (-1238)) (-4 *4 (-1121)) (-5 *1 (-956 *4 *2 *5)) (-4 *2 (-442 *4)))) (-2930 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1238)) (-4 *4 (-1121)) (-5 *1 (-956 *4 *2 *5)) (-4 *2 (-442 *4))))) -(-10 -7 (-15 -2930 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2930 (|#2| |#2| (-656 (-1 (-112) |#3|))))) -((-2930 (((-326 (-576)) (-1197) (-656 (-1 (-112) |#1|))) 18) (((-326 (-576)) (-1197) (-1 (-112) |#1|)) 15))) -(((-957 |#1|) (-10 -7 (-15 -2930 ((-326 (-576)) (-1197) (-1 (-112) |#1|))) (-15 -2930 ((-326 (-576)) (-1197) (-656 (-1 (-112) |#1|))))) (-1238)) (T -957)) -((-2930 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-656 (-1 (-112) *5))) (-4 *5 (-1238)) (-5 *2 (-326 (-576))) (-5 *1 (-957 *5)))) (-2930 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1238)) (-5 *2 (-326 (-576))) (-5 *1 (-957 *5))))) -(-10 -7 (-15 -2930 ((-326 (-576)) (-1197) (-1 (-112) |#1|))) (-15 -2930 ((-326 (-576)) (-1197) (-656 (-1 (-112) |#1|))))) -((-1840 (((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)) 25))) -(((-958 |#1| |#2| |#3|) (-10 -7 (-15 -1840 ((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)))) (-1121) (-13 (-568) (-901 |#1|) (-626 (-907 |#1|))) (-1013 |#2|)) (T -958)) -((-1840 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 *3)) (-4 *5 (-1121)) (-4 *3 (-1013 *6)) (-4 *6 (-13 (-568) (-901 *5) (-626 *4))) (-5 *4 (-907 *5)) (-5 *1 (-958 *5 *6 *3))))) -(-10 -7 (-15 -1840 ((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)))) -((-1840 (((-904 |#1| (-1197)) (-1197) (-907 |#1|) (-904 |#1| (-1197))) 18))) -(((-959 |#1|) (-10 -7 (-15 -1840 ((-904 |#1| (-1197)) (-1197) (-907 |#1|) (-904 |#1| (-1197))))) (-1121)) (T -959)) -((-1840 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 (-1197))) (-5 *3 (-1197)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-5 *1 (-959 *5))))) -(-10 -7 (-15 -1840 ((-904 |#1| (-1197)) (-1197) (-907 |#1|) (-904 |#1| (-1197))))) -((-1481 (((-904 |#1| |#3|) (-656 |#3|) (-656 (-907 |#1|)) (-904 |#1| |#3|) (-1 (-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|))) 34)) (-1840 (((-904 |#1| |#3|) (-656 |#3|) (-656 (-907 |#1|)) (-1 |#3| (-656 |#3|)) (-904 |#1| |#3|) (-1 (-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|))) 33))) -(((-960 |#1| |#2| |#3|) (-10 -7 (-15 -1840 ((-904 |#1| |#3|) (-656 |#3|) (-656 (-907 |#1|)) (-1 |#3| (-656 |#3|)) (-904 |#1| |#3|) (-1 (-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)))) (-15 -1481 ((-904 |#1| |#3|) (-656 |#3|) (-656 (-907 |#1|)) (-904 |#1| |#3|) (-1 (-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|))))) (-1121) (-1070) (-13 (-1070) (-626 (-907 |#1|)) (-1059 |#2|))) (T -960)) -((-1481 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-907 *6))) (-5 *5 (-1 (-904 *6 *8) *8 (-907 *6) (-904 *6 *8))) (-4 *6 (-1121)) (-4 *8 (-13 (-1070) (-626 (-907 *6)) (-1059 *7))) (-5 *2 (-904 *6 *8)) (-4 *7 (-1070)) (-5 *1 (-960 *6 *7 *8)))) (-1840 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-656 (-907 *7))) (-5 *5 (-1 *9 (-656 *9))) (-5 *6 (-1 (-904 *7 *9) *9 (-907 *7) (-904 *7 *9))) (-4 *7 (-1121)) (-4 *9 (-13 (-1070) (-626 (-907 *7)) (-1059 *8))) (-5 *2 (-904 *7 *9)) (-5 *3 (-656 *9)) (-4 *8 (-1070)) (-5 *1 (-960 *7 *8 *9))))) -(-10 -7 (-15 -1840 ((-904 |#1| |#3|) (-656 |#3|) (-656 (-907 |#1|)) (-1 |#3| (-656 |#3|)) (-904 |#1| |#3|) (-1 (-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)))) (-15 -1481 ((-904 |#1| |#3|) (-656 |#3|) (-656 (-907 |#1|)) (-904 |#1| |#3|) (-1 (-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|))))) -((-3866 (((-1193 (-419 (-576))) (-576)) 79)) (-3313 (((-1193 (-576)) (-576)) 82)) (-3218 (((-1193 (-576)) (-576)) 76)) (-2452 (((-576) (-1193 (-576))) 72)) (-2890 (((-1193 (-419 (-576))) (-576)) 65)) (-1849 (((-1193 (-576)) (-576)) 49)) (-3695 (((-1193 (-576)) (-576)) 84)) (-2321 (((-1193 (-576)) (-576)) 83)) (-2690 (((-1193 (-419 (-576))) (-576)) 67))) -(((-961) (-10 -7 (-15 -2690 ((-1193 (-419 (-576))) (-576))) (-15 -2321 ((-1193 (-576)) (-576))) (-15 -3695 ((-1193 (-576)) (-576))) (-15 -1849 ((-1193 (-576)) (-576))) (-15 -2890 ((-1193 (-419 (-576))) (-576))) (-15 -2452 ((-576) (-1193 (-576)))) (-15 -3218 ((-1193 (-576)) (-576))) (-15 -3313 ((-1193 (-576)) (-576))) (-15 -3866 ((-1193 (-419 (-576))) (-576))))) (T -961)) -((-3866 (*1 *2 *3) (-12 (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-961)) (-5 *3 (-576)))) (-3313 (*1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576)))) (-3218 (*1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576)))) (-2452 (*1 *2 *3) (-12 (-5 *3 (-1193 (-576))) (-5 *2 (-576)) (-5 *1 (-961)))) (-2890 (*1 *2 *3) (-12 (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-961)) (-5 *3 (-576)))) (-1849 (*1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576)))) (-3695 (*1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576)))) (-2321 (*1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576)))) (-2690 (*1 *2 *3) (-12 (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-961)) (-5 *3 (-576))))) -(-10 -7 (-15 -2690 ((-1193 (-419 (-576))) (-576))) (-15 -2321 ((-1193 (-576)) (-576))) (-15 -3695 ((-1193 (-576)) (-576))) (-15 -1849 ((-1193 (-576)) (-576))) (-15 -2890 ((-1193 (-419 (-576))) (-576))) (-15 -2452 ((-576) (-1193 (-576)))) (-15 -3218 ((-1193 (-576)) (-576))) (-15 -3313 ((-1193 (-576)) (-576))) (-15 -3866 ((-1193 (-419 (-576))) (-576)))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3832 (($ (-783)) NIL (|has| |#1| (-23)))) (-2047 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4466)))) (-1710 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-4298 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4466))) (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-861))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-1808 (((-112) $ (-783)) NIL)) (-3756 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4466))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4466)))) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3886 (($) NIL T CONST)) (-3990 (($ $) NIL (|has| $ (-6 -4466)))) (-3836 (($ $) NIL)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3946 (($ |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4335 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4466)))) (-4274 ((|#1| $ (-576)) NIL)) (-3660 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-3043 (($ (-656 |#1|)) 9)) (-3966 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-2355 (((-701 |#1|) $ $) NIL (|has| |#1| (-1070)))) (-4141 (($ (-783) |#1|) NIL)) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-576) $) NIL (|has| (-576) (-861)))) (-3125 (($ $ $) NIL (|has| |#1| (-861)))) (-3391 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2137 (((-576) $) NIL (|has| (-576) (-861)))) (-3133 (($ $ $) NIL (|has| |#1| (-861)))) (-4323 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2846 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))))) (-1330 (((-112) $ (-783)) NIL)) (-2437 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))))) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2176 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-4234 (((-656 (-576)) $) NIL)) (-3354 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3581 ((|#1| $) NIL (|has| (-576) (-861)))) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4046 (($ $ |#1|) NIL (|has| $ (-6 -4466)))) (-1749 (($ $ (-656 |#1|)) 25)) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2281 (((-656 |#1|) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 18) (($ $ (-1255 (-576))) NIL)) (-2118 ((|#1| $ $) NIL (|has| |#1| (-1070)))) (-2003 (((-940) $) 13)) (-3466 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-3409 (($ $ $) 23)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3025 (($ $ $ (-576)) NIL (|has| $ (-6 -4466)))) (-1870 (($ $) NIL)) (-4172 (((-548) $) NIL (|has| |#1| (-626 (-548)))) (($ (-656 |#1|)) 14)) (-3582 (($ (-656 |#1|)) NIL)) (-1615 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-656 $)) NIL)) (-3570 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2992 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2950 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3044 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3030 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-3503 (((-783) $) 11 (|has| $ (-6 -4465))))) +((-1664 ((|#2| (-656 |#1|) (-656 |#1|)) 28))) +(((-941 |#1| |#2|) (-10 -7 (-15 -1664 (|#2| (-656 |#1|) (-656 |#1|)))) (-374) (-1264 |#1|)) (T -941)) +((-1664 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-4 *2 (-1264 *4)) (-5 *1 (-941 *4 *2))))) +(-10 -7 (-15 -1664 (|#2| (-656 |#1|) (-656 |#1|)))) +((-4186 (((-1193 |#2|) (-656 |#2|) (-656 |#2|)) 17) (((-1261 |#1| |#2|) (-1261 |#1| |#2|) (-656 |#2|) (-656 |#2|)) 13))) +(((-942 |#1| |#2|) (-10 -7 (-15 -4186 ((-1261 |#1| |#2|) (-1261 |#1| |#2|) (-656 |#2|) (-656 |#2|))) (-15 -4186 ((-1193 |#2|) (-656 |#2|) (-656 |#2|)))) (-1197) (-374)) (T -942)) +((-4186 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-374)) (-5 *2 (-1193 *5)) (-5 *1 (-942 *4 *5)) (-14 *4 (-1197)))) (-4186 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1261 *4 *5)) (-5 *3 (-656 *5)) (-14 *4 (-1197)) (-4 *5 (-374)) (-5 *1 (-942 *4 *5))))) +(-10 -7 (-15 -4186 ((-1261 |#1| |#2|) (-1261 |#1| |#2|) (-656 |#2|) (-656 |#2|))) (-15 -4186 ((-1193 |#2|) (-656 |#2|) (-656 |#2|)))) +((-2832 (((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|))))))))) (-1179)) 174)) (-2799 ((|#4| |#4|) 193)) (-1791 (((-656 (-419 (-971 |#1|))) (-656 (-1197))) 146)) (-4359 (((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-971 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576)) 88)) (-3195 (((-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|)))))) (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|)))))) (-656 |#4|)) 69)) (-3590 (((-701 |#4|) (-701 |#4|) (-656 |#4|)) 65)) (-4343 (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|))))))))) (-1179)) 186)) (-1784 (((-576) (-701 |#4|) (-940) (-1179)) 166) (((-576) (-701 |#4|) (-656 (-1197)) (-940) (-1179)) 165) (((-576) (-701 |#4|) (-656 |#4|) (-940) (-1179)) 164) (((-576) (-701 |#4|) (-1179)) 154) (((-576) (-701 |#4|) (-656 (-1197)) (-1179)) 153) (((-576) (-701 |#4|) (-656 |#4|) (-1179)) 152) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-940)) 151) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 (-1197)) (-940)) 150) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-940)) 149) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|)) 148) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 (-1197))) 147) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 |#4|)) 143)) (-1875 ((|#4| (-971 |#1|)) 80)) (-2013 (((-112) (-656 |#4|) (-656 (-656 |#4|))) 190)) (-3133 (((-656 (-656 (-576))) (-576) (-576)) 159)) (-2171 (((-656 (-656 |#4|)) (-656 (-656 |#4|))) 106)) (-4025 (((-783) (-656 (-2 (|:| -3733 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|))))) 100)) (-1366 (((-783) (-656 (-2 (|:| -3733 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|))))) 99)) (-1732 (((-112) (-656 (-971 |#1|))) 19) (((-112) (-656 |#4|)) 15)) (-3928 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|)) 84)) (-3251 (((-656 |#4|) |#4|) 57)) (-2942 (((-656 (-419 (-971 |#1|))) (-656 |#4|)) 142) (((-701 (-419 (-971 |#1|))) (-701 |#4|)) 66) (((-419 (-971 |#1|)) |#4|) 139)) (-1411 (((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-971 |#1|))) (-783) (-1179) (-576)) 112)) (-3324 (((-656 (-2 (|:| -3733 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783)) 98)) (-3214 (((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783)) 121)) (-1497 (((-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|)))))) (-2 (|:| -3232 (-701 (-419 (-971 |#1|)))) (|:| |vec| (-656 (-419 (-971 |#1|)))) (|:| -3733 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) 56))) +(((-943 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1784 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 |#4|))) (-15 -1784 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 (-1197)))) (-15 -1784 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|))) (-15 -1784 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-940))) (-15 -1784 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 (-1197)) (-940))) (-15 -1784 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-940))) (-15 -1784 ((-576) (-701 |#4|) (-656 |#4|) (-1179))) (-15 -1784 ((-576) (-701 |#4|) (-656 (-1197)) (-1179))) (-15 -1784 ((-576) (-701 |#4|) (-1179))) (-15 -1784 ((-576) (-701 |#4|) (-656 |#4|) (-940) (-1179))) (-15 -1784 ((-576) (-701 |#4|) (-656 (-1197)) (-940) (-1179))) (-15 -1784 ((-576) (-701 |#4|) (-940) (-1179))) (-15 -2832 ((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|))))))))) (-1179))) (-15 -4343 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|))))))))) (-1179))) (-15 -1411 ((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-971 |#1|))) (-783) (-1179) (-576))) (-15 -2942 ((-419 (-971 |#1|)) |#4|)) (-15 -2942 ((-701 (-419 (-971 |#1|))) (-701 |#4|))) (-15 -2942 ((-656 (-419 (-971 |#1|))) (-656 |#4|))) (-15 -1791 ((-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -1875 (|#4| (-971 |#1|))) (-15 -3928 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|))) (-15 -3324 ((-656 (-2 (|:| -3733 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783))) (-15 -3195 ((-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|)))))) (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|)))))) (-656 |#4|))) (-15 -1497 ((-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|)))))) (-2 (|:| -3232 (-701 (-419 (-971 |#1|)))) (|:| |vec| (-656 (-419 (-971 |#1|)))) (|:| -3733 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-15 -3251 ((-656 |#4|) |#4|)) (-15 -1366 ((-783) (-656 (-2 (|:| -3733 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -4025 ((-783) (-656 (-2 (|:| -3733 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -2171 ((-656 (-656 |#4|)) (-656 (-656 |#4|)))) (-15 -3133 ((-656 (-656 (-576))) (-576) (-576))) (-15 -2013 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -3214 ((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783))) (-15 -3590 ((-701 |#4|) (-701 |#4|) (-656 |#4|))) (-15 -4359 ((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-971 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576))) (-15 -2799 (|#4| |#4|)) (-15 -1732 ((-112) (-656 |#4|))) (-15 -1732 ((-112) (-656 (-971 |#1|))))) (-13 (-317) (-148)) (-13 (-861) (-626 (-1197))) (-805) (-968 |#1| |#3| |#2|)) (T -943)) +((-1732 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5)))) (-1732 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-943 *4 *5 *6 *7)))) (-2799 (*1 *2 *2) (-12 (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-861) (-626 (-1197)))) (-4 *5 (-805)) (-5 *1 (-943 *3 *4 *5 *2)) (-4 *2 (-968 *3 *5 *4)))) (-4359 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-5 *4 (-701 *12)) (-5 *5 (-656 (-419 (-971 *9)))) (-5 *6 (-656 (-656 *12))) (-5 *7 (-783)) (-5 *8 (-576)) (-4 *9 (-13 (-317) (-148))) (-4 *12 (-968 *9 *11 *10)) (-4 *10 (-13 (-861) (-626 (-1197)))) (-4 *11 (-805)) (-5 *2 (-2 (|:| |eqzro| (-656 *12)) (|:| |neqzro| (-656 *12)) (|:| |wcond| (-656 (-971 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *9)))) (|:| -2675 (-656 (-1288 (-419 (-971 *9))))))))) (-5 *1 (-943 *9 *10 *11 *12)))) (-3590 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *7)) (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *1 (-943 *4 *5 *6 *7)))) (-3214 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-783)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-5 *1 (-943 *5 *6 *7 *8)))) (-2013 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-943 *5 *6 *7 *8)))) (-3133 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-656 (-656 (-576)))) (-5 *1 (-943 *4 *5 *6 *7)) (-5 *3 (-576)) (-4 *7 (-968 *4 *6 *5)))) (-2171 (*1 *2 *2) (-12 (-5 *2 (-656 (-656 *6))) (-4 *6 (-968 *3 *5 *4)) (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-861) (-626 (-1197)))) (-4 *5 (-805)) (-5 *1 (-943 *3 *4 *5 *6)))) (-4025 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -3733 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *7))))) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-783)) (-5 *1 (-943 *4 *5 *6 *7)))) (-1366 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -3733 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *7))))) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-783)) (-5 *1 (-943 *4 *5 *6 *7)))) (-3251 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-656 *3)) (-5 *1 (-943 *4 *5 *6 *3)) (-4 *3 (-968 *4 *6 *5)))) (-1497 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3232 (-701 (-419 (-971 *4)))) (|:| |vec| (-656 (-419 (-971 *4)))) (|:| -3733 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) (|:| -2675 (-656 (-1288 (-419 (-971 *4))))))) (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5)))) (-3195 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) (|:| -2675 (-656 (-1288 (-419 (-971 *4))))))) (-5 *3 (-656 *7)) (-4 *4 (-13 (-317) (-148))) (-4 *7 (-968 *4 *6 *5)) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *1 (-943 *4 *5 *6 *7)))) (-3324 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| -3733 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *8))))) (-5 *1 (-943 *5 *6 *7 *8)) (-5 *4 (-783)))) (-3928 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-4 *7 (-968 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-656 *7)) (|:| |n0| (-656 *7)))) (-5 *1 (-943 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-1875 (*1 *2 *3) (-12 (-5 *3 (-971 *4)) (-4 *4 (-13 (-317) (-148))) (-4 *2 (-968 *4 *6 *5)) (-5 *1 (-943 *4 *5 *6 *2)) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)))) (-1791 (*1 *2 *3) (-12 (-5 *3 (-656 (-1197))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-656 (-419 (-971 *4)))) (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5)))) (-2942 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-656 (-419 (-971 *4)))) (-5 *1 (-943 *4 *5 *6 *7)))) (-2942 (*1 *2 *3) (-12 (-5 *3 (-701 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-701 (-419 (-971 *4)))) (-5 *1 (-943 *4 *5 *6 *7)))) (-2942 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-419 (-971 *4))) (-5 *1 (-943 *4 *5 *6 *3)) (-4 *3 (-968 *4 *6 *5)))) (-1411 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-701 *11)) (-5 *4 (-656 (-419 (-971 *8)))) (-5 *5 (-783)) (-5 *6 (-1179)) (-4 *8 (-13 (-317) (-148))) (-4 *11 (-968 *8 *10 *9)) (-4 *9 (-13 (-861) (-626 (-1197)))) (-4 *10 (-805)) (-5 *2 (-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 *11)) (|:| |neqzro| (-656 *11)) (|:| |wcond| (-656 (-971 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *8)))) (|:| -2675 (-656 (-1288 (-419 (-971 *8)))))))))) (|:| |rgsz| (-576)))) (-5 *1 (-943 *8 *9 *10 *11)) (-5 *7 (-576)))) (-4343 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) (|:| |wcond| (-656 (-971 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) (|:| -2675 (-656 (-1288 (-419 (-971 *4)))))))))) (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5)))) (-2832 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-971 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) (|:| -2675 (-656 (-1288 (-419 (-971 *5)))))))))) (-5 *4 (-1179)) (-4 *5 (-13 (-317) (-148))) (-4 *8 (-968 *5 *7 *6)) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *5 *6 *7 *8)))) (-1784 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-940)) (-5 *5 (-1179)) (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *6 *7 *8 *9)))) (-1784 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 (-1197))) (-5 *5 (-940)) (-5 *6 (-1179)) (-4 *10 (-968 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) (-4 *8 (-13 (-861) (-626 (-1197)))) (-4 *9 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *7 *8 *9 *10)))) (-1784 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 *10)) (-5 *5 (-940)) (-5 *6 (-1179)) (-4 *10 (-968 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) (-4 *8 (-13 (-861) (-626 (-1197)))) (-4 *9 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *7 *8 *9 *10)))) (-1784 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-1179)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *5 *6 *7 *8)))) (-1784 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1197))) (-5 *5 (-1179)) (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *6 *7 *8 *9)))) (-1784 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 *9)) (-5 *5 (-1179)) (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *6 *7 *8 *9)))) (-1784 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-940)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-971 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) (|:| -2675 (-656 (-1288 (-419 (-971 *5)))))))))) (-5 *1 (-943 *5 *6 *7 *8)))) (-1784 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1197))) (-5 *5 (-940)) (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) (|:| |wcond| (-656 (-971 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *6)))) (|:| -2675 (-656 (-1288 (-419 (-971 *6)))))))))) (-5 *1 (-943 *6 *7 *8 *9)))) (-1784 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *5 (-940)) (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) (|:| |wcond| (-656 (-971 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *6)))) (|:| -2675 (-656 (-1288 (-419 (-971 *6)))))))))) (-5 *1 (-943 *6 *7 *8 *9)) (-5 *4 (-656 *9)))) (-1784 (*1 *2 *3) (-12 (-5 *3 (-701 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) (|:| |wcond| (-656 (-971 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) (|:| -2675 (-656 (-1288 (-419 (-971 *4)))))))))) (-5 *1 (-943 *4 *5 *6 *7)))) (-1784 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-656 (-1197))) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-971 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) (|:| -2675 (-656 (-1288 (-419 (-971 *5)))))))))) (-5 *1 (-943 *5 *6 *7 *8)))) (-1784 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-971 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) (|:| -2675 (-656 (-1288 (-419 (-971 *5)))))))))) (-5 *1 (-943 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) +(-10 -7 (-15 -1784 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 |#4|))) (-15 -1784 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 (-1197)))) (-15 -1784 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|))) (-15 -1784 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-940))) (-15 -1784 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 (-1197)) (-940))) (-15 -1784 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-940))) (-15 -1784 ((-576) (-701 |#4|) (-656 |#4|) (-1179))) (-15 -1784 ((-576) (-701 |#4|) (-656 (-1197)) (-1179))) (-15 -1784 ((-576) (-701 |#4|) (-1179))) (-15 -1784 ((-576) (-701 |#4|) (-656 |#4|) (-940) (-1179))) (-15 -1784 ((-576) (-701 |#4|) (-656 (-1197)) (-940) (-1179))) (-15 -1784 ((-576) (-701 |#4|) (-940) (-1179))) (-15 -2832 ((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|))))))))) (-1179))) (-15 -4343 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|))))))))) (-1179))) (-15 -1411 ((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-971 |#1|))) (-783) (-1179) (-576))) (-15 -2942 ((-419 (-971 |#1|)) |#4|)) (-15 -2942 ((-701 (-419 (-971 |#1|))) (-701 |#4|))) (-15 -2942 ((-656 (-419 (-971 |#1|))) (-656 |#4|))) (-15 -1791 ((-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -1875 (|#4| (-971 |#1|))) (-15 -3928 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|))) (-15 -3324 ((-656 (-2 (|:| -3733 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783))) (-15 -3195 ((-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|)))))) (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|)))))) (-656 |#4|))) (-15 -1497 ((-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|)))))) (-2 (|:| -3232 (-701 (-419 (-971 |#1|)))) (|:| |vec| (-656 (-419 (-971 |#1|)))) (|:| -3733 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-15 -3251 ((-656 |#4|) |#4|)) (-15 -1366 ((-783) (-656 (-2 (|:| -3733 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -4025 ((-783) (-656 (-2 (|:| -3733 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -2171 ((-656 (-656 |#4|)) (-656 (-656 |#4|)))) (-15 -3133 ((-656 (-656 (-576))) (-576) (-576))) (-15 -2013 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -3214 ((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783))) (-15 -3590 ((-701 |#4|) (-701 |#4|) (-656 |#4|))) (-15 -4359 ((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2675 (-656 (-1288 (-419 (-971 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-971 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576))) (-15 -2799 (|#4| |#4|)) (-15 -1732 ((-112) (-656 |#4|))) (-15 -1732 ((-112) (-656 (-971 |#1|))))) +((-2262 (((-946) |#1| (-1197)) 17) (((-946) |#1| (-1197) (-1115 (-227))) 21)) (-3561 (((-946) |#1| |#1| (-1197) (-1115 (-227))) 19) (((-946) |#1| (-1197) (-1115 (-227))) 15))) +(((-944 |#1|) (-10 -7 (-15 -3561 ((-946) |#1| (-1197) (-1115 (-227)))) (-15 -3561 ((-946) |#1| |#1| (-1197) (-1115 (-227)))) (-15 -2262 ((-946) |#1| (-1197) (-1115 (-227)))) (-15 -2262 ((-946) |#1| (-1197)))) (-626 (-548))) (T -944)) +((-2262 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-5 *2 (-946)) (-5 *1 (-944 *3)) (-4 *3 (-626 (-548))))) (-2262 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1197)) (-5 *5 (-1115 (-227))) (-5 *2 (-946)) (-5 *1 (-944 *3)) (-4 *3 (-626 (-548))))) (-3561 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1197)) (-5 *5 (-1115 (-227))) (-5 *2 (-946)) (-5 *1 (-944 *3)) (-4 *3 (-626 (-548))))) (-3561 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1197)) (-5 *5 (-1115 (-227))) (-5 *2 (-946)) (-5 *1 (-944 *3)) (-4 *3 (-626 (-548)))))) +(-10 -7 (-15 -3561 ((-946) |#1| (-1197) (-1115 (-227)))) (-15 -3561 ((-946) |#1| |#1| (-1197) (-1115 (-227)))) (-15 -2262 ((-946) |#1| (-1197) (-1115 (-227)))) (-15 -2262 ((-946) |#1| (-1197)))) +((-2856 (($ $ (-1115 (-227)) (-1115 (-227)) (-1115 (-227))) 121)) (-4315 (((-1115 (-227)) $) 64)) (-4305 (((-1115 (-227)) $) 63)) (-4293 (((-1115 (-227)) $) 62)) (-2600 (((-656 (-656 (-227))) $) 69)) (-3472 (((-1115 (-227)) $) 65)) (-2830 (((-576) (-576)) 57)) (-3506 (((-576) (-576)) 52)) (-3880 (((-576) (-576)) 55)) (-3430 (((-112) (-112)) 59)) (-3751 (((-576)) 56)) (-4092 (($ $ (-1115 (-227))) 124) (($ $) 125)) (-2710 (($ (-1 (-962 (-227)) (-227)) (-1115 (-227))) 131) (($ (-1 (-962 (-227)) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227))) 132)) (-3561 (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227))) 134) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227))) 135) (($ $ (-1115 (-227))) 127)) (-3307 (((-576)) 60)) (-3395 (((-576)) 50)) (-2246 (((-576)) 53)) (-2472 (((-656 (-656 (-962 (-227)))) $) 151)) (-2324 (((-112) (-112)) 61)) (-3569 (((-876) $) 149)) (-1738 (((-112)) 58))) +(((-945) (-13 (-995) (-10 -8 (-15 -2710 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)))) (-15 -2710 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -3561 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)))) (-15 -3561 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -3561 ($ $ (-1115 (-227)))) (-15 -2856 ($ $ (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -4092 ($ $ (-1115 (-227)))) (-15 -4092 ($ $)) (-15 -3472 ((-1115 (-227)) $)) (-15 -2600 ((-656 (-656 (-227))) $)) (-15 -3395 ((-576))) (-15 -3506 ((-576) (-576))) (-15 -2246 ((-576))) (-15 -3880 ((-576) (-576))) (-15 -3751 ((-576))) (-15 -2830 ((-576) (-576))) (-15 -1738 ((-112))) (-15 -3430 ((-112) (-112))) (-15 -3307 ((-576))) (-15 -2324 ((-112) (-112)))))) (T -945)) +((-2710 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-945)))) (-2710 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-945)))) (-3561 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-945)))) (-3561 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-945)))) (-3561 (*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) (-2856 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) (-4092 (*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) (-4092 (*1 *1 *1) (-5 *1 (-945))) (-3472 (*1 *2 *1) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) (-2600 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-945)))) (-3395 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-3506 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-2246 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-3880 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-3751 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-2830 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-1738 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945)))) (-3430 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945)))) (-3307 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-2324 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945))))) +(-13 (-995) (-10 -8 (-15 -2710 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)))) (-15 -2710 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -3561 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)))) (-15 -3561 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -3561 ($ $ (-1115 (-227)))) (-15 -2856 ($ $ (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -4092 ($ $ (-1115 (-227)))) (-15 -4092 ($ $)) (-15 -3472 ((-1115 (-227)) $)) (-15 -2600 ((-656 (-656 (-227))) $)) (-15 -3395 ((-576))) (-15 -3506 ((-576) (-576))) (-15 -2246 ((-576))) (-15 -3880 ((-576) (-576))) (-15 -3751 ((-576))) (-15 -2830 ((-576) (-576))) (-15 -1738 ((-112))) (-15 -3430 ((-112) (-112))) (-15 -3307 ((-576))) (-15 -2324 ((-112) (-112))))) +((-2856 (($ $ (-1115 (-227))) 122) (($ $ (-1115 (-227)) (-1115 (-227))) 123)) (-4305 (((-1115 (-227)) $) 73)) (-4293 (((-1115 (-227)) $) 72)) (-3472 (((-1115 (-227)) $) 74)) (-4245 (((-576) (-576)) 66)) (-2595 (((-576) (-576)) 61)) (-1436 (((-576) (-576)) 64)) (-1830 (((-112) (-112)) 68)) (-3884 (((-576)) 65)) (-4092 (($ $ (-1115 (-227))) 126) (($ $) 127)) (-2710 (($ (-1 (-962 (-227)) (-227)) (-1115 (-227))) 141) (($ (-1 (-962 (-227)) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227))) 142)) (-2262 (($ (-1 (-227) (-227)) (-1115 (-227))) 149) (($ (-1 (-227) (-227))) 153)) (-3561 (($ (-1 (-227) (-227)) (-1115 (-227))) 137) (($ (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227))) 138) (($ (-656 (-1 (-227) (-227))) (-1115 (-227))) 146) (($ (-656 (-1 (-227) (-227))) (-1115 (-227)) (-1115 (-227))) 147) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227))) 139) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227))) 140) (($ $ (-1115 (-227))) 128)) (-3603 (((-112) $) 69)) (-1988 (((-576)) 70)) (-2837 (((-576)) 59)) (-2375 (((-576)) 62)) (-2472 (((-656 (-656 (-962 (-227)))) $) 35)) (-2009 (((-112) (-112)) 71)) (-3569 (((-876) $) 167)) (-2617 (((-112)) 67))) +(((-946) (-13 (-974) (-10 -8 (-15 -3561 ($ (-1 (-227) (-227)) (-1115 (-227)))) (-15 -3561 ($ (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -3561 ($ (-656 (-1 (-227) (-227))) (-1115 (-227)))) (-15 -3561 ($ (-656 (-1 (-227) (-227))) (-1115 (-227)) (-1115 (-227)))) (-15 -3561 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)))) (-15 -3561 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -2710 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)))) (-15 -2710 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -2262 ($ (-1 (-227) (-227)) (-1115 (-227)))) (-15 -2262 ($ (-1 (-227) (-227)))) (-15 -3561 ($ $ (-1115 (-227)))) (-15 -3603 ((-112) $)) (-15 -2856 ($ $ (-1115 (-227)))) (-15 -2856 ($ $ (-1115 (-227)) (-1115 (-227)))) (-15 -4092 ($ $ (-1115 (-227)))) (-15 -4092 ($ $)) (-15 -3472 ((-1115 (-227)) $)) (-15 -2837 ((-576))) (-15 -2595 ((-576) (-576))) (-15 -2375 ((-576))) (-15 -1436 ((-576) (-576))) (-15 -3884 ((-576))) (-15 -4245 ((-576) (-576))) (-15 -2617 ((-112))) (-15 -1830 ((-112) (-112))) (-15 -1988 ((-576))) (-15 -2009 ((-112) (-112)))))) (T -946)) +((-3561 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-3561 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-3561 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-3561 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-3561 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-3561 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-2710 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-2710 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-2262 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-946)))) (-3561 (*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-946)))) (-2856 (*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) (-2856 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) (-4092 (*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) (-4092 (*1 *1 *1) (-5 *1 (-946))) (-3472 (*1 *2 *1) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) (-2837 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-2595 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-2375 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-1436 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-3884 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-4245 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-2617 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946)))) (-1830 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946)))) (-1988 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-2009 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946))))) +(-13 (-974) (-10 -8 (-15 -3561 ($ (-1 (-227) (-227)) (-1115 (-227)))) (-15 -3561 ($ (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -3561 ($ (-656 (-1 (-227) (-227))) (-1115 (-227)))) (-15 -3561 ($ (-656 (-1 (-227) (-227))) (-1115 (-227)) (-1115 (-227)))) (-15 -3561 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)))) (-15 -3561 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -2710 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)))) (-15 -2710 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -2262 ($ (-1 (-227) (-227)) (-1115 (-227)))) (-15 -2262 ($ (-1 (-227) (-227)))) (-15 -3561 ($ $ (-1115 (-227)))) (-15 -3603 ((-112) $)) (-15 -2856 ($ $ (-1115 (-227)))) (-15 -2856 ($ $ (-1115 (-227)) (-1115 (-227)))) (-15 -4092 ($ $ (-1115 (-227)))) (-15 -4092 ($ $)) (-15 -3472 ((-1115 (-227)) $)) (-15 -2837 ((-576))) (-15 -2595 ((-576) (-576))) (-15 -2375 ((-576))) (-15 -1436 ((-576) (-576))) (-15 -3884 ((-576))) (-15 -4245 ((-576) (-576))) (-15 -2617 ((-112))) (-15 -1830 ((-112) (-112))) (-15 -1988 ((-576))) (-15 -2009 ((-112) (-112))))) +((-3957 (((-656 (-1115 (-227))) (-656 (-656 (-962 (-227))))) 34))) +(((-947) (-10 -7 (-15 -3957 ((-656 (-1115 (-227))) (-656 (-656 (-962 (-227)))))))) (T -947)) +((-3957 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *2 (-656 (-1115 (-227)))) (-5 *1 (-947))))) +(-10 -7 (-15 -3957 ((-656 (-1115 (-227))) (-656 (-656 (-962 (-227))))))) +((-2159 ((|#2| |#2|) 28)) (-2838 ((|#2| |#2|) 29)) (-1480 ((|#2| |#2|) 27)) (-2711 ((|#2| |#2| (-518)) 26))) +(((-948 |#1| |#2|) (-10 -7 (-15 -2711 (|#2| |#2| (-518))) (-15 -1480 (|#2| |#2|)) (-15 -2159 (|#2| |#2|)) (-15 -2838 (|#2| |#2|))) (-1121) (-442 |#1|)) (T -948)) +((-2838 (*1 *2 *2) (-12 (-4 *3 (-1121)) (-5 *1 (-948 *3 *2)) (-4 *2 (-442 *3)))) (-2159 (*1 *2 *2) (-12 (-4 *3 (-1121)) (-5 *1 (-948 *3 *2)) (-4 *2 (-442 *3)))) (-1480 (*1 *2 *2) (-12 (-4 *3 (-1121)) (-5 *1 (-948 *3 *2)) (-4 *2 (-442 *3)))) (-2711 (*1 *2 *2 *3) (-12 (-5 *3 (-518)) (-4 *4 (-1121)) (-5 *1 (-948 *4 *2)) (-4 *2 (-442 *4))))) +(-10 -7 (-15 -2711 (|#2| |#2| (-518))) (-15 -1480 (|#2| |#2|)) (-15 -2159 (|#2| |#2|)) (-15 -2838 (|#2| |#2|))) +((-2159 (((-326 (-576)) (-1197)) 16)) (-2838 (((-326 (-576)) (-1197)) 14)) (-1480 (((-326 (-576)) (-1197)) 12)) (-2711 (((-326 (-576)) (-1197) (-518)) 19))) +(((-949) (-10 -7 (-15 -2711 ((-326 (-576)) (-1197) (-518))) (-15 -1480 ((-326 (-576)) (-1197))) (-15 -2159 ((-326 (-576)) (-1197))) (-15 -2838 ((-326 (-576)) (-1197))))) (T -949)) +((-2838 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-326 (-576))) (-5 *1 (-949)))) (-2159 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-326 (-576))) (-5 *1 (-949)))) (-1480 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-326 (-576))) (-5 *1 (-949)))) (-2711 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-518)) (-5 *2 (-326 (-576))) (-5 *1 (-949))))) +(-10 -7 (-15 -2711 ((-326 (-576)) (-1197) (-518))) (-15 -1480 ((-326 (-576)) (-1197))) (-15 -2159 ((-326 (-576)) (-1197))) (-15 -2838 ((-326 (-576)) (-1197)))) +((-3325 (((-904 |#1| |#3|) |#2| (-907 |#1|) (-904 |#1| |#3|)) 25)) (-2147 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) +(((-950 |#1| |#2| |#3|) (-10 -7 (-15 -2147 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3325 ((-904 |#1| |#3|) |#2| (-907 |#1|) (-904 |#1| |#3|)))) (-1121) (-901 |#1|) (-13 (-1121) (-1059 |#2|))) (T -950)) +((-3325 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 *6)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-4 *6 (-13 (-1121) (-1059 *3))) (-4 *3 (-901 *5)) (-5 *1 (-950 *5 *3 *6)))) (-2147 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1121) (-1059 *5))) (-4 *5 (-901 *4)) (-4 *4 (-1121)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-950 *4 *5 *6))))) +(-10 -7 (-15 -2147 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3325 ((-904 |#1| |#3|) |#2| (-907 |#1|) (-904 |#1| |#3|)))) +((-3325 (((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)) 30))) +(((-951 |#1| |#2| |#3|) (-10 -7 (-15 -3325 ((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)))) (-1121) (-13 (-568) (-901 |#1|)) (-13 (-442 |#2|) (-626 (-907 |#1|)) (-901 |#1|) (-1059 (-624 $)))) (T -951)) +((-3325 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 *3)) (-4 *5 (-1121)) (-4 *3 (-13 (-442 *6) (-626 *4) (-901 *5) (-1059 (-624 $)))) (-5 *4 (-907 *5)) (-4 *6 (-13 (-568) (-901 *5))) (-5 *1 (-951 *5 *6 *3))))) +(-10 -7 (-15 -3325 ((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)))) +((-3325 (((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|)) 13))) +(((-952 |#1|) (-10 -7 (-15 -3325 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|)))) (-557)) (T -952)) +((-3325 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 (-576) *3)) (-5 *4 (-907 (-576))) (-4 *3 (-557)) (-5 *1 (-952 *3))))) +(-10 -7 (-15 -3325 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|)))) +((-3325 (((-904 |#1| |#2|) (-624 |#2|) (-907 |#1|) (-904 |#1| |#2|)) 57))) +(((-953 |#1| |#2|) (-10 -7 (-15 -3325 ((-904 |#1| |#2|) (-624 |#2|) (-907 |#1|) (-904 |#1| |#2|)))) (-1121) (-13 (-1121) (-1059 (-624 $)) (-626 (-907 |#1|)) (-901 |#1|))) (T -953)) +((-3325 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 *6)) (-5 *3 (-624 *6)) (-4 *5 (-1121)) (-4 *6 (-13 (-1121) (-1059 (-624 $)) (-626 *4) (-901 *5))) (-5 *4 (-907 *5)) (-5 *1 (-953 *5 *6))))) +(-10 -7 (-15 -3325 ((-904 |#1| |#2|) (-624 |#2|) (-907 |#1|) (-904 |#1| |#2|)))) +((-3325 (((-900 |#1| |#2| |#3|) |#3| (-907 |#1|) (-900 |#1| |#2| |#3|)) 17))) +(((-954 |#1| |#2| |#3|) (-10 -7 (-15 -3325 ((-900 |#1| |#2| |#3|) |#3| (-907 |#1|) (-900 |#1| |#2| |#3|)))) (-1121) (-901 |#1|) (-678 |#2|)) (T -954)) +((-3325 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *6 *3)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-4 *6 (-901 *5)) (-4 *3 (-678 *6)) (-5 *1 (-954 *5 *6 *3))))) +(-10 -7 (-15 -3325 ((-900 |#1| |#2| |#3|) |#3| (-907 |#1|) (-900 |#1| |#2| |#3|)))) +((-3325 (((-904 |#1| |#5|) |#5| (-907 |#1|) (-904 |#1| |#5|)) 17 (|has| |#3| (-901 |#1|))) (((-904 |#1| |#5|) |#5| (-907 |#1|) (-904 |#1| |#5|) (-1 (-904 |#1| |#5|) |#3| (-907 |#1|) (-904 |#1| |#5|))) 16))) +(((-955 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3325 ((-904 |#1| |#5|) |#5| (-907 |#1|) (-904 |#1| |#5|) (-1 (-904 |#1| |#5|) |#3| (-907 |#1|) (-904 |#1| |#5|)))) (IF (|has| |#3| (-901 |#1|)) (-15 -3325 ((-904 |#1| |#5|) |#5| (-907 |#1|) (-904 |#1| |#5|))) |%noBranch|)) (-1121) (-805) (-861) (-13 (-1070) (-901 |#1|)) (-13 (-968 |#4| |#2| |#3|) (-626 (-907 |#1|)))) (T -955)) +((-3325 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 *3)) (-4 *5 (-1121)) (-4 *3 (-13 (-968 *8 *6 *7) (-626 *4))) (-5 *4 (-907 *5)) (-4 *7 (-901 *5)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-13 (-1070) (-901 *5))) (-5 *1 (-955 *5 *6 *7 *8 *3)))) (-3325 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-904 *6 *3) *8 (-907 *6) (-904 *6 *3))) (-4 *8 (-861)) (-5 *2 (-904 *6 *3)) (-5 *4 (-907 *6)) (-4 *6 (-1121)) (-4 *3 (-13 (-968 *9 *7 *8) (-626 *4))) (-4 *7 (-805)) (-4 *9 (-13 (-1070) (-901 *6))) (-5 *1 (-955 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -3325 ((-904 |#1| |#5|) |#5| (-907 |#1|) (-904 |#1| |#5|) (-1 (-904 |#1| |#5|) |#3| (-907 |#1|) (-904 |#1| |#5|)))) (IF (|has| |#3| (-901 |#1|)) (-15 -3325 ((-904 |#1| |#5|) |#5| (-907 |#1|) (-904 |#1| |#5|))) |%noBranch|)) +((-2929 ((|#2| |#2| (-656 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) +(((-956 |#1| |#2| |#3|) (-10 -7 (-15 -2929 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2929 (|#2| |#2| (-656 (-1 (-112) |#3|))))) (-1121) (-442 |#1|) (-1238)) (T -956)) +((-2929 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-1 (-112) *5))) (-4 *5 (-1238)) (-4 *4 (-1121)) (-5 *1 (-956 *4 *2 *5)) (-4 *2 (-442 *4)))) (-2929 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1238)) (-4 *4 (-1121)) (-5 *1 (-956 *4 *2 *5)) (-4 *2 (-442 *4))))) +(-10 -7 (-15 -2929 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2929 (|#2| |#2| (-656 (-1 (-112) |#3|))))) +((-2929 (((-326 (-576)) (-1197) (-656 (-1 (-112) |#1|))) 18) (((-326 (-576)) (-1197) (-1 (-112) |#1|)) 15))) +(((-957 |#1|) (-10 -7 (-15 -2929 ((-326 (-576)) (-1197) (-1 (-112) |#1|))) (-15 -2929 ((-326 (-576)) (-1197) (-656 (-1 (-112) |#1|))))) (-1238)) (T -957)) +((-2929 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-656 (-1 (-112) *5))) (-4 *5 (-1238)) (-5 *2 (-326 (-576))) (-5 *1 (-957 *5)))) (-2929 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1238)) (-5 *2 (-326 (-576))) (-5 *1 (-957 *5))))) +(-10 -7 (-15 -2929 ((-326 (-576)) (-1197) (-1 (-112) |#1|))) (-15 -2929 ((-326 (-576)) (-1197) (-656 (-1 (-112) |#1|))))) +((-3325 (((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)) 25))) +(((-958 |#1| |#2| |#3|) (-10 -7 (-15 -3325 ((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)))) (-1121) (-13 (-568) (-901 |#1|) (-626 (-907 |#1|))) (-1013 |#2|)) (T -958)) +((-3325 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 *3)) (-4 *5 (-1121)) (-4 *3 (-1013 *6)) (-4 *6 (-13 (-568) (-901 *5) (-626 *4))) (-5 *4 (-907 *5)) (-5 *1 (-958 *5 *6 *3))))) +(-10 -7 (-15 -3325 ((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)))) +((-3325 (((-904 |#1| (-1197)) (-1197) (-907 |#1|) (-904 |#1| (-1197))) 18))) +(((-959 |#1|) (-10 -7 (-15 -3325 ((-904 |#1| (-1197)) (-1197) (-907 |#1|) (-904 |#1| (-1197))))) (-1121)) (T -959)) +((-3325 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 (-1197))) (-5 *3 (-1197)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-5 *1 (-959 *5))))) +(-10 -7 (-15 -3325 ((-904 |#1| (-1197)) (-1197) (-907 |#1|) (-904 |#1| (-1197))))) +((-4055 (((-904 |#1| |#3|) (-656 |#3|) (-656 (-907 |#1|)) (-904 |#1| |#3|) (-1 (-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|))) 34)) (-3325 (((-904 |#1| |#3|) (-656 |#3|) (-656 (-907 |#1|)) (-1 |#3| (-656 |#3|)) (-904 |#1| |#3|) (-1 (-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|))) 33))) +(((-960 |#1| |#2| |#3|) (-10 -7 (-15 -3325 ((-904 |#1| |#3|) (-656 |#3|) (-656 (-907 |#1|)) (-1 |#3| (-656 |#3|)) (-904 |#1| |#3|) (-1 (-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)))) (-15 -4055 ((-904 |#1| |#3|) (-656 |#3|) (-656 (-907 |#1|)) (-904 |#1| |#3|) (-1 (-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|))))) (-1121) (-1070) (-13 (-1070) (-626 (-907 |#1|)) (-1059 |#2|))) (T -960)) +((-4055 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-907 *6))) (-5 *5 (-1 (-904 *6 *8) *8 (-907 *6) (-904 *6 *8))) (-4 *6 (-1121)) (-4 *8 (-13 (-1070) (-626 (-907 *6)) (-1059 *7))) (-5 *2 (-904 *6 *8)) (-4 *7 (-1070)) (-5 *1 (-960 *6 *7 *8)))) (-3325 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-656 (-907 *7))) (-5 *5 (-1 *9 (-656 *9))) (-5 *6 (-1 (-904 *7 *9) *9 (-907 *7) (-904 *7 *9))) (-4 *7 (-1121)) (-4 *9 (-13 (-1070) (-626 (-907 *7)) (-1059 *8))) (-5 *2 (-904 *7 *9)) (-5 *3 (-656 *9)) (-4 *8 (-1070)) (-5 *1 (-960 *7 *8 *9))))) +(-10 -7 (-15 -3325 ((-904 |#1| |#3|) (-656 |#3|) (-656 (-907 |#1|)) (-1 |#3| (-656 |#3|)) (-904 |#1| |#3|) (-1 (-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)))) (-15 -4055 ((-904 |#1| |#3|) (-656 |#3|) (-656 (-907 |#1|)) (-904 |#1| |#3|) (-1 (-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|))))) +((-1333 (((-1193 (-419 (-576))) (-576)) 79)) (-2634 (((-1193 (-576)) (-576)) 82)) (-4221 (((-1193 (-576)) (-576)) 76)) (-4319 (((-576) (-1193 (-576))) 72)) (-2928 (((-1193 (-419 (-576))) (-576)) 65)) (-3408 (((-1193 (-576)) (-576)) 49)) (-3294 (((-1193 (-576)) (-576)) 84)) (-2350 (((-1193 (-576)) (-576)) 83)) (-1650 (((-1193 (-419 (-576))) (-576)) 67))) +(((-961) (-10 -7 (-15 -1650 ((-1193 (-419 (-576))) (-576))) (-15 -2350 ((-1193 (-576)) (-576))) (-15 -3294 ((-1193 (-576)) (-576))) (-15 -3408 ((-1193 (-576)) (-576))) (-15 -2928 ((-1193 (-419 (-576))) (-576))) (-15 -4319 ((-576) (-1193 (-576)))) (-15 -4221 ((-1193 (-576)) (-576))) (-15 -2634 ((-1193 (-576)) (-576))) (-15 -1333 ((-1193 (-419 (-576))) (-576))))) (T -961)) +((-1333 (*1 *2 *3) (-12 (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-961)) (-5 *3 (-576)))) (-2634 (*1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576)))) (-4221 (*1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576)))) (-4319 (*1 *2 *3) (-12 (-5 *3 (-1193 (-576))) (-5 *2 (-576)) (-5 *1 (-961)))) (-2928 (*1 *2 *3) (-12 (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-961)) (-5 *3 (-576)))) (-3408 (*1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576)))) (-3294 (*1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576)))) (-2350 (*1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576)))) (-1650 (*1 *2 *3) (-12 (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-961)) (-5 *3 (-576))))) +(-10 -7 (-15 -1650 ((-1193 (-419 (-576))) (-576))) (-15 -2350 ((-1193 (-576)) (-576))) (-15 -3294 ((-1193 (-576)) (-576))) (-15 -3408 ((-1193 (-576)) (-576))) (-15 -2928 ((-1193 (-419 (-576))) (-576))) (-15 -4319 ((-576) (-1193 (-576)))) (-15 -4221 ((-1193 (-576)) (-576))) (-15 -2634 ((-1193 (-576)) (-576))) (-15 -1333 ((-1193 (-419 (-576))) (-576)))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3831 (($ (-783)) NIL (|has| |#1| (-23)))) (-1512 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-1390 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-3039 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-4264 (((-112) $ (-783)) NIL)) (-3755 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3404 (($) NIL T CONST)) (-3092 (($ $) NIL (|has| $ (-6 -4465)))) (-3835 (($ $) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3945 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) NIL)) (-3659 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-3042 (($ (-656 |#1|)) 9)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2355 (((-701 |#1|) $ $) NIL (|has| |#1| (-1070)))) (-4140 (($ (-783) |#1|) NIL)) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-2185 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4280 (((-576) $) NIL (|has| (-576) (-861)))) (-1441 (($ $ $) NIL (|has| |#1| (-861)))) (-4326 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3781 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))))) (-2883 (((-112) $ (-783)) NIL)) (-2435 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))))) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2176 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3669 (((-656 (-576)) $) NIL)) (-3090 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3580 ((|#1| $) NIL (|has| (-576) (-861)))) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2304 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-1743 (($ $ (-656 |#1|)) 25)) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3207 (((-656 |#1|) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 18) (($ $ (-1255 (-576))) NIL)) (-4099 ((|#1| $ $) NIL (|has| |#1| (-1070)))) (-2319 (((-940) $) 13)) (-3465 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-2365 (($ $ $) 23)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2840 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| |#1| (-626 (-548)))) (($ (-656 |#1|)) 14)) (-3581 (($ (-656 |#1|)) NIL)) (-1615 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-656 $)) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2924 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2949 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3043 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3029 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-3502 (((-783) $) 11 (|has| $ (-6 -4464))))) (((-962 |#1|) (-1001 |#1|) (-1070)) (T -962)) NIL (-1001 |#1|) -((-4265 (((-493 |#1| |#2|) (-971 |#2|)) 22)) (-3819 (((-253 |#1| |#2|) (-971 |#2|)) 35)) (-3748 (((-971 |#2|) (-493 |#1| |#2|)) 27)) (-3163 (((-253 |#1| |#2|) (-493 |#1| |#2|)) 57)) (-3472 (((-971 |#2|) (-253 |#1| |#2|)) 32)) (-3587 (((-493 |#1| |#2|) (-253 |#1| |#2|)) 48))) -(((-963 |#1| |#2|) (-10 -7 (-15 -3587 ((-493 |#1| |#2|) (-253 |#1| |#2|))) (-15 -3163 ((-253 |#1| |#2|) (-493 |#1| |#2|))) (-15 -4265 ((-493 |#1| |#2|) (-971 |#2|))) (-15 -3748 ((-971 |#2|) (-493 |#1| |#2|))) (-15 -3472 ((-971 |#2|) (-253 |#1| |#2|))) (-15 -3819 ((-253 |#1| |#2|) (-971 |#2|)))) (-656 (-1197)) (-1070)) (T -963)) -((-3819 (*1 *2 *3) (-12 (-5 *3 (-971 *5)) (-4 *5 (-1070)) (-5 *2 (-253 *4 *5)) (-5 *1 (-963 *4 *5)) (-14 *4 (-656 (-1197))))) (-3472 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) (-5 *2 (-971 *5)) (-5 *1 (-963 *4 *5)))) (-3748 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) (-5 *2 (-971 *5)) (-5 *1 (-963 *4 *5)))) (-4265 (*1 *2 *3) (-12 (-5 *3 (-971 *5)) (-4 *5 (-1070)) (-5 *2 (-493 *4 *5)) (-5 *1 (-963 *4 *5)) (-14 *4 (-656 (-1197))))) (-3163 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) (-5 *2 (-253 *4 *5)) (-5 *1 (-963 *4 *5)))) (-3587 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) (-5 *2 (-493 *4 *5)) (-5 *1 (-963 *4 *5))))) -(-10 -7 (-15 -3587 ((-493 |#1| |#2|) (-253 |#1| |#2|))) (-15 -3163 ((-253 |#1| |#2|) (-493 |#1| |#2|))) (-15 -4265 ((-493 |#1| |#2|) (-971 |#2|))) (-15 -3748 ((-971 |#2|) (-493 |#1| |#2|))) (-15 -3472 ((-971 |#2|) (-253 |#1| |#2|))) (-15 -3819 ((-253 |#1| |#2|) (-971 |#2|)))) -((-2931 (((-656 |#2|) |#2| |#2|) 10)) (-2408 (((-783) (-656 |#1|)) 48 (|has| |#1| (-860)))) (-2233 (((-656 |#2|) |#2|) 11)) (-4370 (((-783) (-656 |#1|) (-576) (-576)) 52 (|has| |#1| (-860)))) (-2986 ((|#1| |#2|) 38 (|has| |#1| (-860))))) -(((-964 |#1| |#2|) (-10 -7 (-15 -2931 ((-656 |#2|) |#2| |#2|)) (-15 -2233 ((-656 |#2|) |#2|)) (IF (|has| |#1| (-860)) (PROGN (-15 -2986 (|#1| |#2|)) (-15 -2408 ((-783) (-656 |#1|))) (-15 -4370 ((-783) (-656 |#1|) (-576) (-576)))) |%noBranch|)) (-374) (-1264 |#1|)) (T -964)) -((-4370 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-576)) (-4 *5 (-860)) (-4 *5 (-374)) (-5 *2 (-783)) (-5 *1 (-964 *5 *6)) (-4 *6 (-1264 *5)))) (-2408 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-860)) (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-964 *4 *5)) (-4 *5 (-1264 *4)))) (-2986 (*1 *2 *3) (-12 (-4 *2 (-374)) (-4 *2 (-860)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1264 *2)))) (-2233 (*1 *2 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-964 *4 *3)) (-4 *3 (-1264 *4)))) (-2931 (*1 *2 *3 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-964 *4 *3)) (-4 *3 (-1264 *4))))) -(-10 -7 (-15 -2931 ((-656 |#2|) |#2| |#2|)) (-15 -2233 ((-656 |#2|) |#2|)) (IF (|has| |#1| (-860)) (PROGN (-15 -2986 (|#1| |#2|)) (-15 -2408 ((-783) (-656 |#1|))) (-15 -4370 ((-783) (-656 |#1|) (-576) (-576)))) |%noBranch|)) -((-4117 (((-971 |#2|) (-1 |#2| |#1|) (-971 |#1|)) 19))) -(((-965 |#1| |#2|) (-10 -7 (-15 -4117 ((-971 |#2|) (-1 |#2| |#1|) (-971 |#1|)))) (-1070) (-1070)) (T -965)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-971 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-5 *2 (-971 *6)) (-5 *1 (-965 *5 *6))))) -(-10 -7 (-15 -4117 ((-971 |#2|) (-1 |#2| |#1|) (-971 |#1|)))) -((-1798 (((-1261 |#1| (-971 |#2|)) (-971 |#2|) (-1284 |#1|)) 18))) -(((-966 |#1| |#2|) (-10 -7 (-15 -1798 ((-1261 |#1| (-971 |#2|)) (-971 |#2|) (-1284 |#1|)))) (-1197) (-1070)) (T -966)) -((-1798 (*1 *2 *3 *4) (-12 (-5 *4 (-1284 *5)) (-14 *5 (-1197)) (-4 *6 (-1070)) (-5 *2 (-1261 *5 (-971 *6))) (-5 *1 (-966 *5 *6)) (-5 *3 (-971 *6))))) -(-10 -7 (-15 -1798 ((-1261 |#1| (-971 |#2|)) (-971 |#2|) (-1284 |#1|)))) -((-3543 (((-783) $) 88) (((-783) $ (-656 |#4|)) 93)) (-2487 (($ $) 203)) (-3921 (((-430 $) $) 195)) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 141)) (-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2860 ((|#2| $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL) ((|#4| $) 73)) (-3230 (($ $ $ |#4|) 95)) (-2204 (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) 131) (((-701 |#2|) (-701 $)) 121)) (-3767 (($ $) 210) (($ $ |#4|) 213)) (-2103 (((-656 $) $) 77)) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 229) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 222)) (-1608 (((-656 $) $) 34)) (-1945 (($ |#2| |#3|) NIL) (($ $ |#4| (-783)) NIL) (($ $ (-656 |#4|) (-656 (-783))) 71)) (-4130 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $ |#4|) 192)) (-1385 (((-3 (-656 $) "failed") $) 52)) (-1690 (((-3 (-656 $) "failed") $) 39)) (-2040 (((-3 (-2 (|:| |var| |#4|) (|:| -3422 (-783))) "failed") $) 57)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 134)) (-4100 (((-430 (-1193 $)) (-1193 $)) 147)) (-1811 (((-430 (-1193 $)) (-1193 $)) 145)) (-1828 (((-430 $) $) 165)) (-3284 (($ $ (-656 (-304 $))) 24) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-656 |#4|) (-656 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-656 |#4|) (-656 $)) NIL)) (-4352 (($ $ |#4|) 97)) (-4172 (((-907 (-390)) $) 243) (((-907 (-576)) $) 236) (((-548) $) 251)) (-2457 ((|#2| $) NIL) (($ $ |#4|) 205)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) 184)) (-3177 ((|#2| $ |#3|) NIL) (($ $ |#4| (-783)) 62) (($ $ (-656 |#4|) (-656 (-783))) 69)) (-4336 (((-3 $ "failed") $) 186)) (-4055 (((-112) $ $) 216))) -(((-967 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1531 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|))) (-15 -3921 ((-430 |#1|) |#1|)) (-15 -2487 (|#1| |#1|)) (-15 -4336 ((-3 |#1| "failed") |#1|)) (-15 -4172 ((-548) |#1|)) (-15 -4172 ((-907 (-576)) |#1|)) (-15 -4172 ((-907 (-390)) |#1|)) (-15 -1840 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -1840 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -1811 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -4100 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -1963 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -2887 ((-3 (-1288 |#1|) "failed") (-701 |#1|))) (-15 -3767 (|#1| |#1| |#4|)) (-15 -2457 (|#1| |#1| |#4|)) (-15 -4352 (|#1| |#1| |#4|)) (-15 -3230 (|#1| |#1| |#1| |#4|)) (-15 -2103 ((-656 |#1|) |#1|)) (-15 -3543 ((-783) |#1| (-656 |#4|))) (-15 -3543 ((-783) |#1|)) (-15 -2040 ((-3 (-2 (|:| |var| |#4|) (|:| -3422 (-783))) "failed") |#1|)) (-15 -1385 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1690 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1945 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -1945 (|#1| |#1| |#4| (-783))) (-15 -4130 ((-2 (|:| -2715 |#1|) (|:| -3624 |#1|)) |#1| |#1| |#4|)) (-15 -1608 ((-656 |#1|) |#1|)) (-15 -3177 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -3177 (|#1| |#1| |#4| (-783))) (-15 -2204 ((-701 |#2|) (-701 |#1|))) (-15 -2204 ((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -2204 ((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -2204 ((-701 (-576)) (-701 |#1|))) (-15 -1572 ((-3 |#4| "failed") |#1|)) (-15 -2860 (|#4| |#1|)) (-15 -3284 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -3284 (|#1| |#1| |#4| |#1|)) (-15 -3284 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -3284 (|#1| |#1| |#4| |#2|)) (-15 -3284 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3284 (|#1| |#1| |#1| |#1|)) (-15 -3284 (|#1| |#1| (-304 |#1|))) (-15 -3284 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1945 (|#1| |#2| |#3|)) (-15 -3177 (|#2| |#1| |#3|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2860 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2860 ((-419 (-576)) |#1|)) (-15 -2860 (|#2| |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2457 (|#2| |#1|)) (-15 -3767 (|#1| |#1|)) (-15 -4055 ((-112) |#1| |#1|))) (-968 |#2| |#3| |#4|) (-1070) (-805) (-861)) (T -967)) -NIL -(-10 -8 (-15 -1531 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|))) (-15 -3921 ((-430 |#1|) |#1|)) (-15 -2487 (|#1| |#1|)) (-15 -4336 ((-3 |#1| "failed") |#1|)) (-15 -4172 ((-548) |#1|)) (-15 -4172 ((-907 (-576)) |#1|)) (-15 -4172 ((-907 (-390)) |#1|)) (-15 -1840 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -1840 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -1811 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -4100 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -1963 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -2887 ((-3 (-1288 |#1|) "failed") (-701 |#1|))) (-15 -3767 (|#1| |#1| |#4|)) (-15 -2457 (|#1| |#1| |#4|)) (-15 -4352 (|#1| |#1| |#4|)) (-15 -3230 (|#1| |#1| |#1| |#4|)) (-15 -2103 ((-656 |#1|) |#1|)) (-15 -3543 ((-783) |#1| (-656 |#4|))) (-15 -3543 ((-783) |#1|)) (-15 -2040 ((-3 (-2 (|:| |var| |#4|) (|:| -3422 (-783))) "failed") |#1|)) (-15 -1385 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1690 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1945 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -1945 (|#1| |#1| |#4| (-783))) (-15 -4130 ((-2 (|:| -2715 |#1|) (|:| -3624 |#1|)) |#1| |#1| |#4|)) (-15 -1608 ((-656 |#1|) |#1|)) (-15 -3177 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -3177 (|#1| |#1| |#4| (-783))) (-15 -2204 ((-701 |#2|) (-701 |#1|))) (-15 -2204 ((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -2204 ((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -2204 ((-701 (-576)) (-701 |#1|))) (-15 -1572 ((-3 |#4| "failed") |#1|)) (-15 -2860 (|#4| |#1|)) (-15 -3284 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -3284 (|#1| |#1| |#4| |#1|)) (-15 -3284 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -3284 (|#1| |#1| |#4| |#2|)) (-15 -3284 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3284 (|#1| |#1| |#1| |#1|)) (-15 -3284 (|#1| |#1| (-304 |#1|))) (-15 -3284 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1945 (|#1| |#2| |#3|)) (-15 -3177 (|#2| |#1| |#3|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2860 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2860 ((-419 (-576)) |#1|)) (-15 -2860 (|#2| |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2457 (|#2| |#1|)) (-15 -3767 (|#1| |#1|)) (-15 -4055 ((-112) |#1| |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-1969 (((-656 |#3|) $) 113)) (-1798 (((-1193 $) $ |#3|) 128) (((-1193 |#1|) $) 127)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-2757 (($ $) 91 (|has| |#1| (-568)))) (-3788 (((-112) $) 93 (|has| |#1| (-568)))) (-3543 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-4367 (((-3 $ "failed") $ $) 20)) (-3601 (((-430 (-1193 $)) (-1193 $)) 103 (|has| |#1| (-928)))) (-2487 (($ $) 101 (|has| |#1| (-464)))) (-3921 (((-430 $) $) 100 (|has| |#1| (-464)))) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 106 (|has| |#1| (-928)))) (-3886 (($) 18 T CONST)) (-1572 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1059 (-576)))) (((-3 |#3| "failed") $) 143)) (-2860 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1059 (-576)))) ((|#3| $) 144)) (-3230 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-2114 (($ $) 161)) (-2204 (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 137) (((-701 |#1|) (-701 $)) 136)) (-1561 (((-3 $ "failed") $) 37)) (-3767 (($ $) 183 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-2103 (((-656 $) $) 112)) (-4249 (((-112) $) 99 (|has| |#1| (-928)))) (-2431 (($ $ |#1| |#2| $) 179)) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 87 (-12 (|has| |#3| (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 86 (-12 (|has| |#3| (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-4193 (((-112) $) 35)) (-2217 (((-783) $) 176)) (-1955 (($ (-1193 |#1|) |#3|) 120) (($ (-1193 $) |#3|) 119)) (-1608 (((-656 $) $) 129)) (-2823 (((-112) $) 159)) (-1945 (($ |#1| |#2|) 160) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-4130 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $ |#3|) 123)) (-3751 ((|#2| $) 177) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-2999 (($ (-1 |#2| |#2|) $) 178)) (-4117 (($ (-1 |#1| |#1|) $) 158)) (-3721 (((-3 |#3| "failed") $) 126)) (-3913 (((-701 (-576)) (-1288 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 140 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 135) (((-701 |#1|) (-1288 $)) 134)) (-2081 (($ $) 156)) (-2091 ((|#1| $) 155)) (-3458 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-3699 (((-1179) $) 10)) (-1385 (((-3 (-656 $) "failed") $) 117)) (-1690 (((-3 (-656 $) "failed") $) 118)) (-2040 (((-3 (-2 (|:| |var| |#3|) (|:| -3422 (-783))) "failed") $) 116)) (-1450 (((-1141) $) 11)) (-2060 (((-112) $) 173)) (-2070 ((|#1| $) 174)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 98 (|has| |#1| (-464)))) (-3498 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-4100 (((-430 (-1193 $)) (-1193 $)) 105 (|has| |#1| (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) 104 (|has| |#1| (-928)))) (-1828 (((-430 $) $) 102 (|has| |#1| (-928)))) (-3476 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-3284 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-656 |#3|) (-656 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-656 |#3|) (-656 $)) 145)) (-4352 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2775 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40)) (-3634 ((|#2| $) 157) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132)) (-4172 (((-907 (-390)) $) 85 (-12 (|has| |#3| (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) 84 (-12 (|has| |#3| (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-2457 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) 107 (-2675 (|has| $ (-146)) (|has| |#1| (-928))))) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ |#3|) 142) (($ $) 88 (|has| |#1| (-568))) (($ (-419 (-576))) 81 (-2760 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))))) (-1618 (((-656 |#1|) $) 175)) (-3177 ((|#1| $ |#2|) 162) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-4336 (((-3 $ "failed") $) 82 (-2760 (-2675 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3996 (((-783)) 32 T CONST)) (-2541 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-4055 (((-112) $ $) 6)) (-2672 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2020 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41)) (-2925 (((-112) $ $) 8)) (-3057 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) +((-3998 (((-493 |#1| |#2|) (-971 |#2|)) 22)) (-4047 (((-253 |#1| |#2|) (-971 |#2|)) 35)) (-2550 (((-971 |#2|) (-493 |#1| |#2|)) 27)) (-1690 (((-253 |#1| |#2|) (-493 |#1| |#2|)) 57)) (-1745 (((-971 |#2|) (-253 |#1| |#2|)) 32)) (-3492 (((-493 |#1| |#2|) (-253 |#1| |#2|)) 48))) +(((-963 |#1| |#2|) (-10 -7 (-15 -3492 ((-493 |#1| |#2|) (-253 |#1| |#2|))) (-15 -1690 ((-253 |#1| |#2|) (-493 |#1| |#2|))) (-15 -3998 ((-493 |#1| |#2|) (-971 |#2|))) (-15 -2550 ((-971 |#2|) (-493 |#1| |#2|))) (-15 -1745 ((-971 |#2|) (-253 |#1| |#2|))) (-15 -4047 ((-253 |#1| |#2|) (-971 |#2|)))) (-656 (-1197)) (-1070)) (T -963)) +((-4047 (*1 *2 *3) (-12 (-5 *3 (-971 *5)) (-4 *5 (-1070)) (-5 *2 (-253 *4 *5)) (-5 *1 (-963 *4 *5)) (-14 *4 (-656 (-1197))))) (-1745 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) (-5 *2 (-971 *5)) (-5 *1 (-963 *4 *5)))) (-2550 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) (-5 *2 (-971 *5)) (-5 *1 (-963 *4 *5)))) (-3998 (*1 *2 *3) (-12 (-5 *3 (-971 *5)) (-4 *5 (-1070)) (-5 *2 (-493 *4 *5)) (-5 *1 (-963 *4 *5)) (-14 *4 (-656 (-1197))))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) (-5 *2 (-253 *4 *5)) (-5 *1 (-963 *4 *5)))) (-3492 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) (-5 *2 (-493 *4 *5)) (-5 *1 (-963 *4 *5))))) +(-10 -7 (-15 -3492 ((-493 |#1| |#2|) (-253 |#1| |#2|))) (-15 -1690 ((-253 |#1| |#2|) (-493 |#1| |#2|))) (-15 -3998 ((-493 |#1| |#2|) (-971 |#2|))) (-15 -2550 ((-971 |#2|) (-493 |#1| |#2|))) (-15 -1745 ((-971 |#2|) (-253 |#1| |#2|))) (-15 -4047 ((-253 |#1| |#2|) (-971 |#2|)))) +((-3331 (((-656 |#2|) |#2| |#2|) 10)) (-1933 (((-783) (-656 |#1|)) 48 (|has| |#1| (-860)))) (-2655 (((-656 |#2|) |#2|) 11)) (-2461 (((-783) (-656 |#1|) (-576) (-576)) 52 (|has| |#1| (-860)))) (-3739 ((|#1| |#2|) 38 (|has| |#1| (-860))))) +(((-964 |#1| |#2|) (-10 -7 (-15 -3331 ((-656 |#2|) |#2| |#2|)) (-15 -2655 ((-656 |#2|) |#2|)) (IF (|has| |#1| (-860)) (PROGN (-15 -3739 (|#1| |#2|)) (-15 -1933 ((-783) (-656 |#1|))) (-15 -2461 ((-783) (-656 |#1|) (-576) (-576)))) |%noBranch|)) (-374) (-1264 |#1|)) (T -964)) +((-2461 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-576)) (-4 *5 (-860)) (-4 *5 (-374)) (-5 *2 (-783)) (-5 *1 (-964 *5 *6)) (-4 *6 (-1264 *5)))) (-1933 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-860)) (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-964 *4 *5)) (-4 *5 (-1264 *4)))) (-3739 (*1 *2 *3) (-12 (-4 *2 (-374)) (-4 *2 (-860)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1264 *2)))) (-2655 (*1 *2 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-964 *4 *3)) (-4 *3 (-1264 *4)))) (-3331 (*1 *2 *3 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-964 *4 *3)) (-4 *3 (-1264 *4))))) +(-10 -7 (-15 -3331 ((-656 |#2|) |#2| |#2|)) (-15 -2655 ((-656 |#2|) |#2|)) (IF (|has| |#1| (-860)) (PROGN (-15 -3739 (|#1| |#2|)) (-15 -1933 ((-783) (-656 |#1|))) (-15 -2461 ((-783) (-656 |#1|) (-576) (-576)))) |%noBranch|)) +((-4116 (((-971 |#2|) (-1 |#2| |#1|) (-971 |#1|)) 19))) +(((-965 |#1| |#2|) (-10 -7 (-15 -4116 ((-971 |#2|) (-1 |#2| |#1|) (-971 |#1|)))) (-1070) (-1070)) (T -965)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-971 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-5 *2 (-971 *6)) (-5 *1 (-965 *5 *6))))) +(-10 -7 (-15 -4116 ((-971 |#2|) (-1 |#2| |#1|) (-971 |#1|)))) +((-1797 (((-1261 |#1| (-971 |#2|)) (-971 |#2|) (-1284 |#1|)) 18))) +(((-966 |#1| |#2|) (-10 -7 (-15 -1797 ((-1261 |#1| (-971 |#2|)) (-971 |#2|) (-1284 |#1|)))) (-1197) (-1070)) (T -966)) +((-1797 (*1 *2 *3 *4) (-12 (-5 *4 (-1284 *5)) (-14 *5 (-1197)) (-4 *6 (-1070)) (-5 *2 (-1261 *5 (-971 *6))) (-5 *1 (-966 *5 *6)) (-5 *3 (-971 *6))))) +(-10 -7 (-15 -1797 ((-1261 |#1| (-971 |#2|)) (-971 |#2|) (-1284 |#1|)))) +((-4329 (((-783) $) 88) (((-783) $ (-656 |#4|)) 93)) (-3444 (($ $) 203)) (-3760 (((-430 $) $) 195)) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 141)) (-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2859 ((|#2| $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL) ((|#4| $) 73)) (-4334 (($ $ $ |#4|) 95)) (-3674 (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) 131) (((-701 |#2|) (-701 $)) 121)) (-1547 (($ $) 210) (($ $ |#4|) 213)) (-2103 (((-656 $) $) 77)) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 229) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 222)) (-2846 (((-656 $) $) 34)) (-1944 (($ |#2| |#3|) NIL) (($ $ |#4| (-783)) NIL) (($ $ (-656 |#4|) (-656 (-783))) 71)) (-1915 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $ |#4|) 192)) (-3845 (((-3 (-656 $) "failed") $) 52)) (-2363 (((-3 (-656 $) "failed") $) 39)) (-1452 (((-3 (-2 (|:| |var| |#4|) (|:| -2508 (-783))) "failed") $) 57)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 134)) (-1644 (((-430 (-1193 $)) (-1193 $)) 147)) (-4296 (((-430 (-1193 $)) (-1193 $)) 145)) (-1828 (((-430 $) $) 165)) (-3282 (($ $ (-656 (-304 $))) 24) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-656 |#4|) (-656 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-656 |#4|) (-656 $)) NIL)) (-2269 (($ $ |#4|) 97)) (-4171 (((-907 (-390)) $) 243) (((-907 (-576)) $) 236) (((-548) $) 251)) (-4370 ((|#2| $) NIL) (($ $ |#4|) 205)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) 184)) (-1822 ((|#2| $ |#3|) NIL) (($ $ |#4| (-783)) 62) (($ $ (-656 |#4|) (-656 (-783))) 69)) (-3390 (((-3 $ "failed") $) 186)) (-2399 (((-112) $ $) 216))) +(((-967 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3327 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|))) (-15 -3760 ((-430 |#1|) |#1|)) (-15 -3444 (|#1| |#1|)) (-15 -3390 ((-3 |#1| "failed") |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -4171 ((-907 (-576)) |#1|)) (-15 -4171 ((-907 (-390)) |#1|)) (-15 -3325 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -3325 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -4296 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -1644 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -3220 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -2889 ((-3 (-1288 |#1|) "failed") (-701 |#1|))) (-15 -1547 (|#1| |#1| |#4|)) (-15 -4370 (|#1| |#1| |#4|)) (-15 -2269 (|#1| |#1| |#4|)) (-15 -4334 (|#1| |#1| |#1| |#4|)) (-15 -2103 ((-656 |#1|) |#1|)) (-15 -4329 ((-783) |#1| (-656 |#4|))) (-15 -4329 ((-783) |#1|)) (-15 -1452 ((-3 (-2 (|:| |var| |#4|) (|:| -2508 (-783))) "failed") |#1|)) (-15 -3845 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2363 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1944 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -1944 (|#1| |#1| |#4| (-783))) (-15 -1915 ((-2 (|:| -1855 |#1|) (|:| -3891 |#1|)) |#1| |#1| |#4|)) (-15 -2846 ((-656 |#1|) |#1|)) (-15 -1822 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -1822 (|#1| |#1| |#4| (-783))) (-15 -3674 ((-701 |#2|) (-701 |#1|))) (-15 -3674 ((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -3674 ((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -3674 ((-701 (-576)) (-701 |#1|))) (-15 -1572 ((-3 |#4| "failed") |#1|)) (-15 -2859 (|#4| |#1|)) (-15 -3282 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -3282 (|#1| |#1| |#4| |#1|)) (-15 -3282 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -3282 (|#1| |#1| |#4| |#2|)) (-15 -3282 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3282 (|#1| |#1| |#1| |#1|)) (-15 -3282 (|#1| |#1| (-304 |#1|))) (-15 -3282 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1944 (|#1| |#2| |#3|)) (-15 -1822 (|#2| |#1| |#3|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -4370 (|#2| |#1|)) (-15 -1547 (|#1| |#1|)) (-15 -2399 ((-112) |#1| |#1|))) (-968 |#2| |#3| |#4|) (-1070) (-805) (-861)) (T -967)) +NIL +(-10 -8 (-15 -3327 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|))) (-15 -3760 ((-430 |#1|) |#1|)) (-15 -3444 (|#1| |#1|)) (-15 -3390 ((-3 |#1| "failed") |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -4171 ((-907 (-576)) |#1|)) (-15 -4171 ((-907 (-390)) |#1|)) (-15 -3325 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -3325 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -4296 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -1644 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -3220 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -2889 ((-3 (-1288 |#1|) "failed") (-701 |#1|))) (-15 -1547 (|#1| |#1| |#4|)) (-15 -4370 (|#1| |#1| |#4|)) (-15 -2269 (|#1| |#1| |#4|)) (-15 -4334 (|#1| |#1| |#1| |#4|)) (-15 -2103 ((-656 |#1|) |#1|)) (-15 -4329 ((-783) |#1| (-656 |#4|))) (-15 -4329 ((-783) |#1|)) (-15 -1452 ((-3 (-2 (|:| |var| |#4|) (|:| -2508 (-783))) "failed") |#1|)) (-15 -3845 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2363 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1944 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -1944 (|#1| |#1| |#4| (-783))) (-15 -1915 ((-2 (|:| -1855 |#1|) (|:| -3891 |#1|)) |#1| |#1| |#4|)) (-15 -2846 ((-656 |#1|) |#1|)) (-15 -1822 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -1822 (|#1| |#1| |#4| (-783))) (-15 -3674 ((-701 |#2|) (-701 |#1|))) (-15 -3674 ((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -3674 ((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -3674 ((-701 (-576)) (-701 |#1|))) (-15 -1572 ((-3 |#4| "failed") |#1|)) (-15 -2859 (|#4| |#1|)) (-15 -3282 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -3282 (|#1| |#1| |#4| |#1|)) (-15 -3282 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -3282 (|#1| |#1| |#4| |#2|)) (-15 -3282 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3282 (|#1| |#1| |#1| |#1|)) (-15 -3282 (|#1| |#1| (-304 |#1|))) (-15 -3282 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1944 (|#1| |#2| |#3|)) (-15 -1822 (|#2| |#1| |#3|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -4370 (|#2| |#1|)) (-15 -1547 (|#1| |#1|)) (-15 -2399 ((-112) |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-1969 (((-656 |#3|) $) 113)) (-1797 (((-1193 $) $ |#3|) 128) (((-1193 |#1|) $) 127)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-4195 (($ $) 91 (|has| |#1| (-568)))) (-1760 (((-112) $) 93 (|has| |#1| (-568)))) (-4329 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-2428 (((-3 $ "failed") $ $) 20)) (-3646 (((-430 (-1193 $)) (-1193 $)) 103 (|has| |#1| (-928)))) (-3444 (($ $) 101 (|has| |#1| (-464)))) (-3760 (((-430 $) $) 100 (|has| |#1| (-464)))) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 106 (|has| |#1| (-928)))) (-3404 (($) 18 T CONST)) (-1572 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1059 (-576)))) (((-3 |#3| "failed") $) 143)) (-2859 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1059 (-576)))) ((|#3| $) 144)) (-4334 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-2114 (($ $) 161)) (-3674 (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 137) (((-701 |#1|) (-701 $)) 136)) (-3673 (((-3 $ "failed") $) 37)) (-1547 (($ $) 183 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-2103 (((-656 $) $) 112)) (-3833 (((-112) $) 99 (|has| |#1| (-928)))) (-4124 (($ $ |#1| |#2| $) 179)) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 87 (-12 (|has| |#3| (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 86 (-12 (|has| |#3| (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-1351 (((-112) $) 35)) (-3799 (((-783) $) 176)) (-1956 (($ (-1193 |#1|) |#3|) 120) (($ (-1193 $) |#3|) 119)) (-2846 (((-656 $) $) 129)) (-3538 (((-112) $) 159)) (-1944 (($ |#1| |#2|) 160) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-1915 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $ |#3|) 123)) (-2578 ((|#2| $) 177) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-3878 (($ (-1 |#2| |#2|) $) 178)) (-4116 (($ (-1 |#1| |#1|) $) 158)) (-2289 (((-3 |#3| "failed") $) 126)) (-3676 (((-701 (-576)) (-1288 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 140 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 135) (((-701 |#1|) (-1288 $)) 134)) (-2081 (($ $) 156)) (-2091 ((|#1| $) 155)) (-3457 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-2046 (((-1179) $) 10)) (-3845 (((-3 (-656 $) "failed") $) 117)) (-2363 (((-3 (-656 $) "failed") $) 118)) (-1452 (((-3 (-2 (|:| |var| |#3|) (|:| -2508 (-783))) "failed") $) 116)) (-1450 (((-1141) $) 11)) (-2060 (((-112) $) 173)) (-2070 ((|#1| $) 174)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 98 (|has| |#1| (-464)))) (-3497 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-1644 (((-430 (-1193 $)) (-1193 $)) 105 (|has| |#1| (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) 104 (|has| |#1| (-928)))) (-1828 (((-430 $) $) 102 (|has| |#1| (-928)))) (-3475 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-3282 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-656 |#3|) (-656 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-656 |#3|) (-656 $)) 145)) (-2269 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2774 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40)) (-2683 ((|#2| $) 157) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132)) (-4171 (((-907 (-390)) $) 85 (-12 (|has| |#3| (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) 84 (-12 (|has| |#3| (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-4370 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) 107 (-2674 (|has| $ (-146)) (|has| |#1| (-928))))) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ |#3|) 142) (($ $) 88 (|has| |#1| (-568))) (($ (-419 (-576))) 81 (-2759 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))))) (-2937 (((-656 |#1|) $) 175)) (-1822 ((|#1| $ |#2|) 162) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-3390 (((-3 $ "failed") $) 82 (-2759 (-2674 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3154 (((-783)) 32 T CONST)) (-2717 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-2399 (((-112) $ $) 6)) (-1505 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2020 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41)) (-2924 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) (((-968 |#1| |#2| |#3|) (-141) (-1070) (-805) (-861)) (T -968)) -((-3767 (*1 *1 *1) (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-3634 (*1 *2 *1 *3) (-12 (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-783)))) (-3634 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-783))))) (-3177 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-968 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *2 (-861)))) (-3177 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)))) (-1608 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-968 *3 *4 *5)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-1193 *1)) (-4 *1 (-968 *4 *5 *3)))) (-1798 (*1 *2 *1) (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-1193 *3)))) (-3721 (*1 *2 *1) (|partial| -12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-3751 (*1 *2 *1 *3) (-12 (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-783)))) (-3751 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-783))))) (-4130 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-2 (|:| -2715 *1) (|:| -3624 *1))) (-4 *1 (-968 *4 *5 *3)))) (-1945 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-968 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *2 (-861)))) (-1945 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)))) (-1955 (*1 *1 *2 *3) (-12 (-5 *2 (-1193 *4)) (-4 *4 (-1070)) (-4 *1 (-968 *4 *5 *3)) (-4 *5 (-805)) (-4 *3 (-861)))) (-1955 (*1 *1 *2 *3) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)))) (-1690 (*1 *2 *1) (|partial| -12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-968 *3 *4 *5)))) (-1385 (*1 *2 *1) (|partial| -12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-968 *3 *4 *5)))) (-2040 (*1 *2 *1) (|partial| -12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| |var| *5) (|:| -3422 (-783)))))) (-3543 (*1 *2 *1) (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-783)))) (-3543 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-783)))) (-1969 (*1 *2 *1) (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *5)))) (-2103 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-968 *3 *4 *5)))) (-3230 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *3 (-174)))) (-4352 (*1 *1 *1 *2) (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *3 (-174)))) (-2457 (*1 *1 *1 *2) (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *3 (-464)))) (-3767 (*1 *1 *1 *2) (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *3 (-464)))) (-2487 (*1 *1 *1) (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-3921 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-430 *1)) (-4 *1 (-968 *3 *4 *5))))) -(-13 (-917 |t#3|) (-336 |t#1| |t#2|) (-319 $) (-526 |t#3| |t#1|) (-526 |t#3| $) (-1059 |t#3|) (-388 |t#1|) (-10 -8 (-15 -3634 ((-783) $ |t#3|)) (-15 -3634 ((-656 (-783)) $ (-656 |t#3|))) (-15 -3177 ($ $ |t#3| (-783))) (-15 -3177 ($ $ (-656 |t#3|) (-656 (-783)))) (-15 -1608 ((-656 $) $)) (-15 -1798 ((-1193 $) $ |t#3|)) (-15 -1798 ((-1193 |t#1|) $)) (-15 -3721 ((-3 |t#3| "failed") $)) (-15 -3751 ((-783) $ |t#3|)) (-15 -3751 ((-656 (-783)) $ (-656 |t#3|))) (-15 -4130 ((-2 (|:| -2715 $) (|:| -3624 $)) $ $ |t#3|)) (-15 -1945 ($ $ |t#3| (-783))) (-15 -1945 ($ $ (-656 |t#3|) (-656 (-783)))) (-15 -1955 ($ (-1193 |t#1|) |t#3|)) (-15 -1955 ($ (-1193 $) |t#3|)) (-15 -1690 ((-3 (-656 $) "failed") $)) (-15 -1385 ((-3 (-656 $) "failed") $)) (-15 -2040 ((-3 (-2 (|:| |var| |t#3|) (|:| -3422 (-783))) "failed") $)) (-15 -3543 ((-783) $)) (-15 -3543 ((-783) $ (-656 |t#3|))) (-15 -1969 ((-656 |t#3|) $)) (-15 -2103 ((-656 $) $)) (IF (|has| |t#1| (-626 (-548))) (IF (|has| |t#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-626 (-907 (-576)))) (IF (|has| |t#3| (-626 (-907 (-576)))) (-6 (-626 (-907 (-576)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-626 (-907 (-390)))) (IF (|has| |t#3| (-626 (-907 (-390)))) (-6 (-626 (-907 (-390)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-901 (-576))) (IF (|has| |t#3| (-901 (-576))) (-6 (-901 (-576))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-901 (-390))) (IF (|has| |t#3| (-901 (-390))) (-6 (-901 (-390))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -3230 ($ $ $ |t#3|)) (-15 -4352 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-6 (-464)) (-15 -2457 ($ $ |t#3|)) (-15 -3767 ($ $)) (-15 -3767 ($ $ |t#3|)) (-15 -3921 ((-430 $) $)) (-15 -2487 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4463)) (-6 -4463) |%noBranch|) (IF (|has| |t#1| (-928)) (-6 (-928)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2760 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#3|) . T) ((-628 $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-876)) . T) ((-174) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-907 (-390))) -12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#3| (-626 (-907 (-390))))) ((-626 (-907 (-576))) -12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#3| (-626 (-907 (-576))))) ((-300) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2760 (|has| |#1| (-928)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-911 $ |#3|) . T) ((-917 |#3|) . T) ((-919 |#3|) . T) ((-901 (-390)) -12 (|has| |#1| (-901 (-390))) (|has| |#3| (-901 (-390)))) ((-901 (-576)) -12 (|has| |#1| (-901 (-576))) (|has| |#3| (-901 (-576)))) ((-928) |has| |#1| (-928)) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1059 |#3|) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) |has| |#1| (-928))) -((-1969 (((-656 |#2|) |#5|) 40)) (-1798 (((-1193 |#5|) |#5| |#2| (-1193 |#5|)) 23) (((-419 (-1193 |#5|)) |#5| |#2|) 16)) (-1955 ((|#5| (-419 (-1193 |#5|)) |#2|) 30)) (-3721 (((-3 |#2| "failed") |#5|) 71)) (-1385 (((-3 (-656 |#5|) "failed") |#5|) 65)) (-3349 (((-3 (-2 (|:| |val| |#5|) (|:| -3422 (-576))) "failed") |#5|) 53)) (-1690 (((-3 (-656 |#5|) "failed") |#5|) 67)) (-2040 (((-3 (-2 (|:| |var| |#2|) (|:| -3422 (-576))) "failed") |#5|) 57))) -(((-969 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1969 ((-656 |#2|) |#5|)) (-15 -3721 ((-3 |#2| "failed") |#5|)) (-15 -1798 ((-419 (-1193 |#5|)) |#5| |#2|)) (-15 -1955 (|#5| (-419 (-1193 |#5|)) |#2|)) (-15 -1798 ((-1193 |#5|) |#5| |#2| (-1193 |#5|))) (-15 -1690 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -1385 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -2040 ((-3 (-2 (|:| |var| |#2|) (|:| -3422 (-576))) "failed") |#5|)) (-15 -3349 ((-3 (-2 (|:| |val| |#5|) (|:| -3422 (-576))) "failed") |#5|))) (-805) (-861) (-1070) (-968 |#3| |#1| |#2|) (-13 (-374) (-10 -8 (-15 -3570 ($ |#4|)) (-15 -1570 (|#4| $)) (-15 -1581 (|#4| $))))) (T -969)) -((-3349 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3422 (-576)))) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3570 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))))) (-2040 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3422 (-576)))) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3570 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))))) (-1385 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-656 *3)) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3570 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))))) (-1690 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-656 *3)) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3570 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))))) (-1798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1193 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3570 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))) (-4 *7 (-968 *6 *5 *4)) (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-1070)) (-5 *1 (-969 *5 *4 *6 *7 *3)))) (-1955 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1193 *2))) (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-1070)) (-4 *2 (-13 (-374) (-10 -8 (-15 -3570 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))) (-5 *1 (-969 *5 *4 *6 *7 *2)) (-4 *7 (-968 *6 *5 *4)))) (-1798 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-1070)) (-4 *7 (-968 *6 *5 *4)) (-5 *2 (-419 (-1193 *3))) (-5 *1 (-969 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3570 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))))) (-3721 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-1070)) (-4 *6 (-968 *5 *4 *2)) (-4 *2 (-861)) (-5 *1 (-969 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3570 ($ *6)) (-15 -1570 (*6 $)) (-15 -1581 (*6 $))))))) (-1969 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-656 *5)) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3570 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $)))))))) -(-10 -7 (-15 -1969 ((-656 |#2|) |#5|)) (-15 -3721 ((-3 |#2| "failed") |#5|)) (-15 -1798 ((-419 (-1193 |#5|)) |#5| |#2|)) (-15 -1955 (|#5| (-419 (-1193 |#5|)) |#2|)) (-15 -1798 ((-1193 |#5|) |#5| |#2| (-1193 |#5|))) (-15 -1690 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -1385 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -2040 ((-3 (-2 (|:| |var| |#2|) (|:| -3422 (-576))) "failed") |#5|)) (-15 -3349 ((-3 (-2 (|:| |val| |#5|) (|:| -3422 (-576))) "failed") |#5|))) -((-4117 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-970 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4117 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-805) (-861) (-1070) (-968 |#3| |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -3030 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) (T -970)) -((-4117 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-861)) (-4 *8 (-1070)) (-4 *6 (-805)) (-4 *2 (-13 (-1121) (-10 -8 (-15 -3030 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) (-5 *1 (-970 *6 *7 *8 *5 *2)) (-4 *5 (-968 *8 *6 *7))))) -(-10 -7 (-15 -4117 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-1969 (((-656 (-1197)) $) 16)) (-1798 (((-1193 $) $ (-1197)) 21) (((-1193 |#1|) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2757 (($ $) NIL (|has| |#1| (-568)))) (-3788 (((-112) $) NIL (|has| |#1| (-568)))) (-3543 (((-783) $) NIL) (((-783) $ (-656 (-1197))) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3601 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2487 (($ $) NIL (|has| |#1| (-464)))) (-3921 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) 8) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-1197) "failed") $) NIL)) (-2860 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-1197) $) NIL)) (-3230 (($ $ $ (-1197)) NIL (|has| |#1| (-174)))) (-2114 (($ $) NIL)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-3767 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1197)) NIL (|has| |#1| (-464)))) (-2103 (((-656 $) $) NIL)) (-4249 (((-112) $) NIL (|has| |#1| (-928)))) (-2431 (($ $ |#1| (-543 (-1197)) $) NIL)) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1197) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1197) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-4193 (((-112) $) NIL)) (-2217 (((-783) $) NIL)) (-1955 (($ (-1193 |#1|) (-1197)) NIL) (($ (-1193 $) (-1197)) NIL)) (-1608 (((-656 $) $) NIL)) (-2823 (((-112) $) NIL)) (-1945 (($ |#1| (-543 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-4130 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $ (-1197)) NIL)) (-3751 (((-543 (-1197)) $) NIL) (((-783) $ (-1197)) NIL) (((-656 (-783)) $ (-656 (-1197))) NIL)) (-2999 (($ (-1 (-543 (-1197)) (-543 (-1197))) $) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-3721 (((-3 (-1197) "failed") $) 19)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-3458 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3699 (((-1179) $) NIL)) (-1385 (((-3 (-656 $) "failed") $) NIL)) (-1690 (((-3 (-656 $) "failed") $) NIL)) (-2040 (((-3 (-2 (|:| |var| (-1197)) (|:| -3422 (-783))) "failed") $) NIL)) (-1491 (($ $ (-1197)) 29 (|has| |#1| (-38 (-419 (-576)))))) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) NIL)) (-2070 ((|#1| $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4100 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-928)))) (-3476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3284 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1197) |#1|) NIL) (($ $ (-656 (-1197)) (-656 |#1|)) NIL) (($ $ (-1197) $) NIL) (($ $ (-656 (-1197)) (-656 $)) NIL)) (-4352 (($ $ (-1197)) NIL (|has| |#1| (-174)))) (-2775 (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL)) (-3634 (((-543 (-1197)) $) NIL) (((-783) $ (-1197)) NIL) (((-656 (-783)) $ (-656 (-1197))) NIL)) (-4172 (((-907 (-390)) $) NIL (-12 (|has| (-1197) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-1197) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-1197) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-2457 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1197)) NIL (|has| |#1| (-464)))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-3570 (((-876) $) 25) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1197)) 27) (($ (-419 (-576))) NIL (-2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-1618 (((-656 |#1|) $) NIL)) (-3177 ((|#1| $ (-543 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-4336 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3996 (((-783)) NIL T CONST)) (-2541 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2020 (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL)) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-971 |#1|) (-13 (-968 |#1| (-543 (-1197)) (-1197)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1491 ($ $ (-1197))) |%noBranch|))) (-1070)) (T -971)) -((-1491 (*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-971 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070))))) -(-13 (-968 |#1| (-543 (-1197)) (-1197)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1491 ($ $ (-1197))) |%noBranch|))) -((-3355 (((-2 (|:| -3422 (-783)) (|:| -1714 |#5|) (|:| |radicand| |#5|)) |#3| (-783)) 49)) (-3132 (((-2 (|:| -3422 (-783)) (|:| -1714 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783)) 44)) (-1334 (((-2 (|:| -3422 (-783)) (|:| -1714 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)) 65)) (-3147 (((-2 (|:| -3422 (-783)) (|:| -1714 |#5|) (|:| |radicand| |#5|)) |#5| (-783)) 74 (|has| |#3| (-464))))) -(((-972 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3355 ((-2 (|:| -3422 (-783)) (|:| -1714 |#5|) (|:| |radicand| |#5|)) |#3| (-783))) (-15 -3132 ((-2 (|:| -3422 (-783)) (|:| -1714 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783))) (IF (|has| |#3| (-464)) (-15 -3147 ((-2 (|:| -3422 (-783)) (|:| -1714 |#5|) (|:| |radicand| |#5|)) |#5| (-783))) |%noBranch|) (-15 -1334 ((-2 (|:| -3422 (-783)) (|:| -1714 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)))) (-805) (-861) (-568) (-968 |#3| |#1| |#2|) (-13 (-374) (-10 -8 (-15 -3570 ($ |#4|)) (-15 -1570 (|#4| $)) (-15 -1581 (|#4| $))))) (T -972)) -((-1334 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-568)) (-4 *3 (-968 *7 *5 *6)) (-5 *2 (-2 (|:| -3422 (-783)) (|:| -1714 *3) (|:| |radicand| (-656 *3)))) (-5 *1 (-972 *5 *6 *7 *3 *8)) (-5 *4 (-783)) (-4 *8 (-13 (-374) (-10 -8 (-15 -3570 ($ *3)) (-15 -1570 (*3 $)) (-15 -1581 (*3 $))))))) (-3147 (*1 *2 *3 *4) (-12 (-4 *7 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-568)) (-4 *8 (-968 *7 *5 *6)) (-5 *2 (-2 (|:| -3422 (-783)) (|:| -1714 *3) (|:| |radicand| *3))) (-5 *1 (-972 *5 *6 *7 *8 *3)) (-5 *4 (-783)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3570 ($ *8)) (-15 -1570 (*8 $)) (-15 -1581 (*8 $))))))) (-3132 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-576))) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-568)) (-4 *8 (-968 *7 *5 *6)) (-5 *2 (-2 (|:| -3422 (-783)) (|:| -1714 *9) (|:| |radicand| *9))) (-5 *1 (-972 *5 *6 *7 *8 *9)) (-5 *4 (-783)) (-4 *9 (-13 (-374) (-10 -8 (-15 -3570 ($ *8)) (-15 -1570 (*8 $)) (-15 -1581 (*8 $))))))) (-3355 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-568)) (-4 *7 (-968 *3 *5 *6)) (-5 *2 (-2 (|:| -3422 (-783)) (|:| -1714 *8) (|:| |radicand| *8))) (-5 *1 (-972 *5 *6 *3 *7 *8)) (-5 *4 (-783)) (-4 *8 (-13 (-374) (-10 -8 (-15 -3570 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $)))))))) -(-10 -7 (-15 -3355 ((-2 (|:| -3422 (-783)) (|:| -1714 |#5|) (|:| |radicand| |#5|)) |#3| (-783))) (-15 -3132 ((-2 (|:| -3422 (-783)) (|:| -1714 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783))) (IF (|has| |#3| (-464)) (-15 -3147 ((-2 (|:| -3422 (-783)) (|:| -1714 |#5|) (|:| |radicand| |#5|)) |#5| (-783))) |%noBranch|) (-15 -1334 ((-2 (|:| -3422 (-783)) (|:| -1714 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)))) -((-3489 (((-112) $ $) NIL)) (-2717 (($ (-1141)) 8)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 15) (((-1141) $) 12)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 11))) -(((-973) (-13 (-1121) (-625 (-1141)) (-10 -8 (-15 -2717 ($ (-1141)))))) (T -973)) -((-2717 (*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-973))))) -(-13 (-1121) (-625 (-1141)) (-10 -8 (-15 -2717 ($ (-1141))))) -((-4307 (((-1115 (-227)) $) 8)) (-4295 (((-1115 (-227)) $) 9)) (-3739 (((-656 (-656 (-962 (-227)))) $) 10)) (-3570 (((-876) $) 6))) +((-1547 (*1 *1 *1) (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-2683 (*1 *2 *1 *3) (-12 (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-783)))) (-2683 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-783))))) (-1822 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-968 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *2 (-861)))) (-1822 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)))) (-2846 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-968 *3 *4 *5)))) (-1797 (*1 *2 *1 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-1193 *1)) (-4 *1 (-968 *4 *5 *3)))) (-1797 (*1 *2 *1) (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-1193 *3)))) (-2289 (*1 *2 *1) (|partial| -12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-2578 (*1 *2 *1 *3) (-12 (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-783)))) (-2578 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-783))))) (-1915 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-2 (|:| -1855 *1) (|:| -3891 *1))) (-4 *1 (-968 *4 *5 *3)))) (-1944 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-968 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *2 (-861)))) (-1944 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)))) (-1956 (*1 *1 *2 *3) (-12 (-5 *2 (-1193 *4)) (-4 *4 (-1070)) (-4 *1 (-968 *4 *5 *3)) (-4 *5 (-805)) (-4 *3 (-861)))) (-1956 (*1 *1 *2 *3) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)))) (-2363 (*1 *2 *1) (|partial| -12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-968 *3 *4 *5)))) (-3845 (*1 *2 *1) (|partial| -12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-968 *3 *4 *5)))) (-1452 (*1 *2 *1) (|partial| -12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| |var| *5) (|:| -2508 (-783)))))) (-4329 (*1 *2 *1) (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-783)))) (-4329 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-783)))) (-1969 (*1 *2 *1) (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *5)))) (-2103 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-968 *3 *4 *5)))) (-4334 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *3 (-174)))) (-2269 (*1 *1 *1 *2) (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *3 (-174)))) (-4370 (*1 *1 *1 *2) (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *3 (-464)))) (-1547 (*1 *1 *1 *2) (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *3 (-464)))) (-3444 (*1 *1 *1) (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-3760 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-430 *1)) (-4 *1 (-968 *3 *4 *5))))) +(-13 (-917 |t#3|) (-336 |t#1| |t#2|) (-319 $) (-526 |t#3| |t#1|) (-526 |t#3| $) (-1059 |t#3|) (-388 |t#1|) (-10 -8 (-15 -2683 ((-783) $ |t#3|)) (-15 -2683 ((-656 (-783)) $ (-656 |t#3|))) (-15 -1822 ($ $ |t#3| (-783))) (-15 -1822 ($ $ (-656 |t#3|) (-656 (-783)))) (-15 -2846 ((-656 $) $)) (-15 -1797 ((-1193 $) $ |t#3|)) (-15 -1797 ((-1193 |t#1|) $)) (-15 -2289 ((-3 |t#3| "failed") $)) (-15 -2578 ((-783) $ |t#3|)) (-15 -2578 ((-656 (-783)) $ (-656 |t#3|))) (-15 -1915 ((-2 (|:| -1855 $) (|:| -3891 $)) $ $ |t#3|)) (-15 -1944 ($ $ |t#3| (-783))) (-15 -1944 ($ $ (-656 |t#3|) (-656 (-783)))) (-15 -1956 ($ (-1193 |t#1|) |t#3|)) (-15 -1956 ($ (-1193 $) |t#3|)) (-15 -2363 ((-3 (-656 $) "failed") $)) (-15 -3845 ((-3 (-656 $) "failed") $)) (-15 -1452 ((-3 (-2 (|:| |var| |t#3|) (|:| -2508 (-783))) "failed") $)) (-15 -4329 ((-783) $)) (-15 -4329 ((-783) $ (-656 |t#3|))) (-15 -1969 ((-656 |t#3|) $)) (-15 -2103 ((-656 $) $)) (IF (|has| |t#1| (-626 (-548))) (IF (|has| |t#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-626 (-907 (-576)))) (IF (|has| |t#3| (-626 (-907 (-576)))) (-6 (-626 (-907 (-576)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-626 (-907 (-390)))) (IF (|has| |t#3| (-626 (-907 (-390)))) (-6 (-626 (-907 (-390)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-901 (-576))) (IF (|has| |t#3| (-901 (-576))) (-6 (-901 (-576))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-901 (-390))) (IF (|has| |t#3| (-901 (-390))) (-6 (-901 (-390))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -4334 ($ $ $ |t#3|)) (-15 -2269 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-6 (-464)) (-15 -4370 ($ $ |t#3|)) (-15 -1547 ($ $)) (-15 -1547 ($ $ |t#3|)) (-15 -3760 ((-430 $) $)) (-15 -3444 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4462)) (-6 -4462) |%noBranch|) (IF (|has| |t#1| (-928)) (-6 (-928)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2759 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#3|) . T) ((-628 $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-876)) . T) ((-174) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-907 (-390))) -12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#3| (-626 (-907 (-390))))) ((-626 (-907 (-576))) -12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#3| (-626 (-907 (-576))))) ((-300) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2759 (|has| |#1| (-928)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-911 $ |#3|) . T) ((-917 |#3|) . T) ((-919 |#3|) . T) ((-901 (-390)) -12 (|has| |#1| (-901 (-390))) (|has| |#3| (-901 (-390)))) ((-901 (-576)) -12 (|has| |#1| (-901 (-576))) (|has| |#3| (-901 (-576)))) ((-928) |has| |#1| (-928)) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1059 |#3|) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) |has| |#1| (-928))) +((-1969 (((-656 |#2|) |#5|) 40)) (-1797 (((-1193 |#5|) |#5| |#2| (-1193 |#5|)) 23) (((-419 (-1193 |#5|)) |#5| |#2|) 16)) (-1956 ((|#5| (-419 (-1193 |#5|)) |#2|) 30)) (-2289 (((-3 |#2| "failed") |#5|) 71)) (-3845 (((-3 (-656 |#5|) "failed") |#5|) 65)) (-3030 (((-3 (-2 (|:| |val| |#5|) (|:| -2508 (-576))) "failed") |#5|) 53)) (-2363 (((-3 (-656 |#5|) "failed") |#5|) 67)) (-1452 (((-3 (-2 (|:| |var| |#2|) (|:| -2508 (-576))) "failed") |#5|) 57))) +(((-969 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1969 ((-656 |#2|) |#5|)) (-15 -2289 ((-3 |#2| "failed") |#5|)) (-15 -1797 ((-419 (-1193 |#5|)) |#5| |#2|)) (-15 -1956 (|#5| (-419 (-1193 |#5|)) |#2|)) (-15 -1797 ((-1193 |#5|) |#5| |#2| (-1193 |#5|))) (-15 -2363 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -3845 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -1452 ((-3 (-2 (|:| |var| |#2|) (|:| -2508 (-576))) "failed") |#5|)) (-15 -3030 ((-3 (-2 (|:| |val| |#5|) (|:| -2508 (-576))) "failed") |#5|))) (-805) (-861) (-1070) (-968 |#3| |#1| |#2|) (-13 (-374) (-10 -8 (-15 -3569 ($ |#4|)) (-15 -1570 (|#4| $)) (-15 -1581 (|#4| $))))) (T -969)) +((-3030 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2508 (-576)))) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))))) (-1452 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2508 (-576)))) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))))) (-3845 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-656 *3)) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))))) (-2363 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-656 *3)) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))))) (-1797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1193 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))) (-4 *7 (-968 *6 *5 *4)) (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-1070)) (-5 *1 (-969 *5 *4 *6 *7 *3)))) (-1956 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1193 *2))) (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-1070)) (-4 *2 (-13 (-374) (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))) (-5 *1 (-969 *5 *4 *6 *7 *2)) (-4 *7 (-968 *6 *5 *4)))) (-1797 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-1070)) (-4 *7 (-968 *6 *5 *4)) (-5 *2 (-419 (-1193 *3))) (-5 *1 (-969 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))))) (-2289 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-1070)) (-4 *6 (-968 *5 *4 *2)) (-4 *2 (-861)) (-5 *1 (-969 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3569 ($ *6)) (-15 -1570 (*6 $)) (-15 -1581 (*6 $))))))) (-1969 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-656 *5)) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $)))))))) +(-10 -7 (-15 -1969 ((-656 |#2|) |#5|)) (-15 -2289 ((-3 |#2| "failed") |#5|)) (-15 -1797 ((-419 (-1193 |#5|)) |#5| |#2|)) (-15 -1956 (|#5| (-419 (-1193 |#5|)) |#2|)) (-15 -1797 ((-1193 |#5|) |#5| |#2| (-1193 |#5|))) (-15 -2363 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -3845 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -1452 ((-3 (-2 (|:| |var| |#2|) (|:| -2508 (-576))) "failed") |#5|)) (-15 -3030 ((-3 (-2 (|:| |val| |#5|) (|:| -2508 (-576))) "failed") |#5|))) +((-4116 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-970 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4116 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-805) (-861) (-1070) (-968 |#3| |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -3029 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) (T -970)) +((-4116 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-861)) (-4 *8 (-1070)) (-4 *6 (-805)) (-4 *2 (-13 (-1121) (-10 -8 (-15 -3029 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) (-5 *1 (-970 *6 *7 *8 *5 *2)) (-4 *5 (-968 *8 *6 *7))))) +(-10 -7 (-15 -4116 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-1969 (((-656 (-1197)) $) 16)) (-1797 (((-1193 $) $ (-1197)) 21) (((-1193 |#1|) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4195 (($ $) NIL (|has| |#1| (-568)))) (-1760 (((-112) $) NIL (|has| |#1| (-568)))) (-4329 (((-783) $) NIL) (((-783) $ (-656 (-1197))) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3646 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3444 (($ $) NIL (|has| |#1| (-464)))) (-3760 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) 8) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-1197) "failed") $) NIL)) (-2859 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-1197) $) NIL)) (-4334 (($ $ $ (-1197)) NIL (|has| |#1| (-174)))) (-2114 (($ $) NIL)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1547 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1197)) NIL (|has| |#1| (-464)))) (-2103 (((-656 $) $) NIL)) (-3833 (((-112) $) NIL (|has| |#1| (-928)))) (-4124 (($ $ |#1| (-543 (-1197)) $) NIL)) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1197) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1197) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-1351 (((-112) $) NIL)) (-3799 (((-783) $) NIL)) (-1956 (($ (-1193 |#1|) (-1197)) NIL) (($ (-1193 $) (-1197)) NIL)) (-2846 (((-656 $) $) NIL)) (-3538 (((-112) $) NIL)) (-1944 (($ |#1| (-543 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-1915 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $ (-1197)) NIL)) (-2578 (((-543 (-1197)) $) NIL) (((-783) $ (-1197)) NIL) (((-656 (-783)) $ (-656 (-1197))) NIL)) (-3878 (($ (-1 (-543 (-1197)) (-543 (-1197))) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2289 (((-3 (-1197) "failed") $) 19)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2046 (((-1179) $) NIL)) (-3845 (((-3 (-656 $) "failed") $) NIL)) (-2363 (((-3 (-656 $) "failed") $) NIL)) (-1452 (((-3 (-2 (|:| |var| (-1197)) (|:| -2508 (-783))) "failed") $) NIL)) (-4160 (($ $ (-1197)) 29 (|has| |#1| (-38 (-419 (-576)))))) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) NIL)) (-2070 ((|#1| $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3497 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1644 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-928)))) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3282 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1197) |#1|) NIL) (($ $ (-656 (-1197)) (-656 |#1|)) NIL) (($ $ (-1197) $) NIL) (($ $ (-656 (-1197)) (-656 $)) NIL)) (-2269 (($ $ (-1197)) NIL (|has| |#1| (-174)))) (-2774 (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL)) (-2683 (((-543 (-1197)) $) NIL) (((-783) $ (-1197)) NIL) (((-656 (-783)) $ (-656 (-1197))) NIL)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| (-1197) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-1197) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-1197) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-4370 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1197)) NIL (|has| |#1| (-464)))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-3569 (((-876) $) 25) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1197)) 27) (($ (-419 (-576))) NIL (-2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2937 (((-656 |#1|) $) NIL)) (-1822 ((|#1| $ (-543 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-3390 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3154 (((-783)) NIL T CONST)) (-2717 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2020 (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL)) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-971 |#1|) (-13 (-968 |#1| (-543 (-1197)) (-1197)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4160 ($ $ (-1197))) |%noBranch|))) (-1070)) (T -971)) +((-4160 (*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-971 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070))))) +(-13 (-968 |#1| (-543 (-1197)) (-1197)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4160 ($ $ (-1197))) |%noBranch|))) +((-3103 (((-2 (|:| -2508 (-783)) (|:| -1715 |#5|) (|:| |radicand| |#5|)) |#3| (-783)) 49)) (-1434 (((-2 (|:| -2508 (-783)) (|:| -1715 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783)) 44)) (-2934 (((-2 (|:| -2508 (-783)) (|:| -1715 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)) 65)) (-1544 (((-2 (|:| -2508 (-783)) (|:| -1715 |#5|) (|:| |radicand| |#5|)) |#5| (-783)) 74 (|has| |#3| (-464))))) +(((-972 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3103 ((-2 (|:| -2508 (-783)) (|:| -1715 |#5|) (|:| |radicand| |#5|)) |#3| (-783))) (-15 -1434 ((-2 (|:| -2508 (-783)) (|:| -1715 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783))) (IF (|has| |#3| (-464)) (-15 -1544 ((-2 (|:| -2508 (-783)) (|:| -1715 |#5|) (|:| |radicand| |#5|)) |#5| (-783))) |%noBranch|) (-15 -2934 ((-2 (|:| -2508 (-783)) (|:| -1715 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)))) (-805) (-861) (-568) (-968 |#3| |#1| |#2|) (-13 (-374) (-10 -8 (-15 -3569 ($ |#4|)) (-15 -1570 (|#4| $)) (-15 -1581 (|#4| $))))) (T -972)) +((-2934 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-568)) (-4 *3 (-968 *7 *5 *6)) (-5 *2 (-2 (|:| -2508 (-783)) (|:| -1715 *3) (|:| |radicand| (-656 *3)))) (-5 *1 (-972 *5 *6 *7 *3 *8)) (-5 *4 (-783)) (-4 *8 (-13 (-374) (-10 -8 (-15 -3569 ($ *3)) (-15 -1570 (*3 $)) (-15 -1581 (*3 $))))))) (-1544 (*1 *2 *3 *4) (-12 (-4 *7 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-568)) (-4 *8 (-968 *7 *5 *6)) (-5 *2 (-2 (|:| -2508 (-783)) (|:| -1715 *3) (|:| |radicand| *3))) (-5 *1 (-972 *5 *6 *7 *8 *3)) (-5 *4 (-783)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3569 ($ *8)) (-15 -1570 (*8 $)) (-15 -1581 (*8 $))))))) (-1434 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-576))) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-568)) (-4 *8 (-968 *7 *5 *6)) (-5 *2 (-2 (|:| -2508 (-783)) (|:| -1715 *9) (|:| |radicand| *9))) (-5 *1 (-972 *5 *6 *7 *8 *9)) (-5 *4 (-783)) (-4 *9 (-13 (-374) (-10 -8 (-15 -3569 ($ *8)) (-15 -1570 (*8 $)) (-15 -1581 (*8 $))))))) (-3103 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-568)) (-4 *7 (-968 *3 *5 *6)) (-5 *2 (-2 (|:| -2508 (-783)) (|:| -1715 *8) (|:| |radicand| *8))) (-5 *1 (-972 *5 *6 *3 *7 *8)) (-5 *4 (-783)) (-4 *8 (-13 (-374) (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $)))))))) +(-10 -7 (-15 -3103 ((-2 (|:| -2508 (-783)) (|:| -1715 |#5|) (|:| |radicand| |#5|)) |#3| (-783))) (-15 -1434 ((-2 (|:| -2508 (-783)) (|:| -1715 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783))) (IF (|has| |#3| (-464)) (-15 -1544 ((-2 (|:| -2508 (-783)) (|:| -1715 |#5|) (|:| |radicand| |#5|)) |#5| (-783))) |%noBranch|) (-15 -2934 ((-2 (|:| -2508 (-783)) (|:| -1715 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)))) +((-3488 (((-112) $ $) NIL)) (-2715 (($ (-1141)) 8)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 15) (((-1141) $) 12)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 11))) +(((-973) (-13 (-1121) (-625 (-1141)) (-10 -8 (-15 -2715 ($ (-1141)))))) (T -973)) +((-2715 (*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-973))))) +(-13 (-1121) (-625 (-1141)) (-10 -8 (-15 -2715 ($ (-1141))))) +((-4305 (((-1115 (-227)) $) 8)) (-4293 (((-1115 (-227)) $) 9)) (-2472 (((-656 (-656 (-962 (-227)))) $) 10)) (-3569 (((-876) $) 6))) (((-974) (-141)) (T -974)) -((-3739 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-656 (-656 (-962 (-227))))))) (-4295 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1115 (-227))))) (-4307 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1115 (-227)))))) -(-13 (-625 (-876)) (-10 -8 (-15 -3739 ((-656 (-656 (-962 (-227)))) $)) (-15 -4295 ((-1115 (-227)) $)) (-15 -4307 ((-1115 (-227)) $)))) +((-2472 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-656 (-656 (-962 (-227))))))) (-4293 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1115 (-227))))) (-4305 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1115 (-227)))))) +(-13 (-625 (-876)) (-10 -8 (-15 -2472 ((-656 (-656 (-962 (-227)))) $)) (-15 -4293 ((-1115 (-227)) $)) (-15 -4305 ((-1115 (-227)) $)))) (((-625 (-876)) . T)) -((-1627 (((-3 (-701 |#1|) "failed") |#2| (-940)) 18))) -(((-975 |#1| |#2|) (-10 -7 (-15 -1627 ((-3 (-701 |#1|) "failed") |#2| (-940)))) (-568) (-668 |#1|)) (T -975)) -((-1627 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-940)) (-4 *5 (-568)) (-5 *2 (-701 *5)) (-5 *1 (-975 *5 *3)) (-4 *3 (-668 *5))))) -(-10 -7 (-15 -1627 ((-3 (-701 |#1|) "failed") |#2| (-940)))) -((-1950 (((-977 |#2|) (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|) 16)) (-3686 ((|#2| (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|) 18)) (-4117 (((-977 |#2|) (-1 |#2| |#1|) (-977 |#1|)) 13))) -(((-976 |#1| |#2|) (-10 -7 (-15 -1950 ((-977 |#2|) (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|)) (-15 -3686 (|#2| (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|)) (-15 -4117 ((-977 |#2|) (-1 |#2| |#1|) (-977 |#1|)))) (-1238) (-1238)) (T -976)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-977 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-977 *6)) (-5 *1 (-976 *5 *6)))) (-3686 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-977 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-976 *5 *2)))) (-1950 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-977 *6)) (-4 *6 (-1238)) (-4 *5 (-1238)) (-5 *2 (-977 *5)) (-5 *1 (-976 *6 *5))))) -(-10 -7 (-15 -1950 ((-977 |#2|) (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|)) (-15 -3686 (|#2| (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|)) (-15 -4117 ((-977 |#2|) (-1 |#2| |#1|) (-977 |#1|)))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2047 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4466)))) (-1710 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-4298 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4466))) (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-861))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-1808 (((-112) $ (-783)) NIL)) (-3756 ((|#1| $ (-576) |#1|) 19 (|has| $ (-6 -4466))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4466)))) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3886 (($) NIL T CONST)) (-3990 (($ $) NIL (|has| $ (-6 -4466)))) (-3836 (($ $) NIL)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3946 (($ |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4335 ((|#1| $ (-576) |#1|) 18 (|has| $ (-6 -4466)))) (-4274 ((|#1| $ (-576)) 16)) (-3660 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-3966 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-4141 (($ (-783) |#1|) 15)) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-576) $) 11 (|has| (-576) (-861)))) (-3125 (($ $ $) NIL (|has| |#1| (-861)))) (-3391 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2137 (((-576) $) NIL (|has| (-576) (-861)))) (-3133 (($ $ $) NIL (|has| |#1| (-861)))) (-4323 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2176 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-4234 (((-656 (-576)) $) NIL)) (-3354 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3581 ((|#1| $) NIL (|has| (-576) (-861)))) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4046 (($ $ |#1|) 20 (|has| $ (-6 -4466)))) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2281 (((-656 |#1|) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) 12)) (-2797 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 17) (($ $ (-1255 (-576))) NIL)) (-3466 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3025 (($ $ $ (-576)) NIL (|has| $ (-6 -4466)))) (-1870 (($ $) 21)) (-4172 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) 14)) (-1615 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3570 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2992 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2950 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3503 (((-783) $) 8 (|has| $ (-6 -4465))))) +((-3055 (((-3 (-701 |#1|) "failed") |#2| (-940)) 18))) +(((-975 |#1| |#2|) (-10 -7 (-15 -3055 ((-3 (-701 |#1|) "failed") |#2| (-940)))) (-568) (-668 |#1|)) (T -975)) +((-3055 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-940)) (-4 *5 (-568)) (-5 *2 (-701 *5)) (-5 *1 (-975 *5 *3)) (-4 *3 (-668 *5))))) +(-10 -7 (-15 -3055 ((-3 (-701 |#1|) "failed") |#2| (-940)))) +((-3120 (((-977 |#2|) (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|) 16)) (-3685 ((|#2| (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|) 18)) (-4116 (((-977 |#2|) (-1 |#2| |#1|) (-977 |#1|)) 13))) +(((-976 |#1| |#2|) (-10 -7 (-15 -3120 ((-977 |#2|) (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|)) (-15 -3685 (|#2| (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|)) (-15 -4116 ((-977 |#2|) (-1 |#2| |#1|) (-977 |#1|)))) (-1238) (-1238)) (T -976)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-977 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-977 *6)) (-5 *1 (-976 *5 *6)))) (-3685 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-977 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-976 *5 *2)))) (-3120 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-977 *6)) (-4 *6 (-1238)) (-4 *5 (-1238)) (-5 *2 (-977 *5)) (-5 *1 (-976 *6 *5))))) +(-10 -7 (-15 -3120 ((-977 |#2|) (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|)) (-15 -3685 (|#2| (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|)) (-15 -4116 ((-977 |#2|) (-1 |#2| |#1|) (-977 |#1|)))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1512 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-1390 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-3039 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-4264 (((-112) $ (-783)) NIL)) (-3755 ((|#1| $ (-576) |#1|) 19 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3404 (($) NIL T CONST)) (-3092 (($ $) NIL (|has| $ (-6 -4465)))) (-3835 (($ $) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3945 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) 18 (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) 16)) (-3659 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-4140 (($ (-783) |#1|) 15)) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-576) $) 11 (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-2185 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4280 (((-576) $) NIL (|has| (-576) (-861)))) (-1441 (($ $ $) NIL (|has| |#1| (-861)))) (-4326 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2176 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3669 (((-656 (-576)) $) NIL)) (-3090 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3580 ((|#1| $) NIL (|has| (-576) (-861)))) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2304 (($ $ |#1|) 20 (|has| $ (-6 -4465)))) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3207 (((-656 |#1|) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) 12)) (-2796 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 17) (($ $ (-1255 (-576))) NIL)) (-3465 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2840 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) 21)) (-4171 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 14)) (-1615 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2924 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2949 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3502 (((-783) $) 8 (|has| $ (-6 -4464))))) (((-977 |#1|) (-19 |#1|) (-1238)) (T -977)) NIL (-19 |#1|) -((-3948 (($ $ (-1113 $)) 7) (($ $ (-1197)) 6))) +((-4003 (($ $ (-1113 $)) 7) (($ $ (-1197)) 6))) (((-978) (-141)) (T -978)) -((-3948 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-978)))) (-3948 (*1 *1 *1 *2) (-12 (-4 *1 (-978)) (-5 *2 (-1197))))) -(-13 (-10 -8 (-15 -3948 ($ $ (-1197))) (-15 -3948 ($ $ (-1113 $))))) -((-2005 (((-2 (|:| -1714 (-656 (-576))) (|:| |poly| (-656 (-1193 |#1|))) (|:| |prim| (-1193 |#1|))) (-656 (-971 |#1|)) (-656 (-1197)) (-1197)) 26) (((-2 (|:| -1714 (-656 (-576))) (|:| |poly| (-656 (-1193 |#1|))) (|:| |prim| (-1193 |#1|))) (-656 (-971 |#1|)) (-656 (-1197))) 27) (((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1193 |#1|))) (-971 |#1|) (-1197) (-971 |#1|) (-1197)) 49))) -(((-979 |#1|) (-10 -7 (-15 -2005 ((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1193 |#1|))) (-971 |#1|) (-1197) (-971 |#1|) (-1197))) (-15 -2005 ((-2 (|:| -1714 (-656 (-576))) (|:| |poly| (-656 (-1193 |#1|))) (|:| |prim| (-1193 |#1|))) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -2005 ((-2 (|:| -1714 (-656 (-576))) (|:| |poly| (-656 (-1193 |#1|))) (|:| |prim| (-1193 |#1|))) (-656 (-971 |#1|)) (-656 (-1197)) (-1197)))) (-13 (-374) (-148))) (T -979)) -((-2005 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-971 *6))) (-5 *4 (-656 (-1197))) (-5 *5 (-1197)) (-4 *6 (-13 (-374) (-148))) (-5 *2 (-2 (|:| -1714 (-656 (-576))) (|:| |poly| (-656 (-1193 *6))) (|:| |prim| (-1193 *6)))) (-5 *1 (-979 *6)))) (-2005 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-656 (-1197))) (-4 *5 (-13 (-374) (-148))) (-5 *2 (-2 (|:| -1714 (-656 (-576))) (|:| |poly| (-656 (-1193 *5))) (|:| |prim| (-1193 *5)))) (-5 *1 (-979 *5)))) (-2005 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-971 *5)) (-5 *4 (-1197)) (-4 *5 (-13 (-374) (-148))) (-5 *2 (-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1193 *5)))) (-5 *1 (-979 *5))))) -(-10 -7 (-15 -2005 ((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1193 |#1|))) (-971 |#1|) (-1197) (-971 |#1|) (-1197))) (-15 -2005 ((-2 (|:| -1714 (-656 (-576))) (|:| |poly| (-656 (-1193 |#1|))) (|:| |prim| (-1193 |#1|))) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -2005 ((-2 (|:| -1714 (-656 (-576))) (|:| |poly| (-656 (-1193 |#1|))) (|:| |prim| (-1193 |#1|))) (-656 (-971 |#1|)) (-656 (-1197)) (-1197)))) -((-3654 (((-656 |#1|) |#1| |#1|) 47)) (-4249 (((-112) |#1|) 44)) (-3105 ((|#1| |#1|) 79)) (-2481 ((|#1| |#1|) 78))) -(((-980 |#1|) (-10 -7 (-15 -4249 ((-112) |#1|)) (-15 -2481 (|#1| |#1|)) (-15 -3105 (|#1| |#1|)) (-15 -3654 ((-656 |#1|) |#1| |#1|))) (-557)) (T -980)) -((-3654 (*1 *2 *3 *3) (-12 (-5 *2 (-656 *3)) (-5 *1 (-980 *3)) (-4 *3 (-557)))) (-3105 (*1 *2 *2) (-12 (-5 *1 (-980 *2)) (-4 *2 (-557)))) (-2481 (*1 *2 *2) (-12 (-5 *1 (-980 *2)) (-4 *2 (-557)))) (-4249 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-980 *3)) (-4 *3 (-557))))) -(-10 -7 (-15 -4249 ((-112) |#1|)) (-15 -2481 (|#1| |#1|)) (-15 -3105 (|#1| |#1|)) (-15 -3654 ((-656 |#1|) |#1| |#1|))) +((-4003 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-978)))) (-4003 (*1 *1 *1 *2) (-12 (-4 *1 (-978)) (-5 *2 (-1197))))) +(-13 (-10 -8 (-15 -4003 ($ $ (-1197))) (-15 -4003 ($ $ (-1113 $))))) +((-2345 (((-2 (|:| -1715 (-656 (-576))) (|:| |poly| (-656 (-1193 |#1|))) (|:| |prim| (-1193 |#1|))) (-656 (-971 |#1|)) (-656 (-1197)) (-1197)) 26) (((-2 (|:| -1715 (-656 (-576))) (|:| |poly| (-656 (-1193 |#1|))) (|:| |prim| (-1193 |#1|))) (-656 (-971 |#1|)) (-656 (-1197))) 27) (((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1193 |#1|))) (-971 |#1|) (-1197) (-971 |#1|) (-1197)) 49))) +(((-979 |#1|) (-10 -7 (-15 -2345 ((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1193 |#1|))) (-971 |#1|) (-1197) (-971 |#1|) (-1197))) (-15 -2345 ((-2 (|:| -1715 (-656 (-576))) (|:| |poly| (-656 (-1193 |#1|))) (|:| |prim| (-1193 |#1|))) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -2345 ((-2 (|:| -1715 (-656 (-576))) (|:| |poly| (-656 (-1193 |#1|))) (|:| |prim| (-1193 |#1|))) (-656 (-971 |#1|)) (-656 (-1197)) (-1197)))) (-13 (-374) (-148))) (T -979)) +((-2345 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-971 *6))) (-5 *4 (-656 (-1197))) (-5 *5 (-1197)) (-4 *6 (-13 (-374) (-148))) (-5 *2 (-2 (|:| -1715 (-656 (-576))) (|:| |poly| (-656 (-1193 *6))) (|:| |prim| (-1193 *6)))) (-5 *1 (-979 *6)))) (-2345 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-656 (-1197))) (-4 *5 (-13 (-374) (-148))) (-5 *2 (-2 (|:| -1715 (-656 (-576))) (|:| |poly| (-656 (-1193 *5))) (|:| |prim| (-1193 *5)))) (-5 *1 (-979 *5)))) (-2345 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-971 *5)) (-5 *4 (-1197)) (-4 *5 (-13 (-374) (-148))) (-5 *2 (-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1193 *5)))) (-5 *1 (-979 *5))))) +(-10 -7 (-15 -2345 ((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1193 |#1|))) (-971 |#1|) (-1197) (-971 |#1|) (-1197))) (-15 -2345 ((-2 (|:| -1715 (-656 (-576))) (|:| |poly| (-656 (-1193 |#1|))) (|:| |prim| (-1193 |#1|))) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -2345 ((-2 (|:| -1715 (-656 (-576))) (|:| |poly| (-656 (-1193 |#1|))) (|:| |prim| (-1193 |#1|))) (-656 (-971 |#1|)) (-656 (-1197)) (-1197)))) +((-2881 (((-656 |#1|) |#1| |#1|) 47)) (-3833 (((-112) |#1|) 44)) (-2369 ((|#1| |#1|) 79)) (-3378 ((|#1| |#1|) 78))) +(((-980 |#1|) (-10 -7 (-15 -3833 ((-112) |#1|)) (-15 -3378 (|#1| |#1|)) (-15 -2369 (|#1| |#1|)) (-15 -2881 ((-656 |#1|) |#1| |#1|))) (-557)) (T -980)) +((-2881 (*1 *2 *3 *3) (-12 (-5 *2 (-656 *3)) (-5 *1 (-980 *3)) (-4 *3 (-557)))) (-2369 (*1 *2 *2) (-12 (-5 *1 (-980 *2)) (-4 *2 (-557)))) (-3378 (*1 *2 *2) (-12 (-5 *1 (-980 *2)) (-4 *2 (-557)))) (-3833 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-980 *3)) (-4 *3 (-557))))) +(-10 -7 (-15 -3833 ((-112) |#1|)) (-15 -3378 (|#1| |#1|)) (-15 -2369 (|#1| |#1|)) (-15 -2881 ((-656 |#1|) |#1| |#1|))) ((-2113 (((-1293) (-876)) 9))) (((-981) (-10 -7 (-15 -2113 ((-1293) (-876))))) (T -981)) ((-2113 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-981))))) (-10 -7 (-15 -2113 ((-1293) (-876)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 78 (|has| |#1| (-568)))) (-2757 (($ $) 79 (|has| |#1| (-568)))) (-3788 (((-112) $) NIL (|has| |#1| (-568)))) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 34)) (-2860 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-2114 (($ $) 31)) (-1561 (((-3 $ "failed") $) 42)) (-3767 (($ $) NIL (|has| |#1| (-464)))) (-2431 (($ $ |#1| |#2| $) 62)) (-4193 (((-112) $) NIL)) (-2217 (((-783) $) 17)) (-2823 (((-112) $) NIL)) (-1945 (($ |#1| |#2|) NIL)) (-3751 ((|#2| $) 24)) (-2999 (($ (-1 |#2| |#2|) $) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-2081 (($ $) 28)) (-2091 ((|#1| $) 26)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) 51)) (-2070 ((|#1| $) NIL)) (-2598 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-568))))) (-3476 (((-3 $ "failed") $ $) 91 (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-568)))) (-3634 ((|#2| $) 22)) (-2457 ((|#1| $) NIL (|has| |#1| (-464)))) (-3570 (((-876) $) NIL) (($ (-576)) 46) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 41) (($ (-419 (-576))) NIL (-2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-1618 (((-656 |#1|) $) NIL)) (-3177 ((|#1| $ |#2|) 37)) (-4336 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3996 (((-783)) 15 T CONST)) (-2541 (($ $ $ (-783)) 74 (|has| |#1| (-174)))) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) 84 (|has| |#1| (-568)))) (-2721 (($) 27 T CONST)) (-2732 (($) 12 T CONST)) (-2925 (((-112) $ $) 83)) (-3057 (($ $ |#1|) 92 (|has| |#1| (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) 69) (($ $ (-783)) 67)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-982 |#1| |#2|) (-13 (-336 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| |#2| (-132)) (-15 -2598 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4463)) (-6 -4463) |%noBranch|))) (-1070) (-804)) (T -982)) -((-2598 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-982 *3 *2)) (-4 *2 (-132)) (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *2 (-804))))) -(-13 (-336 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| |#2| (-132)) (-15 -2598 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4463)) (-6 -4463) |%noBranch|))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL (-2760 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (-2324 (($ $ $) 65 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (-4367 (((-3 $ "failed") $ $) 52 (-2760 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (-2098 (((-783)) 36 (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-3164 ((|#2| $) 22)) (-3950 ((|#1| $) 21)) (-3886 (($) NIL (-2760 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) CONST)) (-1561 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (-1836 (($) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-4193 (((-112) $) NIL (-2760 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (-3125 (($ $ $) NIL (-2760 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-3133 (($ $ $) NIL (-2760 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-1427 (($ |#1| |#2|) 20)) (-4401 (((-940) $) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-3699 (((-1179) $) NIL)) (-2050 (($ $) 39 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-3224 (($ (-940)) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-1450 (((-1141) $) NIL)) (-2314 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-2076 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-3570 (((-876) $) 14)) (-4055 (((-112) $ $) NIL)) (-2721 (($) 42 (-2760 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) CONST)) (-2732 (($) 25 (-2760 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) CONST)) (-2992 (((-112) $ $) NIL (-2760 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-2964 (((-112) $ $) NIL (-2760 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-2925 (((-112) $ $) 19)) (-2978 (((-112) $ $) NIL (-2760 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-2950 (((-112) $ $) 69 (-2760 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-3057 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-3044 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3030 (($ $ $) 45 (-2760 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (** (($ $ (-576)) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485)))) (($ $ (-783)) 32 (-2760 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))))) (($ $ (-940)) NIL (-2760 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (* (($ (-576) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-783) $) 48 (-2760 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (($ (-940) $) NIL (-2760 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (($ $ $) 28 (-2760 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))))))) -(((-983 |#1| |#2|) (-13 (-1121) (-10 -8 (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-738)) (IF (|has| |#2| (-738)) (-6 (-738)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-805)) (IF (|has| |#2| (-805)) (-6 (-805)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-861)) (IF (|has| |#2| (-861)) (-6 (-861)) |%noBranch|) |%noBranch|) (-15 -1427 ($ |#1| |#2|)) (-15 -3950 (|#1| $)) (-15 -3164 (|#2| $)))) (-1121) (-1121)) (T -983)) -((-1427 (*1 *1 *2 *3) (-12 (-5 *1 (-983 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-3950 (*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-983 *2 *3)) (-4 *3 (-1121)))) (-3164 (*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-983 *3 *2)) (-4 *3 (-1121))))) -(-13 (-1121) (-10 -8 (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-738)) (IF (|has| |#2| (-738)) (-6 (-738)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-805)) (IF (|has| |#2| (-805)) (-6 (-805)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-861)) (IF (|has| |#2| (-861)) (-6 (-861)) |%noBranch|) |%noBranch|) (-15 -1427 ($ |#1| |#2|)) (-15 -3950 (|#1| $)) (-15 -3164 (|#2| $)))) -((-3106 (((-1125) $) 12)) (-3562 (($ (-518) (-1125)) 14)) (-2629 (((-518) $) 9)) (-3570 (((-876) $) 24))) -(((-984) (-13 (-625 (-876)) (-10 -8 (-15 -2629 ((-518) $)) (-15 -3106 ((-1125) $)) (-15 -3562 ($ (-518) (-1125)))))) (T -984)) -((-2629 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-984)))) (-3106 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-984)))) (-3562 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1125)) (-5 *1 (-984))))) -(-13 (-625 (-876)) (-10 -8 (-15 -2629 ((-518) $)) (-15 -3106 ((-1125) $)) (-15 -3562 ($ (-518) (-1125))))) -((-3489 (((-112) $ $) NIL)) (-2142 (($) NIL T CONST)) (-2686 (($ $ $) 30)) (-2663 (($ $) 24)) (-3699 (((-1179) $) NIL)) (-1346 (((-703 (-887 $ $)) $) 55)) (-2172 (((-703 $) $) 45)) (-1538 (((-703 (-887 $ $)) $) 56)) (-2579 (((-703 (-887 $ $)) $) 57)) (-4253 (((-703 |#1|) $) 36)) (-1454 (((-703 (-887 $ $)) $) 54)) (-3602 (($ $ $) 31)) (-1450 (((-1141) $) NIL)) (-3513 (($) NIL T CONST)) (-3001 (($ $ $) 32)) (-3201 (($ $ $) 29)) (-3039 (($ $ $) 27)) (-3570 (((-876) $) 59) (($ |#1|) 12)) (-4055 (((-112) $ $) NIL)) (-2675 (($ $ $) 28)) (-2925 (((-112) $ $) NIL))) -(((-985 |#1|) (-13 (-988) (-628 |#1|) (-10 -8 (-15 -4253 ((-703 |#1|) $)) (-15 -2172 ((-703 $) $)) (-15 -1454 ((-703 (-887 $ $)) $)) (-15 -1346 ((-703 (-887 $ $)) $)) (-15 -1538 ((-703 (-887 $ $)) $)) (-15 -2579 ((-703 (-887 $ $)) $)) (-15 -3039 ($ $ $)) (-15 -3201 ($ $ $)))) (-1121)) (T -985)) -((-4253 (*1 *2 *1) (-12 (-5 *2 (-703 *3)) (-5 *1 (-985 *3)) (-4 *3 (-1121)))) (-2172 (*1 *2 *1) (-12 (-5 *2 (-703 (-985 *3))) (-5 *1 (-985 *3)) (-4 *3 (-1121)))) (-1454 (*1 *2 *1) (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) (-4 *3 (-1121)))) (-1346 (*1 *2 *1) (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) (-4 *3 (-1121)))) (-1538 (*1 *2 *1) (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) (-4 *3 (-1121)))) (-2579 (*1 *2 *1) (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) (-4 *3 (-1121)))) (-3039 (*1 *1 *1 *1) (-12 (-5 *1 (-985 *2)) (-4 *2 (-1121)))) (-3201 (*1 *1 *1 *1) (-12 (-5 *1 (-985 *2)) (-4 *2 (-1121))))) -(-13 (-988) (-628 |#1|) (-10 -8 (-15 -4253 ((-703 |#1|) $)) (-15 -2172 ((-703 $) $)) (-15 -1454 ((-703 (-887 $ $)) $)) (-15 -1346 ((-703 (-887 $ $)) $)) (-15 -1538 ((-703 (-887 $ $)) $)) (-15 -2579 ((-703 (-887 $ $)) $)) (-15 -3039 ($ $ $)) (-15 -3201 ($ $ $)))) -((-4206 (((-985 |#1|) (-985 |#1|)) 46)) (-2613 (((-985 |#1|) (-985 |#1|)) 22)) (-3012 (((-1123 |#1|) (-985 |#1|)) 41))) -(((-986 |#1|) (-13 (-1238) (-10 -7 (-15 -2613 ((-985 |#1|) (-985 |#1|))) (-15 -3012 ((-1123 |#1|) (-985 |#1|))) (-15 -4206 ((-985 |#1|) (-985 |#1|))))) (-1121)) (T -986)) -((-2613 (*1 *2 *2) (-12 (-5 *2 (-985 *3)) (-4 *3 (-1121)) (-5 *1 (-986 *3)))) (-3012 (*1 *2 *3) (-12 (-5 *3 (-985 *4)) (-4 *4 (-1121)) (-5 *2 (-1123 *4)) (-5 *1 (-986 *4)))) (-4206 (*1 *2 *2) (-12 (-5 *2 (-985 *3)) (-4 *3 (-1121)) (-5 *1 (-986 *3))))) -(-13 (-1238) (-10 -7 (-15 -2613 ((-985 |#1|) (-985 |#1|))) (-15 -3012 ((-1123 |#1|) (-985 |#1|))) (-15 -4206 ((-985 |#1|) (-985 |#1|))))) -((-4117 (((-985 |#2|) (-1 |#2| |#1|) (-985 |#1|)) 29))) -(((-987 |#1| |#2|) (-13 (-1238) (-10 -7 (-15 -4117 ((-985 |#2|) (-1 |#2| |#1|) (-985 |#1|))))) (-1121) (-1121)) (T -987)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-985 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-985 *6)) (-5 *1 (-987 *5 *6))))) -(-13 (-1238) (-10 -7 (-15 -4117 ((-985 |#2|) (-1 |#2| |#1|) (-985 |#1|))))) -((-3489 (((-112) $ $) 16)) (-2142 (($) 14 T CONST)) (-2686 (($ $ $) 6)) (-2663 (($ $) 8)) (-3699 (((-1179) $) 20)) (-3602 (($ $ $) 12)) (-1450 (((-1141) $) 19)) (-3513 (($) 13 T CONST)) (-3001 (($ $ $) 11)) (-3570 (((-876) $) 18)) (-4055 (((-112) $ $) 17)) (-2675 (($ $ $) 7)) (-2925 (((-112) $ $) 15))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 78 (|has| |#1| (-568)))) (-4195 (($ $) 79 (|has| |#1| (-568)))) (-1760 (((-112) $) NIL (|has| |#1| (-568)))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 34)) (-2859 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-2114 (($ $) 31)) (-3673 (((-3 $ "failed") $) 42)) (-1547 (($ $) NIL (|has| |#1| (-464)))) (-4124 (($ $ |#1| |#2| $) 62)) (-1351 (((-112) $) NIL)) (-3799 (((-783) $) 17)) (-3538 (((-112) $) NIL)) (-1944 (($ |#1| |#2|) NIL)) (-2578 ((|#2| $) 24)) (-3878 (($ (-1 |#2| |#2|) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2081 (($ $) 28)) (-2091 ((|#1| $) 26)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) 51)) (-2070 ((|#1| $) NIL)) (-3317 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-568))))) (-3475 (((-3 $ "failed") $ $) 91 (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-568)))) (-2683 ((|#2| $) 22)) (-4370 ((|#1| $) NIL (|has| |#1| (-464)))) (-3569 (((-876) $) NIL) (($ (-576)) 46) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 41) (($ (-419 (-576))) NIL (-2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-2937 (((-656 |#1|) $) NIL)) (-1822 ((|#1| $ |#2|) 37)) (-3390 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3154 (((-783)) 15 T CONST)) (-2717 (($ $ $ (-783)) 74 (|has| |#1| (-174)))) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) 84 (|has| |#1| (-568)))) (-2721 (($) 27 T CONST)) (-2731 (($) 12 T CONST)) (-2924 (((-112) $ $) 83)) (-3056 (($ $ |#1|) 92 (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) 69) (($ $ (-783)) 67)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-982 |#1| |#2|) (-13 (-336 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| |#2| (-132)) (-15 -3317 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4462)) (-6 -4462) |%noBranch|))) (-1070) (-804)) (T -982)) +((-3317 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-982 *3 *2)) (-4 *2 (-132)) (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *2 (-804))))) +(-13 (-336 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| |#2| (-132)) (-15 -3317 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4462)) (-6 -4462) |%noBranch|))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL (-2759 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (-2386 (($ $ $) 65 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (-2428 (((-3 $ "failed") $ $) 52 (-2759 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (-2098 (((-783)) 36 (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-1701 ((|#2| $) 22)) (-2712 ((|#1| $) 21)) (-3404 (($) NIL (-2759 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) CONST)) (-3673 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (-1836 (($) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-1351 (((-112) $) NIL (-2759 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (-3124 (($ $ $) NIL (-2759 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-1441 (($ $ $) NIL (-2759 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-2153 (($ |#1| |#2|) 20)) (-1558 (((-940) $) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-2046 (((-1179) $) NIL)) (-2050 (($ $) 39 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-3223 (($ (-940)) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-1450 (((-1141) $) NIL)) (-2272 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-1758 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-3569 (((-876) $) 14)) (-2399 (((-112) $ $) NIL)) (-2721 (($) 42 (-2759 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) CONST)) (-2731 (($) 25 (-2759 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) CONST)) (-2990 (((-112) $ $) NIL (-2759 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-2962 (((-112) $ $) NIL (-2759 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-2924 (((-112) $ $) 19)) (-2978 (((-112) $ $) NIL (-2759 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-2949 (((-112) $ $) 69 (-2759 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-3056 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-3043 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3029 (($ $ $) 45 (-2759 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (** (($ $ (-576)) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485)))) (($ $ (-783)) 32 (-2759 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))))) (($ $ (-940)) NIL (-2759 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (* (($ (-576) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-783) $) 48 (-2759 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (($ (-940) $) NIL (-2759 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (($ $ $) 28 (-2759 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))))))) +(((-983 |#1| |#2|) (-13 (-1121) (-10 -8 (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-738)) (IF (|has| |#2| (-738)) (-6 (-738)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-805)) (IF (|has| |#2| (-805)) (-6 (-805)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-861)) (IF (|has| |#2| (-861)) (-6 (-861)) |%noBranch|) |%noBranch|) (-15 -2153 ($ |#1| |#2|)) (-15 -2712 (|#1| $)) (-15 -1701 (|#2| $)))) (-1121) (-1121)) (T -983)) +((-2153 (*1 *1 *2 *3) (-12 (-5 *1 (-983 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-2712 (*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-983 *2 *3)) (-4 *3 (-1121)))) (-1701 (*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-983 *3 *2)) (-4 *3 (-1121))))) +(-13 (-1121) (-10 -8 (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-738)) (IF (|has| |#2| (-738)) (-6 (-738)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-805)) (IF (|has| |#2| (-805)) (-6 (-805)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-861)) (IF (|has| |#2| (-861)) (-6 (-861)) |%noBranch|) |%noBranch|) (-15 -2153 ($ |#1| |#2|)) (-15 -2712 (|#1| $)) (-15 -1701 (|#2| $)))) +((-3104 (((-1125) $) 12)) (-1380 (($ (-518) (-1125)) 14)) (-2628 (((-518) $) 9)) (-3569 (((-876) $) 24))) +(((-984) (-13 (-625 (-876)) (-10 -8 (-15 -2628 ((-518) $)) (-15 -3104 ((-1125) $)) (-15 -1380 ($ (-518) (-1125)))))) (T -984)) +((-2628 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-984)))) (-3104 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-984)))) (-1380 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1125)) (-5 *1 (-984))))) +(-13 (-625 (-876)) (-10 -8 (-15 -2628 ((-518) $)) (-15 -3104 ((-1125) $)) (-15 -1380 ($ (-518) (-1125))))) +((-3488 (((-112) $ $) NIL)) (-2142 (($) NIL T CONST)) (-2685 (($ $ $) 30)) (-2663 (($ $) 24)) (-2046 (((-1179) $) NIL)) (-4048 (((-703 (-887 $ $)) $) 55)) (-3341 (((-703 $) $) 45)) (-3400 (((-703 (-887 $ $)) $) 56)) (-3134 (((-703 (-887 $ $)) $) 57)) (-3869 (((-703 |#1|) $) 36)) (-2423 (((-703 (-887 $ $)) $) 54)) (-3656 (($ $ $) 31)) (-1450 (((-1141) $) NIL)) (-3511 (($) NIL T CONST)) (-2588 (($ $ $) 32)) (-4056 (($ $ $) 29)) (-2998 (($ $ $) 27)) (-3569 (((-876) $) 59) (($ |#1|) 12)) (-2399 (((-112) $ $) NIL)) (-2674 (($ $ $) 28)) (-2924 (((-112) $ $) NIL))) +(((-985 |#1|) (-13 (-988) (-628 |#1|) (-10 -8 (-15 -3869 ((-703 |#1|) $)) (-15 -3341 ((-703 $) $)) (-15 -2423 ((-703 (-887 $ $)) $)) (-15 -4048 ((-703 (-887 $ $)) $)) (-15 -3400 ((-703 (-887 $ $)) $)) (-15 -3134 ((-703 (-887 $ $)) $)) (-15 -2998 ($ $ $)) (-15 -4056 ($ $ $)))) (-1121)) (T -985)) +((-3869 (*1 *2 *1) (-12 (-5 *2 (-703 *3)) (-5 *1 (-985 *3)) (-4 *3 (-1121)))) (-3341 (*1 *2 *1) (-12 (-5 *2 (-703 (-985 *3))) (-5 *1 (-985 *3)) (-4 *3 (-1121)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) (-4 *3 (-1121)))) (-4048 (*1 *2 *1) (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) (-4 *3 (-1121)))) (-3400 (*1 *2 *1) (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) (-4 *3 (-1121)))) (-3134 (*1 *2 *1) (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) (-4 *3 (-1121)))) (-2998 (*1 *1 *1 *1) (-12 (-5 *1 (-985 *2)) (-4 *2 (-1121)))) (-4056 (*1 *1 *1 *1) (-12 (-5 *1 (-985 *2)) (-4 *2 (-1121))))) +(-13 (-988) (-628 |#1|) (-10 -8 (-15 -3869 ((-703 |#1|) $)) (-15 -3341 ((-703 $) $)) (-15 -2423 ((-703 (-887 $ $)) $)) (-15 -4048 ((-703 (-887 $ $)) $)) (-15 -3400 ((-703 (-887 $ $)) $)) (-15 -3134 ((-703 (-887 $ $)) $)) (-15 -2998 ($ $ $)) (-15 -4056 ($ $ $)))) +((-1469 (((-985 |#1|) (-985 |#1|)) 46)) (-2169 (((-985 |#1|) (-985 |#1|)) 22)) (-2690 (((-1123 |#1|) (-985 |#1|)) 41))) +(((-986 |#1|) (-13 (-1238) (-10 -7 (-15 -2169 ((-985 |#1|) (-985 |#1|))) (-15 -2690 ((-1123 |#1|) (-985 |#1|))) (-15 -1469 ((-985 |#1|) (-985 |#1|))))) (-1121)) (T -986)) +((-2169 (*1 *2 *2) (-12 (-5 *2 (-985 *3)) (-4 *3 (-1121)) (-5 *1 (-986 *3)))) (-2690 (*1 *2 *3) (-12 (-5 *3 (-985 *4)) (-4 *4 (-1121)) (-5 *2 (-1123 *4)) (-5 *1 (-986 *4)))) (-1469 (*1 *2 *2) (-12 (-5 *2 (-985 *3)) (-4 *3 (-1121)) (-5 *1 (-986 *3))))) +(-13 (-1238) (-10 -7 (-15 -2169 ((-985 |#1|) (-985 |#1|))) (-15 -2690 ((-1123 |#1|) (-985 |#1|))) (-15 -1469 ((-985 |#1|) (-985 |#1|))))) +((-4116 (((-985 |#2|) (-1 |#2| |#1|) (-985 |#1|)) 29))) +(((-987 |#1| |#2|) (-13 (-1238) (-10 -7 (-15 -4116 ((-985 |#2|) (-1 |#2| |#1|) (-985 |#1|))))) (-1121) (-1121)) (T -987)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-985 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-985 *6)) (-5 *1 (-987 *5 *6))))) +(-13 (-1238) (-10 -7 (-15 -4116 ((-985 |#2|) (-1 |#2| |#1|) (-985 |#1|))))) +((-3488 (((-112) $ $) 16)) (-2142 (($) 14 T CONST)) (-2685 (($ $ $) 6)) (-2663 (($ $) 8)) (-2046 (((-1179) $) 20)) (-3656 (($ $ $) 12)) (-1450 (((-1141) $) 19)) (-3511 (($) 13 T CONST)) (-2588 (($ $ $) 11)) (-3569 (((-876) $) 18)) (-2399 (((-112) $ $) 17)) (-2674 (($ $ $) 7)) (-2924 (((-112) $ $) 15))) (((-988) (-141)) (T -988)) -((-2142 (*1 *1) (-4 *1 (-988))) (-3513 (*1 *1) (-4 *1 (-988))) (-3602 (*1 *1 *1 *1) (-4 *1 (-988))) (-3001 (*1 *1 *1 *1) (-4 *1 (-988)))) -(-13 (-113) (-1121) (-10 -8 (-15 -2142 ($) -1480) (-15 -3513 ($) -1480) (-15 -3602 ($ $ $)) (-15 -3001 ($ $ $)))) +((-2142 (*1 *1) (-4 *1 (-988))) (-3511 (*1 *1) (-4 *1 (-988))) (-3656 (*1 *1 *1 *1) (-4 *1 (-988))) (-2588 (*1 *1 *1 *1) (-4 *1 (-988)))) +(-13 (-113) (-1121) (-10 -8 (-15 -2142 ($) -1480) (-15 -3511 ($) -1480) (-15 -3656 ($ $ $)) (-15 -2588 ($ $ $)))) (((-102) . T) ((-113) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1808 (((-112) $ (-783)) 8)) (-3886 (($) 7 T CONST)) (-3966 (((-656 |#1|) $) 31 (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) 9)) (-2453 (($ $ $) 44)) (-3391 (($ $ $) 45)) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-3133 ((|#1| $) 46)) (-4323 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 36)) (-1330 (((-112) $ (-783)) 10)) (-3699 (((-1179) $) 23 (|has| |#1| (-1121)))) (-1597 ((|#1| $) 40)) (-1901 (($ |#1| $) 41)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3449 ((|#1| $) 42)) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 13)) (-3570 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3943 (($ (-656 |#1|)) 43)) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4264 (((-112) $ (-783)) 8)) (-3404 (($) 7 T CONST)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) 9)) (-4330 (($ $ $) 44)) (-2185 (($ $ $) 45)) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1441 ((|#1| $) 46)) (-4326 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-2883 (((-112) $ (-783)) 10)) (-2046 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2722 ((|#1| $) 40)) (-2597 (($ |#1| $) 41)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-1541 ((|#1| $) 42)) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3972 (($ (-656 |#1|)) 43)) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-989 |#1|) (-141) (-861)) (T -989)) -((-3133 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861)))) (-3391 (*1 *1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861)))) (-2453 (*1 *1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4465) (-15 -3133 (|t#1| $)) (-15 -3391 ($ $ $)) (-15 -2453 ($ $ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2760 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2760 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-3239 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3498 |#2|)) |#2| |#2|) 105)) (-3049 ((|#2| |#2| |#2|) 103)) (-2842 (((-2 (|:| |coef2| |#2|) (|:| -3498 |#2|)) |#2| |#2|) 107)) (-3175 (((-2 (|:| |coef1| |#2|) (|:| -3498 |#2|)) |#2| |#2|) 109)) (-2382 (((-2 (|:| |coef2| |#2|) (|:| -2006 |#1|)) |#2| |#2|) 131 (|has| |#1| (-464)))) (-4435 (((-2 (|:| |coef2| |#2|) (|:| -3230 |#1|)) |#2| |#2|) 56)) (-2538 (((-2 (|:| |coef2| |#2|) (|:| -3230 |#1|)) |#2| |#2|) 80)) (-4375 (((-2 (|:| |coef1| |#2|) (|:| -3230 |#1|)) |#2| |#2|) 82)) (-3208 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-1367 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 89)) (-2982 (((-2 (|:| |coef2| |#2|) (|:| -4352 |#1|)) |#2|) 121)) (-2606 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 92)) (-4254 (((-656 (-783)) |#2| |#2|) 102)) (-3403 ((|#1| |#2| |#2|) 50)) (-3525 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2006 |#1|)) |#2| |#2|) 129 (|has| |#1| (-464)))) (-2006 ((|#1| |#2| |#2|) 127 (|has| |#1| (-464)))) (-3481 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3230 |#1|)) |#2| |#2|) 54)) (-3236 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3230 |#1|)) |#2| |#2|) 79)) (-3230 ((|#1| |#2| |#2|) 76)) (-2865 (((-2 (|:| -1714 |#1|) (|:| -2715 |#2|) (|:| -3624 |#2|)) |#2| |#2|) 41)) (-3066 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-1606 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-1540 ((|#2| |#2| |#2|) 93)) (-2268 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 87)) (-1629 ((|#2| |#2| |#2| (-783)) 85)) (-3498 ((|#2| |#2| |#2|) 135 (|has| |#1| (-464)))) (-3476 (((-1288 |#2|) (-1288 |#2|) |#1|) 22)) (-3274 (((-2 (|:| -2715 |#2|) (|:| -3624 |#2|)) |#2| |#2|) 46)) (-4327 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4352 |#1|)) |#2|) 119)) (-4352 ((|#1| |#2|) 116)) (-2509 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 91)) (-3494 ((|#2| |#2| |#2| (-783)) 90)) (-2245 (((-656 |#2|) |#2| |#2|) 99)) (-3860 ((|#2| |#2| |#1| |#1| (-783)) 62)) (-1727 ((|#1| |#1| |#1| (-783)) 61)) (* (((-1288 |#2|) |#1| (-1288 |#2|)) 17))) -(((-990 |#1| |#2|) (-10 -7 (-15 -3230 (|#1| |#2| |#2|)) (-15 -3236 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3230 |#1|)) |#2| |#2|)) (-15 -2538 ((-2 (|:| |coef2| |#2|) (|:| -3230 |#1|)) |#2| |#2|)) (-15 -4375 ((-2 (|:| |coef1| |#2|) (|:| -3230 |#1|)) |#2| |#2|)) (-15 -1629 (|#2| |#2| |#2| (-783))) (-15 -2268 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -1367 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -3494 (|#2| |#2| |#2| (-783))) (-15 -2509 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -2606 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -1540 (|#2| |#2| |#2|)) (-15 -1606 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3208 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3049 (|#2| |#2| |#2|)) (-15 -3239 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3498 |#2|)) |#2| |#2|)) (-15 -2842 ((-2 (|:| |coef2| |#2|) (|:| -3498 |#2|)) |#2| |#2|)) (-15 -3175 ((-2 (|:| |coef1| |#2|) (|:| -3498 |#2|)) |#2| |#2|)) (-15 -4352 (|#1| |#2|)) (-15 -4327 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4352 |#1|)) |#2|)) (-15 -2982 ((-2 (|:| |coef2| |#2|) (|:| -4352 |#1|)) |#2|)) (-15 -2245 ((-656 |#2|) |#2| |#2|)) (-15 -4254 ((-656 (-783)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -2006 (|#1| |#2| |#2|)) (-15 -3525 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2006 |#1|)) |#2| |#2|)) (-15 -2382 ((-2 (|:| |coef2| |#2|) (|:| -2006 |#1|)) |#2| |#2|)) (-15 -3498 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1288 |#2|) |#1| (-1288 |#2|))) (-15 -3476 ((-1288 |#2|) (-1288 |#2|) |#1|)) (-15 -2865 ((-2 (|:| -1714 |#1|) (|:| -2715 |#2|) (|:| -3624 |#2|)) |#2| |#2|)) (-15 -3274 ((-2 (|:| -2715 |#2|) (|:| -3624 |#2|)) |#2| |#2|)) (-15 -1727 (|#1| |#1| |#1| (-783))) (-15 -3860 (|#2| |#2| |#1| |#1| (-783))) (-15 -3066 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3403 (|#1| |#2| |#2|)) (-15 -3481 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3230 |#1|)) |#2| |#2|)) (-15 -4435 ((-2 (|:| |coef2| |#2|) (|:| -3230 |#1|)) |#2| |#2|))) (-568) (-1264 |#1|)) (T -990)) -((-4435 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3230 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3481 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3230 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3403 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2)))) (-3066 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) (-3860 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) (-1727 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *2 (-568)) (-5 *1 (-990 *2 *4)) (-4 *4 (-1264 *2)))) (-3274 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -2715 *3) (|:| -3624 *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-2865 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -1714 *4) (|:| -2715 *3) (|:| -3624 *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3476 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-568)) (-5 *1 (-990 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1288 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-568)) (-5 *1 (-990 *3 *4)))) (-3498 (*1 *2 *2 *2) (-12 (-4 *3 (-464)) (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) (-2382 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2006 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3525 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2006 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-2006 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-4 *2 (-464)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2)))) (-4254 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-783))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-2245 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-2982 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4352 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-4327 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4352 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-4352 (*1 *2 *3) (-12 (-4 *2 (-568)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2)))) (-3175 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3498 *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-2842 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3498 *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3239 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3498 *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3049 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) (-3208 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-1606 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-1540 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) (-2606 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5)))) (-2509 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5)))) (-3494 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-990 *4 *2)) (-4 *2 (-1264 *4)))) (-1367 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5)))) (-2268 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5)))) (-1629 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-990 *4 *2)) (-4 *2 (-1264 *4)))) (-4375 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3230 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-2538 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3230 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3236 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3230 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3230 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2))))) -(-10 -7 (-15 -3230 (|#1| |#2| |#2|)) (-15 -3236 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3230 |#1|)) |#2| |#2|)) (-15 -2538 ((-2 (|:| |coef2| |#2|) (|:| -3230 |#1|)) |#2| |#2|)) (-15 -4375 ((-2 (|:| |coef1| |#2|) (|:| -3230 |#1|)) |#2| |#2|)) (-15 -1629 (|#2| |#2| |#2| (-783))) (-15 -2268 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -1367 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -3494 (|#2| |#2| |#2| (-783))) (-15 -2509 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -2606 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -1540 (|#2| |#2| |#2|)) (-15 -1606 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3208 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3049 (|#2| |#2| |#2|)) (-15 -3239 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3498 |#2|)) |#2| |#2|)) (-15 -2842 ((-2 (|:| |coef2| |#2|) (|:| -3498 |#2|)) |#2| |#2|)) (-15 -3175 ((-2 (|:| |coef1| |#2|) (|:| -3498 |#2|)) |#2| |#2|)) (-15 -4352 (|#1| |#2|)) (-15 -4327 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4352 |#1|)) |#2|)) (-15 -2982 ((-2 (|:| |coef2| |#2|) (|:| -4352 |#1|)) |#2|)) (-15 -2245 ((-656 |#2|) |#2| |#2|)) (-15 -4254 ((-656 (-783)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -2006 (|#1| |#2| |#2|)) (-15 -3525 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2006 |#1|)) |#2| |#2|)) (-15 -2382 ((-2 (|:| |coef2| |#2|) (|:| -2006 |#1|)) |#2| |#2|)) (-15 -3498 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1288 |#2|) |#1| (-1288 |#2|))) (-15 -3476 ((-1288 |#2|) (-1288 |#2|) |#1|)) (-15 -2865 ((-2 (|:| -1714 |#1|) (|:| -2715 |#2|) (|:| -3624 |#2|)) |#2| |#2|)) (-15 -3274 ((-2 (|:| -2715 |#2|) (|:| -3624 |#2|)) |#2| |#2|)) (-15 -1727 (|#1| |#1| |#1| (-783))) (-15 -3860 (|#2| |#2| |#1| |#1| (-783))) (-15 -3066 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3403 (|#1| |#2| |#2|)) (-15 -3481 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3230 |#1|)) |#2| |#2|)) (-15 -4435 ((-2 (|:| |coef2| |#2|) (|:| -3230 |#1|)) |#2| |#2|))) -((-3489 (((-112) $ $) NIL)) (-2984 (((-1237) $) 13)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3123 (((-1156) $) 10)) (-3570 (((-876) $) 20) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-991) (-13 (-1104) (-10 -8 (-15 -3123 ((-1156) $)) (-15 -2984 ((-1237) $))))) (T -991)) -((-3123 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-991)))) (-2984 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-991))))) -(-13 (-1104) (-10 -8 (-15 -3123 ((-1156) $)) (-15 -2984 ((-1237) $)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 40)) (-4367 (((-3 $ "failed") $ $) 54)) (-3886 (($) NIL T CONST)) (-1896 (((-656 (-887 (-940) (-940))) $) 67)) (-1360 (((-940) $) 94)) (-3966 (((-656 (-940)) $) 17)) (-1514 (((-1178 $) (-783)) 39)) (-3514 (($ (-656 (-940))) 16)) (-3125 (($ $ $) NIL)) (-3133 (($ $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2314 (($ $) 70)) (-3570 (((-876) $) 90) (((-656 (-940)) $) 11)) (-4055 (((-112) $ $) NIL)) (-2721 (($) 8 T CONST)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 44)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) 42)) (-3030 (($ $ $) 46)) (* (($ (-940) $) NIL) (($ (-783) $) 49)) (-3503 (((-783) $) 22))) -(((-992) (-13 (-807) (-625 (-656 (-940))) (-10 -8 (-15 -3514 ($ (-656 (-940)))) (-15 -3966 ((-656 (-940)) $)) (-15 -3503 ((-783) $)) (-15 -1514 ((-1178 $) (-783))) (-15 -1896 ((-656 (-887 (-940) (-940))) $)) (-15 -1360 ((-940) $)) (-15 -2314 ($ $))))) (T -992)) -((-3514 (*1 *1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-992)))) (-3966 (*1 *2 *1) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-992)))) (-3503 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-992)))) (-1514 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1178 (-992))) (-5 *1 (-992)))) (-1896 (*1 *2 *1) (-12 (-5 *2 (-656 (-887 (-940) (-940)))) (-5 *1 (-992)))) (-1360 (*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-992)))) (-2314 (*1 *1 *1) (-5 *1 (-992)))) -(-13 (-807) (-625 (-656 (-940))) (-10 -8 (-15 -3514 ($ (-656 (-940)))) (-15 -3966 ((-656 (-940)) $)) (-15 -3503 ((-783) $)) (-15 -1514 ((-1178 $) (-783))) (-15 -1896 ((-656 (-887 (-940) (-940))) $)) (-15 -1360 ((-940) $)) (-15 -2314 ($ $)))) -((-3057 (($ $ |#2|) 31)) (-3044 (($ $) 23) (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-419 (-576)) $) 27) (($ $ (-419 (-576))) 29))) -(((-993 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3057 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) (-994 |#2| |#3| |#4|) (-1070) (-804) (-861)) (T -993)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3057 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-1969 (((-656 |#3|) $) 86)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2757 (($ $) 64 (|has| |#1| (-568)))) (-3788 (((-112) $) 66 (|has| |#1| (-568)))) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-2114 (($ $) 72)) (-1561 (((-3 $ "failed") $) 37)) (-1424 (((-112) $) 85)) (-4193 (((-112) $) 35)) (-2823 (((-112) $) 74)) (-1945 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-656 |#3|) (-656 |#2|)) 87)) (-4117 (($ (-1 |#1| |#1|) $) 75)) (-2081 (($ $) 77)) (-2091 ((|#1| $) 78)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3476 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3634 ((|#2| $) 76)) (-3126 (($ $) 84)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3177 ((|#1| $ |#2|) 71)) (-4336 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2672 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3057 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +((-1441 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861)))) (-2185 (*1 *1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861)))) (-4330 (*1 *1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4464) (-15 -1441 (|t#1| $)) (-15 -2185 ($ $ $)) (-15 -4330 ($ $ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2759 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2759 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-4422 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3497 |#2|)) |#2| |#2|) 105)) (-3085 ((|#2| |#2| |#2|) 103)) (-3738 (((-2 (|:| |coef2| |#2|) (|:| -3497 |#2|)) |#2| |#2|) 107)) (-1802 (((-2 (|:| |coef1| |#2|) (|:| -3497 |#2|)) |#2| |#2|) 109)) (-1697 (((-2 (|:| |coef2| |#2|) (|:| -2356 |#1|)) |#2| |#2|) 131 (|has| |#1| (-464)))) (-1881 (((-2 (|:| |coef2| |#2|) (|:| -4334 |#1|)) |#2| |#2|) 56)) (-2682 (((-2 (|:| |coef2| |#2|) (|:| -4334 |#1|)) |#2| |#2|) 80)) (-2505 (((-2 (|:| |coef1| |#2|) (|:| -4334 |#1|)) |#2| |#2|) 82)) (-4119 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-2452 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 89)) (-3718 (((-2 (|:| |coef2| |#2|) (|:| -2269 |#1|)) |#2|) 121)) (-2096 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 92)) (-3882 (((-656 (-783)) |#2| |#2|) 102)) (-2314 ((|#1| |#2| |#2|) 50)) (-4180 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2356 |#1|)) |#2| |#2|) 129 (|has| |#1| (-464)))) (-2356 ((|#1| |#2| |#2|) 127 (|has| |#1| (-464)))) (-1829 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4334 |#1|)) |#2| |#2|) 54)) (-4392 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4334 |#1|)) |#2| |#2|) 79)) (-4334 ((|#1| |#2| |#2|) 76)) (-3958 (((-2 (|:| -1715 |#1|) (|:| -1855 |#2|) (|:| -3891 |#2|)) |#2| |#2|) 41)) (-1980 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-2822 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-3422 ((|#2| |#2| |#2|) 93)) (-3069 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 87)) (-3078 ((|#2| |#2| |#2| (-783)) 85)) (-3497 ((|#2| |#2| |#2|) 135 (|has| |#1| (-464)))) (-3475 (((-1288 |#2|) (-1288 |#2|) |#1|) 22)) (-3536 (((-2 (|:| -1855 |#2|) (|:| -3891 |#2|)) |#2| |#2|) 46)) (-3306 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2269 |#1|)) |#2|) 119)) (-2269 ((|#1| |#2|) 116)) (-3682 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 91)) (-1934 ((|#2| |#2| |#2| (-783)) 90)) (-2786 (((-656 |#2|) |#2| |#2|) 99)) (-4415 ((|#2| |#2| |#1| |#1| (-783)) 62)) (-1531 ((|#1| |#1| |#1| (-783)) 61)) (* (((-1288 |#2|) |#1| (-1288 |#2|)) 17))) +(((-990 |#1| |#2|) (-10 -7 (-15 -4334 (|#1| |#2| |#2|)) (-15 -4392 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4334 |#1|)) |#2| |#2|)) (-15 -2682 ((-2 (|:| |coef2| |#2|) (|:| -4334 |#1|)) |#2| |#2|)) (-15 -2505 ((-2 (|:| |coef1| |#2|) (|:| -4334 |#1|)) |#2| |#2|)) (-15 -3078 (|#2| |#2| |#2| (-783))) (-15 -3069 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -2452 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -1934 (|#2| |#2| |#2| (-783))) (-15 -3682 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -2096 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -3422 (|#2| |#2| |#2|)) (-15 -2822 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4119 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3085 (|#2| |#2| |#2|)) (-15 -4422 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3497 |#2|)) |#2| |#2|)) (-15 -3738 ((-2 (|:| |coef2| |#2|) (|:| -3497 |#2|)) |#2| |#2|)) (-15 -1802 ((-2 (|:| |coef1| |#2|) (|:| -3497 |#2|)) |#2| |#2|)) (-15 -2269 (|#1| |#2|)) (-15 -3306 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2269 |#1|)) |#2|)) (-15 -3718 ((-2 (|:| |coef2| |#2|) (|:| -2269 |#1|)) |#2|)) (-15 -2786 ((-656 |#2|) |#2| |#2|)) (-15 -3882 ((-656 (-783)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -2356 (|#1| |#2| |#2|)) (-15 -4180 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2356 |#1|)) |#2| |#2|)) (-15 -1697 ((-2 (|:| |coef2| |#2|) (|:| -2356 |#1|)) |#2| |#2|)) (-15 -3497 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1288 |#2|) |#1| (-1288 |#2|))) (-15 -3475 ((-1288 |#2|) (-1288 |#2|) |#1|)) (-15 -3958 ((-2 (|:| -1715 |#1|) (|:| -1855 |#2|) (|:| -3891 |#2|)) |#2| |#2|)) (-15 -3536 ((-2 (|:| -1855 |#2|) (|:| -3891 |#2|)) |#2| |#2|)) (-15 -1531 (|#1| |#1| |#1| (-783))) (-15 -4415 (|#2| |#2| |#1| |#1| (-783))) (-15 -1980 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2314 (|#1| |#2| |#2|)) (-15 -1829 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4334 |#1|)) |#2| |#2|)) (-15 -1881 ((-2 (|:| |coef2| |#2|) (|:| -4334 |#1|)) |#2| |#2|))) (-568) (-1264 |#1|)) (T -990)) +((-1881 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4334 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-1829 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4334 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-2314 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2)))) (-1980 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) (-4415 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) (-1531 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *2 (-568)) (-5 *1 (-990 *2 *4)) (-4 *4 (-1264 *2)))) (-3536 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -1855 *3) (|:| -3891 *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3958 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -1715 *4) (|:| -1855 *3) (|:| -3891 *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3475 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-568)) (-5 *1 (-990 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1288 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-568)) (-5 *1 (-990 *3 *4)))) (-3497 (*1 *2 *2 *2) (-12 (-4 *3 (-464)) (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) (-1697 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2356 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-4180 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2356 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-2356 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-4 *2 (-464)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2)))) (-3882 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-783))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-2786 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3718 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2269 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3306 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2269 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-2269 (*1 *2 *3) (-12 (-4 *2 (-568)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2)))) (-1802 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3497 *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3738 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3497 *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-4422 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3497 *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3085 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) (-4119 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-2822 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3422 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) (-2096 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5)))) (-3682 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5)))) (-1934 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-990 *4 *2)) (-4 *2 (-1264 *4)))) (-2452 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5)))) (-3069 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5)))) (-3078 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-990 *4 *2)) (-4 *2 (-1264 *4)))) (-2505 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4334 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-2682 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4334 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-4392 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4334 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-4334 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2))))) +(-10 -7 (-15 -4334 (|#1| |#2| |#2|)) (-15 -4392 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4334 |#1|)) |#2| |#2|)) (-15 -2682 ((-2 (|:| |coef2| |#2|) (|:| -4334 |#1|)) |#2| |#2|)) (-15 -2505 ((-2 (|:| |coef1| |#2|) (|:| -4334 |#1|)) |#2| |#2|)) (-15 -3078 (|#2| |#2| |#2| (-783))) (-15 -3069 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -2452 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -1934 (|#2| |#2| |#2| (-783))) (-15 -3682 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -2096 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -3422 (|#2| |#2| |#2|)) (-15 -2822 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4119 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3085 (|#2| |#2| |#2|)) (-15 -4422 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3497 |#2|)) |#2| |#2|)) (-15 -3738 ((-2 (|:| |coef2| |#2|) (|:| -3497 |#2|)) |#2| |#2|)) (-15 -1802 ((-2 (|:| |coef1| |#2|) (|:| -3497 |#2|)) |#2| |#2|)) (-15 -2269 (|#1| |#2|)) (-15 -3306 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2269 |#1|)) |#2|)) (-15 -3718 ((-2 (|:| |coef2| |#2|) (|:| -2269 |#1|)) |#2|)) (-15 -2786 ((-656 |#2|) |#2| |#2|)) (-15 -3882 ((-656 (-783)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -2356 (|#1| |#2| |#2|)) (-15 -4180 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2356 |#1|)) |#2| |#2|)) (-15 -1697 ((-2 (|:| |coef2| |#2|) (|:| -2356 |#1|)) |#2| |#2|)) (-15 -3497 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1288 |#2|) |#1| (-1288 |#2|))) (-15 -3475 ((-1288 |#2|) (-1288 |#2|) |#1|)) (-15 -3958 ((-2 (|:| -1715 |#1|) (|:| -1855 |#2|) (|:| -3891 |#2|)) |#2| |#2|)) (-15 -3536 ((-2 (|:| -1855 |#2|) (|:| -3891 |#2|)) |#2| |#2|)) (-15 -1531 (|#1| |#1| |#1| (-783))) (-15 -4415 (|#2| |#2| |#1| |#1| (-783))) (-15 -1980 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2314 (|#1| |#2| |#2|)) (-15 -1829 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4334 |#1|)) |#2| |#2|)) (-15 -1881 ((-2 (|:| |coef2| |#2|) (|:| -4334 |#1|)) |#2| |#2|))) +((-3488 (((-112) $ $) NIL)) (-2983 (((-1237) $) 13)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3121 (((-1156) $) 10)) (-3569 (((-876) $) 20) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-991) (-13 (-1104) (-10 -8 (-15 -3121 ((-1156) $)) (-15 -2983 ((-1237) $))))) (T -991)) +((-3121 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-991)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-991))))) +(-13 (-1104) (-10 -8 (-15 -3121 ((-1156) $)) (-15 -2983 ((-1237) $)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 40)) (-2428 (((-3 $ "failed") $ $) 54)) (-3404 (($) NIL T CONST)) (-3854 (((-656 (-887 (-940) (-940))) $) 67)) (-1417 (((-940) $) 94)) (-3965 (((-656 (-940)) $) 17)) (-4383 (((-1178 $) (-783)) 39)) (-4084 (($ (-656 (-940))) 16)) (-3124 (($ $ $) NIL)) (-1441 (($ $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2272 (($ $) 70)) (-3569 (((-876) $) 90) (((-656 (-940)) $) 11)) (-2399 (((-112) $ $) NIL)) (-2721 (($) 8 T CONST)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 44)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) 42)) (-3029 (($ $ $) 46)) (* (($ (-940) $) NIL) (($ (-783) $) 49)) (-3502 (((-783) $) 22))) +(((-992) (-13 (-807) (-625 (-656 (-940))) (-10 -8 (-15 -4084 ($ (-656 (-940)))) (-15 -3965 ((-656 (-940)) $)) (-15 -3502 ((-783) $)) (-15 -4383 ((-1178 $) (-783))) (-15 -3854 ((-656 (-887 (-940) (-940))) $)) (-15 -1417 ((-940) $)) (-15 -2272 ($ $))))) (T -992)) +((-4084 (*1 *1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-992)))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-992)))) (-3502 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-992)))) (-4383 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1178 (-992))) (-5 *1 (-992)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-656 (-887 (-940) (-940)))) (-5 *1 (-992)))) (-1417 (*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-992)))) (-2272 (*1 *1 *1) (-5 *1 (-992)))) +(-13 (-807) (-625 (-656 (-940))) (-10 -8 (-15 -4084 ($ (-656 (-940)))) (-15 -3965 ((-656 (-940)) $)) (-15 -3502 ((-783) $)) (-15 -4383 ((-1178 $) (-783))) (-15 -3854 ((-656 (-887 (-940) (-940))) $)) (-15 -1417 ((-940) $)) (-15 -2272 ($ $)))) +((-3056 (($ $ |#2|) 31)) (-3043 (($ $) 23) (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-419 (-576)) $) 27) (($ $ (-419 (-576))) 29))) +(((-993 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3056 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) (-994 |#2| |#3| |#4|) (-1070) (-804) (-861)) (T -993)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3056 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-1969 (((-656 |#3|) $) 86)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4195 (($ $) 64 (|has| |#1| (-568)))) (-1760 (((-112) $) 66 (|has| |#1| (-568)))) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-2114 (($ $) 72)) (-3673 (((-3 $ "failed") $) 37)) (-2116 (((-112) $) 85)) (-1351 (((-112) $) 35)) (-3538 (((-112) $) 74)) (-1944 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-656 |#3|) (-656 |#2|)) 87)) (-4116 (($ (-1 |#1| |#1|) $) 75)) (-2081 (($ $) 77)) (-2091 ((|#1| $) 78)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3475 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2683 ((|#2| $) 76)) (-2539 (($ $) 84)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-1822 ((|#1| $ |#2|) 71)) (-3390 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-1505 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) (((-994 |#1| |#2| |#3|) (-141) (-1070) (-804) (-861)) (T -994)) -((-2091 (*1 *2 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-1070)))) (-2081 (*1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-804)) (-4 *4 (-861)))) (-3634 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *2 *4)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *2 (-804)))) (-1945 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-994 *4 *3 *2)) (-4 *4 (-1070)) (-4 *3 (-804)) (-4 *2 (-861)))) (-1945 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 *5)) (-4 *1 (-994 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-804)) (-4 *6 (-861)))) (-1969 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-656 *5)))) (-1424 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)))) (-3126 (*1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-804)) (-4 *4 (-861))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -1945 ($ $ |t#3| |t#2|)) (-15 -1945 ($ $ (-656 |t#3|) (-656 |t#2|))) (-15 -2081 ($ $)) (-15 -2091 (|t#1| $)) (-15 -3634 (|t#2| $)) (-15 -1969 ((-656 |t#3|) $)) (-15 -1424 ((-112) $)) (-15 -3126 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2760 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) -2760 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-4316 (((-1115 (-227)) $) 8)) (-4307 (((-1115 (-227)) $) 9)) (-4295 (((-1115 (-227)) $) 10)) (-3739 (((-656 (-656 (-962 (-227)))) $) 11)) (-3570 (((-876) $) 6))) +((-2091 (*1 *2 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-1070)))) (-2081 (*1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-804)) (-4 *4 (-861)))) (-2683 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *2 *4)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *2 (-804)))) (-1944 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-994 *4 *3 *2)) (-4 *4 (-1070)) (-4 *3 (-804)) (-4 *2 (-861)))) (-1944 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 *5)) (-4 *1 (-994 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-804)) (-4 *6 (-861)))) (-1969 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-656 *5)))) (-2116 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)))) (-2539 (*1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-804)) (-4 *4 (-861))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -1944 ($ $ |t#3| |t#2|)) (-15 -1944 ($ $ (-656 |t#3|) (-656 |t#2|))) (-15 -2081 ($ $)) (-15 -2091 (|t#1| $)) (-15 -2683 (|t#2| $)) (-15 -1969 ((-656 |t#3|) $)) (-15 -2116 ((-112) $)) (-15 -2539 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2759 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) -2759 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-4315 (((-1115 (-227)) $) 8)) (-4305 (((-1115 (-227)) $) 9)) (-4293 (((-1115 (-227)) $) 10)) (-2472 (((-656 (-656 (-962 (-227)))) $) 11)) (-3569 (((-876) $) 6))) (((-995) (-141)) (T -995)) -((-3739 (*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-656 (-656 (-962 (-227))))))) (-4295 (*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-1115 (-227))))) (-4307 (*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-1115 (-227))))) (-4316 (*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-1115 (-227)))))) -(-13 (-625 (-876)) (-10 -8 (-15 -3739 ((-656 (-656 (-962 (-227)))) $)) (-15 -4295 ((-1115 (-227)) $)) (-15 -4307 ((-1115 (-227)) $)) (-15 -4316 ((-1115 (-227)) $)))) +((-2472 (*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-656 (-656 (-962 (-227))))))) (-4293 (*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-1115 (-227))))) (-4305 (*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-1115 (-227))))) (-4315 (*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-1115 (-227)))))) +(-13 (-625 (-876)) (-10 -8 (-15 -2472 ((-656 (-656 (-962 (-227)))) $)) (-15 -4293 ((-1115 (-227)) $)) (-15 -4305 ((-1115 (-227)) $)) (-15 -4315 ((-1115 (-227)) $)))) (((-625 (-876)) . T)) -((-1969 (((-656 |#4|) $) 23)) (-1807 (((-112) $) 55)) (-4026 (((-112) $) 54)) (-1795 (((-2 (|:| |under| $) (|:| -2443 $) (|:| |upper| $)) $ |#4|) 42)) (-3713 (((-112) $) 56)) (-2813 (((-112) $ $) 62)) (-3812 (((-112) $ $) 65)) (-1884 (((-112) $) 60)) (-2311 (((-656 |#5|) (-656 |#5|) $) 98)) (-4376 (((-656 |#5|) (-656 |#5|) $) 95)) (-3624 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-2234 (((-656 |#4|) $) 27)) (-2106 (((-112) |#4| $) 34)) (-2280 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3118 (($ $ |#4|) 39)) (-2637 (($ $ |#4|) 38)) (-3317 (($ $ |#4|) 40)) (-2925 (((-112) $ $) 46))) -(((-996 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4026 ((-112) |#1|)) (-15 -2311 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -4376 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -3624 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2280 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3713 ((-112) |#1|)) (-15 -3812 ((-112) |#1| |#1|)) (-15 -2813 ((-112) |#1| |#1|)) (-15 -1884 ((-112) |#1|)) (-15 -1807 ((-112) |#1|)) (-15 -1795 ((-2 (|:| |under| |#1|) (|:| -2443 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3118 (|#1| |#1| |#4|)) (-15 -3317 (|#1| |#1| |#4|)) (-15 -2637 (|#1| |#1| |#4|)) (-15 -2106 ((-112) |#4| |#1|)) (-15 -2234 ((-656 |#4|) |#1|)) (-15 -1969 ((-656 |#4|) |#1|)) (-15 -2925 ((-112) |#1| |#1|))) (-997 |#2| |#3| |#4| |#5|) (-1070) (-805) (-861) (-1086 |#2| |#3| |#4|)) (T -996)) +((-1969 (((-656 |#4|) $) 23)) (-4255 (((-112) $) 55)) (-2136 (((-112) $) 54)) (-1795 (((-2 (|:| |under| $) (|:| -4236 $) (|:| |upper| $)) $ |#4|) 42)) (-2203 (((-112) $) 56)) (-3438 (((-112) $ $) 62)) (-1990 (((-112) $ $) 65)) (-3740 (((-112) $) 60)) (-2239 (((-656 |#5|) (-656 |#5|) $) 98)) (-2514 (((-656 |#5|) (-656 |#5|) $) 95)) (-3891 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-2666 (((-656 |#4|) $) 27)) (-4001 (((-112) |#4| $) 34)) (-3196 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2479 (($ $ |#4|) 39)) (-2394 (($ $ |#4|) 38)) (-2665 (($ $ |#4|) 40)) (-2924 (((-112) $ $) 46))) +(((-996 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2136 ((-112) |#1|)) (-15 -2239 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -2514 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -3891 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3196 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2203 ((-112) |#1|)) (-15 -1990 ((-112) |#1| |#1|)) (-15 -3438 ((-112) |#1| |#1|)) (-15 -3740 ((-112) |#1|)) (-15 -4255 ((-112) |#1|)) (-15 -1795 ((-2 (|:| |under| |#1|) (|:| -4236 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2479 (|#1| |#1| |#4|)) (-15 -2665 (|#1| |#1| |#4|)) (-15 -2394 (|#1| |#1| |#4|)) (-15 -4001 ((-112) |#4| |#1|)) (-15 -2666 ((-656 |#4|) |#1|)) (-15 -1969 ((-656 |#4|) |#1|)) (-15 -2924 ((-112) |#1| |#1|))) (-997 |#2| |#3| |#4| |#5|) (-1070) (-805) (-861) (-1086 |#2| |#3| |#4|)) (T -996)) NIL -(-10 -8 (-15 -4026 ((-112) |#1|)) (-15 -2311 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -4376 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -3624 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2280 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3713 ((-112) |#1|)) (-15 -3812 ((-112) |#1| |#1|)) (-15 -2813 ((-112) |#1| |#1|)) (-15 -1884 ((-112) |#1|)) (-15 -1807 ((-112) |#1|)) (-15 -1795 ((-2 (|:| |under| |#1|) (|:| -2443 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3118 (|#1| |#1| |#4|)) (-15 -3317 (|#1| |#1| |#4|)) (-15 -2637 (|#1| |#1| |#4|)) (-15 -2106 ((-112) |#4| |#1|)) (-15 -2234 ((-656 |#4|) |#1|)) (-15 -1969 ((-656 |#4|) |#1|)) (-15 -2925 ((-112) |#1| |#1|))) -((-3489 (((-112) $ $) 7)) (-1969 (((-656 |#3|) $) 34)) (-1807 (((-112) $) 27)) (-4026 (((-112) $) 18 (|has| |#1| (-568)))) (-1795 (((-2 (|:| |under| $) (|:| -2443 $) (|:| |upper| $)) $ |#3|) 28)) (-1808 (((-112) $ (-783)) 45)) (-1974 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4465)))) (-3886 (($) 46 T CONST)) (-3713 (((-112) $) 23 (|has| |#1| (-568)))) (-2813 (((-112) $ $) 25 (|has| |#1| (-568)))) (-3812 (((-112) $ $) 24 (|has| |#1| (-568)))) (-1884 (((-112) $) 26 (|has| |#1| (-568)))) (-2311 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-4376 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) 37)) (-2860 (($ (-656 |#4|)) 36)) (-1415 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465))))) (-3946 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4465)))) (-3624 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3686 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4465))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4465)))) (-3966 (((-656 |#4|) $) 53 (|has| $ (-6 -4465)))) (-2620 ((|#3| $) 35)) (-3870 (((-112) $ (-783)) 44)) (-2014 (((-656 |#4|) $) 54 (|has| $ (-6 -4465)))) (-1612 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465))))) (-4323 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#4| |#4|) $) 48)) (-2234 (((-656 |#3|) $) 33)) (-2106 (((-112) |#3| $) 32)) (-1330 (((-112) $ (-783)) 43)) (-3699 (((-1179) $) 10)) (-2280 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-1450 (((-1141) $) 11)) (-1541 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4320 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-4040 (((-112) $ $) 39)) (-3973 (((-112) $) 42)) (-4225 (($) 41)) (-1460 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4465)))) (-1870 (($ $) 40)) (-4172 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3582 (($ (-656 |#4|)) 61)) (-3118 (($ $ |#3|) 29)) (-2637 (($ $ |#3|) 31)) (-3317 (($ $ |#3|) 30)) (-3570 (((-876) $) 12) (((-656 |#4|) $) 38)) (-4055 (((-112) $ $) 6)) (-3321 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 8)) (-3503 (((-783) $) 47 (|has| $ (-6 -4465))))) +(-10 -8 (-15 -2136 ((-112) |#1|)) (-15 -2239 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -2514 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -3891 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3196 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2203 ((-112) |#1|)) (-15 -1990 ((-112) |#1| |#1|)) (-15 -3438 ((-112) |#1| |#1|)) (-15 -3740 ((-112) |#1|)) (-15 -4255 ((-112) |#1|)) (-15 -1795 ((-2 (|:| |under| |#1|) (|:| -4236 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2479 (|#1| |#1| |#4|)) (-15 -2665 (|#1| |#1| |#4|)) (-15 -2394 (|#1| |#1| |#4|)) (-15 -4001 ((-112) |#4| |#1|)) (-15 -2666 ((-656 |#4|) |#1|)) (-15 -1969 ((-656 |#4|) |#1|)) (-15 -2924 ((-112) |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-1969 (((-656 |#3|) $) 34)) (-4255 (((-112) $) 27)) (-2136 (((-112) $) 18 (|has| |#1| (-568)))) (-1795 (((-2 (|:| |under| $) (|:| -4236 $) (|:| |upper| $)) $ |#3|) 28)) (-4264 (((-112) $ (-783)) 45)) (-1974 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4464)))) (-3404 (($) 46 T CONST)) (-2203 (((-112) $) 23 (|has| |#1| (-568)))) (-3438 (((-112) $ $) 25 (|has| |#1| (-568)))) (-1990 (((-112) $ $) 24 (|has| |#1| (-568)))) (-3740 (((-112) $) 26 (|has| |#1| (-568)))) (-2239 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-2514 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) 37)) (-2859 (($ (-656 |#4|)) 36)) (-2034 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4464)))) (-3891 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3685 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4464)))) (-3965 (((-656 |#4|) $) 53 (|has| $ (-6 -4464)))) (-2235 ((|#3| $) 35)) (-1368 (((-112) $ (-783)) 44)) (-2425 (((-656 |#4|) $) 54 (|has| $ (-6 -4464)))) (-2885 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-4326 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#4| |#4|) $) 48)) (-2666 (((-656 |#3|) $) 33)) (-4001 (((-112) |#3| $) 32)) (-2883 (((-112) $ (-783)) 43)) (-2046 (((-1179) $) 10)) (-3196 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-1450 (((-1141) $) 11)) (-3434 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3252 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-2252 (((-112) $ $) 39)) (-2940 (((-112) $) 42)) (-3579 (($) 41)) (-1460 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4464)))) (-1870 (($ $) 40)) (-4171 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3581 (($ (-656 |#4|)) 61)) (-2479 (($ $ |#3|) 29)) (-2394 (($ $ |#3|) 31)) (-2665 (($ $ |#3|) 30)) (-3569 (((-876) $) 12) (((-656 |#4|) $) 38)) (-2399 (((-112) $ $) 6)) (-2708 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 8)) (-3502 (((-783) $) 47 (|has| $ (-6 -4464))))) (((-997 |#1| |#2| |#3| |#4|) (-141) (-1070) (-805) (-861) (-1086 |t#1| |t#2| |t#3|)) (T -997)) -((-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *1 (-997 *3 *4 *5 *6)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *1 (-997 *3 *4 *5 *6)))) (-2620 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-1086 *3 *4 *2)) (-4 *2 (-861)))) (-1969 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *5)))) (-2234 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *5)))) (-2106 (*1 *2 *3 *1) (-12 (-4 *1 (-997 *4 *5 *3 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-4 *6 (-1086 *4 *5 *3)) (-5 *2 (-112)))) (-2637 (*1 *1 *1 *2) (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *5 (-1086 *3 *4 *2)))) (-3317 (*1 *1 *1 *2) (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *5 (-1086 *3 *4 *2)))) (-3118 (*1 *1 *1 *2) (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *5 (-1086 *3 *4 *2)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-4 *6 (-1086 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2443 *1) (|:| |upper| *1))) (-4 *1 (-997 *4 *5 *3 *6)))) (-1807 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-1884 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-2813 (*1 *2 *1 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-3812 (*1 *2 *1 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-3713 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-2280 (*1 *2 *3 *1) (-12 (-4 *1 (-997 *4 *5 *6 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3624 (*1 *2 *3 *1) (-12 (-4 *1 (-997 *4 *5 *6 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-4376 (*1 *2 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)))) (-2311 (*1 *2 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)))) (-4026 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112))))) -(-13 (-1121) (-152 |t#4|) (-625 (-656 |t#4|)) (-10 -8 (-6 -4465) (-15 -1572 ((-3 $ "failed") (-656 |t#4|))) (-15 -2860 ($ (-656 |t#4|))) (-15 -2620 (|t#3| $)) (-15 -1969 ((-656 |t#3|) $)) (-15 -2234 ((-656 |t#3|) $)) (-15 -2106 ((-112) |t#3| $)) (-15 -2637 ($ $ |t#3|)) (-15 -3317 ($ $ |t#3|)) (-15 -3118 ($ $ |t#3|)) (-15 -1795 ((-2 (|:| |under| $) (|:| -2443 $) (|:| |upper| $)) $ |t#3|)) (-15 -1807 ((-112) $)) (IF (|has| |t#1| (-568)) (PROGN (-15 -1884 ((-112) $)) (-15 -2813 ((-112) $ $)) (-15 -3812 ((-112) $ $)) (-15 -3713 ((-112) $)) (-15 -2280 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3624 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -4376 ((-656 |t#4|) (-656 |t#4|) $)) (-15 -2311 ((-656 |t#4|) (-656 |t#4|) $)) (-15 -4026 ((-112) $))) |%noBranch|))) +((-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *1 (-997 *3 *4 *5 *6)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *1 (-997 *3 *4 *5 *6)))) (-2235 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-1086 *3 *4 *2)) (-4 *2 (-861)))) (-1969 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *5)))) (-2666 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *5)))) (-4001 (*1 *2 *3 *1) (-12 (-4 *1 (-997 *4 *5 *3 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-4 *6 (-1086 *4 *5 *3)) (-5 *2 (-112)))) (-2394 (*1 *1 *1 *2) (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *5 (-1086 *3 *4 *2)))) (-2665 (*1 *1 *1 *2) (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *5 (-1086 *3 *4 *2)))) (-2479 (*1 *1 *1 *2) (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *5 (-1086 *3 *4 *2)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-4 *6 (-1086 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -4236 *1) (|:| |upper| *1))) (-4 *1 (-997 *4 *5 *3 *6)))) (-4255 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-3740 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-3438 (*1 *2 *1 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-1990 (*1 *2 *1 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-2203 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-3196 (*1 *2 *3 *1) (-12 (-4 *1 (-997 *4 *5 *6 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3891 (*1 *2 *3 *1) (-12 (-4 *1 (-997 *4 *5 *6 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2514 (*1 *2 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)))) (-2239 (*1 *2 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)))) (-2136 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112))))) +(-13 (-1121) (-152 |t#4|) (-625 (-656 |t#4|)) (-10 -8 (-6 -4464) (-15 -1572 ((-3 $ "failed") (-656 |t#4|))) (-15 -2859 ($ (-656 |t#4|))) (-15 -2235 (|t#3| $)) (-15 -1969 ((-656 |t#3|) $)) (-15 -2666 ((-656 |t#3|) $)) (-15 -4001 ((-112) |t#3| $)) (-15 -2394 ($ $ |t#3|)) (-15 -2665 ($ $ |t#3|)) (-15 -2479 ($ $ |t#3|)) (-15 -1795 ((-2 (|:| |under| $) (|:| -4236 $) (|:| |upper| $)) $ |t#3|)) (-15 -4255 ((-112) $)) (IF (|has| |t#1| (-568)) (PROGN (-15 -3740 ((-112) $)) (-15 -3438 ((-112) $ $)) (-15 -1990 ((-112) $ $)) (-15 -2203 ((-112) $)) (-15 -3196 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3891 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2514 ((-656 |t#4|) (-656 |t#4|) $)) (-15 -2239 ((-656 |t#4|) (-656 |t#4|) $)) (-15 -2136 ((-112) $))) |%noBranch|))) (((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-876)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-1121) . T) ((-1238) . T)) -((-4049 (((-656 |#4|) |#4| |#4|) 136)) (-2968 (((-656 |#4|) (-656 |#4|) (-112)) 125 (|has| |#1| (-464))) (((-656 |#4|) (-656 |#4|)) 126 (|has| |#1| (-464)))) (-3939 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 44)) (-3574 (((-112) |#4|) 43)) (-2110 (((-656 |#4|) |#4|) 121 (|has| |#1| (-464)))) (-2335 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|)) 24)) (-2466 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|)) 30)) (-2420 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|)) 31)) (-2689 (((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|)) 90)) (-2379 (((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-1614 (((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-3026 (((-656 |#4|) (-656 |#4|)) 128)) (-4363 (((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112)) 59) (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 61)) (-2215 ((|#4| |#4| (-656 |#4|)) 60)) (-2819 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 132 (|has| |#1| (-464)))) (-1325 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 135 (|has| |#1| (-464)))) (-2874 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 134 (|has| |#1| (-464)))) (-3825 (((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|))) 105) (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 107) (((-656 |#4|) (-656 |#4|) |#4|) 140) (((-656 |#4|) |#4| |#4|) 137) (((-656 |#4|) (-656 |#4|)) 106)) (-1887 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-3903 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 52)) (-3772 (((-112) (-656 |#4|)) 79)) (-3638 (((-112) (-656 |#4|) (-656 (-656 |#4|))) 67)) (-3665 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 37)) (-3612 (((-112) |#4|) 36)) (-3826 (((-656 |#4|) (-656 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-4412 (((-656 |#4|) (-656 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-1666 (((-656 |#4|) (-656 |#4|)) 83)) (-3564 (((-656 |#4|) (-656 |#4|)) 97)) (-3929 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-2805 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 50)) (-3220 (((-112) |#4|) 45))) -(((-998 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3825 ((-656 |#4|) (-656 |#4|))) (-15 -3825 ((-656 |#4|) |#4| |#4|)) (-15 -3026 ((-656 |#4|) (-656 |#4|))) (-15 -4049 ((-656 |#4|) |#4| |#4|)) (-15 -3825 ((-656 |#4|) (-656 |#4|) |#4|)) (-15 -3825 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -3825 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|)))) (-15 -3929 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3638 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -3772 ((-112) (-656 |#4|))) (-15 -2335 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|))) (-15 -2466 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -2420 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -3903 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3574 ((-112) |#4|)) (-15 -3939 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3612 ((-112) |#4|)) (-15 -3665 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3220 ((-112) |#4|)) (-15 -2805 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -4363 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -4363 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112))) (-15 -2215 (|#4| |#4| (-656 |#4|))) (-15 -1666 ((-656 |#4|) (-656 |#4|))) (-15 -2689 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|))) (-15 -3564 ((-656 |#4|) (-656 |#4|))) (-15 -2379 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1614 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -2110 ((-656 |#4|) |#4|)) (-15 -2968 ((-656 |#4|) (-656 |#4|))) (-15 -2968 ((-656 |#4|) (-656 |#4|) (-112))) (-15 -2819 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2874 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -1325 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (PROGN (-15 -4412 ((-656 |#4|) (-656 |#4|))) (-15 -3826 ((-656 |#4|) (-656 |#4|))) (-15 -1887 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) |%noBranch|)) (-568) (-805) (-861) (-1086 |#1| |#2| |#3|)) (T -998)) -((-1887 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-3826 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-4412 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-1325 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-2874 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-2819 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-2968 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *7)))) (-2968 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-2110 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *3)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-1614 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-998 *5 *6 *7 *8)))) (-2379 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-656 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-861)) (-5 *1 (-998 *6 *7 *8 *9)))) (-3564 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-2689 (*1 *2 *3) (|partial| -12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -1419 (-656 *7)))) (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-1666 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-2215 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *2)))) (-4363 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *7)))) (-4363 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-2805 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-3220 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-3665 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-3612 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-3939 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-3903 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-2466 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-2335 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-3772 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *4 *5 *6 *7)))) (-3638 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *5 *6 *7 *8)))) (-3929 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *4 *5 *6 *7)))) (-3825 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-656 *7) (-656 *7))) (-5 *2 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *7)))) (-3825 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-3825 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *3)))) (-4049 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *3)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-3026 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-3825 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *3)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-3825 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6))))) -(-10 -7 (-15 -3825 ((-656 |#4|) (-656 |#4|))) (-15 -3825 ((-656 |#4|) |#4| |#4|)) (-15 -3026 ((-656 |#4|) (-656 |#4|))) (-15 -4049 ((-656 |#4|) |#4| |#4|)) (-15 -3825 ((-656 |#4|) (-656 |#4|) |#4|)) (-15 -3825 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -3825 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|)))) (-15 -3929 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3638 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -3772 ((-112) (-656 |#4|))) (-15 -2335 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|))) (-15 -2466 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -2420 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -3903 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3574 ((-112) |#4|)) (-15 -3939 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3612 ((-112) |#4|)) (-15 -3665 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3220 ((-112) |#4|)) (-15 -2805 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -4363 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -4363 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112))) (-15 -2215 (|#4| |#4| (-656 |#4|))) (-15 -1666 ((-656 |#4|) (-656 |#4|))) (-15 -2689 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|))) (-15 -3564 ((-656 |#4|) (-656 |#4|))) (-15 -2379 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1614 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -2110 ((-656 |#4|) |#4|)) (-15 -2968 ((-656 |#4|) (-656 |#4|))) (-15 -2968 ((-656 |#4|) (-656 |#4|) (-112))) (-15 -2819 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2874 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -1325 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (PROGN (-15 -4412 ((-656 |#4|) (-656 |#4|))) (-15 -3826 ((-656 |#4|) (-656 |#4|))) (-15 -1887 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) |%noBranch|)) -((-2432 (((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-4414 (((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1288 |#1|)))) (-701 |#1|) (-1288 |#1|)) 46)) (-2904 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) -(((-999 |#1|) (-10 -7 (-15 -2432 ((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2904 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4414 ((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1288 |#1|)))) (-701 |#1|) (-1288 |#1|)))) (-374)) (T -999)) -((-4414 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1288 *5))))) (-5 *1 (-999 *5)) (-5 *3 (-701 *5)) (-5 *4 (-1288 *5)))) (-2904 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-701 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-5 *1 (-999 *5)))) (-2432 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-374)) (-5 *2 (-2 (|:| R (-701 *6)) (|:| A (-701 *6)) (|:| |Ainv| (-701 *6)))) (-5 *1 (-999 *6)) (-5 *3 (-701 *6))))) -(-10 -7 (-15 -2432 ((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2904 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4414 ((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1288 |#1|)))) (-701 |#1|) (-1288 |#1|)))) -((-3921 (((-430 |#4|) |#4|) 56))) -(((-1000 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3921 ((-430 |#4|) |#4|))) (-861) (-805) (-464) (-968 |#3| |#2| |#1|)) (T -1000)) -((-3921 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-464)) (-5 *2 (-430 *3)) (-5 *1 (-1000 *4 *5 *6 *3)) (-4 *3 (-968 *6 *5 *4))))) -(-10 -7 (-15 -3921 ((-430 |#4|) |#4|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3832 (($ (-783)) 115 (|has| |#1| (-23)))) (-2047 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4466)))) (-1710 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-4298 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4466))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4466))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-1808 (((-112) $ (-783)) 8)) (-3756 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4466))) ((|#1| $ (-1255 (-576)) |#1|) 60 (|has| $ (-6 -4466)))) (-1974 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4465)))) (-3886 (($) 7 T CONST)) (-3990 (($ $) 93 (|has| $ (-6 -4466)))) (-3836 (($ $) 103)) (-1415 (($ $) 80 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-3946 (($ |#1| $) 79 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4465)))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4465)))) (-4335 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4466)))) (-4274 ((|#1| $ (-576)) 52)) (-3660 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1121)))) (-3043 (($ (-656 |#1|)) 121)) (-3966 (((-656 |#1|) $) 31 (|has| $ (-6 -4465)))) (-2355 (((-701 |#1|) $ $) 108 (|has| |#1| (-1070)))) (-4141 (($ (-783) |#1|) 70)) (-3870 (((-112) $ (-783)) 9)) (-2924 (((-576) $) 44 (|has| (-576) (-861)))) (-3125 (($ $ $) 85 (|has| |#1| (-861)))) (-3391 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-2137 (((-576) $) 45 (|has| (-576) (-861)))) (-3133 (($ $ $) 86 (|has| |#1| (-861)))) (-4323 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2846 ((|#1| $) 105 (-12 (|has| |#1| (-1070)) (|has| |#1| (-1023))))) (-1330 (((-112) $ (-783)) 10)) (-2437 ((|#1| $) 106 (-12 (|has| |#1| (-1070)) (|has| |#1| (-1023))))) (-3699 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2176 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-4234 (((-656 (-576)) $) 47)) (-3354 (((-112) (-576) $) 48)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3581 ((|#1| $) 43 (|has| (-576) (-861)))) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4046 (($ $ |#1|) 42 (|has| $ (-6 -4466)))) (-1749 (($ $ (-656 |#1|)) 119)) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3845 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2281 (((-656 |#1|) $) 49)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-2797 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1255 (-576))) 71)) (-2118 ((|#1| $ $) 109 (|has| |#1| (-1070)))) (-2003 (((-940) $) 120)) (-3466 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-3409 (($ $ $) 107)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-3025 (($ $ $ (-576)) 94 (|has| $ (-6 -4466)))) (-1870 (($ $) 13)) (-4172 (((-548) $) 81 (|has| |#1| (-626 (-548)))) (($ (-656 |#1|)) 122)) (-3582 (($ (-656 |#1|)) 72)) (-1615 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3570 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2992 (((-112) $ $) 87 (|has| |#1| (-861)))) (-2964 (((-112) $ $) 89 (|has| |#1| (-861)))) (-2925 (((-112) $ $) 19 (|has| |#1| (-102)))) (-2978 (((-112) $ $) 88 (|has| |#1| (-861)))) (-2950 (((-112) $ $) 90 (|has| |#1| (-861)))) (-3044 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3030 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-576) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-738))) (($ $ |#1|) 110 (|has| |#1| (-738)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-2341 (((-656 |#4|) |#4| |#4|) 136)) (-3587 (((-656 |#4|) (-656 |#4|) (-112)) 125 (|has| |#1| (-464))) (((-656 |#4|) (-656 |#4|)) 126 (|has| |#1| (-464)))) (-3935 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 44)) (-3367 (((-112) |#4|) 43)) (-4046 (((-656 |#4|) |#4|) 121 (|has| |#1| (-464)))) (-2475 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|)) 24)) (-1339 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|)) 30)) (-4015 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|)) 31)) (-1637 (((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|)) 90)) (-1666 (((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-2910 (((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-2854 (((-656 |#4|) (-656 |#4|)) 128)) (-2384 (((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112)) 59) (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 61)) (-3778 ((|#4| |#4| (-656 |#4|)) 60)) (-3486 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 132 (|has| |#1| (-464)))) (-2845 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 135 (|has| |#1| (-464)))) (-2751 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 134 (|has| |#1| (-464)))) (-4111 (((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|))) 105) (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 107) (((-656 |#4|) (-656 |#4|) |#4|) 140) (((-656 |#4|) |#4| |#4|) 137) (((-656 |#4|) (-656 |#4|)) 106)) (-3773 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-3574 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 52)) (-1597 (((-112) (-656 |#4|)) 79)) (-2718 (((-112) (-656 |#4|) (-656 (-656 |#4|))) 67)) (-3013 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 37)) (-3753 (((-112) |#4|) 36)) (-4121 (((-656 |#4|) (-656 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-1674 (((-656 |#4|) (-656 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-2122 (((-656 |#4|) (-656 |#4|)) 83)) (-1393 (((-656 |#4|) (-656 |#4|)) 97)) (-3851 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-1454 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 50)) (-4241 (((-112) |#4|) 45))) +(((-998 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4111 ((-656 |#4|) (-656 |#4|))) (-15 -4111 ((-656 |#4|) |#4| |#4|)) (-15 -2854 ((-656 |#4|) (-656 |#4|))) (-15 -2341 ((-656 |#4|) |#4| |#4|)) (-15 -4111 ((-656 |#4|) (-656 |#4|) |#4|)) (-15 -4111 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -4111 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|)))) (-15 -3851 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2718 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -1597 ((-112) (-656 |#4|))) (-15 -2475 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|))) (-15 -1339 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -4015 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -3574 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3367 ((-112) |#4|)) (-15 -3935 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3753 ((-112) |#4|)) (-15 -3013 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -4241 ((-112) |#4|)) (-15 -1454 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -2384 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2384 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112))) (-15 -3778 (|#4| |#4| (-656 |#4|))) (-15 -2122 ((-656 |#4|) (-656 |#4|))) (-15 -1637 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|))) (-15 -1393 ((-656 |#4|) (-656 |#4|))) (-15 -1666 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2910 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -4046 ((-656 |#4|) |#4|)) (-15 -3587 ((-656 |#4|) (-656 |#4|))) (-15 -3587 ((-656 |#4|) (-656 |#4|) (-112))) (-15 -3486 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2751 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2845 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (PROGN (-15 -1674 ((-656 |#4|) (-656 |#4|))) (-15 -4121 ((-656 |#4|) (-656 |#4|))) (-15 -3773 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) |%noBranch|)) (-568) (-805) (-861) (-1086 |#1| |#2| |#3|)) (T -998)) +((-3773 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-4121 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-1674 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-2845 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-2751 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-3486 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-3587 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *7)))) (-3587 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-4046 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *3)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-2910 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-998 *5 *6 *7 *8)))) (-1666 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-656 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-861)) (-5 *1 (-998 *6 *7 *8 *9)))) (-1393 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-1637 (*1 *2 *3) (|partial| -12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -1419 (-656 *7)))) (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-2122 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-3778 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *2)))) (-2384 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *7)))) (-2384 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-1454 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-4241 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-3013 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-3753 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-3935 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-3367 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-4015 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-1339 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-2475 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *4 *5 *6 *7)))) (-2718 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *5 *6 *7 *8)))) (-3851 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *4 *5 *6 *7)))) (-4111 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-656 *7) (-656 *7))) (-5 *2 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *7)))) (-4111 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-4111 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *3)))) (-2341 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *3)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-2854 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-4111 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *3)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-4111 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6))))) +(-10 -7 (-15 -4111 ((-656 |#4|) (-656 |#4|))) (-15 -4111 ((-656 |#4|) |#4| |#4|)) (-15 -2854 ((-656 |#4|) (-656 |#4|))) (-15 -2341 ((-656 |#4|) |#4| |#4|)) (-15 -4111 ((-656 |#4|) (-656 |#4|) |#4|)) (-15 -4111 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -4111 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|)))) (-15 -3851 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2718 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -1597 ((-112) (-656 |#4|))) (-15 -2475 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|))) (-15 -1339 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -4015 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -3574 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3367 ((-112) |#4|)) (-15 -3935 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3753 ((-112) |#4|)) (-15 -3013 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -4241 ((-112) |#4|)) (-15 -1454 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -2384 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2384 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112))) (-15 -3778 (|#4| |#4| (-656 |#4|))) (-15 -2122 ((-656 |#4|) (-656 |#4|))) (-15 -1637 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|))) (-15 -1393 ((-656 |#4|) (-656 |#4|))) (-15 -1666 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2910 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -4046 ((-656 |#4|) |#4|)) (-15 -3587 ((-656 |#4|) (-656 |#4|))) (-15 -3587 ((-656 |#4|) (-656 |#4|) (-112))) (-15 -3486 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2751 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2845 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (PROGN (-15 -1674 ((-656 |#4|) (-656 |#4|))) (-15 -4121 ((-656 |#4|) (-656 |#4|))) (-15 -3773 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) |%noBranch|)) +((-4137 (((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-1694 (((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1288 |#1|)))) (-701 |#1|) (-1288 |#1|)) 46)) (-3083 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) +(((-999 |#1|) (-10 -7 (-15 -4137 ((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3083 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1694 ((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1288 |#1|)))) (-701 |#1|) (-1288 |#1|)))) (-374)) (T -999)) +((-1694 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1288 *5))))) (-5 *1 (-999 *5)) (-5 *3 (-701 *5)) (-5 *4 (-1288 *5)))) (-3083 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-701 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-5 *1 (-999 *5)))) (-4137 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-374)) (-5 *2 (-2 (|:| R (-701 *6)) (|:| A (-701 *6)) (|:| |Ainv| (-701 *6)))) (-5 *1 (-999 *6)) (-5 *3 (-701 *6))))) +(-10 -7 (-15 -4137 ((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3083 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1694 ((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1288 |#1|)))) (-701 |#1|) (-1288 |#1|)))) +((-3760 (((-430 |#4|) |#4|) 56))) +(((-1000 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3760 ((-430 |#4|) |#4|))) (-861) (-805) (-464) (-968 |#3| |#2| |#1|)) (T -1000)) +((-3760 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-464)) (-5 *2 (-430 *3)) (-5 *1 (-1000 *4 *5 *6 *3)) (-4 *3 (-968 *6 *5 *4))))) +(-10 -7 (-15 -3760 ((-430 |#4|) |#4|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3831 (($ (-783)) 115 (|has| |#1| (-23)))) (-1512 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4465)))) (-1390 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-3039 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4465))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4465))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-4264 (((-112) $ (-783)) 8)) (-3755 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 60 (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4464)))) (-3404 (($) 7 T CONST)) (-3092 (($ $) 93 (|has| $ (-6 -4465)))) (-3835 (($ $) 103)) (-2034 (($ $) 80 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ |#1| $) 79 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) 52)) (-3659 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1121)))) (-3042 (($ (-656 |#1|)) 121)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-2355 (((-701 |#1|) $ $) 108 (|has| |#1| (-1070)))) (-4140 (($ (-783) |#1|) 70)) (-1368 (((-112) $ (-783)) 9)) (-3281 (((-576) $) 44 (|has| (-576) (-861)))) (-3124 (($ $ $) 85 (|has| |#1| (-861)))) (-2185 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4280 (((-576) $) 45 (|has| (-576) (-861)))) (-1441 (($ $ $) 86 (|has| |#1| (-861)))) (-4326 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3781 ((|#1| $) 105 (-12 (|has| |#1| (-1070)) (|has| |#1| (-1023))))) (-2883 (((-112) $ (-783)) 10)) (-2435 ((|#1| $) 106 (-12 (|has| |#1| (-1070)) (|has| |#1| (-1023))))) (-2046 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2176 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3669 (((-656 (-576)) $) 47)) (-3090 (((-112) (-576) $) 48)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3580 ((|#1| $) 43 (|has| (-576) (-861)))) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2304 (($ $ |#1|) 42 (|has| $ (-6 -4465)))) (-1743 (($ $ (-656 |#1|)) 119)) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-4282 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3207 (((-656 |#1|) $) 49)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-2796 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1255 (-576))) 71)) (-4099 ((|#1| $ $) 109 (|has| |#1| (-1070)))) (-2319 (((-940) $) 120)) (-3465 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-2365 (($ $ $) 107)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2840 (($ $ $ (-576)) 94 (|has| $ (-6 -4465)))) (-1870 (($ $) 13)) (-4171 (((-548) $) 81 (|has| |#1| (-626 (-548)))) (($ (-656 |#1|)) 122)) (-3581 (($ (-656 |#1|)) 72)) (-1615 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2990 (((-112) $ $) 87 (|has| |#1| (-861)))) (-2962 (((-112) $ $) 89 (|has| |#1| (-861)))) (-2924 (((-112) $ $) 19 (|has| |#1| (-102)))) (-2978 (((-112) $ $) 88 (|has| |#1| (-861)))) (-2949 (((-112) $ $) 90 (|has| |#1| (-861)))) (-3043 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3029 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-576) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-738))) (($ $ |#1|) 110 (|has| |#1| (-738)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-1001 |#1|) (-141) (-1070)) (T -1001)) -((-3043 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1070)) (-4 *1 (-1001 *3)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1070)) (-5 *2 (-940)))) (-3409 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1070)))) (-1749 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-1001 *3)) (-4 *3 (-1070))))) -(-13 (-1286 |t#1|) (-630 (-656 |t#1|)) (-10 -8 (-15 -3043 ($ (-656 |t#1|))) (-15 -2003 ((-940) $)) (-15 -3409 ($ $ $)) (-15 -1749 ($ $ (-656 |t#1|))))) -(((-34) . T) ((-102) -2760 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-625 (-876)) -2760 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-630 (-656 |#1|)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-19 |#1|) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1121) -2760 (|has| |#1| (-1121)) (|has| |#1| (-861))) ((-1238) . T) ((-1286 |#1|) . T)) -((-4117 (((-962 |#2|) (-1 |#2| |#1|) (-962 |#1|)) 17))) -(((-1002 |#1| |#2|) (-10 -7 (-15 -4117 ((-962 |#2|) (-1 |#2| |#1|) (-962 |#1|)))) (-1070) (-1070)) (T -1002)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-962 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-5 *2 (-962 *6)) (-5 *1 (-1002 *5 *6))))) -(-10 -7 (-15 -4117 ((-962 |#2|) (-1 |#2| |#1|) (-962 |#1|)))) -((-3170 ((|#1| (-962 |#1|)) 14)) (-1890 ((|#1| (-962 |#1|)) 13)) (-3223 ((|#1| (-962 |#1|)) 12)) (-4156 ((|#1| (-962 |#1|)) 16)) (-2503 ((|#1| (-962 |#1|)) 24)) (-2033 ((|#1| (-962 |#1|)) 15)) (-4382 ((|#1| (-962 |#1|)) 17)) (-3381 ((|#1| (-962 |#1|)) 23)) (-1687 ((|#1| (-962 |#1|)) 22))) -(((-1003 |#1|) (-10 -7 (-15 -3223 (|#1| (-962 |#1|))) (-15 -1890 (|#1| (-962 |#1|))) (-15 -3170 (|#1| (-962 |#1|))) (-15 -2033 (|#1| (-962 |#1|))) (-15 -4156 (|#1| (-962 |#1|))) (-15 -4382 (|#1| (-962 |#1|))) (-15 -1687 (|#1| (-962 |#1|))) (-15 -3381 (|#1| (-962 |#1|))) (-15 -2503 (|#1| (-962 |#1|)))) (-1070)) (T -1003)) -((-2503 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-1687 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-4382 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-4156 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-2033 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-3170 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) -(-10 -7 (-15 -3223 (|#1| (-962 |#1|))) (-15 -1890 (|#1| (-962 |#1|))) (-15 -3170 (|#1| (-962 |#1|))) (-15 -2033 (|#1| (-962 |#1|))) (-15 -4156 (|#1| (-962 |#1|))) (-15 -4382 (|#1| (-962 |#1|))) (-15 -1687 (|#1| (-962 |#1|))) (-15 -3381 (|#1| (-962 |#1|))) (-15 -2503 (|#1| (-962 |#1|)))) -((-2099 (((-3 |#1| "failed") |#1|) 18)) (-2447 (((-3 |#1| "failed") |#1|) 6)) (-4329 (((-3 |#1| "failed") |#1|) 16)) (-3704 (((-3 |#1| "failed") |#1|) 4)) (-4410 (((-3 |#1| "failed") |#1|) 20)) (-1393 (((-3 |#1| "failed") |#1|) 8)) (-2932 (((-3 |#1| "failed") |#1| (-783)) 1)) (-2194 (((-3 |#1| "failed") |#1|) 3)) (-4331 (((-3 |#1| "failed") |#1|) 2)) (-2501 (((-3 |#1| "failed") |#1|) 21)) (-1488 (((-3 |#1| "failed") |#1|) 9)) (-3293 (((-3 |#1| "failed") |#1|) 19)) (-3180 (((-3 |#1| "failed") |#1|) 7)) (-3575 (((-3 |#1| "failed") |#1|) 17)) (-4427 (((-3 |#1| "failed") |#1|) 5)) (-2527 (((-3 |#1| "failed") |#1|) 24)) (-2563 (((-3 |#1| "failed") |#1|) 12)) (-3241 (((-3 |#1| "failed") |#1|) 22)) (-4228 (((-3 |#1| "failed") |#1|) 10)) (-4381 (((-3 |#1| "failed") |#1|) 26)) (-1733 (((-3 |#1| "failed") |#1|) 14)) (-2981 (((-3 |#1| "failed") |#1|) 27)) (-1441 (((-3 |#1| "failed") |#1|) 15)) (-2838 (((-3 |#1| "failed") |#1|) 25)) (-1961 (((-3 |#1| "failed") |#1|) 13)) (-4289 (((-3 |#1| "failed") |#1|) 23)) (-3658 (((-3 |#1| "failed") |#1|) 11))) +((-3042 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1070)) (-4 *1 (-1001 *3)))) (-2319 (*1 *2 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1070)) (-5 *2 (-940)))) (-2365 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1070)))) (-1743 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-1001 *3)) (-4 *3 (-1070))))) +(-13 (-1286 |t#1|) (-630 (-656 |t#1|)) (-10 -8 (-15 -3042 ($ (-656 |t#1|))) (-15 -2319 ((-940) $)) (-15 -2365 ($ $ $)) (-15 -1743 ($ $ (-656 |t#1|))))) +(((-34) . T) ((-102) -2759 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-625 (-876)) -2759 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-630 (-656 |#1|)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-19 |#1|) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1121) -2759 (|has| |#1| (-1121)) (|has| |#1| (-861))) ((-1238) . T) ((-1286 |#1|) . T)) +((-4116 (((-962 |#2|) (-1 |#2| |#1|) (-962 |#1|)) 17))) +(((-1002 |#1| |#2|) (-10 -7 (-15 -4116 ((-962 |#2|) (-1 |#2| |#1|) (-962 |#1|)))) (-1070) (-1070)) (T -1002)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-962 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-5 *2 (-962 *6)) (-5 *1 (-1002 *5 *6))))) +(-10 -7 (-15 -4116 ((-962 |#2|) (-1 |#2| |#1|) (-962 |#1|)))) +((-1759 ((|#1| (-962 |#1|)) 14)) (-3793 ((|#1| (-962 |#1|)) 13)) (-4271 ((|#1| (-962 |#1|)) 12)) (-4139 ((|#1| (-962 |#1|)) 16)) (-3623 ((|#1| (-962 |#1|)) 24)) (-2558 ((|#1| (-962 |#1|)) 15)) (-2571 ((|#1| (-962 |#1|)) 17)) (-2068 ((|#1| (-962 |#1|)) 23)) (-2349 ((|#1| (-962 |#1|)) 22))) +(((-1003 |#1|) (-10 -7 (-15 -4271 (|#1| (-962 |#1|))) (-15 -3793 (|#1| (-962 |#1|))) (-15 -1759 (|#1| (-962 |#1|))) (-15 -2558 (|#1| (-962 |#1|))) (-15 -4139 (|#1| (-962 |#1|))) (-15 -2571 (|#1| (-962 |#1|))) (-15 -2349 (|#1| (-962 |#1|))) (-15 -2068 (|#1| (-962 |#1|))) (-15 -3623 (|#1| (-962 |#1|)))) (-1070)) (T -1003)) +((-3623 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-2068 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-2349 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-2571 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-4139 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-2558 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-1759 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-3793 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-4271 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) +(-10 -7 (-15 -4271 (|#1| (-962 |#1|))) (-15 -3793 (|#1| (-962 |#1|))) (-15 -1759 (|#1| (-962 |#1|))) (-15 -2558 (|#1| (-962 |#1|))) (-15 -4139 (|#1| (-962 |#1|))) (-15 -2571 (|#1| (-962 |#1|))) (-15 -2349 (|#1| (-962 |#1|))) (-15 -2068 (|#1| (-962 |#1|))) (-15 -3623 (|#1| (-962 |#1|)))) +((-1960 (((-3 |#1| "failed") |#1|) 18)) (-4266 (((-3 |#1| "failed") |#1|) 6)) (-3326 (((-3 |#1| "failed") |#1|) 16)) (-2097 (((-3 |#1| "failed") |#1|) 4)) (-1652 (((-3 |#1| "failed") |#1|) 20)) (-1563 (((-3 |#1| "failed") |#1|) 8)) (-3344 (((-3 |#1| "failed") |#1| (-783)) 1)) (-3572 (((-3 |#1| "failed") |#1|) 3)) (-3349 (((-3 |#1| "failed") |#1|) 2)) (-3602 (((-3 |#1| "failed") |#1|) 21)) (-4129 (((-3 |#1| "failed") |#1|) 9)) (-3747 (((-3 |#1| "failed") |#1|) 19)) (-1854 (((-3 |#1| "failed") |#1|) 7)) (-3379 (((-3 |#1| "failed") |#1|) 17)) (-1805 (((-3 |#1| "failed") |#1|) 5)) (-3892 (((-3 |#1| "failed") |#1|) 24)) (-2973 (((-3 |#1| "failed") |#1|) 12)) (-1322 (((-3 |#1| "failed") |#1|) 22)) (-3614 (((-3 |#1| "failed") |#1|) 10)) (-2561 (((-3 |#1| "failed") |#1|) 26)) (-1591 (((-3 |#1| "failed") |#1|) 14)) (-3705 (((-3 |#1| "failed") |#1|) 27)) (-2295 (((-3 |#1| "failed") |#1|) 15)) (-3715 (((-3 |#1| "failed") |#1|) 25)) (-3211 (((-3 |#1| "failed") |#1|) 13)) (-2946 (((-3 |#1| "failed") |#1|) 23)) (-2932 (((-3 |#1| "failed") |#1|) 11))) (((-1004 |#1|) (-141) (-1223)) (T -1004)) -((-2981 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-4381 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2838 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2527 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-4289 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3241 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2501 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-4410 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3293 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2099 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3575 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-4329 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-1441 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-1733 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-1961 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2563 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3658 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-4228 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-1488 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-1393 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3180 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2447 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-4427 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3704 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2194 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-4331 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2932 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(-13 (-10 -7 (-15 -2932 ((-3 |t#1| "failed") |t#1| (-783))) (-15 -4331 ((-3 |t#1| "failed") |t#1|)) (-15 -2194 ((-3 |t#1| "failed") |t#1|)) (-15 -3704 ((-3 |t#1| "failed") |t#1|)) (-15 -4427 ((-3 |t#1| "failed") |t#1|)) (-15 -2447 ((-3 |t#1| "failed") |t#1|)) (-15 -3180 ((-3 |t#1| "failed") |t#1|)) (-15 -1393 ((-3 |t#1| "failed") |t#1|)) (-15 -1488 ((-3 |t#1| "failed") |t#1|)) (-15 -4228 ((-3 |t#1| "failed") |t#1|)) (-15 -3658 ((-3 |t#1| "failed") |t#1|)) (-15 -2563 ((-3 |t#1| "failed") |t#1|)) (-15 -1961 ((-3 |t#1| "failed") |t#1|)) (-15 -1733 ((-3 |t#1| "failed") |t#1|)) (-15 -1441 ((-3 |t#1| "failed") |t#1|)) (-15 -4329 ((-3 |t#1| "failed") |t#1|)) (-15 -3575 ((-3 |t#1| "failed") |t#1|)) (-15 -2099 ((-3 |t#1| "failed") |t#1|)) (-15 -3293 ((-3 |t#1| "failed") |t#1|)) (-15 -4410 ((-3 |t#1| "failed") |t#1|)) (-15 -2501 ((-3 |t#1| "failed") |t#1|)) (-15 -3241 ((-3 |t#1| "failed") |t#1|)) (-15 -4289 ((-3 |t#1| "failed") |t#1|)) (-15 -2527 ((-3 |t#1| "failed") |t#1|)) (-15 -2838 ((-3 |t#1| "failed") |t#1|)) (-15 -4381 ((-3 |t#1| "failed") |t#1|)) (-15 -2981 ((-3 |t#1| "failed") |t#1|)))) -((-3305 ((|#4| |#4| (-656 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-3975 ((|#4| |#4| (-656 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-4117 ((|#4| (-1 |#4| (-971 |#1|)) |#4|) 31))) -(((-1005 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3975 (|#4| |#4| |#3|)) (-15 -3975 (|#4| |#4| (-656 |#3|))) (-15 -3305 (|#4| |#4| |#3|)) (-15 -3305 (|#4| |#4| (-656 |#3|))) (-15 -4117 (|#4| (-1 |#4| (-971 |#1|)) |#4|))) (-1070) (-805) (-13 (-861) (-10 -8 (-15 -4172 ((-1197) $)) (-15 -3055 ((-3 $ "failed") (-1197))))) (-968 (-971 |#1|) |#2| |#3|)) (T -1005)) -((-4117 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-971 *4))) (-4 *4 (-1070)) (-4 *2 (-968 (-971 *4) *5 *6)) (-4 *5 (-805)) (-4 *6 (-13 (-861) (-10 -8 (-15 -4172 ((-1197) $)) (-15 -3055 ((-3 $ "failed") (-1197)))))) (-5 *1 (-1005 *4 *5 *6 *2)))) (-3305 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-13 (-861) (-10 -8 (-15 -4172 ((-1197) $)) (-15 -3055 ((-3 $ "failed") (-1197)))))) (-4 *4 (-1070)) (-4 *5 (-805)) (-5 *1 (-1005 *4 *5 *6 *2)) (-4 *2 (-968 (-971 *4) *5 *6)))) (-3305 (*1 *2 *2 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-13 (-861) (-10 -8 (-15 -4172 ((-1197) $)) (-15 -3055 ((-3 $ "failed") (-1197)))))) (-5 *1 (-1005 *4 *5 *3 *2)) (-4 *2 (-968 (-971 *4) *5 *3)))) (-3975 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-13 (-861) (-10 -8 (-15 -4172 ((-1197) $)) (-15 -3055 ((-3 $ "failed") (-1197)))))) (-4 *4 (-1070)) (-4 *5 (-805)) (-5 *1 (-1005 *4 *5 *6 *2)) (-4 *2 (-968 (-971 *4) *5 *6)))) (-3975 (*1 *2 *2 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-13 (-861) (-10 -8 (-15 -4172 ((-1197) $)) (-15 -3055 ((-3 $ "failed") (-1197)))))) (-5 *1 (-1005 *4 *5 *3 *2)) (-4 *2 (-968 (-971 *4) *5 *3))))) -(-10 -7 (-15 -3975 (|#4| |#4| |#3|)) (-15 -3975 (|#4| |#4| (-656 |#3|))) (-15 -3305 (|#4| |#4| |#3|)) (-15 -3305 (|#4| |#4| (-656 |#3|))) (-15 -4117 (|#4| (-1 |#4| (-971 |#1|)) |#4|))) -((-1835 ((|#2| |#3|) 35)) (-1908 (((-2 (|:| -1593 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|) 79)) (-3573 (((-2 (|:| -1593 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) 100))) -(((-1006 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3573 ((-2 (|:| -1593 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -1908 ((-2 (|:| -1593 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|)) (-15 -1835 (|#2| |#3|))) (-360) (-1264 |#1|) (-1264 |#2|) (-736 |#2| |#3|)) (T -1006)) -((-1835 (*1 *2 *3) (-12 (-4 *3 (-1264 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-1006 *4 *2 *3 *5)) (-4 *4 (-360)) (-4 *5 (-736 *2 *3)))) (-1908 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 *3)) (-5 *2 (-2 (|:| -1593 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-1006 *4 *3 *5 *6)) (-4 *6 (-736 *3 *5)))) (-3573 (*1 *2) (-12 (-4 *3 (-360)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| -1593 (-701 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-701 *4)))) (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-736 *4 *5))))) -(-10 -7 (-15 -3573 ((-2 (|:| -1593 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -1908 ((-2 (|:| -1593 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|)) (-15 -1835 (|#2| |#3|))) -((-1328 (((-1008 (-419 (-576)) (-878 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1008 (-419 (-576)) (-878 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576))))) 82))) -(((-1007 |#1| |#2|) (-10 -7 (-15 -1328 ((-1008 (-419 (-576)) (-878 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1008 (-419 (-576)) (-878 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576))))))) (-656 (-1197)) (-783)) (T -1007)) -((-1328 (*1 *2 *2) (-12 (-5 *2 (-1008 (-419 (-576)) (-878 *3) (-245 *4 (-783)) (-253 *3 (-419 (-576))))) (-14 *3 (-656 (-1197))) (-14 *4 (-783)) (-5 *1 (-1007 *3 *4))))) -(-10 -7 (-15 -1328 ((-1008 (-419 (-576)) (-878 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1008 (-419 (-576)) (-878 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576))))))) -((-3489 (((-112) $ $) NIL)) (-1545 (((-3 (-112) "failed") $) 71)) (-4206 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-3868 (($ $ (-3 (-112) "failed")) 72)) (-2836 (($ (-656 |#4|) |#4|) 25)) (-3699 (((-1179) $) NIL)) (-1829 (($ $) 69)) (-1450 (((-1141) $) NIL)) (-3973 (((-112) $) 70)) (-4225 (($) 30)) (-3758 ((|#4| $) 74)) (-3462 (((-656 |#4|) $) 73)) (-3570 (((-876) $) 68)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-1008 |#1| |#2| |#3| |#4|) (-13 (-1121) (-625 (-876)) (-10 -8 (-15 -4225 ($)) (-15 -2836 ($ (-656 |#4|) |#4|)) (-15 -1545 ((-3 (-112) "failed") $)) (-15 -3868 ($ $ (-3 (-112) "failed"))) (-15 -3973 ((-112) $)) (-15 -3462 ((-656 |#4|) $)) (-15 -3758 (|#4| $)) (-15 -1829 ($ $)) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (-15 -4206 ($ $)) |%noBranch|) |%noBranch|))) (-464) (-861) (-805) (-968 |#1| |#3| |#2|)) (T -1008)) -((-4225 (*1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-805)) (-5 *1 (-1008 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3)))) (-2836 (*1 *1 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-968 *4 *6 *5)) (-4 *4 (-464)) (-4 *5 (-861)) (-4 *6 (-805)) (-5 *1 (-1008 *4 *5 *6 *3)))) (-1545 (*1 *2 *1) (|partial| -12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4)))) (-3868 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4)))) (-3973 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4)))) (-3462 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *2 (-656 *6)) (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4)))) (-3758 (*1 *2 *1) (-12 (-4 *2 (-968 *3 *5 *4)) (-5 *1 (-1008 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)))) (-1829 (*1 *1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-805)) (-5 *1 (-1008 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3)))) (-4206 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-317)) (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-805)) (-5 *1 (-1008 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3))))) -(-13 (-1121) (-625 (-876)) (-10 -8 (-15 -4225 ($)) (-15 -2836 ($ (-656 |#4|) |#4|)) (-15 -1545 ((-3 (-112) "failed") $)) (-15 -3868 ($ $ (-3 (-112) "failed"))) (-15 -3973 ((-112) $)) (-15 -3462 ((-656 |#4|) $)) (-15 -3758 (|#4| $)) (-15 -1829 ($ $)) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (-15 -4206 ($ $)) |%noBranch|) |%noBranch|))) -((-2794 (((-112) |#5| |#5|) 44)) (-4338 (((-112) |#5| |#5|) 59)) (-3368 (((-112) |#5| (-656 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-3801 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-3291 (((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) 70)) (-4091 (((-1293)) 32)) (-4187 (((-1293) (-1179) (-1179) (-1179)) 28)) (-4094 (((-656 |#5|) (-656 |#5|)) 100)) (-2225 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|)))) 92)) (-3065 (((-656 (-2 (|:| -4027 (-656 |#4|)) (|:| -3988 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112)) 122)) (-3031 (((-112) |#5| |#5|) 53)) (-1881 (((-3 (-112) "failed") |#5| |#5|) 78)) (-3583 (((-112) (-656 |#4|) (-656 |#4|)) 64)) (-2834 (((-112) (-656 |#4|) (-656 |#4|)) 66)) (-1438 (((-112) (-656 |#4|) (-656 |#4|)) 67)) (-3318 (((-3 (-2 (|:| -4027 (-656 |#4|)) (|:| -3988 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-4328 (((-656 |#5|) (-656 |#5|)) 49))) -(((-1009 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4187 ((-1293) (-1179) (-1179) (-1179))) (-15 -4091 ((-1293))) (-15 -2794 ((-112) |#5| |#5|)) (-15 -4328 ((-656 |#5|) (-656 |#5|))) (-15 -3031 ((-112) |#5| |#5|)) (-15 -4338 ((-112) |#5| |#5|)) (-15 -3801 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3583 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2834 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1438 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1881 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3368 ((-112) |#5| |#5|)) (-15 -3368 ((-112) |#5| (-656 |#5|))) (-15 -4094 ((-656 |#5|) (-656 |#5|))) (-15 -3291 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|)))) (-15 -2225 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) (-15 -3065 ((-656 (-2 (|:| -4027 (-656 |#4|)) (|:| -3988 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3318 ((-3 (-2 (|:| -4027 (-656 |#4|)) (|:| -3988 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -1009)) -((-3318 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| -4027 (-656 *9)) (|:| -3988 *4) (|:| |ineq| (-656 *9)))) (-5 *1 (-1009 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) (-4 *4 (-1092 *6 *7 *8 *9)))) (-3065 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1092 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| -4027 (-656 *9)) (|:| -3988 *10) (|:| |ineq| (-656 *9))))) (-5 *1 (-1009 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) (-2225 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -3988 *7)))) (-4 *6 (-1086 *3 *4 *5)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1009 *3 *4 *5 *6 *7)))) (-3291 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3988 *8))) (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *8)))) (-4094 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-1009 *3 *4 *5 *6 *7)))) (-3368 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1009 *5 *6 *7 *8 *3)))) (-3368 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-1881 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-1438 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-2834 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-3583 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-3801 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-4338 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-3031 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-4328 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-1009 *3 *4 *5 *6 *7)))) (-2794 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-4091 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-4187 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) -(-10 -7 (-15 -4187 ((-1293) (-1179) (-1179) (-1179))) (-15 -4091 ((-1293))) (-15 -2794 ((-112) |#5| |#5|)) (-15 -4328 ((-656 |#5|) (-656 |#5|))) (-15 -3031 ((-112) |#5| |#5|)) (-15 -4338 ((-112) |#5| |#5|)) (-15 -3801 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3583 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2834 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1438 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1881 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3368 ((-112) |#5| |#5|)) (-15 -3368 ((-112) |#5| (-656 |#5|))) (-15 -4094 ((-656 |#5|) (-656 |#5|))) (-15 -3291 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|)))) (-15 -2225 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) (-15 -3065 ((-656 (-2 (|:| -4027 (-656 |#4|)) (|:| -3988 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3318 ((-3 (-2 (|:| -4027 (-656 |#4|)) (|:| -3988 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-3055 (((-1197) $) 15)) (-3106 (((-1179) $) 16)) (-2337 (($ (-1197) (-1179)) 14)) (-3570 (((-876) $) 13))) -(((-1010) (-13 (-625 (-876)) (-10 -8 (-15 -2337 ($ (-1197) (-1179))) (-15 -3055 ((-1197) $)) (-15 -3106 ((-1179) $))))) (T -1010)) -((-2337 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1179)) (-5 *1 (-1010)))) (-3055 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1010)))) (-3106 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1010))))) -(-13 (-625 (-876)) (-10 -8 (-15 -2337 ($ (-1197) (-1179))) (-15 -3055 ((-1197) $)) (-15 -3106 ((-1179) $)))) -((-4117 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-1011 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4117 (|#4| (-1 |#2| |#1|) |#3|))) (-568) (-568) (-1013 |#1|) (-1013 |#2|)) (T -1011)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-4 *2 (-1013 *6)) (-5 *1 (-1011 *5 *6 *4 *2)) (-4 *4 (-1013 *5))))) -(-10 -7 (-15 -4117 (|#4| (-1 |#2| |#1|) |#3|))) -((-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-1197) "failed") $) 66) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) 96)) (-2860 ((|#2| $) NIL) (((-1197) $) 61) (((-419 (-576)) $) NIL) (((-576) $) 93)) (-2204 (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) 115) (((-701 |#2|) (-701 $)) 28)) (-1836 (($) 99)) (-1840 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 76) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 85)) (-2171 (($ $) 10)) (-2240 (((-3 $ "failed") $) 20)) (-4117 (($ (-1 |#2| |#2|) $) 22)) (-3540 (($) 16)) (-2393 (($ $) 55)) (-2775 (($ $ (-1 |#2| |#2|)) 36) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-2143 (($ $) 12)) (-4172 (((-907 (-576)) $) 71) (((-907 (-390)) $) 80) (((-548) $) 40) (((-390) $) 44) (((-227) $) 48)) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 91) (($ |#2|) NIL) (($ (-1197)) 58)) (-3996 (((-783)) 31)) (-2950 (((-112) $ $) 51))) -(((-1012 |#1| |#2|) (-10 -8 (-15 -2950 ((-112) |#1| |#1|)) (-15 -2775 (|#1| |#1| (-783))) (-15 -2775 (|#1| |#1|)) (-15 -2775 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2775 (|#1| |#1| (-1197) (-783))) (-15 -2775 (|#1| |#1| (-656 (-1197)))) (-15 -2775 (|#1| |#1| (-1197))) (-15 -3540 (|#1|)) (-15 -2240 ((-3 |#1| "failed") |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2860 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2860 ((-419 (-576)) |#1|)) (-15 -4172 ((-227) |#1|)) (-15 -4172 ((-390) |#1|)) (-15 -4172 ((-548) |#1|)) (-15 -3570 (|#1| (-1197))) (-15 -1572 ((-3 (-1197) "failed") |#1|)) (-15 -2860 ((-1197) |#1|)) (-15 -1836 (|#1|)) (-15 -2393 (|#1| |#1|)) (-15 -2143 (|#1| |#1|)) (-15 -2171 (|#1| |#1|)) (-15 -1840 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -1840 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -4172 ((-907 (-390)) |#1|)) (-15 -4172 ((-907 (-576)) |#1|)) (-15 -2204 ((-701 |#2|) (-701 |#1|))) (-15 -2204 ((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -2204 ((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -2204 ((-701 (-576)) (-701 |#1|))) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4117 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2860 (|#2| |#1|)) (-15 -3570 (|#1| |#2|)) (-15 -3570 (|#1| (-419 (-576)))) (-15 -3570 (|#1| |#1|)) (-15 -3996 ((-783))) (-15 -3570 (|#1| (-576))) (-15 -3570 ((-876) |#1|))) (-1013 |#2|) (-568)) (T -1012)) -((-3996 (*1 *2) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-1012 *3 *4)) (-4 *3 (-1013 *4))))) -(-10 -8 (-15 -2950 ((-112) |#1| |#1|)) (-15 -2775 (|#1| |#1| (-783))) (-15 -2775 (|#1| |#1|)) (-15 -2775 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2775 (|#1| |#1| (-1197) (-783))) (-15 -2775 (|#1| |#1| (-656 (-1197)))) (-15 -2775 (|#1| |#1| (-1197))) (-15 -3540 (|#1|)) (-15 -2240 ((-3 |#1| "failed") |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2860 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2860 ((-419 (-576)) |#1|)) (-15 -4172 ((-227) |#1|)) (-15 -4172 ((-390) |#1|)) (-15 -4172 ((-548) |#1|)) (-15 -3570 (|#1| (-1197))) (-15 -1572 ((-3 (-1197) "failed") |#1|)) (-15 -2860 ((-1197) |#1|)) (-15 -1836 (|#1|)) (-15 -2393 (|#1| |#1|)) (-15 -2143 (|#1| |#1|)) (-15 -2171 (|#1| |#1|)) (-15 -1840 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -1840 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -4172 ((-907 (-390)) |#1|)) (-15 -4172 ((-907 (-576)) |#1|)) (-15 -2204 ((-701 |#2|) (-701 |#1|))) (-15 -2204 ((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -2204 ((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -2204 ((-701 (-576)) (-701 |#1|))) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4117 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2860 (|#2| |#1|)) (-15 -3570 (|#1| |#2|)) (-15 -3570 (|#1| (-419 (-576)))) (-15 -3570 (|#1| |#1|)) (-15 -3996 ((-783))) (-15 -3570 (|#1| (-576))) (-15 -3570 ((-876) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2575 ((|#1| $) 163 (|has| |#1| (-317)))) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 47)) (-2757 (($ $) 46)) (-3788 (((-112) $) 44)) (-4367 (((-3 $ "failed") $ $) 20)) (-3601 (((-430 (-1193 $)) (-1193 $)) 154 (|has| |#1| (-928)))) (-2487 (($ $) 81)) (-3921 (((-430 $) $) 80)) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 157 (|has| |#1| (-928)))) (-4016 (((-112) $ $) 65)) (-3308 (((-576) $) 144 (|has| |#1| (-832)))) (-3886 (($) 18 T CONST)) (-1572 (((-3 |#1| "failed") $) 193) (((-3 (-1197) "failed") $) 152 (|has| |#1| (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) 135 (|has| |#1| (-1059 (-576)))) (((-3 (-576) "failed") $) 133 (|has| |#1| (-1059 (-576))))) (-2860 ((|#1| $) 194) (((-1197) $) 153 (|has| |#1| (-1059 (-1197)))) (((-419 (-576)) $) 136 (|has| |#1| (-1059 (-576)))) (((-576) $) 134 (|has| |#1| (-1059 (-576))))) (-3429 (($ $ $) 61)) (-2204 (((-701 (-576)) (-701 $)) 178 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 177 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 176) (((-701 |#1|) (-701 $)) 175)) (-1561 (((-3 $ "failed") $) 37)) (-1836 (($) 161 (|has| |#1| (-557)))) (-3441 (($ $ $) 62)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) 57)) (-4249 (((-112) $) 79)) (-2087 (((-112) $) 146 (|has| |#1| (-832)))) (-1840 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 170 (|has| |#1| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 169 (|has| |#1| (-901 (-390))))) (-4193 (((-112) $) 35)) (-2171 (($ $) 165)) (-1570 ((|#1| $) 167)) (-2240 (((-3 $ "failed") $) 132 (|has| |#1| (-1173)))) (-1634 (((-112) $) 145 (|has| |#1| (-832)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3125 (($ $ $) 137 (|has| |#1| (-861)))) (-3133 (($ $ $) 138 (|has| |#1| (-861)))) (-4117 (($ (-1 |#1| |#1|) $) 185)) (-3913 (((-701 (-576)) (-1288 $)) 180 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 179 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 174) (((-701 |#1|) (-1288 $)) 173)) (-3458 (($ $ $) 52) (($ (-656 $)) 51)) (-3699 (((-1179) $) 10)) (-2050 (($ $) 78)) (-3540 (($) 131 (|has| |#1| (-1173)) CONST)) (-1450 (((-1141) $) 11)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-2393 (($ $) 162 (|has| |#1| (-317)))) (-2443 ((|#1| $) 159 (|has| |#1| (-557)))) (-4100 (((-430 (-1193 $)) (-1193 $)) 156 (|has| |#1| (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) 155 (|has| |#1| (-928)))) (-1828 (((-430 $) $) 82)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3476 (((-3 $ "failed") $ $) 48)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3284 (($ $ (-656 |#1|) (-656 |#1|)) 191 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 190 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 189 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 188 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 187 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) 186 (|has| |#1| (-526 (-1197) |#1|)))) (-1967 (((-783) $) 64)) (-2797 (($ $ |#1|) 192 (|has| |#1| (-296 |#1| |#1|)))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 63)) (-2775 (($ $ (-1 |#1| |#1|)) 184) (($ $ (-1 |#1| |#1|) (-783)) 183) (($ $) 130 (|has| |#1| (-237))) (($ $ (-783)) 128 (|has| |#1| (-237))) (($ $ (-1197)) 126 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 124 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 123 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 122 (|has| |#1| (-919 (-1197))))) (-2143 (($ $) 164)) (-1581 ((|#1| $) 166)) (-4172 (((-907 (-576)) $) 172 (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) 171 (|has| |#1| (-626 (-907 (-390))))) (((-548) $) 149 (|has| |#1| (-626 (-548)))) (((-390) $) 148 (|has| |#1| (-1043))) (((-227) $) 147 (|has| |#1| (-1043)))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) 158 (-2675 (|has| $ (-146)) (|has| |#1| (-928))))) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 197) (($ (-1197)) 151 (|has| |#1| (-1059 (-1197))))) (-4336 (((-3 $ "failed") $) 150 (-2760 (|has| |#1| (-146)) (-2675 (|has| $ (-146)) (|has| |#1| (-928)))))) (-3996 (((-783)) 32 T CONST)) (-4118 ((|#1| $) 160 (|has| |#1| (-557)))) (-4055 (((-112) $ $) 6)) (-2672 (((-112) $ $) 45)) (-2122 (($ $) 143 (|has| |#1| (-832)))) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2020 (($ $ (-1 |#1| |#1|)) 182) (($ $ (-1 |#1| |#1|) (-783)) 181) (($ $) 129 (|has| |#1| (-237))) (($ $ (-783)) 127 (|has| |#1| (-237))) (($ $ (-1197)) 125 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 121 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 120 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 119 (|has| |#1| (-919 (-1197))))) (-2992 (((-112) $ $) 139 (|has| |#1| (-861)))) (-2964 (((-112) $ $) 141 (|has| |#1| (-861)))) (-2925 (((-112) $ $) 8)) (-2978 (((-112) $ $) 140 (|has| |#1| (-861)))) (-2950 (((-112) $ $) 142 (|has| |#1| (-861)))) (-3057 (($ $ $) 73) (($ |#1| |#1|) 168)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ |#1| $) 196) (($ $ |#1|) 195))) +((-3705 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2561 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3715 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3892 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2946 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-1322 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3602 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-1652 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3747 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-1960 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3379 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3326 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2295 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-1591 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3211 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2973 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2932 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3614 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-4129 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-1563 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-1854 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-4266 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-1805 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2097 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3572 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3349 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3344 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(-13 (-10 -7 (-15 -3344 ((-3 |t#1| "failed") |t#1| (-783))) (-15 -3349 ((-3 |t#1| "failed") |t#1|)) (-15 -3572 ((-3 |t#1| "failed") |t#1|)) (-15 -2097 ((-3 |t#1| "failed") |t#1|)) (-15 -1805 ((-3 |t#1| "failed") |t#1|)) (-15 -4266 ((-3 |t#1| "failed") |t#1|)) (-15 -1854 ((-3 |t#1| "failed") |t#1|)) (-15 -1563 ((-3 |t#1| "failed") |t#1|)) (-15 -4129 ((-3 |t#1| "failed") |t#1|)) (-15 -3614 ((-3 |t#1| "failed") |t#1|)) (-15 -2932 ((-3 |t#1| "failed") |t#1|)) (-15 -2973 ((-3 |t#1| "failed") |t#1|)) (-15 -3211 ((-3 |t#1| "failed") |t#1|)) (-15 -1591 ((-3 |t#1| "failed") |t#1|)) (-15 -2295 ((-3 |t#1| "failed") |t#1|)) (-15 -3326 ((-3 |t#1| "failed") |t#1|)) (-15 -3379 ((-3 |t#1| "failed") |t#1|)) (-15 -1960 ((-3 |t#1| "failed") |t#1|)) (-15 -3747 ((-3 |t#1| "failed") |t#1|)) (-15 -1652 ((-3 |t#1| "failed") |t#1|)) (-15 -3602 ((-3 |t#1| "failed") |t#1|)) (-15 -1322 ((-3 |t#1| "failed") |t#1|)) (-15 -2946 ((-3 |t#1| "failed") |t#1|)) (-15 -3892 ((-3 |t#1| "failed") |t#1|)) (-15 -3715 ((-3 |t#1| "failed") |t#1|)) (-15 -2561 ((-3 |t#1| "failed") |t#1|)) (-15 -3705 ((-3 |t#1| "failed") |t#1|)))) +((-3873 ((|#4| |#4| (-656 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-2953 ((|#4| |#4| (-656 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-4116 ((|#4| (-1 |#4| (-971 |#1|)) |#4|) 31))) +(((-1005 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2953 (|#4| |#4| |#3|)) (-15 -2953 (|#4| |#4| (-656 |#3|))) (-15 -3873 (|#4| |#4| |#3|)) (-15 -3873 (|#4| |#4| (-656 |#3|))) (-15 -4116 (|#4| (-1 |#4| (-971 |#1|)) |#4|))) (-1070) (-805) (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $)) (-15 -3054 ((-3 $ "failed") (-1197))))) (-968 (-971 |#1|) |#2| |#3|)) (T -1005)) +((-4116 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-971 *4))) (-4 *4 (-1070)) (-4 *2 (-968 (-971 *4) *5 *6)) (-4 *5 (-805)) (-4 *6 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $)) (-15 -3054 ((-3 $ "failed") (-1197)))))) (-5 *1 (-1005 *4 *5 *6 *2)))) (-3873 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $)) (-15 -3054 ((-3 $ "failed") (-1197)))))) (-4 *4 (-1070)) (-4 *5 (-805)) (-5 *1 (-1005 *4 *5 *6 *2)) (-4 *2 (-968 (-971 *4) *5 *6)))) (-3873 (*1 *2 *2 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $)) (-15 -3054 ((-3 $ "failed") (-1197)))))) (-5 *1 (-1005 *4 *5 *3 *2)) (-4 *2 (-968 (-971 *4) *5 *3)))) (-2953 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $)) (-15 -3054 ((-3 $ "failed") (-1197)))))) (-4 *4 (-1070)) (-4 *5 (-805)) (-5 *1 (-1005 *4 *5 *6 *2)) (-4 *2 (-968 (-971 *4) *5 *6)))) (-2953 (*1 *2 *2 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $)) (-15 -3054 ((-3 $ "failed") (-1197)))))) (-5 *1 (-1005 *4 *5 *3 *2)) (-4 *2 (-968 (-971 *4) *5 *3))))) +(-10 -7 (-15 -2953 (|#4| |#4| |#3|)) (-15 -2953 (|#4| |#4| (-656 |#3|))) (-15 -3873 (|#4| |#4| |#3|)) (-15 -3873 (|#4| |#4| (-656 |#3|))) (-15 -4116 (|#4| (-1 |#4| (-971 |#1|)) |#4|))) +((-3292 ((|#2| |#3|) 35)) (-2659 (((-2 (|:| -2675 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|) 79)) (-3358 (((-2 (|:| -2675 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) 100))) +(((-1006 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3358 ((-2 (|:| -2675 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -2659 ((-2 (|:| -2675 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|)) (-15 -3292 (|#2| |#3|))) (-360) (-1264 |#1|) (-1264 |#2|) (-736 |#2| |#3|)) (T -1006)) +((-3292 (*1 *2 *3) (-12 (-4 *3 (-1264 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-1006 *4 *2 *3 *5)) (-4 *4 (-360)) (-4 *5 (-736 *2 *3)))) (-2659 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 *3)) (-5 *2 (-2 (|:| -2675 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-1006 *4 *3 *5 *6)) (-4 *6 (-736 *3 *5)))) (-3358 (*1 *2) (-12 (-4 *3 (-360)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| -2675 (-701 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-701 *4)))) (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-736 *4 *5))))) +(-10 -7 (-15 -3358 ((-2 (|:| -2675 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -2659 ((-2 (|:| -2675 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|)) (-15 -3292 (|#2| |#3|))) +((-2858 (((-1008 (-419 (-576)) (-878 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1008 (-419 (-576)) (-878 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576))))) 82))) +(((-1007 |#1| |#2|) (-10 -7 (-15 -2858 ((-1008 (-419 (-576)) (-878 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1008 (-419 (-576)) (-878 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576))))))) (-656 (-1197)) (-783)) (T -1007)) +((-2858 (*1 *2 *2) (-12 (-5 *2 (-1008 (-419 (-576)) (-878 *3) (-245 *4 (-783)) (-253 *3 (-419 (-576))))) (-14 *3 (-656 (-1197))) (-14 *4 (-783)) (-5 *1 (-1007 *3 *4))))) +(-10 -7 (-15 -2858 ((-1008 (-419 (-576)) (-878 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1008 (-419 (-576)) (-878 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576))))))) +((-3488 (((-112) $ $) NIL)) (-3483 (((-3 (-112) "failed") $) 71)) (-1469 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-1356 (($ $ (-3 (-112) "failed")) 72)) (-3691 (($ (-656 |#4|) |#4|) 25)) (-2046 (((-1179) $) NIL)) (-1337 (($ $) 69)) (-1450 (((-1141) $) NIL)) (-2940 (((-112) $) 70)) (-3579 (($) 30)) (-2641 ((|#4| $) 74)) (-1667 (((-656 |#4|) $) 73)) (-3569 (((-876) $) 68)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-1008 |#1| |#2| |#3| |#4|) (-13 (-1121) (-625 (-876)) (-10 -8 (-15 -3579 ($)) (-15 -3691 ($ (-656 |#4|) |#4|)) (-15 -3483 ((-3 (-112) "failed") $)) (-15 -1356 ($ $ (-3 (-112) "failed"))) (-15 -2940 ((-112) $)) (-15 -1667 ((-656 |#4|) $)) (-15 -2641 (|#4| $)) (-15 -1337 ($ $)) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (-15 -1469 ($ $)) |%noBranch|) |%noBranch|))) (-464) (-861) (-805) (-968 |#1| |#3| |#2|)) (T -1008)) +((-3579 (*1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-805)) (-5 *1 (-1008 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3)))) (-3691 (*1 *1 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-968 *4 *6 *5)) (-4 *4 (-464)) (-4 *5 (-861)) (-4 *6 (-805)) (-5 *1 (-1008 *4 *5 *6 *3)))) (-3483 (*1 *2 *1) (|partial| -12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4)))) (-1356 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4)))) (-2940 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4)))) (-1667 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *2 (-656 *6)) (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4)))) (-2641 (*1 *2 *1) (-12 (-4 *2 (-968 *3 *5 *4)) (-5 *1 (-1008 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)))) (-1337 (*1 *1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-805)) (-5 *1 (-1008 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3)))) (-1469 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-317)) (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-805)) (-5 *1 (-1008 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3))))) +(-13 (-1121) (-625 (-876)) (-10 -8 (-15 -3579 ($)) (-15 -3691 ($ (-656 |#4|) |#4|)) (-15 -3483 ((-3 (-112) "failed") $)) (-15 -1356 ($ $ (-3 (-112) "failed"))) (-15 -2940 ((-112) $)) (-15 -1667 ((-656 |#4|) $)) (-15 -2641 (|#4| $)) (-15 -1337 ($ $)) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (-15 -1469 ($ $)) |%noBranch|) |%noBranch|))) +((-1367 (((-112) |#5| |#5|) 44)) (-2132 (((-112) |#5| |#5|) 59)) (-3227 (((-112) |#5| (-656 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-1900 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-3724 (((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) 70)) (-1552 (((-1293)) 32)) (-4410 (((-1293) (-1179) (-1179) (-1179)) 28)) (-1585 (((-656 |#5|) (-656 |#5|)) 100)) (-3897 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)))) 92)) (-3241 (((-656 (-2 (|:| -4026 (-656 |#4|)) (|:| -3987 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112)) 122)) (-2905 (((-112) |#5| |#5|) 53)) (-3706 (((-3 (-112) "failed") |#5| |#5|) 78)) (-3443 (((-112) (-656 |#4|) (-656 |#4|)) 64)) (-3664 (((-112) (-656 |#4|) (-656 |#4|)) 66)) (-2264 (((-112) (-656 |#4|) (-656 |#4|)) 67)) (-2677 (((-3 (-2 (|:| -4026 (-656 |#4|)) (|:| -3987 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-3318 (((-656 |#5|) (-656 |#5|)) 49))) +(((-1009 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4410 ((-1293) (-1179) (-1179) (-1179))) (-15 -1552 ((-1293))) (-15 -1367 ((-112) |#5| |#5|)) (-15 -3318 ((-656 |#5|) (-656 |#5|))) (-15 -2905 ((-112) |#5| |#5|)) (-15 -2132 ((-112) |#5| |#5|)) (-15 -1900 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3443 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3664 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2264 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3706 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3227 ((-112) |#5| |#5|)) (-15 -3227 ((-112) |#5| (-656 |#5|))) (-15 -1585 ((-656 |#5|) (-656 |#5|))) (-15 -3724 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)))) (-15 -3897 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) (-15 -3241 ((-656 (-2 (|:| -4026 (-656 |#4|)) (|:| -3987 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2677 ((-3 (-2 (|:| -4026 (-656 |#4|)) (|:| -3987 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -1009)) +((-2677 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| -4026 (-656 *9)) (|:| -3987 *4) (|:| |ineq| (-656 *9)))) (-5 *1 (-1009 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) (-4 *4 (-1092 *6 *7 *8 *9)))) (-3241 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1092 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| -4026 (-656 *9)) (|:| -3987 *10) (|:| |ineq| (-656 *9))))) (-5 *1 (-1009 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -3987 *7)))) (-4 *6 (-1086 *3 *4 *5)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1009 *3 *4 *5 *6 *7)))) (-3724 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3987 *8))) (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *8)))) (-1585 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-1009 *3 *4 *5 *6 *7)))) (-3227 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1009 *5 *6 *7 *8 *3)))) (-3227 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-3706 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-2264 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-3664 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-3443 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-1900 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-2132 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-2905 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-3318 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-1009 *3 *4 *5 *6 *7)))) (-1367 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-1552 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-4410 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) +(-10 -7 (-15 -4410 ((-1293) (-1179) (-1179) (-1179))) (-15 -1552 ((-1293))) (-15 -1367 ((-112) |#5| |#5|)) (-15 -3318 ((-656 |#5|) (-656 |#5|))) (-15 -2905 ((-112) |#5| |#5|)) (-15 -2132 ((-112) |#5| |#5|)) (-15 -1900 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3443 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3664 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2264 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3706 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3227 ((-112) |#5| |#5|)) (-15 -3227 ((-112) |#5| (-656 |#5|))) (-15 -1585 ((-656 |#5|) (-656 |#5|))) (-15 -3724 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)))) (-15 -3897 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) (-15 -3241 ((-656 (-2 (|:| -4026 (-656 |#4|)) (|:| -3987 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2677 ((-3 (-2 (|:| -4026 (-656 |#4|)) (|:| -3987 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-3054 (((-1197) $) 15)) (-3104 (((-1179) $) 16)) (-2337 (($ (-1197) (-1179)) 14)) (-3569 (((-876) $) 13))) +(((-1010) (-13 (-625 (-876)) (-10 -8 (-15 -2337 ($ (-1197) (-1179))) (-15 -3054 ((-1197) $)) (-15 -3104 ((-1179) $))))) (T -1010)) +((-2337 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1179)) (-5 *1 (-1010)))) (-3054 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1010)))) (-3104 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1010))))) +(-13 (-625 (-876)) (-10 -8 (-15 -2337 ($ (-1197) (-1179))) (-15 -3054 ((-1197) $)) (-15 -3104 ((-1179) $)))) +((-4116 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-1011 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4116 (|#4| (-1 |#2| |#1|) |#3|))) (-568) (-568) (-1013 |#1|) (-1013 |#2|)) (T -1011)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-4 *2 (-1013 *6)) (-5 *1 (-1011 *5 *6 *4 *2)) (-4 *4 (-1013 *5))))) +(-10 -7 (-15 -4116 (|#4| (-1 |#2| |#1|) |#3|))) +((-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-1197) "failed") $) 66) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) 96)) (-2859 ((|#2| $) NIL) (((-1197) $) 61) (((-419 (-576)) $) NIL) (((-576) $) 93)) (-3674 (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) 115) (((-701 |#2|) (-701 $)) 28)) (-1836 (($) 99)) (-3325 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 76) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 85)) (-3328 (($ $) 10)) (-2734 (((-3 $ "failed") $) 20)) (-4116 (($ (-1 |#2| |#2|) $) 22)) (-3539 (($) 16)) (-1788 (($ $) 55)) (-2774 (($ $ (-1 |#2| |#2|)) 36) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-4325 (($ $) 12)) (-4171 (((-907 (-576)) $) 71) (((-907 (-390)) $) 80) (((-548) $) 40) (((-390) $) 44) (((-227) $) 48)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 91) (($ |#2|) NIL) (($ (-1197)) 58)) (-3154 (((-783)) 31)) (-2949 (((-112) $ $) 51))) +(((-1012 |#1| |#2|) (-10 -8 (-15 -2949 ((-112) |#1| |#1|)) (-15 -2774 (|#1| |#1| (-783))) (-15 -2774 (|#1| |#1|)) (-15 -2774 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2774 (|#1| |#1| (-1197) (-783))) (-15 -2774 (|#1| |#1| (-656 (-1197)))) (-15 -2774 (|#1| |#1| (-1197))) (-15 -3539 (|#1|)) (-15 -2734 ((-3 |#1| "failed") |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -4171 ((-227) |#1|)) (-15 -4171 ((-390) |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -3569 (|#1| (-1197))) (-15 -1572 ((-3 (-1197) "failed") |#1|)) (-15 -2859 ((-1197) |#1|)) (-15 -1836 (|#1|)) (-15 -1788 (|#1| |#1|)) (-15 -4325 (|#1| |#1|)) (-15 -3328 (|#1| |#1|)) (-15 -3325 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -3325 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -4171 ((-907 (-390)) |#1|)) (-15 -4171 ((-907 (-576)) |#1|)) (-15 -3674 ((-701 |#2|) (-701 |#1|))) (-15 -3674 ((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -3674 ((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -3674 ((-701 (-576)) (-701 |#1|))) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3569 (|#1| |#1|)) (-15 -3154 ((-783))) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) (-1013 |#2|) (-568)) (T -1012)) +((-3154 (*1 *2) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-1012 *3 *4)) (-4 *3 (-1013 *4))))) +(-10 -8 (-15 -2949 ((-112) |#1| |#1|)) (-15 -2774 (|#1| |#1| (-783))) (-15 -2774 (|#1| |#1|)) (-15 -2774 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2774 (|#1| |#1| (-1197) (-783))) (-15 -2774 (|#1| |#1| (-656 (-1197)))) (-15 -2774 (|#1| |#1| (-1197))) (-15 -3539 (|#1|)) (-15 -2734 ((-3 |#1| "failed") |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -4171 ((-227) |#1|)) (-15 -4171 ((-390) |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -3569 (|#1| (-1197))) (-15 -1572 ((-3 (-1197) "failed") |#1|)) (-15 -2859 ((-1197) |#1|)) (-15 -1836 (|#1|)) (-15 -1788 (|#1| |#1|)) (-15 -4325 (|#1| |#1|)) (-15 -3328 (|#1| |#1|)) (-15 -3325 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -3325 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -4171 ((-907 (-390)) |#1|)) (-15 -4171 ((-907 (-576)) |#1|)) (-15 -3674 ((-701 |#2|) (-701 |#1|))) (-15 -3674 ((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -3674 ((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -3674 ((-701 (-576)) (-701 |#1|))) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3569 (|#1| |#1|)) (-15 -3154 ((-783))) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-3110 ((|#1| $) 163 (|has| |#1| (-317)))) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-4195 (($ $) 46)) (-1760 (((-112) $) 44)) (-2428 (((-3 $ "failed") $ $) 20)) (-3646 (((-430 (-1193 $)) (-1193 $)) 154 (|has| |#1| (-928)))) (-3444 (($ $) 81)) (-3760 (((-430 $) $) 80)) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 157 (|has| |#1| (-928)))) (-3330 (((-112) $ $) 65)) (-3906 (((-576) $) 144 (|has| |#1| (-832)))) (-3404 (($) 18 T CONST)) (-1572 (((-3 |#1| "failed") $) 193) (((-3 (-1197) "failed") $) 152 (|has| |#1| (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) 135 (|has| |#1| (-1059 (-576)))) (((-3 (-576) "failed") $) 133 (|has| |#1| (-1059 (-576))))) (-2859 ((|#1| $) 194) (((-1197) $) 153 (|has| |#1| (-1059 (-1197)))) (((-419 (-576)) $) 136 (|has| |#1| (-1059 (-576)))) (((-576) $) 134 (|has| |#1| (-1059 (-576))))) (-3428 (($ $ $) 61)) (-3674 (((-701 (-576)) (-701 $)) 178 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 177 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 176) (((-701 |#1|) (-701 $)) 175)) (-3673 (((-3 $ "failed") $) 37)) (-1836 (($) 161 (|has| |#1| (-557)))) (-3440 (($ $ $) 62)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) 57)) (-3833 (((-112) $) 79)) (-1866 (((-112) $) 146 (|has| |#1| (-832)))) (-3325 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 170 (|has| |#1| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 169 (|has| |#1| (-901 (-390))))) (-1351 (((-112) $) 35)) (-3328 (($ $) 165)) (-1570 ((|#1| $) 167)) (-2734 (((-3 $ "failed") $) 132 (|has| |#1| (-1173)))) (-3137 (((-112) $) 145 (|has| |#1| (-832)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3124 (($ $ $) 137 (|has| |#1| (-861)))) (-1441 (($ $ $) 138 (|has| |#1| (-861)))) (-4116 (($ (-1 |#1| |#1|) $) 185)) (-3676 (((-701 (-576)) (-1288 $)) 180 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 179 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 174) (((-701 |#1|) (-1288 $)) 173)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-2046 (((-1179) $) 10)) (-2050 (($ $) 78)) (-3539 (($) 131 (|has| |#1| (-1173)) CONST)) (-1450 (((-1141) $) 11)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3497 (($ $ $) 54) (($ (-656 $)) 53)) (-1788 (($ $) 162 (|has| |#1| (-317)))) (-4236 ((|#1| $) 159 (|has| |#1| (-557)))) (-1644 (((-430 (-1193 $)) (-1193 $)) 156 (|has| |#1| (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) 155 (|has| |#1| (-928)))) (-1828 (((-430 $) $) 82)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3475 (((-3 $ "failed") $ $) 48)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3282 (($ $ (-656 |#1|) (-656 |#1|)) 191 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 190 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 189 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 188 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 187 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) 186 (|has| |#1| (-526 (-1197) |#1|)))) (-1979 (((-783) $) 64)) (-2796 (($ $ |#1|) 192 (|has| |#1| (-296 |#1| |#1|)))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 63)) (-2774 (($ $ (-1 |#1| |#1|)) 184) (($ $ (-1 |#1| |#1|) (-783)) 183) (($ $) 130 (|has| |#1| (-237))) (($ $ (-783)) 128 (|has| |#1| (-237))) (($ $ (-1197)) 126 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 124 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 123 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 122 (|has| |#1| (-919 (-1197))))) (-4325 (($ $) 164)) (-1581 ((|#1| $) 166)) (-4171 (((-907 (-576)) $) 172 (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) 171 (|has| |#1| (-626 (-907 (-390))))) (((-548) $) 149 (|has| |#1| (-626 (-548)))) (((-390) $) 148 (|has| |#1| (-1043))) (((-227) $) 147 (|has| |#1| (-1043)))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) 158 (-2674 (|has| $ (-146)) (|has| |#1| (-928))))) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 197) (($ (-1197)) 151 (|has| |#1| (-1059 (-1197))))) (-3390 (((-3 $ "failed") $) 150 (-2759 (|has| |#1| (-146)) (-2674 (|has| $ (-146)) (|has| |#1| (-928)))))) (-3154 (((-783)) 32 T CONST)) (-1810 ((|#1| $) 160 (|has| |#1| (-557)))) (-2399 (((-112) $ $) 6)) (-1505 (((-112) $ $) 45)) (-4143 (($ $) 143 (|has| |#1| (-832)))) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2020 (($ $ (-1 |#1| |#1|)) 182) (($ $ (-1 |#1| |#1|) (-783)) 181) (($ $) 129 (|has| |#1| (-237))) (($ $ (-783)) 127 (|has| |#1| (-237))) (($ $ (-1197)) 125 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 121 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 120 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 119 (|has| |#1| (-919 (-1197))))) (-2990 (((-112) $ $) 139 (|has| |#1| (-861)))) (-2962 (((-112) $ $) 141 (|has| |#1| (-861)))) (-2924 (((-112) $ $) 8)) (-2978 (((-112) $ $) 140 (|has| |#1| (-861)))) (-2949 (((-112) $ $) 142 (|has| |#1| (-861)))) (-3056 (($ $ $) 73) (($ |#1| |#1|) 168)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ |#1| $) 196) (($ $ |#1|) 195))) (((-1013 |#1|) (-141) (-568)) (T -1013)) -((-3057 (*1 *1 *2 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)))) (-1570 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)))) (-1581 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)))) (-2171 (*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)))) (-2143 (*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)))) (-2575 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) (-2393 (*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) (-1836 (*1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-557)) (-4 *2 (-568)))) (-4118 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) (-2443 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-557))))) -(-13 (-374) (-38 |t#1|) (-1059 |t#1|) (-349 |t#1|) (-232 |t#1|) (-388 |t#1|) (-899 |t#1|) (-412 |t#1|) (-10 -8 (-15 -3057 ($ |t#1| |t#1|)) (-15 -1570 (|t#1| $)) (-15 -1581 (|t#1| $)) (-15 -2171 ($ $)) (-15 -2143 ($ $)) (IF (|has| |t#1| (-1173)) (-6 (-1173)) |%noBranch|) (IF (|has| |t#1| (-1059 (-576))) (PROGN (-6 (-1059 (-576))) (-6 (-1059 (-419 (-576))))) |%noBranch|) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-832)) (-6 (-832)) |%noBranch|) (IF (|has| |t#1| (-1043)) (-6 (-1043)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1059 (-1197))) (-6 (-1059 (-1197))) |%noBranch|) (IF (|has| |t#1| (-317)) (PROGN (-15 -2575 (|t#1| $)) (-15 -2393 ($ $))) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -1836 ($)) (-15 -4118 (|t#1| $)) (-15 -2443 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-928)) (-6 (-928)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 #1=(-1197)) |has| |#1| (-1059 (-1197))) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-626 (-227)) |has| |#1| (-1043)) ((-626 (-390)) |has| |#1| (-1043)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-907 (-390))) |has| |#1| (-626 (-907 (-390)))) ((-626 (-907 (-576))) |has| |#1| (-626 (-907 (-576)))) ((-234 $) -2760 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -2760 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) . T) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) . T) ((-317) . T) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-374) . T) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-412 |#1|) . T) ((-464) . T) ((-526 (-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 #2=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-651 #2#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-803) |has| |#1| (-832)) ((-804) |has| |#1| (-832)) ((-806) |has| |#1| (-832)) ((-807) |has| |#1| (-832)) ((-832) |has| |#1| (-832)) ((-860) |has| |#1| (-832)) ((-861) -2760 (|has| |#1| (-861)) (|has| |#1| (-832))) ((-864) -2760 (|has| |#1| (-861)) (|has| |#1| (-832))) ((-911 $ #3=(-1197)) -2760 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-917 (-1197)) |has| |#1| (-917 (-1197))) ((-919 #3#) -2760 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-901 (-390)) |has| |#1| (-901 (-390))) ((-901 (-576)) |has| |#1| (-901 (-576))) ((-899 |#1|) . T) ((-928) |has| |#1| (-928)) ((-939) . T) ((-1043) |has| |#1| (-1043)) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-576))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 #1#) |has| |#1| (-1059 (-1197))) ((-1059 |#1|) . T) ((-1072 #0#) . T) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 |#1|) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) |has| |#1| (-1173)) ((-1238) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-3100 (($ (-1163 |#1| |#2|)) 11)) (-2467 (((-1163 |#1| |#2|) $) 12)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2797 ((|#2| $ (-245 |#1| |#2|)) 16)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2721 (($) NIL T CONST)) (-2925 (((-112) $ $) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL))) -(((-1014 |#1| |#2|) (-13 (-21) (-296 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -3100 ($ (-1163 |#1| |#2|))) (-15 -2467 ((-1163 |#1| |#2|) $)))) (-940) (-374)) (T -1014)) -((-3100 (*1 *1 *2) (-12 (-5 *2 (-1163 *3 *4)) (-14 *3 (-940)) (-4 *4 (-374)) (-5 *1 (-1014 *3 *4)))) (-2467 (*1 *2 *1) (-12 (-5 *2 (-1163 *3 *4)) (-5 *1 (-1014 *3 *4)) (-14 *3 (-940)) (-4 *4 (-374))))) -(-13 (-21) (-296 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -3100 ($ (-1163 |#1| |#2|))) (-15 -2467 ((-1163 |#1| |#2|) $)))) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3123 (((-1156) $) 9)) (-3570 (((-876) $) 15) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-1015) (-13 (-1104) (-10 -8 (-15 -3123 ((-1156) $))))) (T -1015)) -((-3123 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1015))))) -(-13 (-1104) (-10 -8 (-15 -3123 ((-1156) $)))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1808 (((-112) $ (-783)) 8)) (-3886 (($) 7 T CONST)) (-2496 (($ $) 47)) (-3966 (((-656 |#1|) $) 31 (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) 9)) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-4323 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 36)) (-1330 (((-112) $ (-783)) 10)) (-2437 (((-783) $) 46)) (-3699 (((-1179) $) 23 (|has| |#1| (-1121)))) (-1597 ((|#1| $) 40)) (-1901 (($ |#1| $) 41)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3883 ((|#1| $) 45)) (-3449 ((|#1| $) 42)) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3206 ((|#1| |#1| $) 49)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-3692 ((|#1| $) 48)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 13)) (-3570 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3943 (($ (-656 |#1|)) 43)) (-1741 ((|#1| $) 44)) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-3056 (*1 *1 *2 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)))) (-1570 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)))) (-1581 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)))) (-3328 (*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)))) (-4325 (*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) (-1788 (*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) (-1836 (*1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-557)) (-4 *2 (-568)))) (-1810 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) (-4236 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-557))))) +(-13 (-374) (-38 |t#1|) (-1059 |t#1|) (-349 |t#1|) (-232 |t#1|) (-388 |t#1|) (-899 |t#1|) (-412 |t#1|) (-10 -8 (-15 -3056 ($ |t#1| |t#1|)) (-15 -1570 (|t#1| $)) (-15 -1581 (|t#1| $)) (-15 -3328 ($ $)) (-15 -4325 ($ $)) (IF (|has| |t#1| (-1173)) (-6 (-1173)) |%noBranch|) (IF (|has| |t#1| (-1059 (-576))) (PROGN (-6 (-1059 (-576))) (-6 (-1059 (-419 (-576))))) |%noBranch|) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-832)) (-6 (-832)) |%noBranch|) (IF (|has| |t#1| (-1043)) (-6 (-1043)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1059 (-1197))) (-6 (-1059 (-1197))) |%noBranch|) (IF (|has| |t#1| (-317)) (PROGN (-15 -3110 (|t#1| $)) (-15 -1788 ($ $))) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -1836 ($)) (-15 -1810 (|t#1| $)) (-15 -4236 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-928)) (-6 (-928)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 #1=(-1197)) |has| |#1| (-1059 (-1197))) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-626 (-227)) |has| |#1| (-1043)) ((-626 (-390)) |has| |#1| (-1043)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-907 (-390))) |has| |#1| (-626 (-907 (-390)))) ((-626 (-907 (-576))) |has| |#1| (-626 (-907 (-576)))) ((-234 $) -2759 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -2759 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) . T) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) . T) ((-317) . T) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-374) . T) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-412 |#1|) . T) ((-464) . T) ((-526 (-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 #2=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-651 #2#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-803) |has| |#1| (-832)) ((-804) |has| |#1| (-832)) ((-806) |has| |#1| (-832)) ((-807) |has| |#1| (-832)) ((-832) |has| |#1| (-832)) ((-860) |has| |#1| (-832)) ((-861) -2759 (|has| |#1| (-861)) (|has| |#1| (-832))) ((-864) -2759 (|has| |#1| (-861)) (|has| |#1| (-832))) ((-911 $ #3=(-1197)) -2759 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-917 (-1197)) |has| |#1| (-917 (-1197))) ((-919 #3#) -2759 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-901 (-390)) |has| |#1| (-901 (-390))) ((-901 (-576)) |has| |#1| (-901 (-576))) ((-899 |#1|) . T) ((-928) |has| |#1| (-928)) ((-939) . T) ((-1043) |has| |#1| (-1043)) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-576))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 #1#) |has| |#1| (-1059 (-1197))) ((-1059 |#1|) . T) ((-1072 #0#) . T) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 |#1|) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) |has| |#1| (-1173)) ((-1238) . T) ((-1242) . T)) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-2307 (($ (-1163 |#1| |#2|)) 11)) (-2466 (((-1163 |#1| |#2|) $) 12)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2796 ((|#2| $ (-245 |#1| |#2|)) 16)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2721 (($) NIL T CONST)) (-2924 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL))) +(((-1014 |#1| |#2|) (-13 (-21) (-296 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -2307 ($ (-1163 |#1| |#2|))) (-15 -2466 ((-1163 |#1| |#2|) $)))) (-940) (-374)) (T -1014)) +((-2307 (*1 *1 *2) (-12 (-5 *2 (-1163 *3 *4)) (-14 *3 (-940)) (-4 *4 (-374)) (-5 *1 (-1014 *3 *4)))) (-2466 (*1 *2 *1) (-12 (-5 *2 (-1163 *3 *4)) (-5 *1 (-1014 *3 *4)) (-14 *3 (-940)) (-4 *4 (-374))))) +(-13 (-21) (-296 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -2307 ($ (-1163 |#1| |#2|))) (-15 -2466 ((-1163 |#1| |#2|) $)))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3121 (((-1156) $) 9)) (-3569 (((-876) $) 15) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-1015) (-13 (-1104) (-10 -8 (-15 -3121 ((-1156) $))))) (T -1015)) +((-3121 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1015))))) +(-13 (-1104) (-10 -8 (-15 -3121 ((-1156) $)))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4264 (((-112) $ (-783)) 8)) (-3404 (($) 7 T CONST)) (-3542 (($ $) 47)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) 9)) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4326 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-2883 (((-112) $ (-783)) 10)) (-2435 (((-783) $) 46)) (-2046 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2722 ((|#1| $) 40)) (-2597 (($ |#1| $) 41)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3374 ((|#1| $) 45)) (-1541 ((|#1| $) 42)) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-4098 ((|#1| |#1| $) 49)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-3265 ((|#1| $) 48)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3972 (($ (-656 |#1|)) 43)) (-1675 ((|#1| $) 44)) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-1016 |#1|) (-141) (-1238)) (T -1016)) -((-3206 (*1 *2 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238)))) (-3692 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238)))) (-2496 (*1 *1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238)))) (-2437 (*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1238)) (-5 *2 (-783)))) (-3883 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238)))) (-1741 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4465) (-15 -3206 (|t#1| |t#1| $)) (-15 -3692 (|t#1| $)) (-15 -2496 ($ $)) (-15 -2437 ((-783) $)) (-15 -3883 (|t#1| $)) (-15 -1741 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2760 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2760 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-4308 (((-112) $) 43)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2860 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 44)) (-3104 (((-3 (-419 (-576)) "failed") $) 78)) (-2545 (((-112) $) 72)) (-2568 (((-419 (-576)) $) 76)) (-4193 (((-112) $) 42)) (-1381 ((|#2| $) 22)) (-4117 (($ (-1 |#2| |#2|) $) 19)) (-2050 (($ $) 58)) (-2775 (($ $ (-1 |#2| |#2|)) 35) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-4172 (((-548) $) 67)) (-2314 (($ $) 17)) (-3570 (((-876) $) 53) (($ (-576)) 39) (($ |#2|) 37) (($ (-419 (-576))) NIL)) (-3996 (((-783)) 10)) (-2122 ((|#2| $) 71)) (-2925 (((-112) $ $) 26)) (-2950 (((-112) $ $) 69)) (-3044 (($ $) 30) (($ $ $) 29)) (-3030 (($ $ $) 27)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-1017 |#1| |#2|) (-10 -8 (-15 -3570 (|#1| (-419 (-576)))) (-15 -2775 (|#1| |#1| (-783))) (-15 -2775 (|#1| |#1|)) (-15 -2775 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2775 (|#1| |#1| (-1197) (-783))) (-15 -2775 (|#1| |#1| (-656 (-1197)))) (-15 -2775 (|#1| |#1| (-1197))) (-15 -2950 ((-112) |#1| |#1|)) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 -2050 (|#1| |#1|)) (-15 -4172 ((-548) |#1|)) (-15 -3104 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2568 ((-419 (-576)) |#1|)) (-15 -2545 ((-112) |#1|)) (-15 -2122 (|#2| |#1|)) (-15 -1381 (|#2| |#1|)) (-15 -2314 (|#1| |#1|)) (-15 -4117 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2860 (|#2| |#1|)) (-15 -2860 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2860 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -3570 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3996 ((-783))) (-15 -3570 (|#1| (-576))) (-15 -4193 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -4308 ((-112) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -3030 (|#1| |#1| |#1|)) (-15 -3570 ((-876) |#1|)) (-15 -2925 ((-112) |#1| |#1|))) (-1018 |#2|) (-174)) (T -1017)) -((-3996 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-1017 *3 *4)) (-4 *3 (-1018 *4))))) -(-10 -8 (-15 -3570 (|#1| (-419 (-576)))) (-15 -2775 (|#1| |#1| (-783))) (-15 -2775 (|#1| |#1|)) (-15 -2775 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2775 (|#1| |#1| (-1197) (-783))) (-15 -2775 (|#1| |#1| (-656 (-1197)))) (-15 -2775 (|#1| |#1| (-1197))) (-15 -2950 ((-112) |#1| |#1|)) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 -2050 (|#1| |#1|)) (-15 -4172 ((-548) |#1|)) (-15 -3104 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2568 ((-419 (-576)) |#1|)) (-15 -2545 ((-112) |#1|)) (-15 -2122 (|#2| |#1|)) (-15 -1381 (|#2| |#1|)) (-15 -2314 (|#1| |#1|)) (-15 -4117 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2860 (|#2| |#1|)) (-15 -2860 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2860 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -3570 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3996 ((-783))) (-15 -3570 (|#1| (-576))) (-15 -4193 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -4308 ((-112) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -3030 (|#1| |#1| |#1|)) (-15 -3570 ((-876) |#1|)) (-15 -2925 ((-112) |#1| |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-1572 (((-3 (-576) "failed") $) 135 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 133 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 130)) (-2860 (((-576) $) 134 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 132 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 131)) (-2204 (((-701 (-576)) (-701 $)) 115 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 114 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 113) (((-701 |#1|) (-701 $)) 112)) (-1561 (((-3 $ "failed") $) 37)) (-1850 ((|#1| $) 103)) (-3104 (((-3 (-419 (-576)) "failed") $) 99 (|has| |#1| (-557)))) (-2545 (((-112) $) 101 (|has| |#1| (-557)))) (-2568 (((-419 (-576)) $) 100 (|has| |#1| (-557)))) (-1999 (($ |#1| |#1| |#1| |#1|) 104)) (-4193 (((-112) $) 35)) (-1381 ((|#1| $) 105)) (-3125 (($ $ $) 87 (|has| |#1| (-861)))) (-3133 (($ $ $) 88 (|has| |#1| (-861)))) (-4117 (($ (-1 |#1| |#1|) $) 118)) (-3913 (((-701 (-576)) (-1288 $)) 117 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 116 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 111) (((-701 |#1|) (-1288 $)) 110)) (-3699 (((-1179) $) 10)) (-2050 (($ $) 96 (|has| |#1| (-374)))) (-1745 ((|#1| $) 106)) (-1985 ((|#1| $) 107)) (-3614 ((|#1| $) 108)) (-1450 (((-1141) $) 11)) (-3284 (($ $ (-656 |#1|) (-656 |#1|)) 124 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 123 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 122 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 121 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 120 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) 119 (|has| |#1| (-526 (-1197) |#1|)))) (-2797 (($ $ |#1|) 125 (|has| |#1| (-296 |#1| |#1|)))) (-2775 (($ $ (-1 |#1| |#1|)) 129) (($ $ (-1 |#1| |#1|) (-783)) 128) (($ $) 86 (|has| |#1| (-237))) (($ $ (-783)) 84 (|has| |#1| (-237))) (($ $ (-1197)) 82 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 80 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 79 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 78 (|has| |#1| (-919 (-1197))))) (-4172 (((-548) $) 97 (|has| |#1| (-626 (-548))))) (-2314 (($ $) 109)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 74 (-2760 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576))))))) (-4336 (((-3 $ "failed") $) 98 (|has| |#1| (-146)))) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2122 ((|#1| $) 102 (|has| |#1| (-1081)))) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2020 (($ $ (-1 |#1| |#1|)) 127) (($ $ (-1 |#1| |#1|) (-783)) 126) (($ $) 85 (|has| |#1| (-237))) (($ $ (-783)) 83 (|has| |#1| (-237))) (($ $ (-1197)) 81 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 77 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 76 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 75 (|has| |#1| (-919 (-1197))))) (-2992 (((-112) $ $) 89 (|has| |#1| (-861)))) (-2964 (((-112) $ $) 91 (|has| |#1| (-861)))) (-2925 (((-112) $ $) 8)) (-2978 (((-112) $ $) 90 (|has| |#1| (-861)))) (-2950 (((-112) $ $) 92 (|has| |#1| (-861)))) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 95 (|has| |#1| (-374)))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-419 (-576))) 94 (|has| |#1| (-374))) (($ (-419 (-576)) $) 93 (|has| |#1| (-374))))) +((-4098 (*1 *2 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238)))) (-3265 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238)))) (-3542 (*1 *1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238)))) (-2435 (*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1238)) (-5 *2 (-783)))) (-3374 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238)))) (-1675 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4464) (-15 -4098 (|t#1| |t#1| $)) (-15 -3265 (|t#1| $)) (-15 -3542 ($ $)) (-15 -2435 ((-783) $)) (-15 -3374 (|t#1| $)) (-15 -1675 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2759 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2759 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-3135 (((-112) $) 43)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2859 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 44)) (-2358 (((-3 (-419 (-576)) "failed") $) 78)) (-2769 (((-112) $) 72)) (-3025 (((-419 (-576)) $) 76)) (-1351 (((-112) $) 42)) (-2738 ((|#2| $) 22)) (-4116 (($ (-1 |#2| |#2|) $) 19)) (-2050 (($ $) 58)) (-2774 (($ $ (-1 |#2| |#2|)) 35) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-4171 (((-548) $) 67)) (-2272 (($ $) 17)) (-3569 (((-876) $) 53) (($ (-576)) 39) (($ |#2|) 37) (($ (-419 (-576))) NIL)) (-3154 (((-783)) 10)) (-4143 ((|#2| $) 71)) (-2924 (((-112) $ $) 26)) (-2949 (((-112) $ $) 69)) (-3043 (($ $) 30) (($ $ $) 29)) (-3029 (($ $ $) 27)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +(((-1017 |#1| |#2|) (-10 -8 (-15 -3569 (|#1| (-419 (-576)))) (-15 -2774 (|#1| |#1| (-783))) (-15 -2774 (|#1| |#1|)) (-15 -2774 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2774 (|#1| |#1| (-1197) (-783))) (-15 -2774 (|#1| |#1| (-656 (-1197)))) (-15 -2774 (|#1| |#1| (-1197))) (-15 -2949 ((-112) |#1| |#1|)) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 -2050 (|#1| |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -2358 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3025 ((-419 (-576)) |#1|)) (-15 -2769 ((-112) |#1|)) (-15 -4143 (|#2| |#1|)) (-15 -2738 (|#2| |#1|)) (-15 -2272 (|#1| |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -3569 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3154 ((-783))) (-15 -3569 (|#1| (-576))) (-15 -1351 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -3135 ((-112) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -3029 (|#1| |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -2924 ((-112) |#1| |#1|))) (-1018 |#2|) (-174)) (T -1017)) +((-3154 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-1017 *3 *4)) (-4 *3 (-1018 *4))))) +(-10 -8 (-15 -3569 (|#1| (-419 (-576)))) (-15 -2774 (|#1| |#1| (-783))) (-15 -2774 (|#1| |#1|)) (-15 -2774 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2774 (|#1| |#1| (-1197) (-783))) (-15 -2774 (|#1| |#1| (-656 (-1197)))) (-15 -2774 (|#1| |#1| (-1197))) (-15 -2949 ((-112) |#1| |#1|)) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 -2050 (|#1| |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -2358 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3025 ((-419 (-576)) |#1|)) (-15 -2769 ((-112) |#1|)) (-15 -4143 (|#2| |#1|)) (-15 -2738 (|#2| |#1|)) (-15 -2272 (|#1| |#1|)) (-15 -4116 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -3569 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3154 ((-783))) (-15 -3569 (|#1| (-576))) (-15 -1351 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -3135 ((-112) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -3029 (|#1| |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -2924 ((-112) |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-1572 (((-3 (-576) "failed") $) 135 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 133 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 130)) (-2859 (((-576) $) 134 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 132 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 131)) (-3674 (((-701 (-576)) (-701 $)) 115 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 114 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 113) (((-701 |#1|) (-701 $)) 112)) (-3673 (((-3 $ "failed") $) 37)) (-1850 ((|#1| $) 103)) (-2358 (((-3 (-419 (-576)) "failed") $) 99 (|has| |#1| (-557)))) (-2769 (((-112) $) 101 (|has| |#1| (-557)))) (-3025 (((-419 (-576)) $) 100 (|has| |#1| (-557)))) (-2287 (($ |#1| |#1| |#1| |#1|) 104)) (-1351 (((-112) $) 35)) (-2738 ((|#1| $) 105)) (-3124 (($ $ $) 87 (|has| |#1| (-861)))) (-1441 (($ $ $) 88 (|has| |#1| (-861)))) (-4116 (($ (-1 |#1| |#1|) $) 118)) (-3676 (((-701 (-576)) (-1288 $)) 117 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 116 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 111) (((-701 |#1|) (-1288 $)) 110)) (-2046 (((-1179) $) 10)) (-2050 (($ $) 96 (|has| |#1| (-374)))) (-1716 ((|#1| $) 106)) (-2129 ((|#1| $) 107)) (-3775 ((|#1| $) 108)) (-1450 (((-1141) $) 11)) (-3282 (($ $ (-656 |#1|) (-656 |#1|)) 124 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 123 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 122 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 121 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 120 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) 119 (|has| |#1| (-526 (-1197) |#1|)))) (-2796 (($ $ |#1|) 125 (|has| |#1| (-296 |#1| |#1|)))) (-2774 (($ $ (-1 |#1| |#1|)) 129) (($ $ (-1 |#1| |#1|) (-783)) 128) (($ $) 86 (|has| |#1| (-237))) (($ $ (-783)) 84 (|has| |#1| (-237))) (($ $ (-1197)) 82 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 80 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 79 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 78 (|has| |#1| (-919 (-1197))))) (-4171 (((-548) $) 97 (|has| |#1| (-626 (-548))))) (-2272 (($ $) 109)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 74 (-2759 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576))))))) (-3390 (((-3 $ "failed") $) 98 (|has| |#1| (-146)))) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-4143 ((|#1| $) 102 (|has| |#1| (-1081)))) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2020 (($ $ (-1 |#1| |#1|)) 127) (($ $ (-1 |#1| |#1|) (-783)) 126) (($ $) 85 (|has| |#1| (-237))) (($ $ (-783)) 83 (|has| |#1| (-237))) (($ $ (-1197)) 81 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 77 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 76 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 75 (|has| |#1| (-919 (-1197))))) (-2990 (((-112) $ $) 89 (|has| |#1| (-861)))) (-2962 (((-112) $ $) 91 (|has| |#1| (-861)))) (-2924 (((-112) $ $) 8)) (-2978 (((-112) $ $) 90 (|has| |#1| (-861)))) (-2949 (((-112) $ $) 92 (|has| |#1| (-861)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 95 (|has| |#1| (-374)))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-419 (-576))) 94 (|has| |#1| (-374))) (($ (-419 (-576)) $) 93 (|has| |#1| (-374))))) (((-1018 |#1|) (-141) (-174)) (T -1018)) -((-2314 (*1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-3614 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-1985 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-1745 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-1381 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-1999 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-1850 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-2122 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)) (-4 *2 (-1081)))) (-2545 (*1 *2 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-2568 (*1 *2 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-3104 (*1 *2 *1) (|partial| -12 (-4 *1 (-1018 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576)))))) -(-13 (-38 |t#1|) (-423 |t#1|) (-232 |t#1|) (-349 |t#1|) (-388 |t#1|) (-10 -8 (-15 -2314 ($ $)) (-15 -3614 (|t#1| $)) (-15 -1985 (|t#1| $)) (-15 -1745 (|t#1| $)) (-15 -1381 (|t#1| $)) (-15 -1999 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1850 (|t#1| $)) (IF (|has| |t#1| (-300)) (-6 (-300)) |%noBranch|) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-248)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1081)) (-15 -2122 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -2545 ((-112) $)) (-15 -2568 ((-419 (-576)) $)) (-15 -3104 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-374)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-374)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2760 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2760 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-234 $) -2760 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -2760 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) |has| |#1| (-374)) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) -2760 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-526 (-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-658 #0#) |has| |#1| (-374)) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-374)) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-374)) ((-652 |#1|) . T) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-374)) ((-729 |#1|) . T) ((-738) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-911 $ #2=(-1197)) -2760 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-917 (-1197)) |has| |#1| (-917 (-1197))) ((-919 #2#) -2760 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1072 #0#) |has| |#1| (-374)) ((-1072 |#1|) . T) ((-1072 $) -2760 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-1077 #0#) |has| |#1| (-374)) ((-1077 |#1|) . T) ((-1077 $) -2760 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-4117 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-1019 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4117 (|#3| (-1 |#4| |#2|) |#1|))) (-1018 |#2|) (-174) (-1018 |#4|) (-174)) (T -1019)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1018 *6)) (-5 *1 (-1019 *4 *5 *2 *6)) (-4 *4 (-1018 *5))))) -(-10 -7 (-15 -4117 (|#3| (-1 |#4| |#2|) |#1|))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2860 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-1850 ((|#1| $) 12)) (-3104 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-2545 (((-112) $) NIL (|has| |#1| (-557)))) (-2568 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-1999 (($ |#1| |#1| |#1| |#1|) 16)) (-4193 (((-112) $) NIL)) (-1381 ((|#1| $) NIL)) (-3125 (($ $ $) NIL (|has| |#1| (-861)))) (-3133 (($ $ $) NIL (|has| |#1| (-861)))) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL (|has| |#1| (-374)))) (-1745 ((|#1| $) 15)) (-1985 ((|#1| $) 14)) (-3614 ((|#1| $) 13)) (-1450 (((-1141) $) NIL)) (-3284 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-526 (-1197) |#1|)))) (-2797 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-2775 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-4172 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2314 (($ $) NIL)) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-419 (-576))) NIL (-2760 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576))))))) (-4336 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-2122 ((|#1| $) NIL (|has| |#1| (-1081)))) (-2721 (($) 8 T CONST)) (-2732 (($) 10 T CONST)) (-2020 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-2992 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2950 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))))) +((-2272 (*1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-2129 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-1716 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-2738 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-2287 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-1850 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)) (-4 *2 (-1081)))) (-2769 (*1 *2 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-2358 (*1 *2 *1) (|partial| -12 (-4 *1 (-1018 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576)))))) +(-13 (-38 |t#1|) (-423 |t#1|) (-232 |t#1|) (-349 |t#1|) (-388 |t#1|) (-10 -8 (-15 -2272 ($ $)) (-15 -3775 (|t#1| $)) (-15 -2129 (|t#1| $)) (-15 -1716 (|t#1| $)) (-15 -2738 (|t#1| $)) (-15 -2287 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1850 (|t#1| $)) (IF (|has| |t#1| (-300)) (-6 (-300)) |%noBranch|) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-248)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1081)) (-15 -4143 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -2769 ((-112) $)) (-15 -3025 ((-419 (-576)) $)) (-15 -2358 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-374)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-374)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2759 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2759 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-234 $) -2759 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -2759 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) |has| |#1| (-374)) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) -2759 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-526 (-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-658 #0#) |has| |#1| (-374)) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-374)) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-374)) ((-652 |#1|) . T) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-374)) ((-729 |#1|) . T) ((-738) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-911 $ #2=(-1197)) -2759 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-917 (-1197)) |has| |#1| (-917 (-1197))) ((-919 #2#) -2759 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1072 #0#) |has| |#1| (-374)) ((-1072 |#1|) . T) ((-1072 $) -2759 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-1077 #0#) |has| |#1| (-374)) ((-1077 |#1|) . T) ((-1077 $) -2759 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-4116 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-1019 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4116 (|#3| (-1 |#4| |#2|) |#1|))) (-1018 |#2|) (-174) (-1018 |#4|) (-174)) (T -1019)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1018 *6)) (-5 *1 (-1019 *4 *5 *2 *6)) (-4 *4 (-1018 *5))))) +(-10 -7 (-15 -4116 (|#3| (-1 |#4| |#2|) |#1|))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2859 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1850 ((|#1| $) 12)) (-2358 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-2769 (((-112) $) NIL (|has| |#1| (-557)))) (-3025 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-2287 (($ |#1| |#1| |#1| |#1|) 16)) (-1351 (((-112) $) NIL)) (-2738 ((|#1| $) NIL)) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-1441 (($ $ $) NIL (|has| |#1| (-861)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL (|has| |#1| (-374)))) (-1716 ((|#1| $) 15)) (-2129 ((|#1| $) 14)) (-3775 ((|#1| $) 13)) (-1450 (((-1141) $) NIL)) (-3282 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-526 (-1197) |#1|)))) (-2796 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-2774 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-4171 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2272 (($ $) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-419 (-576))) NIL (-2759 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576))))))) (-3390 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-4143 ((|#1| $) NIL (|has| |#1| (-1081)))) (-2721 (($) 8 T CONST)) (-2731 (($) 10 T CONST)) (-2020 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-2990 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2949 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))))) (((-1020 |#1|) (-1018 |#1|) (-174)) (T -1020)) NIL (-1018 |#1|) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1808 (((-112) $ (-783)) NIL)) (-3886 (($) NIL T CONST)) (-2496 (($ $) 23)) (-3022 (($ (-656 |#1|)) 33)) (-3966 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) NIL)) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-4323 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-2437 (((-783) $) 26)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1597 ((|#1| $) 28)) (-1901 (($ |#1| $) 17)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3883 ((|#1| $) 27)) (-3449 ((|#1| $) 22)) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3206 ((|#1| |#1| $) 16)) (-3973 (((-112) $) 18)) (-4225 (($) NIL)) (-3692 ((|#1| $) 21)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3570 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3943 (($ (-656 |#1|)) NIL)) (-1741 ((|#1| $) 30)) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-1021 |#1|) (-13 (-1016 |#1|) (-10 -8 (-15 -3022 ($ (-656 |#1|))))) (-1121)) (T -1021)) -((-3022 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-1021 *3))))) -(-13 (-1016 |#1|) (-10 -8 (-15 -3022 ($ (-656 |#1|))))) -((-1839 (($ $) 12)) (-2121 (($ $ (-576)) 13))) -(((-1022 |#1|) (-10 -8 (-15 -1839 (|#1| |#1|)) (-15 -2121 (|#1| |#1| (-576)))) (-1023)) (T -1022)) -NIL -(-10 -8 (-15 -1839 (|#1| |#1|)) (-15 -2121 (|#1| |#1| (-576)))) -((-1839 (($ $) 6)) (-2121 (($ $ (-576)) 7)) (** (($ $ (-419 (-576))) 8))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4264 (((-112) $ (-783)) NIL)) (-3404 (($) NIL T CONST)) (-3542 (($ $) 23)) (-2804 (($ (-656 |#1|)) 33)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) NIL)) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4326 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2435 (((-783) $) 26)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2722 ((|#1| $) 28)) (-2597 (($ |#1| $) 17)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3374 ((|#1| $) 27)) (-1541 ((|#1| $) 22)) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-4098 ((|#1| |#1| $) 16)) (-2940 (((-112) $) 18)) (-3579 (($) NIL)) (-3265 ((|#1| $) 21)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3972 (($ (-656 |#1|)) NIL)) (-1675 ((|#1| $) 30)) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1021 |#1|) (-13 (-1016 |#1|) (-10 -8 (-15 -2804 ($ (-656 |#1|))))) (-1121)) (T -1021)) +((-2804 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-1021 *3))))) +(-13 (-1016 |#1|) (-10 -8 (-15 -2804 ($ (-656 |#1|))))) +((-1840 (($ $) 12)) (-4131 (($ $ (-576)) 13))) +(((-1022 |#1|) (-10 -8 (-15 -1840 (|#1| |#1|)) (-15 -4131 (|#1| |#1| (-576)))) (-1023)) (T -1022)) +NIL +(-10 -8 (-15 -1840 (|#1| |#1|)) (-15 -4131 (|#1| |#1| (-576)))) +((-1840 (($ $) 6)) (-4131 (($ $ (-576)) 7)) (** (($ $ (-419 (-576))) 8))) (((-1023) (-141)) (T -1023)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-419 (-576))))) (-2121 (*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-576)))) (-1839 (*1 *1 *1) (-4 *1 (-1023)))) -(-13 (-10 -8 (-15 -1839 ($ $)) (-15 -2121 ($ $ (-576))) (-15 ** ($ $ (-419 (-576)))))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2306 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-374)))) (-2757 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3788 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-4101 (((-701 (-419 |#2|)) (-1288 $)) NIL) (((-701 (-419 |#2|))) NIL)) (-2210 (((-419 |#2|) $) NIL)) (-4183 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-419 |#2|) (-360)))) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3921 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-4016 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2098 (((-783)) NIL (|has| (-419 |#2|) (-379)))) (-3413 (((-112)) NIL)) (-4306 (((-112) |#1|) 162) (((-112) |#2|) 166)) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| (-419 |#2|) (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 |#2|) (-1059 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) NIL)) (-2860 (((-576) $) NIL (|has| (-419 |#2|) (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| (-419 |#2|) (-1059 (-419 (-576))))) (((-419 |#2|) $) NIL)) (-4119 (($ (-1288 (-419 |#2|)) (-1288 $)) NIL) (($ (-1288 (-419 |#2|))) 79) (($ (-1288 |#2|) |#2|) NIL)) (-2554 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-360)))) (-3429 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-1420 (((-701 (-419 |#2|)) $ (-1288 $)) NIL) (((-701 (-419 |#2|)) $) NIL)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-701 $) (-1288 $)) NIL) (((-701 (-419 |#2|)) (-701 $)) NIL)) (-2624 (((-1288 $) (-1288 $)) NIL)) (-3686 (($ |#3|) 73) (((-3 $ "failed") (-419 |#3|)) NIL (|has| (-419 |#2|) (-374)))) (-1561 (((-3 $ "failed") $) NIL)) (-3670 (((-656 (-656 |#1|))) NIL (|has| |#1| (-379)))) (-4180 (((-112) |#1| |#1|) NIL)) (-3734 (((-940)) NIL)) (-1836 (($) NIL (|has| (-419 |#2|) (-379)))) (-4233 (((-112)) NIL)) (-2263 (((-112) |#1|) 61) (((-112) |#2|) 164)) (-3441 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL (|has| (-419 |#2|) (-374)))) (-3767 (($ $) NIL)) (-2005 (($) NIL (|has| (-419 |#2|) (-360)))) (-4090 (((-112) $) NIL (|has| (-419 |#2|) (-360)))) (-2910 (($ $ (-783)) NIL (|has| (-419 |#2|) (-360))) (($ $) NIL (|has| (-419 |#2|) (-360)))) (-4249 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-3917 (((-940) $) NIL (|has| (-419 |#2|) (-360))) (((-845 (-940)) $) NIL (|has| (-419 |#2|) (-360)))) (-4193 (((-112) $) NIL)) (-3247 (((-783)) NIL)) (-1409 (((-1288 $) (-1288 $)) NIL)) (-1381 (((-419 |#2|) $) NIL)) (-3613 (((-656 (-971 |#1|)) (-1197)) NIL (|has| |#1| (-374)))) (-2240 (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-360)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2731 ((|#3| $) NIL (|has| (-419 |#2|) (-374)))) (-4401 (((-940) $) NIL (|has| (-419 |#2|) (-379)))) (-3672 ((|#3| $) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-1288 $) $) NIL) (((-701 (-419 |#2|)) (-1288 $)) NIL)) (-3458 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3699 (((-1179) $) NIL)) (-2154 (((-701 (-419 |#2|))) 57)) (-2212 (((-701 (-419 |#2|))) 56)) (-2050 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-2854 (($ (-1288 |#2|) |#2|) 80)) (-1830 (((-701 (-419 |#2|))) 55)) (-3576 (((-701 (-419 |#2|))) 54)) (-1609 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95)) (-2078 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) 86)) (-3283 (((-1288 $)) 51)) (-3573 (((-1288 $)) 50)) (-1352 (((-112) $) NIL)) (-1569 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3540 (($) NIL (|has| (-419 |#2|) (-360)) CONST)) (-3224 (($ (-940)) NIL (|has| (-419 |#2|) (-379)))) (-2451 (((-3 |#2| "failed")) 70)) (-1450 (((-1141) $) NIL)) (-3884 (((-783)) NIL)) (-4129 (($) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| (-419 |#2|) (-374)))) (-3498 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2406 (((-656 (-2 (|:| -1828 (-576)) (|:| -3422 (-576))))) NIL (|has| (-419 |#2|) (-360)))) (-1828 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-3476 (((-3 $ "failed") $ $) NIL (|has| (-419 |#2|) (-374)))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-1967 (((-783) $) NIL (|has| (-419 |#2|) (-374)))) (-2797 ((|#1| $ |#1| |#1|) NIL)) (-3334 (((-3 |#2| "failed")) 68)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-4352 (((-419 |#2|) (-1288 $)) NIL) (((-419 |#2|)) 47)) (-3793 (((-783) $) NIL (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) NIL (|has| (-419 |#2|) (-360)))) (-2775 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2760 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2760 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2760 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197)) NIL (-2760 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-783)) NIL (-2760 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-2760 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-2433 (((-701 (-419 |#2|)) (-1288 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374)))) (-3867 ((|#3|) 58)) (-1535 (($) NIL (|has| (-419 |#2|) (-360)))) (-4152 (((-1288 (-419 |#2|)) $ (-1288 $)) NIL) (((-701 (-419 |#2|)) (-1288 $) (-1288 $)) NIL) (((-1288 (-419 |#2|)) $) 81) (((-701 (-419 |#2|)) (-1288 $)) NIL)) (-4172 (((-1288 (-419 |#2|)) $) NIL) (($ (-1288 (-419 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| (-419 |#2|) (-360)))) (-2329 (((-1288 $) (-1288 $)) NIL)) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 |#2|)) NIL) (($ (-419 (-576))) NIL (-2760 (|has| (-419 |#2|) (-1059 (-419 (-576)))) (|has| (-419 |#2|) (-374)))) (($ $) NIL (|has| (-419 |#2|) (-374)))) (-4336 (($ $) NIL (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-146)))) (-4281 ((|#3| $) NIL)) (-3996 (((-783)) NIL T CONST)) (-1628 (((-112)) 65)) (-1495 (((-112) |#1|) 167) (((-112) |#2|) 168)) (-4055 (((-112) $ $) NIL)) (-1593 (((-1288 $)) NIL)) (-2672 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-3753 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2826 (((-112)) NIL)) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2020 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2760 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2760 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2760 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197)) NIL (-2760 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-783)) NIL (-2760 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-2760 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| (-419 |#2|) (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 |#2|)) NIL) (($ (-419 |#2|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) NIL (|has| (-419 |#2|) (-374))))) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-419 (-576))))) (-4131 (*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-576)))) (-1840 (*1 *1 *1) (-4 *1 (-1023)))) +(-13 (-10 -8 (-15 -1840 ($ $)) (-15 -4131 ($ $ (-576))) (-15 ** ($ $ (-419 (-576)))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2195 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-374)))) (-4195 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-1760 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-1656 (((-701 (-419 |#2|)) (-1288 $)) NIL) (((-701 (-419 |#2|))) NIL)) (-2210 (((-419 |#2|) $) NIL)) (-4371 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-419 |#2|) (-360)))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3760 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-3330 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2098 (((-783)) NIL (|has| (-419 |#2|) (-379)))) (-2407 (((-112)) NIL)) (-3123 (((-112) |#1|) 162) (((-112) |#2|) 166)) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| (-419 |#2|) (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 |#2|) (-1059 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) NIL)) (-2859 (((-576) $) NIL (|has| (-419 |#2|) (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| (-419 |#2|) (-1059 (-419 (-576))))) (((-419 |#2|) $) NIL)) (-1819 (($ (-1288 (-419 |#2|)) (-1288 $)) NIL) (($ (-1288 (-419 |#2|))) 79) (($ (-1288 |#2|) |#2|) NIL)) (-2868 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-360)))) (-3428 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2072 (((-701 (-419 |#2|)) $ (-1288 $)) NIL) (((-701 (-419 |#2|)) $) NIL)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-701 $) (-1288 $)) NIL) (((-701 (-419 |#2|)) (-701 $)) NIL)) (-2268 (((-1288 $) (-1288 $)) NIL)) (-3685 (($ |#3|) 73) (((-3 $ "failed") (-419 |#3|)) NIL (|has| (-419 |#2|) (-374)))) (-3673 (((-3 $ "failed") $) NIL)) (-3075 (((-656 (-656 |#1|))) NIL (|has| |#1| (-379)))) (-4341 (((-112) |#1| |#1|) NIL)) (-3733 (((-940)) NIL)) (-1836 (($) NIL (|has| (-419 |#2|) (-379)))) (-3658 (((-112)) NIL)) (-3005 (((-112) |#1|) 61) (((-112) |#2|) 164)) (-3440 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| (-419 |#2|) (-374)))) (-1547 (($ $) NIL)) (-2345 (($) NIL (|has| (-419 |#2|) (-360)))) (-1543 (((-112) $) NIL (|has| (-419 |#2|) (-360)))) (-3153 (($ $ (-783)) NIL (|has| (-419 |#2|) (-360))) (($ $) NIL (|has| (-419 |#2|) (-360)))) (-3833 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-3726 (((-940) $) NIL (|has| (-419 |#2|) (-360))) (((-845 (-940)) $) NIL (|has| (-419 |#2|) (-360)))) (-1351 (((-112) $) NIL)) (-1386 (((-783)) NIL)) (-4076 (((-1288 $) (-1288 $)) NIL)) (-2738 (((-419 |#2|) $) NIL)) (-3763 (((-656 (-971 |#1|)) (-1197)) NIL (|has| |#1| (-374)))) (-2734 (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-360)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-1989 ((|#3| $) NIL (|has| (-419 |#2|) (-374)))) (-1558 (((-940) $) NIL (|has| (-419 |#2|) (-379)))) (-3671 ((|#3| $) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-1288 $) $) NIL) (((-701 (-419 |#2|)) (-1288 $)) NIL)) (-3457 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2046 (((-1179) $) NIL)) (-4412 (((-701 (-419 |#2|))) 57)) (-3746 (((-701 (-419 |#2|))) 56)) (-2050 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3858 (($ (-1288 |#2|) |#2|) 80)) (-1348 (((-701 (-419 |#2|))) 55)) (-3389 (((-701 (-419 |#2|))) 54)) (-2860 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95)) (-1781 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) 86)) (-3637 (((-1288 $)) 51)) (-3358 (((-1288 $)) 50)) (-1353 (((-112) $) NIL)) (-3756 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3539 (($) NIL (|has| (-419 |#2|) (-360)) CONST)) (-3223 (($ (-940)) NIL (|has| (-419 |#2|) (-379)))) (-4308 (((-3 |#2| "failed")) 70)) (-1450 (((-1141) $) NIL)) (-3385 (((-783)) NIL)) (-4128 (($) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| (-419 |#2|) (-374)))) (-3497 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-1913 (((-656 (-2 (|:| -1828 (-576)) (|:| -2508 (-576))))) NIL (|has| (-419 |#2|) (-360)))) (-1828 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-3475 (((-3 $ "failed") $ $) NIL (|has| (-419 |#2|) (-374)))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-1979 (((-783) $) NIL (|has| (-419 |#2|) (-374)))) (-2796 ((|#1| $ |#1| |#1|) NIL)) (-2861 (((-3 |#2| "failed")) 68)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2269 (((-419 |#2|) (-1288 $)) NIL) (((-419 |#2|)) 47)) (-1813 (((-783) $) NIL (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) NIL (|has| (-419 |#2|) (-360)))) (-2774 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2759 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2759 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2759 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197)) NIL (-2759 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-783)) NIL (-2759 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-2759 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-4149 (((-701 (-419 |#2|)) (-1288 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374)))) (-1346 ((|#3|) 58)) (-3371 (($) NIL (|has| (-419 |#2|) (-360)))) (-4096 (((-1288 (-419 |#2|)) $ (-1288 $)) NIL) (((-701 (-419 |#2|)) (-1288 $) (-1288 $)) NIL) (((-1288 (-419 |#2|)) $) 81) (((-701 (-419 |#2|)) (-1288 $)) NIL)) (-4171 (((-1288 (-419 |#2|)) $) NIL) (($ (-1288 (-419 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| (-419 |#2|) (-360)))) (-2420 (((-1288 $) (-1288 $)) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 |#2|)) NIL) (($ (-419 (-576))) NIL (-2759 (|has| (-419 |#2|) (-1059 (-419 (-576)))) (|has| (-419 |#2|) (-374)))) (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3390 (($ $) NIL (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-146)))) (-2857 ((|#3| $) NIL)) (-3154 (((-783)) NIL T CONST)) (-3067 (((-112)) 65)) (-4191 (((-112) |#1|) 167) (((-112) |#2|) 168)) (-2399 (((-112) $ $) NIL)) (-2675 (((-1288 $)) NIL)) (-1505 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2598 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3573 (((-112)) NIL)) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2020 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2759 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2759 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2759 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197)) NIL (-2759 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-783)) NIL (-2759 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-2759 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| (-419 |#2|) (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 |#2|)) NIL) (($ (-419 |#2|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) NIL (|has| (-419 |#2|) (-374))))) (((-1024 |#1| |#2| |#3| |#4| |#5|) (-353 |#1| |#2| |#3|) (-1242) (-1264 |#1|) (-1264 (-419 |#2|)) (-419 |#2|) (-783)) (T -1024)) NIL (-353 |#1| |#2| |#3|) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-1468 (((-656 (-576)) $) 73)) (-1708 (($ (-656 (-576))) 81)) (-2575 (((-576) $) 48 (|has| (-576) (-317)))) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3601 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-4016 (((-112) $ $) NIL)) (-3308 (((-576) $) NIL (|has| (-576) (-832)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) 60) (((-3 (-1197) "failed") $) NIL (|has| (-576) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) 57 (|has| (-576) (-1059 (-576)))) (((-3 (-576) "failed") $) 60 (|has| (-576) (-1059 (-576))))) (-2860 (((-576) $) NIL) (((-1197) $) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-576) (-1059 (-576)))) (((-576) $) NIL (|has| (-576) (-1059 (-576))))) (-3429 (($ $ $) NIL)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-576) (-557)))) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-4249 (((-112) $) NIL)) (-2371 (((-656 (-576)) $) 79)) (-2087 (((-112) $) NIL (|has| (-576) (-832)))) (-1840 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-576) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-576) (-901 (-390))))) (-4193 (((-112) $) NIL)) (-2171 (($ $) NIL)) (-1570 (((-576) $) 45)) (-2240 (((-3 $ "failed") $) NIL (|has| (-576) (-1173)))) (-1634 (((-112) $) NIL (|has| (-576) (-832)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3125 (($ $ $) NIL (|has| (-576) (-861)))) (-3133 (($ $ $) NIL (|has| (-576) (-861)))) (-4117 (($ (-1 (-576) (-576)) $) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3540 (($) NIL (|has| (-576) (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2393 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) 50)) (-3072 (((-1178 (-576)) $) 78)) (-3911 (($ (-656 (-576)) (-656 (-576))) 82)) (-2443 (((-576) $) 64 (|has| (-576) (-557)))) (-4100 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-1828 (((-430 $) $) NIL)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3284 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1197)) (-656 (-576))) NIL (|has| (-576) (-526 (-1197) (-576)))) (($ $ (-1197) (-576)) NIL (|has| (-576) (-526 (-1197) (-576))))) (-1967 (((-783) $) NIL)) (-2797 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-2775 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) 15 (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-2143 (($ $) NIL)) (-1581 (((-576) $) 47)) (-2814 (((-656 (-576)) $) 80)) (-4172 (((-907 (-576)) $) NIL (|has| (-576) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-576) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1043))) (((-227) $) NIL (|has| (-576) (-1043)))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-928))))) (-3570 (((-876) $) 107) (($ (-576)) 51) (($ $) NIL) (($ (-419 (-576))) 27) (($ (-576)) 51) (($ (-1197)) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) 25)) (-4336 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| $ (-146)) (|has| (-576) (-928))) (|has| (-576) (-146))))) (-3996 (((-783)) 13 T CONST)) (-4118 (((-576) $) 62 (|has| (-576) (-557)))) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL)) (-2122 (($ $) NIL (|has| (-576) (-832)))) (-2721 (($) 14 T CONST)) (-2732 (($) 17 T CONST)) (-2020 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-2992 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2964 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2925 (((-112) $ $) 21)) (-2978 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2950 (((-112) $ $) 40 (|has| (-576) (-861)))) (-3057 (($ $ $) 36) (($ (-576) (-576)) 38)) (-3044 (($ $) 23) (($ $ $) 30)) (-3030 (($ $ $) 28)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 32) (($ $ $) 34) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) 32) (($ $ (-576)) NIL))) -(((-1025 |#1|) (-13 (-1013 (-576)) (-625 (-419 (-576))) (-10 -8 (-15 -2393 ((-419 (-576)) $)) (-15 -1468 ((-656 (-576)) $)) (-15 -3072 ((-1178 (-576)) $)) (-15 -2371 ((-656 (-576)) $)) (-15 -2814 ((-656 (-576)) $)) (-15 -1708 ($ (-656 (-576)))) (-15 -3911 ($ (-656 (-576)) (-656 (-576)))))) (-576)) (T -1025)) -((-2393 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) (-1468 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) (-3072 (*1 *2 *1) (-12 (-5 *2 (-1178 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) (-2371 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) (-2814 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) (-1708 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) (-3911 (*1 *1 *2 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) -(-13 (-1013 (-576)) (-625 (-419 (-576))) (-10 -8 (-15 -2393 ((-419 (-576)) $)) (-15 -1468 ((-656 (-576)) $)) (-15 -3072 ((-1178 (-576)) $)) (-15 -2371 ((-656 (-576)) $)) (-15 -2814 ((-656 (-576)) $)) (-15 -1708 ($ (-656 (-576)))) (-15 -3911 ($ (-656 (-576)) (-656 (-576)))))) -((-1819 (((-52) (-419 (-576)) (-576)) 9))) -(((-1026) (-10 -7 (-15 -1819 ((-52) (-419 (-576)) (-576))))) (T -1026)) -((-1819 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-576))) (-5 *4 (-576)) (-5 *2 (-52)) (-5 *1 (-1026))))) -(-10 -7 (-15 -1819 ((-52) (-419 (-576)) (-576)))) -((-2098 (((-576)) 23)) (-4359 (((-576)) 28)) (-4105 (((-1293) (-576)) 26)) (-4200 (((-576) (-576)) 29) (((-576)) 22))) -(((-1027) (-10 -7 (-15 -4200 ((-576))) (-15 -2098 ((-576))) (-15 -4200 ((-576) (-576))) (-15 -4105 ((-1293) (-576))) (-15 -4359 ((-576))))) (T -1027)) -((-4359 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027)))) (-4105 (*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1027)))) (-4200 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027)))) (-2098 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027)))) (-4200 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027))))) -(-10 -7 (-15 -4200 ((-576))) (-15 -2098 ((-576))) (-15 -4200 ((-576) (-576))) (-15 -4105 ((-1293) (-576))) (-15 -4359 ((-576)))) -((-4391 (((-430 |#1|) |#1|) 43)) (-1828 (((-430 |#1|) |#1|) 41))) -(((-1028 |#1|) (-10 -7 (-15 -1828 ((-430 |#1|) |#1|)) (-15 -4391 ((-430 |#1|) |#1|))) (-1264 (-419 (-576)))) (T -1028)) -((-4391 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1028 *3)) (-4 *3 (-1264 (-419 (-576)))))) (-1828 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1028 *3)) (-4 *3 (-1264 (-419 (-576))))))) -(-10 -7 (-15 -1828 ((-430 |#1|) |#1|)) (-15 -4391 ((-430 |#1|) |#1|))) -((-3104 (((-3 (-419 (-576)) "failed") |#1|) 15)) (-2545 (((-112) |#1|) 14)) (-2568 (((-419 (-576)) |#1|) 10))) -(((-1029 |#1|) (-10 -7 (-15 -2568 ((-419 (-576)) |#1|)) (-15 -2545 ((-112) |#1|)) (-15 -3104 ((-3 (-419 (-576)) "failed") |#1|))) (-1059 (-419 (-576)))) (T -1029)) -((-3104 (*1 *2 *3) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-1029 *3)) (-4 *3 (-1059 *2)))) (-2545 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1029 *3)) (-4 *3 (-1059 (-419 (-576)))))) (-2568 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1029 *3)) (-4 *3 (-1059 *2))))) -(-10 -7 (-15 -2568 ((-419 (-576)) |#1|)) (-15 -2545 ((-112) |#1|)) (-15 -3104 ((-3 (-419 (-576)) "failed") |#1|))) -((-3756 ((|#2| $ "value" |#2|) 12)) (-2797 ((|#2| $ "value") 10)) (-2621 (((-112) $ $) 18))) -(((-1030 |#1| |#2|) (-10 -8 (-15 -3756 (|#2| |#1| "value" |#2|)) (-15 -2621 ((-112) |#1| |#1|)) (-15 -2797 (|#2| |#1| "value"))) (-1031 |#2|) (-1238)) (T -1030)) -NIL -(-10 -8 (-15 -3756 (|#2| |#1| "value" |#2|)) (-15 -2621 ((-112) |#1| |#1|)) (-15 -2797 (|#2| |#1| "value"))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3106 ((|#1| $) 49)) (-1808 (((-112) $ (-783)) 8)) (-2647 ((|#1| $ |#1|) 40 (|has| $ (-6 -4466)))) (-3756 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4466)))) (-1894 (($ $ (-656 $)) 42 (|has| $ (-6 -4466)))) (-3886 (($) 7 T CONST)) (-3966 (((-656 |#1|) $) 31 (|has| $ (-6 -4465)))) (-2387 (((-656 $) $) 51)) (-3295 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-3870 (((-112) $ (-783)) 9)) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-4323 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 36)) (-1330 (((-112) $ (-783)) 10)) (-2353 (((-656 |#1|) $) 46)) (-3443 (((-112) $) 50)) (-3699 (((-1179) $) 23 (|has| |#1| (-1121)))) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-2797 ((|#1| $ "value") 48)) (-2789 (((-576) $ $) 45)) (-3617 (((-112) $) 47)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 13)) (-3570 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2902 (((-656 $) $) 52)) (-2621 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-4055 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-3924 (((-656 (-576)) $) 73)) (-2534 (($ (-656 (-576))) 81)) (-3110 (((-576) $) 48 (|has| (-576) (-317)))) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3646 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-3330 (((-112) $ $) NIL)) (-3906 (((-576) $) NIL (|has| (-576) (-832)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) 60) (((-3 (-1197) "failed") $) NIL (|has| (-576) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) 57 (|has| (-576) (-1059 (-576)))) (((-3 (-576) "failed") $) 60 (|has| (-576) (-1059 (-576))))) (-2859 (((-576) $) NIL) (((-1197) $) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-576) (-1059 (-576)))) (((-576) $) NIL (|has| (-576) (-1059 (-576))))) (-3428 (($ $ $) NIL)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1836 (($) NIL (|has| (-576) (-557)))) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3833 (((-112) $) NIL)) (-1593 (((-656 (-576)) $) 79)) (-1866 (((-112) $) NIL (|has| (-576) (-832)))) (-3325 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-576) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-576) (-901 (-390))))) (-1351 (((-112) $) NIL)) (-3328 (($ $) NIL)) (-1570 (((-576) $) 45)) (-2734 (((-3 $ "failed") $) NIL (|has| (-576) (-1173)))) (-3137 (((-112) $) NIL (|has| (-576) (-832)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3124 (($ $ $) NIL (|has| (-576) (-861)))) (-1441 (($ $ $) NIL (|has| (-576) (-861)))) (-4116 (($ (-1 (-576) (-576)) $) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL)) (-3539 (($) NIL (|has| (-576) (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1788 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) 50)) (-2025 (((-1178 (-576)) $) 78)) (-3652 (($ (-656 (-576)) (-656 (-576))) 82)) (-4236 (((-576) $) 64 (|has| (-576) (-557)))) (-1644 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-1828 (((-430 $) $) NIL)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3282 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1197)) (-656 (-576))) NIL (|has| (-576) (-526 (-1197) (-576)))) (($ $ (-1197) (-576)) NIL (|has| (-576) (-526 (-1197) (-576))))) (-1979 (((-783) $) NIL)) (-2796 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-2774 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) 15 (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-4325 (($ $) NIL)) (-1581 (((-576) $) 47)) (-3450 (((-656 (-576)) $) 80)) (-4171 (((-907 (-576)) $) NIL (|has| (-576) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-576) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1043))) (((-227) $) NIL (|has| (-576) (-1043)))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-928))))) (-3569 (((-876) $) 107) (($ (-576)) 51) (($ $) NIL) (($ (-419 (-576))) 27) (($ (-576)) 51) (($ (-1197)) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) 25)) (-3390 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| $ (-146)) (|has| (-576) (-928))) (|has| (-576) (-146))))) (-3154 (((-783)) 13 T CONST)) (-1810 (((-576) $) 62 (|has| (-576) (-557)))) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL)) (-4143 (($ $) NIL (|has| (-576) (-832)))) (-2721 (($) 14 T CONST)) (-2731 (($) 17 T CONST)) (-2020 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-2990 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2962 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2924 (((-112) $ $) 21)) (-2978 (((-112) $ $) NIL (|has| (-576) (-861)))) (-2949 (((-112) $ $) 40 (|has| (-576) (-861)))) (-3056 (($ $ $) 36) (($ (-576) (-576)) 38)) (-3043 (($ $) 23) (($ $ $) 30)) (-3029 (($ $ $) 28)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 32) (($ $ $) 34) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) 32) (($ $ (-576)) NIL))) +(((-1025 |#1|) (-13 (-1013 (-576)) (-625 (-419 (-576))) (-10 -8 (-15 -1788 ((-419 (-576)) $)) (-15 -3924 ((-656 (-576)) $)) (-15 -2025 ((-1178 (-576)) $)) (-15 -1593 ((-656 (-576)) $)) (-15 -3450 ((-656 (-576)) $)) (-15 -2534 ($ (-656 (-576)))) (-15 -3652 ($ (-656 (-576)) (-656 (-576)))))) (-576)) (T -1025)) +((-1788 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) (-3924 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) (-2025 (*1 *2 *1) (-12 (-5 *2 (-1178 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) (-1593 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) (-3450 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) (-2534 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) (-3652 (*1 *1 *2 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) +(-13 (-1013 (-576)) (-625 (-419 (-576))) (-10 -8 (-15 -1788 ((-419 (-576)) $)) (-15 -3924 ((-656 (-576)) $)) (-15 -2025 ((-1178 (-576)) $)) (-15 -1593 ((-656 (-576)) $)) (-15 -3450 ((-656 (-576)) $)) (-15 -2534 ($ (-656 (-576)))) (-15 -3652 ($ (-656 (-576)) (-656 (-576)))))) +((-4378 (((-52) (-419 (-576)) (-576)) 9))) +(((-1026) (-10 -7 (-15 -4378 ((-52) (-419 (-576)) (-576))))) (T -1026)) +((-4378 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-576))) (-5 *4 (-576)) (-5 *2 (-52)) (-5 *1 (-1026))))) +(-10 -7 (-15 -4378 ((-52) (-419 (-576)) (-576)))) +((-2098 (((-576)) 23)) (-2336 (((-576)) 28)) (-1687 (((-1293) (-576)) 26)) (-1412 (((-576) (-576)) 29) (((-576)) 22))) +(((-1027) (-10 -7 (-15 -1412 ((-576))) (-15 -2098 ((-576))) (-15 -1412 ((-576) (-576))) (-15 -1687 ((-1293) (-576))) (-15 -2336 ((-576))))) (T -1027)) +((-2336 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027)))) (-1687 (*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1027)))) (-1412 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027)))) (-2098 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027)))) (-1412 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027))))) +(-10 -7 (-15 -1412 ((-576))) (-15 -2098 ((-576))) (-15 -1412 ((-576) (-576))) (-15 -1687 ((-1293) (-576))) (-15 -2336 ((-576)))) +((-2652 (((-430 |#1|) |#1|) 43)) (-1828 (((-430 |#1|) |#1|) 41))) +(((-1028 |#1|) (-10 -7 (-15 -1828 ((-430 |#1|) |#1|)) (-15 -2652 ((-430 |#1|) |#1|))) (-1264 (-419 (-576)))) (T -1028)) +((-2652 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1028 *3)) (-4 *3 (-1264 (-419 (-576)))))) (-1828 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1028 *3)) (-4 *3 (-1264 (-419 (-576))))))) +(-10 -7 (-15 -1828 ((-430 |#1|) |#1|)) (-15 -2652 ((-430 |#1|) |#1|))) +((-2358 (((-3 (-419 (-576)) "failed") |#1|) 15)) (-2769 (((-112) |#1|) 14)) (-3025 (((-419 (-576)) |#1|) 10))) +(((-1029 |#1|) (-10 -7 (-15 -3025 ((-419 (-576)) |#1|)) (-15 -2769 ((-112) |#1|)) (-15 -2358 ((-3 (-419 (-576)) "failed") |#1|))) (-1059 (-419 (-576)))) (T -1029)) +((-2358 (*1 *2 *3) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-1029 *3)) (-4 *3 (-1059 *2)))) (-2769 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1029 *3)) (-4 *3 (-1059 (-419 (-576)))))) (-3025 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1029 *3)) (-4 *3 (-1059 *2))))) +(-10 -7 (-15 -3025 ((-419 (-576)) |#1|)) (-15 -2769 ((-112) |#1|)) (-15 -2358 ((-3 (-419 (-576)) "failed") |#1|))) +((-3755 ((|#2| $ "value" |#2|) 12)) (-2796 ((|#2| $ "value") 10)) (-2247 (((-112) $ $) 18))) +(((-1030 |#1| |#2|) (-10 -8 (-15 -3755 (|#2| |#1| "value" |#2|)) (-15 -2247 ((-112) |#1| |#1|)) (-15 -2796 (|#2| |#1| "value"))) (-1031 |#2|) (-1238)) (T -1030)) +NIL +(-10 -8 (-15 -3755 (|#2| |#1| "value" |#2|)) (-15 -2247 ((-112) |#1| |#1|)) (-15 -2796 (|#2| |#1| "value"))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3104 ((|#1| $) 49)) (-4264 (((-112) $ (-783)) 8)) (-2482 ((|#1| $ |#1|) 40 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4465)))) (-3829 (($ $ (-656 $)) 42 (|has| $ (-6 -4465)))) (-3404 (($) 7 T CONST)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-1736 (((-656 $) $) 51)) (-3768 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-1368 (((-112) $ (-783)) 9)) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4326 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-2883 (((-112) $ (-783)) 10)) (-2353 (((-656 |#1|) $) 46)) (-1508 (((-112) $) 50)) (-2046 (((-1179) $) 23 (|has| |#1| (-1121)))) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-2796 ((|#1| $ "value") 48)) (-1335 (((-576) $ $) 45)) (-3806 (((-112) $) 47)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-3059 (((-656 $) $) 52)) (-2247 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-2399 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-1031 |#1|) (-141) (-1238)) (T -1031)) -((-2902 (*1 *2 *1) (-12 (-4 *3 (-1238)) (-5 *2 (-656 *1)) (-4 *1 (-1031 *3)))) (-2387 (*1 *2 *1) (-12 (-4 *3 (-1238)) (-5 *2 (-656 *1)) (-4 *1 (-1031 *3)))) (-3443 (*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1238)))) (-2797 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1031 *2)) (-4 *2 (-1238)))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) (-2353 (*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-656 *3)))) (-2789 (*1 *2 *1 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-576)))) (-2621 (*1 *2 *1 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-112)))) (-3295 (*1 *2 *1 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-112)))) (-1894 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *1)) (|has| *1 (-6 -4466)) (-4 *1 (-1031 *3)) (-4 *3 (-1238)))) (-3756 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4466)) (-4 *1 (-1031 *2)) (-4 *2 (-1238)))) (-2647 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-1031 *2)) (-4 *2 (-1238))))) -(-13 (-501 |t#1|) (-10 -8 (-15 -2902 ((-656 $) $)) (-15 -2387 ((-656 $) $)) (-15 -3443 ((-112) $)) (-15 -3106 (|t#1| $)) (-15 -2797 (|t#1| $ "value")) (-15 -3617 ((-112) $)) (-15 -2353 ((-656 |t#1|) $)) (-15 -2789 ((-576) $ $)) (IF (|has| |t#1| (-1121)) (PROGN (-15 -2621 ((-112) $ $)) (-15 -3295 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4466)) (PROGN (-15 -1894 ($ $ (-656 $))) (-15 -3756 (|t#1| $ "value" |t#1|)) (-15 -2647 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) -2760 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2760 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-1839 (($ $) 9) (($ $ (-940)) 49) (($ (-419 (-576))) 13) (($ (-576)) 15)) (-2607 (((-3 $ "failed") (-1193 $) (-940) (-876)) 24) (((-3 $ "failed") (-1193 $) (-940)) 32)) (-2121 (($ $ (-576)) 58)) (-3996 (((-783)) 18)) (-2111 (((-656 $) (-1193 $)) NIL) (((-656 $) (-1193 (-419 (-576)))) 63) (((-656 $) (-1193 (-576))) 68) (((-656 $) (-971 $)) 72) (((-656 $) (-971 (-419 (-576)))) 76) (((-656 $) (-971 (-576))) 80)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) 53))) -(((-1032 |#1|) (-10 -8 (-15 -1839 (|#1| (-576))) (-15 -1839 (|#1| (-419 (-576)))) (-15 -1839 (|#1| |#1| (-940))) (-15 -2111 ((-656 |#1|) (-971 (-576)))) (-15 -2111 ((-656 |#1|) (-971 (-419 (-576))))) (-15 -2111 ((-656 |#1|) (-971 |#1|))) (-15 -2111 ((-656 |#1|) (-1193 (-576)))) (-15 -2111 ((-656 |#1|) (-1193 (-419 (-576))))) (-15 -2111 ((-656 |#1|) (-1193 |#1|))) (-15 -2607 ((-3 |#1| "failed") (-1193 |#1|) (-940))) (-15 -2607 ((-3 |#1| "failed") (-1193 |#1|) (-940) (-876))) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -2121 (|#1| |#1| (-576))) (-15 -1839 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3996 ((-783))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940)))) (-1033)) (T -1032)) -((-3996 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1032 *3)) (-4 *3 (-1033))))) -(-10 -8 (-15 -1839 (|#1| (-576))) (-15 -1839 (|#1| (-419 (-576)))) (-15 -1839 (|#1| |#1| (-940))) (-15 -2111 ((-656 |#1|) (-971 (-576)))) (-15 -2111 ((-656 |#1|) (-971 (-419 (-576))))) (-15 -2111 ((-656 |#1|) (-971 |#1|))) (-15 -2111 ((-656 |#1|) (-1193 (-576)))) (-15 -2111 ((-656 |#1|) (-1193 (-419 (-576))))) (-15 -2111 ((-656 |#1|) (-1193 |#1|))) (-15 -2607 ((-3 |#1| "failed") (-1193 |#1|) (-940))) (-15 -2607 ((-3 |#1| "failed") (-1193 |#1|) (-940) (-876))) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -2121 (|#1| |#1| (-576))) (-15 -1839 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3996 ((-783))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 103)) (-2757 (($ $) 104)) (-3788 (((-112) $) 106)) (-4367 (((-3 $ "failed") $ $) 20)) (-2487 (($ $) 123)) (-3921 (((-430 $) $) 124)) (-1839 (($ $) 87) (($ $ (-940)) 73) (($ (-419 (-576))) 72) (($ (-576)) 71)) (-4016 (((-112) $ $) 114)) (-3308 (((-576) $) 140)) (-3886 (($) 18 T CONST)) (-2607 (((-3 $ "failed") (-1193 $) (-940) (-876)) 81) (((-3 $ "failed") (-1193 $) (-940)) 80)) (-1572 (((-3 (-576) "failed") $) 100 (|has| (-419 (-576)) (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 98 (|has| (-419 (-576)) (-1059 (-419 (-576))))) (((-3 (-419 (-576)) "failed") $) 95)) (-2860 (((-576) $) 99 (|has| (-419 (-576)) (-1059 (-576)))) (((-419 (-576)) $) 97 (|has| (-419 (-576)) (-1059 (-419 (-576))))) (((-419 (-576)) $) 96)) (-3188 (($ $ (-876)) 70)) (-2857 (($ $ (-876)) 69)) (-3429 (($ $ $) 118)) (-1561 (((-3 $ "failed") $) 37)) (-3441 (($ $ $) 117)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) 112)) (-4249 (((-112) $) 125)) (-2087 (((-112) $) 138)) (-4193 (((-112) $) 35)) (-2121 (($ $ (-576)) 86)) (-1634 (((-112) $) 139)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) 121)) (-3125 (($ $ $) 132)) (-3133 (($ $ $) 133)) (-4243 (((-3 (-1193 $) "failed") $) 82)) (-4425 (((-3 (-876) "failed") $) 84)) (-3181 (((-3 (-1193 $) "failed") $) 83)) (-3458 (($ (-656 $)) 110) (($ $ $) 109)) (-3699 (((-1179) $) 10)) (-2050 (($ $) 126)) (-1450 (((-1141) $) 11)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 111)) (-3498 (($ (-656 $)) 108) (($ $ $) 107)) (-1828 (((-430 $) $) 122)) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 119)) (-3476 (((-3 $ "failed") $ $) 102)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) 113)) (-1967 (((-783) $) 115)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 116)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 130) (($ $) 101) (($ (-419 (-576))) 94) (($ (-576)) 93) (($ (-419 (-576))) 90)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2672 (((-112) $ $) 105)) (-4166 (((-419 (-576)) $ $) 68)) (-2111 (((-656 $) (-1193 $)) 79) (((-656 $) (-1193 (-419 (-576)))) 78) (((-656 $) (-1193 (-576))) 77) (((-656 $) (-971 $)) 76) (((-656 $) (-971 (-419 (-576)))) 75) (((-656 $) (-971 (-576))) 74)) (-2122 (($ $) 141)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2992 (((-112) $ $) 134)) (-2964 (((-112) $ $) 136)) (-2925 (((-112) $ $) 8)) (-2978 (((-112) $ $) 135)) (-2950 (((-112) $ $) 137)) (-3057 (($ $ $) 131)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 127) (($ $ (-419 (-576))) 85)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-419 (-576)) $) 129) (($ $ (-419 (-576))) 128) (($ (-576) $) 92) (($ $ (-576)) 91) (($ (-419 (-576)) $) 89) (($ $ (-419 (-576))) 88))) +((-3059 (*1 *2 *1) (-12 (-4 *3 (-1238)) (-5 *2 (-656 *1)) (-4 *1 (-1031 *3)))) (-1736 (*1 *2 *1) (-12 (-4 *3 (-1238)) (-5 *2 (-656 *1)) (-4 *1 (-1031 *3)))) (-1508 (*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1238)))) (-2796 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1031 *2)) (-4 *2 (-1238)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) (-2353 (*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-656 *3)))) (-1335 (*1 *2 *1 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-576)))) (-2247 (*1 *2 *1 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-112)))) (-3768 (*1 *2 *1 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-112)))) (-3829 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *1)) (|has| *1 (-6 -4465)) (-4 *1 (-1031 *3)) (-4 *3 (-1238)))) (-3755 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4465)) (-4 *1 (-1031 *2)) (-4 *2 (-1238)))) (-2482 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1031 *2)) (-4 *2 (-1238))))) +(-13 (-501 |t#1|) (-10 -8 (-15 -3059 ((-656 $) $)) (-15 -1736 ((-656 $) $)) (-15 -1508 ((-112) $)) (-15 -3104 (|t#1| $)) (-15 -2796 (|t#1| $ "value")) (-15 -3806 ((-112) $)) (-15 -2353 ((-656 |t#1|) $)) (-15 -1335 ((-576) $ $)) (IF (|has| |t#1| (-1121)) (PROGN (-15 -2247 ((-112) $ $)) (-15 -3768 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4465)) (PROGN (-15 -3829 ($ $ (-656 $))) (-15 -3755 (|t#1| $ "value" |t#1|)) (-15 -2482 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) -2759 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2759 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-1840 (($ $) 9) (($ $ (-940)) 49) (($ (-419 (-576))) 13) (($ (-576)) 15)) (-2108 (((-3 $ "failed") (-1193 $) (-940) (-876)) 24) (((-3 $ "failed") (-1193 $) (-940)) 32)) (-4131 (($ $ (-576)) 58)) (-3154 (((-783)) 18)) (-4057 (((-656 $) (-1193 $)) NIL) (((-656 $) (-1193 (-419 (-576)))) 63) (((-656 $) (-1193 (-576))) 68) (((-656 $) (-971 $)) 72) (((-656 $) (-971 (-419 (-576)))) 76) (((-656 $) (-971 (-576))) 80)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) 53))) +(((-1032 |#1|) (-10 -8 (-15 -1840 (|#1| (-576))) (-15 -1840 (|#1| (-419 (-576)))) (-15 -1840 (|#1| |#1| (-940))) (-15 -4057 ((-656 |#1|) (-971 (-576)))) (-15 -4057 ((-656 |#1|) (-971 (-419 (-576))))) (-15 -4057 ((-656 |#1|) (-971 |#1|))) (-15 -4057 ((-656 |#1|) (-1193 (-576)))) (-15 -4057 ((-656 |#1|) (-1193 (-419 (-576))))) (-15 -4057 ((-656 |#1|) (-1193 |#1|))) (-15 -2108 ((-3 |#1| "failed") (-1193 |#1|) (-940))) (-15 -2108 ((-3 |#1| "failed") (-1193 |#1|) (-940) (-876))) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -4131 (|#1| |#1| (-576))) (-15 -1840 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3154 ((-783))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940)))) (-1033)) (T -1032)) +((-3154 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1032 *3)) (-4 *3 (-1033))))) +(-10 -8 (-15 -1840 (|#1| (-576))) (-15 -1840 (|#1| (-419 (-576)))) (-15 -1840 (|#1| |#1| (-940))) (-15 -4057 ((-656 |#1|) (-971 (-576)))) (-15 -4057 ((-656 |#1|) (-971 (-419 (-576))))) (-15 -4057 ((-656 |#1|) (-971 |#1|))) (-15 -4057 ((-656 |#1|) (-1193 (-576)))) (-15 -4057 ((-656 |#1|) (-1193 (-419 (-576))))) (-15 -4057 ((-656 |#1|) (-1193 |#1|))) (-15 -2108 ((-3 |#1| "failed") (-1193 |#1|) (-940))) (-15 -2108 ((-3 |#1| "failed") (-1193 |#1|) (-940) (-876))) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -4131 (|#1| |#1| (-576))) (-15 -1840 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3154 ((-783))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 103)) (-4195 (($ $) 104)) (-1760 (((-112) $) 106)) (-2428 (((-3 $ "failed") $ $) 20)) (-3444 (($ $) 123)) (-3760 (((-430 $) $) 124)) (-1840 (($ $) 87) (($ $ (-940)) 73) (($ (-419 (-576))) 72) (($ (-576)) 71)) (-3330 (((-112) $ $) 114)) (-3906 (((-576) $) 140)) (-3404 (($) 18 T CONST)) (-2108 (((-3 $ "failed") (-1193 $) (-940) (-876)) 81) (((-3 $ "failed") (-1193 $) (-940)) 80)) (-1572 (((-3 (-576) "failed") $) 100 (|has| (-419 (-576)) (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 98 (|has| (-419 (-576)) (-1059 (-419 (-576))))) (((-3 (-419 (-576)) "failed") $) 95)) (-2859 (((-576) $) 99 (|has| (-419 (-576)) (-1059 (-576)))) (((-419 (-576)) $) 97 (|has| (-419 (-576)) (-1059 (-419 (-576))))) (((-419 (-576)) $) 96)) (-1937 (($ $ (-876)) 70)) (-3887 (($ $ (-876)) 69)) (-3428 (($ $ $) 118)) (-3673 (((-3 $ "failed") $) 37)) (-3440 (($ $ $) 117)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) 112)) (-3833 (((-112) $) 125)) (-1866 (((-112) $) 138)) (-1351 (((-112) $) 35)) (-4131 (($ $ (-576)) 86)) (-3137 (((-112) $) 139)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) 121)) (-3124 (($ $ $) 132)) (-1441 (($ $ $) 133)) (-3765 (((-3 (-1193 $) "failed") $) 82)) (-1794 (((-3 (-876) "failed") $) 84)) (-1865 (((-3 (-1193 $) "failed") $) 83)) (-3457 (($ (-656 $)) 110) (($ $ $) 109)) (-2046 (((-1179) $) 10)) (-2050 (($ $) 126)) (-1450 (((-1141) $) 11)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 111)) (-3497 (($ (-656 $)) 108) (($ $ $) 107)) (-1828 (((-430 $) $) 122)) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 119)) (-3475 (((-3 $ "failed") $ $) 102)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) 113)) (-1979 (((-783) $) 115)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 116)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 130) (($ $) 101) (($ (-419 (-576))) 94) (($ (-576)) 93) (($ (-419 (-576))) 90)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-1505 (((-112) $ $) 105)) (-4165 (((-419 (-576)) $ $) 68)) (-4057 (((-656 $) (-1193 $)) 79) (((-656 $) (-1193 (-419 (-576)))) 78) (((-656 $) (-1193 (-576))) 77) (((-656 $) (-971 $)) 76) (((-656 $) (-971 (-419 (-576)))) 75) (((-656 $) (-971 (-576))) 74)) (-4143 (($ $) 141)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2990 (((-112) $ $) 134)) (-2962 (((-112) $ $) 136)) (-2924 (((-112) $ $) 8)) (-2978 (((-112) $ $) 135)) (-2949 (((-112) $ $) 137)) (-3056 (($ $ $) 131)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 127) (($ $ (-419 (-576))) 85)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-419 (-576)) $) 129) (($ $ (-419 (-576))) 128) (($ (-576) $) 92) (($ $ (-576)) 91) (($ (-419 (-576)) $) 89) (($ $ (-419 (-576))) 88))) (((-1033) (-141)) (T -1033)) -((-1839 (*1 *1 *1) (-4 *1 (-1033))) (-4425 (*1 *2 *1) (|partial| -12 (-4 *1 (-1033)) (-5 *2 (-876)))) (-3181 (*1 *2 *1) (|partial| -12 (-5 *2 (-1193 *1)) (-4 *1 (-1033)))) (-4243 (*1 *2 *1) (|partial| -12 (-5 *2 (-1193 *1)) (-4 *1 (-1033)))) (-2607 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1193 *1)) (-5 *3 (-940)) (-5 *4 (-876)) (-4 *1 (-1033)))) (-2607 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1193 *1)) (-5 *3 (-940)) (-4 *1 (-1033)))) (-2111 (*1 *2 *3) (-12 (-5 *3 (-1193 *1)) (-4 *1 (-1033)) (-5 *2 (-656 *1)))) (-2111 (*1 *2 *3) (-12 (-5 *3 (-1193 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) (-2111 (*1 *2 *3) (-12 (-5 *3 (-1193 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) (-2111 (*1 *2 *3) (-12 (-5 *3 (-971 *1)) (-4 *1 (-1033)) (-5 *2 (-656 *1)))) (-2111 (*1 *2 *3) (-12 (-5 *3 (-971 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) (-2111 (*1 *2 *3) (-12 (-5 *3 (-971 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) (-1839 (*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-940)))) (-1839 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1033)))) (-1839 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1033)))) (-3188 (*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-876)))) (-2857 (*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-876)))) (-4166 (*1 *2 *1 *1) (-12 (-4 *1 (-1033)) (-5 *2 (-419 (-576)))))) -(-13 (-148) (-860) (-174) (-374) (-423 (-419 (-576))) (-38 (-576)) (-38 (-419 (-576))) (-1023) (-10 -8 (-15 -4425 ((-3 (-876) "failed") $)) (-15 -3181 ((-3 (-1193 $) "failed") $)) (-15 -4243 ((-3 (-1193 $) "failed") $)) (-15 -2607 ((-3 $ "failed") (-1193 $) (-940) (-876))) (-15 -2607 ((-3 $ "failed") (-1193 $) (-940))) (-15 -2111 ((-656 $) (-1193 $))) (-15 -2111 ((-656 $) (-1193 (-419 (-576))))) (-15 -2111 ((-656 $) (-1193 (-576)))) (-15 -2111 ((-656 $) (-971 $))) (-15 -2111 ((-656 $) (-971 (-419 (-576))))) (-15 -2111 ((-656 $) (-971 (-576)))) (-15 -1839 ($ $ (-940))) (-15 -1839 ($ $)) (-15 -1839 ($ (-419 (-576)))) (-15 -1839 ($ (-576))) (-15 -3188 ($ $ (-876))) (-15 -2857 ($ $ (-876))) (-15 -4166 ((-419 (-576)) $ $)))) +((-1840 (*1 *1 *1) (-4 *1 (-1033))) (-1794 (*1 *2 *1) (|partial| -12 (-4 *1 (-1033)) (-5 *2 (-876)))) (-1865 (*1 *2 *1) (|partial| -12 (-5 *2 (-1193 *1)) (-4 *1 (-1033)))) (-3765 (*1 *2 *1) (|partial| -12 (-5 *2 (-1193 *1)) (-4 *1 (-1033)))) (-2108 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1193 *1)) (-5 *3 (-940)) (-5 *4 (-876)) (-4 *1 (-1033)))) (-2108 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1193 *1)) (-5 *3 (-940)) (-4 *1 (-1033)))) (-4057 (*1 *2 *3) (-12 (-5 *3 (-1193 *1)) (-4 *1 (-1033)) (-5 *2 (-656 *1)))) (-4057 (*1 *2 *3) (-12 (-5 *3 (-1193 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) (-4057 (*1 *2 *3) (-12 (-5 *3 (-1193 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) (-4057 (*1 *2 *3) (-12 (-5 *3 (-971 *1)) (-4 *1 (-1033)) (-5 *2 (-656 *1)))) (-4057 (*1 *2 *3) (-12 (-5 *3 (-971 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) (-4057 (*1 *2 *3) (-12 (-5 *3 (-971 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) (-1840 (*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-940)))) (-1840 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1033)))) (-1840 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1033)))) (-1937 (*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-876)))) (-3887 (*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-876)))) (-4165 (*1 *2 *1 *1) (-12 (-4 *1 (-1033)) (-5 *2 (-419 (-576)))))) +(-13 (-148) (-860) (-174) (-374) (-423 (-419 (-576))) (-38 (-576)) (-38 (-419 (-576))) (-1023) (-10 -8 (-15 -1794 ((-3 (-876) "failed") $)) (-15 -1865 ((-3 (-1193 $) "failed") $)) (-15 -3765 ((-3 (-1193 $) "failed") $)) (-15 -2108 ((-3 $ "failed") (-1193 $) (-940) (-876))) (-15 -2108 ((-3 $ "failed") (-1193 $) (-940))) (-15 -4057 ((-656 $) (-1193 $))) (-15 -4057 ((-656 $) (-1193 (-419 (-576))))) (-15 -4057 ((-656 $) (-1193 (-576)))) (-15 -4057 ((-656 $) (-971 $))) (-15 -4057 ((-656 $) (-971 (-419 (-576))))) (-15 -4057 ((-656 $) (-971 (-576)))) (-15 -1840 ($ $ (-940))) (-15 -1840 ($ $)) (-15 -1840 ($ (-419 (-576)))) (-15 -1840 ($ (-576))) (-15 -1937 ($ $ (-876))) (-15 -3887 ($ $ (-876))) (-15 -4165 ((-419 (-576)) $ $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 #1=(-576)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-423 (-419 (-576))) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 #1#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 #1#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 #1#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-861) . T) ((-864) . T) ((-939) . T) ((-1023) . T) ((-1059 (-419 (-576))) . T) ((-1059 (-576)) |has| (-419 (-576)) (-1059 (-576))) ((-1072 #0#) . T) ((-1072 #1#) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 #1#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T)) -((-3690 (((-2 (|:| |ans| |#2|) (|:| -4250 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -1698 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) -(((-1034 |#1| |#2|) (-10 -7 (-15 -3690 ((-2 (|:| |ans| |#2|) (|:| -4250 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -1698 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-464) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-27) (-442 |#1|))) (T -1034)) -((-3690 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1197)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-656 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1698 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1223) (-27) (-442 *8))) (-4 *8 (-13 (-464) (-148) (-1059 *3) (-651 *3))) (-5 *3 (-576)) (-5 *2 (-2 (|:| |ans| *4) (|:| -4250 *4) (|:| |sol?| (-112)))) (-5 *1 (-1034 *8 *4))))) -(-10 -7 (-15 -3690 ((-2 (|:| |ans| |#2|) (|:| -4250 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -1698 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3289 (((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -1698 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) -(((-1035 |#1| |#2|) (-10 -7 (-15 -3289 ((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -1698 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-464) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-27) (-442 |#1|))) (T -1035)) -((-3289 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1197)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-656 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1698 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1223) (-27) (-442 *8))) (-4 *8 (-13 (-464) (-148) (-1059 *3) (-651 *3))) (-5 *3 (-576)) (-5 *2 (-656 *4)) (-5 *1 (-1035 *8 *4))))) -(-10 -7 (-15 -3289 ((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -1698 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-2456 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4027 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)) 38)) (-1473 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -2741 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 69)) (-2180 (((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|)) 74))) -(((-1036 |#1| |#2|) (-10 -7 (-15 -1473 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -2741 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2180 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|))) (-15 -2456 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4027 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)))) (-13 (-374) (-148) (-1059 (-576))) (-1264 |#1|)) (T -1036)) -((-2456 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1264 *6)) (-4 *6 (-13 (-374) (-148) (-1059 *4))) (-5 *4 (-576)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -4027 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1036 *6 *3)))) (-2180 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1036 *4 *5)) (-5 *3 (-419 *5)))) (-1473 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) (|:| -2741 *6))) (-5 *1 (-1036 *5 *6)) (-5 *3 (-419 *6))))) -(-10 -7 (-15 -1473 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -2741 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2180 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|))) (-15 -2456 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4027 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)))) -((-1329 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -2741 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 22)) (-1370 (((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)) 34))) -(((-1037 |#1| |#2|) (-10 -7 (-15 -1329 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -2741 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -1370 ((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)))) (-13 (-374) (-148) (-1059 (-576))) (-1264 |#1|)) (T -1037)) -((-1370 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) (-4 *5 (-1264 *4)) (-5 *2 (-656 (-419 *5))) (-5 *1 (-1037 *4 *5)) (-5 *3 (-419 *5)))) (-1329 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -2741 *6))) (-5 *1 (-1037 *5 *6)) (-5 *3 (-419 *6))))) -(-10 -7 (-15 -1329 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -2741 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -1370 ((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)))) -((-3456 (((-1 |#1|) (-656 (-2 (|:| -3106 |#1|) (|:| -1920 (-576))))) 34)) (-4334 (((-1 |#1|) (-1123 |#1|)) 42)) (-2543 (((-1 |#1|) (-1288 |#1|) (-1288 (-576)) (-576)) 31))) -(((-1038 |#1|) (-10 -7 (-15 -4334 ((-1 |#1|) (-1123 |#1|))) (-15 -3456 ((-1 |#1|) (-656 (-2 (|:| -3106 |#1|) (|:| -1920 (-576)))))) (-15 -2543 ((-1 |#1|) (-1288 |#1|) (-1288 (-576)) (-576)))) (-1121)) (T -1038)) -((-2543 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1288 *6)) (-5 *4 (-1288 (-576))) (-5 *5 (-576)) (-4 *6 (-1121)) (-5 *2 (-1 *6)) (-5 *1 (-1038 *6)))) (-3456 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -3106 *4) (|:| -1920 (-576))))) (-4 *4 (-1121)) (-5 *2 (-1 *4)) (-5 *1 (-1038 *4)))) (-4334 (*1 *2 *3) (-12 (-5 *3 (-1123 *4)) (-4 *4 (-1121)) (-5 *2 (-1 *4)) (-5 *1 (-1038 *4))))) -(-10 -7 (-15 -4334 ((-1 |#1|) (-1123 |#1|))) (-15 -3456 ((-1 |#1|) (-656 (-2 (|:| -3106 |#1|) (|:| -1920 (-576)))))) (-15 -2543 ((-1 |#1|) (-1288 |#1|) (-1288 (-576)) (-576)))) -((-3917 (((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-1039 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3917 ((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-374) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-13 (-379) (-374))) (T -1039)) -((-3917 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-347 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-374)) (-4 *7 (-1264 *6)) (-4 *4 (-1264 (-419 *7))) (-4 *8 (-353 *6 *7 *4)) (-4 *9 (-13 (-379) (-374))) (-5 *2 (-783)) (-5 *1 (-1039 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -3917 ((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-3489 (((-112) $ $) NIL)) (-1777 (((-1156) $) 9)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2641 (((-1156) $) 11)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-1040) (-13 (-1104) (-10 -8 (-15 -1777 ((-1156) $)) (-15 -2641 ((-1156) $))))) (T -1040)) -((-1777 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1040)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1040))))) -(-13 (-1104) (-10 -8 (-15 -1777 ((-1156) $)) (-15 -2641 ((-1156) $)))) -((-3823 (((-3 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) "failed") |#1| (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) 32) (((-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) |#1| (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) (-419 (-576))) 29)) (-4346 (((-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) |#1| (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) (-419 (-576))) 34) (((-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) |#1| (-419 (-576))) 30) (((-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) |#1| (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) 33) (((-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) |#1|) 28)) (-3327 (((-656 (-419 (-576))) (-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))))) 20)) (-2338 (((-419 (-576)) (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) 17))) -(((-1041 |#1|) (-10 -7 (-15 -4346 ((-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) |#1|)) (-15 -4346 ((-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) |#1| (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))))) (-15 -4346 ((-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -4346 ((-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) |#1| (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) (-419 (-576)))) (-15 -3823 ((-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) |#1| (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) (-419 (-576)))) (-15 -3823 ((-3 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) "failed") |#1| (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))))) (-15 -2338 ((-419 (-576)) (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))))) (-15 -3327 ((-656 (-419 (-576))) (-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))))))) (-1264 (-576))) (T -1041)) -((-3327 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))))) (-5 *2 (-656 (-419 (-576)))) (-5 *1 (-1041 *4)) (-4 *4 (-1264 (-576))))) (-2338 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) (-5 *2 (-419 (-576))) (-5 *1 (-1041 *4)) (-4 *4 (-1264 (-576))))) (-3823 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))))) (-3823 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) (-5 *4 (-419 (-576))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))))) (-4346 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -4240 *5) (|:| -4250 *5)))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))) (-5 *4 (-2 (|:| -4240 *5) (|:| -4250 *5))))) (-4346 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))) (-5 *4 (-419 (-576))))) (-4346 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))) (-5 *4 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))))) (-4346 (*1 *2 *3) (-12 (-5 *2 (-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576)))))) -(-10 -7 (-15 -4346 ((-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) |#1|)) (-15 -4346 ((-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) |#1| (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))))) (-15 -4346 ((-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -4346 ((-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) |#1| (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) (-419 (-576)))) (-15 -3823 ((-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) |#1| (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) (-419 (-576)))) (-15 -3823 ((-3 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) "failed") |#1| (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))))) (-15 -2338 ((-419 (-576)) (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))))) (-15 -3327 ((-656 (-419 (-576))) (-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))))))) -((-3823 (((-3 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) "failed") |#1| (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) 35) (((-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) |#1| (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) (-419 (-576))) 32)) (-4346 (((-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) |#1| (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) (-419 (-576))) 30) (((-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) |#1| (-419 (-576))) 26) (((-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) |#1| (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) 28) (((-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) |#1|) 24))) -(((-1042 |#1|) (-10 -7 (-15 -4346 ((-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) |#1|)) (-15 -4346 ((-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) |#1| (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))))) (-15 -4346 ((-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -4346 ((-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) |#1| (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) (-419 (-576)))) (-15 -3823 ((-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) |#1| (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) (-419 (-576)))) (-15 -3823 ((-3 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) "failed") |#1| (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))))) (-1264 (-419 (-576)))) (T -1042)) -((-3823 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-419 (-576)))))) (-3823 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) (-5 *4 (-419 (-576))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 *4)))) (-4346 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -4240 *5) (|:| -4250 *5)))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 *5)) (-5 *4 (-2 (|:| -4240 *5) (|:| -4250 *5))))) (-4346 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -4240 *4) (|:| -4250 *4)))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 *4)))) (-4346 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-419 (-576)))) (-5 *4 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))))) (-4346 (*1 *2 *3) (-12 (-5 *2 (-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-419 (-576))))))) -(-10 -7 (-15 -4346 ((-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) |#1|)) (-15 -4346 ((-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) |#1| (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))))) (-15 -4346 ((-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -4346 ((-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) |#1| (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) (-419 (-576)))) (-15 -3823 ((-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) |#1| (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) (-419 (-576)))) (-15 -3823 ((-3 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) "failed") |#1| (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))) (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))))) -((-4172 (((-227) $) 6) (((-390) $) 9))) +((-3243 (((-2 (|:| |ans| |#2|) (|:| -4249 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -2451 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) +(((-1034 |#1| |#2|) (-10 -7 (-15 -3243 ((-2 (|:| |ans| |#2|) (|:| -4249 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -2451 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-464) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-27) (-442 |#1|))) (T -1034)) +((-3243 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1197)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-656 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2451 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1223) (-27) (-442 *8))) (-4 *8 (-13 (-464) (-148) (-1059 *3) (-651 *3))) (-5 *3 (-576)) (-5 *2 (-2 (|:| |ans| *4) (|:| -4249 *4) (|:| |sol?| (-112)))) (-5 *1 (-1034 *8 *4))))) +(-10 -7 (-15 -3243 ((-2 (|:| |ans| |#2|) (|:| -4249 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -2451 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3700 (((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -2451 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) +(((-1035 |#1| |#2|) (-10 -7 (-15 -3700 ((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -2451 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-464) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-27) (-442 |#1|))) (T -1035)) +((-3700 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1197)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-656 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2451 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1223) (-27) (-442 *8))) (-4 *8 (-13 (-464) (-148) (-1059 *3) (-651 *3))) (-5 *3 (-576)) (-5 *2 (-656 *4)) (-5 *1 (-1035 *8 *4))))) +(-10 -7 (-15 -3700 ((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -2451 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-4361 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4026 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)) 38)) (-3977 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -2739 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 69)) (-3413 (((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|)) 74))) +(((-1036 |#1| |#2|) (-10 -7 (-15 -3977 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -2739 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3413 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|))) (-15 -4361 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4026 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)))) (-13 (-374) (-148) (-1059 (-576))) (-1264 |#1|)) (T -1036)) +((-4361 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1264 *6)) (-4 *6 (-13 (-374) (-148) (-1059 *4))) (-5 *4 (-576)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -4026 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1036 *6 *3)))) (-3413 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1036 *4 *5)) (-5 *3 (-419 *5)))) (-3977 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) (|:| -2739 *6))) (-5 *1 (-1036 *5 *6)) (-5 *3 (-419 *6))))) +(-10 -7 (-15 -3977 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -2739 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3413 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|))) (-15 -4361 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4026 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)))) +((-2869 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -2739 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 22)) (-3871 (((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)) 34))) +(((-1037 |#1| |#2|) (-10 -7 (-15 -2869 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -2739 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3871 ((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)))) (-13 (-374) (-148) (-1059 (-576))) (-1264 |#1|)) (T -1037)) +((-3871 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) (-4 *5 (-1264 *4)) (-5 *2 (-656 (-419 *5))) (-5 *1 (-1037 *4 *5)) (-5 *3 (-419 *5)))) (-2869 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -2739 *6))) (-5 *1 (-1037 *5 *6)) (-5 *3 (-419 *6))))) +(-10 -7 (-15 -2869 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -2739 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3871 ((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)))) +((-1612 (((-1 |#1|) (-656 (-2 (|:| -3104 |#1|) (|:| -2791 (-576))))) 34)) (-3380 (((-1 |#1|) (-1123 |#1|)) 42)) (-2742 (((-1 |#1|) (-1288 |#1|) (-1288 (-576)) (-576)) 31))) +(((-1038 |#1|) (-10 -7 (-15 -3380 ((-1 |#1|) (-1123 |#1|))) (-15 -1612 ((-1 |#1|) (-656 (-2 (|:| -3104 |#1|) (|:| -2791 (-576)))))) (-15 -2742 ((-1 |#1|) (-1288 |#1|) (-1288 (-576)) (-576)))) (-1121)) (T -1038)) +((-2742 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1288 *6)) (-5 *4 (-1288 (-576))) (-5 *5 (-576)) (-4 *6 (-1121)) (-5 *2 (-1 *6)) (-5 *1 (-1038 *6)))) (-1612 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -3104 *4) (|:| -2791 (-576))))) (-4 *4 (-1121)) (-5 *2 (-1 *4)) (-5 *1 (-1038 *4)))) (-3380 (*1 *2 *3) (-12 (-5 *3 (-1123 *4)) (-4 *4 (-1121)) (-5 *2 (-1 *4)) (-5 *1 (-1038 *4))))) +(-10 -7 (-15 -3380 ((-1 |#1|) (-1123 |#1|))) (-15 -1612 ((-1 |#1|) (-656 (-2 (|:| -3104 |#1|) (|:| -2791 (-576)))))) (-15 -2742 ((-1 |#1|) (-1288 |#1|) (-1288 (-576)) (-576)))) +((-3726 (((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-1039 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3726 ((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-374) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-13 (-379) (-374))) (T -1039)) +((-3726 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-347 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-374)) (-4 *7 (-1264 *6)) (-4 *4 (-1264 (-419 *7))) (-4 *8 (-353 *6 *7 *4)) (-4 *9 (-13 (-379) (-374))) (-5 *2 (-783)) (-5 *1 (-1039 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -3726 ((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-3488 (((-112) $ $) NIL)) (-1776 (((-1156) $) 9)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2640 (((-1156) $) 11)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-1040) (-13 (-1104) (-10 -8 (-15 -1776 ((-1156) $)) (-15 -2640 ((-1156) $))))) (T -1040)) +((-1776 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1040)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1040))))) +(-13 (-1104) (-10 -8 (-15 -1776 ((-1156) $)) (-15 -2640 ((-1156) $)))) +((-4092 (((-3 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) "failed") |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) 32) (((-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-419 (-576))) 29)) (-2216 (((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-419 (-576))) 34) (((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-419 (-576))) 30) (((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) 33) (((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1|) 28)) (-2787 (((-656 (-419 (-576))) (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) 20)) (-2497 (((-419 (-576)) (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) 17))) +(((-1041 |#1|) (-10 -7 (-15 -2216 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1|)) (-15 -2216 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-15 -2216 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -2216 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-419 (-576)))) (-15 -4092 ((-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-419 (-576)))) (-15 -4092 ((-3 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) "failed") |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-15 -2497 ((-419 (-576)) (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-15 -2787 ((-656 (-419 (-576))) (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))))) (-1264 (-576))) (T -1041)) +((-2787 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-5 *2 (-656 (-419 (-576)))) (-5 *1 (-1041 *4)) (-4 *4 (-1264 (-576))))) (-2497 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) (-5 *2 (-419 (-576))) (-5 *1 (-1041 *4)) (-4 *4 (-1264 (-576))))) (-4092 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))))) (-4092 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) (-5 *4 (-419 (-576))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))))) (-2216 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -4239 *5) (|:| -4249 *5)))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))) (-5 *4 (-2 (|:| -4239 *5) (|:| -4249 *5))))) (-2216 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))) (-5 *4 (-419 (-576))))) (-2216 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))) (-5 *4 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))))) (-2216 (*1 *2 *3) (-12 (-5 *2 (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576)))))) +(-10 -7 (-15 -2216 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1|)) (-15 -2216 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-15 -2216 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -2216 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-419 (-576)))) (-15 -4092 ((-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-419 (-576)))) (-15 -4092 ((-3 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) "failed") |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-15 -2497 ((-419 (-576)) (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-15 -2787 ((-656 (-419 (-576))) (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))))) +((-4092 (((-3 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) "failed") |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) 35) (((-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-419 (-576))) 32)) (-2216 (((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-419 (-576))) 30) (((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-419 (-576))) 26) (((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) 28) (((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1|) 24))) +(((-1042 |#1|) (-10 -7 (-15 -2216 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1|)) (-15 -2216 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-15 -2216 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -2216 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-419 (-576)))) (-15 -4092 ((-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-419 (-576)))) (-15 -4092 ((-3 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) "failed") |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))))) (-1264 (-419 (-576)))) (T -1042)) +((-4092 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-419 (-576)))))) (-4092 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) (-5 *4 (-419 (-576))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 *4)))) (-2216 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -4239 *5) (|:| -4249 *5)))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 *5)) (-5 *4 (-2 (|:| -4239 *5) (|:| -4249 *5))))) (-2216 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -4239 *4) (|:| -4249 *4)))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 *4)))) (-2216 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-419 (-576)))) (-5 *4 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))))) (-2216 (*1 *2 *3) (-12 (-5 *2 (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-419 (-576))))))) +(-10 -7 (-15 -2216 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1|)) (-15 -2216 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) (-15 -2216 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -2216 ((-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-419 (-576)))) (-15 -4092 ((-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-419 (-576)))) (-15 -4092 ((-3 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) "failed") |#1| (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))) (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))))) +((-4171 (((-227) $) 6) (((-390) $) 9))) (((-1043) (-141)) (T -1043)) NIL (-13 (-626 (-227)) (-626 (-390))) (((-626 (-227)) . T) ((-626 (-390)) . T)) -((-2767 (((-656 (-390)) (-971 (-576)) (-390)) 28) (((-656 (-390)) (-971 (-419 (-576))) (-390)) 27)) (-3645 (((-656 (-656 (-390))) (-656 (-971 (-576))) (-656 (-1197)) (-390)) 37))) -(((-1044) (-10 -7 (-15 -2767 ((-656 (-390)) (-971 (-419 (-576))) (-390))) (-15 -2767 ((-656 (-390)) (-971 (-576)) (-390))) (-15 -3645 ((-656 (-656 (-390))) (-656 (-971 (-576))) (-656 (-1197)) (-390))))) (T -1044)) -((-3645 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-656 (-1197))) (-5 *2 (-656 (-656 (-390)))) (-5 *1 (-1044)) (-5 *5 (-390)))) (-2767 (*1 *2 *3 *4) (-12 (-5 *3 (-971 (-576))) (-5 *2 (-656 (-390))) (-5 *1 (-1044)) (-5 *4 (-390)))) (-2767 (*1 *2 *3 *4) (-12 (-5 *3 (-971 (-419 (-576)))) (-5 *2 (-656 (-390))) (-5 *1 (-1044)) (-5 *4 (-390))))) -(-10 -7 (-15 -2767 ((-656 (-390)) (-971 (-419 (-576))) (-390))) (-15 -2767 ((-656 (-390)) (-971 (-576)) (-390))) (-15 -3645 ((-656 (-656 (-390))) (-656 (-971 (-576))) (-656 (-1197)) (-390)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 75)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-1839 (($ $) NIL) (($ $ (-940)) NIL) (($ (-419 (-576))) NIL) (($ (-576)) NIL)) (-4016 (((-112) $ $) NIL)) (-3308 (((-576) $) 70)) (-3886 (($) NIL T CONST)) (-2607 (((-3 $ "failed") (-1193 $) (-940) (-876)) NIL) (((-3 $ "failed") (-1193 $) (-940)) 55)) (-1572 (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 (-576)) (-1059 (-419 (-576))))) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-576) "failed") $) NIL (-2760 (|has| (-419 (-576)) (-1059 (-576))) (|has| |#1| (-1059 (-576)))))) (-2860 (((-419 (-576)) $) 17 (|has| (-419 (-576)) (-1059 (-419 (-576))))) (((-419 (-576)) $) 17) ((|#1| $) 117) (((-576) $) NIL (-2760 (|has| (-419 (-576)) (-1059 (-576))) (|has| |#1| (-1059 (-576)))))) (-3188 (($ $ (-876)) 47)) (-2857 (($ $ (-876)) 48)) (-3429 (($ $ $) NIL)) (-3111 (((-419 (-576)) $ $) 21)) (-1561 (((-3 $ "failed") $) 88)) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-4249 (((-112) $) NIL)) (-2087 (((-112) $) 66)) (-4193 (((-112) $) NIL)) (-2121 (($ $ (-576)) NIL)) (-1634 (((-112) $) 69)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3125 (($ $ $) NIL)) (-3133 (($ $ $) NIL)) (-4243 (((-3 (-1193 $) "failed") $) 83)) (-4425 (((-3 (-876) "failed") $) 82)) (-3181 (((-3 (-1193 $) "failed") $) 80)) (-2140 (((-3 (-1082 $ (-1193 $)) "failed") $) 78)) (-3458 (($ (-656 $)) NIL) (($ $ $) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) 89)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1828 (((-430 $) $) NIL)) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1967 (((-783) $) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-3570 (((-876) $) 87) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ $) 63) (($ (-419 (-576))) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 119)) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL)) (-4166 (((-419 (-576)) $ $) 27)) (-2111 (((-656 $) (-1193 $)) 61) (((-656 $) (-1193 (-419 (-576)))) NIL) (((-656 $) (-1193 (-576))) NIL) (((-656 $) (-971 $)) NIL) (((-656 $) (-971 (-419 (-576)))) NIL) (((-656 $) (-971 (-576))) NIL)) (-4218 (($ (-1082 $ (-1193 $)) (-876)) 46)) (-2122 (($ $) 22)) (-2721 (($) 32 T CONST)) (-2732 (($) 39 T CONST)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 76)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) 24)) (-3057 (($ $ $) 37)) (-3044 (($ $) 38) (($ $ $) 74)) (-3030 (($ $ $) 112)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 98) (($ $ $) 104) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ (-576) $) 98) (($ $ (-576)) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1045 |#1|) (-13 (-1033) (-423 |#1|) (-38 |#1|) (-10 -8 (-15 -4218 ($ (-1082 $ (-1193 $)) (-876))) (-15 -2140 ((-3 (-1082 $ (-1193 $)) "failed") $)) (-15 -3111 ((-419 (-576)) $ $)))) (-13 (-860) (-374) (-1043))) (T -1045)) -((-4218 (*1 *1 *2 *3) (-12 (-5 *2 (-1082 (-1045 *4) (-1193 (-1045 *4)))) (-5 *3 (-876)) (-5 *1 (-1045 *4)) (-4 *4 (-13 (-860) (-374) (-1043))))) (-2140 (*1 *2 *1) (|partial| -12 (-5 *2 (-1082 (-1045 *3) (-1193 (-1045 *3)))) (-5 *1 (-1045 *3)) (-4 *3 (-13 (-860) (-374) (-1043))))) (-3111 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1045 *3)) (-4 *3 (-13 (-860) (-374) (-1043)))))) -(-13 (-1033) (-423 |#1|) (-38 |#1|) (-10 -8 (-15 -4218 ($ (-1082 $ (-1193 $)) (-876))) (-15 -2140 ((-3 (-1082 $ (-1193 $)) "failed") $)) (-15 -3111 ((-419 (-576)) $ $)))) -((-1761 (((-2 (|:| -4027 |#2|) (|:| -1757 (-656 |#1|))) |#2| (-656 |#1|)) 32) ((|#2| |#2| |#1|) 27))) -(((-1046 |#1| |#2|) (-10 -7 (-15 -1761 (|#2| |#2| |#1|)) (-15 -1761 ((-2 (|:| -4027 |#2|) (|:| -1757 (-656 |#1|))) |#2| (-656 |#1|)))) (-374) (-668 |#1|)) (T -1046)) -((-1761 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| -4027 *3) (|:| -1757 (-656 *5)))) (-5 *1 (-1046 *5 *3)) (-5 *4 (-656 *5)) (-4 *3 (-668 *5)))) (-1761 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-1046 *3 *2)) (-4 *2 (-668 *3))))) -(-10 -7 (-15 -1761 (|#2| |#2| |#1|)) (-15 -1761 ((-2 (|:| -4027 |#2|) (|:| -1757 (-656 |#1|))) |#2| (-656 |#1|)))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2537 ((|#1| $ |#1|) 14)) (-3756 ((|#1| $ |#1|) 12)) (-2146 (($ |#1|) 10)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-2797 ((|#1| $) 11)) (-2067 ((|#1| $) 13)) (-3570 (((-876) $) 21 (|has| |#1| (-1121)))) (-4055 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2925 (((-112) $ $) 9))) -(((-1047 |#1|) (-13 (-1238) (-10 -8 (-15 -2146 ($ |#1|)) (-15 -2797 (|#1| $)) (-15 -3756 (|#1| $ |#1|)) (-15 -2067 (|#1| $)) (-15 -2537 (|#1| $ |#1|)) (-15 -2925 ((-112) $ $)) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|))) (-1238)) (T -1047)) -((-2146 (*1 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) (-2797 (*1 *2 *1) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) (-3756 (*1 *2 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) (-2067 (*1 *2 *1) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) (-2537 (*1 *2 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) (-2925 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1047 *3)) (-4 *3 (-1238))))) -(-13 (-1238) (-10 -8 (-15 -2146 ($ |#1|)) (-15 -2797 (|#1| $)) (-15 -3756 (|#1| $ |#1|)) (-15 -2067 (|#1| $)) (-15 -2537 (|#1| $ |#1|)) (-15 -2925 ((-112) $ $)) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|))) -((-3489 (((-112) $ $) NIL)) (-1788 (((-656 (-2 (|:| -1958 $) (|:| -3257 (-656 |#4|)))) (-656 |#4|)) NIL)) (-3603 (((-656 $) (-656 |#4|)) 118) (((-656 $) (-656 |#4|) (-112)) 119) (((-656 $) (-656 |#4|) (-112) (-112)) 117) (((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112)) 120)) (-1969 (((-656 |#3|) $) NIL)) (-1807 (((-112) $) NIL)) (-4026 (((-112) $) NIL (|has| |#1| (-568)))) (-1613 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1377 ((|#4| |#4| $) NIL)) (-2487 (((-656 (-2 (|:| |val| |#4|) (|:| -3988 $))) |#4| $) 112)) (-1795 (((-2 (|:| |under| $) (|:| -2443 $) (|:| |upper| $)) $ |#3|) NIL)) (-1808 (((-112) $ (-783)) NIL)) (-1974 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465))) (((-3 |#4| "failed") $ |#3|) 66)) (-3886 (($) NIL T CONST)) (-3713 (((-112) $) 29 (|has| |#1| (-568)))) (-2813 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3812 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1884 (((-112) $) NIL (|has| |#1| (-568)))) (-3388 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2311 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-4376 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2860 (($ (-656 |#4|)) NIL)) (-3593 (((-3 $ "failed") $) 45)) (-3994 ((|#4| |#4| $) 69)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121))))) (-3946 (($ |#4| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465)))) (-3624 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-568)))) (-3439 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2737 ((|#4| |#4| $) NIL)) (-3686 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4465))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4465))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4405 (((-2 (|:| -1958 (-656 |#4|)) (|:| -3257 (-656 |#4|))) $) NIL)) (-4148 (((-112) |#4| $) NIL)) (-3773 (((-112) |#4| $) NIL)) (-4441 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2155 (((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112)) 133)) (-3966 (((-656 |#4|) $) 18 (|has| $ (-6 -4465)))) (-3186 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2620 ((|#3| $) 38)) (-3870 (((-112) $ (-783)) NIL)) (-2014 (((-656 |#4|) $) 19 (|has| $ (-6 -4465)))) (-1612 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121))))) (-4323 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#4| |#4|) $) 23)) (-2234 (((-656 |#3|) $) NIL)) (-2106 (((-112) |#3| $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL)) (-2166 (((-3 |#4| (-656 $)) |#4| |#4| $) NIL)) (-1540 (((-656 (-2 (|:| |val| |#4|) (|:| -3988 $))) |#4| |#4| $) 110)) (-3969 (((-3 |#4| "failed") $) 42)) (-1471 (((-656 $) |#4| $) 93)) (-3179 (((-3 (-112) (-656 $)) |#4| $) NIL)) (-3787 (((-656 (-2 (|:| |val| (-112)) (|:| -3988 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-3285 (((-656 $) |#4| $) 115) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 116) (((-656 $) |#4| (-656 $)) NIL)) (-2913 (((-656 $) (-656 |#4|) (-112) (-112) (-112)) 128)) (-2008 (($ |#4| $) 82) (($ (-656 |#4|) $) 83) (((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-4275 (((-656 |#4|) $) NIL)) (-1603 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3909 ((|#4| |#4| $) NIL)) (-1438 (((-112) $ $) NIL)) (-2280 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3579 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1522 ((|#4| |#4| $) NIL)) (-1450 (((-1141) $) NIL)) (-3581 (((-3 |#4| "failed") $) 40)) (-1541 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3384 (((-3 $ "failed") $ |#4|) 59)) (-1749 (($ $ |#4|) NIL) (((-656 $) |#4| $) 95) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 89)) (-4320 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) 17)) (-4225 (($) 14)) (-3634 (((-783) $) NIL)) (-1460 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) 13)) (-4172 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-3582 (($ (-656 |#4|)) 22)) (-3118 (($ $ |#3|) 52)) (-2637 (($ $ |#3|) 54)) (-1584 (($ $) NIL)) (-3317 (($ $ |#3|) NIL)) (-3570 (((-876) $) 35) (((-656 |#4|) $) 46)) (-3891 (((-783) $) NIL (|has| |#3| (-379)))) (-4055 (((-112) $ $) NIL)) (-3765 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2833 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-3298 (((-656 $) |#4| $) 92) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) NIL)) (-3321 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465)))) (-1583 (((-656 |#3|) $) NIL)) (-2392 (((-112) |#4| $) NIL)) (-3419 (((-112) |#3| $) 65)) (-2925 (((-112) $ $) NIL)) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-1048 |#1| |#2| |#3| |#4|) (-13 (-1092 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2008 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3603 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -3603 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -2913 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -2155 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|)) (T -1048)) -((-2008 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1048 *5 *6 *7 *3))) (-5 *1 (-1048 *5 *6 *7 *3)) (-4 *3 (-1086 *5 *6 *7)))) (-3603 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) (-3603 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) (-2913 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) (-2155 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-656 *8)) (|:| |towers| (-656 (-1048 *5 *6 *7 *8))))) (-5 *1 (-1048 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) -(-13 (-1092 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2008 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3603 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -3603 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -2913 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -2155 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) -((-3694 (((-656 (-701 |#1|)) (-656 (-701 |#1|))) 70) (((-701 |#1|) (-701 |#1|)) 69) (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|))) 68) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 65)) (-4153 (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-940)) 63) (((-701 |#1|) (-701 |#1|) (-940)) 62)) (-1667 (((-656 (-701 (-576))) (-656 (-656 (-576)))) 81) (((-656 (-701 (-576))) (-656 (-924 (-576))) (-576)) 80) (((-701 (-576)) (-656 (-576))) 77) (((-701 (-576)) (-924 (-576)) (-576)) 75)) (-3193 (((-701 (-971 |#1|)) (-783)) 95)) (-3233 (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-940)) 49 (|has| |#1| (-6 (-4467 "*")))) (((-701 |#1|) (-701 |#1|) (-940)) 47 (|has| |#1| (-6 (-4467 "*")))))) -(((-1049 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4467 "*"))) (-15 -3233 ((-701 |#1|) (-701 |#1|) (-940))) |%noBranch|) (IF (|has| |#1| (-6 (-4467 "*"))) (-15 -3233 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-940))) |%noBranch|) (-15 -3193 ((-701 (-971 |#1|)) (-783))) (-15 -4153 ((-701 |#1|) (-701 |#1|) (-940))) (-15 -4153 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-940))) (-15 -3694 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3694 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -3694 ((-701 |#1|) (-701 |#1|))) (-15 -3694 ((-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -1667 ((-701 (-576)) (-924 (-576)) (-576))) (-15 -1667 ((-701 (-576)) (-656 (-576)))) (-15 -1667 ((-656 (-701 (-576))) (-656 (-924 (-576))) (-576))) (-15 -1667 ((-656 (-701 (-576))) (-656 (-656 (-576)))))) (-1070)) (T -1049)) -((-1667 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-576)))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-1049 *4)) (-4 *4 (-1070)))) (-1667 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-924 (-576)))) (-5 *4 (-576)) (-5 *2 (-656 (-701 *4))) (-5 *1 (-1049 *5)) (-4 *5 (-1070)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1049 *4)) (-4 *4 (-1070)))) (-1667 (*1 *2 *3 *4) (-12 (-5 *3 (-924 (-576))) (-5 *4 (-576)) (-5 *2 (-701 *4)) (-5 *1 (-1049 *5)) (-4 *5 (-1070)))) (-3694 (*1 *2 *2) (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) (-3694 (*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) (-3694 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) (-3694 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) (-4153 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-940)) (-4 *4 (-1070)) (-5 *1 (-1049 *4)))) (-4153 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-940)) (-4 *4 (-1070)) (-5 *1 (-1049 *4)))) (-3193 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-701 (-971 *4))) (-5 *1 (-1049 *4)) (-4 *4 (-1070)))) (-3233 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-940)) (|has| *4 (-6 (-4467 "*"))) (-4 *4 (-1070)) (-5 *1 (-1049 *4)))) (-3233 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-940)) (|has| *4 (-6 (-4467 "*"))) (-4 *4 (-1070)) (-5 *1 (-1049 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4467 "*"))) (-15 -3233 ((-701 |#1|) (-701 |#1|) (-940))) |%noBranch|) (IF (|has| |#1| (-6 (-4467 "*"))) (-15 -3233 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-940))) |%noBranch|) (-15 -3193 ((-701 (-971 |#1|)) (-783))) (-15 -4153 ((-701 |#1|) (-701 |#1|) (-940))) (-15 -4153 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-940))) (-15 -3694 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3694 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -3694 ((-701 |#1|) (-701 |#1|))) (-15 -3694 ((-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -1667 ((-701 (-576)) (-924 (-576)) (-576))) (-15 -1667 ((-701 (-576)) (-656 (-576)))) (-15 -1667 ((-656 (-701 (-576))) (-656 (-924 (-576))) (-576))) (-15 -1667 ((-656 (-701 (-576))) (-656 (-656 (-576)))))) -((-2102 (((-701 |#1|) (-656 (-701 |#1|)) (-1288 |#1|)) 70 (|has| |#1| (-317)))) (-2488 (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1288 (-1288 |#1|))) 110 (|has| |#1| (-374))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1288 |#1|)) 117 (|has| |#1| (-374)))) (-1503 (((-1288 |#1|) (-656 (-1288 |#1|)) (-576)) 135 (-12 (|has| |#1| (-374)) (|has| |#1| (-379))))) (-4079 (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-940)) 123 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112)) 122 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|))) 121 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576)) 120 (-12 (|has| |#1| (-374)) (|has| |#1| (-379))))) (-1431 (((-112) (-656 (-701 |#1|))) 103 (|has| |#1| (-374))) (((-112) (-656 (-701 |#1|)) (-576)) 106 (|has| |#1| (-374)))) (-2783 (((-1288 (-1288 |#1|)) (-656 (-701 |#1|)) (-1288 |#1|)) 67 (|has| |#1| (-317)))) (-2332 (((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|)) 47)) (-3383 (((-701 |#1|) (-1288 (-1288 |#1|))) 40)) (-2249 (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576)) 94 (|has| |#1| (-374))) (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|))) 93 (|has| |#1| (-374))) (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576)) 101 (|has| |#1| (-374))))) -(((-1050 |#1|) (-10 -7 (-15 -3383 ((-701 |#1|) (-1288 (-1288 |#1|)))) (-15 -2332 ((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-317)) (PROGN (-15 -2783 ((-1288 (-1288 |#1|)) (-656 (-701 |#1|)) (-1288 |#1|))) (-15 -2102 ((-701 |#1|) (-656 (-701 |#1|)) (-1288 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2249 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576))) (-15 -2249 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2249 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576))) (-15 -1431 ((-112) (-656 (-701 |#1|)) (-576))) (-15 -1431 ((-112) (-656 (-701 |#1|)))) (-15 -2488 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1288 |#1|))) (-15 -2488 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1288 (-1288 |#1|))))) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#1| (-374)) (PROGN (-15 -4079 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576))) (-15 -4079 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)))) (-15 -4079 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112))) (-15 -4079 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-940))) (-15 -1503 ((-1288 |#1|) (-656 (-1288 |#1|)) (-576)))) |%noBranch|) |%noBranch|)) (-1070)) (T -1050)) -((-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1288 *5))) (-5 *4 (-576)) (-5 *2 (-1288 *5)) (-5 *1 (-1050 *5)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1070)))) (-4079 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1070)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) (-5 *3 (-656 (-701 *5))))) (-4079 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1070)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) (-5 *3 (-656 (-701 *5))))) (-4079 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *4 (-379)) (-4 *4 (-1070)) (-5 *2 (-656 (-656 (-701 *4)))) (-5 *1 (-1050 *4)) (-5 *3 (-656 (-701 *4))))) (-4079 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-576)) (-4 *6 (-374)) (-4 *6 (-379)) (-4 *6 (-1070)) (-5 *2 (-656 (-656 (-701 *6)))) (-5 *1 (-1050 *6)) (-5 *3 (-656 (-701 *6))))) (-2488 (*1 *2 *3 *4) (-12 (-5 *4 (-1288 (-1288 *5))) (-4 *5 (-374)) (-4 *5 (-1070)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) (-5 *3 (-656 (-701 *5))))) (-2488 (*1 *2 *3 *4) (-12 (-5 *4 (-1288 *5)) (-4 *5 (-374)) (-4 *5 (-1070)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) (-5 *3 (-656 (-701 *5))))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-4 *4 (-1070)) (-5 *2 (-112)) (-5 *1 (-1050 *4)))) (-1431 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-4 *5 (-374)) (-4 *5 (-1070)) (-5 *2 (-112)) (-5 *1 (-1050 *5)))) (-2249 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-5 *2 (-701 *5)) (-5 *1 (-1050 *5)) (-4 *5 (-374)) (-4 *5 (-1070)))) (-2249 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-5 *1 (-1050 *4)) (-4 *4 (-374)) (-4 *4 (-1070)))) (-2249 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-656 (-701 *6))) (-5 *4 (-112)) (-5 *5 (-576)) (-5 *2 (-701 *6)) (-5 *1 (-1050 *6)) (-4 *6 (-374)) (-4 *6 (-1070)))) (-2102 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-1288 *5)) (-4 *5 (-317)) (-4 *5 (-1070)) (-5 *2 (-701 *5)) (-5 *1 (-1050 *5)))) (-2783 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-4 *5 (-317)) (-4 *5 (-1070)) (-5 *2 (-1288 (-1288 *5))) (-5 *1 (-1050 *5)) (-5 *4 (-1288 *5)))) (-2332 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-4 *4 (-1070)) (-5 *1 (-1050 *4)))) (-3383 (*1 *2 *3) (-12 (-5 *3 (-1288 (-1288 *4))) (-4 *4 (-1070)) (-5 *2 (-701 *4)) (-5 *1 (-1050 *4))))) -(-10 -7 (-15 -3383 ((-701 |#1|) (-1288 (-1288 |#1|)))) (-15 -2332 ((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-317)) (PROGN (-15 -2783 ((-1288 (-1288 |#1|)) (-656 (-701 |#1|)) (-1288 |#1|))) (-15 -2102 ((-701 |#1|) (-656 (-701 |#1|)) (-1288 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2249 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576))) (-15 -2249 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2249 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576))) (-15 -1431 ((-112) (-656 (-701 |#1|)) (-576))) (-15 -1431 ((-112) (-656 (-701 |#1|)))) (-15 -2488 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1288 |#1|))) (-15 -2488 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1288 (-1288 |#1|))))) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#1| (-374)) (PROGN (-15 -4079 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576))) (-15 -4079 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)))) (-15 -4079 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112))) (-15 -4079 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-940))) (-15 -1503 ((-1288 |#1|) (-656 (-1288 |#1|)) (-576)))) |%noBranch|) |%noBranch|)) -((-3370 ((|#1| (-940) |#1|) 18))) -(((-1051 |#1|) (-10 -7 (-15 -3370 (|#1| (-940) |#1|))) (-13 (-1121) (-10 -8 (-15 -3030 ($ $ $))))) (T -1051)) -((-3370 (*1 *2 *3 *2) (-12 (-5 *3 (-940)) (-5 *1 (-1051 *2)) (-4 *2 (-13 (-1121) (-10 -8 (-15 -3030 ($ $ $)))))))) -(-10 -7 (-15 -3370 (|#1| (-940) |#1|))) -((-4169 (((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-971 (-576))))) 67)) (-1386 (((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-971 (-576))))) 52)) (-2391 (((-656 (-326 (-576))) (-701 (-419 (-971 (-576))))) 45)) (-3757 (((-656 (-701 (-326 (-576)))) (-701 (-419 (-971 (-576))))) 85)) (-1339 (((-701 (-326 (-576))) (-701 (-326 (-576)))) 38)) (-3079 (((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576))))) 74)) (-3086 (((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-971 (-576))))) 82))) -(((-1052) (-10 -7 (-15 -4169 ((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-971 (-576)))))) (-15 -1386 ((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-971 (-576)))))) (-15 -2391 ((-656 (-326 (-576))) (-701 (-419 (-971 (-576)))))) (-15 -3086 ((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-971 (-576)))))) (-15 -1339 ((-701 (-326 (-576))) (-701 (-326 (-576))))) (-15 -3079 ((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576)))))) (-15 -3757 ((-656 (-701 (-326 (-576)))) (-701 (-419 (-971 (-576)))))))) (T -1052)) -((-3757 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-971 (-576))))) (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1052)))) (-3079 (*1 *2 *2) (-12 (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1052)))) (-1339 (*1 *2 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1052)))) (-3086 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 (-419 (-971 (-576))))) (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1052)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-971 (-576))))) (-5 *2 (-656 (-326 (-576)))) (-5 *1 (-1052)))) (-1386 (*1 *2 *3 *4) (-12 (-5 *4 (-701 (-419 (-971 (-576))))) (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1052)) (-5 *3 (-326 (-576))))) (-4169 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-971 (-576))))) (-5 *2 (-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576)))))))) (-5 *1 (-1052))))) -(-10 -7 (-15 -4169 ((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-971 (-576)))))) (-15 -1386 ((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-971 (-576)))))) (-15 -2391 ((-656 (-326 (-576))) (-701 (-419 (-971 (-576)))))) (-15 -3086 ((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-971 (-576)))))) (-15 -1339 ((-701 (-326 (-576))) (-701 (-326 (-576))))) (-15 -3079 ((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576)))))) (-15 -3757 ((-656 (-701 (-326 (-576)))) (-701 (-419 (-971 (-576))))))) -((-2743 ((|#1| |#1| (-940)) 18))) -(((-1053 |#1|) (-10 -7 (-15 -2743 (|#1| |#1| (-940)))) (-13 (-1121) (-10 -8 (-15 * ($ $ $))))) (T -1053)) -((-2743 (*1 *2 *2 *3) (-12 (-5 *3 (-940)) (-5 *1 (-1053 *2)) (-4 *2 (-13 (-1121) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -2743 (|#1| |#1| (-940)))) -((-3570 ((|#1| (-322)) 11) (((-1293) |#1|) 9))) -(((-1054 |#1|) (-10 -7 (-15 -3570 ((-1293) |#1|)) (-15 -3570 (|#1| (-322)))) (-1238)) (T -1054)) -((-3570 (*1 *2 *3) (-12 (-5 *3 (-322)) (-5 *1 (-1054 *2)) (-4 *2 (-1238)))) (-3570 (*1 *2 *3) (-12 (-5 *2 (-1293)) (-5 *1 (-1054 *3)) (-4 *3 (-1238))))) -(-10 -7 (-15 -3570 ((-1293) |#1|)) (-15 -3570 (|#1| (-322)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-3686 (($ |#4|) 25)) (-1561 (((-3 $ "failed") $) NIL)) (-4193 (((-112) $) NIL)) (-3672 ((|#4| $) 27)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 46) (($ (-576)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3996 (((-783)) 43 T CONST)) (-4055 (((-112) $ $) NIL)) (-2721 (($) 21 T CONST)) (-2732 (($) 23 T CONST)) (-2925 (((-112) $ $) 40)) (-3044 (($ $) 31) (($ $ $) NIL)) (-3030 (($ $ $) 29)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-1055 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -3686 ($ |#4|)) (-15 -3570 ($ |#4|)) (-15 -3672 (|#4| $)))) (-374) (-805) (-861) (-968 |#1| |#2| |#3|) (-656 |#4|)) (T -1055)) -((-3686 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *2 (-968 *3 *4 *5)) (-14 *6 (-656 *2)))) (-3570 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *2 (-968 *3 *4 *5)) (-14 *6 (-656 *2)))) (-3672 (*1 *2 *1) (-12 (-4 *2 (-968 *3 *4 *5)) (-5 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-14 *6 (-656 *2))))) -(-13 (-174) (-38 |#1|) (-10 -8 (-15 -3686 ($ |#4|)) (-15 -3570 ($ |#4|)) (-15 -3672 (|#4| $)))) -((-3489 (((-112) $ $) NIL (-2760 (|has| (-52) (-102)) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-102))))) (-4128 (($) NIL) (($ (-656 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))))) NIL)) (-2047 (((-1293) $ (-1197) (-1197)) NIL (|has| $ (-6 -4466)))) (-1808 (((-112) $ (-783)) NIL)) (-4113 (((-112) (-112)) 43)) (-2252 (((-112) (-112)) 42)) (-3756 (((-52) $ (-1197) (-52)) NIL)) (-2300 (($ (-1 (-112) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465)))) (-2197 (((-3 (-52) "failed") (-1197) $) NIL)) (-3886 (($) NIL T CONST)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1121))))) (-1671 (($ (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) $) NIL (|has| $ (-6 -4465))) (($ (-1 (-112) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465))) (((-3 (-52) "failed") (-1197) $) NIL)) (-3946 (($ (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1121)))) (($ (-1 (-112) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465)))) (-3686 (((-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $ (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1121)))) (((-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $ (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) NIL (|has| $ (-6 -4465))) (((-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465)))) (-4335 (((-52) $ (-1197) (-52)) NIL (|has| $ (-6 -4466)))) (-4274 (((-52) $ (-1197)) NIL)) (-3966 (((-656 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465))) (((-656 (-52)) $) NIL (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-1197) $) NIL (|has| (-1197) (-861)))) (-2014 (((-656 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465))) (((-656 (-52)) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1121)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-52) (-1121))))) (-2137 (((-1197) $) NIL (|has| (-1197) (-861)))) (-4323 (($ (-1 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL (-2760 (|has| (-52) (-1121)) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1121))))) (-3203 (((-656 (-1197)) $) 37)) (-4008 (((-112) (-1197) $) NIL)) (-1597 (((-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) $) NIL)) (-1901 (($ (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) $) NIL)) (-4234 (((-656 (-1197)) $) NIL)) (-3354 (((-112) (-1197) $) NIL)) (-1450 (((-1141) $) NIL (-2760 (|has| (-52) (-1121)) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1121))))) (-3581 (((-52) $) NIL (|has| (-1197) (-861)))) (-1541 (((-3 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) "failed") (-1 (-112) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $) NIL)) (-4046 (($ $ (-52)) NIL (|has| $ (-6 -4466)))) (-3449 (((-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) $) NIL)) (-4320 (((-112) (-1 (-112) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))))) NIL (-12 (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-319 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1121)))) (($ $ (-304 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))))) NIL (-12 (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-319 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1121)))) (($ $ (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) NIL (-12 (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-319 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1121)))) (($ $ (-656 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) (-656 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))))) NIL (-12 (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-319 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1121)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-52) (-1121))))) (-2281 (((-656 (-52)) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 (((-52) $ (-1197)) 39) (((-52) $ (-1197) (-52)) NIL)) (-2271 (($) NIL) (($ (-656 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))))) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465))) (((-783) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1121)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-52) (-1121)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4172 (((-548) $) NIL (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-626 (-548))))) (-3582 (($ (-656 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))))) NIL)) (-3570 (((-876) $) 41 (-2760 (|has| (-52) (-625 (-876))) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-625 (-876)))))) (-4055 (((-112) $ $) NIL (-2760 (|has| (-52) (-102)) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-102))))) (-3943 (($ (-656 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))))) NIL)) (-3321 (((-112) (-1 (-112) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) NIL (-2760 (|has| (-52) (-102)) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-102))))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-1056) (-13 (-1214 (-1197) (-52)) (-10 -7 (-15 -4113 ((-112) (-112))) (-15 -2252 ((-112) (-112))) (-6 -4465)))) (T -1056)) -((-4113 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1056)))) (-2252 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1056))))) -(-13 (-1214 (-1197) (-52)) (-10 -7 (-15 -4113 ((-112) (-112))) (-15 -2252 ((-112) (-112))) (-6 -4465))) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3123 (((-1156) $) 9)) (-3570 (((-876) $) 15) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-1057) (-13 (-1104) (-10 -8 (-15 -3123 ((-1156) $))))) (T -1057)) -((-3123 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1057))))) -(-13 (-1104) (-10 -8 (-15 -3123 ((-1156) $)))) -((-2860 ((|#2| $) 10))) -(((-1058 |#1| |#2|) (-10 -8 (-15 -2860 (|#2| |#1|))) (-1059 |#2|) (-1238)) (T -1058)) -NIL -(-10 -8 (-15 -2860 (|#2| |#1|))) -((-1572 (((-3 |#1| "failed") $) 9)) (-2860 ((|#1| $) 8)) (-3570 (($ |#1|) 6))) +((-4263 (((-656 (-390)) (-971 (-576)) (-390)) 28) (((-656 (-390)) (-971 (-419 (-576))) (-390)) 27)) (-2782 (((-656 (-656 (-390))) (-656 (-971 (-576))) (-656 (-1197)) (-390)) 37))) +(((-1044) (-10 -7 (-15 -4263 ((-656 (-390)) (-971 (-419 (-576))) (-390))) (-15 -4263 ((-656 (-390)) (-971 (-576)) (-390))) (-15 -2782 ((-656 (-656 (-390))) (-656 (-971 (-576))) (-656 (-1197)) (-390))))) (T -1044)) +((-2782 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-656 (-1197))) (-5 *2 (-656 (-656 (-390)))) (-5 *1 (-1044)) (-5 *5 (-390)))) (-4263 (*1 *2 *3 *4) (-12 (-5 *3 (-971 (-576))) (-5 *2 (-656 (-390))) (-5 *1 (-1044)) (-5 *4 (-390)))) (-4263 (*1 *2 *3 *4) (-12 (-5 *3 (-971 (-419 (-576)))) (-5 *2 (-656 (-390))) (-5 *1 (-1044)) (-5 *4 (-390))))) +(-10 -7 (-15 -4263 ((-656 (-390)) (-971 (-419 (-576))) (-390))) (-15 -4263 ((-656 (-390)) (-971 (-576)) (-390))) (-15 -2782 ((-656 (-656 (-390))) (-656 (-971 (-576))) (-656 (-1197)) (-390)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 75)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-1840 (($ $) NIL) (($ $ (-940)) NIL) (($ (-419 (-576))) NIL) (($ (-576)) NIL)) (-3330 (((-112) $ $) NIL)) (-3906 (((-576) $) 70)) (-3404 (($) NIL T CONST)) (-2108 (((-3 $ "failed") (-1193 $) (-940) (-876)) NIL) (((-3 $ "failed") (-1193 $) (-940)) 55)) (-1572 (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 (-576)) (-1059 (-419 (-576))))) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-576) "failed") $) NIL (-2759 (|has| (-419 (-576)) (-1059 (-576))) (|has| |#1| (-1059 (-576)))))) (-2859 (((-419 (-576)) $) 17 (|has| (-419 (-576)) (-1059 (-419 (-576))))) (((-419 (-576)) $) 17) ((|#1| $) 117) (((-576) $) NIL (-2759 (|has| (-419 (-576)) (-1059 (-576))) (|has| |#1| (-1059 (-576)))))) (-1937 (($ $ (-876)) 47)) (-3887 (($ $ (-876)) 48)) (-3428 (($ $ $) NIL)) (-2412 (((-419 (-576)) $ $) 21)) (-3673 (((-3 $ "failed") $) 88)) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3833 (((-112) $) NIL)) (-1866 (((-112) $) 66)) (-1351 (((-112) $) NIL)) (-4131 (($ $ (-576)) NIL)) (-3137 (((-112) $) 69)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3124 (($ $ $) NIL)) (-1441 (($ $ $) NIL)) (-3765 (((-3 (-1193 $) "failed") $) 83)) (-1794 (((-3 (-876) "failed") $) 82)) (-1865 (((-3 (-1193 $) "failed") $) 80)) (-4313 (((-3 (-1082 $ (-1193 $)) "failed") $) 78)) (-3457 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) 89)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1828 (((-430 $) $) NIL)) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1979 (((-783) $) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-3569 (((-876) $) 87) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ $) 63) (($ (-419 (-576))) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 119)) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL)) (-4165 (((-419 (-576)) $ $) 27)) (-4057 (((-656 $) (-1193 $)) 61) (((-656 $) (-1193 (-419 (-576)))) NIL) (((-656 $) (-1193 (-576))) NIL) (((-656 $) (-971 $)) NIL) (((-656 $) (-971 (-419 (-576)))) NIL) (((-656 $) (-971 (-576))) NIL)) (-3507 (($ (-1082 $ (-1193 $)) (-876)) 46)) (-4143 (($ $) 22)) (-2721 (($) 32 T CONST)) (-2731 (($) 39 T CONST)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 76)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) 24)) (-3056 (($ $ $) 37)) (-3043 (($ $) 38) (($ $ $) 74)) (-3029 (($ $ $) 112)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 98) (($ $ $) 104) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ (-576) $) 98) (($ $ (-576)) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1045 |#1|) (-13 (-1033) (-423 |#1|) (-38 |#1|) (-10 -8 (-15 -3507 ($ (-1082 $ (-1193 $)) (-876))) (-15 -4313 ((-3 (-1082 $ (-1193 $)) "failed") $)) (-15 -2412 ((-419 (-576)) $ $)))) (-13 (-860) (-374) (-1043))) (T -1045)) +((-3507 (*1 *1 *2 *3) (-12 (-5 *2 (-1082 (-1045 *4) (-1193 (-1045 *4)))) (-5 *3 (-876)) (-5 *1 (-1045 *4)) (-4 *4 (-13 (-860) (-374) (-1043))))) (-4313 (*1 *2 *1) (|partial| -12 (-5 *2 (-1082 (-1045 *3) (-1193 (-1045 *3)))) (-5 *1 (-1045 *3)) (-4 *3 (-13 (-860) (-374) (-1043))))) (-2412 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1045 *3)) (-4 *3 (-13 (-860) (-374) (-1043)))))) +(-13 (-1033) (-423 |#1|) (-38 |#1|) (-10 -8 (-15 -3507 ($ (-1082 $ (-1193 $)) (-876))) (-15 -4313 ((-3 (-1082 $ (-1193 $)) "failed") $)) (-15 -2412 ((-419 (-576)) $ $)))) +((-1859 (((-2 (|:| -4026 |#2|) (|:| -1757 (-656 |#1|))) |#2| (-656 |#1|)) 32) ((|#2| |#2| |#1|) 27))) +(((-1046 |#1| |#2|) (-10 -7 (-15 -1859 (|#2| |#2| |#1|)) (-15 -1859 ((-2 (|:| -4026 |#2|) (|:| -1757 (-656 |#1|))) |#2| (-656 |#1|)))) (-374) (-668 |#1|)) (T -1046)) +((-1859 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| -4026 *3) (|:| -1757 (-656 *5)))) (-5 *1 (-1046 *5 *3)) (-5 *4 (-656 *5)) (-4 *3 (-668 *5)))) (-1859 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-1046 *3 *2)) (-4 *2 (-668 *3))))) +(-10 -7 (-15 -1859 (|#2| |#2| |#1|)) (-15 -1859 ((-2 (|:| -4026 |#2|) (|:| -1757 (-656 |#1|))) |#2| (-656 |#1|)))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2672 ((|#1| $ |#1|) 14)) (-3755 ((|#1| $ |#1|) 12)) (-4345 (($ |#1|) 10)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-2796 ((|#1| $) 11)) (-1691 ((|#1| $) 13)) (-3569 (((-876) $) 21 (|has| |#1| (-1121)))) (-2399 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2924 (((-112) $ $) 9))) +(((-1047 |#1|) (-13 (-1238) (-10 -8 (-15 -4345 ($ |#1|)) (-15 -2796 (|#1| $)) (-15 -3755 (|#1| $ |#1|)) (-15 -1691 (|#1| $)) (-15 -2672 (|#1| $ |#1|)) (-15 -2924 ((-112) $ $)) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|))) (-1238)) (T -1047)) +((-4345 (*1 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) (-2796 (*1 *2 *1) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) (-3755 (*1 *2 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) (-1691 (*1 *2 *1) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) (-2672 (*1 *2 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) (-2924 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1047 *3)) (-4 *3 (-1238))))) +(-13 (-1238) (-10 -8 (-15 -4345 ($ |#1|)) (-15 -2796 (|#1| $)) (-15 -3755 (|#1| $ |#1|)) (-15 -1691 (|#1| $)) (-15 -2672 (|#1| $ |#1|)) (-15 -2924 ((-112) $ $)) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|))) +((-3488 (((-112) $ $) NIL)) (-4093 (((-656 (-2 (|:| -1958 $) (|:| -3256 (-656 |#4|)))) (-656 |#4|)) NIL)) (-3668 (((-656 $) (-656 |#4|)) 118) (((-656 $) (-656 |#4|) (-112)) 119) (((-656 $) (-656 |#4|) (-112) (-112)) 117) (((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112)) 120)) (-1969 (((-656 |#3|) $) NIL)) (-4255 (((-112) $) NIL)) (-2136 (((-112) $) NIL (|has| |#1| (-568)))) (-2899 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3798 ((|#4| |#4| $) NIL)) (-3444 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 $))) |#4| $) 112)) (-1795 (((-2 (|:| |under| $) (|:| -4236 $) (|:| |upper| $)) $ |#3|) NIL)) (-4264 (((-112) $ (-783)) NIL)) (-1974 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464))) (((-3 |#4| "failed") $ |#3|) 66)) (-3404 (($) NIL T CONST)) (-2203 (((-112) $) 29 (|has| |#1| (-568)))) (-3438 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1990 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3740 (((-112) $) NIL (|has| |#1| (-568)))) (-2149 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2239 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2514 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2859 (($ (-656 |#4|)) NIL)) (-3592 (((-3 $ "failed") $) 45)) (-3142 ((|#4| |#4| $) 69)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-3945 (($ |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3891 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-568)))) (-1483 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4022 ((|#4| |#4| $) NIL)) (-3685 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4464))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1599 (((-2 (|:| -1958 (-656 |#4|)) (|:| -3256 (-656 |#4|))) $) NIL)) (-4064 (((-112) |#4| $) NIL)) (-1608 (((-112) |#4| $) NIL)) (-1921 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4423 (((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112)) 133)) (-3965 (((-656 |#4|) $) 18 (|has| $ (-6 -4464)))) (-1918 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2235 ((|#3| $) 38)) (-1368 (((-112) $ (-783)) NIL)) (-2425 (((-656 |#4|) $) 19 (|has| $ (-6 -4464)))) (-2885 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-4326 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#4| |#4|) $) 23)) (-2666 (((-656 |#3|) $) NIL)) (-4001 (((-112) |#3| $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL)) (-3299 (((-3 |#4| (-656 $)) |#4| |#4| $) NIL)) (-3422 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 $))) |#4| |#4| $) 110)) (-3968 (((-3 |#4| "failed") $) 42)) (-3955 (((-656 $) |#4| $) 93)) (-1843 (((-3 (-112) (-656 $)) |#4| $) NIL)) (-1751 (((-656 (-2 (|:| |val| (-112)) (|:| -3987 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-3651 (((-656 $) |#4| $) 115) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 116) (((-656 $) |#4| (-656 $)) NIL)) (-3186 (((-656 $) (-656 |#4|) (-112) (-112) (-112)) 128)) (-2381 (($ |#4| $) 82) (($ (-656 |#4|) $) 83) (((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-2795 (((-656 |#4|) $) NIL)) (-2785 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3640 ((|#4| |#4| $) NIL)) (-2264 (((-112) $ $) NIL)) (-3196 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3420 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3235 ((|#4| |#4| $) NIL)) (-1450 (((-1141) $) NIL)) (-3580 (((-3 |#4| "failed") $) 40)) (-3434 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2101 (((-3 $ "failed") $ |#4|) 59)) (-1743 (($ $ |#4|) NIL) (((-656 $) |#4| $) 95) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 89)) (-3252 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) 17)) (-3579 (($) 14)) (-2683 (((-783) $) NIL)) (-1460 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) 13)) (-4171 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-3581 (($ (-656 |#4|)) 22)) (-2479 (($ $ |#3|) 52)) (-2394 (($ $ |#3|) 54)) (-2582 (($ $) NIL)) (-2665 (($ $ |#3|) NIL)) (-3569 (((-876) $) 35) (((-656 |#4|) $) 46)) (-3451 (((-783) $) NIL (|has| |#3| (-379)))) (-2399 (((-112) $ $) NIL)) (-1530 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3653 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-3788 (((-656 $) |#4| $) 92) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) NIL)) (-2708 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-2572 (((-656 |#3|) $) NIL)) (-1777 (((-112) |#4| $) NIL)) (-2476 (((-112) |#3| $) 65)) (-2924 (((-112) $ $) NIL)) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1048 |#1| |#2| |#3| |#4|) (-13 (-1092 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2381 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3668 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -3668 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -3186 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -4423 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|)) (T -1048)) +((-2381 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1048 *5 *6 *7 *3))) (-5 *1 (-1048 *5 *6 *7 *3)) (-4 *3 (-1086 *5 *6 *7)))) (-3668 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) (-3668 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) (-3186 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) (-4423 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-656 *8)) (|:| |towers| (-656 (-1048 *5 *6 *7 *8))))) (-5 *1 (-1048 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) +(-13 (-1092 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2381 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3668 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -3668 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -3186 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -4423 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) +((-3286 (((-656 (-701 |#1|)) (-656 (-701 |#1|))) 70) (((-701 |#1|) (-701 |#1|)) 69) (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|))) 68) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 65)) (-4106 (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-940)) 63) (((-701 |#1|) (-701 |#1|) (-940)) 62)) (-2133 (((-656 (-701 (-576))) (-656 (-656 (-576)))) 81) (((-656 (-701 (-576))) (-656 (-924 (-576))) (-576)) 80) (((-701 (-576)) (-656 (-576))) 77) (((-701 (-576)) (-924 (-576)) (-576)) 75)) (-3969 (((-701 (-971 |#1|)) (-783)) 95)) (-4365 (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-940)) 49 (|has| |#1| (-6 (-4466 "*")))) (((-701 |#1|) (-701 |#1|) (-940)) 47 (|has| |#1| (-6 (-4466 "*")))))) +(((-1049 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4466 "*"))) (-15 -4365 ((-701 |#1|) (-701 |#1|) (-940))) |%noBranch|) (IF (|has| |#1| (-6 (-4466 "*"))) (-15 -4365 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-940))) |%noBranch|) (-15 -3969 ((-701 (-971 |#1|)) (-783))) (-15 -4106 ((-701 |#1|) (-701 |#1|) (-940))) (-15 -4106 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-940))) (-15 -3286 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3286 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -3286 ((-701 |#1|) (-701 |#1|))) (-15 -3286 ((-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2133 ((-701 (-576)) (-924 (-576)) (-576))) (-15 -2133 ((-701 (-576)) (-656 (-576)))) (-15 -2133 ((-656 (-701 (-576))) (-656 (-924 (-576))) (-576))) (-15 -2133 ((-656 (-701 (-576))) (-656 (-656 (-576)))))) (-1070)) (T -1049)) +((-2133 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-576)))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-1049 *4)) (-4 *4 (-1070)))) (-2133 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-924 (-576)))) (-5 *4 (-576)) (-5 *2 (-656 (-701 *4))) (-5 *1 (-1049 *5)) (-4 *5 (-1070)))) (-2133 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1049 *4)) (-4 *4 (-1070)))) (-2133 (*1 *2 *3 *4) (-12 (-5 *3 (-924 (-576))) (-5 *4 (-576)) (-5 *2 (-701 *4)) (-5 *1 (-1049 *5)) (-4 *5 (-1070)))) (-3286 (*1 *2 *2) (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) (-3286 (*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) (-3286 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) (-3286 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) (-4106 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-940)) (-4 *4 (-1070)) (-5 *1 (-1049 *4)))) (-4106 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-940)) (-4 *4 (-1070)) (-5 *1 (-1049 *4)))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-701 (-971 *4))) (-5 *1 (-1049 *4)) (-4 *4 (-1070)))) (-4365 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-940)) (|has| *4 (-6 (-4466 "*"))) (-4 *4 (-1070)) (-5 *1 (-1049 *4)))) (-4365 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-940)) (|has| *4 (-6 (-4466 "*"))) (-4 *4 (-1070)) (-5 *1 (-1049 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4466 "*"))) (-15 -4365 ((-701 |#1|) (-701 |#1|) (-940))) |%noBranch|) (IF (|has| |#1| (-6 (-4466 "*"))) (-15 -4365 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-940))) |%noBranch|) (-15 -3969 ((-701 (-971 |#1|)) (-783))) (-15 -4106 ((-701 |#1|) (-701 |#1|) (-940))) (-15 -4106 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-940))) (-15 -3286 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3286 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -3286 ((-701 |#1|) (-701 |#1|))) (-15 -3286 ((-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2133 ((-701 (-576)) (-924 (-576)) (-576))) (-15 -2133 ((-701 (-576)) (-656 (-576)))) (-15 -2133 ((-656 (-701 (-576))) (-656 (-924 (-576))) (-576))) (-15 -2133 ((-656 (-701 (-576))) (-656 (-656 (-576)))))) +((-3970 (((-701 |#1|) (-656 (-701 |#1|)) (-1288 |#1|)) 70 (|has| |#1| (-317)))) (-3455 (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1288 (-1288 |#1|))) 110 (|has| |#1| (-374))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1288 |#1|)) 117 (|has| |#1| (-374)))) (-4269 (((-1288 |#1|) (-656 (-1288 |#1|)) (-576)) 135 (-12 (|has| |#1| (-374)) (|has| |#1| (-379))))) (-2625 (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-940)) 123 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112)) 122 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|))) 121 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576)) 120 (-12 (|has| |#1| (-374)) (|has| |#1| (-379))))) (-2188 (((-112) (-656 (-701 |#1|))) 103 (|has| |#1| (-374))) (((-112) (-656 (-701 |#1|)) (-576)) 106 (|has| |#1| (-374)))) (-4397 (((-1288 (-1288 |#1|)) (-656 (-701 |#1|)) (-1288 |#1|)) 67 (|has| |#1| (-317)))) (-2442 (((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|)) 47)) (-2088 (((-701 |#1|) (-1288 (-1288 |#1|))) 40)) (-2835 (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576)) 94 (|has| |#1| (-374))) (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|))) 93 (|has| |#1| (-374))) (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576)) 101 (|has| |#1| (-374))))) +(((-1050 |#1|) (-10 -7 (-15 -2088 ((-701 |#1|) (-1288 (-1288 |#1|)))) (-15 -2442 ((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-317)) (PROGN (-15 -4397 ((-1288 (-1288 |#1|)) (-656 (-701 |#1|)) (-1288 |#1|))) (-15 -3970 ((-701 |#1|) (-656 (-701 |#1|)) (-1288 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2835 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576))) (-15 -2835 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2835 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576))) (-15 -2188 ((-112) (-656 (-701 |#1|)) (-576))) (-15 -2188 ((-112) (-656 (-701 |#1|)))) (-15 -3455 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1288 |#1|))) (-15 -3455 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1288 (-1288 |#1|))))) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#1| (-374)) (PROGN (-15 -2625 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576))) (-15 -2625 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)))) (-15 -2625 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112))) (-15 -2625 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-940))) (-15 -4269 ((-1288 |#1|) (-656 (-1288 |#1|)) (-576)))) |%noBranch|) |%noBranch|)) (-1070)) (T -1050)) +((-4269 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1288 *5))) (-5 *4 (-576)) (-5 *2 (-1288 *5)) (-5 *1 (-1050 *5)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1070)))) (-2625 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1070)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) (-5 *3 (-656 (-701 *5))))) (-2625 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1070)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) (-5 *3 (-656 (-701 *5))))) (-2625 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *4 (-379)) (-4 *4 (-1070)) (-5 *2 (-656 (-656 (-701 *4)))) (-5 *1 (-1050 *4)) (-5 *3 (-656 (-701 *4))))) (-2625 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-576)) (-4 *6 (-374)) (-4 *6 (-379)) (-4 *6 (-1070)) (-5 *2 (-656 (-656 (-701 *6)))) (-5 *1 (-1050 *6)) (-5 *3 (-656 (-701 *6))))) (-3455 (*1 *2 *3 *4) (-12 (-5 *4 (-1288 (-1288 *5))) (-4 *5 (-374)) (-4 *5 (-1070)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) (-5 *3 (-656 (-701 *5))))) (-3455 (*1 *2 *3 *4) (-12 (-5 *4 (-1288 *5)) (-4 *5 (-374)) (-4 *5 (-1070)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) (-5 *3 (-656 (-701 *5))))) (-2188 (*1 *2 *3) (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-4 *4 (-1070)) (-5 *2 (-112)) (-5 *1 (-1050 *4)))) (-2188 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-4 *5 (-374)) (-4 *5 (-1070)) (-5 *2 (-112)) (-5 *1 (-1050 *5)))) (-2835 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-5 *2 (-701 *5)) (-5 *1 (-1050 *5)) (-4 *5 (-374)) (-4 *5 (-1070)))) (-2835 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-5 *1 (-1050 *4)) (-4 *4 (-374)) (-4 *4 (-1070)))) (-2835 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-656 (-701 *6))) (-5 *4 (-112)) (-5 *5 (-576)) (-5 *2 (-701 *6)) (-5 *1 (-1050 *6)) (-4 *6 (-374)) (-4 *6 (-1070)))) (-3970 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-1288 *5)) (-4 *5 (-317)) (-4 *5 (-1070)) (-5 *2 (-701 *5)) (-5 *1 (-1050 *5)))) (-4397 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-4 *5 (-317)) (-4 *5 (-1070)) (-5 *2 (-1288 (-1288 *5))) (-5 *1 (-1050 *5)) (-5 *4 (-1288 *5)))) (-2442 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-4 *4 (-1070)) (-5 *1 (-1050 *4)))) (-2088 (*1 *2 *3) (-12 (-5 *3 (-1288 (-1288 *4))) (-4 *4 (-1070)) (-5 *2 (-701 *4)) (-5 *1 (-1050 *4))))) +(-10 -7 (-15 -2088 ((-701 |#1|) (-1288 (-1288 |#1|)))) (-15 -2442 ((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-317)) (PROGN (-15 -4397 ((-1288 (-1288 |#1|)) (-656 (-701 |#1|)) (-1288 |#1|))) (-15 -3970 ((-701 |#1|) (-656 (-701 |#1|)) (-1288 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2835 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576))) (-15 -2835 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2835 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576))) (-15 -2188 ((-112) (-656 (-701 |#1|)) (-576))) (-15 -2188 ((-112) (-656 (-701 |#1|)))) (-15 -3455 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1288 |#1|))) (-15 -3455 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1288 (-1288 |#1|))))) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#1| (-374)) (PROGN (-15 -2625 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576))) (-15 -2625 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)))) (-15 -2625 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112))) (-15 -2625 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-940))) (-15 -4269 ((-1288 |#1|) (-656 (-1288 |#1|)) (-576)))) |%noBranch|) |%noBranch|)) +((-3369 ((|#1| (-940) |#1|) 18))) +(((-1051 |#1|) (-10 -7 (-15 -3369 (|#1| (-940) |#1|))) (-13 (-1121) (-10 -8 (-15 -3029 ($ $ $))))) (T -1051)) +((-3369 (*1 *2 *3 *2) (-12 (-5 *3 (-940)) (-5 *1 (-1051 *2)) (-4 *2 (-13 (-1121) (-10 -8 (-15 -3029 ($ $ $)))))))) +(-10 -7 (-15 -3369 (|#1| (-940) |#1|))) +((-4248 (((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-971 (-576))))) 67)) (-2321 (((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-971 (-576))))) 52)) (-1766 (((-656 (-326 (-576))) (-701 (-419 (-971 (-576))))) 45)) (-2631 (((-656 (-701 (-326 (-576)))) (-701 (-419 (-971 (-576))))) 85)) (-3001 (((-701 (-326 (-576))) (-701 (-326 (-576)))) 38)) (-2095 (((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576))))) 74)) (-2166 (((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-971 (-576))))) 82))) +(((-1052) (-10 -7 (-15 -4248 ((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-971 (-576)))))) (-15 -2321 ((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-971 (-576)))))) (-15 -1766 ((-656 (-326 (-576))) (-701 (-419 (-971 (-576)))))) (-15 -2166 ((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-971 (-576)))))) (-15 -3001 ((-701 (-326 (-576))) (-701 (-326 (-576))))) (-15 -2095 ((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576)))))) (-15 -2631 ((-656 (-701 (-326 (-576)))) (-701 (-419 (-971 (-576)))))))) (T -1052)) +((-2631 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-971 (-576))))) (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1052)))) (-2095 (*1 *2 *2) (-12 (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1052)))) (-3001 (*1 *2 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1052)))) (-2166 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 (-419 (-971 (-576))))) (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1052)))) (-1766 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-971 (-576))))) (-5 *2 (-656 (-326 (-576)))) (-5 *1 (-1052)))) (-2321 (*1 *2 *3 *4) (-12 (-5 *4 (-701 (-419 (-971 (-576))))) (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1052)) (-5 *3 (-326 (-576))))) (-4248 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-971 (-576))))) (-5 *2 (-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576)))))))) (-5 *1 (-1052))))) +(-10 -7 (-15 -4248 ((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-971 (-576)))))) (-15 -2321 ((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-971 (-576)))))) (-15 -1766 ((-656 (-326 (-576))) (-701 (-419 (-971 (-576)))))) (-15 -2166 ((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-971 (-576)))))) (-15 -3001 ((-701 (-326 (-576))) (-701 (-326 (-576))))) (-15 -2095 ((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576)))))) (-15 -2631 ((-656 (-701 (-326 (-576)))) (-701 (-419 (-971 (-576))))))) +((-4080 ((|#1| |#1| (-940)) 18))) +(((-1053 |#1|) (-10 -7 (-15 -4080 (|#1| |#1| (-940)))) (-13 (-1121) (-10 -8 (-15 * ($ $ $))))) (T -1053)) +((-4080 (*1 *2 *2 *3) (-12 (-5 *3 (-940)) (-5 *1 (-1053 *2)) (-4 *2 (-13 (-1121) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -4080 (|#1| |#1| (-940)))) +((-3569 ((|#1| (-322)) 11) (((-1293) |#1|) 9))) +(((-1054 |#1|) (-10 -7 (-15 -3569 ((-1293) |#1|)) (-15 -3569 (|#1| (-322)))) (-1238)) (T -1054)) +((-3569 (*1 *2 *3) (-12 (-5 *3 (-322)) (-5 *1 (-1054 *2)) (-4 *2 (-1238)))) (-3569 (*1 *2 *3) (-12 (-5 *2 (-1293)) (-5 *1 (-1054 *3)) (-4 *3 (-1238))))) +(-10 -7 (-15 -3569 ((-1293) |#1|)) (-15 -3569 (|#1| (-322)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-3685 (($ |#4|) 25)) (-3673 (((-3 $ "failed") $) NIL)) (-1351 (((-112) $) NIL)) (-3671 ((|#4| $) 27)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 46) (($ (-576)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3154 (((-783)) 43 T CONST)) (-2399 (((-112) $ $) NIL)) (-2721 (($) 21 T CONST)) (-2731 (($) 23 T CONST)) (-2924 (((-112) $ $) 40)) (-3043 (($ $) 31) (($ $ $) NIL)) (-3029 (($ $ $) 29)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1055 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -3685 ($ |#4|)) (-15 -3569 ($ |#4|)) (-15 -3671 (|#4| $)))) (-374) (-805) (-861) (-968 |#1| |#2| |#3|) (-656 |#4|)) (T -1055)) +((-3685 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *2 (-968 *3 *4 *5)) (-14 *6 (-656 *2)))) (-3569 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *2 (-968 *3 *4 *5)) (-14 *6 (-656 *2)))) (-3671 (*1 *2 *1) (-12 (-4 *2 (-968 *3 *4 *5)) (-5 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-14 *6 (-656 *2))))) +(-13 (-174) (-38 |#1|) (-10 -8 (-15 -3685 ($ |#4|)) (-15 -3569 ($ |#4|)) (-15 -3671 (|#4| $)))) +((-3488 (((-112) $ $) NIL (-2759 (|has| (-52) (-102)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-102))))) (-4127 (($) NIL) (($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))))) NIL)) (-1512 (((-1293) $ (-1197) (-1197)) NIL (|has| $ (-6 -4465)))) (-4264 (((-112) $ (-783)) NIL)) (-1767 (((-112) (-112)) 43)) (-2873 (((-112) (-112)) 42)) (-3755 (((-52) $ (-1197) (-52)) NIL)) (-2123 (($ (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-1974 (($ (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-2198 (((-3 (-52) "failed") (-1197) $) NIL)) (-3404 (($) NIL T CONST)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1121))))) (-2172 (($ (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-3 (-52) "failed") (-1197) $) NIL)) (-3945 (($ (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1121)))) (($ (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $ (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1121)))) (((-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $ (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-4332 (((-52) $ (-1197) (-52)) NIL (|has| $ (-6 -4465)))) (-4272 (((-52) $ (-1197)) NIL)) (-3965 (((-656 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-656 (-52)) $) NIL (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-1197) $) NIL (|has| (-1197) (-861)))) (-2425 (((-656 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-656 (-52)) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1121)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-52) (-1121))))) (-4280 (((-1197) $) NIL (|has| (-1197) (-861)))) (-4326 (($ (-1 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4465))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL (-2759 (|has| (-52) (-1121)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1121))))) (-3200 (((-656 (-1197)) $) 37)) (-3259 (((-112) (-1197) $) NIL)) (-2722 (((-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) $) NIL)) (-2597 (($ (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) $) NIL)) (-3669 (((-656 (-1197)) $) NIL)) (-3090 (((-112) (-1197) $) NIL)) (-1450 (((-1141) $) NIL (-2759 (|has| (-52) (-1121)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1121))))) (-3580 (((-52) $) NIL (|has| (-1197) (-861)))) (-3434 (((-3 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) "failed") (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $) NIL)) (-2304 (($ $ (-52)) NIL (|has| $ (-6 -4465)))) (-1541 (((-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) $) NIL)) (-3252 (((-112) (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))))) NIL (-12 (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-319 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))))) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1121)))) (($ $ (-304 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))))) NIL (-12 (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-319 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))))) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1121)))) (($ $ (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) NIL (-12 (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-319 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))))) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1121)))) (($ $ (-656 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) (-656 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))))) NIL (-12 (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-319 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))))) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1121)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-52) (-1121))))) (-3207 (((-656 (-52)) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 (((-52) $ (-1197)) 39) (((-52) $ (-1197) (-52)) NIL)) (-3101 (($) NIL) (($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))))) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1121)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-52) (-1121)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))))) NIL)) (-3569 (((-876) $) 41 (-2759 (|has| (-52) (-625 (-876))) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-625 (-876)))))) (-2399 (((-112) $ $) NIL (-2759 (|has| (-52) (-102)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-102))))) (-3972 (($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))))) NIL)) (-2708 (((-112) (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) NIL (-2759 (|has| (-52) (-102)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-102))))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1056) (-13 (-1214 (-1197) (-52)) (-10 -7 (-15 -1767 ((-112) (-112))) (-15 -2873 ((-112) (-112))) (-6 -4464)))) (T -1056)) +((-1767 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1056)))) (-2873 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1056))))) +(-13 (-1214 (-1197) (-52)) (-10 -7 (-15 -1767 ((-112) (-112))) (-15 -2873 ((-112) (-112))) (-6 -4464))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3121 (((-1156) $) 9)) (-3569 (((-876) $) 15) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-1057) (-13 (-1104) (-10 -8 (-15 -3121 ((-1156) $))))) (T -1057)) +((-3121 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1057))))) +(-13 (-1104) (-10 -8 (-15 -3121 ((-1156) $)))) +((-2859 ((|#2| $) 10))) +(((-1058 |#1| |#2|) (-10 -8 (-15 -2859 (|#2| |#1|))) (-1059 |#2|) (-1238)) (T -1058)) +NIL +(-10 -8 (-15 -2859 (|#2| |#1|))) +((-1572 (((-3 |#1| "failed") $) 9)) (-2859 ((|#1| $) 8)) (-3569 (($ |#1|) 6))) (((-1059 |#1|) (-141) (-1238)) (T -1059)) -((-1572 (*1 *2 *1) (|partial| -12 (-4 *1 (-1059 *2)) (-4 *2 (-1238)))) (-2860 (*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1238))))) -(-13 (-628 |t#1|) (-10 -8 (-15 -1572 ((-3 |t#1| "failed") $)) (-15 -2860 (|t#1| $)))) +((-1572 (*1 *2 *1) (|partial| -12 (-4 *1 (-1059 *2)) (-4 *2 (-1238)))) (-2859 (*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1238))))) +(-13 (-628 |t#1|) (-10 -8 (-15 -1572 ((-3 |t#1| "failed") $)) (-15 -2859 (|t#1| $)))) (((-628 |#1|) . T)) -((-4309 (((-656 (-656 (-304 (-419 (-971 |#2|))))) (-656 (-971 |#2|)) (-656 (-1197))) 38))) -(((-1060 |#1| |#2|) (-10 -7 (-15 -4309 ((-656 (-656 (-304 (-419 (-971 |#2|))))) (-656 (-971 |#2|)) (-656 (-1197))))) (-568) (-13 (-568) (-1059 |#1|))) (T -1060)) -((-4309 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *6))) (-5 *4 (-656 (-1197))) (-4 *6 (-13 (-568) (-1059 *5))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *6)))))) (-5 *1 (-1060 *5 *6))))) -(-10 -7 (-15 -4309 ((-656 (-656 (-304 (-419 (-971 |#2|))))) (-656 (-971 |#2|)) (-656 (-1197))))) -((-1465 (((-390)) 17)) (-4334 (((-1 (-390)) (-390) (-390)) 22)) (-2741 (((-1 (-390)) (-783)) 48)) (-4074 (((-390)) 37)) (-3014 (((-1 (-390)) (-390) (-390)) 38)) (-1516 (((-390)) 29)) (-1368 (((-1 (-390)) (-390)) 30)) (-2884 (((-390) (-783)) 43)) (-2250 (((-1 (-390)) (-783)) 44)) (-1962 (((-1 (-390)) (-783) (-783)) 47)) (-4000 (((-1 (-390)) (-783) (-783)) 45))) -(((-1061) (-10 -7 (-15 -1465 ((-390))) (-15 -4074 ((-390))) (-15 -1516 ((-390))) (-15 -2884 ((-390) (-783))) (-15 -4334 ((-1 (-390)) (-390) (-390))) (-15 -3014 ((-1 (-390)) (-390) (-390))) (-15 -1368 ((-1 (-390)) (-390))) (-15 -2250 ((-1 (-390)) (-783))) (-15 -4000 ((-1 (-390)) (-783) (-783))) (-15 -1962 ((-1 (-390)) (-783) (-783))) (-15 -2741 ((-1 (-390)) (-783))))) (T -1061)) -((-2741 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061)))) (-1962 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061)))) (-4000 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061)))) (-1368 (*1 *2 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1061)) (-5 *3 (-390)))) (-3014 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1061)) (-5 *3 (-390)))) (-4334 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1061)) (-5 *3 (-390)))) (-2884 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-390)) (-5 *1 (-1061)))) (-1516 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1061)))) (-4074 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1061)))) (-1465 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1061))))) -(-10 -7 (-15 -1465 ((-390))) (-15 -4074 ((-390))) (-15 -1516 ((-390))) (-15 -2884 ((-390) (-783))) (-15 -4334 ((-1 (-390)) (-390) (-390))) (-15 -3014 ((-1 (-390)) (-390) (-390))) (-15 -1368 ((-1 (-390)) (-390))) (-15 -2250 ((-1 (-390)) (-783))) (-15 -4000 ((-1 (-390)) (-783) (-783))) (-15 -1962 ((-1 (-390)) (-783) (-783))) (-15 -2741 ((-1 (-390)) (-783)))) +((-3148 (((-656 (-656 (-304 (-419 (-971 |#2|))))) (-656 (-971 |#2|)) (-656 (-1197))) 38))) +(((-1060 |#1| |#2|) (-10 -7 (-15 -3148 ((-656 (-656 (-304 (-419 (-971 |#2|))))) (-656 (-971 |#2|)) (-656 (-1197))))) (-568) (-13 (-568) (-1059 |#1|))) (T -1060)) +((-3148 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *6))) (-5 *4 (-656 (-1197))) (-4 *6 (-13 (-568) (-1059 *5))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *6)))))) (-5 *1 (-1060 *5 *6))))) +(-10 -7 (-15 -3148 ((-656 (-656 (-304 (-419 (-971 |#2|))))) (-656 (-971 |#2|)) (-656 (-1197))))) +((-3895 (((-390)) 17)) (-3380 (((-1 (-390)) (-390) (-390)) 22)) (-2739 (((-1 (-390)) (-783)) 48)) (-2575 (((-390)) 37)) (-3014 (((-1 (-390)) (-390) (-390)) 38)) (-4402 (((-390)) 29)) (-2464 (((-1 (-390)) (-390)) 30)) (-2864 (((-390) (-783)) 43)) (-2848 (((-1 (-390)) (-783)) 44)) (-1963 (((-1 (-390)) (-783) (-783)) 47)) (-3198 (((-1 (-390)) (-783) (-783)) 45))) +(((-1061) (-10 -7 (-15 -3895 ((-390))) (-15 -2575 ((-390))) (-15 -4402 ((-390))) (-15 -2864 ((-390) (-783))) (-15 -3380 ((-1 (-390)) (-390) (-390))) (-15 -3014 ((-1 (-390)) (-390) (-390))) (-15 -2464 ((-1 (-390)) (-390))) (-15 -2848 ((-1 (-390)) (-783))) (-15 -3198 ((-1 (-390)) (-783) (-783))) (-15 -1963 ((-1 (-390)) (-783) (-783))) (-15 -2739 ((-1 (-390)) (-783))))) (T -1061)) +((-2739 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061)))) (-1963 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061)))) (-3198 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061)))) (-2464 (*1 *2 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1061)) (-5 *3 (-390)))) (-3014 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1061)) (-5 *3 (-390)))) (-3380 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1061)) (-5 *3 (-390)))) (-2864 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-390)) (-5 *1 (-1061)))) (-4402 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1061)))) (-2575 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1061)))) (-3895 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1061))))) +(-10 -7 (-15 -3895 ((-390))) (-15 -2575 ((-390))) (-15 -4402 ((-390))) (-15 -2864 ((-390) (-783))) (-15 -3380 ((-1 (-390)) (-390) (-390))) (-15 -3014 ((-1 (-390)) (-390) (-390))) (-15 -2464 ((-1 (-390)) (-390))) (-15 -2848 ((-1 (-390)) (-783))) (-15 -3198 ((-1 (-390)) (-783) (-783))) (-15 -1963 ((-1 (-390)) (-783) (-783))) (-15 -2739 ((-1 (-390)) (-783)))) ((-1828 (((-430 |#1|) |#1|) 33))) (((-1062 |#1|) (-10 -7 (-15 -1828 ((-430 |#1|) |#1|))) (-1264 (-419 (-971 (-576))))) (T -1062)) ((-1828 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1062 *3)) (-4 *3 (-1264 (-419 (-971 (-576)))))))) (-10 -7 (-15 -1828 ((-430 |#1|) |#1|))) -((-3678 (((-419 (-430 (-971 |#1|))) (-419 (-971 |#1|))) 14))) -(((-1063 |#1|) (-10 -7 (-15 -3678 ((-419 (-430 (-971 |#1|))) (-419 (-971 |#1|))))) (-317)) (T -1063)) -((-3678 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-317)) (-5 *2 (-419 (-430 (-971 *4)))) (-5 *1 (-1063 *4))))) -(-10 -7 (-15 -3678 ((-419 (-430 (-971 |#1|))) (-419 (-971 |#1|))))) -((-1969 (((-656 (-1197)) (-419 (-971 |#1|))) 17)) (-1798 (((-419 (-1193 (-419 (-971 |#1|)))) (-419 (-971 |#1|)) (-1197)) 24)) (-1955 (((-419 (-971 |#1|)) (-419 (-1193 (-419 (-971 |#1|)))) (-1197)) 26)) (-3721 (((-3 (-1197) "failed") (-419 (-971 |#1|))) 20)) (-3284 (((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-656 (-304 (-419 (-971 |#1|))))) 32) (((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|)))) 33) (((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-656 (-1197)) (-656 (-419 (-971 |#1|)))) 28) (((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|))) 29)) (-3570 (((-419 (-971 |#1|)) |#1|) 11))) -(((-1064 |#1|) (-10 -7 (-15 -1969 ((-656 (-1197)) (-419 (-971 |#1|)))) (-15 -3721 ((-3 (-1197) "failed") (-419 (-971 |#1|)))) (-15 -1798 ((-419 (-1193 (-419 (-971 |#1|)))) (-419 (-971 |#1|)) (-1197))) (-15 -1955 ((-419 (-971 |#1|)) (-419 (-1193 (-419 (-971 |#1|)))) (-1197))) (-15 -3284 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|)))) (-15 -3284 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-656 (-1197)) (-656 (-419 (-971 |#1|))))) (-15 -3284 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))))) (-15 -3284 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-656 (-304 (-419 (-971 |#1|)))))) (-15 -3570 ((-419 (-971 |#1|)) |#1|))) (-568)) (T -1064)) -((-3570 (*1 *2 *3) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-1064 *3)) (-4 *3 (-568)))) (-3284 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-304 (-419 (-971 *4))))) (-5 *2 (-419 (-971 *4))) (-4 *4 (-568)) (-5 *1 (-1064 *4)))) (-3284 (*1 *2 *2 *3) (-12 (-5 *3 (-304 (-419 (-971 *4)))) (-5 *2 (-419 (-971 *4))) (-4 *4 (-568)) (-5 *1 (-1064 *4)))) (-3284 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-1197))) (-5 *4 (-656 (-419 (-971 *5)))) (-5 *2 (-419 (-971 *5))) (-4 *5 (-568)) (-5 *1 (-1064 *5)))) (-3284 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-419 (-971 *4))) (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-1064 *4)))) (-1955 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1193 (-419 (-971 *5))))) (-5 *4 (-1197)) (-5 *2 (-419 (-971 *5))) (-5 *1 (-1064 *5)) (-4 *5 (-568)))) (-1798 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-568)) (-5 *2 (-419 (-1193 (-419 (-971 *5))))) (-5 *1 (-1064 *5)) (-5 *3 (-419 (-971 *5))))) (-3721 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-5 *2 (-1197)) (-5 *1 (-1064 *4)))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-1197))) (-5 *1 (-1064 *4))))) -(-10 -7 (-15 -1969 ((-656 (-1197)) (-419 (-971 |#1|)))) (-15 -3721 ((-3 (-1197) "failed") (-419 (-971 |#1|)))) (-15 -1798 ((-419 (-1193 (-419 (-971 |#1|)))) (-419 (-971 |#1|)) (-1197))) (-15 -1955 ((-419 (-971 |#1|)) (-419 (-1193 (-419 (-971 |#1|)))) (-1197))) (-15 -3284 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|)))) (-15 -3284 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-656 (-1197)) (-656 (-419 (-971 |#1|))))) (-15 -3284 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))))) (-15 -3284 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-656 (-304 (-419 (-971 |#1|)))))) (-15 -3570 ((-419 (-971 |#1|)) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-3886 (($) 18 T CONST)) (-1620 ((|#1| $) 23)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-4170 ((|#1| $) 22)) (-2219 ((|#1|) 20 T CONST)) (-3570 (((-876) $) 12)) (-3792 ((|#1| $) 21)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2925 (((-112) $ $) 8)) (-3030 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16))) +((-3145 (((-419 (-430 (-971 |#1|))) (-419 (-971 |#1|))) 14))) +(((-1063 |#1|) (-10 -7 (-15 -3145 ((-419 (-430 (-971 |#1|))) (-419 (-971 |#1|))))) (-317)) (T -1063)) +((-3145 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-317)) (-5 *2 (-419 (-430 (-971 *4)))) (-5 *1 (-1063 *4))))) +(-10 -7 (-15 -3145 ((-419 (-430 (-971 |#1|))) (-419 (-971 |#1|))))) +((-1969 (((-656 (-1197)) (-419 (-971 |#1|))) 17)) (-1797 (((-419 (-1193 (-419 (-971 |#1|)))) (-419 (-971 |#1|)) (-1197)) 24)) (-1956 (((-419 (-971 |#1|)) (-419 (-1193 (-419 (-971 |#1|)))) (-1197)) 26)) (-2289 (((-3 (-1197) "failed") (-419 (-971 |#1|))) 20)) (-3282 (((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-656 (-304 (-419 (-971 |#1|))))) 32) (((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|)))) 33) (((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-656 (-1197)) (-656 (-419 (-971 |#1|)))) 28) (((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|))) 29)) (-3569 (((-419 (-971 |#1|)) |#1|) 11))) +(((-1064 |#1|) (-10 -7 (-15 -1969 ((-656 (-1197)) (-419 (-971 |#1|)))) (-15 -2289 ((-3 (-1197) "failed") (-419 (-971 |#1|)))) (-15 -1797 ((-419 (-1193 (-419 (-971 |#1|)))) (-419 (-971 |#1|)) (-1197))) (-15 -1956 ((-419 (-971 |#1|)) (-419 (-1193 (-419 (-971 |#1|)))) (-1197))) (-15 -3282 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|)))) (-15 -3282 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-656 (-1197)) (-656 (-419 (-971 |#1|))))) (-15 -3282 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))))) (-15 -3282 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-656 (-304 (-419 (-971 |#1|)))))) (-15 -3569 ((-419 (-971 |#1|)) |#1|))) (-568)) (T -1064)) +((-3569 (*1 *2 *3) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-1064 *3)) (-4 *3 (-568)))) (-3282 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-304 (-419 (-971 *4))))) (-5 *2 (-419 (-971 *4))) (-4 *4 (-568)) (-5 *1 (-1064 *4)))) (-3282 (*1 *2 *2 *3) (-12 (-5 *3 (-304 (-419 (-971 *4)))) (-5 *2 (-419 (-971 *4))) (-4 *4 (-568)) (-5 *1 (-1064 *4)))) (-3282 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-1197))) (-5 *4 (-656 (-419 (-971 *5)))) (-5 *2 (-419 (-971 *5))) (-4 *5 (-568)) (-5 *1 (-1064 *5)))) (-3282 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-419 (-971 *4))) (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-1064 *4)))) (-1956 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1193 (-419 (-971 *5))))) (-5 *4 (-1197)) (-5 *2 (-419 (-971 *5))) (-5 *1 (-1064 *5)) (-4 *5 (-568)))) (-1797 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-568)) (-5 *2 (-419 (-1193 (-419 (-971 *5))))) (-5 *1 (-1064 *5)) (-5 *3 (-419 (-971 *5))))) (-2289 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-5 *2 (-1197)) (-5 *1 (-1064 *4)))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-1197))) (-5 *1 (-1064 *4))))) +(-10 -7 (-15 -1969 ((-656 (-1197)) (-419 (-971 |#1|)))) (-15 -2289 ((-3 (-1197) "failed") (-419 (-971 |#1|)))) (-15 -1797 ((-419 (-1193 (-419 (-971 |#1|)))) (-419 (-971 |#1|)) (-1197))) (-15 -1956 ((-419 (-971 |#1|)) (-419 (-1193 (-419 (-971 |#1|)))) (-1197))) (-15 -3282 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|)))) (-15 -3282 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-656 (-1197)) (-656 (-419 (-971 |#1|))))) (-15 -3282 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))))) (-15 -3282 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-656 (-304 (-419 (-971 |#1|)))))) (-15 -3569 ((-419 (-971 |#1|)) |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-3404 (($) 18 T CONST)) (-2963 ((|#1| $) 23)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-4258 ((|#1| $) 22)) (-3823 ((|#1|) 20 T CONST)) (-3569 (((-876) $) 12)) (-1804 ((|#1| $) 21)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2924 (((-112) $ $) 8)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16))) (((-1065 |#1|) (-141) (-23)) (T -1065)) -((-1620 (*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23)))) (-4170 (*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23)))) (-3792 (*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23)))) (-2219 (*1 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -1620 (|t#1| $)) (-15 -4170 (|t#1| $)) (-15 -3792 (|t#1| $)) (-15 -2219 (|t#1|) -1480))) +((-2963 (*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23)))) (-4258 (*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23)))) (-1804 (*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23)))) (-3823 (*1 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -2963 (|t#1| $)) (-15 -4258 (|t#1| $)) (-15 -1804 (|t#1| $)) (-15 -3823 (|t#1|) -1480))) (((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4378 (($) 25 T CONST)) (-3886 (($) 18 T CONST)) (-1620 ((|#1| $) 23)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-4170 ((|#1| $) 22)) (-2219 ((|#1|) 20 T CONST)) (-3570 (((-876) $) 12)) (-3792 ((|#1| $) 21)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2925 (((-112) $ $) 8)) (-3030 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2533 (($) 25 T CONST)) (-3404 (($) 18 T CONST)) (-2963 ((|#1| $) 23)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-4258 ((|#1| $) 22)) (-3823 ((|#1|) 20 T CONST)) (-3569 (((-876) $) 12)) (-1804 ((|#1| $) 21)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2924 (((-112) $ $) 8)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16))) (((-1066 |#1|) (-141) (-23)) (T -1066)) -((-4378 (*1 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-23))))) -(-13 (-1065 |t#1|) (-10 -8 (-15 -4378 ($) -1480))) +((-2533 (*1 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-23))))) +(-13 (-1065 |t#1|) (-10 -8 (-15 -2533 ($) -1480))) (((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-876)) . T) ((-1065 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-1788 (((-656 (-2 (|:| -1958 $) (|:| -3257 (-656 (-792 |#1| (-878 |#2|)))))) (-656 (-792 |#1| (-878 |#2|)))) NIL)) (-3603 (((-656 $) (-656 (-792 |#1| (-878 |#2|)))) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-112)) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-112) (-112)) NIL)) (-1969 (((-656 (-878 |#2|)) $) NIL)) (-1807 (((-112) $) NIL)) (-4026 (((-112) $) NIL (|has| |#1| (-568)))) (-1613 (((-112) (-792 |#1| (-878 |#2|)) $) NIL) (((-112) $) NIL)) (-1377 (((-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-2487 (((-656 (-2 (|:| |val| (-792 |#1| (-878 |#2|))) (|:| -3988 $))) (-792 |#1| (-878 |#2|)) $) NIL)) (-1795 (((-2 (|:| |under| $) (|:| -2443 $) (|:| |upper| $)) $ (-878 |#2|)) NIL)) (-1808 (((-112) $ (-783)) NIL)) (-1974 (($ (-1 (-112) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-3 (-792 |#1| (-878 |#2|)) "failed") $ (-878 |#2|)) NIL)) (-3886 (($) NIL T CONST)) (-3713 (((-112) $) NIL (|has| |#1| (-568)))) (-2813 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3812 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1884 (((-112) $) NIL (|has| |#1| (-568)))) (-3388 (((-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|))) $ (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) (-1 (-112) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)))) NIL)) (-2311 (((-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|))) $) NIL (|has| |#1| (-568)))) (-4376 (((-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|))) $) NIL (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 (-792 |#1| (-878 |#2|)))) NIL)) (-2860 (($ (-656 (-792 |#1| (-878 |#2|)))) NIL)) (-3593 (((-3 $ "failed") $) NIL)) (-3994 (((-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-792 |#1| (-878 |#2|)) (-1121))))) (-3946 (($ (-792 |#1| (-878 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-792 |#1| (-878 |#2|)) (-1121)))) (($ (-1 (-112) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-3624 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-792 |#1| (-878 |#2|))) (|:| |den| |#1|)) (-792 |#1| (-878 |#2|)) $) NIL (|has| |#1| (-568)))) (-3439 (((-112) (-792 |#1| (-878 |#2|)) $ (-1 (-112) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)))) NIL)) (-2737 (((-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-3686 (((-792 |#1| (-878 |#2|)) (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) $ (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) NIL (-12 (|has| $ (-6 -4465)) (|has| (-792 |#1| (-878 |#2|)) (-1121)))) (((-792 |#1| (-878 |#2|)) (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) $ (-792 |#1| (-878 |#2|))) NIL (|has| $ (-6 -4465))) (((-792 |#1| (-878 |#2|)) (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $ (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) (-1 (-112) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)))) NIL)) (-4405 (((-2 (|:| -1958 (-656 (-792 |#1| (-878 |#2|)))) (|:| -3257 (-656 (-792 |#1| (-878 |#2|))))) $) NIL)) (-4148 (((-112) (-792 |#1| (-878 |#2|)) $) NIL)) (-3773 (((-112) (-792 |#1| (-878 |#2|)) $) NIL)) (-4441 (((-112) (-792 |#1| (-878 |#2|)) $) NIL) (((-112) $) NIL)) (-3966 (((-656 (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-3186 (((-112) (-792 |#1| (-878 |#2|)) $) NIL) (((-112) $) NIL)) (-2620 (((-878 |#2|) $) NIL)) (-3870 (((-112) $ (-783)) NIL)) (-2014 (((-656 (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) (-792 |#1| (-878 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-792 |#1| (-878 |#2|)) (-1121))))) (-4323 (($ (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) $) NIL)) (-2234 (((-656 (-878 |#2|)) $) NIL)) (-2106 (((-112) (-878 |#2|) $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL)) (-2166 (((-3 (-792 |#1| (-878 |#2|)) (-656 $)) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-1540 (((-656 (-2 (|:| |val| (-792 |#1| (-878 |#2|))) (|:| -3988 $))) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-3969 (((-3 (-792 |#1| (-878 |#2|)) "failed") $) NIL)) (-1471 (((-656 $) (-792 |#1| (-878 |#2|)) $) NIL)) (-3179 (((-3 (-112) (-656 $)) (-792 |#1| (-878 |#2|)) $) NIL)) (-3787 (((-656 (-2 (|:| |val| (-112)) (|:| -3988 $))) (-792 |#1| (-878 |#2|)) $) NIL) (((-112) (-792 |#1| (-878 |#2|)) $) NIL)) (-3285 (((-656 $) (-792 |#1| (-878 |#2|)) $) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-656 $)) NIL) (((-656 $) (-792 |#1| (-878 |#2|)) (-656 $)) NIL)) (-2008 (($ (-792 |#1| (-878 |#2|)) $) NIL) (($ (-656 (-792 |#1| (-878 |#2|))) $) NIL)) (-4275 (((-656 (-792 |#1| (-878 |#2|))) $) NIL)) (-1603 (((-112) (-792 |#1| (-878 |#2|)) $) NIL) (((-112) $) NIL)) (-3909 (((-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-1438 (((-112) $ $) NIL)) (-2280 (((-2 (|:| |num| (-792 |#1| (-878 |#2|))) (|:| |den| |#1|)) (-792 |#1| (-878 |#2|)) $) NIL (|has| |#1| (-568)))) (-3579 (((-112) (-792 |#1| (-878 |#2|)) $) NIL) (((-112) $) NIL)) (-1522 (((-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-1450 (((-1141) $) NIL)) (-3581 (((-3 (-792 |#1| (-878 |#2|)) "failed") $) NIL)) (-1541 (((-3 (-792 |#1| (-878 |#2|)) "failed") (-1 (-112) (-792 |#1| (-878 |#2|))) $) NIL)) (-3384 (((-3 $ "failed") $ (-792 |#1| (-878 |#2|))) NIL)) (-1749 (($ $ (-792 |#1| (-878 |#2|))) NIL) (((-656 $) (-792 |#1| (-878 |#2|)) $) NIL) (((-656 $) (-792 |#1| (-878 |#2|)) (-656 $)) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-656 $)) NIL)) (-4320 (((-112) (-1 (-112) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|)))) NIL (-12 (|has| (-792 |#1| (-878 |#2|)) (-319 (-792 |#1| (-878 |#2|)))) (|has| (-792 |#1| (-878 |#2|)) (-1121)))) (($ $ (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) NIL (-12 (|has| (-792 |#1| (-878 |#2|)) (-319 (-792 |#1| (-878 |#2|)))) (|has| (-792 |#1| (-878 |#2|)) (-1121)))) (($ $ (-304 (-792 |#1| (-878 |#2|)))) NIL (-12 (|has| (-792 |#1| (-878 |#2|)) (-319 (-792 |#1| (-878 |#2|)))) (|has| (-792 |#1| (-878 |#2|)) (-1121)))) (($ $ (-656 (-304 (-792 |#1| (-878 |#2|))))) NIL (-12 (|has| (-792 |#1| (-878 |#2|)) (-319 (-792 |#1| (-878 |#2|)))) (|has| (-792 |#1| (-878 |#2|)) (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-3634 (((-783) $) NIL)) (-1460 (((-783) (-792 |#1| (-878 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-792 |#1| (-878 |#2|)) (-1121)))) (((-783) (-1 (-112) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4172 (((-548) $) NIL (|has| (-792 |#1| (-878 |#2|)) (-626 (-548))))) (-3582 (($ (-656 (-792 |#1| (-878 |#2|)))) NIL)) (-3118 (($ $ (-878 |#2|)) NIL)) (-2637 (($ $ (-878 |#2|)) NIL)) (-1584 (($ $) NIL)) (-3317 (($ $ (-878 |#2|)) NIL)) (-3570 (((-876) $) NIL) (((-656 (-792 |#1| (-878 |#2|))) $) NIL)) (-3891 (((-783) $) NIL (|has| (-878 |#2|) (-379)))) (-4055 (((-112) $ $) NIL)) (-3765 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 (-792 |#1| (-878 |#2|))))) "failed") (-656 (-792 |#1| (-878 |#2|))) (-1 (-112) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 (-792 |#1| (-878 |#2|))))) "failed") (-656 (-792 |#1| (-878 |#2|))) (-1 (-112) (-792 |#1| (-878 |#2|))) (-1 (-112) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)))) NIL)) (-2833 (((-112) $ (-1 (-112) (-792 |#1| (-878 |#2|)) (-656 (-792 |#1| (-878 |#2|))))) NIL)) (-3298 (((-656 $) (-792 |#1| (-878 |#2|)) $) NIL) (((-656 $) (-792 |#1| (-878 |#2|)) (-656 $)) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-656 $)) NIL)) (-3321 (((-112) (-1 (-112) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-1583 (((-656 (-878 |#2|)) $) NIL)) (-2392 (((-112) (-792 |#1| (-878 |#2|)) $) NIL)) (-3419 (((-112) (-878 |#2|) $) NIL)) (-2925 (((-112) $ $) NIL)) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-1067 |#1| |#2|) (-13 (-1092 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|))) (-10 -8 (-15 -3603 ((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-112) (-112))))) (-464) (-656 (-1197))) (T -1067)) -((-3603 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-1067 *5 *6))))) -(-13 (-1092 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|))) (-10 -8 (-15 -3603 ((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-112) (-112))))) -((-4334 (((-1 (-576)) (-1115 (-576))) 32)) (-1474 (((-576) (-576) (-576) (-576) (-576)) 29)) (-3544 (((-1 (-576)) |RationalNumber|) NIL)) (-2207 (((-1 (-576)) |RationalNumber|) NIL)) (-2979 (((-1 (-576)) (-576) |RationalNumber|) NIL))) -(((-1068) (-10 -7 (-15 -4334 ((-1 (-576)) (-1115 (-576)))) (-15 -2979 ((-1 (-576)) (-576) |RationalNumber|)) (-15 -3544 ((-1 (-576)) |RationalNumber|)) (-15 -2207 ((-1 (-576)) |RationalNumber|)) (-15 -1474 ((-576) (-576) (-576) (-576) (-576))))) (T -1068)) -((-1474 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1068)))) (-2207 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1068)))) (-3544 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1068)))) (-2979 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1068)) (-5 *3 (-576)))) (-4334 (*1 *2 *3) (-12 (-5 *3 (-1115 (-576))) (-5 *2 (-1 (-576))) (-5 *1 (-1068))))) -(-10 -7 (-15 -4334 ((-1 (-576)) (-1115 (-576)))) (-15 -2979 ((-1 (-576)) (-576) |RationalNumber|)) (-15 -3544 ((-1 (-576)) |RationalNumber|)) (-15 -2207 ((-1 (-576)) |RationalNumber|)) (-15 -1474 ((-576) (-576) (-576) (-576) (-576)))) -((-3570 (((-876) $) NIL) (($ (-576)) 10))) -(((-1069 |#1|) (-10 -8 (-15 -3570 (|#1| (-576))) (-15 -3570 ((-876) |#1|))) (-1070)) (T -1069)) -NIL -(-10 -8 (-15 -3570 (|#1| (-576))) (-15 -3570 ((-876) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-1561 (((-3 $ "failed") $) 37)) (-4193 (((-112) $) 35)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12) (($ (-576)) 33)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3488 (((-112) $ $) NIL)) (-4093 (((-656 (-2 (|:| -1958 $) (|:| -3256 (-656 (-792 |#1| (-878 |#2|)))))) (-656 (-792 |#1| (-878 |#2|)))) NIL)) (-3668 (((-656 $) (-656 (-792 |#1| (-878 |#2|)))) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-112)) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-112) (-112)) NIL)) (-1969 (((-656 (-878 |#2|)) $) NIL)) (-4255 (((-112) $) NIL)) (-2136 (((-112) $) NIL (|has| |#1| (-568)))) (-2899 (((-112) (-792 |#1| (-878 |#2|)) $) NIL) (((-112) $) NIL)) (-3798 (((-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-3444 (((-656 (-2 (|:| |val| (-792 |#1| (-878 |#2|))) (|:| -3987 $))) (-792 |#1| (-878 |#2|)) $) NIL)) (-1795 (((-2 (|:| |under| $) (|:| -4236 $) (|:| |upper| $)) $ (-878 |#2|)) NIL)) (-4264 (((-112) $ (-783)) NIL)) (-1974 (($ (-1 (-112) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-3 (-792 |#1| (-878 |#2|)) "failed") $ (-878 |#2|)) NIL)) (-3404 (($) NIL T CONST)) (-2203 (((-112) $) NIL (|has| |#1| (-568)))) (-3438 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1990 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3740 (((-112) $) NIL (|has| |#1| (-568)))) (-2149 (((-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|))) $ (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) (-1 (-112) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)))) NIL)) (-2239 (((-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|))) $) NIL (|has| |#1| (-568)))) (-2514 (((-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|))) $) NIL (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 (-792 |#1| (-878 |#2|)))) NIL)) (-2859 (($ (-656 (-792 |#1| (-878 |#2|)))) NIL)) (-3592 (((-3 $ "failed") $) NIL)) (-3142 (((-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-792 |#1| (-878 |#2|)) (-1121))))) (-3945 (($ (-792 |#1| (-878 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-792 |#1| (-878 |#2|)) (-1121)))) (($ (-1 (-112) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3891 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-792 |#1| (-878 |#2|))) (|:| |den| |#1|)) (-792 |#1| (-878 |#2|)) $) NIL (|has| |#1| (-568)))) (-1483 (((-112) (-792 |#1| (-878 |#2|)) $ (-1 (-112) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)))) NIL)) (-4022 (((-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-3685 (((-792 |#1| (-878 |#2|)) (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) $ (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-792 |#1| (-878 |#2|)) (-1121)))) (((-792 |#1| (-878 |#2|)) (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) $ (-792 |#1| (-878 |#2|))) NIL (|has| $ (-6 -4464))) (((-792 |#1| (-878 |#2|)) (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $ (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) (-1 (-112) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)))) NIL)) (-1599 (((-2 (|:| -1958 (-656 (-792 |#1| (-878 |#2|)))) (|:| -3256 (-656 (-792 |#1| (-878 |#2|))))) $) NIL)) (-4064 (((-112) (-792 |#1| (-878 |#2|)) $) NIL)) (-1608 (((-112) (-792 |#1| (-878 |#2|)) $) NIL)) (-1921 (((-112) (-792 |#1| (-878 |#2|)) $) NIL) (((-112) $) NIL)) (-3965 (((-656 (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-1918 (((-112) (-792 |#1| (-878 |#2|)) $) NIL) (((-112) $) NIL)) (-2235 (((-878 |#2|) $) NIL)) (-1368 (((-112) $ (-783)) NIL)) (-2425 (((-656 (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) (-792 |#1| (-878 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-792 |#1| (-878 |#2|)) (-1121))))) (-4326 (($ (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) $) NIL)) (-2666 (((-656 (-878 |#2|)) $) NIL)) (-4001 (((-112) (-878 |#2|) $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL)) (-3299 (((-3 (-792 |#1| (-878 |#2|)) (-656 $)) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-3422 (((-656 (-2 (|:| |val| (-792 |#1| (-878 |#2|))) (|:| -3987 $))) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-3968 (((-3 (-792 |#1| (-878 |#2|)) "failed") $) NIL)) (-3955 (((-656 $) (-792 |#1| (-878 |#2|)) $) NIL)) (-1843 (((-3 (-112) (-656 $)) (-792 |#1| (-878 |#2|)) $) NIL)) (-1751 (((-656 (-2 (|:| |val| (-112)) (|:| -3987 $))) (-792 |#1| (-878 |#2|)) $) NIL) (((-112) (-792 |#1| (-878 |#2|)) $) NIL)) (-3651 (((-656 $) (-792 |#1| (-878 |#2|)) $) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-656 $)) NIL) (((-656 $) (-792 |#1| (-878 |#2|)) (-656 $)) NIL)) (-2381 (($ (-792 |#1| (-878 |#2|)) $) NIL) (($ (-656 (-792 |#1| (-878 |#2|))) $) NIL)) (-2795 (((-656 (-792 |#1| (-878 |#2|))) $) NIL)) (-2785 (((-112) (-792 |#1| (-878 |#2|)) $) NIL) (((-112) $) NIL)) (-3640 (((-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-2264 (((-112) $ $) NIL)) (-3196 (((-2 (|:| |num| (-792 |#1| (-878 |#2|))) (|:| |den| |#1|)) (-792 |#1| (-878 |#2|)) $) NIL (|has| |#1| (-568)))) (-3420 (((-112) (-792 |#1| (-878 |#2|)) $) NIL) (((-112) $) NIL)) (-3235 (((-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-1450 (((-1141) $) NIL)) (-3580 (((-3 (-792 |#1| (-878 |#2|)) "failed") $) NIL)) (-3434 (((-3 (-792 |#1| (-878 |#2|)) "failed") (-1 (-112) (-792 |#1| (-878 |#2|))) $) NIL)) (-2101 (((-3 $ "failed") $ (-792 |#1| (-878 |#2|))) NIL)) (-1743 (($ $ (-792 |#1| (-878 |#2|))) NIL) (((-656 $) (-792 |#1| (-878 |#2|)) $) NIL) (((-656 $) (-792 |#1| (-878 |#2|)) (-656 $)) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-656 $)) NIL)) (-3252 (((-112) (-1 (-112) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|)))) NIL (-12 (|has| (-792 |#1| (-878 |#2|)) (-319 (-792 |#1| (-878 |#2|)))) (|has| (-792 |#1| (-878 |#2|)) (-1121)))) (($ $ (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) NIL (-12 (|has| (-792 |#1| (-878 |#2|)) (-319 (-792 |#1| (-878 |#2|)))) (|has| (-792 |#1| (-878 |#2|)) (-1121)))) (($ $ (-304 (-792 |#1| (-878 |#2|)))) NIL (-12 (|has| (-792 |#1| (-878 |#2|)) (-319 (-792 |#1| (-878 |#2|)))) (|has| (-792 |#1| (-878 |#2|)) (-1121)))) (($ $ (-656 (-304 (-792 |#1| (-878 |#2|))))) NIL (-12 (|has| (-792 |#1| (-878 |#2|)) (-319 (-792 |#1| (-878 |#2|)))) (|has| (-792 |#1| (-878 |#2|)) (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2683 (((-783) $) NIL)) (-1460 (((-783) (-792 |#1| (-878 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-792 |#1| (-878 |#2|)) (-1121)))) (((-783) (-1 (-112) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-792 |#1| (-878 |#2|)) (-626 (-548))))) (-3581 (($ (-656 (-792 |#1| (-878 |#2|)))) NIL)) (-2479 (($ $ (-878 |#2|)) NIL)) (-2394 (($ $ (-878 |#2|)) NIL)) (-2582 (($ $) NIL)) (-2665 (($ $ (-878 |#2|)) NIL)) (-3569 (((-876) $) NIL) (((-656 (-792 |#1| (-878 |#2|))) $) NIL)) (-3451 (((-783) $) NIL (|has| (-878 |#2|) (-379)))) (-2399 (((-112) $ $) NIL)) (-1530 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 (-792 |#1| (-878 |#2|))))) "failed") (-656 (-792 |#1| (-878 |#2|))) (-1 (-112) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 (-792 |#1| (-878 |#2|))))) "failed") (-656 (-792 |#1| (-878 |#2|))) (-1 (-112) (-792 |#1| (-878 |#2|))) (-1 (-112) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)))) NIL)) (-3653 (((-112) $ (-1 (-112) (-792 |#1| (-878 |#2|)) (-656 (-792 |#1| (-878 |#2|))))) NIL)) (-3788 (((-656 $) (-792 |#1| (-878 |#2|)) $) NIL) (((-656 $) (-792 |#1| (-878 |#2|)) (-656 $)) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-656 $)) NIL)) (-2708 (((-112) (-1 (-112) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2572 (((-656 (-878 |#2|)) $) NIL)) (-1777 (((-112) (-792 |#1| (-878 |#2|)) $) NIL)) (-2476 (((-112) (-878 |#2|) $) NIL)) (-2924 (((-112) $ $) NIL)) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1067 |#1| |#2|) (-13 (-1092 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|))) (-10 -8 (-15 -3668 ((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-112) (-112))))) (-464) (-656 (-1197))) (T -1067)) +((-3668 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-1067 *5 *6))))) +(-13 (-1092 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|))) (-10 -8 (-15 -3668 ((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-112) (-112))))) +((-3380 (((-1 (-576)) (-1115 (-576))) 32)) (-3989 (((-576) (-576) (-576) (-576) (-576)) 29)) (-4340 (((-1 (-576)) |RationalNumber|) NIL)) (-3701 (((-1 (-576)) |RationalNumber|) NIL)) (-3679 (((-1 (-576)) (-576) |RationalNumber|) NIL))) +(((-1068) (-10 -7 (-15 -3380 ((-1 (-576)) (-1115 (-576)))) (-15 -3679 ((-1 (-576)) (-576) |RationalNumber|)) (-15 -4340 ((-1 (-576)) |RationalNumber|)) (-15 -3701 ((-1 (-576)) |RationalNumber|)) (-15 -3989 ((-576) (-576) (-576) (-576) (-576))))) (T -1068)) +((-3989 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1068)))) (-3701 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1068)))) (-4340 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1068)))) (-3679 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1068)) (-5 *3 (-576)))) (-3380 (*1 *2 *3) (-12 (-5 *3 (-1115 (-576))) (-5 *2 (-1 (-576))) (-5 *1 (-1068))))) +(-10 -7 (-15 -3380 ((-1 (-576)) (-1115 (-576)))) (-15 -3679 ((-1 (-576)) (-576) |RationalNumber|)) (-15 -4340 ((-1 (-576)) |RationalNumber|)) (-15 -3701 ((-1 (-576)) |RationalNumber|)) (-15 -3989 ((-576) (-576) (-576) (-576) (-576)))) +((-3569 (((-876) $) NIL) (($ (-576)) 10))) +(((-1069 |#1|) (-10 -8 (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) (-1070)) (T -1069)) +NIL +(-10 -8 (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-3673 (((-3 $ "failed") $) 37)) (-1351 (((-112) $) 35)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ (-576)) 33)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-1070) (-141)) (T -1070)) -((-3996 (*1 *2) (-12 (-4 *1 (-1070)) (-5 *2 (-783))))) -(-13 (-1079) (-738) (-660 $) (-628 (-576)) (-10 -7 (-15 -3996 ((-783)) -1480) (-6 -4462))) +((-3154 (*1 *2) (-12 (-4 *1 (-1070)) (-5 *2 (-783))))) +(-13 (-1079) (-738) (-660 $) (-628 (-576)) (-10 -7 (-15 -3154 ((-783)) -1480) (-6 -4461))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-3834 (((-419 (-971 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)) 54))) -(((-1071 |#1| |#2|) (-10 -7 (-15 -3834 ((-419 (-971 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)))) (-1197) (-374)) (T -1071)) -((-3834 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-783)) (-4 *6 (-374)) (-5 *2 (-419 (-971 *6))) (-5 *1 (-1071 *5 *6)) (-14 *5 (-1197))))) -(-10 -7 (-15 -3834 ((-419 (-971 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)))) -((-3489 (((-112) $ $) 7)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2925 (((-112) $ $) 8)) (* (($ $ |#1|) 14))) +((-4186 (((-419 (-971 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)) 54))) +(((-1071 |#1| |#2|) (-10 -7 (-15 -4186 ((-419 (-971 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)))) (-1197) (-374)) (T -1071)) +((-4186 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-783)) (-4 *6 (-374)) (-5 *2 (-419 (-971 *6))) (-5 *1 (-1071 *5 *6)) (-14 *5 (-1197))))) +(-10 -7 (-15 -4186 ((-419 (-971 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)))) +((-3488 (((-112) $ $) 7)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2924 (((-112) $ $) 8)) (* (($ $ |#1|) 14))) (((-1072 |#1|) (-141) (-1133)) (T -1072)) ((* (*1 *1 *1 *2) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1133))))) (-13 (-1121) (-10 -8 (-15 * ($ $ |t#1|)))) (((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-2283 (((-112) $) 38)) (-3240 (((-112) $) 17)) (-1689 (((-783) $) 13)) (-1699 (((-783) $) 14)) (-4002 (((-112) $) 30)) (-3830 (((-112) $) 40))) -(((-1073 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1699 ((-783) |#1|)) (-15 -1689 ((-783) |#1|)) (-15 -3830 ((-112) |#1|)) (-15 -2283 ((-112) |#1|)) (-15 -4002 ((-112) |#1|)) (-15 -3240 ((-112) |#1|))) (-1074 |#2| |#3| |#4| |#5| |#6|) (-783) (-783) (-1070) (-243 |#3| |#4|) (-243 |#2| |#4|)) (T -1073)) +((-3226 (((-112) $) 38)) (-4434 (((-112) $) 17)) (-1689 (((-783) $) 13)) (-1699 (((-783) $) 14)) (-3218 (((-112) $) 30)) (-4155 (((-112) $) 40))) +(((-1073 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1699 ((-783) |#1|)) (-15 -1689 ((-783) |#1|)) (-15 -4155 ((-112) |#1|)) (-15 -3226 ((-112) |#1|)) (-15 -3218 ((-112) |#1|)) (-15 -4434 ((-112) |#1|))) (-1074 |#2| |#3| |#4| |#5| |#6|) (-783) (-783) (-1070) (-243 |#3| |#4|) (-243 |#2| |#4|)) (T -1073)) NIL -(-10 -8 (-15 -1699 ((-783) |#1|)) (-15 -1689 ((-783) |#1|)) (-15 -3830 ((-112) |#1|)) (-15 -2283 ((-112) |#1|)) (-15 -4002 ((-112) |#1|)) (-15 -3240 ((-112) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2283 (((-112) $) 56)) (-4367 (((-3 $ "failed") $ $) 20)) (-3240 (((-112) $) 58)) (-1808 (((-112) $ (-783)) 66)) (-3886 (($) 18 T CONST)) (-2030 (($ $) 39 (|has| |#3| (-317)))) (-4093 ((|#4| $ (-576)) 44)) (-3734 (((-783) $) 38 (|has| |#3| (-568)))) (-4274 ((|#3| $ (-576) (-576)) 46)) (-3966 (((-656 |#3|) $) 73 (|has| $ (-6 -4465)))) (-1394 (((-783) $) 37 (|has| |#3| (-568)))) (-2196 (((-656 |#5|) $) 36 (|has| |#3| (-568)))) (-1689 (((-783) $) 50)) (-1699 (((-783) $) 49)) (-3870 (((-112) $ (-783)) 65)) (-4267 (((-576) $) 54)) (-1952 (((-576) $) 52)) (-2014 (((-656 |#3|) $) 74 (|has| $ (-6 -4465)))) (-1612 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1121)) (|has| $ (-6 -4465))))) (-3900 (((-576) $) 53)) (-2569 (((-576) $) 51)) (-2467 (($ (-656 (-656 |#3|))) 59)) (-4323 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-1907 (((-656 (-656 |#3|)) $) 48)) (-1330 (((-112) $ (-783)) 64)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3476 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-568)))) (-4320 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 |#3|) (-656 |#3|)) 80 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-304 |#3|)) 78 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-656 (-304 |#3|))) 77 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121))))) (-4040 (((-112) $ $) 60)) (-3973 (((-112) $) 63)) (-4225 (($) 62)) (-2797 ((|#3| $ (-576) (-576)) 47) ((|#3| $ (-576) (-576) |#3|) 45)) (-4002 (((-112) $) 57)) (-1460 (((-783) |#3| $) 75 (-12 (|has| |#3| (-1121)) (|has| $ (-6 -4465)))) (((-783) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4465)))) (-1870 (($ $) 61)) (-2129 ((|#5| $ (-576)) 43)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-3321 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4465)))) (-3830 (((-112) $) 55)) (-2721 (($) 19 T CONST)) (-2925 (((-112) $ $) 8)) (-3057 (($ $ |#3|) 40 (|has| |#3| (-374)))) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-3503 (((-783) $) 67 (|has| $ (-6 -4465))))) +(-10 -8 (-15 -1699 ((-783) |#1|)) (-15 -1689 ((-783) |#1|)) (-15 -4155 ((-112) |#1|)) (-15 -3226 ((-112) |#1|)) (-15 -3218 ((-112) |#1|)) (-15 -4434 ((-112) |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-3226 (((-112) $) 56)) (-2428 (((-3 $ "failed") $ $) 20)) (-4434 (((-112) $) 58)) (-4264 (((-112) $ (-783)) 66)) (-3404 (($) 18 T CONST)) (-2548 (($ $) 39 (|has| |#3| (-317)))) (-1575 ((|#4| $ (-576)) 44)) (-3733 (((-783) $) 38 (|has| |#3| (-568)))) (-4272 ((|#3| $ (-576) (-576)) 46)) (-3965 (((-656 |#3|) $) 73 (|has| $ (-6 -4464)))) (-1768 (((-783) $) 37 (|has| |#3| (-568)))) (-3595 (((-656 |#5|) $) 36 (|has| |#3| (-568)))) (-1689 (((-783) $) 50)) (-1699 (((-783) $) 49)) (-1368 (((-112) $ (-783)) 65)) (-4017 (((-576) $) 54)) (-3144 (((-576) $) 52)) (-2425 (((-656 |#3|) $) 74 (|has| $ (-6 -4464)))) (-2885 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1121)) (|has| $ (-6 -4464))))) (-3550 (((-576) $) 53)) (-3037 (((-576) $) 51)) (-2466 (($ (-656 (-656 |#3|))) 59)) (-4326 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-2650 (((-656 (-656 |#3|)) $) 48)) (-2883 (((-112) $ (-783)) 64)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3475 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-568)))) (-3252 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 |#3|) (-656 |#3|)) 80 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-304 |#3|)) 78 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-656 (-304 |#3|))) 77 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121))))) (-2252 (((-112) $ $) 60)) (-2940 (((-112) $) 63)) (-3579 (($) 62)) (-2796 ((|#3| $ (-576) (-576)) 47) ((|#3| $ (-576) (-576) |#3|) 45)) (-3218 (((-112) $) 57)) (-1460 (((-783) |#3| $) 75 (-12 (|has| |#3| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4464)))) (-1870 (($ $) 61)) (-4203 ((|#5| $ (-576)) 43)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2708 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4464)))) (-4155 (((-112) $) 55)) (-2721 (($) 19 T CONST)) (-2924 (((-112) $ $) 8)) (-3056 (($ $ |#3|) 40 (|has| |#3| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-3502 (((-783) $) 67 (|has| $ (-6 -4464))))) (((-1074 |#1| |#2| |#3| |#4| |#5|) (-141) (-783) (-783) (-1070) (-243 |t#2| |t#3|) (-243 |t#1| |t#3|)) (T -1074)) -((-4117 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-2467 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *5))) (-4 *5 (-1070)) (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-4002 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-2283 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-4267 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-3900 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-2569 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-1689 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783)))) (-1907 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-656 (-656 *5))))) (-2797 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1070)))) (-4274 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1070)))) (-2797 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *2 *6 *7)) (-4 *2 (-1070)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)))) (-4093 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *6 *2 *7)) (-4 *6 (-1070)) (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6)))) (-2129 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *6 *7 *2)) (-4 *6 (-1070)) (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6)))) (-4117 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-3476 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1074 *3 *4 *2 *5 *6)) (-4 *2 (-1070)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-568)))) (-3057 (*1 *1 *1 *2) (-12 (-4 *1 (-1074 *3 *4 *2 *5 *6)) (-4 *2 (-1070)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-374)))) (-2030 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *2 *4)) (-4 *4 (-317)))) (-3734 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-783)))) (-1394 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-783)))) (-2196 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-656 *7))))) -(-13 (-111 |t#3| |t#3|) (-501 |t#3|) (-10 -8 (-6 -4465) (IF (|has| |t#3| (-174)) (-6 (-729 |t#3|)) |%noBranch|) (-15 -2467 ($ (-656 (-656 |t#3|)))) (-15 -3240 ((-112) $)) (-15 -4002 ((-112) $)) (-15 -2283 ((-112) $)) (-15 -3830 ((-112) $)) (-15 -4267 ((-576) $)) (-15 -3900 ((-576) $)) (-15 -1952 ((-576) $)) (-15 -2569 ((-576) $)) (-15 -1689 ((-783) $)) (-15 -1699 ((-783) $)) (-15 -1907 ((-656 (-656 |t#3|)) $)) (-15 -2797 (|t#3| $ (-576) (-576))) (-15 -4274 (|t#3| $ (-576) (-576))) (-15 -2797 (|t#3| $ (-576) (-576) |t#3|)) (-15 -4093 (|t#4| $ (-576))) (-15 -2129 (|t#5| $ (-576))) (-15 -4117 ($ (-1 |t#3| |t#3|) $)) (-15 -4117 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-568)) (-15 -3476 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-374)) (-15 -3057 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-317)) (-15 -2030 ($ $)) |%noBranch|) (IF (|has| |t#3| (-568)) (PROGN (-15 -3734 ((-783) $)) (-15 -1394 ((-783) $)) (-15 -2196 ((-656 |t#5|) $))) |%noBranch|))) +((-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-2466 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *5))) (-4 *5 (-1070)) (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-4434 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-3218 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-3226 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-4155 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-4017 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-3550 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-3144 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-3037 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-1689 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783)))) (-2650 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-656 (-656 *5))))) (-2796 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1070)))) (-4272 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1070)))) (-2796 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *2 *6 *7)) (-4 *2 (-1070)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)))) (-1575 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *6 *2 *7)) (-4 *6 (-1070)) (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6)))) (-4203 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *6 *7 *2)) (-4 *6 (-1070)) (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6)))) (-4116 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-3475 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1074 *3 *4 *2 *5 *6)) (-4 *2 (-1070)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-568)))) (-3056 (*1 *1 *1 *2) (-12 (-4 *1 (-1074 *3 *4 *2 *5 *6)) (-4 *2 (-1070)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-374)))) (-2548 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *2 *4)) (-4 *4 (-317)))) (-3733 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-783)))) (-1768 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-783)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-656 *7))))) +(-13 (-111 |t#3| |t#3|) (-501 |t#3|) (-10 -8 (-6 -4464) (IF (|has| |t#3| (-174)) (-6 (-729 |t#3|)) |%noBranch|) (-15 -2466 ($ (-656 (-656 |t#3|)))) (-15 -4434 ((-112) $)) (-15 -3218 ((-112) $)) (-15 -3226 ((-112) $)) (-15 -4155 ((-112) $)) (-15 -4017 ((-576) $)) (-15 -3550 ((-576) $)) (-15 -3144 ((-576) $)) (-15 -3037 ((-576) $)) (-15 -1689 ((-783) $)) (-15 -1699 ((-783) $)) (-15 -2650 ((-656 (-656 |t#3|)) $)) (-15 -2796 (|t#3| $ (-576) (-576))) (-15 -4272 (|t#3| $ (-576) (-576))) (-15 -2796 (|t#3| $ (-576) (-576) |t#3|)) (-15 -1575 (|t#4| $ (-576))) (-15 -4203 (|t#5| $ (-576))) (-15 -4116 ($ (-1 |t#3| |t#3|) $)) (-15 -4116 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-568)) (-15 -3475 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-374)) (-15 -3056 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-317)) (-15 -2548 ($ $)) |%noBranch|) (IF (|has| |t#3| (-568)) (PROGN (-15 -3733 ((-783) $)) (-15 -1768 ((-783) $)) (-15 -3595 ((-656 |t#5|) $))) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-625 (-876)) . T) ((-319 |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121))) ((-501 |#3|) . T) ((-526 |#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121))) ((-658 (-576)) . T) ((-658 |#3|) . T) ((-660 |#3|) . T) ((-652 |#3|) |has| |#3| (-174)) ((-729 |#3|) |has| |#3| (-174)) ((-1072 |#3|) . T) ((-1077 |#3|) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2283 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3240 (((-112) $) NIL)) (-1808 (((-112) $ (-783)) NIL)) (-3886 (($) NIL T CONST)) (-2030 (($ $) 47 (|has| |#3| (-317)))) (-4093 (((-245 |#2| |#3|) $ (-576)) 36)) (-3923 (($ (-701 |#3|)) 45)) (-3734 (((-783) $) 49 (|has| |#3| (-568)))) (-4274 ((|#3| $ (-576) (-576)) NIL)) (-3966 (((-656 |#3|) $) NIL (|has| $ (-6 -4465)))) (-1394 (((-783) $) 51 (|has| |#3| (-568)))) (-2196 (((-656 (-245 |#1| |#3|)) $) 55 (|has| |#3| (-568)))) (-1689 (((-783) $) NIL)) (-1699 (((-783) $) NIL)) (-3870 (((-112) $ (-783)) NIL)) (-4267 (((-576) $) NIL)) (-1952 (((-576) $) NIL)) (-2014 (((-656 |#3|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#3| (-1121))))) (-3900 (((-576) $) NIL)) (-2569 (((-576) $) NIL)) (-2467 (($ (-656 (-656 |#3|))) 31)) (-4323 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-1907 (((-656 (-656 |#3|)) $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3476 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-568)))) (-4320 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#3| $ (-576) (-576)) NIL) ((|#3| $ (-576) (-576) |#3|) NIL)) (-2003 (((-135)) 59 (|has| |#3| (-374)))) (-4002 (((-112) $) NIL)) (-1460 (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#3| (-1121)))) (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4172 (((-548) $) 65 (|has| |#3| (-626 (-548))))) (-2129 (((-245 |#1| |#3|) $ (-576)) 40)) (-3570 (((-876) $) 19) (((-701 |#3|) $) 42)) (-4055 (((-112) $ $) NIL)) (-3321 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4465)))) (-3830 (((-112) $) NIL)) (-2721 (($) 16 T CONST)) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-1075 |#1| |#2| |#3|) (-13 (-1074 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-625 (-701 |#3|)) (-10 -8 (IF (|has| |#3| (-374)) (-6 (-1295 |#3|)) |%noBranch|) (IF (|has| |#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (-15 -3923 ($ (-701 |#3|))))) (-783) (-783) (-1070)) (T -1075)) -((-3923 (*1 *1 *2) (-12 (-5 *2 (-701 *5)) (-4 *5 (-1070)) (-5 *1 (-1075 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783))))) -(-13 (-1074 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-625 (-701 |#3|)) (-10 -8 (IF (|has| |#3| (-374)) (-6 (-1295 |#3|)) |%noBranch|) (IF (|has| |#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (-15 -3923 ($ (-701 |#3|))))) -((-3686 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-4117 ((|#10| (-1 |#7| |#3|) |#6|) 34))) -(((-1076 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4117 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3686 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-783) (-783) (-1070) (-243 |#2| |#3|) (-243 |#1| |#3|) (-1074 |#1| |#2| |#3| |#4| |#5|) (-1070) (-243 |#2| |#7|) (-243 |#1| |#7|) (-1074 |#1| |#2| |#7| |#8| |#9|)) (T -1076)) -((-3686 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1070)) (-4 *2 (-1070)) (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *10 (-243 *6 *2)) (-4 *11 (-243 *5 *2)) (-5 *1 (-1076 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1074 *5 *6 *7 *8 *9)) (-4 *12 (-1074 *5 *6 *2 *10 *11)))) (-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1070)) (-4 *10 (-1070)) (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *2 (-1074 *5 *6 *10 *11 *12)) (-5 *1 (-1076 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1074 *5 *6 *7 *8 *9)) (-4 *11 (-243 *6 *10)) (-4 *12 (-243 *5 *10))))) -(-10 -7 (-15 -4117 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3686 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ |#1|) 27))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-3226 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-4434 (((-112) $) NIL)) (-4264 (((-112) $ (-783)) NIL)) (-3404 (($) NIL T CONST)) (-2548 (($ $) 47 (|has| |#3| (-317)))) (-1575 (((-245 |#2| |#3|) $ (-576)) 36)) (-3780 (($ (-701 |#3|)) 45)) (-3733 (((-783) $) 49 (|has| |#3| (-568)))) (-4272 ((|#3| $ (-576) (-576)) NIL)) (-3965 (((-656 |#3|) $) NIL (|has| $ (-6 -4464)))) (-1768 (((-783) $) 51 (|has| |#3| (-568)))) (-3595 (((-656 (-245 |#1| |#3|)) $) 55 (|has| |#3| (-568)))) (-1689 (((-783) $) NIL)) (-1699 (((-783) $) NIL)) (-1368 (((-112) $ (-783)) NIL)) (-4017 (((-576) $) NIL)) (-3144 (((-576) $) NIL)) (-2425 (((-656 |#3|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#3| (-1121))))) (-3550 (((-576) $) NIL)) (-3037 (((-576) $) NIL)) (-2466 (($ (-656 (-656 |#3|))) 31)) (-4326 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2650 (((-656 (-656 |#3|)) $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3475 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-568)))) (-3252 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#3| $ (-576) (-576)) NIL) ((|#3| $ (-576) (-576) |#3|) NIL)) (-2319 (((-135)) 59 (|has| |#3| (-374)))) (-3218 (((-112) $) NIL)) (-1460 (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#3| (-1121)))) (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) 65 (|has| |#3| (-626 (-548))))) (-4203 (((-245 |#1| |#3|) $ (-576)) 40)) (-3569 (((-876) $) 19) (((-701 |#3|) $) 42)) (-2399 (((-112) $ $) NIL)) (-2708 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4464)))) (-4155 (((-112) $) NIL)) (-2721 (($) 16 T CONST)) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1075 |#1| |#2| |#3|) (-13 (-1074 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-625 (-701 |#3|)) (-10 -8 (IF (|has| |#3| (-374)) (-6 (-1295 |#3|)) |%noBranch|) (IF (|has| |#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (-15 -3780 ($ (-701 |#3|))))) (-783) (-783) (-1070)) (T -1075)) +((-3780 (*1 *1 *2) (-12 (-5 *2 (-701 *5)) (-4 *5 (-1070)) (-5 *1 (-1075 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783))))) +(-13 (-1074 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-625 (-701 |#3|)) (-10 -8 (IF (|has| |#3| (-374)) (-6 (-1295 |#3|)) |%noBranch|) (IF (|has| |#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (-15 -3780 ($ (-701 |#3|))))) +((-3685 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-4116 ((|#10| (-1 |#7| |#3|) |#6|) 34))) +(((-1076 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4116 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3685 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-783) (-783) (-1070) (-243 |#2| |#3|) (-243 |#1| |#3|) (-1074 |#1| |#2| |#3| |#4| |#5|) (-1070) (-243 |#2| |#7|) (-243 |#1| |#7|) (-1074 |#1| |#2| |#7| |#8| |#9|)) (T -1076)) +((-3685 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1070)) (-4 *2 (-1070)) (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *10 (-243 *6 *2)) (-4 *11 (-243 *5 *2)) (-5 *1 (-1076 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1074 *5 *6 *7 *8 *9)) (-4 *12 (-1074 *5 *6 *2 *10 *11)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1070)) (-4 *10 (-1070)) (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *2 (-1074 *5 *6 *10 *11 *12)) (-5 *1 (-1076 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1074 *5 *6 *7 *8 *9)) (-4 *11 (-243 *6 *10)) (-4 *12 (-243 *5 *10))))) +(-10 -7 (-15 -4116 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3685 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ |#1|) 27))) (((-1077 |#1|) (-141) (-1079)) (T -1077)) NIL (-13 (-21) (-1072 |t#1|)) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-1072 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-3055 (((-1197) $) 11)) (-3534 ((|#1| $) 12)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-2337 (($ (-1197) |#1|) 10)) (-3570 (((-876) $) 22 (|has| |#1| (-1121)))) (-4055 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2925 (((-112) $ $) 17 (|has| |#1| (-1121))))) -(((-1078 |#1| |#2|) (-13 (-1238) (-10 -8 (-15 -2337 ($ (-1197) |#1|)) (-15 -3055 ((-1197) $)) (-15 -3534 (|#1| $)) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|))) (-1114 |#2|) (-1238)) (T -1078)) -((-2337 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-4 *4 (-1238)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1114 *4)))) (-3055 (*1 *2 *1) (-12 (-4 *4 (-1238)) (-5 *2 (-1197)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1114 *4)))) (-3534 (*1 *2 *1) (-12 (-4 *2 (-1114 *3)) (-5 *1 (-1078 *2 *3)) (-4 *3 (-1238))))) -(-13 (-1238) (-10 -8 (-15 -2337 ($ (-1197) |#1|)) (-15 -3055 ((-1197) $)) (-15 -3534 (|#1| $)) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-3054 (((-1197) $) 11)) (-3533 ((|#1| $) 12)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-2337 (($ (-1197) |#1|) 10)) (-3569 (((-876) $) 22 (|has| |#1| (-1121)))) (-2399 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2924 (((-112) $ $) 17 (|has| |#1| (-1121))))) +(((-1078 |#1| |#2|) (-13 (-1238) (-10 -8 (-15 -2337 ($ (-1197) |#1|)) (-15 -3054 ((-1197) $)) (-15 -3533 (|#1| $)) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|))) (-1114 |#2|) (-1238)) (T -1078)) +((-2337 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-4 *4 (-1238)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1114 *4)))) (-3054 (*1 *2 *1) (-12 (-4 *4 (-1238)) (-5 *2 (-1197)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1114 *4)))) (-3533 (*1 *2 *1) (-12 (-4 *2 (-1114 *3)) (-5 *1 (-1078 *2 *3)) (-4 *3 (-1238))))) +(-13 (-1238) (-10 -8 (-15 -2337 ($ (-1197) |#1|)) (-15 -3054 ((-1197) $)) (-15 -3533 (|#1| $)) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-1079) (-141)) (T -1079)) NIL (-13 (-21) (-1133)) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-2326 (($ $) 17)) (-4300 (($ $) 25)) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 55)) (-1381 (($ $) 27)) (-2393 (($ $) 12)) (-2443 (($ $) 43)) (-4172 (((-390) $) NIL) (((-227) $) NIL) (((-907 (-390)) $) 36)) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 31) (($ (-576)) NIL) (($ (-419 (-576))) 31)) (-3996 (((-783)) 9)) (-4118 (($ $) 45))) -(((-1080 |#1|) (-10 -8 (-15 -4300 (|#1| |#1|)) (-15 -2326 (|#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -1381 (|#1| |#1|)) (-15 -1840 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -4172 ((-907 (-390)) |#1|)) (-15 -3570 (|#1| (-419 (-576)))) (-15 -3570 (|#1| (-576))) (-15 -4172 ((-227) |#1|)) (-15 -4172 ((-390) |#1|)) (-15 -3570 (|#1| (-419 (-576)))) (-15 -3570 (|#1| |#1|)) (-15 -3996 ((-783))) (-15 -3570 (|#1| (-576))) (-15 -3570 ((-876) |#1|))) (-1081)) (T -1080)) -((-3996 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1080 *3)) (-4 *3 (-1081))))) -(-10 -8 (-15 -4300 (|#1| |#1|)) (-15 -2326 (|#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -1381 (|#1| |#1|)) (-15 -1840 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -4172 ((-907 (-390)) |#1|)) (-15 -3570 (|#1| (-419 (-576)))) (-15 -3570 (|#1| (-576))) (-15 -4172 ((-227) |#1|)) (-15 -4172 ((-390) |#1|)) (-15 -3570 (|#1| (-419 (-576)))) (-15 -3570 (|#1| |#1|)) (-15 -3996 ((-783))) (-15 -3570 (|#1| (-576))) (-15 -3570 ((-876) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2575 (((-576) $) 98)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 47)) (-2757 (($ $) 46)) (-3788 (((-112) $) 44)) (-2326 (($ $) 96)) (-4367 (((-3 $ "failed") $ $) 20)) (-2487 (($ $) 81)) (-3921 (((-430 $) $) 80)) (-1839 (($ $) 106)) (-4016 (((-112) $ $) 65)) (-3308 (((-576) $) 123)) (-3886 (($) 18 T CONST)) (-4300 (($ $) 95)) (-1572 (((-3 (-576) "failed") $) 111) (((-3 (-419 (-576)) "failed") $) 108)) (-2860 (((-576) $) 112) (((-419 (-576)) $) 109)) (-3429 (($ $ $) 61)) (-1561 (((-3 $ "failed") $) 37)) (-3441 (($ $ $) 62)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) 57)) (-4249 (((-112) $) 79)) (-2087 (((-112) $) 121)) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 102)) (-4193 (((-112) $) 35)) (-2121 (($ $ (-576)) 105)) (-1381 (($ $) 101)) (-1634 (((-112) $) 122)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3125 (($ $ $) 115)) (-3133 (($ $ $) 116)) (-3458 (($ $ $) 52) (($ (-656 $)) 51)) (-3699 (((-1179) $) 10)) (-2050 (($ $) 78)) (-1450 (((-1141) $) 11)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-2393 (($ $) 97)) (-2443 (($ $) 99)) (-1828 (((-430 $) $) 82)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3476 (((-3 $ "failed") $ $) 48)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1967 (((-783) $) 64)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 63)) (-4172 (((-390) $) 114) (((-227) $) 113) (((-907 (-390)) $) 103)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-576)) 110) (($ (-419 (-576))) 107)) (-3996 (((-783)) 32 T CONST)) (-4118 (($ $) 100)) (-4055 (((-112) $ $) 6)) (-2672 (((-112) $ $) 45)) (-2122 (($ $) 124)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2992 (((-112) $ $) 117)) (-2964 (((-112) $ $) 119)) (-2925 (((-112) $ $) 8)) (-2978 (((-112) $ $) 118)) (-2950 (((-112) $ $) 120)) (-3057 (($ $ $) 73)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 104)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) +((-2408 (($ $) 17)) (-3065 (($ $) 25)) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 55)) (-2738 (($ $) 27)) (-1788 (($ $) 12)) (-4236 (($ $) 43)) (-4171 (((-390) $) NIL) (((-227) $) NIL) (((-907 (-390)) $) 36)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 31) (($ (-576)) NIL) (($ (-419 (-576))) 31)) (-3154 (((-783)) 9)) (-1810 (($ $) 45))) +(((-1080 |#1|) (-10 -8 (-15 -3065 (|#1| |#1|)) (-15 -2408 (|#1| |#1|)) (-15 -1788 (|#1| |#1|)) (-15 -4236 (|#1| |#1|)) (-15 -1810 (|#1| |#1|)) (-15 -2738 (|#1| |#1|)) (-15 -3325 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -4171 ((-907 (-390)) |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3569 (|#1| (-576))) (-15 -4171 ((-227) |#1|)) (-15 -4171 ((-390) |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3569 (|#1| |#1|)) (-15 -3154 ((-783))) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) (-1081)) (T -1080)) +((-3154 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1080 *3)) (-4 *3 (-1081))))) +(-10 -8 (-15 -3065 (|#1| |#1|)) (-15 -2408 (|#1| |#1|)) (-15 -1788 (|#1| |#1|)) (-15 -4236 (|#1| |#1|)) (-15 -1810 (|#1| |#1|)) (-15 -2738 (|#1| |#1|)) (-15 -3325 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -4171 ((-907 (-390)) |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3569 (|#1| (-576))) (-15 -4171 ((-227) |#1|)) (-15 -4171 ((-390) |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3569 (|#1| |#1|)) (-15 -3154 ((-783))) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-3110 (((-576) $) 98)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-4195 (($ $) 46)) (-1760 (((-112) $) 44)) (-2408 (($ $) 96)) (-2428 (((-3 $ "failed") $ $) 20)) (-3444 (($ $) 81)) (-3760 (((-430 $) $) 80)) (-1840 (($ $) 106)) (-3330 (((-112) $ $) 65)) (-3906 (((-576) $) 123)) (-3404 (($) 18 T CONST)) (-3065 (($ $) 95)) (-1572 (((-3 (-576) "failed") $) 111) (((-3 (-419 (-576)) "failed") $) 108)) (-2859 (((-576) $) 112) (((-419 (-576)) $) 109)) (-3428 (($ $ $) 61)) (-3673 (((-3 $ "failed") $) 37)) (-3440 (($ $ $) 62)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) 57)) (-3833 (((-112) $) 79)) (-1866 (((-112) $) 121)) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 102)) (-1351 (((-112) $) 35)) (-4131 (($ $ (-576)) 105)) (-2738 (($ $) 101)) (-3137 (((-112) $) 122)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3124 (($ $ $) 115)) (-1441 (($ $ $) 116)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-2046 (((-1179) $) 10)) (-2050 (($ $) 78)) (-1450 (((-1141) $) 11)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3497 (($ $ $) 54) (($ (-656 $)) 53)) (-1788 (($ $) 97)) (-4236 (($ $) 99)) (-1828 (((-430 $) $) 82)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3475 (((-3 $ "failed") $ $) 48)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1979 (((-783) $) 64)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 63)) (-4171 (((-390) $) 114) (((-227) $) 113) (((-907 (-390)) $) 103)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-576)) 110) (($ (-419 (-576))) 107)) (-3154 (((-783)) 32 T CONST)) (-1810 (($ $) 100)) (-2399 (((-112) $ $) 6)) (-1505 (((-112) $ $) 45)) (-4143 (($ $) 124)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2990 (((-112) $ $) 117)) (-2962 (((-112) $ $) 119)) (-2924 (((-112) $ $) 8)) (-2978 (((-112) $ $) 118)) (-2949 (((-112) $ $) 120)) (-3056 (($ $ $) 73)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 104)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) (((-1081) (-141)) (T -1081)) -((-2122 (*1 *1 *1) (-4 *1 (-1081))) (-1381 (*1 *1 *1) (-4 *1 (-1081))) (-4118 (*1 *1 *1) (-4 *1 (-1081))) (-2443 (*1 *1 *1) (-4 *1 (-1081))) (-2575 (*1 *2 *1) (-12 (-4 *1 (-1081)) (-5 *2 (-576)))) (-2393 (*1 *1 *1) (-4 *1 (-1081))) (-2326 (*1 *1 *1) (-4 *1 (-1081))) (-4300 (*1 *1 *1) (-4 *1 (-1081)))) -(-13 (-374) (-860) (-1043) (-1059 (-576)) (-1059 (-419 (-576))) (-1023) (-626 (-907 (-390))) (-901 (-390)) (-148) (-10 -8 (-15 -1381 ($ $)) (-15 -4118 ($ $)) (-15 -2443 ($ $)) (-15 -2575 ((-576) $)) (-15 -2393 ($ $)) (-15 -2326 ($ $)) (-15 -4300 ($ $)) (-15 -2122 ($ $)))) +((-4143 (*1 *1 *1) (-4 *1 (-1081))) (-2738 (*1 *1 *1) (-4 *1 (-1081))) (-1810 (*1 *1 *1) (-4 *1 (-1081))) (-4236 (*1 *1 *1) (-4 *1 (-1081))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-1081)) (-5 *2 (-576)))) (-1788 (*1 *1 *1) (-4 *1 (-1081))) (-2408 (*1 *1 *1) (-4 *1 (-1081))) (-3065 (*1 *1 *1) (-4 *1 (-1081)))) +(-13 (-374) (-860) (-1043) (-1059 (-576)) (-1059 (-419 (-576))) (-1023) (-626 (-907 (-390))) (-901 (-390)) (-148) (-10 -8 (-15 -2738 ($ $)) (-15 -1810 ($ $)) (-15 -4236 ($ $)) (-15 -3110 ((-576) $)) (-15 -1788 ($ $)) (-15 -2408 ($ $)) (-15 -3065 ($ $)) (-15 -4143 ($ $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-907 (-390))) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-861) . T) ((-864) . T) ((-901 (-390)) . T) ((-939) . T) ((-1023) . T) ((-1043) . T) ((-1059 (-419 (-576))) . T) ((-1059 (-576)) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) |#2| $) 26)) (-2098 ((|#1| $) 10)) (-3308 (((-576) |#2| $) 116)) (-2607 (((-3 $ "failed") |#2| (-940)) 75)) (-4250 ((|#1| $) 31)) (-3111 ((|#1| |#2| $ |#1|) 40)) (-3823 (($ $) 28)) (-1561 (((-3 |#2| "failed") |#2| $) 111)) (-2087 (((-112) |#2| $) NIL)) (-1634 (((-112) |#2| $) NIL)) (-2523 (((-112) |#2| $) 27)) (-1447 ((|#1| $) 117)) (-4240 ((|#1| $) 30)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3867 ((|#2| $) 102)) (-3570 (((-876) $) 92)) (-4055 (((-112) $ $) NIL)) (-4166 ((|#1| |#2| $ |#1|) 41)) (-2111 (((-656 $) |#2|) 77)) (-2925 (((-112) $ $) 97))) -(((-1082 |#1| |#2|) (-13 (-1089 |#1| |#2|) (-10 -8 (-15 -4240 (|#1| $)) (-15 -4250 (|#1| $)) (-15 -2098 (|#1| $)) (-15 -1447 (|#1| $)) (-15 -3823 ($ $)) (-15 -2523 ((-112) |#2| $)) (-15 -3111 (|#1| |#2| $ |#1|)))) (-13 (-860) (-374)) (-1264 |#1|)) (T -1082)) -((-3111 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-4240 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-4250 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-2098 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-1447 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-3823 (*1 *1 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-2523 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-860) (-374))) (-5 *2 (-112)) (-5 *1 (-1082 *4 *3)) (-4 *3 (-1264 *4))))) -(-13 (-1089 |#1| |#2|) (-10 -8 (-15 -4240 (|#1| $)) (-15 -4250 (|#1| $)) (-15 -2098 (|#1| $)) (-15 -1447 (|#1| $)) (-15 -3823 ($ $)) (-15 -2523 ((-112) |#2| $)) (-15 -3111 (|#1| |#2| $ |#1|)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-3475 (($ $ $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-4417 (($ $ $ $) NIL)) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-4016 (((-112) $ $) NIL)) (-3308 (((-576) $) NIL)) (-2745 (($ $ $) NIL)) (-3886 (($) NIL T CONST)) (-3800 (($ (-1197)) 10) (($ (-576)) 7)) (-1572 (((-3 (-576) "failed") $) NIL)) (-2860 (((-576) $) NIL)) (-3429 (($ $ $) NIL)) (-2204 (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-3104 (((-3 (-419 (-576)) "failed") $) NIL)) (-2545 (((-112) $) NIL)) (-2568 (((-419 (-576)) $) NIL)) (-1836 (($) NIL) (($ $) NIL)) (-3441 (($ $ $) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-4249 (((-112) $) NIL)) (-3271 (($ $ $ $) NIL)) (-3941 (($ $ $) NIL)) (-2087 (((-112) $) NIL)) (-1432 (($ $ $) NIL)) (-1840 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL)) (-4193 (((-112) $) NIL)) (-2946 (((-112) $) NIL)) (-2240 (((-3 $ "failed") $) NIL)) (-1634 (((-112) $) NIL)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4379 (($ $ $ $) NIL)) (-3125 (($ $ $) NIL)) (-3133 (($ $ $) NIL)) (-2242 (($ $) NIL)) (-2437 (($ $) NIL)) (-3913 (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-3893 (($ $ $) NIL)) (-3540 (($) NIL T CONST)) (-1373 (($ $) NIL)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1803 (($ $) NIL)) (-1828 (((-430 $) $) NIL)) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3644 (((-112) $) NIL)) (-1967 (((-783) $) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-2775 (($ $) NIL) (($ $ (-783)) NIL)) (-1806 (($ $) NIL)) (-1870 (($ $) NIL)) (-4172 (((-576) $) 16) (((-548) $) NIL) (((-907 (-576)) $) NIL) (((-390) $) NIL) (((-227) $) NIL) (($ (-1197)) 9)) (-3570 (((-876) $) 23) (($ (-576)) 6) (($ $) NIL) (($ (-576)) 6)) (-3996 (((-783)) NIL T CONST)) (-3586 (((-112) $ $) NIL)) (-2979 (($ $ $) NIL)) (-4055 (((-112) $ $) NIL)) (-3516 (($) NIL)) (-2672 (((-112) $ $) NIL)) (-1701 (($ $ $ $) NIL)) (-2122 (($ $) NIL)) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2020 (($ $) NIL) (($ $ (-783)) NIL)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) NIL)) (-3044 (($ $) 22) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-576) $) NIL))) -(((-1083) (-13 (-557) (-630 (-1197)) (-10 -8 (-6 -4452) (-6 -4457) (-6 -4453) (-15 -3800 ($ (-1197))) (-15 -3800 ($ (-576)))))) (T -1083)) -((-3800 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1083)))) (-3800 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1083))))) -(-13 (-557) (-630 (-1197)) (-10 -8 (-6 -4452) (-6 -4457) (-6 -4453) (-15 -3800 ($ (-1197))) (-15 -3800 ($ (-576))))) -((-3489 (((-112) $ $) NIL (-2760 (|has| (-52) (-102)) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-102))))) (-4128 (($) NIL) (($ (-656 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))))) NIL)) (-2047 (((-1293) $ (-1197) (-1197)) NIL (|has| $ (-6 -4466)))) (-1808 (((-112) $ (-783)) NIL)) (-4282 (($) 9)) (-3756 (((-52) $ (-1197) (-52)) NIL)) (-3359 (($ $) 32)) (-2787 (($ $) 30)) (-2358 (($ $) 29)) (-3037 (($ $) 31)) (-4443 (($ $) 35)) (-3102 (($ $) 36)) (-3683 (($ $) 28)) (-1843 (($ $) 33)) (-2300 (($ (-1 (-112) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $) 27 (|has| $ (-6 -4465)))) (-2197 (((-3 (-52) "failed") (-1197) $) 43)) (-3886 (($) NIL T CONST)) (-3727 (($) 7)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1121))))) (-1671 (($ (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) $) 53 (|has| $ (-6 -4465))) (($ (-1 (-112) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465))) (((-3 (-52) "failed") (-1197) $) NIL)) (-3946 (($ (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1121)))) (($ (-1 (-112) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465)))) (-3686 (((-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $ (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1121)))) (((-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $ (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) NIL (|has| $ (-6 -4465))) (((-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465)))) (-2090 (((-3 (-1179) "failed") $ (-1179) (-576)) 72)) (-4335 (((-52) $ (-1197) (-52)) NIL (|has| $ (-6 -4466)))) (-4274 (((-52) $ (-1197)) NIL)) (-3966 (((-656 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465))) (((-656 (-52)) $) NIL (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-1197) $) NIL (|has| (-1197) (-861)))) (-2014 (((-656 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $) 38 (|has| $ (-6 -4465))) (((-656 (-52)) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1121)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-52) (-1121))))) (-2137 (((-1197) $) NIL (|has| (-1197) (-861)))) (-4323 (($ (-1 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL (-2760 (|has| (-52) (-1121)) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1121))))) (-3203 (((-656 (-1197)) $) NIL)) (-4008 (((-112) (-1197) $) NIL)) (-1597 (((-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) $) NIL)) (-1901 (($ (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) $) 46)) (-4234 (((-656 (-1197)) $) NIL)) (-3354 (((-112) (-1197) $) NIL)) (-1450 (((-1141) $) NIL (-2760 (|has| (-52) (-1121)) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1121))))) (-2426 (((-390) $ (-1197)) 52)) (-3378 (((-656 (-1179)) $ (-1179)) 74)) (-3581 (((-52) $) NIL (|has| (-1197) (-861)))) (-1541 (((-3 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) "failed") (-1 (-112) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $) NIL)) (-4046 (($ $ (-52)) NIL (|has| $ (-6 -4466)))) (-3449 (((-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) $) NIL)) (-4320 (((-112) (-1 (-112) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))))) NIL (-12 (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-319 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1121)))) (($ $ (-304 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))))) NIL (-12 (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-319 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1121)))) (($ $ (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) NIL (-12 (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-319 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1121)))) (($ $ (-656 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) (-656 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))))) NIL (-12 (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-319 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1121)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-52) (-1121))))) (-2281 (((-656 (-52)) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 (((-52) $ (-1197)) NIL) (((-52) $ (-1197) (-52)) NIL)) (-2271 (($) NIL) (($ (-656 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))))) NIL)) (-2256 (($ $ (-1197)) 54)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465))) (((-783) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-1121)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-52) (-1121)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4172 (((-548) $) NIL (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-626 (-548))))) (-3582 (($ (-656 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))))) 40)) (-1615 (($ $ $) 41)) (-3570 (((-876) $) NIL (-2760 (|has| (-52) (-625 (-876))) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-625 (-876)))))) (-1994 (($ $ (-1197) (-390)) 50)) (-2373 (($ $ (-1197) (-390)) 51)) (-4055 (((-112) $ $) NIL (-2760 (|has| (-52) (-102)) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-102))))) (-3943 (($ (-656 (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))))) NIL)) (-3321 (((-112) (-1 (-112) (-2 (|:| -4301 (-1197)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) NIL (-2760 (|has| (-52) (-102)) (|has| (-2 (|:| -4301 (-1197)) (|:| -4440 (-52))) (-102))))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-1084) (-13 (-1214 (-1197) (-52)) (-10 -8 (-15 -1615 ($ $ $)) (-15 -3727 ($)) (-15 -3683 ($ $)) (-15 -2358 ($ $)) (-15 -2787 ($ $)) (-15 -3037 ($ $)) (-15 -1843 ($ $)) (-15 -3359 ($ $)) (-15 -4443 ($ $)) (-15 -3102 ($ $)) (-15 -1994 ($ $ (-1197) (-390))) (-15 -2373 ($ $ (-1197) (-390))) (-15 -2426 ((-390) $ (-1197))) (-15 -3378 ((-656 (-1179)) $ (-1179))) (-15 -2256 ($ $ (-1197))) (-15 -4282 ($)) (-15 -2090 ((-3 (-1179) "failed") $ (-1179) (-576))) (-6 -4465)))) (T -1084)) -((-1615 (*1 *1 *1 *1) (-5 *1 (-1084))) (-3727 (*1 *1) (-5 *1 (-1084))) (-3683 (*1 *1 *1) (-5 *1 (-1084))) (-2358 (*1 *1 *1) (-5 *1 (-1084))) (-2787 (*1 *1 *1) (-5 *1 (-1084))) (-3037 (*1 *1 *1) (-5 *1 (-1084))) (-1843 (*1 *1 *1) (-5 *1 (-1084))) (-3359 (*1 *1 *1) (-5 *1 (-1084))) (-4443 (*1 *1 *1) (-5 *1 (-1084))) (-3102 (*1 *1 *1) (-5 *1 (-1084))) (-1994 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-390)) (-5 *1 (-1084)))) (-2373 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-390)) (-5 *1 (-1084)))) (-2426 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-390)) (-5 *1 (-1084)))) (-3378 (*1 *2 *1 *3) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1084)) (-5 *3 (-1179)))) (-2256 (*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1084)))) (-4282 (*1 *1) (-5 *1 (-1084))) (-2090 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1179)) (-5 *3 (-576)) (-5 *1 (-1084))))) -(-13 (-1214 (-1197) (-52)) (-10 -8 (-15 -1615 ($ $ $)) (-15 -3727 ($)) (-15 -3683 ($ $)) (-15 -2358 ($ $)) (-15 -2787 ($ $)) (-15 -3037 ($ $)) (-15 -1843 ($ $)) (-15 -3359 ($ $)) (-15 -4443 ($ $)) (-15 -3102 ($ $)) (-15 -1994 ($ $ (-1197) (-390))) (-15 -2373 ($ $ (-1197) (-390))) (-15 -2426 ((-390) $ (-1197))) (-15 -3378 ((-656 (-1179)) $ (-1179))) (-15 -2256 ($ $ (-1197))) (-15 -4282 ($)) (-15 -2090 ((-3 (-1179) "failed") $ (-1179) (-576))) (-6 -4465))) -((-4426 (($ $) 46)) (-3048 (((-112) $ $) 82)) (-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-971 (-419 (-576)))) 247) (((-3 $ "failed") (-971 (-576))) 246) (((-3 $ "failed") (-971 |#2|)) 249)) (-2860 ((|#2| $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL) ((|#4| $) NIL) (($ (-971 (-419 (-576)))) 235) (($ (-971 (-576))) 231) (($ (-971 |#2|)) 255)) (-2114 (($ $) NIL) (($ $ |#4|) 44)) (-3439 (((-112) $ $) 131) (((-112) $ (-656 $)) 135)) (-4339 (((-112) $) 60)) (-2865 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 125)) (-1933 (($ $) 160)) (-3508 (($ $) 156)) (-3608 (($ $) 155)) (-2135 (($ $ $) 87) (($ $ $ |#4|) 92)) (-2678 (($ $ $) 90) (($ $ $ |#4|) 94)) (-3186 (((-112) $ $) 143) (((-112) $ (-656 $)) 144)) (-2620 ((|#4| $) 32)) (-2589 (($ $ $) 128)) (-3592 (((-112) $) 59)) (-2269 (((-783) $) 35)) (-3199 (($ $) 174)) (-2415 (($ $) 171)) (-4211 (((-656 $) $) 72)) (-4390 (($ $) 62)) (-4068 (($ $) 167)) (-2272 (((-656 $) $) 69)) (-1543 (($ $) 64)) (-2091 ((|#2| $) NIL) (($ $ |#4|) 39)) (-3124 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2066 (-783))) $ $) 130)) (-3491 (((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -2715 $) (|:| -3624 $)) $ $) 126) (((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -2715 $) (|:| -3624 $)) $ $ |#4|) 127)) (-2315 (((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -3624 $)) $ $) 121) (((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -3624 $)) $ $ |#4|) 123)) (-2560 (($ $ $) 97) (($ $ $ |#4|) 106)) (-1439 (($ $ $) 98) (($ $ $ |#4|) 107)) (-1596 (((-656 $) $) 54)) (-1603 (((-112) $ $) 140) (((-112) $ (-656 $)) 141)) (-3909 (($ $ $) 116)) (-3540 (($ $) 37)) (-1438 (((-112) $ $) 80)) (-3579 (((-112) $ $) 136) (((-112) $ (-656 $)) 138)) (-1522 (($ $ $) 112)) (-3811 (($ $) 41)) (-3498 ((|#2| |#2| $) 164) (($ (-656 $)) NIL) (($ $ $) NIL)) (-1880 (($ $ |#2|) NIL) (($ $ $) 153)) (-4357 (($ $ |#2|) 148) (($ $ $) 151)) (-2132 (($ $) 49)) (-1769 (($ $) 55)) (-4172 (((-907 (-390)) $) NIL) (((-907 (-576)) $) NIL) (((-548) $) NIL) (($ (-971 (-419 (-576)))) 237) (($ (-971 (-576))) 233) (($ (-971 |#2|)) 248) (((-1179) $) 279) (((-971 |#2|) $) 184)) (-3570 (((-876) $) 29) (($ (-576)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-971 |#2|) $) 185) (($ (-419 (-576))) NIL) (($ $) NIL)) (-2448 (((-3 (-112) "failed") $ $) 79))) -(((-1085 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3570 (|#1| |#1|)) (-15 -3498 (|#1| |#1| |#1|)) (-15 -3498 (|#1| (-656 |#1|))) (-15 -3570 (|#1| (-419 (-576)))) (-15 -3570 ((-971 |#2|) |#1|)) (-15 -4172 ((-971 |#2|) |#1|)) (-15 -4172 ((-1179) |#1|)) (-15 -3199 (|#1| |#1|)) (-15 -2415 (|#1| |#1|)) (-15 -4068 (|#1| |#1|)) (-15 -1933 (|#1| |#1|)) (-15 -3498 (|#2| |#2| |#1|)) (-15 -1880 (|#1| |#1| |#1|)) (-15 -4357 (|#1| |#1| |#1|)) (-15 -1880 (|#1| |#1| |#2|)) (-15 -4357 (|#1| |#1| |#2|)) (-15 -3508 (|#1| |#1|)) (-15 -3608 (|#1| |#1|)) (-15 -4172 (|#1| (-971 |#2|))) (-15 -2860 (|#1| (-971 |#2|))) (-15 -1572 ((-3 |#1| "failed") (-971 |#2|))) (-15 -4172 (|#1| (-971 (-576)))) (-15 -2860 (|#1| (-971 (-576)))) (-15 -1572 ((-3 |#1| "failed") (-971 (-576)))) (-15 -4172 (|#1| (-971 (-419 (-576))))) (-15 -2860 (|#1| (-971 (-419 (-576))))) (-15 -1572 ((-3 |#1| "failed") (-971 (-419 (-576))))) (-15 -3909 (|#1| |#1| |#1|)) (-15 -1522 (|#1| |#1| |#1|)) (-15 -3124 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2066 (-783))) |#1| |#1|)) (-15 -2589 (|#1| |#1| |#1|)) (-15 -2865 ((-2 (|:| -2715 |#1|) (|:| -3624 |#1|)) |#1| |#1|)) (-15 -3491 ((-2 (|:| -1714 |#1|) (|:| |gap| (-783)) (|:| -2715 |#1|) (|:| -3624 |#1|)) |#1| |#1| |#4|)) (-15 -3491 ((-2 (|:| -1714 |#1|) (|:| |gap| (-783)) (|:| -2715 |#1|) (|:| -3624 |#1|)) |#1| |#1|)) (-15 -2315 ((-2 (|:| -1714 |#1|) (|:| |gap| (-783)) (|:| -3624 |#1|)) |#1| |#1| |#4|)) (-15 -2315 ((-2 (|:| -1714 |#1|) (|:| |gap| (-783)) (|:| -3624 |#1|)) |#1| |#1|)) (-15 -1439 (|#1| |#1| |#1| |#4|)) (-15 -2560 (|#1| |#1| |#1| |#4|)) (-15 -1439 (|#1| |#1| |#1|)) (-15 -2560 (|#1| |#1| |#1|)) (-15 -2678 (|#1| |#1| |#1| |#4|)) (-15 -2135 (|#1| |#1| |#1| |#4|)) (-15 -2678 (|#1| |#1| |#1|)) (-15 -2135 (|#1| |#1| |#1|)) (-15 -3186 ((-112) |#1| (-656 |#1|))) (-15 -3186 ((-112) |#1| |#1|)) (-15 -1603 ((-112) |#1| (-656 |#1|))) (-15 -1603 ((-112) |#1| |#1|)) (-15 -3579 ((-112) |#1| (-656 |#1|))) (-15 -3579 ((-112) |#1| |#1|)) (-15 -3439 ((-112) |#1| (-656 |#1|))) (-15 -3439 ((-112) |#1| |#1|)) (-15 -3048 ((-112) |#1| |#1|)) (-15 -1438 ((-112) |#1| |#1|)) (-15 -2448 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4211 ((-656 |#1|) |#1|)) (-15 -2272 ((-656 |#1|) |#1|)) (-15 -1543 (|#1| |#1|)) (-15 -4390 (|#1| |#1|)) (-15 -4339 ((-112) |#1|)) (-15 -3592 ((-112) |#1|)) (-15 -2114 (|#1| |#1| |#4|)) (-15 -2091 (|#1| |#1| |#4|)) (-15 -1769 (|#1| |#1|)) (-15 -1596 ((-656 |#1|) |#1|)) (-15 -2132 (|#1| |#1|)) (-15 -4426 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3540 (|#1| |#1|)) (-15 -2269 ((-783) |#1|)) (-15 -2620 (|#4| |#1|)) (-15 -4172 ((-548) |#1|)) (-15 -4172 ((-907 (-576)) |#1|)) (-15 -4172 ((-907 (-390)) |#1|)) (-15 -3570 (|#1| |#4|)) (-15 -1572 ((-3 |#4| "failed") |#1|)) (-15 -2860 (|#4| |#1|)) (-15 -2091 (|#2| |#1|)) (-15 -2114 (|#1| |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2860 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2860 ((-419 (-576)) |#1|)) (-15 -2860 (|#2| |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -3570 (|#1| |#2|)) (-15 -3570 (|#1| (-576))) (-15 -3570 ((-876) |#1|))) (-1086 |#2| |#3| |#4|) (-1070) (-805) (-861)) (T -1085)) -NIL -(-10 -8 (-15 -3570 (|#1| |#1|)) (-15 -3498 (|#1| |#1| |#1|)) (-15 -3498 (|#1| (-656 |#1|))) (-15 -3570 (|#1| (-419 (-576)))) (-15 -3570 ((-971 |#2|) |#1|)) (-15 -4172 ((-971 |#2|) |#1|)) (-15 -4172 ((-1179) |#1|)) (-15 -3199 (|#1| |#1|)) (-15 -2415 (|#1| |#1|)) (-15 -4068 (|#1| |#1|)) (-15 -1933 (|#1| |#1|)) (-15 -3498 (|#2| |#2| |#1|)) (-15 -1880 (|#1| |#1| |#1|)) (-15 -4357 (|#1| |#1| |#1|)) (-15 -1880 (|#1| |#1| |#2|)) (-15 -4357 (|#1| |#1| |#2|)) (-15 -3508 (|#1| |#1|)) (-15 -3608 (|#1| |#1|)) (-15 -4172 (|#1| (-971 |#2|))) (-15 -2860 (|#1| (-971 |#2|))) (-15 -1572 ((-3 |#1| "failed") (-971 |#2|))) (-15 -4172 (|#1| (-971 (-576)))) (-15 -2860 (|#1| (-971 (-576)))) (-15 -1572 ((-3 |#1| "failed") (-971 (-576)))) (-15 -4172 (|#1| (-971 (-419 (-576))))) (-15 -2860 (|#1| (-971 (-419 (-576))))) (-15 -1572 ((-3 |#1| "failed") (-971 (-419 (-576))))) (-15 -3909 (|#1| |#1| |#1|)) (-15 -1522 (|#1| |#1| |#1|)) (-15 -3124 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2066 (-783))) |#1| |#1|)) (-15 -2589 (|#1| |#1| |#1|)) (-15 -2865 ((-2 (|:| -2715 |#1|) (|:| -3624 |#1|)) |#1| |#1|)) (-15 -3491 ((-2 (|:| -1714 |#1|) (|:| |gap| (-783)) (|:| -2715 |#1|) (|:| -3624 |#1|)) |#1| |#1| |#4|)) (-15 -3491 ((-2 (|:| -1714 |#1|) (|:| |gap| (-783)) (|:| -2715 |#1|) (|:| -3624 |#1|)) |#1| |#1|)) (-15 -2315 ((-2 (|:| -1714 |#1|) (|:| |gap| (-783)) (|:| -3624 |#1|)) |#1| |#1| |#4|)) (-15 -2315 ((-2 (|:| -1714 |#1|) (|:| |gap| (-783)) (|:| -3624 |#1|)) |#1| |#1|)) (-15 -1439 (|#1| |#1| |#1| |#4|)) (-15 -2560 (|#1| |#1| |#1| |#4|)) (-15 -1439 (|#1| |#1| |#1|)) (-15 -2560 (|#1| |#1| |#1|)) (-15 -2678 (|#1| |#1| |#1| |#4|)) (-15 -2135 (|#1| |#1| |#1| |#4|)) (-15 -2678 (|#1| |#1| |#1|)) (-15 -2135 (|#1| |#1| |#1|)) (-15 -3186 ((-112) |#1| (-656 |#1|))) (-15 -3186 ((-112) |#1| |#1|)) (-15 -1603 ((-112) |#1| (-656 |#1|))) (-15 -1603 ((-112) |#1| |#1|)) (-15 -3579 ((-112) |#1| (-656 |#1|))) (-15 -3579 ((-112) |#1| |#1|)) (-15 -3439 ((-112) |#1| (-656 |#1|))) (-15 -3439 ((-112) |#1| |#1|)) (-15 -3048 ((-112) |#1| |#1|)) (-15 -1438 ((-112) |#1| |#1|)) (-15 -2448 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4211 ((-656 |#1|) |#1|)) (-15 -2272 ((-656 |#1|) |#1|)) (-15 -1543 (|#1| |#1|)) (-15 -4390 (|#1| |#1|)) (-15 -4339 ((-112) |#1|)) (-15 -3592 ((-112) |#1|)) (-15 -2114 (|#1| |#1| |#4|)) (-15 -2091 (|#1| |#1| |#4|)) (-15 -1769 (|#1| |#1|)) (-15 -1596 ((-656 |#1|) |#1|)) (-15 -2132 (|#1| |#1|)) (-15 -4426 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3540 (|#1| |#1|)) (-15 -2269 ((-783) |#1|)) (-15 -2620 (|#4| |#1|)) (-15 -4172 ((-548) |#1|)) (-15 -4172 ((-907 (-576)) |#1|)) (-15 -4172 ((-907 (-390)) |#1|)) (-15 -3570 (|#1| |#4|)) (-15 -1572 ((-3 |#4| "failed") |#1|)) (-15 -2860 (|#4| |#1|)) (-15 -2091 (|#2| |#1|)) (-15 -2114 (|#1| |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2860 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2860 ((-419 (-576)) |#1|)) (-15 -2860 (|#2| |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -3570 (|#1| |#2|)) (-15 -3570 (|#1| (-576))) (-15 -3570 ((-876) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-1969 (((-656 |#3|) $) 113)) (-1798 (((-1193 $) $ |#3|) 128) (((-1193 |#1|) $) 127)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-2757 (($ $) 91 (|has| |#1| (-568)))) (-3788 (((-112) $) 93 (|has| |#1| (-568)))) (-3543 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-4426 (($ $) 278)) (-3048 (((-112) $ $) 264)) (-4367 (((-3 $ "failed") $ $) 20)) (-3049 (($ $ $) 223 (|has| |#1| (-568)))) (-2733 (((-656 $) $ $) 218 (|has| |#1| (-568)))) (-3601 (((-430 (-1193 $)) (-1193 $)) 103 (|has| |#1| (-928)))) (-2487 (($ $) 101 (|has| |#1| (-464)))) (-3921 (((-430 $) $) 100 (|has| |#1| (-464)))) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 106 (|has| |#1| (-928)))) (-3886 (($) 18 T CONST)) (-1572 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1059 (-576)))) (((-3 |#3| "failed") $) 143) (((-3 $ "failed") (-971 (-419 (-576)))) 238 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197))))) (((-3 $ "failed") (-971 (-576))) 235 (-2760 (-12 (-2663 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1197)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197)))))) (((-3 $ "failed") (-971 |#1|)) 232 (-2760 (-12 (-2663 (|has| |#1| (-38 (-419 (-576))))) (-2663 (|has| |#1| (-38 (-576)))) (|has| |#3| (-626 (-1197)))) (-12 (-2663 (|has| |#1| (-557))) (-2663 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1197)))) (-12 (-2663 (|has| |#1| (-1013 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197))))))) (-2860 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1059 (-576)))) ((|#3| $) 144) (($ (-971 (-419 (-576)))) 237 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197))))) (($ (-971 (-576))) 234 (-2760 (-12 (-2663 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1197)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197)))))) (($ (-971 |#1|)) 231 (-2760 (-12 (-2663 (|has| |#1| (-38 (-419 (-576))))) (-2663 (|has| |#1| (-38 (-576)))) (|has| |#3| (-626 (-1197)))) (-12 (-2663 (|has| |#1| (-557))) (-2663 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1197)))) (-12 (-2663 (|has| |#1| (-1013 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197))))))) (-3230 (($ $ $ |#3|) 111 (|has| |#1| (-174))) (($ $ $) 219 (|has| |#1| (-568)))) (-2114 (($ $) 161) (($ $ |#3|) 273)) (-2204 (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 137) (((-701 |#1|) (-701 $)) 136)) (-3439 (((-112) $ $) 263) (((-112) $ (-656 $)) 262)) (-1561 (((-3 $ "failed") $) 37)) (-4339 (((-112) $) 271)) (-2865 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 243)) (-1933 (($ $) 212 (|has| |#1| (-464)))) (-3767 (($ $) 183 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-2103 (((-656 $) $) 112)) (-4249 (((-112) $) 99 (|has| |#1| (-928)))) (-3508 (($ $) 228 (|has| |#1| (-568)))) (-3608 (($ $) 229 (|has| |#1| (-568)))) (-2135 (($ $ $) 255) (($ $ $ |#3|) 253)) (-2678 (($ $ $) 254) (($ $ $ |#3|) 252)) (-2431 (($ $ |#1| |#2| $) 179)) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 87 (-12 (|has| |#3| (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 86 (-12 (|has| |#3| (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-4193 (((-112) $) 35)) (-2217 (((-783) $) 176)) (-3186 (((-112) $ $) 257) (((-112) $ (-656 $)) 256)) (-3189 (($ $ $ $ $) 214 (|has| |#1| (-568)))) (-2620 ((|#3| $) 282)) (-1955 (($ (-1193 |#1|) |#3|) 120) (($ (-1193 $) |#3|) 119)) (-1608 (((-656 $) $) 129)) (-2823 (((-112) $) 159)) (-1945 (($ |#1| |#2|) 160) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-2589 (($ $ $) 242)) (-4130 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $ |#3|) 123)) (-3592 (((-112) $) 272)) (-3751 ((|#2| $) 177) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-2269 (((-783) $) 281)) (-2999 (($ (-1 |#2| |#2|) $) 178)) (-4117 (($ (-1 |#1| |#1|) $) 158)) (-3721 (((-3 |#3| "failed") $) 126)) (-3199 (($ $) 209 (|has| |#1| (-464)))) (-2415 (($ $) 210 (|has| |#1| (-464)))) (-4211 (((-656 $) $) 267)) (-4390 (($ $) 270)) (-4068 (($ $) 211 (|has| |#1| (-464)))) (-2272 (((-656 $) $) 268)) (-3913 (((-701 (-576)) (-1288 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 140 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 135) (((-701 |#1|) (-1288 $)) 134)) (-1543 (($ $) 269)) (-2081 (($ $) 156)) (-2091 ((|#1| $) 155) (($ $ |#3|) 274)) (-3458 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-3124 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2066 (-783))) $ $) 241)) (-3491 (((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -2715 $) (|:| -3624 $)) $ $) 245) (((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -2715 $) (|:| -3624 $)) $ $ |#3|) 244)) (-2315 (((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -3624 $)) $ $) 247) (((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -3624 $)) $ $ |#3|) 246)) (-2560 (($ $ $) 251) (($ $ $ |#3|) 249)) (-1439 (($ $ $) 250) (($ $ $ |#3|) 248)) (-3699 (((-1179) $) 10)) (-1540 (($ $ $) 217 (|has| |#1| (-568)))) (-1596 (((-656 $) $) 276)) (-1385 (((-3 (-656 $) "failed") $) 117)) (-1690 (((-3 (-656 $) "failed") $) 118)) (-2040 (((-3 (-2 (|:| |var| |#3|) (|:| -3422 (-783))) "failed") $) 116)) (-1603 (((-112) $ $) 259) (((-112) $ (-656 $)) 258)) (-3909 (($ $ $) 239)) (-3540 (($ $) 280)) (-1438 (((-112) $ $) 265)) (-3579 (((-112) $ $) 261) (((-112) $ (-656 $)) 260)) (-1522 (($ $ $) 240)) (-3811 (($ $) 279)) (-1450 (((-1141) $) 11)) (-2284 (((-2 (|:| -3498 $) (|:| |coef2| $)) $ $) 220 (|has| |#1| (-568)))) (-4140 (((-2 (|:| -3498 $) (|:| |coef1| $)) $ $) 221 (|has| |#1| (-568)))) (-2060 (((-112) $) 173)) (-2070 ((|#1| $) 174)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 98 (|has| |#1| (-464)))) (-3498 ((|#1| |#1| $) 213 (|has| |#1| (-464))) (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-4100 (((-430 (-1193 $)) (-1193 $)) 105 (|has| |#1| (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) 104 (|has| |#1| (-928)))) (-1828 (((-430 $) $) 102 (|has| |#1| (-928)))) (-2093 (((-2 (|:| -3498 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 222 (|has| |#1| (-568)))) (-3476 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-1880 (($ $ |#1|) 226 (|has| |#1| (-568))) (($ $ $) 224 (|has| |#1| (-568)))) (-4357 (($ $ |#1|) 227 (|has| |#1| (-568))) (($ $ $) 225 (|has| |#1| (-568)))) (-3284 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-656 |#3|) (-656 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-656 |#3|) (-656 $)) 145)) (-4352 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2775 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40)) (-3634 ((|#2| $) 157) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132)) (-2132 (($ $) 277)) (-1769 (($ $) 275)) (-4172 (((-907 (-390)) $) 85 (-12 (|has| |#3| (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) 84 (-12 (|has| |#3| (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548))))) (($ (-971 (-419 (-576)))) 236 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197))))) (($ (-971 (-576))) 233 (-2760 (-12 (-2663 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1197)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197)))))) (($ (-971 |#1|)) 230 (|has| |#3| (-626 (-1197)))) (((-1179) $) 208 (-12 (|has| |#1| (-1059 (-576))) (|has| |#3| (-626 (-1197))))) (((-971 |#1|) $) 207 (|has| |#3| (-626 (-1197))))) (-2457 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) 107 (-2675 (|has| $ (-146)) (|has| |#1| (-928))))) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ |#3|) 142) (((-971 |#1|) $) 206 (|has| |#3| (-626 (-1197)))) (($ (-419 (-576))) 81 (-2760 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-1618 (((-656 |#1|) $) 175)) (-3177 ((|#1| $ |#2|) 162) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-4336 (((-3 $ "failed") $) 82 (-2760 (-2675 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3996 (((-783)) 32 T CONST)) (-2541 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-4055 (((-112) $ $) 6)) (-2672 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2721 (($) 19 T CONST)) (-2448 (((-3 (-112) "failed") $ $) 266)) (-2732 (($) 34 T CONST)) (-4235 (($ $ $ $ (-783)) 215 (|has| |#1| (-568)))) (-4078 (($ $ $ (-783)) 216 (|has| |#1| (-568)))) (-2020 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41)) (-2925 (((-112) $ $) 8)) (-3057 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) |#2| $) 26)) (-2098 ((|#1| $) 10)) (-3906 (((-576) |#2| $) 116)) (-2108 (((-3 $ "failed") |#2| (-940)) 75)) (-4249 ((|#1| $) 31)) (-2412 ((|#1| |#2| $ |#1|) 40)) (-4092 (($ $) 28)) (-3673 (((-3 |#2| "failed") |#2| $) 111)) (-1866 (((-112) |#2| $) NIL)) (-3137 (((-112) |#2| $) NIL)) (-3843 (((-112) |#2| $) 27)) (-2367 ((|#1| $) 117)) (-4239 ((|#1| $) 30)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1346 ((|#2| $) 102)) (-3569 (((-876) $) 92)) (-2399 (((-112) $ $) NIL)) (-4165 ((|#1| |#2| $ |#1|) 41)) (-4057 (((-656 $) |#2|) 77)) (-2924 (((-112) $ $) 97))) +(((-1082 |#1| |#2|) (-13 (-1089 |#1| |#2|) (-10 -8 (-15 -4239 (|#1| $)) (-15 -4249 (|#1| $)) (-15 -2098 (|#1| $)) (-15 -2367 (|#1| $)) (-15 -4092 ($ $)) (-15 -3843 ((-112) |#2| $)) (-15 -2412 (|#1| |#2| $ |#1|)))) (-13 (-860) (-374)) (-1264 |#1|)) (T -1082)) +((-2412 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-4239 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-4249 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-2098 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-2367 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-4092 (*1 *1 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-3843 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-860) (-374))) (-5 *2 (-112)) (-5 *1 (-1082 *4 *3)) (-4 *3 (-1264 *4))))) +(-13 (-1089 |#1| |#2|) (-10 -8 (-15 -4239 (|#1| $)) (-15 -4249 (|#1| $)) (-15 -2098 (|#1| $)) (-15 -2367 (|#1| $)) (-15 -4092 ($ $)) (-15 -3843 ((-112) |#2| $)) (-15 -2412 (|#1| |#2| $ |#1|)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-1775 (($ $ $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-1724 (($ $ $ $) NIL)) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3330 (((-112) $ $) NIL)) (-3906 (((-576) $) NIL)) (-2743 (($ $ $) NIL)) (-3404 (($) NIL T CONST)) (-1889 (($ (-1197)) 10) (($ (-576)) 7)) (-1572 (((-3 (-576) "failed") $) NIL)) (-2859 (((-576) $) NIL)) (-3428 (($ $ $) NIL)) (-3674 (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-2358 (((-3 (-419 (-576)) "failed") $) NIL)) (-2769 (((-112) $) NIL)) (-3025 (((-419 (-576)) $) NIL)) (-1836 (($) NIL) (($ $) NIL)) (-3440 (($ $ $) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3833 (((-112) $) NIL)) (-3495 (($ $ $ $) NIL)) (-3948 (($ $ $) NIL)) (-1866 (((-112) $) NIL)) (-2199 (($ $ $) NIL)) (-3325 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL)) (-1351 (((-112) $) NIL)) (-3376 (((-112) $) NIL)) (-2734 (((-3 $ "failed") $) NIL)) (-3137 (((-112) $) NIL)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2542 (($ $ $ $) NIL)) (-3124 (($ $ $) NIL)) (-1441 (($ $ $) NIL)) (-2243 (($ $) NIL)) (-2435 (($ $) NIL)) (-3676 (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-3473 (($ $ $) NIL)) (-3539 (($) NIL T CONST)) (-1373 (($ $) NIL)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4225 (($ $) NIL)) (-1828 (((-430 $) $) NIL)) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2768 (((-112) $) NIL)) (-1979 (((-783) $) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-2774 (($ $) NIL) (($ $ (-783)) NIL)) (-1807 (($ $) NIL)) (-1870 (($ $) NIL)) (-4171 (((-576) $) 16) (((-548) $) NIL) (((-907 (-576)) $) NIL) (((-390) $) NIL) (((-227) $) NIL) (($ (-1197)) 9)) (-3569 (((-876) $) 23) (($ (-576)) 6) (($ $) NIL) (($ (-576)) 6)) (-3154 (((-783)) NIL T CONST)) (-3479 (((-112) $ $) NIL)) (-3679 (($ $ $) NIL)) (-2399 (((-112) $ $) NIL)) (-3515 (($) NIL)) (-1505 (((-112) $ $) NIL)) (-2474 (($ $ $ $) NIL)) (-4143 (($ $) NIL)) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2020 (($ $) NIL) (($ $ (-783)) NIL)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) NIL)) (-3043 (($ $) 22) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-576) $) NIL))) +(((-1083) (-13 (-557) (-630 (-1197)) (-10 -8 (-6 -4451) (-6 -4456) (-6 -4452) (-15 -1889 ($ (-1197))) (-15 -1889 ($ (-576)))))) (T -1083)) +((-1889 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1083)))) (-1889 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1083))))) +(-13 (-557) (-630 (-1197)) (-10 -8 (-6 -4451) (-6 -4456) (-6 -4452) (-15 -1889 ($ (-1197))) (-15 -1889 ($ (-576))))) +((-3488 (((-112) $ $) NIL (-2759 (|has| (-52) (-102)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-102))))) (-4127 (($) NIL) (($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))))) NIL)) (-1512 (((-1293) $ (-1197) (-1197)) NIL (|has| $ (-6 -4465)))) (-4264 (((-112) $ (-783)) NIL)) (-2870 (($) 9)) (-3755 (((-52) $ (-1197) (-52)) NIL)) (-3152 (($ $) 32)) (-4436 (($ $) 30)) (-1482 (($ $) 29)) (-2971 (($ $) 31)) (-1940 (($ $) 35)) (-2333 (($ $) 36)) (-3191 (($ $) 28)) (-3355 (($ $) 33)) (-2123 (($ (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-1974 (($ (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $) 27 (|has| $ (-6 -4464)))) (-2198 (((-3 (-52) "failed") (-1197) $) 43)) (-3404 (($) NIL T CONST)) (-2360 (($) 7)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1121))))) (-2172 (($ (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) $) 53 (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-3 (-52) "failed") (-1197) $) NIL)) (-3945 (($ (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1121)))) (($ (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $ (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1121)))) (((-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $ (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-1898 (((-3 (-1179) "failed") $ (-1179) (-576)) 72)) (-4332 (((-52) $ (-1197) (-52)) NIL (|has| $ (-6 -4465)))) (-4272 (((-52) $ (-1197)) NIL)) (-3965 (((-656 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-656 (-52)) $) NIL (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-1197) $) NIL (|has| (-1197) (-861)))) (-2425 (((-656 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $) 38 (|has| $ (-6 -4464))) (((-656 (-52)) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1121)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-52) (-1121))))) (-4280 (((-1197) $) NIL (|has| (-1197) (-861)))) (-4326 (($ (-1 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4465))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL (-2759 (|has| (-52) (-1121)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1121))))) (-3200 (((-656 (-1197)) $) NIL)) (-3259 (((-112) (-1197) $) NIL)) (-2722 (((-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) $) NIL)) (-2597 (($ (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) $) 46)) (-3669 (((-656 (-1197)) $) NIL)) (-3090 (((-112) (-1197) $) NIL)) (-1450 (((-1141) $) NIL (-2759 (|has| (-52) (-1121)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1121))))) (-4085 (((-390) $ (-1197)) 52)) (-2040 (((-656 (-1179)) $ (-1179)) 74)) (-3580 (((-52) $) NIL (|has| (-1197) (-861)))) (-3434 (((-3 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) "failed") (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $) NIL)) (-2304 (($ $ (-52)) NIL (|has| $ (-6 -4465)))) (-1541 (((-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) $) NIL)) (-3252 (((-112) (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))))) NIL (-12 (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-319 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))))) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1121)))) (($ $ (-304 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))))) NIL (-12 (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-319 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))))) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1121)))) (($ $ (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) NIL (-12 (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-319 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))))) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1121)))) (($ $ (-656 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) (-656 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))))) NIL (-12 (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-319 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))))) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1121)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-52) (-1121))))) (-3207 (((-656 (-52)) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 (((-52) $ (-1197)) NIL) (((-52) $ (-1197) (-52)) NIL)) (-3101 (($) NIL) (($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))))) NIL)) (-2912 (($ $ (-1197)) 54)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-1121)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-52) (-1121)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))))) 40)) (-1615 (($ $ $) 41)) (-3569 (((-876) $) NIL (-2759 (|has| (-52) (-625 (-876))) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-625 (-876)))))) (-2233 (($ $ (-1197) (-390)) 50)) (-1613 (($ $ (-1197) (-390)) 51)) (-2399 (((-112) $ $) NIL (-2759 (|has| (-52) (-102)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-102))))) (-3972 (($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))))) NIL)) (-2708 (((-112) (-1 (-112) (-2 (|:| -4300 (-1197)) (|:| -4439 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) NIL (-2759 (|has| (-52) (-102)) (|has| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (-102))))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1084) (-13 (-1214 (-1197) (-52)) (-10 -8 (-15 -1615 ($ $ $)) (-15 -2360 ($)) (-15 -3191 ($ $)) (-15 -1482 ($ $)) (-15 -4436 ($ $)) (-15 -2971 ($ $)) (-15 -3355 ($ $)) (-15 -3152 ($ $)) (-15 -1940 ($ $)) (-15 -2333 ($ $)) (-15 -2233 ($ $ (-1197) (-390))) (-15 -1613 ($ $ (-1197) (-390))) (-15 -4085 ((-390) $ (-1197))) (-15 -2040 ((-656 (-1179)) $ (-1179))) (-15 -2912 ($ $ (-1197))) (-15 -2870 ($)) (-15 -1898 ((-3 (-1179) "failed") $ (-1179) (-576))) (-6 -4464)))) (T -1084)) +((-1615 (*1 *1 *1 *1) (-5 *1 (-1084))) (-2360 (*1 *1) (-5 *1 (-1084))) (-3191 (*1 *1 *1) (-5 *1 (-1084))) (-1482 (*1 *1 *1) (-5 *1 (-1084))) (-4436 (*1 *1 *1) (-5 *1 (-1084))) (-2971 (*1 *1 *1) (-5 *1 (-1084))) (-3355 (*1 *1 *1) (-5 *1 (-1084))) (-3152 (*1 *1 *1) (-5 *1 (-1084))) (-1940 (*1 *1 *1) (-5 *1 (-1084))) (-2333 (*1 *1 *1) (-5 *1 (-1084))) (-2233 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-390)) (-5 *1 (-1084)))) (-1613 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-390)) (-5 *1 (-1084)))) (-4085 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-390)) (-5 *1 (-1084)))) (-2040 (*1 *2 *1 *3) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1084)) (-5 *3 (-1179)))) (-2912 (*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1084)))) (-2870 (*1 *1) (-5 *1 (-1084))) (-1898 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1179)) (-5 *3 (-576)) (-5 *1 (-1084))))) +(-13 (-1214 (-1197) (-52)) (-10 -8 (-15 -1615 ($ $ $)) (-15 -2360 ($)) (-15 -3191 ($ $)) (-15 -1482 ($ $)) (-15 -4436 ($ $)) (-15 -2971 ($ $)) (-15 -3355 ($ $)) (-15 -3152 ($ $)) (-15 -1940 ($ $)) (-15 -2333 ($ $)) (-15 -2233 ($ $ (-1197) (-390))) (-15 -1613 ($ $ (-1197) (-390))) (-15 -4085 ((-390) $ (-1197))) (-15 -2040 ((-656 (-1179)) $ (-1179))) (-15 -2912 ($ $ (-1197))) (-15 -2870 ($)) (-15 -1898 ((-3 (-1179) "failed") $ (-1179) (-576))) (-6 -4464))) +((-4424 (($ $) 46)) (-3074 (((-112) $ $) 82)) (-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-971 (-419 (-576)))) 247) (((-3 $ "failed") (-971 (-576))) 246) (((-3 $ "failed") (-971 |#2|)) 249)) (-2859 ((|#2| $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL) ((|#4| $) NIL) (($ (-971 (-419 (-576)))) 235) (($ (-971 (-576))) 231) (($ (-971 |#2|)) 255)) (-2114 (($ $) NIL) (($ $ |#4|) 44)) (-1483 (((-112) $ $) 131) (((-112) $ (-656 $)) 135)) (-2146 (((-112) $) 60)) (-3958 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 125)) (-2931 (($ $) 160)) (-4027 (($ $) 156)) (-3708 (($ $) 155)) (-4261 (($ $ $) 87) (($ $ $ |#4|) 92)) (-1546 (($ $ $) 90) (($ $ $ |#4|) 94)) (-1918 (((-112) $ $) 143) (((-112) $ (-656 $)) 144)) (-2235 ((|#4| $) 32)) (-3222 (($ $ $) 128)) (-3555 (((-112) $) 59)) (-3081 (((-783) $) 35)) (-4032 (($ $) 174)) (-3985 (($ $) 171)) (-3421 (((-656 $) $) 72)) (-2643 (($ $) 62)) (-2527 (($ $) 167)) (-3115 (((-656 $) $) 69)) (-3458 (($ $) 64)) (-2091 ((|#2| $) NIL) (($ $ |#4|) 39)) (-2529 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1679 (-783))) $ $) 130)) (-1905 (((-2 (|:| -1715 $) (|:| |gap| (-783)) (|:| -1855 $) (|:| -3891 $)) $ $) 126) (((-2 (|:| -1715 $) (|:| |gap| (-783)) (|:| -1855 $) (|:| -3891 $)) $ $ |#4|) 127)) (-2283 (((-2 (|:| -1715 $) (|:| |gap| (-783)) (|:| -3891 $)) $ $) 121) (((-2 (|:| -1715 $) (|:| |gap| (-783)) (|:| -3891 $)) $ $ |#4|) 123)) (-2933 (($ $ $) 97) (($ $ $ |#4|) 106)) (-2275 (($ $ $) 98) (($ $ $ |#4|) 107)) (-2709 (((-656 $) $) 54)) (-2785 (((-112) $ $) 140) (((-112) $ (-656 $)) 141)) (-3640 (($ $ $) 116)) (-3539 (($ $) 37)) (-2264 (((-112) $ $) 80)) (-3420 (((-112) $ $) 136) (((-112) $ (-656 $)) 138)) (-3235 (($ $ $) 112)) (-1982 (($ $) 41)) (-3497 ((|#2| |#2| $) 164) (($ (-656 $)) NIL) (($ $ $) NIL)) (-3693 (($ $ |#2|) NIL) (($ $ $) 153)) (-2311 (($ $ |#2|) 148) (($ $ $) 151)) (-4231 (($ $) 49)) (-3910 (($ $) 55)) (-4171 (((-907 (-390)) $) NIL) (((-907 (-576)) $) NIL) (((-548) $) NIL) (($ (-971 (-419 (-576)))) 237) (($ (-971 (-576))) 233) (($ (-971 |#2|)) 248) (((-1179) $) 279) (((-971 |#2|) $) 184)) (-3569 (((-876) $) 29) (($ (-576)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-971 |#2|) $) 185) (($ (-419 (-576))) NIL) (($ $) NIL)) (-4275 (((-3 (-112) "failed") $ $) 79))) +(((-1085 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3569 (|#1| |#1|)) (-15 -3497 (|#1| |#1| |#1|)) (-15 -3497 (|#1| (-656 |#1|))) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3569 ((-971 |#2|) |#1|)) (-15 -4171 ((-971 |#2|) |#1|)) (-15 -4171 ((-1179) |#1|)) (-15 -4032 (|#1| |#1|)) (-15 -3985 (|#1| |#1|)) (-15 -2527 (|#1| |#1|)) (-15 -2931 (|#1| |#1|)) (-15 -3497 (|#2| |#2| |#1|)) (-15 -3693 (|#1| |#1| |#1|)) (-15 -2311 (|#1| |#1| |#1|)) (-15 -3693 (|#1| |#1| |#2|)) (-15 -2311 (|#1| |#1| |#2|)) (-15 -4027 (|#1| |#1|)) (-15 -3708 (|#1| |#1|)) (-15 -4171 (|#1| (-971 |#2|))) (-15 -2859 (|#1| (-971 |#2|))) (-15 -1572 ((-3 |#1| "failed") (-971 |#2|))) (-15 -4171 (|#1| (-971 (-576)))) (-15 -2859 (|#1| (-971 (-576)))) (-15 -1572 ((-3 |#1| "failed") (-971 (-576)))) (-15 -4171 (|#1| (-971 (-419 (-576))))) (-15 -2859 (|#1| (-971 (-419 (-576))))) (-15 -1572 ((-3 |#1| "failed") (-971 (-419 (-576))))) (-15 -3640 (|#1| |#1| |#1|)) (-15 -3235 (|#1| |#1| |#1|)) (-15 -2529 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1679 (-783))) |#1| |#1|)) (-15 -3222 (|#1| |#1| |#1|)) (-15 -3958 ((-2 (|:| -1855 |#1|) (|:| -3891 |#1|)) |#1| |#1|)) (-15 -1905 ((-2 (|:| -1715 |#1|) (|:| |gap| (-783)) (|:| -1855 |#1|) (|:| -3891 |#1|)) |#1| |#1| |#4|)) (-15 -1905 ((-2 (|:| -1715 |#1|) (|:| |gap| (-783)) (|:| -1855 |#1|) (|:| -3891 |#1|)) |#1| |#1|)) (-15 -2283 ((-2 (|:| -1715 |#1|) (|:| |gap| (-783)) (|:| -3891 |#1|)) |#1| |#1| |#4|)) (-15 -2283 ((-2 (|:| -1715 |#1|) (|:| |gap| (-783)) (|:| -3891 |#1|)) |#1| |#1|)) (-15 -2275 (|#1| |#1| |#1| |#4|)) (-15 -2933 (|#1| |#1| |#1| |#4|)) (-15 -2275 (|#1| |#1| |#1|)) (-15 -2933 (|#1| |#1| |#1|)) (-15 -1546 (|#1| |#1| |#1| |#4|)) (-15 -4261 (|#1| |#1| |#1| |#4|)) (-15 -1546 (|#1| |#1| |#1|)) (-15 -4261 (|#1| |#1| |#1|)) (-15 -1918 ((-112) |#1| (-656 |#1|))) (-15 -1918 ((-112) |#1| |#1|)) (-15 -2785 ((-112) |#1| (-656 |#1|))) (-15 -2785 ((-112) |#1| |#1|)) (-15 -3420 ((-112) |#1| (-656 |#1|))) (-15 -3420 ((-112) |#1| |#1|)) (-15 -1483 ((-112) |#1| (-656 |#1|))) (-15 -1483 ((-112) |#1| |#1|)) (-15 -3074 ((-112) |#1| |#1|)) (-15 -2264 ((-112) |#1| |#1|)) (-15 -4275 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3421 ((-656 |#1|) |#1|)) (-15 -3115 ((-656 |#1|) |#1|)) (-15 -3458 (|#1| |#1|)) (-15 -2643 (|#1| |#1|)) (-15 -2146 ((-112) |#1|)) (-15 -3555 ((-112) |#1|)) (-15 -2114 (|#1| |#1| |#4|)) (-15 -2091 (|#1| |#1| |#4|)) (-15 -3910 (|#1| |#1|)) (-15 -2709 ((-656 |#1|) |#1|)) (-15 -4231 (|#1| |#1|)) (-15 -4424 (|#1| |#1|)) (-15 -1982 (|#1| |#1|)) (-15 -3539 (|#1| |#1|)) (-15 -3081 ((-783) |#1|)) (-15 -2235 (|#4| |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -4171 ((-907 (-576)) |#1|)) (-15 -4171 ((-907 (-390)) |#1|)) (-15 -3569 (|#1| |#4|)) (-15 -1572 ((-3 |#4| "failed") |#1|)) (-15 -2859 (|#4| |#1|)) (-15 -2091 (|#2| |#1|)) (-15 -2114 (|#1| |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) (-1086 |#2| |#3| |#4|) (-1070) (-805) (-861)) (T -1085)) +NIL +(-10 -8 (-15 -3569 (|#1| |#1|)) (-15 -3497 (|#1| |#1| |#1|)) (-15 -3497 (|#1| (-656 |#1|))) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3569 ((-971 |#2|) |#1|)) (-15 -4171 ((-971 |#2|) |#1|)) (-15 -4171 ((-1179) |#1|)) (-15 -4032 (|#1| |#1|)) (-15 -3985 (|#1| |#1|)) (-15 -2527 (|#1| |#1|)) (-15 -2931 (|#1| |#1|)) (-15 -3497 (|#2| |#2| |#1|)) (-15 -3693 (|#1| |#1| |#1|)) (-15 -2311 (|#1| |#1| |#1|)) (-15 -3693 (|#1| |#1| |#2|)) (-15 -2311 (|#1| |#1| |#2|)) (-15 -4027 (|#1| |#1|)) (-15 -3708 (|#1| |#1|)) (-15 -4171 (|#1| (-971 |#2|))) (-15 -2859 (|#1| (-971 |#2|))) (-15 -1572 ((-3 |#1| "failed") (-971 |#2|))) (-15 -4171 (|#1| (-971 (-576)))) (-15 -2859 (|#1| (-971 (-576)))) (-15 -1572 ((-3 |#1| "failed") (-971 (-576)))) (-15 -4171 (|#1| (-971 (-419 (-576))))) (-15 -2859 (|#1| (-971 (-419 (-576))))) (-15 -1572 ((-3 |#1| "failed") (-971 (-419 (-576))))) (-15 -3640 (|#1| |#1| |#1|)) (-15 -3235 (|#1| |#1| |#1|)) (-15 -2529 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1679 (-783))) |#1| |#1|)) (-15 -3222 (|#1| |#1| |#1|)) (-15 -3958 ((-2 (|:| -1855 |#1|) (|:| -3891 |#1|)) |#1| |#1|)) (-15 -1905 ((-2 (|:| -1715 |#1|) (|:| |gap| (-783)) (|:| -1855 |#1|) (|:| -3891 |#1|)) |#1| |#1| |#4|)) (-15 -1905 ((-2 (|:| -1715 |#1|) (|:| |gap| (-783)) (|:| -1855 |#1|) (|:| -3891 |#1|)) |#1| |#1|)) (-15 -2283 ((-2 (|:| -1715 |#1|) (|:| |gap| (-783)) (|:| -3891 |#1|)) |#1| |#1| |#4|)) (-15 -2283 ((-2 (|:| -1715 |#1|) (|:| |gap| (-783)) (|:| -3891 |#1|)) |#1| |#1|)) (-15 -2275 (|#1| |#1| |#1| |#4|)) (-15 -2933 (|#1| |#1| |#1| |#4|)) (-15 -2275 (|#1| |#1| |#1|)) (-15 -2933 (|#1| |#1| |#1|)) (-15 -1546 (|#1| |#1| |#1| |#4|)) (-15 -4261 (|#1| |#1| |#1| |#4|)) (-15 -1546 (|#1| |#1| |#1|)) (-15 -4261 (|#1| |#1| |#1|)) (-15 -1918 ((-112) |#1| (-656 |#1|))) (-15 -1918 ((-112) |#1| |#1|)) (-15 -2785 ((-112) |#1| (-656 |#1|))) (-15 -2785 ((-112) |#1| |#1|)) (-15 -3420 ((-112) |#1| (-656 |#1|))) (-15 -3420 ((-112) |#1| |#1|)) (-15 -1483 ((-112) |#1| (-656 |#1|))) (-15 -1483 ((-112) |#1| |#1|)) (-15 -3074 ((-112) |#1| |#1|)) (-15 -2264 ((-112) |#1| |#1|)) (-15 -4275 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3421 ((-656 |#1|) |#1|)) (-15 -3115 ((-656 |#1|) |#1|)) (-15 -3458 (|#1| |#1|)) (-15 -2643 (|#1| |#1|)) (-15 -2146 ((-112) |#1|)) (-15 -3555 ((-112) |#1|)) (-15 -2114 (|#1| |#1| |#4|)) (-15 -2091 (|#1| |#1| |#4|)) (-15 -3910 (|#1| |#1|)) (-15 -2709 ((-656 |#1|) |#1|)) (-15 -4231 (|#1| |#1|)) (-15 -4424 (|#1| |#1|)) (-15 -1982 (|#1| |#1|)) (-15 -3539 (|#1| |#1|)) (-15 -3081 ((-783) |#1|)) (-15 -2235 (|#4| |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -4171 ((-907 (-576)) |#1|)) (-15 -4171 ((-907 (-390)) |#1|)) (-15 -3569 (|#1| |#4|)) (-15 -1572 ((-3 |#4| "failed") |#1|)) (-15 -2859 (|#4| |#1|)) (-15 -2091 (|#2| |#1|)) (-15 -2114 (|#1| |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-1969 (((-656 |#3|) $) 113)) (-1797 (((-1193 $) $ |#3|) 128) (((-1193 |#1|) $) 127)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-4195 (($ $) 91 (|has| |#1| (-568)))) (-1760 (((-112) $) 93 (|has| |#1| (-568)))) (-4329 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-4424 (($ $) 278)) (-3074 (((-112) $ $) 264)) (-2428 (((-3 $ "failed") $ $) 20)) (-3085 (($ $ $) 223 (|has| |#1| (-568)))) (-1998 (((-656 $) $ $) 218 (|has| |#1| (-568)))) (-3646 (((-430 (-1193 $)) (-1193 $)) 103 (|has| |#1| (-928)))) (-3444 (($ $) 101 (|has| |#1| (-464)))) (-3760 (((-430 $) $) 100 (|has| |#1| (-464)))) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 106 (|has| |#1| (-928)))) (-3404 (($) 18 T CONST)) (-1572 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1059 (-576)))) (((-3 |#3| "failed") $) 143) (((-3 $ "failed") (-971 (-419 (-576)))) 238 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197))))) (((-3 $ "failed") (-971 (-576))) 235 (-2759 (-12 (-2663 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1197)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197)))))) (((-3 $ "failed") (-971 |#1|)) 232 (-2759 (-12 (-2663 (|has| |#1| (-38 (-419 (-576))))) (-2663 (|has| |#1| (-38 (-576)))) (|has| |#3| (-626 (-1197)))) (-12 (-2663 (|has| |#1| (-557))) (-2663 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1197)))) (-12 (-2663 (|has| |#1| (-1013 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197))))))) (-2859 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1059 (-576)))) ((|#3| $) 144) (($ (-971 (-419 (-576)))) 237 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197))))) (($ (-971 (-576))) 234 (-2759 (-12 (-2663 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1197)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197)))))) (($ (-971 |#1|)) 231 (-2759 (-12 (-2663 (|has| |#1| (-38 (-419 (-576))))) (-2663 (|has| |#1| (-38 (-576)))) (|has| |#3| (-626 (-1197)))) (-12 (-2663 (|has| |#1| (-557))) (-2663 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1197)))) (-12 (-2663 (|has| |#1| (-1013 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197))))))) (-4334 (($ $ $ |#3|) 111 (|has| |#1| (-174))) (($ $ $) 219 (|has| |#1| (-568)))) (-2114 (($ $) 161) (($ $ |#3|) 273)) (-3674 (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 137) (((-701 |#1|) (-701 $)) 136)) (-1483 (((-112) $ $) 263) (((-112) $ (-656 $)) 262)) (-3673 (((-3 $ "failed") $) 37)) (-2146 (((-112) $) 271)) (-3958 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 243)) (-2931 (($ $) 212 (|has| |#1| (-464)))) (-1547 (($ $) 183 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-2103 (((-656 $) $) 112)) (-3833 (((-112) $) 99 (|has| |#1| (-928)))) (-4027 (($ $) 228 (|has| |#1| (-568)))) (-3708 (($ $) 229 (|has| |#1| (-568)))) (-4261 (($ $ $) 255) (($ $ $ |#3|) 253)) (-1546 (($ $ $) 254) (($ $ $ |#3|) 252)) (-4124 (($ $ |#1| |#2| $) 179)) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 87 (-12 (|has| |#3| (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 86 (-12 (|has| |#3| (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-1351 (((-112) $) 35)) (-3799 (((-783) $) 176)) (-1918 (((-112) $ $) 257) (((-112) $ (-656 $)) 256)) (-1947 (($ $ $ $ $) 214 (|has| |#1| (-568)))) (-2235 ((|#3| $) 282)) (-1956 (($ (-1193 |#1|) |#3|) 120) (($ (-1193 $) |#3|) 119)) (-2846 (((-656 $) $) 129)) (-3538 (((-112) $) 159)) (-1944 (($ |#1| |#2|) 160) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-3222 (($ $ $) 242)) (-1915 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $ |#3|) 123)) (-3555 (((-112) $) 272)) (-2578 ((|#2| $) 177) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-3081 (((-783) $) 281)) (-3878 (($ (-1 |#2| |#2|) $) 178)) (-4116 (($ (-1 |#1| |#1|) $) 158)) (-2289 (((-3 |#3| "failed") $) 126)) (-4032 (($ $) 209 (|has| |#1| (-464)))) (-3985 (($ $) 210 (|has| |#1| (-464)))) (-3421 (((-656 $) $) 267)) (-2643 (($ $) 270)) (-2527 (($ $) 211 (|has| |#1| (-464)))) (-3115 (((-656 $) $) 268)) (-3676 (((-701 (-576)) (-1288 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 140 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 135) (((-701 |#1|) (-1288 $)) 134)) (-3458 (($ $) 269)) (-2081 (($ $) 156)) (-2091 ((|#1| $) 155) (($ $ |#3|) 274)) (-3457 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-2529 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1679 (-783))) $ $) 241)) (-1905 (((-2 (|:| -1715 $) (|:| |gap| (-783)) (|:| -1855 $) (|:| -3891 $)) $ $) 245) (((-2 (|:| -1715 $) (|:| |gap| (-783)) (|:| -1855 $) (|:| -3891 $)) $ $ |#3|) 244)) (-2283 (((-2 (|:| -1715 $) (|:| |gap| (-783)) (|:| -3891 $)) $ $) 247) (((-2 (|:| -1715 $) (|:| |gap| (-783)) (|:| -3891 $)) $ $ |#3|) 246)) (-2933 (($ $ $) 251) (($ $ $ |#3|) 249)) (-2275 (($ $ $) 250) (($ $ $ |#3|) 248)) (-2046 (((-1179) $) 10)) (-3422 (($ $ $) 217 (|has| |#1| (-568)))) (-2709 (((-656 $) $) 276)) (-3845 (((-3 (-656 $) "failed") $) 117)) (-2363 (((-3 (-656 $) "failed") $) 118)) (-1452 (((-3 (-2 (|:| |var| |#3|) (|:| -2508 (-783))) "failed") $) 116)) (-2785 (((-112) $ $) 259) (((-112) $ (-656 $)) 258)) (-3640 (($ $ $) 239)) (-3539 (($ $) 280)) (-2264 (((-112) $ $) 265)) (-3420 (((-112) $ $) 261) (((-112) $ (-656 $)) 260)) (-3235 (($ $ $) 240)) (-1982 (($ $) 279)) (-1450 (((-1141) $) 11)) (-3236 (((-2 (|:| -3497 $) (|:| |coef2| $)) $ $) 220 (|has| |#1| (-568)))) (-2000 (((-2 (|:| -3497 $) (|:| |coef1| $)) $ $) 221 (|has| |#1| (-568)))) (-2060 (((-112) $) 173)) (-2070 ((|#1| $) 174)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 98 (|has| |#1| (-464)))) (-3497 ((|#1| |#1| $) 213 (|has| |#1| (-464))) (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-1644 (((-430 (-1193 $)) (-1193 $)) 105 (|has| |#1| (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) 104 (|has| |#1| (-928)))) (-1828 (((-430 $) $) 102 (|has| |#1| (-928)))) (-1908 (((-2 (|:| -3497 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 222 (|has| |#1| (-568)))) (-3475 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-3693 (($ $ |#1|) 226 (|has| |#1| (-568))) (($ $ $) 224 (|has| |#1| (-568)))) (-2311 (($ $ |#1|) 227 (|has| |#1| (-568))) (($ $ $) 225 (|has| |#1| (-568)))) (-3282 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-656 |#3|) (-656 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-656 |#3|) (-656 $)) 145)) (-2269 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2774 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40)) (-2683 ((|#2| $) 157) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132)) (-4231 (($ $) 277)) (-3910 (($ $) 275)) (-4171 (((-907 (-390)) $) 85 (-12 (|has| |#3| (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) 84 (-12 (|has| |#3| (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548))))) (($ (-971 (-419 (-576)))) 236 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197))))) (($ (-971 (-576))) 233 (-2759 (-12 (-2663 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1197)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197)))))) (($ (-971 |#1|)) 230 (|has| |#3| (-626 (-1197)))) (((-1179) $) 208 (-12 (|has| |#1| (-1059 (-576))) (|has| |#3| (-626 (-1197))))) (((-971 |#1|) $) 207 (|has| |#3| (-626 (-1197))))) (-4370 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) 107 (-2674 (|has| $ (-146)) (|has| |#1| (-928))))) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ |#3|) 142) (((-971 |#1|) $) 206 (|has| |#3| (-626 (-1197)))) (($ (-419 (-576))) 81 (-2759 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-2937 (((-656 |#1|) $) 175)) (-1822 ((|#1| $ |#2|) 162) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-3390 (((-3 $ "failed") $) 82 (-2759 (-2674 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3154 (((-783)) 32 T CONST)) (-2717 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-2399 (((-112) $ $) 6)) (-1505 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2721 (($) 19 T CONST)) (-4275 (((-3 (-112) "failed") $ $) 266)) (-2731 (($) 34 T CONST)) (-3683 (($ $ $ $ (-783)) 215 (|has| |#1| (-568)))) (-2615 (($ $ $ (-783)) 216 (|has| |#1| (-568)))) (-2020 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41)) (-2924 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) (((-1086 |#1| |#2| |#3|) (-141) (-1070) (-805) (-861)) (T -1086)) -((-2620 (*1 *2 *1) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-2269 (*1 *2 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-783)))) (-3540 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-3811 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-4426 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-2132 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-1596 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1086 *3 *4 *5)))) (-1769 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-2091 (*1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-2114 (*1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-3592 (*1 *2 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-4390 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-1543 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-2272 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1086 *3 *4 *5)))) (-4211 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1086 *3 *4 *5)))) (-2448 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-1438 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-3048 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-3439 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-3439 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) (-3579 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-3579 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) (-1603 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-1603 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) (-3186 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-3186 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) (-2135 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-2678 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-2135 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-2678 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-2560 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-1439 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-2560 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-1439 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-2315 (*1 *2 *1 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -1714 *1) (|:| |gap| (-783)) (|:| -3624 *1))) (-4 *1 (-1086 *3 *4 *5)))) (-2315 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-2 (|:| -1714 *1) (|:| |gap| (-783)) (|:| -3624 *1))) (-4 *1 (-1086 *4 *5 *3)))) (-3491 (*1 *2 *1 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -1714 *1) (|:| |gap| (-783)) (|:| -2715 *1) (|:| -3624 *1))) (-4 *1 (-1086 *3 *4 *5)))) (-3491 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-2 (|:| -1714 *1) (|:| |gap| (-783)) (|:| -2715 *1) (|:| -3624 *1))) (-4 *1 (-1086 *4 *5 *3)))) (-2865 (*1 *2 *1 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -2715 *1) (|:| -3624 *1))) (-4 *1 (-1086 *3 *4 *5)))) (-2589 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-3124 (*1 *2 *1 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2066 (-783)))) (-4 *1 (-1086 *3 *4 *5)))) (-1522 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-3909 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-971 (-419 (-576)))) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-971 (-419 (-576)))) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)))) (-4172 (*1 *1 *2) (-12 (-5 *2 (-971 (-419 (-576)))) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)))) (-1572 (*1 *1 *2) (|partial| -2760 (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-2663 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))))) (-2860 (*1 *1 *2) (-2760 (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-2663 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))))) (-4172 (*1 *1 *2) (-2760 (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-2663 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))))) (-1572 (*1 *1 *2) (|partial| -2760 (-12 (-5 *2 (-971 *3)) (-12 (-2663 (-4 *3 (-38 (-419 (-576))))) (-2663 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 *3)) (-12 (-2663 (-4 *3 (-557))) (-2663 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 *3)) (-12 (-2663 (-4 *3 (-1013 (-576)))) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))))) (-2860 (*1 *1 *2) (-2760 (-12 (-5 *2 (-971 *3)) (-12 (-2663 (-4 *3 (-38 (-419 (-576))))) (-2663 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 *3)) (-12 (-2663 (-4 *3 (-557))) (-2663 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 *3)) (-12 (-2663 (-4 *3 (-1013 (-576)))) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))))) (-4172 (*1 *1 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *5 (-626 (-1197))) (-4 *4 (-805)) (-4 *5 (-861)))) (-3608 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-3508 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-4357 (*1 *1 *1 *2) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-1880 (*1 *1 *1 *2) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-4357 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-1880 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-3049 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-2093 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -3498 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1086 *3 *4 *5)))) (-4140 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -3498 *1) (|:| |coef1| *1))) (-4 *1 (-1086 *3 *4 *5)))) (-2284 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -3498 *1) (|:| |coef2| *1))) (-4 *1 (-1086 *3 *4 *5)))) (-3230 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-2733 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1086 *3 *4 *5)))) (-1540 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-4078 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *3 (-568)))) (-4235 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *3 (-568)))) (-3189 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-3498 (*1 *2 *2 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-1933 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-4068 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-2415 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-3199 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464))))) -(-13 (-968 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2620 (|t#3| $)) (-15 -2269 ((-783) $)) (-15 -3540 ($ $)) (-15 -3811 ($ $)) (-15 -4426 ($ $)) (-15 -2132 ($ $)) (-15 -1596 ((-656 $) $)) (-15 -1769 ($ $)) (-15 -2091 ($ $ |t#3|)) (-15 -2114 ($ $ |t#3|)) (-15 -3592 ((-112) $)) (-15 -4339 ((-112) $)) (-15 -4390 ($ $)) (-15 -1543 ($ $)) (-15 -2272 ((-656 $) $)) (-15 -4211 ((-656 $) $)) (-15 -2448 ((-3 (-112) "failed") $ $)) (-15 -1438 ((-112) $ $)) (-15 -3048 ((-112) $ $)) (-15 -3439 ((-112) $ $)) (-15 -3439 ((-112) $ (-656 $))) (-15 -3579 ((-112) $ $)) (-15 -3579 ((-112) $ (-656 $))) (-15 -1603 ((-112) $ $)) (-15 -1603 ((-112) $ (-656 $))) (-15 -3186 ((-112) $ $)) (-15 -3186 ((-112) $ (-656 $))) (-15 -2135 ($ $ $)) (-15 -2678 ($ $ $)) (-15 -2135 ($ $ $ |t#3|)) (-15 -2678 ($ $ $ |t#3|)) (-15 -2560 ($ $ $)) (-15 -1439 ($ $ $)) (-15 -2560 ($ $ $ |t#3|)) (-15 -1439 ($ $ $ |t#3|)) (-15 -2315 ((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -3624 $)) $ $)) (-15 -2315 ((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -3624 $)) $ $ |t#3|)) (-15 -3491 ((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -2715 $) (|:| -3624 $)) $ $)) (-15 -3491 ((-2 (|:| -1714 $) (|:| |gap| (-783)) (|:| -2715 $) (|:| -3624 $)) $ $ |t#3|)) (-15 -2865 ((-2 (|:| -2715 $) (|:| -3624 $)) $ $)) (-15 -2589 ($ $ $)) (-15 -3124 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2066 (-783))) $ $)) (-15 -1522 ($ $ $)) (-15 -3909 ($ $ $)) (IF (|has| |t#3| (-626 (-1197))) (PROGN (-6 (-625 (-971 |t#1|))) (-6 (-626 (-971 |t#1|))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -1572 ((-3 $ "failed") (-971 (-419 (-576))))) (-15 -2860 ($ (-971 (-419 (-576))))) (-15 -4172 ($ (-971 (-419 (-576))))) (-15 -1572 ((-3 $ "failed") (-971 (-576)))) (-15 -2860 ($ (-971 (-576)))) (-15 -4172 ($ (-971 (-576)))) (IF (|has| |t#1| (-1013 (-576))) |%noBranch| (PROGN (-15 -1572 ((-3 $ "failed") (-971 |t#1|))) (-15 -2860 ($ (-971 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-576))) (IF (|has| |t#1| (-38 (-419 (-576)))) |%noBranch| (PROGN (-15 -1572 ((-3 $ "failed") (-971 (-576)))) (-15 -2860 ($ (-971 (-576)))) (-15 -4172 ($ (-971 (-576)))) (IF (|has| |t#1| (-557)) |%noBranch| (PROGN (-15 -1572 ((-3 $ "failed") (-971 |t#1|))) (-15 -2860 ($ (-971 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-576))) |%noBranch| (IF (|has| |t#1| (-38 (-419 (-576)))) |%noBranch| (PROGN (-15 -1572 ((-3 $ "failed") (-971 |t#1|))) (-15 -2860 ($ (-971 |t#1|)))))) (-15 -4172 ($ (-971 |t#1|))) (IF (|has| |t#1| (-1059 (-576))) (-6 (-626 (-1179))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -3608 ($ $)) (-15 -3508 ($ $)) (-15 -4357 ($ $ |t#1|)) (-15 -1880 ($ $ |t#1|)) (-15 -4357 ($ $ $)) (-15 -1880 ($ $ $)) (-15 -3049 ($ $ $)) (-15 -2093 ((-2 (|:| -3498 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4140 ((-2 (|:| -3498 $) (|:| |coef1| $)) $ $)) (-15 -2284 ((-2 (|:| -3498 $) (|:| |coef2| $)) $ $)) (-15 -3230 ($ $ $)) (-15 -2733 ((-656 $) $ $)) (-15 -1540 ($ $ $)) (-15 -4078 ($ $ $ (-783))) (-15 -4235 ($ $ $ $ (-783))) (-15 -3189 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3498 (|t#1| |t#1| $)) (-15 -1933 ($ $)) (-15 -4068 ($ $)) (-15 -2415 ($ $)) (-15 -3199 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2760 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#3|) . T) ((-628 $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-876)) . T) ((-625 (-971 |#1|)) |has| |#3| (-626 (-1197))) ((-174) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-907 (-390))) -12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#3| (-626 (-907 (-390))))) ((-626 (-907 (-576))) -12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#3| (-626 (-907 (-576))))) ((-626 (-971 |#1|)) |has| |#3| (-626 (-1197))) ((-626 (-1179)) -12 (|has| |#1| (-1059 (-576))) (|has| |#3| (-626 (-1197)))) ((-300) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2760 (|has| |#1| (-928)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-911 $ |#3|) . T) ((-917 |#3|) . T) ((-919 |#3|) . T) ((-901 (-390)) -12 (|has| |#1| (-901 (-390))) (|has| |#3| (-901 (-390)))) ((-901 (-576)) -12 (|has| |#1| (-901 (-576))) (|has| |#3| (-901 (-576)))) ((-968 |#1| |#2| |#3|) . T) ((-928) |has| |#1| (-928)) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1059 |#3|) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) |has| |#1| (-928))) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-3067 (((-656 (-1156)) $) 18)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 27) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2641 (((-1156) $) 20)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-1087) (-13 (-1104) (-10 -8 (-15 -3067 ((-656 (-1156)) $)) (-15 -2641 ((-1156) $))))) (T -1087)) -((-3067 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-1087)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1087))))) -(-13 (-1104) (-10 -8 (-15 -3067 ((-656 (-1156)) $)) (-15 -2641 ((-1156) $)))) -((-4308 (((-112) |#3| $) 15)) (-2607 (((-3 $ "failed") |#3| (-940)) 29)) (-1561 (((-3 |#3| "failed") |#3| $) 45)) (-2087 (((-112) |#3| $) 19)) (-1634 (((-112) |#3| $) 17))) -(((-1088 |#1| |#2| |#3|) (-10 -8 (-15 -2607 ((-3 |#1| "failed") |#3| (-940))) (-15 -1561 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2087 ((-112) |#3| |#1|)) (-15 -1634 ((-112) |#3| |#1|)) (-15 -4308 ((-112) |#3| |#1|))) (-1089 |#2| |#3|) (-13 (-860) (-374)) (-1264 |#2|)) (T -1088)) -NIL -(-10 -8 (-15 -2607 ((-3 |#1| "failed") |#3| (-940))) (-15 -1561 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2087 ((-112) |#3| |#1|)) (-15 -1634 ((-112) |#3| |#1|)) (-15 -4308 ((-112) |#3| |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) |#2| $) 22)) (-3308 (((-576) |#2| $) 23)) (-2607 (((-3 $ "failed") |#2| (-940)) 16)) (-3111 ((|#1| |#2| $ |#1|) 14)) (-1561 (((-3 |#2| "failed") |#2| $) 19)) (-2087 (((-112) |#2| $) 20)) (-1634 (((-112) |#2| $) 21)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3867 ((|#2| $) 18)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-4166 ((|#1| |#2| $ |#1|) 15)) (-2111 (((-656 $) |#2|) 17)) (-2925 (((-112) $ $) 8))) +((-2235 (*1 *2 *1) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-783)))) (-3539 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-1982 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-4424 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-4231 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-2709 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1086 *3 *4 *5)))) (-3910 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-2091 (*1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-2114 (*1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-2643 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-3458 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-3115 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1086 *3 *4 *5)))) (-3421 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1086 *3 *4 *5)))) (-4275 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-2264 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-3074 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-1483 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-1483 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) (-3420 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-3420 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) (-2785 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-2785 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) (-1918 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-1918 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) (-4261 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-1546 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-4261 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-1546 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-2933 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-2275 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-2933 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-2275 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-2283 (*1 *2 *1 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -1715 *1) (|:| |gap| (-783)) (|:| -3891 *1))) (-4 *1 (-1086 *3 *4 *5)))) (-2283 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-2 (|:| -1715 *1) (|:| |gap| (-783)) (|:| -3891 *1))) (-4 *1 (-1086 *4 *5 *3)))) (-1905 (*1 *2 *1 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -1715 *1) (|:| |gap| (-783)) (|:| -1855 *1) (|:| -3891 *1))) (-4 *1 (-1086 *3 *4 *5)))) (-1905 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-2 (|:| -1715 *1) (|:| |gap| (-783)) (|:| -1855 *1) (|:| -3891 *1))) (-4 *1 (-1086 *4 *5 *3)))) (-3958 (*1 *2 *1 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -1855 *1) (|:| -3891 *1))) (-4 *1 (-1086 *3 *4 *5)))) (-3222 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-2529 (*1 *2 *1 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1679 (-783)))) (-4 *1 (-1086 *3 *4 *5)))) (-3235 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-3640 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-1572 (*1 *1 *2) (|partial| -12 (-5 *2 (-971 (-419 (-576)))) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-971 (-419 (-576)))) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)))) (-4171 (*1 *1 *2) (-12 (-5 *2 (-971 (-419 (-576)))) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)))) (-1572 (*1 *1 *2) (|partial| -2759 (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-2663 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))))) (-2859 (*1 *1 *2) (-2759 (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-2663 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))))) (-4171 (*1 *1 *2) (-2759 (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-2663 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))))) (-1572 (*1 *1 *2) (|partial| -2759 (-12 (-5 *2 (-971 *3)) (-12 (-2663 (-4 *3 (-38 (-419 (-576))))) (-2663 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 *3)) (-12 (-2663 (-4 *3 (-557))) (-2663 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 *3)) (-12 (-2663 (-4 *3 (-1013 (-576)))) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))))) (-2859 (*1 *1 *2) (-2759 (-12 (-5 *2 (-971 *3)) (-12 (-2663 (-4 *3 (-38 (-419 (-576))))) (-2663 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 *3)) (-12 (-2663 (-4 *3 (-557))) (-2663 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 *3)) (-12 (-2663 (-4 *3 (-1013 (-576)))) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))))) (-4171 (*1 *1 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *5 (-626 (-1197))) (-4 *4 (-805)) (-4 *5 (-861)))) (-3708 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-4027 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-2311 (*1 *1 *1 *2) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-3693 (*1 *1 *1 *2) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-2311 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-3693 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-3085 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-1908 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -3497 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1086 *3 *4 *5)))) (-2000 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -3497 *1) (|:| |coef1| *1))) (-4 *1 (-1086 *3 *4 *5)))) (-3236 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -3497 *1) (|:| |coef2| *1))) (-4 *1 (-1086 *3 *4 *5)))) (-4334 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-1998 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1086 *3 *4 *5)))) (-3422 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-2615 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *3 (-568)))) (-3683 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *3 (-568)))) (-1947 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-3497 (*1 *2 *2 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-2931 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-2527 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-3985 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-4032 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464))))) +(-13 (-968 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2235 (|t#3| $)) (-15 -3081 ((-783) $)) (-15 -3539 ($ $)) (-15 -1982 ($ $)) (-15 -4424 ($ $)) (-15 -4231 ($ $)) (-15 -2709 ((-656 $) $)) (-15 -3910 ($ $)) (-15 -2091 ($ $ |t#3|)) (-15 -2114 ($ $ |t#3|)) (-15 -3555 ((-112) $)) (-15 -2146 ((-112) $)) (-15 -2643 ($ $)) (-15 -3458 ($ $)) (-15 -3115 ((-656 $) $)) (-15 -3421 ((-656 $) $)) (-15 -4275 ((-3 (-112) "failed") $ $)) (-15 -2264 ((-112) $ $)) (-15 -3074 ((-112) $ $)) (-15 -1483 ((-112) $ $)) (-15 -1483 ((-112) $ (-656 $))) (-15 -3420 ((-112) $ $)) (-15 -3420 ((-112) $ (-656 $))) (-15 -2785 ((-112) $ $)) (-15 -2785 ((-112) $ (-656 $))) (-15 -1918 ((-112) $ $)) (-15 -1918 ((-112) $ (-656 $))) (-15 -4261 ($ $ $)) (-15 -1546 ($ $ $)) (-15 -4261 ($ $ $ |t#3|)) (-15 -1546 ($ $ $ |t#3|)) (-15 -2933 ($ $ $)) (-15 -2275 ($ $ $)) (-15 -2933 ($ $ $ |t#3|)) (-15 -2275 ($ $ $ |t#3|)) (-15 -2283 ((-2 (|:| -1715 $) (|:| |gap| (-783)) (|:| -3891 $)) $ $)) (-15 -2283 ((-2 (|:| -1715 $) (|:| |gap| (-783)) (|:| -3891 $)) $ $ |t#3|)) (-15 -1905 ((-2 (|:| -1715 $) (|:| |gap| (-783)) (|:| -1855 $) (|:| -3891 $)) $ $)) (-15 -1905 ((-2 (|:| -1715 $) (|:| |gap| (-783)) (|:| -1855 $) (|:| -3891 $)) $ $ |t#3|)) (-15 -3958 ((-2 (|:| -1855 $) (|:| -3891 $)) $ $)) (-15 -3222 ($ $ $)) (-15 -2529 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1679 (-783))) $ $)) (-15 -3235 ($ $ $)) (-15 -3640 ($ $ $)) (IF (|has| |t#3| (-626 (-1197))) (PROGN (-6 (-625 (-971 |t#1|))) (-6 (-626 (-971 |t#1|))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -1572 ((-3 $ "failed") (-971 (-419 (-576))))) (-15 -2859 ($ (-971 (-419 (-576))))) (-15 -4171 ($ (-971 (-419 (-576))))) (-15 -1572 ((-3 $ "failed") (-971 (-576)))) (-15 -2859 ($ (-971 (-576)))) (-15 -4171 ($ (-971 (-576)))) (IF (|has| |t#1| (-1013 (-576))) |%noBranch| (PROGN (-15 -1572 ((-3 $ "failed") (-971 |t#1|))) (-15 -2859 ($ (-971 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-576))) (IF (|has| |t#1| (-38 (-419 (-576)))) |%noBranch| (PROGN (-15 -1572 ((-3 $ "failed") (-971 (-576)))) (-15 -2859 ($ (-971 (-576)))) (-15 -4171 ($ (-971 (-576)))) (IF (|has| |t#1| (-557)) |%noBranch| (PROGN (-15 -1572 ((-3 $ "failed") (-971 |t#1|))) (-15 -2859 ($ (-971 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-576))) |%noBranch| (IF (|has| |t#1| (-38 (-419 (-576)))) |%noBranch| (PROGN (-15 -1572 ((-3 $ "failed") (-971 |t#1|))) (-15 -2859 ($ (-971 |t#1|)))))) (-15 -4171 ($ (-971 |t#1|))) (IF (|has| |t#1| (-1059 (-576))) (-6 (-626 (-1179))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -3708 ($ $)) (-15 -4027 ($ $)) (-15 -2311 ($ $ |t#1|)) (-15 -3693 ($ $ |t#1|)) (-15 -2311 ($ $ $)) (-15 -3693 ($ $ $)) (-15 -3085 ($ $ $)) (-15 -1908 ((-2 (|:| -3497 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2000 ((-2 (|:| -3497 $) (|:| |coef1| $)) $ $)) (-15 -3236 ((-2 (|:| -3497 $) (|:| |coef2| $)) $ $)) (-15 -4334 ($ $ $)) (-15 -1998 ((-656 $) $ $)) (-15 -3422 ($ $ $)) (-15 -2615 ($ $ $ (-783))) (-15 -3683 ($ $ $ $ (-783))) (-15 -1947 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3497 (|t#1| |t#1| $)) (-15 -2931 ($ $)) (-15 -2527 ($ $)) (-15 -3985 ($ $)) (-15 -4032 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2759 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#3|) . T) ((-628 $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-876)) . T) ((-625 (-971 |#1|)) |has| |#3| (-626 (-1197))) ((-174) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-907 (-390))) -12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#3| (-626 (-907 (-390))))) ((-626 (-907 (-576))) -12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#3| (-626 (-907 (-576))))) ((-626 (-971 |#1|)) |has| |#3| (-626 (-1197))) ((-626 (-1179)) -12 (|has| |#1| (-1059 (-576))) (|has| |#3| (-626 (-1197)))) ((-300) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2759 (|has| |#1| (-928)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-911 $ |#3|) . T) ((-917 |#3|) . T) ((-919 |#3|) . T) ((-901 (-390)) -12 (|has| |#1| (-901 (-390))) (|has| |#3| (-901 (-390)))) ((-901 (-576)) -12 (|has| |#1| (-901 (-576))) (|has| |#3| (-901 (-576)))) ((-968 |#1| |#2| |#3|) . T) ((-928) |has| |#1| (-928)) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1059 |#3|) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) |has| |#1| (-928))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-3066 (((-656 (-1156)) $) 18)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 27) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2640 (((-1156) $) 20)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-1087) (-13 (-1104) (-10 -8 (-15 -3066 ((-656 (-1156)) $)) (-15 -2640 ((-1156) $))))) (T -1087)) +((-3066 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-1087)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1087))))) +(-13 (-1104) (-10 -8 (-15 -3066 ((-656 (-1156)) $)) (-15 -2640 ((-1156) $)))) +((-3135 (((-112) |#3| $) 15)) (-2108 (((-3 $ "failed") |#3| (-940)) 29)) (-3673 (((-3 |#3| "failed") |#3| $) 45)) (-1866 (((-112) |#3| $) 19)) (-3137 (((-112) |#3| $) 17))) +(((-1088 |#1| |#2| |#3|) (-10 -8 (-15 -2108 ((-3 |#1| "failed") |#3| (-940))) (-15 -3673 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1866 ((-112) |#3| |#1|)) (-15 -3137 ((-112) |#3| |#1|)) (-15 -3135 ((-112) |#3| |#1|))) (-1089 |#2| |#3|) (-13 (-860) (-374)) (-1264 |#2|)) (T -1088)) +NIL +(-10 -8 (-15 -2108 ((-3 |#1| "failed") |#3| (-940))) (-15 -3673 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1866 ((-112) |#3| |#1|)) (-15 -3137 ((-112) |#3| |#1|)) (-15 -3135 ((-112) |#3| |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) |#2| $) 22)) (-3906 (((-576) |#2| $) 23)) (-2108 (((-3 $ "failed") |#2| (-940)) 16)) (-2412 ((|#1| |#2| $ |#1|) 14)) (-3673 (((-3 |#2| "failed") |#2| $) 19)) (-1866 (((-112) |#2| $) 20)) (-3137 (((-112) |#2| $) 21)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-1346 ((|#2| $) 18)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-4165 ((|#1| |#2| $ |#1|) 15)) (-4057 (((-656 $) |#2|) 17)) (-2924 (((-112) $ $) 8))) (((-1089 |#1| |#2|) (-141) (-13 (-860) (-374)) (-1264 |t#1|)) (T -1089)) -((-3308 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1264 *4)) (-5 *2 (-576)))) (-4308 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1264 *4)) (-5 *2 (-112)))) (-1634 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1264 *4)) (-5 *2 (-112)))) (-2087 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1264 *4)) (-5 *2 (-112)))) (-1561 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-13 (-860) (-374))) (-4 *2 (-1264 *3)))) (-3867 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-13 (-860) (-374))) (-4 *2 (-1264 *3)))) (-2111 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1264 *4)) (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *3)))) (-2607 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-940)) (-4 *4 (-13 (-860) (-374))) (-4 *1 (-1089 *4 *2)) (-4 *2 (-1264 *4)))) (-4166 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1089 *2 *3)) (-4 *2 (-13 (-860) (-374))) (-4 *3 (-1264 *2)))) (-3111 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1089 *2 *3)) (-4 *2 (-13 (-860) (-374))) (-4 *3 (-1264 *2))))) -(-13 (-1121) (-10 -8 (-15 -3308 ((-576) |t#2| $)) (-15 -4308 ((-112) |t#2| $)) (-15 -1634 ((-112) |t#2| $)) (-15 -2087 ((-112) |t#2| $)) (-15 -1561 ((-3 |t#2| "failed") |t#2| $)) (-15 -3867 (|t#2| $)) (-15 -2111 ((-656 $) |t#2|)) (-15 -2607 ((-3 $ "failed") |t#2| (-940))) (-15 -4166 (|t#1| |t#2| $ |t#1|)) (-15 -3111 (|t#1| |t#2| $ |t#1|)))) +((-3906 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1264 *4)) (-5 *2 (-576)))) (-3135 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1264 *4)) (-5 *2 (-112)))) (-3137 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1264 *4)) (-5 *2 (-112)))) (-1866 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1264 *4)) (-5 *2 (-112)))) (-3673 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-13 (-860) (-374))) (-4 *2 (-1264 *3)))) (-1346 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-13 (-860) (-374))) (-4 *2 (-1264 *3)))) (-4057 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1264 *4)) (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *3)))) (-2108 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-940)) (-4 *4 (-13 (-860) (-374))) (-4 *1 (-1089 *4 *2)) (-4 *2 (-1264 *4)))) (-4165 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1089 *2 *3)) (-4 *2 (-13 (-860) (-374))) (-4 *3 (-1264 *2)))) (-2412 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1089 *2 *3)) (-4 *2 (-13 (-860) (-374))) (-4 *3 (-1264 *2))))) +(-13 (-1121) (-10 -8 (-15 -3906 ((-576) |t#2| $)) (-15 -3135 ((-112) |t#2| $)) (-15 -3137 ((-112) |t#2| $)) (-15 -1866 ((-112) |t#2| $)) (-15 -3673 ((-3 |t#2| "failed") |t#2| $)) (-15 -1346 (|t#2| $)) (-15 -4057 ((-656 $) |t#2|)) (-15 -2108 ((-3 $ "failed") |t#2| (-940))) (-15 -4165 (|t#1| |t#2| $ |t#1|)) (-15 -2412 (|t#1| |t#2| $ |t#1|)))) (((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-3264 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) (-783)) 114)) (-3532 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5| (-783)) 63)) (-4396 (((-1293) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) (-783)) 99)) (-3227 (((-783) (-656 |#4|) (-656 |#5|)) 30)) (-3766 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5| (-783)) 65) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5| (-783) (-112)) 67)) (-1508 (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112)) 87)) (-4172 (((-1179) (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) 92)) (-1568 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5| (-112)) 62)) (-4029 (((-783) (-656 |#4|) (-656 |#5|)) 21))) -(((-1090 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4029 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3227 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1568 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5| (-112))) (-15 -3532 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5| (-783))) (-15 -3532 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5|)) (-15 -3766 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -3766 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5| (-783))) (-15 -3766 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5|)) (-15 -1508 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -1508 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3264 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) (-783))) (-15 -4172 ((-1179) (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|)))) (-15 -4396 ((-1293) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) (-783)))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -1090)) -((-4396 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3988 *9)))) (-5 *4 (-783)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-1293)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) (-4172 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3988 *8))) (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1179)) (-5 *1 (-1090 *4 *5 *6 *7 *8)))) (-3264 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-656 *11)) (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -3988 *11)))))) (-5 *6 (-783)) (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -3988 *11)))) (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1086 *7 *8 *9)) (-4 *11 (-1092 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-861)) (-5 *1 (-1090 *7 *8 *9 *10 *11)))) (-1508 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) (-1508 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) (-3766 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3766 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))))) (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) (-3766 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-861)) (-4 *3 (-1086 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))))) (-5 *1 (-1090 *7 *8 *9 *3 *4)) (-4 *4 (-1092 *7 *8 *9 *3)))) (-3532 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3532 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))))) (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) (-1568 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))))) (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) (-3227 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) (-4029 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1090 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -4029 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3227 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1568 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5| (-112))) (-15 -3532 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5| (-783))) (-15 -3532 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5|)) (-15 -3766 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -3766 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5| (-783))) (-15 -3766 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5|)) (-15 -1508 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -1508 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3264 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) (-783))) (-15 -4172 ((-1179) (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|)))) (-15 -4396 ((-1293) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) (-783)))) -((-4148 (((-112) |#5| $) 26)) (-3773 (((-112) |#5| $) 29)) (-4441 (((-112) |#5| $) 18) (((-112) $) 52)) (-3285 (((-656 $) |#5| $) NIL) (((-656 $) (-656 |#5|) $) 94) (((-656 $) (-656 |#5|) (-656 $)) 92) (((-656 $) |#5| (-656 $)) 95)) (-1749 (($ $ |#5|) NIL) (((-656 $) |#5| $) NIL) (((-656 $) |#5| (-656 $)) 73) (((-656 $) (-656 |#5|) $) 75) (((-656 $) (-656 |#5|) (-656 $)) 77)) (-3298 (((-656 $) |#5| $) NIL) (((-656 $) |#5| (-656 $)) 64) (((-656 $) (-656 |#5|) $) 69) (((-656 $) (-656 |#5|) (-656 $)) 71)) (-2392 (((-112) |#5| $) 32))) -(((-1091 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1749 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -1749 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -1749 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -1749 ((-656 |#1|) |#5| |#1|)) (-15 -3298 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3298 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3298 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3298 ((-656 |#1|) |#5| |#1|)) (-15 -3285 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3285 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3285 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3285 ((-656 |#1|) |#5| |#1|)) (-15 -3773 ((-112) |#5| |#1|)) (-15 -4441 ((-112) |#1|)) (-15 -2392 ((-112) |#5| |#1|)) (-15 -4148 ((-112) |#5| |#1|)) (-15 -4441 ((-112) |#5| |#1|)) (-15 -1749 (|#1| |#1| |#5|))) (-1092 |#2| |#3| |#4| |#5|) (-464) (-805) (-861) (-1086 |#2| |#3| |#4|)) (T -1091)) -NIL -(-10 -8 (-15 -1749 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -1749 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -1749 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -1749 ((-656 |#1|) |#5| |#1|)) (-15 -3298 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3298 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3298 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3298 ((-656 |#1|) |#5| |#1|)) (-15 -3285 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3285 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3285 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3285 ((-656 |#1|) |#5| |#1|)) (-15 -3773 ((-112) |#5| |#1|)) (-15 -4441 ((-112) |#1|)) (-15 -2392 ((-112) |#5| |#1|)) (-15 -4148 ((-112) |#5| |#1|)) (-15 -4441 ((-112) |#5| |#1|)) (-15 -1749 (|#1| |#1| |#5|))) -((-3489 (((-112) $ $) 7)) (-1788 (((-656 (-2 (|:| -1958 $) (|:| -3257 (-656 |#4|)))) (-656 |#4|)) 86)) (-3603 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1969 (((-656 |#3|) $) 34)) (-1807 (((-112) $) 27)) (-4026 (((-112) $) 18 (|has| |#1| (-568)))) (-1613 (((-112) |#4| $) 102) (((-112) $) 98)) (-1377 ((|#4| |#4| $) 93)) (-2487 (((-656 (-2 (|:| |val| |#4|) (|:| -3988 $))) |#4| $) 127)) (-1795 (((-2 (|:| |under| $) (|:| -2443 $) (|:| |upper| $)) $ |#3|) 28)) (-1808 (((-112) $ (-783)) 45)) (-1974 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4465))) (((-3 |#4| "failed") $ |#3|) 80)) (-3886 (($) 46 T CONST)) (-3713 (((-112) $) 23 (|has| |#1| (-568)))) (-2813 (((-112) $ $) 25 (|has| |#1| (-568)))) (-3812 (((-112) $ $) 24 (|has| |#1| (-568)))) (-1884 (((-112) $) 26 (|has| |#1| (-568)))) (-3388 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2311 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-4376 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) 37)) (-2860 (($ (-656 |#4|)) 36)) (-3593 (((-3 $ "failed") $) 83)) (-3994 ((|#4| |#4| $) 90)) (-1415 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465))))) (-3946 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4465)))) (-3624 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3439 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2737 ((|#4| |#4| $) 88)) (-3686 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4465))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4465))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4405 (((-2 (|:| -1958 (-656 |#4|)) (|:| -3257 (-656 |#4|))) $) 106)) (-4148 (((-112) |#4| $) 137)) (-3773 (((-112) |#4| $) 134)) (-4441 (((-112) |#4| $) 138) (((-112) $) 135)) (-3966 (((-656 |#4|) $) 53 (|has| $ (-6 -4465)))) (-3186 (((-112) |#4| $) 105) (((-112) $) 104)) (-2620 ((|#3| $) 35)) (-3870 (((-112) $ (-783)) 44)) (-2014 (((-656 |#4|) $) 54 (|has| $ (-6 -4465)))) (-1612 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465))))) (-4323 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#4| |#4|) $) 48)) (-2234 (((-656 |#3|) $) 33)) (-2106 (((-112) |#3| $) 32)) (-1330 (((-112) $ (-783)) 43)) (-3699 (((-1179) $) 10)) (-2166 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-1540 (((-656 (-2 (|:| |val| |#4|) (|:| -3988 $))) |#4| |#4| $) 128)) (-3969 (((-3 |#4| "failed") $) 84)) (-1471 (((-656 $) |#4| $) 130)) (-3179 (((-3 (-112) (-656 $)) |#4| $) 133)) (-3787 (((-656 (-2 (|:| |val| (-112)) (|:| -3988 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3285 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-2008 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-4275 (((-656 |#4|) $) 108)) (-1603 (((-112) |#4| $) 100) (((-112) $) 96)) (-3909 ((|#4| |#4| $) 91)) (-1438 (((-112) $ $) 111)) (-2280 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3579 (((-112) |#4| $) 101) (((-112) $) 97)) (-1522 ((|#4| |#4| $) 92)) (-1450 (((-1141) $) 11)) (-3581 (((-3 |#4| "failed") $) 85)) (-1541 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3384 (((-3 $ "failed") $ |#4|) 79)) (-1749 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-4320 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-4040 (((-112) $ $) 39)) (-3973 (((-112) $) 42)) (-4225 (($) 41)) (-3634 (((-783) $) 107)) (-1460 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4465)))) (-1870 (($ $) 40)) (-4172 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3582 (($ (-656 |#4|)) 61)) (-3118 (($ $ |#3|) 29)) (-2637 (($ $ |#3|) 31)) (-1584 (($ $) 89)) (-3317 (($ $ |#3|) 30)) (-3570 (((-876) $) 12) (((-656 |#4|) $) 38)) (-3891 (((-783) $) 77 (|has| |#3| (-379)))) (-4055 (((-112) $ $) 6)) (-3765 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2833 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-3298 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-3321 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4465)))) (-1583 (((-656 |#3|) $) 82)) (-2392 (((-112) |#4| $) 136)) (-3419 (((-112) |#3| $) 81)) (-2925 (((-112) $ $) 8)) (-3503 (((-783) $) 47 (|has| $ (-6 -4465))))) +((-3414 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) (-783)) 114)) (-4237 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783)) 63)) (-4394 (((-1293) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-783)) 99)) (-4304 (((-783) (-656 |#4|) (-656 |#5|)) 30)) (-1538 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783)) 65) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783) (-112)) 67)) (-4323 (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112)) 87)) (-4171 (((-1179) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) 92)) (-3745 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-112)) 62)) (-2163 (((-783) (-656 |#4|) (-656 |#5|)) 21))) +(((-1090 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2163 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -4304 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3745 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-112))) (-15 -4237 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783))) (-15 -4237 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|)) (-15 -1538 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -1538 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783))) (-15 -1538 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|)) (-15 -4323 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -4323 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3414 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) (-783))) (-15 -4171 ((-1179) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)))) (-15 -4394 ((-1293) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-783)))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -1090)) +((-4394 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3987 *9)))) (-5 *4 (-783)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-1293)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) (-4171 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3987 *8))) (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1179)) (-5 *1 (-1090 *4 *5 *6 *7 *8)))) (-3414 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-656 *11)) (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -3987 *11)))))) (-5 *6 (-783)) (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -3987 *11)))) (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1086 *7 *8 *9)) (-4 *11 (-1092 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-861)) (-5 *1 (-1090 *7 *8 *9 *10 *11)))) (-4323 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) (-4323 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) (-1538 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-1538 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) (-1538 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-861)) (-4 *3 (-1086 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) (-5 *1 (-1090 *7 *8 *9 *3 *4)) (-4 *4 (-1092 *7 *8 *9 *3)))) (-4237 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-4237 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) (-3745 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) (-4304 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) (-2163 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1090 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -2163 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -4304 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3745 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-112))) (-15 -4237 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783))) (-15 -4237 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|)) (-15 -1538 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -1538 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783))) (-15 -1538 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|)) (-15 -4323 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -4323 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3414 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) (-783))) (-15 -4171 ((-1179) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)))) (-15 -4394 ((-1293) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-783)))) +((-4064 (((-112) |#5| $) 26)) (-1608 (((-112) |#5| $) 29)) (-1921 (((-112) |#5| $) 18) (((-112) $) 52)) (-3651 (((-656 $) |#5| $) NIL) (((-656 $) (-656 |#5|) $) 94) (((-656 $) (-656 |#5|) (-656 $)) 92) (((-656 $) |#5| (-656 $)) 95)) (-1743 (($ $ |#5|) NIL) (((-656 $) |#5| $) NIL) (((-656 $) |#5| (-656 $)) 73) (((-656 $) (-656 |#5|) $) 75) (((-656 $) (-656 |#5|) (-656 $)) 77)) (-3788 (((-656 $) |#5| $) NIL) (((-656 $) |#5| (-656 $)) 64) (((-656 $) (-656 |#5|) $) 69) (((-656 $) (-656 |#5|) (-656 $)) 71)) (-1777 (((-112) |#5| $) 32))) +(((-1091 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1743 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -1743 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -1743 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -1743 ((-656 |#1|) |#5| |#1|)) (-15 -3788 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3788 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3788 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3788 ((-656 |#1|) |#5| |#1|)) (-15 -3651 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3651 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3651 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3651 ((-656 |#1|) |#5| |#1|)) (-15 -1608 ((-112) |#5| |#1|)) (-15 -1921 ((-112) |#1|)) (-15 -1777 ((-112) |#5| |#1|)) (-15 -4064 ((-112) |#5| |#1|)) (-15 -1921 ((-112) |#5| |#1|)) (-15 -1743 (|#1| |#1| |#5|))) (-1092 |#2| |#3| |#4| |#5|) (-464) (-805) (-861) (-1086 |#2| |#3| |#4|)) (T -1091)) +NIL +(-10 -8 (-15 -1743 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -1743 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -1743 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -1743 ((-656 |#1|) |#5| |#1|)) (-15 -3788 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3788 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3788 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3788 ((-656 |#1|) |#5| |#1|)) (-15 -3651 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3651 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3651 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3651 ((-656 |#1|) |#5| |#1|)) (-15 -1608 ((-112) |#5| |#1|)) (-15 -1921 ((-112) |#1|)) (-15 -1777 ((-112) |#5| |#1|)) (-15 -4064 ((-112) |#5| |#1|)) (-15 -1921 ((-112) |#5| |#1|)) (-15 -1743 (|#1| |#1| |#5|))) +((-3488 (((-112) $ $) 7)) (-4093 (((-656 (-2 (|:| -1958 $) (|:| -3256 (-656 |#4|)))) (-656 |#4|)) 86)) (-3668 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1969 (((-656 |#3|) $) 34)) (-4255 (((-112) $) 27)) (-2136 (((-112) $) 18 (|has| |#1| (-568)))) (-2899 (((-112) |#4| $) 102) (((-112) $) 98)) (-3798 ((|#4| |#4| $) 93)) (-3444 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 $))) |#4| $) 127)) (-1795 (((-2 (|:| |under| $) (|:| -4236 $) (|:| |upper| $)) $ |#3|) 28)) (-4264 (((-112) $ (-783)) 45)) (-1974 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4464))) (((-3 |#4| "failed") $ |#3|) 80)) (-3404 (($) 46 T CONST)) (-2203 (((-112) $) 23 (|has| |#1| (-568)))) (-3438 (((-112) $ $) 25 (|has| |#1| (-568)))) (-1990 (((-112) $ $) 24 (|has| |#1| (-568)))) (-3740 (((-112) $) 26 (|has| |#1| (-568)))) (-2149 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2239 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-2514 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) 37)) (-2859 (($ (-656 |#4|)) 36)) (-3592 (((-3 $ "failed") $) 83)) (-3142 ((|#4| |#4| $) 90)) (-2034 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4464)))) (-3891 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-1483 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4022 ((|#4| |#4| $) 88)) (-3685 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4464))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1599 (((-2 (|:| -1958 (-656 |#4|)) (|:| -3256 (-656 |#4|))) $) 106)) (-4064 (((-112) |#4| $) 137)) (-1608 (((-112) |#4| $) 134)) (-1921 (((-112) |#4| $) 138) (((-112) $) 135)) (-3965 (((-656 |#4|) $) 53 (|has| $ (-6 -4464)))) (-1918 (((-112) |#4| $) 105) (((-112) $) 104)) (-2235 ((|#3| $) 35)) (-1368 (((-112) $ (-783)) 44)) (-2425 (((-656 |#4|) $) 54 (|has| $ (-6 -4464)))) (-2885 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-4326 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#4| |#4|) $) 48)) (-2666 (((-656 |#3|) $) 33)) (-4001 (((-112) |#3| $) 32)) (-2883 (((-112) $ (-783)) 43)) (-2046 (((-1179) $) 10)) (-3299 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-3422 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 $))) |#4| |#4| $) 128)) (-3968 (((-3 |#4| "failed") $) 84)) (-3955 (((-656 $) |#4| $) 130)) (-1843 (((-3 (-112) (-656 $)) |#4| $) 133)) (-1751 (((-656 (-2 (|:| |val| (-112)) (|:| -3987 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3651 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-2381 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-2795 (((-656 |#4|) $) 108)) (-2785 (((-112) |#4| $) 100) (((-112) $) 96)) (-3640 ((|#4| |#4| $) 91)) (-2264 (((-112) $ $) 111)) (-3196 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3420 (((-112) |#4| $) 101) (((-112) $) 97)) (-3235 ((|#4| |#4| $) 92)) (-1450 (((-1141) $) 11)) (-3580 (((-3 |#4| "failed") $) 85)) (-3434 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2101 (((-3 $ "failed") $ |#4|) 79)) (-1743 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-3252 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-2252 (((-112) $ $) 39)) (-2940 (((-112) $) 42)) (-3579 (($) 41)) (-2683 (((-783) $) 107)) (-1460 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4464)))) (-1870 (($ $) 40)) (-4171 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3581 (($ (-656 |#4|)) 61)) (-2479 (($ $ |#3|) 29)) (-2394 (($ $ |#3|) 31)) (-2582 (($ $) 89)) (-2665 (($ $ |#3|) 30)) (-3569 (((-876) $) 12) (((-656 |#4|) $) 38)) (-3451 (((-783) $) 77 (|has| |#3| (-379)))) (-2399 (((-112) $ $) 6)) (-1530 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3653 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-3788 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2708 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4464)))) (-2572 (((-656 |#3|) $) 82)) (-1777 (((-112) |#4| $) 136)) (-2476 (((-112) |#3| $) 81)) (-2924 (((-112) $ $) 8)) (-3502 (((-783) $) 47 (|has| $ (-6 -4464))))) (((-1092 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-861) (-1086 |t#1| |t#2| |t#3|)) (T -1092)) -((-4441 (*1 *2 *3 *1) (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-4148 (*1 *2 *3 *1) (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-2392 (*1 *2 *3 *1) (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-4441 (*1 *2 *1) (-12 (-4 *1 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-3773 (*1 *2 *3 *1) (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-3179 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-3 (-112) (-656 *1))) (-4 *1 (-1092 *4 *5 *6 *3)))) (-3787 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3988 *1)))) (-4 *1 (-1092 *4 *5 *6 *3)))) (-3787 (*1 *2 *3 *1) (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-1471 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)))) (-2166 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-3 *3 (-656 *1))) (-4 *1 (-1092 *4 *5 *6 *3)))) (-1540 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3988 *1)))) (-4 *1 (-1092 *4 *5 *6 *3)))) (-2487 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3988 *1)))) (-4 *1 (-1092 *4 *5 *6 *3)))) (-3285 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)))) (-3285 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *7)))) (-3285 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)))) (-3285 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) (-3298 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)))) (-3298 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) (-3298 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *7)))) (-3298 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)))) (-2008 (*1 *1 *2 *1) (-12 (-4 *1 (-1092 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-2008 (*1 *1 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)))) (-1749 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)))) (-1749 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) (-1749 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *7)))) (-1749 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)))) (-3603 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *5 *6 *7 *8))))) -(-13 (-1231 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -4441 ((-112) |t#4| $)) (-15 -4148 ((-112) |t#4| $)) (-15 -2392 ((-112) |t#4| $)) (-15 -4441 ((-112) $)) (-15 -3773 ((-112) |t#4| $)) (-15 -3179 ((-3 (-112) (-656 $)) |t#4| $)) (-15 -3787 ((-656 (-2 (|:| |val| (-112)) (|:| -3988 $))) |t#4| $)) (-15 -3787 ((-112) |t#4| $)) (-15 -1471 ((-656 $) |t#4| $)) (-15 -2166 ((-3 |t#4| (-656 $)) |t#4| |t#4| $)) (-15 -1540 ((-656 (-2 (|:| |val| |t#4|) (|:| -3988 $))) |t#4| |t#4| $)) (-15 -2487 ((-656 (-2 (|:| |val| |t#4|) (|:| -3988 $))) |t#4| $)) (-15 -3285 ((-656 $) |t#4| $)) (-15 -3285 ((-656 $) (-656 |t#4|) $)) (-15 -3285 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -3285 ((-656 $) |t#4| (-656 $))) (-15 -3298 ((-656 $) |t#4| $)) (-15 -3298 ((-656 $) |t#4| (-656 $))) (-15 -3298 ((-656 $) (-656 |t#4|) $)) (-15 -3298 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -2008 ($ |t#4| $)) (-15 -2008 ($ (-656 |t#4|) $)) (-15 -1749 ((-656 $) |t#4| $)) (-15 -1749 ((-656 $) |t#4| (-656 $))) (-15 -1749 ((-656 $) (-656 |t#4|) $)) (-15 -1749 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -3603 ((-656 $) (-656 |t#4|) (-112))))) +((-1921 (*1 *2 *3 *1) (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-4064 (*1 *2 *3 *1) (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-1777 (*1 *2 *3 *1) (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-1921 (*1 *2 *1) (-12 (-4 *1 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-1608 (*1 *2 *3 *1) (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-1843 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-3 (-112) (-656 *1))) (-4 *1 (-1092 *4 *5 *6 *3)))) (-1751 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3987 *1)))) (-4 *1 (-1092 *4 *5 *6 *3)))) (-1751 (*1 *2 *3 *1) (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-3955 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)))) (-3299 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-3 *3 (-656 *1))) (-4 *1 (-1092 *4 *5 *6 *3)))) (-3422 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *1)))) (-4 *1 (-1092 *4 *5 *6 *3)))) (-3444 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *1)))) (-4 *1 (-1092 *4 *5 *6 *3)))) (-3651 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)))) (-3651 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *7)))) (-3651 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)))) (-3651 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) (-3788 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)))) (-3788 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) (-3788 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *7)))) (-3788 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)))) (-2381 (*1 *1 *2 *1) (-12 (-4 *1 (-1092 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-2381 (*1 *1 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)))) (-1743 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)))) (-1743 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) (-1743 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *7)))) (-1743 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)))) (-3668 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *5 *6 *7 *8))))) +(-13 (-1231 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1921 ((-112) |t#4| $)) (-15 -4064 ((-112) |t#4| $)) (-15 -1777 ((-112) |t#4| $)) (-15 -1921 ((-112) $)) (-15 -1608 ((-112) |t#4| $)) (-15 -1843 ((-3 (-112) (-656 $)) |t#4| $)) (-15 -1751 ((-656 (-2 (|:| |val| (-112)) (|:| -3987 $))) |t#4| $)) (-15 -1751 ((-112) |t#4| $)) (-15 -3955 ((-656 $) |t#4| $)) (-15 -3299 ((-3 |t#4| (-656 $)) |t#4| |t#4| $)) (-15 -3422 ((-656 (-2 (|:| |val| |t#4|) (|:| -3987 $))) |t#4| |t#4| $)) (-15 -3444 ((-656 (-2 (|:| |val| |t#4|) (|:| -3987 $))) |t#4| $)) (-15 -3651 ((-656 $) |t#4| $)) (-15 -3651 ((-656 $) (-656 |t#4|) $)) (-15 -3651 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -3651 ((-656 $) |t#4| (-656 $))) (-15 -3788 ((-656 $) |t#4| $)) (-15 -3788 ((-656 $) |t#4| (-656 $))) (-15 -3788 ((-656 $) (-656 |t#4|) $)) (-15 -3788 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -2381 ($ |t#4| $)) (-15 -2381 ($ (-656 |t#4|) $)) (-15 -1743 ((-656 $) |t#4| $)) (-15 -1743 ((-656 $) |t#4| (-656 $))) (-15 -1743 ((-656 $) (-656 |t#4|) $)) (-15 -1743 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -3668 ((-656 $) (-656 |t#4|) (-112))))) (((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-876)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-997 |#1| |#2| |#3| |#4|) . T) ((-1121) . T) ((-1231 |#1| |#2| |#3| |#4|) . T) ((-1238) . T)) -((-1539 (((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) |#4| |#5|) 86)) (-2905 (((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) |#4| |#4| |#5|) 127)) (-3565 (((-656 |#5|) |#4| |#5|) 74)) (-3232 (((-656 (-2 (|:| |val| (-112)) (|:| -3988 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-4310 (((-1293)) 36)) (-1712 (((-1293)) 25)) (-4255 (((-1293) (-1179) (-1179) (-1179)) 32)) (-2680 (((-1293) (-1179) (-1179) (-1179)) 21)) (-4371 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) |#4| |#4| |#5|) 107)) (-3261 (((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) |#3| (-112)) 118) (((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-2403 (((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) |#4| |#4| |#5|) 113))) -(((-1093 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2680 ((-1293) (-1179) (-1179) (-1179))) (-15 -1712 ((-1293))) (-15 -4255 ((-1293) (-1179) (-1179) (-1179))) (-15 -4310 ((-1293))) (-15 -4371 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) |#4| |#4| |#5|)) (-15 -3261 ((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3261 ((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) |#3| (-112))) (-15 -2403 ((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) |#4| |#4| |#5|)) (-15 -2905 ((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) |#4| |#4| |#5|)) (-15 -3232 ((-112) |#4| |#5|)) (-15 -3232 ((-656 (-2 (|:| |val| (-112)) (|:| -3988 |#5|))) |#4| |#5|)) (-15 -3565 ((-656 |#5|) |#4| |#5|)) (-15 -1539 ((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) |#4| |#5|))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -1093)) -((-1539 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3988 *4)))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3565 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3232 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3988 *4)))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3232 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-2905 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3988 *4)))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-2403 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3988 *4)))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3261 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3988 *9)))) (-5 *5 (-112)) (-4 *8 (-1086 *6 *7 *4)) (-4 *9 (-1092 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-861)) (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -3988 *9)))) (-5 *1 (-1093 *6 *7 *4 *8 *9)))) (-3261 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3988 *4)))) (-5 *1 (-1093 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) (-4371 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-4310 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-4255 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1093 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-1712 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-2680 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1093 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) -(-10 -7 (-15 -2680 ((-1293) (-1179) (-1179) (-1179))) (-15 -1712 ((-1293))) (-15 -4255 ((-1293) (-1179) (-1179) (-1179))) (-15 -4310 ((-1293))) (-15 -4371 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) |#4| |#4| |#5|)) (-15 -3261 ((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3261 ((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) |#3| (-112))) (-15 -2403 ((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) |#4| |#4| |#5|)) (-15 -2905 ((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) |#4| |#4| |#5|)) (-15 -3232 ((-112) |#4| |#5|)) (-15 -3232 ((-656 (-2 (|:| |val| (-112)) (|:| -3988 |#5|))) |#4| |#5|)) (-15 -3565 ((-656 |#5|) |#4| |#5|)) (-15 -1539 ((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) |#4| |#5|))) -((-3489 (((-112) $ $) NIL)) (-2984 (((-1237) $) 13)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3123 (((-1156) $) 10)) (-3570 (((-876) $) 20) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-1094) (-13 (-1104) (-10 -8 (-15 -3123 ((-1156) $)) (-15 -2984 ((-1237) $))))) (T -1094)) -((-3123 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1094)))) (-2984 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1094))))) -(-13 (-1104) (-10 -8 (-15 -3123 ((-1156) $)) (-15 -2984 ((-1237) $)))) -((-4027 (((-112) $ $) 7))) -(((-1095) (-13 (-1238) (-10 -8 (-15 -4027 ((-112) $ $))))) (T -1095)) -((-4027 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1095))))) -(-13 (-1238) (-10 -8 (-15 -4027 ((-112) $ $)))) -((-3489 (((-112) $ $) NIL)) (-2629 (((-1197) $) 8)) (-3699 (((-1179) $) 17)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 11)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 14))) -(((-1096 |#1|) (-13 (-1121) (-10 -8 (-15 -2629 ((-1197) $)))) (-1197)) (T -1096)) -((-2629 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1096 *3)) (-14 *3 *2)))) -(-13 (-1121) (-10 -8 (-15 -2629 ((-1197) $)))) -((-3489 (((-112) $ $) NIL)) (-2930 (($ $ (-656 (-1197)) (-1 (-112) (-656 |#3|))) 34)) (-2416 (($ |#3| |#3|) 23) (($ |#3| |#3| (-656 (-1197))) 21)) (-1669 ((|#3| $) 13)) (-1572 (((-3 (-304 |#3|) "failed") $) 60)) (-2860 (((-304 |#3|) $) NIL)) (-2201 (((-656 (-1197)) $) 16)) (-2720 (((-907 |#1|) $) 11)) (-1657 ((|#3| $) 12)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2797 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-940)) 41)) (-3570 (((-876) $) 89) (($ (-304 |#3|)) 22)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 38))) -(((-1097 |#1| |#2| |#3|) (-13 (-1121) (-296 |#3| |#3|) (-1059 (-304 |#3|)) (-10 -8 (-15 -2416 ($ |#3| |#3|)) (-15 -2416 ($ |#3| |#3| (-656 (-1197)))) (-15 -2930 ($ $ (-656 (-1197)) (-1 (-112) (-656 |#3|)))) (-15 -2720 ((-907 |#1|) $)) (-15 -1657 (|#3| $)) (-15 -1669 (|#3| $)) (-15 -2797 (|#3| $ |#3| (-940))) (-15 -2201 ((-656 (-1197)) $)))) (-1121) (-13 (-1070) (-901 |#1|) (-626 (-907 |#1|))) (-13 (-442 |#2|) (-901 |#1|) (-626 (-907 |#1|)))) (T -1097)) -((-2416 (*1 *1 *2 *2) (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) (-5 *1 (-1097 *3 *4 *2)) (-4 *2 (-13 (-442 *4) (-901 *3) (-626 (-907 *3)))))) (-2416 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-656 (-1197))) (-4 *4 (-1121)) (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) (-5 *1 (-1097 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))))) (-2930 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-1 (-112) (-656 *6))) (-4 *6 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))) (-4 *4 (-1121)) (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) (-5 *1 (-1097 *4 *5 *6)))) (-2720 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 *2))) (-5 *2 (-907 *3)) (-5 *1 (-1097 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-901 *3) (-626 *2))))) (-1657 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *2 (-13 (-442 *4) (-901 *3) (-626 (-907 *3)))) (-5 *1 (-1097 *3 *4 *2)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))))) (-1669 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *2 (-13 (-442 *4) (-901 *3) (-626 (-907 *3)))) (-5 *1 (-1097 *3 *4 *2)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))))) (-2797 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-940)) (-4 *4 (-1121)) (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) (-5 *1 (-1097 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))))) (-2201 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) (-5 *2 (-656 (-1197))) (-5 *1 (-1097 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-901 *3) (-626 (-907 *3))))))) -(-13 (-1121) (-296 |#3| |#3|) (-1059 (-304 |#3|)) (-10 -8 (-15 -2416 ($ |#3| |#3|)) (-15 -2416 ($ |#3| |#3| (-656 (-1197)))) (-15 -2930 ($ $ (-656 (-1197)) (-1 (-112) (-656 |#3|)))) (-15 -2720 ((-907 |#1|) $)) (-15 -1657 (|#3| $)) (-15 -1669 (|#3| $)) (-15 -2797 (|#3| $ |#3| (-940))) (-15 -2201 ((-656 (-1197)) $)))) -((-3489 (((-112) $ $) NIL)) (-2891 (($ (-656 (-1097 |#1| |#2| |#3|))) 14)) (-3366 (((-656 (-1097 |#1| |#2| |#3|)) $) 21)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2797 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-940)) 27)) (-3570 (((-876) $) 17)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 20))) -(((-1098 |#1| |#2| |#3|) (-13 (-1121) (-296 |#3| |#3|) (-10 -8 (-15 -2891 ($ (-656 (-1097 |#1| |#2| |#3|)))) (-15 -3366 ((-656 (-1097 |#1| |#2| |#3|)) $)) (-15 -2797 (|#3| $ |#3| (-940))))) (-1121) (-13 (-1070) (-901 |#1|) (-626 (-907 |#1|))) (-13 (-442 |#2|) (-901 |#1|) (-626 (-907 |#1|)))) (T -1098)) -((-2891 (*1 *1 *2) (-12 (-5 *2 (-656 (-1097 *3 *4 *5))) (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) (-4 *5 (-13 (-442 *4) (-901 *3) (-626 (-907 *3)))) (-5 *1 (-1098 *3 *4 *5)))) (-3366 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) (-5 *2 (-656 (-1097 *3 *4 *5))) (-5 *1 (-1098 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-901 *3) (-626 (-907 *3)))))) (-2797 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-940)) (-4 *4 (-1121)) (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) (-5 *1 (-1098 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4))))))) -(-13 (-1121) (-296 |#3| |#3|) (-10 -8 (-15 -2891 ($ (-656 (-1097 |#1| |#2| |#3|)))) (-15 -3366 ((-656 (-1097 |#1| |#2| |#3|)) $)) (-15 -2797 (|#3| $ |#3| (-940))))) -((-3459 (((-656 (-2 (|:| -3119 (-1193 |#1|)) (|:| -4152 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112)) 88) (((-656 (-2 (|:| -3119 (-1193 |#1|)) (|:| -4152 (-656 (-971 |#1|))))) (-656 (-971 |#1|))) 92) (((-656 (-2 (|:| -3119 (-1193 |#1|)) (|:| -4152 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112)) 90))) -(((-1099 |#1| |#2|) (-10 -7 (-15 -3459 ((-656 (-2 (|:| -3119 (-1193 |#1|)) (|:| -4152 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112))) (-15 -3459 ((-656 (-2 (|:| -3119 (-1193 |#1|)) (|:| -4152 (-656 (-971 |#1|))))) (-656 (-971 |#1|)))) (-15 -3459 ((-656 (-2 (|:| -3119 (-1193 |#1|)) (|:| -4152 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112)))) (-13 (-317) (-148)) (-656 (-1197))) (T -1099)) -((-3459 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -3119 (-1193 *5)) (|:| -4152 (-656 (-971 *5)))))) (-5 *1 (-1099 *5 *6)) (-5 *3 (-656 (-971 *5))) (-14 *6 (-656 (-1197))))) (-3459 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -3119 (-1193 *4)) (|:| -4152 (-656 (-971 *4)))))) (-5 *1 (-1099 *4 *5)) (-5 *3 (-656 (-971 *4))) (-14 *5 (-656 (-1197))))) (-3459 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -3119 (-1193 *5)) (|:| -4152 (-656 (-971 *5)))))) (-5 *1 (-1099 *5 *6)) (-5 *3 (-656 (-971 *5))) (-14 *6 (-656 (-1197)))))) -(-10 -7 (-15 -3459 ((-656 (-2 (|:| -3119 (-1193 |#1|)) (|:| -4152 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112))) (-15 -3459 ((-656 (-2 (|:| -3119 (-1193 |#1|)) (|:| -4152 (-656 (-971 |#1|))))) (-656 (-971 |#1|)))) (-15 -3459 ((-656 (-2 (|:| -3119 (-1193 |#1|)) (|:| -4152 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112)))) +((-3412 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#5|) 86)) (-3093 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5|) 127)) (-1404 (((-656 |#5|) |#4| |#5|) 74)) (-4356 (((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-3159 (((-1293)) 36)) (-1409 (((-1293)) 25)) (-3893 (((-1293) (-1179) (-1179) (-1179)) 32)) (-1557 (((-1293) (-1179) (-1179) (-1179)) 21)) (-2473 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) |#4| |#4| |#5|) 107)) (-3393 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) |#3| (-112)) 118) (((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-1884 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5|) 113))) +(((-1093 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1557 ((-1293) (-1179) (-1179) (-1179))) (-15 -1409 ((-1293))) (-15 -3893 ((-1293) (-1179) (-1179) (-1179))) (-15 -3159 ((-1293))) (-15 -2473 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) |#4| |#4| |#5|)) (-15 -3393 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3393 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) |#3| (-112))) (-15 -1884 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5|)) (-15 -3093 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5|)) (-15 -4356 ((-112) |#4| |#5|)) (-15 -4356 ((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|)) (-15 -1404 ((-656 |#5|) |#4| |#5|)) (-15 -3412 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#5|))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -1093)) +((-3412 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-1404 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-4356 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3987 *4)))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-4356 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3093 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-1884 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3393 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3987 *9)))) (-5 *5 (-112)) (-4 *8 (-1086 *6 *7 *4)) (-4 *9 (-1092 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-861)) (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -3987 *9)))) (-5 *1 (-1093 *6 *7 *4 *8 *9)))) (-3393 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) (-5 *1 (-1093 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) (-2473 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3159 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-3893 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1093 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-1409 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-1557 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1093 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) +(-10 -7 (-15 -1557 ((-1293) (-1179) (-1179) (-1179))) (-15 -1409 ((-1293))) (-15 -3893 ((-1293) (-1179) (-1179) (-1179))) (-15 -3159 ((-1293))) (-15 -2473 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) |#4| |#4| |#5|)) (-15 -3393 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3393 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) |#3| (-112))) (-15 -1884 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5|)) (-15 -3093 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5|)) (-15 -4356 ((-112) |#4| |#5|)) (-15 -4356 ((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|)) (-15 -1404 ((-656 |#5|) |#4| |#5|)) (-15 -3412 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#5|))) +((-3488 (((-112) $ $) NIL)) (-2983 (((-1237) $) 13)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3121 (((-1156) $) 10)) (-3569 (((-876) $) 20) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-1094) (-13 (-1104) (-10 -8 (-15 -3121 ((-1156) $)) (-15 -2983 ((-1237) $))))) (T -1094)) +((-3121 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1094)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1094))))) +(-13 (-1104) (-10 -8 (-15 -3121 ((-1156) $)) (-15 -2983 ((-1237) $)))) +((-4026 (((-112) $ $) 7))) +(((-1095) (-13 (-1238) (-10 -8 (-15 -4026 ((-112) $ $))))) (T -1095)) +((-4026 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1095))))) +(-13 (-1238) (-10 -8 (-15 -4026 ((-112) $ $)))) +((-3488 (((-112) $ $) NIL)) (-2628 (((-1197) $) 8)) (-2046 (((-1179) $) 17)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 11)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 14))) +(((-1096 |#1|) (-13 (-1121) (-10 -8 (-15 -2628 ((-1197) $)))) (-1197)) (T -1096)) +((-2628 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1096 *3)) (-14 *3 *2)))) +(-13 (-1121) (-10 -8 (-15 -2628 ((-1197) $)))) +((-3488 (((-112) $ $) NIL)) (-2929 (($ $ (-656 (-1197)) (-1 (-112) (-656 |#3|))) 34)) (-2414 (($ |#3| |#3|) 23) (($ |#3| |#3| (-656 (-1197))) 21)) (-1669 ((|#3| $) 13)) (-1572 (((-3 (-304 |#3|) "failed") $) 60)) (-2859 (((-304 |#3|) $) NIL)) (-3638 (((-656 (-1197)) $) 16)) (-2719 (((-907 |#1|) $) 11)) (-1657 ((|#3| $) 12)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2796 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-940)) 41)) (-3569 (((-876) $) 89) (($ (-304 |#3|)) 22)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 38))) +(((-1097 |#1| |#2| |#3|) (-13 (-1121) (-296 |#3| |#3|) (-1059 (-304 |#3|)) (-10 -8 (-15 -2414 ($ |#3| |#3|)) (-15 -2414 ($ |#3| |#3| (-656 (-1197)))) (-15 -2929 ($ $ (-656 (-1197)) (-1 (-112) (-656 |#3|)))) (-15 -2719 ((-907 |#1|) $)) (-15 -1657 (|#3| $)) (-15 -1669 (|#3| $)) (-15 -2796 (|#3| $ |#3| (-940))) (-15 -3638 ((-656 (-1197)) $)))) (-1121) (-13 (-1070) (-901 |#1|) (-626 (-907 |#1|))) (-13 (-442 |#2|) (-901 |#1|) (-626 (-907 |#1|)))) (T -1097)) +((-2414 (*1 *1 *2 *2) (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) (-5 *1 (-1097 *3 *4 *2)) (-4 *2 (-13 (-442 *4) (-901 *3) (-626 (-907 *3)))))) (-2414 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-656 (-1197))) (-4 *4 (-1121)) (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) (-5 *1 (-1097 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))))) (-2929 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-1 (-112) (-656 *6))) (-4 *6 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))) (-4 *4 (-1121)) (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) (-5 *1 (-1097 *4 *5 *6)))) (-2719 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 *2))) (-5 *2 (-907 *3)) (-5 *1 (-1097 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-901 *3) (-626 *2))))) (-1657 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *2 (-13 (-442 *4) (-901 *3) (-626 (-907 *3)))) (-5 *1 (-1097 *3 *4 *2)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))))) (-1669 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *2 (-13 (-442 *4) (-901 *3) (-626 (-907 *3)))) (-5 *1 (-1097 *3 *4 *2)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))))) (-2796 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-940)) (-4 *4 (-1121)) (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) (-5 *1 (-1097 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))))) (-3638 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) (-5 *2 (-656 (-1197))) (-5 *1 (-1097 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-901 *3) (-626 (-907 *3))))))) +(-13 (-1121) (-296 |#3| |#3|) (-1059 (-304 |#3|)) (-10 -8 (-15 -2414 ($ |#3| |#3|)) (-15 -2414 ($ |#3| |#3| (-656 (-1197)))) (-15 -2929 ($ $ (-656 (-1197)) (-1 (-112) (-656 |#3|)))) (-15 -2719 ((-907 |#1|) $)) (-15 -1657 (|#3| $)) (-15 -1669 (|#3| $)) (-15 -2796 (|#3| $ |#3| (-940))) (-15 -3638 ((-656 (-1197)) $)))) +((-3488 (((-112) $ $) NIL)) (-2890 (($ (-656 (-1097 |#1| |#2| |#3|))) 14)) (-3368 (((-656 (-1097 |#1| |#2| |#3|)) $) 21)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2796 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-940)) 27)) (-3569 (((-876) $) 17)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 20))) +(((-1098 |#1| |#2| |#3|) (-13 (-1121) (-296 |#3| |#3|) (-10 -8 (-15 -2890 ($ (-656 (-1097 |#1| |#2| |#3|)))) (-15 -3368 ((-656 (-1097 |#1| |#2| |#3|)) $)) (-15 -2796 (|#3| $ |#3| (-940))))) (-1121) (-13 (-1070) (-901 |#1|) (-626 (-907 |#1|))) (-13 (-442 |#2|) (-901 |#1|) (-626 (-907 |#1|)))) (T -1098)) +((-2890 (*1 *1 *2) (-12 (-5 *2 (-656 (-1097 *3 *4 *5))) (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) (-4 *5 (-13 (-442 *4) (-901 *3) (-626 (-907 *3)))) (-5 *1 (-1098 *3 *4 *5)))) (-3368 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) (-5 *2 (-656 (-1097 *3 *4 *5))) (-5 *1 (-1098 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-901 *3) (-626 (-907 *3)))))) (-2796 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-940)) (-4 *4 (-1121)) (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) (-5 *1 (-1098 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4))))))) +(-13 (-1121) (-296 |#3| |#3|) (-10 -8 (-15 -2890 ($ (-656 (-1097 |#1| |#2| |#3|)))) (-15 -3368 ((-656 (-1097 |#1| |#2| |#3|)) $)) (-15 -2796 (|#3| $ |#3| (-940))))) +((-1632 (((-656 (-2 (|:| -2490 (-1193 |#1|)) (|:| -4096 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112)) 88) (((-656 (-2 (|:| -2490 (-1193 |#1|)) (|:| -4096 (-656 (-971 |#1|))))) (-656 (-971 |#1|))) 92) (((-656 (-2 (|:| -2490 (-1193 |#1|)) (|:| -4096 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112)) 90))) +(((-1099 |#1| |#2|) (-10 -7 (-15 -1632 ((-656 (-2 (|:| -2490 (-1193 |#1|)) (|:| -4096 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112))) (-15 -1632 ((-656 (-2 (|:| -2490 (-1193 |#1|)) (|:| -4096 (-656 (-971 |#1|))))) (-656 (-971 |#1|)))) (-15 -1632 ((-656 (-2 (|:| -2490 (-1193 |#1|)) (|:| -4096 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112)))) (-13 (-317) (-148)) (-656 (-1197))) (T -1099)) +((-1632 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -2490 (-1193 *5)) (|:| -4096 (-656 (-971 *5)))))) (-5 *1 (-1099 *5 *6)) (-5 *3 (-656 (-971 *5))) (-14 *6 (-656 (-1197))))) (-1632 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -2490 (-1193 *4)) (|:| -4096 (-656 (-971 *4)))))) (-5 *1 (-1099 *4 *5)) (-5 *3 (-656 (-971 *4))) (-14 *5 (-656 (-1197))))) (-1632 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -2490 (-1193 *5)) (|:| -4096 (-656 (-971 *5)))))) (-5 *1 (-1099 *5 *6)) (-5 *3 (-656 (-971 *5))) (-14 *6 (-656 (-1197)))))) +(-10 -7 (-15 -1632 ((-656 (-2 (|:| -2490 (-1193 |#1|)) (|:| -4096 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112))) (-15 -1632 ((-656 (-2 (|:| -2490 (-1193 |#1|)) (|:| -4096 (-656 (-971 |#1|))))) (-656 (-971 |#1|)))) (-15 -1632 ((-656 (-2 (|:| -2490 (-1193 |#1|)) (|:| -4096 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112)))) ((-1828 (((-430 |#3|) |#3|) 18))) (((-1100 |#1| |#2| |#3|) (-10 -7 (-15 -1828 ((-430 |#3|) |#3|))) (-1264 (-419 (-576))) (-13 (-374) (-148) (-736 (-419 (-576)) |#1|)) (-1264 |#2|)) (T -1100)) ((-1828 (*1 *2 *3) (-12 (-4 *4 (-1264 (-419 (-576)))) (-4 *5 (-13 (-374) (-148) (-736 (-419 (-576)) *4))) (-5 *2 (-430 *3)) (-5 *1 (-1100 *4 *5 *3)) (-4 *3 (-1264 *5))))) (-10 -7 (-15 -1828 ((-430 |#3|) |#3|))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 136)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#1| (-374)))) (-2757 (($ $) NIL (|has| |#1| (-374)))) (-3788 (((-112) $) NIL (|has| |#1| (-374)))) (-4101 (((-701 |#1|) (-1288 $)) NIL) (((-701 |#1|)) 121)) (-2210 ((|#1| $) 125)) (-4183 (((-1210 (-940) (-783)) (-576)) NIL (|has| |#1| (-360)))) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL (|has| |#1| (-374)))) (-3921 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4016 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2098 (((-783)) 43 (|has| |#1| (-379)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2860 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-4119 (($ (-1288 |#1|) (-1288 $)) NIL) (($ (-1288 |#1|)) 46)) (-2554 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-3429 (($ $ $) NIL (|has| |#1| (-374)))) (-1420 (((-701 |#1|) $ (-1288 $)) NIL) (((-701 |#1|) $) NIL)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 113) (((-701 |#1|) (-701 $)) 108)) (-3686 (($ |#2|) 65) (((-3 $ "failed") (-419 |#2|)) NIL (|has| |#1| (-374)))) (-1561 (((-3 $ "failed") $) NIL)) (-3734 (((-940)) 84)) (-1836 (($) 47 (|has| |#1| (-379)))) (-3441 (($ $ $) NIL (|has| |#1| (-374)))) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2005 (($) NIL (|has| |#1| (-360)))) (-4090 (((-112) $) NIL (|has| |#1| (-360)))) (-2910 (($ $ (-783)) NIL (|has| |#1| (-360))) (($ $) NIL (|has| |#1| (-360)))) (-4249 (((-112) $) NIL (|has| |#1| (-374)))) (-3917 (((-940) $) NIL (|has| |#1| (-360))) (((-845 (-940)) $) NIL (|has| |#1| (-360)))) (-4193 (((-112) $) NIL)) (-1381 ((|#1| $) NIL)) (-2240 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2731 ((|#2| $) 91 (|has| |#1| (-374)))) (-4401 (((-940) $) 145 (|has| |#1| (-379)))) (-3672 ((|#2| $) 62)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-3458 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL (|has| |#1| (-374)))) (-3540 (($) NIL (|has| |#1| (-360)) CONST)) (-3224 (($ (-940)) 135 (|has| |#1| (-379)))) (-1450 (((-1141) $) NIL)) (-4129 (($) 127)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2406 (((-656 (-2 (|:| -1828 (-576)) (|:| -3422 (-576))))) NIL (|has| |#1| (-360)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| |#1| (-374)))) (-3476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1967 (((-783) $) NIL (|has| |#1| (-374)))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#1| (-374)))) (-4352 ((|#1| (-1288 $)) NIL) ((|#1|) 117)) (-3793 (((-783) $) NIL (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) NIL (|has| |#1| (-360)))) (-2775 (($ $ (-783)) NIL (-2760 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) NIL (-2760 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-1197)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) NIL (|has| |#1| (-374)))) (-2433 (((-701 |#1|) (-1288 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-3867 ((|#2|) 81)) (-1535 (($) NIL (|has| |#1| (-360)))) (-4152 (((-1288 |#1|) $ (-1288 $)) 96) (((-701 |#1|) (-1288 $) (-1288 $)) NIL) (((-1288 |#1|) $) 75) (((-701 |#1|) (-1288 $)) 92)) (-4172 (((-1288 |#1|) $) NIL) (($ (-1288 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-360)))) (-3570 (((-876) $) 61) (($ (-576)) 56) (($ |#1|) 58) (($ $) NIL (|has| |#1| (-374))) (($ (-419 (-576))) NIL (-2760 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576))))))) (-4336 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4281 ((|#2| $) 89)) (-3996 (((-783)) 83 T CONST)) (-4055 (((-112) $ $) NIL)) (-1593 (((-1288 $)) 88)) (-2672 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2721 (($) 32 T CONST)) (-2732 (($) 19 T CONST)) (-2020 (($ $ (-783)) NIL (-2760 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) NIL (-2760 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-1197)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) NIL (|has| |#1| (-374)))) (-2925 (((-112) $ $) 67)) (-3057 (($ $ $) NIL (|has| |#1| (-374)))) (-3044 (($ $) 71) (($ $ $) NIL)) (-3030 (($ $ $) 69)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 54) (($ $ $) 73) (($ $ |#1|) NIL) (($ |#1| $) 51) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 136)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-374)))) (-4195 (($ $) NIL (|has| |#1| (-374)))) (-1760 (((-112) $) NIL (|has| |#1| (-374)))) (-1656 (((-701 |#1|) (-1288 $)) NIL) (((-701 |#1|)) 121)) (-2210 ((|#1| $) 125)) (-4371 (((-1210 (-940) (-783)) (-576)) NIL (|has| |#1| (-360)))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL (|has| |#1| (-374)))) (-3760 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3330 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2098 (((-783)) 43 (|has| |#1| (-379)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2859 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-1819 (($ (-1288 |#1|) (-1288 $)) NIL) (($ (-1288 |#1|)) 46)) (-2868 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-3428 (($ $ $) NIL (|has| |#1| (-374)))) (-2072 (((-701 |#1|) $ (-1288 $)) NIL) (((-701 |#1|) $) NIL)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 113) (((-701 |#1|) (-701 $)) 108)) (-3685 (($ |#2|) 65) (((-3 $ "failed") (-419 |#2|)) NIL (|has| |#1| (-374)))) (-3673 (((-3 $ "failed") $) NIL)) (-3733 (((-940)) 84)) (-1836 (($) 47 (|has| |#1| (-379)))) (-3440 (($ $ $) NIL (|has| |#1| (-374)))) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2345 (($) NIL (|has| |#1| (-360)))) (-1543 (((-112) $) NIL (|has| |#1| (-360)))) (-3153 (($ $ (-783)) NIL (|has| |#1| (-360))) (($ $) NIL (|has| |#1| (-360)))) (-3833 (((-112) $) NIL (|has| |#1| (-374)))) (-3726 (((-940) $) NIL (|has| |#1| (-360))) (((-845 (-940)) $) NIL (|has| |#1| (-360)))) (-1351 (((-112) $) NIL)) (-2738 ((|#1| $) NIL)) (-2734 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1989 ((|#2| $) 91 (|has| |#1| (-374)))) (-1558 (((-940) $) 145 (|has| |#1| (-379)))) (-3671 ((|#2| $) 62)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL (|has| |#1| (-374)))) (-3539 (($) NIL (|has| |#1| (-360)) CONST)) (-3223 (($ (-940)) 135 (|has| |#1| (-379)))) (-1450 (((-1141) $) NIL)) (-4128 (($) 127)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3497 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1913 (((-656 (-2 (|:| -1828 (-576)) (|:| -2508 (-576))))) NIL (|has| |#1| (-360)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-3475 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1979 (((-783) $) NIL (|has| |#1| (-374)))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#1| (-374)))) (-2269 ((|#1| (-1288 $)) NIL) ((|#1|) 117)) (-1813 (((-783) $) NIL (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) NIL (|has| |#1| (-360)))) (-2774 (($ $ (-783)) NIL (-2759 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) NIL (-2759 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-1197)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) NIL (|has| |#1| (-374)))) (-4149 (((-701 |#1|) (-1288 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-1346 ((|#2|) 81)) (-3371 (($) NIL (|has| |#1| (-360)))) (-4096 (((-1288 |#1|) $ (-1288 $)) 96) (((-701 |#1|) (-1288 $) (-1288 $)) NIL) (((-1288 |#1|) $) 75) (((-701 |#1|) (-1288 $)) 92)) (-4171 (((-1288 |#1|) $) NIL) (($ (-1288 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-360)))) (-3569 (((-876) $) 61) (($ (-576)) 56) (($ |#1|) 58) (($ $) NIL (|has| |#1| (-374))) (($ (-419 (-576))) NIL (-2759 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576))))))) (-3390 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2857 ((|#2| $) 89)) (-3154 (((-783)) 83 T CONST)) (-2399 (((-112) $ $) NIL)) (-2675 (((-1288 $)) 88)) (-1505 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2721 (($) 32 T CONST)) (-2731 (($) 19 T CONST)) (-2020 (($ $ (-783)) NIL (-2759 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) NIL (-2759 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-1197)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) NIL (|has| |#1| (-374)))) (-2924 (((-112) $ $) 67)) (-3056 (($ $ $) NIL (|has| |#1| (-374)))) (-3043 (($ $) 71) (($ $ $) NIL)) (-3029 (($ $ $) 69)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 54) (($ $ $) 73) (($ $ |#1|) NIL) (($ |#1| $) 51) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))))) (((-1101 |#1| |#2| |#3|) (-736 |#1| |#2|) (-174) (-1264 |#1|) |#2|) (T -1101)) NIL (-736 |#1| |#2|) @@ -4528,367 +4528,367 @@ NIL (((-1102 |#1| |#2| |#3|) (-10 -7 (-15 -1828 ((-430 |#3|) |#3|))) (-1264 (-419 (-971 (-576)))) (-13 (-374) (-148) (-736 (-419 (-971 (-576))) |#1|)) (-1264 |#2|)) (T -1102)) ((-1828 (*1 *2 *3) (-12 (-4 *4 (-1264 (-419 (-971 (-576))))) (-4 *5 (-13 (-374) (-148) (-736 (-419 (-971 (-576))) *4))) (-5 *2 (-430 *3)) (-5 *1 (-1102 *4 *5 *3)) (-4 *3 (-1264 *5))))) (-10 -7 (-15 -1828 ((-430 |#3|) |#3|))) -((-3489 (((-112) $ $) NIL)) (-3125 (($ $ $) 16)) (-3133 (($ $ $) 17)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2996 (($) 6)) (-4172 (((-1197) $) 20)) (-3570 (((-876) $) 13)) (-4055 (((-112) $ $) NIL)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 15)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) 9))) -(((-1103) (-13 (-861) (-626 (-1197)) (-10 -8 (-15 -2996 ($))))) (T -1103)) -((-2996 (*1 *1) (-5 *1 (-1103)))) -(-13 (-861) (-626 (-1197)) (-10 -8 (-15 -2996 ($)))) -((-3489 (((-112) $ $) 7)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12) (($ (-1202)) 17) (((-1202) $) 16)) (-4055 (((-112) $ $) 6)) (-2925 (((-112) $ $) 8))) +((-3488 (((-112) $ $) NIL)) (-3124 (($ $ $) 16)) (-1441 (($ $ $) 17)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3840 (($) 6)) (-4171 (((-1197) $) 20)) (-3569 (((-876) $) 13)) (-2399 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 15)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) 9))) +(((-1103) (-13 (-861) (-626 (-1197)) (-10 -8 (-15 -3840 ($))))) (T -1103)) +((-3840 (*1 *1) (-5 *1 (-1103)))) +(-13 (-861) (-626 (-1197)) (-10 -8 (-15 -3840 ($)))) +((-3488 (((-112) $ $) 7)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ (-1202)) 17) (((-1202) $) 16)) (-2399 (((-112) $ $) 6)) (-2924 (((-112) $ $) 8))) (((-1104) (-141)) (T -1104)) NIL (-13 (-93)) (((-93) . T) ((-102) . T) ((-628 #0=(-1202)) . T) ((-625 (-876)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1121) . T) ((-1238) . T)) -((-1937 ((|#1| |#1| (-1 (-576) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-1665 (((-1293)) 21)) (-4036 (((-656 |#1|)) 13))) -(((-1105 |#1|) (-10 -7 (-15 -1665 ((-1293))) (-15 -4036 ((-656 |#1|))) (-15 -1937 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1937 (|#1| |#1| (-1 (-576) |#1| |#1|)))) (-133)) (T -1105)) -((-1937 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-576) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1105 *2)))) (-1937 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1105 *2)))) (-4036 (*1 *2) (-12 (-5 *2 (-656 *3)) (-5 *1 (-1105 *3)) (-4 *3 (-133)))) (-1665 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1105 *3)) (-4 *3 (-133))))) -(-10 -7 (-15 -1665 ((-1293))) (-15 -4036 ((-656 |#1|))) (-15 -1937 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1937 (|#1| |#1| (-1 (-576) |#1| |#1|)))) -((-3137 (($ (-109) $) 20)) (-2409 (((-703 (-109)) (-518) $) 19)) (-4225 (($) 7)) (-4262 (($) 21)) (-3533 (($) 22)) (-3750 (((-656 (-177)) $) 10)) (-3570 (((-876) $) 25))) -(((-1106) (-13 (-625 (-876)) (-10 -8 (-15 -4225 ($)) (-15 -3750 ((-656 (-177)) $)) (-15 -2409 ((-703 (-109)) (-518) $)) (-15 -3137 ($ (-109) $)) (-15 -4262 ($)) (-15 -3533 ($))))) (T -1106)) -((-4225 (*1 *1) (-5 *1 (-1106))) (-3750 (*1 *2 *1) (-12 (-5 *2 (-656 (-177))) (-5 *1 (-1106)))) (-2409 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-1106)))) (-3137 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1106)))) (-4262 (*1 *1) (-5 *1 (-1106))) (-3533 (*1 *1) (-5 *1 (-1106)))) -(-13 (-625 (-876)) (-10 -8 (-15 -4225 ($)) (-15 -3750 ((-656 (-177)) $)) (-15 -2409 ((-703 (-109)) (-518) $)) (-15 -3137 ($ (-109) $)) (-15 -4262 ($)) (-15 -3533 ($)))) -((-3210 (((-1288 (-701 |#1|)) (-656 (-701 |#1|))) 45) (((-1288 (-701 (-971 |#1|))) (-656 (-1197)) (-701 (-971 |#1|))) 75) (((-1288 (-701 (-419 (-971 |#1|)))) (-656 (-1197)) (-701 (-419 (-971 |#1|)))) 92)) (-4152 (((-1288 |#1|) (-701 |#1|) (-656 (-701 |#1|))) 39))) -(((-1107 |#1|) (-10 -7 (-15 -3210 ((-1288 (-701 (-419 (-971 |#1|)))) (-656 (-1197)) (-701 (-419 (-971 |#1|))))) (-15 -3210 ((-1288 (-701 (-971 |#1|))) (-656 (-1197)) (-701 (-971 |#1|)))) (-15 -3210 ((-1288 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -4152 ((-1288 |#1|) (-701 |#1|) (-656 (-701 |#1|))))) (-374)) (T -1107)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-701 *5))) (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-1288 *5)) (-5 *1 (-1107 *5)))) (-3210 (*1 *2 *3) (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-5 *2 (-1288 (-701 *4))) (-5 *1 (-1107 *4)))) (-3210 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1197))) (-4 *5 (-374)) (-5 *2 (-1288 (-701 (-971 *5)))) (-5 *1 (-1107 *5)) (-5 *4 (-701 (-971 *5))))) (-3210 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1197))) (-4 *5 (-374)) (-5 *2 (-1288 (-701 (-419 (-971 *5))))) (-5 *1 (-1107 *5)) (-5 *4 (-701 (-419 (-971 *5))))))) -(-10 -7 (-15 -3210 ((-1288 (-701 (-419 (-971 |#1|)))) (-656 (-1197)) (-701 (-419 (-971 |#1|))))) (-15 -3210 ((-1288 (-701 (-971 |#1|))) (-656 (-1197)) (-701 (-971 |#1|)))) (-15 -3210 ((-1288 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -4152 ((-1288 |#1|) (-701 |#1|) (-656 (-701 |#1|))))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-4433 (((-656 (-783)) $) NIL) (((-656 (-783)) $ (-1197)) NIL)) (-1920 (((-783) $) NIL) (((-783) $ (-1197)) NIL)) (-1969 (((-656 (-1109 (-1197))) $) NIL)) (-1798 (((-1193 $) $ (-1109 (-1197))) NIL) (((-1193 |#1|) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2757 (($ $) NIL (|has| |#1| (-568)))) (-3788 (((-112) $) NIL (|has| |#1| (-568)))) (-3543 (((-783) $) NIL) (((-783) $ (-656 (-1109 (-1197)))) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3601 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2487 (($ $) NIL (|has| |#1| (-464)))) (-3921 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2104 (($ $) NIL)) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-1109 (-1197)) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL) (((-3 (-1146 |#1| (-1197)) "failed") $) NIL)) (-2860 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-1109 (-1197)) $) NIL) (((-1197) $) NIL) (((-1146 |#1| (-1197)) $) NIL)) (-3230 (($ $ $ (-1109 (-1197))) NIL (|has| |#1| (-174)))) (-2114 (($ $) NIL)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-3767 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1109 (-1197))) NIL (|has| |#1| (-464)))) (-2103 (((-656 $) $) NIL)) (-4249 (((-112) $) NIL (|has| |#1| (-928)))) (-2431 (($ $ |#1| (-543 (-1109 (-1197))) $) NIL)) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1109 (-1197)) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1109 (-1197)) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3917 (((-783) $ (-1197)) NIL) (((-783) $) NIL)) (-4193 (((-112) $) NIL)) (-2217 (((-783) $) NIL)) (-1955 (($ (-1193 |#1|) (-1109 (-1197))) NIL) (($ (-1193 $) (-1109 (-1197))) NIL)) (-1608 (((-656 $) $) NIL)) (-2823 (((-112) $) NIL)) (-1945 (($ |#1| (-543 (-1109 (-1197)))) NIL) (($ $ (-1109 (-1197)) (-783)) NIL) (($ $ (-656 (-1109 (-1197))) (-656 (-783))) NIL)) (-4130 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $ (-1109 (-1197))) NIL)) (-3751 (((-543 (-1109 (-1197))) $) NIL) (((-783) $ (-1109 (-1197))) NIL) (((-656 (-783)) $ (-656 (-1109 (-1197)))) NIL)) (-2999 (($ (-1 (-543 (-1109 (-1197))) (-543 (-1109 (-1197)))) $) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-4028 (((-1 $ (-783)) (-1197)) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-238)))) (-3721 (((-3 (-1109 (-1197)) "failed") $) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-2759 (((-1109 (-1197)) $) NIL)) (-3458 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3699 (((-1179) $) NIL)) (-4136 (((-112) $) NIL)) (-1385 (((-3 (-656 $) "failed") $) NIL)) (-1690 (((-3 (-656 $) "failed") $) NIL)) (-2040 (((-3 (-2 (|:| |var| (-1109 (-1197))) (|:| -3422 (-783))) "failed") $) NIL)) (-4286 (($ $) NIL)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) NIL)) (-2070 ((|#1| $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4100 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-928)))) (-3476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3284 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1109 (-1197)) |#1|) NIL) (($ $ (-656 (-1109 (-1197))) (-656 |#1|)) NIL) (($ $ (-1109 (-1197)) $) NIL) (($ $ (-656 (-1109 (-1197))) (-656 $)) NIL) (($ $ (-1197) $) NIL (|has| |#1| (-238))) (($ $ (-656 (-1197)) (-656 $)) NIL (|has| |#1| (-238))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-238))) (($ $ (-656 (-1197)) (-656 |#1|)) NIL (|has| |#1| (-238)))) (-4352 (($ $ (-1109 (-1197))) NIL (|has| |#1| (-174)))) (-2775 (($ $ (-656 (-1109 (-1197))) (-656 (-783))) NIL) (($ $ (-1109 (-1197)) (-783)) NIL) (($ $ (-656 (-1109 (-1197)))) NIL) (($ $ (-1109 (-1197))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2570 (((-656 (-1197)) $) NIL)) (-3634 (((-543 (-1109 (-1197))) $) NIL) (((-783) $ (-1109 (-1197))) NIL) (((-656 (-783)) $ (-656 (-1109 (-1197)))) NIL) (((-783) $ (-1197)) NIL)) (-4172 (((-907 (-390)) $) NIL (-12 (|has| (-1109 (-1197)) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-1109 (-1197)) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-1109 (-1197)) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-2457 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1109 (-1197))) NIL (|has| |#1| (-464)))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1109 (-1197))) NIL) (($ (-1197)) NIL) (($ (-1146 |#1| (-1197))) NIL) (($ (-419 (-576))) NIL (-2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-1618 (((-656 |#1|) $) NIL)) (-3177 ((|#1| $ (-543 (-1109 (-1197)))) NIL) (($ $ (-1109 (-1197)) (-783)) NIL) (($ $ (-656 (-1109 (-1197))) (-656 (-783))) NIL)) (-4336 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3996 (((-783)) NIL T CONST)) (-2541 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2020 (($ $ (-656 (-1109 (-1197))) (-656 (-783))) NIL) (($ $ (-1109 (-1197)) (-783)) NIL) (($ $ (-656 (-1109 (-1197)))) NIL) (($ $ (-1109 (-1197))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +((-2985 ((|#1| |#1| (-1 (-576) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-1665 (((-1293)) 21)) (-4035 (((-656 |#1|)) 13))) +(((-1105 |#1|) (-10 -7 (-15 -1665 ((-1293))) (-15 -4035 ((-656 |#1|))) (-15 -2985 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2985 (|#1| |#1| (-1 (-576) |#1| |#1|)))) (-133)) (T -1105)) +((-2985 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-576) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1105 *2)))) (-2985 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1105 *2)))) (-4035 (*1 *2) (-12 (-5 *2 (-656 *3)) (-5 *1 (-1105 *3)) (-4 *3 (-133)))) (-1665 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1105 *3)) (-4 *3 (-133))))) +(-10 -7 (-15 -1665 ((-1293))) (-15 -4035 ((-656 |#1|))) (-15 -2985 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2985 (|#1| |#1| (-1 (-576) |#1| |#1|)))) +((-1470 (($ (-109) $) 20)) (-1945 (((-703 (-109)) (-518) $) 19)) (-3579 (($) 7)) (-3966 (($) 21)) (-4247 (($) 22)) (-2570 (((-656 (-177)) $) 10)) (-3569 (((-876) $) 25))) +(((-1106) (-13 (-625 (-876)) (-10 -8 (-15 -3579 ($)) (-15 -2570 ((-656 (-177)) $)) (-15 -1945 ((-703 (-109)) (-518) $)) (-15 -1470 ($ (-109) $)) (-15 -3966 ($)) (-15 -4247 ($))))) (T -1106)) +((-3579 (*1 *1) (-5 *1 (-1106))) (-2570 (*1 *2 *1) (-12 (-5 *2 (-656 (-177))) (-5 *1 (-1106)))) (-1945 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-1106)))) (-1470 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1106)))) (-3966 (*1 *1) (-5 *1 (-1106))) (-4247 (*1 *1) (-5 *1 (-1106)))) +(-13 (-625 (-876)) (-10 -8 (-15 -3579 ($)) (-15 -2570 ((-656 (-177)) $)) (-15 -1945 ((-703 (-109)) (-518) $)) (-15 -1470 ($ (-109) $)) (-15 -3966 ($)) (-15 -4247 ($)))) +((-4142 (((-1288 (-701 |#1|)) (-656 (-701 |#1|))) 45) (((-1288 (-701 (-971 |#1|))) (-656 (-1197)) (-701 (-971 |#1|))) 75) (((-1288 (-701 (-419 (-971 |#1|)))) (-656 (-1197)) (-701 (-419 (-971 |#1|)))) 92)) (-4096 (((-1288 |#1|) (-701 |#1|) (-656 (-701 |#1|))) 39))) +(((-1107 |#1|) (-10 -7 (-15 -4142 ((-1288 (-701 (-419 (-971 |#1|)))) (-656 (-1197)) (-701 (-419 (-971 |#1|))))) (-15 -4142 ((-1288 (-701 (-971 |#1|))) (-656 (-1197)) (-701 (-971 |#1|)))) (-15 -4142 ((-1288 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -4096 ((-1288 |#1|) (-701 |#1|) (-656 (-701 |#1|))))) (-374)) (T -1107)) +((-4096 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-701 *5))) (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-1288 *5)) (-5 *1 (-1107 *5)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-5 *2 (-1288 (-701 *4))) (-5 *1 (-1107 *4)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1197))) (-4 *5 (-374)) (-5 *2 (-1288 (-701 (-971 *5)))) (-5 *1 (-1107 *5)) (-5 *4 (-701 (-971 *5))))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1197))) (-4 *5 (-374)) (-5 *2 (-1288 (-701 (-419 (-971 *5))))) (-5 *1 (-1107 *5)) (-5 *4 (-701 (-419 (-971 *5))))))) +(-10 -7 (-15 -4142 ((-1288 (-701 (-419 (-971 |#1|)))) (-656 (-1197)) (-701 (-419 (-971 |#1|))))) (-15 -4142 ((-1288 (-701 (-971 |#1|))) (-656 (-1197)) (-701 (-971 |#1|)))) (-15 -4142 ((-1288 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -4096 ((-1288 |#1|) (-701 |#1|) (-656 (-701 |#1|))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-1857 (((-656 (-783)) $) NIL) (((-656 (-783)) $ (-1197)) NIL)) (-2791 (((-783) $) NIL) (((-783) $ (-1197)) NIL)) (-1969 (((-656 (-1109 (-1197))) $) NIL)) (-1797 (((-1193 $) $ (-1109 (-1197))) NIL) (((-1193 |#1|) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4195 (($ $) NIL (|has| |#1| (-568)))) (-1760 (((-112) $) NIL (|has| |#1| (-568)))) (-4329 (((-783) $) NIL) (((-783) $ (-656 (-1109 (-1197)))) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3646 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3444 (($ $) NIL (|has| |#1| (-464)))) (-3760 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3979 (($ $) NIL)) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-1109 (-1197)) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL) (((-3 (-1146 |#1| (-1197)) "failed") $) NIL)) (-2859 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-1109 (-1197)) $) NIL) (((-1197) $) NIL) (((-1146 |#1| (-1197)) $) NIL)) (-4334 (($ $ $ (-1109 (-1197))) NIL (|has| |#1| (-174)))) (-2114 (($ $) NIL)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1547 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1109 (-1197))) NIL (|has| |#1| (-464)))) (-2103 (((-656 $) $) NIL)) (-3833 (((-112) $) NIL (|has| |#1| (-928)))) (-4124 (($ $ |#1| (-543 (-1109 (-1197))) $) NIL)) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1109 (-1197)) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1109 (-1197)) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3726 (((-783) $ (-1197)) NIL) (((-783) $) NIL)) (-1351 (((-112) $) NIL)) (-3799 (((-783) $) NIL)) (-1956 (($ (-1193 |#1|) (-1109 (-1197))) NIL) (($ (-1193 $) (-1109 (-1197))) NIL)) (-2846 (((-656 $) $) NIL)) (-3538 (((-112) $) NIL)) (-1944 (($ |#1| (-543 (-1109 (-1197)))) NIL) (($ $ (-1109 (-1197)) (-783)) NIL) (($ $ (-656 (-1109 (-1197))) (-656 (-783))) NIL)) (-1915 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $ (-1109 (-1197))) NIL)) (-2578 (((-543 (-1109 (-1197))) $) NIL) (((-783) $ (-1109 (-1197))) NIL) (((-656 (-783)) $ (-656 (-1109 (-1197)))) NIL)) (-3878 (($ (-1 (-543 (-1109 (-1197))) (-543 (-1109 (-1197)))) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2150 (((-1 $ (-783)) (-1197)) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-238)))) (-2289 (((-3 (-1109 (-1197)) "failed") $) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-2758 (((-1109 (-1197)) $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2046 (((-1179) $) NIL)) (-1970 (((-112) $) NIL)) (-3845 (((-3 (-656 $) "failed") $) NIL)) (-2363 (((-3 (-656 $) "failed") $) NIL)) (-1452 (((-3 (-2 (|:| |var| (-1109 (-1197))) (|:| -2508 (-783))) "failed") $) NIL)) (-4286 (($ $) NIL)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) NIL)) (-2070 ((|#1| $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3497 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1644 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-928)))) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3282 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1109 (-1197)) |#1|) NIL) (($ $ (-656 (-1109 (-1197))) (-656 |#1|)) NIL) (($ $ (-1109 (-1197)) $) NIL) (($ $ (-656 (-1109 (-1197))) (-656 $)) NIL) (($ $ (-1197) $) NIL (|has| |#1| (-238))) (($ $ (-656 (-1197)) (-656 $)) NIL (|has| |#1| (-238))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-238))) (($ $ (-656 (-1197)) (-656 |#1|)) NIL (|has| |#1| (-238)))) (-2269 (($ $ (-1109 (-1197))) NIL (|has| |#1| (-174)))) (-2774 (($ $ (-656 (-1109 (-1197))) (-656 (-783))) NIL) (($ $ (-1109 (-1197)) (-783)) NIL) (($ $ (-656 (-1109 (-1197)))) NIL) (($ $ (-1109 (-1197))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-3051 (((-656 (-1197)) $) NIL)) (-2683 (((-543 (-1109 (-1197))) $) NIL) (((-783) $ (-1109 (-1197))) NIL) (((-656 (-783)) $ (-656 (-1109 (-1197)))) NIL) (((-783) $ (-1197)) NIL)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| (-1109 (-1197)) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-1109 (-1197)) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-1109 (-1197)) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-4370 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1109 (-1197))) NIL (|has| |#1| (-464)))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1109 (-1197))) NIL) (($ (-1197)) NIL) (($ (-1146 |#1| (-1197))) NIL) (($ (-419 (-576))) NIL (-2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2937 (((-656 |#1|) $) NIL)) (-1822 ((|#1| $ (-543 (-1109 (-1197)))) NIL) (($ $ (-1109 (-1197)) (-783)) NIL) (($ $ (-656 (-1109 (-1197))) (-656 (-783))) NIL)) (-3390 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3154 (((-783)) NIL T CONST)) (-2717 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2020 (($ $ (-656 (-1109 (-1197))) (-656 (-783))) NIL) (($ $ (-1109 (-1197)) (-783)) NIL) (($ $ (-656 (-1109 (-1197)))) NIL) (($ $ (-1109 (-1197))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) (((-1108 |#1|) (-13 (-260 |#1| (-1197) (-1109 (-1197)) (-543 (-1109 (-1197)))) (-1059 (-1146 |#1| (-1197)))) (-1070)) (T -1108)) NIL (-13 (-260 |#1| (-1197) (-1109 (-1197)) (-543 (-1109 (-1197)))) (-1059 (-1146 |#1| (-1197)))) -((-3489 (((-112) $ $) NIL)) (-1920 (((-783) $) NIL)) (-3055 ((|#1| $) 10)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2860 ((|#1| $) NIL)) (-3917 (((-783) $) 11)) (-3125 (($ $ $) NIL)) (-3133 (($ $ $) NIL)) (-4028 (($ |#1| (-783)) 9)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2775 (($ $ (-783)) NIL) (($ $) NIL)) (-3570 (((-876) $) NIL) (($ |#1|) NIL)) (-4055 (((-112) $ $) NIL)) (-2020 (($ $ (-783)) NIL) (($ $) NIL)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) 16))) +((-3488 (((-112) $ $) NIL)) (-2791 (((-783) $) NIL)) (-3054 ((|#1| $) 10)) (-1572 (((-3 |#1| "failed") $) NIL)) (-2859 ((|#1| $) NIL)) (-3726 (((-783) $) 11)) (-3124 (($ $ $) NIL)) (-1441 (($ $ $) NIL)) (-2150 (($ |#1| (-783)) 9)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2774 (($ $ (-783)) NIL) (($ $) NIL)) (-3569 (((-876) $) NIL) (($ |#1|) NIL)) (-2399 (((-112) $ $) NIL)) (-2020 (($ $ (-783)) NIL) (($ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) 16))) (((-1109 |#1|) (-275 |#1|) (-861)) (T -1109)) NIL (-275 |#1|) -((-4117 (((-656 |#2|) (-1 |#2| |#1|) (-1115 |#1|)) 29 (|has| |#1| (-860))) (((-1115 |#2|) (-1 |#2| |#1|) (-1115 |#1|)) 14))) -(((-1110 |#1| |#2|) (-10 -7 (-15 -4117 ((-1115 |#2|) (-1 |#2| |#1|) (-1115 |#1|))) (IF (|has| |#1| (-860)) (-15 -4117 ((-656 |#2|) (-1 |#2| |#1|) (-1115 |#1|))) |%noBranch|)) (-1238) (-1238)) (T -1110)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1115 *5)) (-4 *5 (-860)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-656 *6)) (-5 *1 (-1110 *5 *6)))) (-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1115 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1115 *6)) (-5 *1 (-1110 *5 *6))))) -(-10 -7 (-15 -4117 ((-1115 |#2|) (-1 |#2| |#1|) (-1115 |#1|))) (IF (|has| |#1| (-860)) (-15 -4117 ((-656 |#2|) (-1 |#2| |#1|) (-1115 |#1|))) |%noBranch|)) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 16) (($ (-1202)) NIL) (((-1202) $) NIL)) (-3059 (((-656 (-1156)) $) 10)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-1111) (-13 (-1104) (-10 -8 (-15 -3059 ((-656 (-1156)) $))))) (T -1111)) -((-3059 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-1111))))) -(-13 (-1104) (-10 -8 (-15 -3059 ((-656 (-1156)) $)))) -((-4117 (((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|)) 19))) -(((-1112 |#1| |#2|) (-10 -7 (-15 -4117 ((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|)))) (-1238) (-1238)) (T -1112)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1113 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1113 *6)) (-5 *1 (-1112 *5 *6))))) -(-10 -7 (-15 -4117 ((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|)))) -((-3489 (((-112) $ $) NIL (|has| (-1115 |#1|) (-1121)))) (-3055 (((-1197) $) NIL)) (-3534 (((-1115 |#1|) $) NIL)) (-3699 (((-1179) $) NIL (|has| (-1115 |#1|) (-1121)))) (-1450 (((-1141) $) NIL (|has| (-1115 |#1|) (-1121)))) (-2337 (($ (-1197) (-1115 |#1|)) NIL)) (-3570 (((-876) $) NIL (|has| (-1115 |#1|) (-1121)))) (-4055 (((-112) $ $) NIL (|has| (-1115 |#1|) (-1121)))) (-2925 (((-112) $ $) NIL (|has| (-1115 |#1|) (-1121))))) -(((-1113 |#1|) (-13 (-1238) (-10 -8 (-15 -2337 ($ (-1197) (-1115 |#1|))) (-15 -3055 ((-1197) $)) (-15 -3534 ((-1115 |#1|) $)) (IF (|has| (-1115 |#1|) (-1121)) (-6 (-1121)) |%noBranch|))) (-1238)) (T -1113)) -((-2337 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1115 *4)) (-4 *4 (-1238)) (-5 *1 (-1113 *4)))) (-3055 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1113 *3)) (-4 *3 (-1238)))) (-3534 (*1 *2 *1) (-12 (-5 *2 (-1115 *3)) (-5 *1 (-1113 *3)) (-4 *3 (-1238))))) -(-13 (-1238) (-10 -8 (-15 -2337 ($ (-1197) (-1115 |#1|))) (-15 -3055 ((-1197) $)) (-15 -3534 ((-1115 |#1|) $)) (IF (|has| (-1115 |#1|) (-1121)) (-6 (-1121)) |%noBranch|))) -((-3534 (($ |#1| |#1|) 8)) (-3848 ((|#1| $) 11)) (-3113 ((|#1| $) 13)) (-4220 (((-576) $) 9)) (-2319 ((|#1| $) 10)) (-4230 ((|#1| $) 12)) (-4172 (($ |#1|) 6)) (-1785 (($ |#1| |#1|) 15)) (-2669 (($ $ (-576)) 14))) +((-4116 (((-656 |#2|) (-1 |#2| |#1|) (-1115 |#1|)) 29 (|has| |#1| (-860))) (((-1115 |#2|) (-1 |#2| |#1|) (-1115 |#1|)) 14))) +(((-1110 |#1| |#2|) (-10 -7 (-15 -4116 ((-1115 |#2|) (-1 |#2| |#1|) (-1115 |#1|))) (IF (|has| |#1| (-860)) (-15 -4116 ((-656 |#2|) (-1 |#2| |#1|) (-1115 |#1|))) |%noBranch|)) (-1238) (-1238)) (T -1110)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1115 *5)) (-4 *5 (-860)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-656 *6)) (-5 *1 (-1110 *5 *6)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1115 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1115 *6)) (-5 *1 (-1110 *5 *6))))) +(-10 -7 (-15 -4116 ((-1115 |#2|) (-1 |#2| |#1|) (-1115 |#1|))) (IF (|has| |#1| (-860)) (-15 -4116 ((-656 |#2|) (-1 |#2| |#1|) (-1115 |#1|))) |%noBranch|)) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 16) (($ (-1202)) NIL) (((-1202) $) NIL)) (-3178 (((-656 (-1156)) $) 10)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-1111) (-13 (-1104) (-10 -8 (-15 -3178 ((-656 (-1156)) $))))) (T -1111)) +((-3178 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-1111))))) +(-13 (-1104) (-10 -8 (-15 -3178 ((-656 (-1156)) $)))) +((-4116 (((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|)) 19))) +(((-1112 |#1| |#2|) (-10 -7 (-15 -4116 ((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|)))) (-1238) (-1238)) (T -1112)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1113 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1113 *6)) (-5 *1 (-1112 *5 *6))))) +(-10 -7 (-15 -4116 ((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|)))) +((-3488 (((-112) $ $) NIL (|has| (-1115 |#1|) (-1121)))) (-3054 (((-1197) $) NIL)) (-3533 (((-1115 |#1|) $) NIL)) (-2046 (((-1179) $) NIL (|has| (-1115 |#1|) (-1121)))) (-1450 (((-1141) $) NIL (|has| (-1115 |#1|) (-1121)))) (-2337 (($ (-1197) (-1115 |#1|)) NIL)) (-3569 (((-876) $) NIL (|has| (-1115 |#1|) (-1121)))) (-2399 (((-112) $ $) NIL (|has| (-1115 |#1|) (-1121)))) (-2924 (((-112) $ $) NIL (|has| (-1115 |#1|) (-1121))))) +(((-1113 |#1|) (-13 (-1238) (-10 -8 (-15 -2337 ($ (-1197) (-1115 |#1|))) (-15 -3054 ((-1197) $)) (-15 -3533 ((-1115 |#1|) $)) (IF (|has| (-1115 |#1|) (-1121)) (-6 (-1121)) |%noBranch|))) (-1238)) (T -1113)) +((-2337 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1115 *4)) (-4 *4 (-1238)) (-5 *1 (-1113 *4)))) (-3054 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1113 *3)) (-4 *3 (-1238)))) (-3533 (*1 *2 *1) (-12 (-5 *2 (-1115 *3)) (-5 *1 (-1113 *3)) (-4 *3 (-1238))))) +(-13 (-1238) (-10 -8 (-15 -2337 ($ (-1197) (-1115 |#1|))) (-15 -3054 ((-1197) $)) (-15 -3533 ((-1115 |#1|) $)) (IF (|has| (-1115 |#1|) (-1121)) (-6 (-1121)) |%noBranch|))) +((-3533 (($ |#1| |#1|) 8)) (-4316 ((|#1| $) 11)) (-3112 ((|#1| $) 13)) (-4219 (((-576) $) 9)) (-2326 ((|#1| $) 10)) (-4229 ((|#1| $) 12)) (-4171 (($ |#1|) 6)) (-1785 (($ |#1| |#1|) 15)) (-2668 (($ $ (-576)) 14))) (((-1114 |#1|) (-141) (-1238)) (T -1114)) -((-1785 (*1 *1 *2 *2) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238)))) (-2669 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1114 *3)) (-4 *3 (-1238)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238)))) (-4230 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238)))) (-3848 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238)))) (-2319 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238)))) (-4220 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1238)) (-5 *2 (-576)))) (-3534 (*1 *1 *2 *2) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238))))) -(-13 (-630 |t#1|) (-10 -8 (-15 -1785 ($ |t#1| |t#1|)) (-15 -2669 ($ $ (-576))) (-15 -3113 (|t#1| $)) (-15 -4230 (|t#1| $)) (-15 -3848 (|t#1| $)) (-15 -2319 (|t#1| $)) (-15 -4220 ((-576) $)) (-15 -3534 ($ |t#1| |t#1|)))) +((-1785 (*1 *1 *2 *2) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238)))) (-2668 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1114 *3)) (-4 *3 (-1238)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238)))) (-4229 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238)))) (-4316 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238)))) (-2326 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238)))) (-4219 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1238)) (-5 *2 (-576)))) (-3533 (*1 *1 *2 *2) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238))))) +(-13 (-630 |t#1|) (-10 -8 (-15 -1785 ($ |t#1| |t#1|)) (-15 -2668 ($ $ (-576))) (-15 -3112 (|t#1| $)) (-15 -4229 (|t#1| $)) (-15 -4316 (|t#1| $)) (-15 -2326 (|t#1| $)) (-15 -4219 ((-576) $)) (-15 -3533 ($ |t#1| |t#1|)))) (((-630 |#1|) . T)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-3534 (($ |#1| |#1|) 16)) (-4117 (((-656 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-860)))) (-3848 ((|#1| $) 12)) (-3113 ((|#1| $) 11)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-4220 (((-576) $) 15)) (-2319 ((|#1| $) 14)) (-4230 ((|#1| $) 13)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-1942 (((-656 |#1|) $) 44 (|has| |#1| (-860))) (((-656 |#1|) (-656 $)) 43 (|has| |#1| (-860)))) (-4172 (($ |#1|) 29)) (-3570 (((-876) $) 28 (|has| |#1| (-1121)))) (-4055 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-1785 (($ |#1| |#1|) 10)) (-2669 (($ $ (-576)) 17)) (-2925 (((-112) $ $) 22 (|has| |#1| (-1121))))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-3533 (($ |#1| |#1|) 16)) (-4116 (((-656 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-860)))) (-4316 ((|#1| $) 12)) (-3112 ((|#1| $) 11)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-4219 (((-576) $) 15)) (-2326 ((|#1| $) 14)) (-4229 ((|#1| $) 13)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-1942 (((-656 |#1|) $) 44 (|has| |#1| (-860))) (((-656 |#1|) (-656 $)) 43 (|has| |#1| (-860)))) (-4171 (($ |#1|) 29)) (-3569 (((-876) $) 28 (|has| |#1| (-1121)))) (-2399 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-1785 (($ |#1| |#1|) 10)) (-2668 (($ $ (-576)) 17)) (-2924 (((-112) $ $) 22 (|has| |#1| (-1121))))) (((-1115 |#1|) (-13 (-1114 |#1|) (-10 -7 (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1116 |#1| (-656 |#1|))) |%noBranch|))) (-1238)) (T -1115)) NIL (-13 (-1114 |#1|) (-10 -7 (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1116 |#1| (-656 |#1|))) |%noBranch|))) -((-3534 (($ |#1| |#1|) 8)) (-4117 ((|#2| (-1 |#1| |#1|) $) 16)) (-3848 ((|#1| $) 11)) (-3113 ((|#1| $) 13)) (-4220 (((-576) $) 9)) (-2319 ((|#1| $) 10)) (-4230 ((|#1| $) 12)) (-1942 ((|#2| (-656 $)) 18) ((|#2| $) 17)) (-4172 (($ |#1|) 6)) (-1785 (($ |#1| |#1|) 15)) (-2669 (($ $ (-576)) 14))) +((-3533 (($ |#1| |#1|) 8)) (-4116 ((|#2| (-1 |#1| |#1|) $) 16)) (-4316 ((|#1| $) 11)) (-3112 ((|#1| $) 13)) (-4219 (((-576) $) 9)) (-2326 ((|#1| $) 10)) (-4229 ((|#1| $) 12)) (-1942 ((|#2| (-656 $)) 18) ((|#2| $) 17)) (-4171 (($ |#1|) 6)) (-1785 (($ |#1| |#1|) 15)) (-2668 (($ $ (-576)) 14))) (((-1116 |#1| |#2|) (-141) (-860) (-1170 |t#1|)) (T -1116)) -((-1942 (*1 *2 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1116 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1170 *4)))) (-1942 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1170 *3)))) (-4117 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1116 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1170 *4))))) -(-13 (-1114 |t#1|) (-10 -8 (-15 -1942 (|t#2| (-656 $))) (-15 -1942 (|t#2| $)) (-15 -4117 (|t#2| (-1 |t#1| |t#1|) $)))) +((-1942 (*1 *2 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1116 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1170 *4)))) (-1942 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1170 *3)))) (-4116 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1116 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1170 *4))))) +(-13 (-1114 |t#1|) (-10 -8 (-15 -1942 (|t#2| (-656 $))) (-15 -1942 (|t#2| $)) (-15 -4116 (|t#2| (-1 |t#1| |t#1|) $)))) (((-630 |#1|) . T) ((-1114 |#1|) . T)) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-3969 (((-1156) $) 12)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 18) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2641 (((-656 (-1156)) $) 10)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-1117) (-13 (-1104) (-10 -8 (-15 -2641 ((-656 (-1156)) $)) (-15 -3969 ((-1156) $))))) (T -1117)) -((-2641 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-1117)))) (-3969 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1117))))) -(-13 (-1104) (-10 -8 (-15 -2641 ((-656 (-1156)) $)) (-15 -3969 ((-1156) $)))) -((-1820 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3319 (($ $ $) 10)) (-3204 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1118 |#1| |#2|) (-10 -8 (-15 -1820 (|#1| |#2| |#1|)) (-15 -1820 (|#1| |#1| |#2|)) (-15 -1820 (|#1| |#1| |#1|)) (-15 -3319 (|#1| |#1| |#1|)) (-15 -3204 (|#1| |#1| |#2|)) (-15 -3204 (|#1| |#1| |#1|))) (-1119 |#2|) (-1121)) (T -1118)) -NIL -(-10 -8 (-15 -1820 (|#1| |#2| |#1|)) (-15 -1820 (|#1| |#1| |#2|)) (-15 -1820 (|#1| |#1| |#1|)) (-15 -3319 (|#1| |#1| |#1|)) (-15 -3204 (|#1| |#1| |#2|)) (-15 -3204 (|#1| |#1| |#1|))) -((-3489 (((-112) $ $) 7)) (-1820 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-3319 (($ $ $) 21)) (-1928 (((-112) $ $) 20)) (-1808 (((-112) $ (-783)) 36)) (-2071 (($) 26) (($ (-656 |#1|)) 25)) (-1974 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4465)))) (-3886 (($) 37 T CONST)) (-1415 (($ $) 60 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-3946 (($ |#1| $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4465)))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4465)))) (-3966 (((-656 |#1|) $) 44 (|has| $ (-6 -4465)))) (-4248 (((-112) $ $) 29)) (-3870 (((-112) $ (-783)) 35)) (-2014 (((-656 |#1|) $) 45 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-4323 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 39)) (-1330 (((-112) $ (-783)) 34)) (-3699 (((-1179) $) 10)) (-3285 (($ $ $) 24)) (-1450 (((-1141) $) 11)) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-4320 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 |#1|) (-656 |#1|)) 51 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 49 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 (-304 |#1|))) 48 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 30)) (-3973 (((-112) $) 33)) (-4225 (($) 32)) (-3204 (($ $ $) 23) (($ $ |#1|) 22)) (-1460 (((-783) |#1| $) 46 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) (((-783) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4465)))) (-1870 (($ $) 31)) (-4172 (((-548) $) 61 (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) 52)) (-3570 (((-876) $) 12)) (-1893 (($) 28) (($ (-656 |#1|)) 27)) (-4055 (((-112) $ $) 6)) (-3321 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 8)) (-3503 (((-783) $) 38 (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-3968 (((-1156) $) 12)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 18) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2640 (((-656 (-1156)) $) 10)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-1117) (-13 (-1104) (-10 -8 (-15 -2640 ((-656 (-1156)) $)) (-15 -3968 ((-1156) $))))) (T -1117)) +((-2640 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-1117)))) (-3968 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1117))))) +(-13 (-1104) (-10 -8 (-15 -2640 ((-656 (-1156)) $)) (-15 -3968 ((-1156) $)))) +((-1820 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2688 (($ $ $) 10)) (-4079 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1118 |#1| |#2|) (-10 -8 (-15 -1820 (|#1| |#2| |#1|)) (-15 -1820 (|#1| |#1| |#2|)) (-15 -1820 (|#1| |#1| |#1|)) (-15 -2688 (|#1| |#1| |#1|)) (-15 -4079 (|#1| |#1| |#2|)) (-15 -4079 (|#1| |#1| |#1|))) (-1119 |#2|) (-1121)) (T -1118)) +NIL +(-10 -8 (-15 -1820 (|#1| |#2| |#1|)) (-15 -1820 (|#1| |#1| |#2|)) (-15 -1820 (|#1| |#1| |#1|)) (-15 -2688 (|#1| |#1| |#1|)) (-15 -4079 (|#1| |#1| |#2|)) (-15 -4079 (|#1| |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-1820 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-2688 (($ $ $) 21)) (-2866 (((-112) $ $) 20)) (-4264 (((-112) $ (-783)) 36)) (-2071 (($) 26) (($ (-656 |#1|)) 25)) (-1974 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4464)))) (-3404 (($) 37 T CONST)) (-2034 (($ $) 60 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ |#1| $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4464)))) (-3965 (((-656 |#1|) $) 44 (|has| $ (-6 -4464)))) (-3820 (((-112) $ $) 29)) (-1368 (((-112) $ (-783)) 35)) (-2425 (((-656 |#1|) $) 45 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4326 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 39)) (-2883 (((-112) $ (-783)) 34)) (-2046 (((-1179) $) 10)) (-3651 (($ $ $) 24)) (-1450 (((-1141) $) 11)) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-3252 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 |#1|) (-656 |#1|)) 51 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 49 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 (-304 |#1|))) 48 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 30)) (-2940 (((-112) $) 33)) (-3579 (($) 32)) (-4079 (($ $ $) 23) (($ $ |#1|) 22)) (-1460 (((-783) |#1| $) 46 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4464)))) (-1870 (($ $) 31)) (-4171 (((-548) $) 61 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 52)) (-3569 (((-876) $) 12)) (-1895 (($) 28) (($ (-656 |#1|)) 27)) (-2399 (((-112) $ $) 6)) (-2708 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 8)) (-3502 (((-783) $) 38 (|has| $ (-6 -4464))))) (((-1119 |#1|) (-141) (-1121)) (T -1119)) -((-4248 (*1 *2 *1 *1) (-12 (-4 *1 (-1119 *3)) (-4 *3 (-1121)) (-5 *2 (-112)))) (-1893 (*1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-1893 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-1119 *3)))) (-2071 (*1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-2071 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-1119 *3)))) (-3285 (*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-3204 (*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-3204 (*1 *1 *1 *2) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-3319 (*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-1928 (*1 *2 *1 *1) (-12 (-4 *1 (-1119 *3)) (-4 *3 (-1121)) (-5 *2 (-112)))) (-1820 (*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-1820 (*1 *1 *1 *2) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-1820 (*1 *1 *2 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) -(-13 (-1121) (-152 |t#1|) (-10 -8 (-6 -4455) (-15 -4248 ((-112) $ $)) (-15 -1893 ($)) (-15 -1893 ($ (-656 |t#1|))) (-15 -2071 ($)) (-15 -2071 ($ (-656 |t#1|))) (-15 -3285 ($ $ $)) (-15 -3204 ($ $ $)) (-15 -3204 ($ $ |t#1|)) (-15 -3319 ($ $ $)) (-15 -1928 ((-112) $ $)) (-15 -1820 ($ $ $)) (-15 -1820 ($ $ |t#1|)) (-15 -1820 ($ |t#1| $)))) +((-3820 (*1 *2 *1 *1) (-12 (-4 *1 (-1119 *3)) (-4 *3 (-1121)) (-5 *2 (-112)))) (-1895 (*1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-1119 *3)))) (-2071 (*1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-2071 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-1119 *3)))) (-3651 (*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-4079 (*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-4079 (*1 *1 *1 *2) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-2688 (*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-2866 (*1 *2 *1 *1) (-12 (-4 *1 (-1119 *3)) (-4 *3 (-1121)) (-5 *2 (-112)))) (-1820 (*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-1820 (*1 *1 *1 *2) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-1820 (*1 *1 *2 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) +(-13 (-1121) (-152 |t#1|) (-10 -8 (-6 -4454) (-15 -3820 ((-112) $ $)) (-15 -1895 ($)) (-15 -1895 ($ (-656 |t#1|))) (-15 -2071 ($)) (-15 -2071 ($ (-656 |t#1|))) (-15 -3651 ($ $ $)) (-15 -4079 ($ $ $)) (-15 -4079 ($ $ |t#1|)) (-15 -2688 ($ $ $)) (-15 -2866 ((-112) $ $)) (-15 -1820 ($ $ $)) (-15 -1820 ($ $ |t#1|)) (-15 -1820 ($ |t#1| $)))) (((-34) . T) ((-102) . T) ((-625 (-876)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) . T) ((-1238) . T)) -((-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 8))) -(((-1120 |#1|) (-10 -8 (-15 -3699 ((-1179) |#1|)) (-15 -1450 ((-1141) |#1|))) (-1121)) (T -1120)) +((-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 8))) +(((-1120 |#1|) (-10 -8 (-15 -2046 ((-1179) |#1|)) (-15 -1450 ((-1141) |#1|))) (-1121)) (T -1120)) NIL -(-10 -8 (-15 -3699 ((-1179) |#1|)) (-15 -1450 ((-1141) |#1|))) -((-3489 (((-112) $ $) 7)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2925 (((-112) $ $) 8))) +(-10 -8 (-15 -2046 ((-1179) |#1|)) (-15 -1450 ((-1141) |#1|))) +((-3488 (((-112) $ $) 7)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2924 (((-112) $ $) 8))) (((-1121) (-141)) (T -1121)) -((-1450 (*1 *2 *1) (-12 (-4 *1 (-1121)) (-5 *2 (-1141)))) (-3699 (*1 *2 *1) (-12 (-4 *1 (-1121)) (-5 *2 (-1179))))) -(-13 (-102) (-625 (-876)) (-10 -8 (-15 -1450 ((-1141) $)) (-15 -3699 ((-1179) $)))) +((-1450 (*1 *2 *1) (-12 (-4 *1 (-1121)) (-5 *2 (-1141)))) (-2046 (*1 *2 *1) (-12 (-4 *1 (-1121)) (-5 *2 (-1179))))) +(-13 (-102) (-625 (-876)) (-10 -8 (-15 -1450 ((-1141) $)) (-15 -2046 ((-1179) $)))) (((-102) . T) ((-625 (-876)) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-2098 (((-783)) 36)) (-2279 (($ (-656 (-940))) 70)) (-4344 (((-3 $ "failed") $ (-940) (-940)) 81)) (-1836 (($) 40)) (-1612 (((-112) (-940) $) 42)) (-4401 (((-940) $) 64)) (-3699 (((-1179) $) NIL)) (-3224 (($ (-940)) 39)) (-2377 (((-3 $ "failed") $ (-940)) 77)) (-1450 (((-1141) $) NIL)) (-2149 (((-1288 $)) 47)) (-4287 (((-656 (-940)) $) 27)) (-3643 (((-783) $ (-940) (-940)) 78)) (-3570 (((-876) $) 32)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 24))) -(((-1122 |#1| |#2|) (-13 (-379) (-10 -8 (-15 -2377 ((-3 $ "failed") $ (-940))) (-15 -4344 ((-3 $ "failed") $ (-940) (-940))) (-15 -4287 ((-656 (-940)) $)) (-15 -2279 ($ (-656 (-940)))) (-15 -2149 ((-1288 $))) (-15 -1612 ((-112) (-940) $)) (-15 -3643 ((-783) $ (-940) (-940))))) (-940) (-940)) (T -1122)) -((-2377 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-940)) (-5 *1 (-1122 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4344 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-940)) (-5 *1 (-1122 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4287 (*1 *2 *1) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1122 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940)))) (-2279 (*1 *1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1122 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940)))) (-2149 (*1 *2) (-12 (-5 *2 (-1288 (-1122 *3 *4))) (-5 *1 (-1122 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940)))) (-1612 (*1 *2 *3 *1) (-12 (-5 *3 (-940)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3643 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-940)) (-5 *2 (-783)) (-5 *1 (-1122 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-379) (-10 -8 (-15 -2377 ((-3 $ "failed") $ (-940))) (-15 -4344 ((-3 $ "failed") $ (-940) (-940))) (-15 -4287 ((-656 (-940)) $)) (-15 -2279 ($ (-656 (-940)))) (-15 -2149 ((-1288 $))) (-15 -1612 ((-112) (-940) $)) (-15 -3643 ((-783) $ (-940) (-940))))) -((-3489 (((-112) $ $) NIL)) (-4358 (($) NIL (|has| |#1| (-379)))) (-1820 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-3319 (($ $ $) 81)) (-1928 (((-112) $ $) 82)) (-1808 (((-112) $ (-783)) NIL)) (-2098 (((-783)) NIL (|has| |#1| (-379)))) (-2071 (($ (-656 |#1|)) NIL) (($) 13)) (-2300 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3886 (($) NIL T CONST)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1671 (($ |#1| $) 74 (|has| $ (-6 -4465))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3946 (($ |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4465)))) (-1836 (($) NIL (|has| |#1| (-379)))) (-3966 (((-656 |#1|) $) 19 (|has| $ (-6 -4465)))) (-4248 (((-112) $ $) NIL)) (-3870 (((-112) $ (-783)) NIL)) (-3125 ((|#1| $) 55 (|has| |#1| (-861)))) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3133 ((|#1| $) 53 (|has| |#1| (-861)))) (-4323 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 34)) (-4401 (((-940) $) NIL (|has| |#1| (-379)))) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL)) (-3285 (($ $ $) 79)) (-1597 ((|#1| $) 25)) (-1901 (($ |#1| $) 69)) (-3224 (($ (-940)) NIL (|has| |#1| (-379)))) (-1450 (((-1141) $) NIL)) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-3449 ((|#1| $) 27)) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) 21)) (-4225 (($) 11)) (-3204 (($ $ |#1|) NIL) (($ $ $) 80)) (-2271 (($) NIL) (($ (-656 |#1|)) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1870 (($ $) 16)) (-4172 (((-548) $) 50 (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) 62)) (-4022 (($ $) NIL (|has| |#1| (-379)))) (-3570 (((-876) $) NIL)) (-1717 (((-783) $) NIL)) (-1893 (($ (-656 |#1|)) NIL) (($) 12)) (-4055 (((-112) $ $) NIL)) (-3943 (($ (-656 |#1|)) NIL)) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 52)) (-3503 (((-783) $) 10 (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) NIL)) (-2098 (((-783)) 36)) (-3185 (($ (-656 (-940))) 70)) (-2193 (((-3 $ "failed") $ (-940) (-940)) 81)) (-1836 (($) 40)) (-2885 (((-112) (-940) $) 42)) (-1558 (((-940) $) 64)) (-2046 (((-1179) $) NIL)) (-3223 (($ (-940)) 39)) (-1643 (((-3 $ "failed") $ (-940)) 77)) (-1450 (((-1141) $) NIL)) (-4374 (((-1288 $)) 47)) (-2922 (((-656 (-940)) $) 27)) (-3642 (((-783) $ (-940) (-940)) 78)) (-3569 (((-876) $) 32)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 24))) +(((-1122 |#1| |#2|) (-13 (-379) (-10 -8 (-15 -1643 ((-3 $ "failed") $ (-940))) (-15 -2193 ((-3 $ "failed") $ (-940) (-940))) (-15 -2922 ((-656 (-940)) $)) (-15 -3185 ($ (-656 (-940)))) (-15 -4374 ((-1288 $))) (-15 -2885 ((-112) (-940) $)) (-15 -3642 ((-783) $ (-940) (-940))))) (-940) (-940)) (T -1122)) +((-1643 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-940)) (-5 *1 (-1122 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2193 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-940)) (-5 *1 (-1122 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1122 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940)))) (-3185 (*1 *1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1122 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940)))) (-4374 (*1 *2) (-12 (-5 *2 (-1288 (-1122 *3 *4))) (-5 *1 (-1122 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940)))) (-2885 (*1 *2 *3 *1) (-12 (-5 *3 (-940)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3642 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-940)) (-5 *2 (-783)) (-5 *1 (-1122 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-379) (-10 -8 (-15 -1643 ((-3 $ "failed") $ (-940))) (-15 -2193 ((-3 $ "failed") $ (-940) (-940))) (-15 -2922 ((-656 (-940)) $)) (-15 -3185 ($ (-656 (-940)))) (-15 -4374 ((-1288 $))) (-15 -2885 ((-112) (-940) $)) (-15 -3642 ((-783) $ (-940) (-940))))) +((-3488 (((-112) $ $) NIL)) (-2322 (($) NIL (|has| |#1| (-379)))) (-1820 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-2688 (($ $ $) 81)) (-2866 (((-112) $ $) 82)) (-4264 (((-112) $ (-783)) NIL)) (-2098 (((-783)) NIL (|has| |#1| (-379)))) (-2071 (($ (-656 |#1|)) NIL) (($) 13)) (-2123 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3404 (($) NIL T CONST)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2172 (($ |#1| $) 74 (|has| $ (-6 -4464))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3945 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4464)))) (-1836 (($) NIL (|has| |#1| (-379)))) (-3965 (((-656 |#1|) $) 19 (|has| $ (-6 -4464)))) (-3820 (((-112) $ $) NIL)) (-1368 (((-112) $ (-783)) NIL)) (-3124 ((|#1| $) 55 (|has| |#1| (-861)))) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1441 ((|#1| $) 53 (|has| |#1| (-861)))) (-4326 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 34)) (-1558 (((-940) $) NIL (|has| |#1| (-379)))) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL)) (-3651 (($ $ $) 79)) (-2722 ((|#1| $) 25)) (-2597 (($ |#1| $) 69)) (-3223 (($ (-940)) NIL (|has| |#1| (-379)))) (-1450 (((-1141) $) NIL)) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1541 ((|#1| $) 27)) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) 21)) (-3579 (($) 11)) (-4079 (($ $ |#1|) NIL) (($ $ $) 80)) (-3101 (($) NIL) (($ (-656 |#1|)) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) 16)) (-4171 (((-548) $) 50 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 62)) (-2111 (($ $) NIL (|has| |#1| (-379)))) (-3569 (((-876) $) NIL)) (-1445 (((-783) $) NIL)) (-1895 (($ (-656 |#1|)) NIL) (($) 12)) (-2399 (((-112) $ $) NIL)) (-3972 (($ (-656 |#1|)) NIL)) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 52)) (-3502 (((-783) $) 10 (|has| $ (-6 -4464))))) (((-1123 |#1|) (-437 |#1|) (-1121)) (T -1123)) NIL (-437 |#1|) -((-3489 (((-112) $ $) 7)) (-2820 (((-112) $) 33)) (-3110 ((|#2| $) 28)) (-1501 (((-112) $) 34)) (-1327 ((|#1| $) 29)) (-1335 (((-112) $) 36)) (-2711 (((-112) $) 38)) (-1929 (((-112) $) 35)) (-3699 (((-1179) $) 10)) (-1421 (((-112) $) 32)) (-3135 ((|#3| $) 27)) (-1450 (((-1141) $) 11)) (-2153 (((-112) $) 31)) (-3045 ((|#4| $) 26)) (-3004 ((|#5| $) 25)) (-4027 (((-112) $ $) 39)) (-2797 (($ $ (-576)) 41) (($ $ (-656 (-576))) 40)) (-1905 (((-656 $) $) 30)) (-4172 (($ |#1|) 47) (($ |#2|) 46) (($ |#3|) 45) (($ |#4|) 44) (($ |#5|) 43) (($ (-656 $)) 42)) (-3570 (((-876) $) 12)) (-2869 (($ $) 23)) (-4353 (($ $) 24)) (-4055 (((-112) $ $) 6)) (-2727 (((-112) $) 37)) (-2925 (((-112) $ $) 8)) (-3503 (((-576) $) 22))) +((-3488 (((-112) $ $) 7)) (-3500 (((-112) $) 33)) (-3109 ((|#2| $) 28)) (-4250 (((-112) $) 34)) (-1328 ((|#1| $) 29)) (-2947 (((-112) $) 36)) (-1824 (((-112) $) 38)) (-2879 (((-112) $) 35)) (-2046 (((-1179) $) 10)) (-2082 (((-112) $) 32)) (-3132 ((|#3| $) 27)) (-1450 (((-1141) $) 11)) (-4404 (((-112) $) 31)) (-3044 ((|#4| $) 26)) (-3003 ((|#5| $) 25)) (-4026 (((-112) $ $) 39)) (-2796 (($ $ (-576)) 41) (($ $ (-656 (-576))) 40)) (-1903 (((-656 $) $) 30)) (-4171 (($ |#1|) 47) (($ |#2|) 46) (($ |#3|) 45) (($ |#4|) 44) (($ |#5|) 43) (($ (-656 $)) 42)) (-3569 (((-876) $) 12)) (-4004 (($ $) 23)) (-2280 (($ $) 24)) (-2399 (((-112) $ $) 6)) (-1950 (((-112) $) 37)) (-2924 (((-112) $ $) 8)) (-3502 (((-576) $) 22))) (((-1124 |#1| |#2| |#3| |#4| |#5|) (-141) (-1121) (-1121) (-1121) (-1121) (-1121)) (T -1124)) -((-4027 (*1 *2 *1 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-2711 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-1335 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-1929 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-1501 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-1421 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-2153 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-656 *1)) (-4 *1 (-1124 *3 *4 *5 *6 *7)))) (-1327 (*1 *2 *1) (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *2 *4 *5 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *2 *5 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) (-3045 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *2 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *2)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) (-4353 (*1 *1 *1) (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *2 (-1121)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)))) (-2869 (*1 *1 *1) (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *2 (-1121)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)))) (-3503 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-576))))) -(-13 (-1121) (-630 |t#1|) (-630 |t#2|) (-630 |t#3|) (-630 |t#4|) (-630 |t#4|) (-630 |t#5|) (-630 (-656 $)) (-296 (-576) $) (-296 (-656 (-576)) $) (-10 -8 (-15 -4027 ((-112) $ $)) (-15 -2711 ((-112) $)) (-15 -2727 ((-112) $)) (-15 -1335 ((-112) $)) (-15 -1929 ((-112) $)) (-15 -1501 ((-112) $)) (-15 -2820 ((-112) $)) (-15 -1421 ((-112) $)) (-15 -2153 ((-112) $)) (-15 -1905 ((-656 $) $)) (-15 -1327 (|t#1| $)) (-15 -3110 (|t#2| $)) (-15 -3135 (|t#3| $)) (-15 -3045 (|t#4| $)) (-15 -3004 (|t#5| $)) (-15 -4353 ($ $)) (-15 -2869 ($ $)) (-15 -3503 ((-576) $)))) +((-4026 (*1 *2 *1 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-1824 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-1950 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-2947 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-2879 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-4250 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-3500 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-2082 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-4404 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-1903 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-656 *1)) (-4 *1 (-1124 *3 *4 *5 *6 *7)))) (-1328 (*1 *2 *1) (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *2 *4 *5 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *2 *5 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) (-3044 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *2 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *2)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) (-2280 (*1 *1 *1) (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *2 (-1121)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)))) (-4004 (*1 *1 *1) (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *2 (-1121)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)))) (-3502 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-576))))) +(-13 (-1121) (-630 |t#1|) (-630 |t#2|) (-630 |t#3|) (-630 |t#4|) (-630 |t#4|) (-630 |t#5|) (-630 (-656 $)) (-296 (-576) $) (-296 (-656 (-576)) $) (-10 -8 (-15 -4026 ((-112) $ $)) (-15 -1824 ((-112) $)) (-15 -1950 ((-112) $)) (-15 -2947 ((-112) $)) (-15 -2879 ((-112) $)) (-15 -4250 ((-112) $)) (-15 -3500 ((-112) $)) (-15 -2082 ((-112) $)) (-15 -4404 ((-112) $)) (-15 -1903 ((-656 $) $)) (-15 -1328 (|t#1| $)) (-15 -3109 (|t#2| $)) (-15 -3132 (|t#3| $)) (-15 -3044 (|t#4| $)) (-15 -3003 (|t#5| $)) (-15 -2280 ($ $)) (-15 -4004 ($ $)) (-15 -3502 ((-576) $)))) (((-102) . T) ((-625 (-876)) . T) ((-630 (-656 $)) . T) ((-630 |#1|) . T) ((-630 |#2|) . T) ((-630 |#3|) . T) ((-630 |#4|) . T) ((-630 |#5|) . T) ((-296 (-576) $) . T) ((-296 (-656 (-576)) $) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-2820 (((-112) $) NIL)) (-3110 (((-1197) $) NIL)) (-1501 (((-112) $) NIL)) (-1327 (((-1179) $) NIL)) (-1335 (((-112) $) NIL)) (-2711 (((-112) $) NIL)) (-1929 (((-112) $) NIL)) (-3699 (((-1179) $) NIL)) (-1421 (((-112) $) NIL)) (-3135 (((-576) $) NIL)) (-1450 (((-1141) $) NIL)) (-2153 (((-112) $) NIL)) (-3045 (((-227) $) NIL)) (-3004 (((-876) $) NIL)) (-4027 (((-112) $ $) NIL)) (-2797 (($ $ (-576)) NIL) (($ $ (-656 (-576))) NIL)) (-1905 (((-656 $) $) NIL)) (-4172 (($ (-1179)) NIL) (($ (-1197)) NIL) (($ (-576)) NIL) (($ (-227)) NIL) (($ (-876)) NIL) (($ (-656 $)) NIL)) (-3570 (((-876) $) NIL)) (-2869 (($ $) NIL)) (-4353 (($ $) NIL)) (-4055 (((-112) $ $) NIL)) (-2727 (((-112) $) NIL)) (-2925 (((-112) $ $) NIL)) (-3503 (((-576) $) NIL))) +((-3488 (((-112) $ $) NIL)) (-3500 (((-112) $) NIL)) (-3109 (((-1197) $) NIL)) (-4250 (((-112) $) NIL)) (-1328 (((-1179) $) NIL)) (-2947 (((-112) $) NIL)) (-1824 (((-112) $) NIL)) (-2879 (((-112) $) NIL)) (-2046 (((-1179) $) NIL)) (-2082 (((-112) $) NIL)) (-3132 (((-576) $) NIL)) (-1450 (((-1141) $) NIL)) (-4404 (((-112) $) NIL)) (-3044 (((-227) $) NIL)) (-3003 (((-876) $) NIL)) (-4026 (((-112) $ $) NIL)) (-2796 (($ $ (-576)) NIL) (($ $ (-656 (-576))) NIL)) (-1903 (((-656 $) $) NIL)) (-4171 (($ (-1179)) NIL) (($ (-1197)) NIL) (($ (-576)) NIL) (($ (-227)) NIL) (($ (-876)) NIL) (($ (-656 $)) NIL)) (-3569 (((-876) $) NIL)) (-4004 (($ $) NIL)) (-2280 (($ $) NIL)) (-2399 (((-112) $ $) NIL)) (-1950 (((-112) $) NIL)) (-2924 (((-112) $ $) NIL)) (-3502 (((-576) $) NIL))) (((-1125) (-1124 (-1179) (-1197) (-576) (-227) (-876))) (T -1125)) NIL (-1124 (-1179) (-1197) (-576) (-227) (-876)) -((-3489 (((-112) $ $) NIL)) (-2820 (((-112) $) 45)) (-3110 ((|#2| $) 48)) (-1501 (((-112) $) 20)) (-1327 ((|#1| $) 21)) (-1335 (((-112) $) 42)) (-2711 (((-112) $) 14)) (-1929 (((-112) $) 44)) (-3699 (((-1179) $) NIL)) (-1421 (((-112) $) 46)) (-3135 ((|#3| $) 50)) (-1450 (((-1141) $) NIL)) (-2153 (((-112) $) 47)) (-3045 ((|#4| $) 49)) (-3004 ((|#5| $) 51)) (-4027 (((-112) $ $) 41)) (-2797 (($ $ (-576)) 62) (($ $ (-656 (-576))) 64)) (-1905 (((-656 $) $) 27)) (-4172 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-656 $)) 52)) (-3570 (((-876) $) 28)) (-2869 (($ $) 26)) (-4353 (($ $) 58)) (-4055 (((-112) $ $) NIL)) (-2727 (((-112) $) 23)) (-2925 (((-112) $ $) 40)) (-3503 (((-576) $) 60))) +((-3488 (((-112) $ $) NIL)) (-3500 (((-112) $) 45)) (-3109 ((|#2| $) 48)) (-4250 (((-112) $) 20)) (-1328 ((|#1| $) 21)) (-2947 (((-112) $) 42)) (-1824 (((-112) $) 14)) (-2879 (((-112) $) 44)) (-2046 (((-1179) $) NIL)) (-2082 (((-112) $) 46)) (-3132 ((|#3| $) 50)) (-1450 (((-1141) $) NIL)) (-4404 (((-112) $) 47)) (-3044 ((|#4| $) 49)) (-3003 ((|#5| $) 51)) (-4026 (((-112) $ $) 41)) (-2796 (($ $ (-576)) 62) (($ $ (-656 (-576))) 64)) (-1903 (((-656 $) $) 27)) (-4171 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-656 $)) 52)) (-3569 (((-876) $) 28)) (-4004 (($ $) 26)) (-2280 (($ $) 58)) (-2399 (((-112) $ $) NIL)) (-1950 (((-112) $) 23)) (-2924 (((-112) $ $) 40)) (-3502 (((-576) $) 60))) (((-1126 |#1| |#2| |#3| |#4| |#5|) (-1124 |#1| |#2| |#3| |#4| |#5|) (-1121) (-1121) (-1121) (-1121) (-1121)) (T -1126)) NIL (-1124 |#1| |#2| |#3| |#4| |#5|) -((-2623 (((-1293) $) 22)) (-2790 (($ (-1197) (-446) |#2|) 11)) (-3570 (((-876) $) 16))) -(((-1127 |#1| |#2|) (-13 (-407) (-10 -8 (-15 -2790 ($ (-1197) (-446) |#2|)))) (-1121) (-442 |#1|)) (T -1127)) -((-2790 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-446)) (-4 *5 (-1121)) (-5 *1 (-1127 *5 *4)) (-4 *4 (-442 *5))))) -(-13 (-407) (-10 -8 (-15 -2790 ($ (-1197) (-446) |#2|)))) -((-2794 (((-112) |#5| |#5|) 44)) (-4338 (((-112) |#5| |#5|) 59)) (-3368 (((-112) |#5| (-656 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-3801 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-3291 (((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) 70)) (-4091 (((-1293)) 32)) (-4187 (((-1293) (-1179) (-1179) (-1179)) 28)) (-4094 (((-656 |#5|) (-656 |#5|)) 101)) (-2225 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|)))) 93)) (-3065 (((-656 (-2 (|:| -4027 (-656 |#4|)) (|:| -3988 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112)) 123)) (-3031 (((-112) |#5| |#5|) 53)) (-1881 (((-3 (-112) "failed") |#5| |#5|) 78)) (-3583 (((-112) (-656 |#4|) (-656 |#4|)) 64)) (-2834 (((-112) (-656 |#4|) (-656 |#4|)) 66)) (-1438 (((-112) (-656 |#4|) (-656 |#4|)) 67)) (-3318 (((-3 (-2 (|:| -4027 (-656 |#4|)) (|:| -3988 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-4328 (((-656 |#5|) (-656 |#5|)) 49))) -(((-1128 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4187 ((-1293) (-1179) (-1179) (-1179))) (-15 -4091 ((-1293))) (-15 -2794 ((-112) |#5| |#5|)) (-15 -4328 ((-656 |#5|) (-656 |#5|))) (-15 -3031 ((-112) |#5| |#5|)) (-15 -4338 ((-112) |#5| |#5|)) (-15 -3801 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3583 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2834 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1438 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1881 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3368 ((-112) |#5| |#5|)) (-15 -3368 ((-112) |#5| (-656 |#5|))) (-15 -4094 ((-656 |#5|) (-656 |#5|))) (-15 -3291 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|)))) (-15 -2225 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) (-15 -3065 ((-656 (-2 (|:| -4027 (-656 |#4|)) (|:| -3988 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3318 ((-3 (-2 (|:| -4027 (-656 |#4|)) (|:| -3988 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -1128)) -((-3318 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| -4027 (-656 *9)) (|:| -3988 *4) (|:| |ineq| (-656 *9)))) (-5 *1 (-1128 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) (-4 *4 (-1092 *6 *7 *8 *9)))) (-3065 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1092 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| -4027 (-656 *9)) (|:| -3988 *10) (|:| |ineq| (-656 *9))))) (-5 *1 (-1128 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) (-2225 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -3988 *7)))) (-4 *6 (-1086 *3 *4 *5)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1128 *3 *4 *5 *6 *7)))) (-3291 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3988 *8))) (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *8)))) (-4094 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-1128 *3 *4 *5 *6 *7)))) (-3368 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1128 *5 *6 *7 *8 *3)))) (-3368 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-1881 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-1438 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-2834 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-3583 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-3801 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-4338 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-3031 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-4328 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-1128 *3 *4 *5 *6 *7)))) (-2794 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-4091 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-4187 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) -(-10 -7 (-15 -4187 ((-1293) (-1179) (-1179) (-1179))) (-15 -4091 ((-1293))) (-15 -2794 ((-112) |#5| |#5|)) (-15 -4328 ((-656 |#5|) (-656 |#5|))) (-15 -3031 ((-112) |#5| |#5|)) (-15 -4338 ((-112) |#5| |#5|)) (-15 -3801 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3583 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2834 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1438 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1881 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3368 ((-112) |#5| |#5|)) (-15 -3368 ((-112) |#5| (-656 |#5|))) (-15 -4094 ((-656 |#5|) (-656 |#5|))) (-15 -3291 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|)))) (-15 -2225 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) (-15 -3065 ((-656 (-2 (|:| -4027 (-656 |#4|)) (|:| -3988 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3318 ((-3 (-2 (|:| -4027 (-656 |#4|)) (|:| -3988 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-3267 (((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) |#4| |#5|) 108)) (-3306 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) |#4| |#4| |#5|) 80)) (-3506 (((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) |#4| |#4| |#5|) 102)) (-1588 (((-656 |#5|) |#4| |#5|) 124)) (-3480 (((-656 |#5|) |#4| |#5|) 131)) (-1366 (((-656 |#5|) |#4| |#5|) 132)) (-2375 (((-656 (-2 (|:| |val| (-112)) (|:| -3988 |#5|))) |#4| |#5|) 109)) (-2975 (((-656 (-2 (|:| |val| (-112)) (|:| -3988 |#5|))) |#4| |#5|) 130)) (-2366 (((-656 (-2 (|:| |val| (-112)) (|:| -3988 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-1799 (((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) |#3| (-112)) 92) (((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-2957 (((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) |#4| |#4| |#5|) 87)) (-4310 (((-1293)) 36)) (-1712 (((-1293)) 25)) (-4255 (((-1293) (-1179) (-1179) (-1179)) 32)) (-2680 (((-1293) (-1179) (-1179) (-1179)) 21))) -(((-1129 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2680 ((-1293) (-1179) (-1179) (-1179))) (-15 -1712 ((-1293))) (-15 -4255 ((-1293) (-1179) (-1179) (-1179))) (-15 -4310 ((-1293))) (-15 -3306 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) |#4| |#4| |#5|)) (-15 -1799 ((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1799 ((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) |#3| (-112))) (-15 -2957 ((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) |#4| |#4| |#5|)) (-15 -3506 ((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) |#4| |#4| |#5|)) (-15 -2366 ((-112) |#4| |#5|)) (-15 -2375 ((-656 (-2 (|:| |val| (-112)) (|:| -3988 |#5|))) |#4| |#5|)) (-15 -1588 ((-656 |#5|) |#4| |#5|)) (-15 -2975 ((-656 (-2 (|:| |val| (-112)) (|:| -3988 |#5|))) |#4| |#5|)) (-15 -3480 ((-656 |#5|) |#4| |#5|)) (-15 -2366 ((-656 (-2 (|:| |val| (-112)) (|:| -3988 |#5|))) |#4| |#5|)) (-15 -1366 ((-656 |#5|) |#4| |#5|)) (-15 -3267 ((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) |#4| |#5|))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -1129)) -((-3267 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3988 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-1366 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-2366 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3988 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3480 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-2975 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3988 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-1588 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-2375 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3988 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-2366 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3506 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3988 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-2957 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3988 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-1799 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3988 *9)))) (-5 *5 (-112)) (-4 *8 (-1086 *6 *7 *4)) (-4 *9 (-1092 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-861)) (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -3988 *9)))) (-5 *1 (-1129 *6 *7 *4 *8 *9)))) (-1799 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3988 *4)))) (-5 *1 (-1129 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) (-3306 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-4310 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1129 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-4255 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-1712 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1129 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-2680 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) -(-10 -7 (-15 -2680 ((-1293) (-1179) (-1179) (-1179))) (-15 -1712 ((-1293))) (-15 -4255 ((-1293) (-1179) (-1179) (-1179))) (-15 -4310 ((-1293))) (-15 -3306 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) |#4| |#4| |#5|)) (-15 -1799 ((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1799 ((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) |#3| (-112))) (-15 -2957 ((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) |#4| |#4| |#5|)) (-15 -3506 ((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) |#4| |#4| |#5|)) (-15 -2366 ((-112) |#4| |#5|)) (-15 -2375 ((-656 (-2 (|:| |val| (-112)) (|:| -3988 |#5|))) |#4| |#5|)) (-15 -1588 ((-656 |#5|) |#4| |#5|)) (-15 -2975 ((-656 (-2 (|:| |val| (-112)) (|:| -3988 |#5|))) |#4| |#5|)) (-15 -3480 ((-656 |#5|) |#4| |#5|)) (-15 -2366 ((-656 (-2 (|:| |val| (-112)) (|:| -3988 |#5|))) |#4| |#5|)) (-15 -1366 ((-656 |#5|) |#4| |#5|)) (-15 -3267 ((-656 (-2 (|:| |val| |#4|) (|:| -3988 |#5|))) |#4| |#5|))) -((-3489 (((-112) $ $) 7)) (-1788 (((-656 (-2 (|:| -1958 $) (|:| -3257 (-656 |#4|)))) (-656 |#4|)) 86)) (-3603 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1969 (((-656 |#3|) $) 34)) (-1807 (((-112) $) 27)) (-4026 (((-112) $) 18 (|has| |#1| (-568)))) (-1613 (((-112) |#4| $) 102) (((-112) $) 98)) (-1377 ((|#4| |#4| $) 93)) (-2487 (((-656 (-2 (|:| |val| |#4|) (|:| -3988 $))) |#4| $) 127)) (-1795 (((-2 (|:| |under| $) (|:| -2443 $) (|:| |upper| $)) $ |#3|) 28)) (-1808 (((-112) $ (-783)) 45)) (-1974 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4465))) (((-3 |#4| "failed") $ |#3|) 80)) (-3886 (($) 46 T CONST)) (-3713 (((-112) $) 23 (|has| |#1| (-568)))) (-2813 (((-112) $ $) 25 (|has| |#1| (-568)))) (-3812 (((-112) $ $) 24 (|has| |#1| (-568)))) (-1884 (((-112) $) 26 (|has| |#1| (-568)))) (-3388 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2311 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-4376 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) 37)) (-2860 (($ (-656 |#4|)) 36)) (-3593 (((-3 $ "failed") $) 83)) (-3994 ((|#4| |#4| $) 90)) (-1415 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465))))) (-3946 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4465)))) (-3624 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3439 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2737 ((|#4| |#4| $) 88)) (-3686 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4465))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4465))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4405 (((-2 (|:| -1958 (-656 |#4|)) (|:| -3257 (-656 |#4|))) $) 106)) (-4148 (((-112) |#4| $) 137)) (-3773 (((-112) |#4| $) 134)) (-4441 (((-112) |#4| $) 138) (((-112) $) 135)) (-3966 (((-656 |#4|) $) 53 (|has| $ (-6 -4465)))) (-3186 (((-112) |#4| $) 105) (((-112) $) 104)) (-2620 ((|#3| $) 35)) (-3870 (((-112) $ (-783)) 44)) (-2014 (((-656 |#4|) $) 54 (|has| $ (-6 -4465)))) (-1612 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465))))) (-4323 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#4| |#4|) $) 48)) (-2234 (((-656 |#3|) $) 33)) (-2106 (((-112) |#3| $) 32)) (-1330 (((-112) $ (-783)) 43)) (-3699 (((-1179) $) 10)) (-2166 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-1540 (((-656 (-2 (|:| |val| |#4|) (|:| -3988 $))) |#4| |#4| $) 128)) (-3969 (((-3 |#4| "failed") $) 84)) (-1471 (((-656 $) |#4| $) 130)) (-3179 (((-3 (-112) (-656 $)) |#4| $) 133)) (-3787 (((-656 (-2 (|:| |val| (-112)) (|:| -3988 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3285 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-2008 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-4275 (((-656 |#4|) $) 108)) (-1603 (((-112) |#4| $) 100) (((-112) $) 96)) (-3909 ((|#4| |#4| $) 91)) (-1438 (((-112) $ $) 111)) (-2280 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3579 (((-112) |#4| $) 101) (((-112) $) 97)) (-1522 ((|#4| |#4| $) 92)) (-1450 (((-1141) $) 11)) (-3581 (((-3 |#4| "failed") $) 85)) (-1541 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3384 (((-3 $ "failed") $ |#4|) 79)) (-1749 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-4320 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-4040 (((-112) $ $) 39)) (-3973 (((-112) $) 42)) (-4225 (($) 41)) (-3634 (((-783) $) 107)) (-1460 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4465)))) (-1870 (($ $) 40)) (-4172 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3582 (($ (-656 |#4|)) 61)) (-3118 (($ $ |#3|) 29)) (-2637 (($ $ |#3|) 31)) (-1584 (($ $) 89)) (-3317 (($ $ |#3|) 30)) (-3570 (((-876) $) 12) (((-656 |#4|) $) 38)) (-3891 (((-783) $) 77 (|has| |#3| (-379)))) (-4055 (((-112) $ $) 6)) (-3765 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2833 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-3298 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-3321 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4465)))) (-1583 (((-656 |#3|) $) 82)) (-2392 (((-112) |#4| $) 136)) (-3419 (((-112) |#3| $) 81)) (-2925 (((-112) $ $) 8)) (-3503 (((-783) $) 47 (|has| $ (-6 -4465))))) +((-2622 (((-1293) $) 22)) (-2789 (($ (-1197) (-446) |#2|) 11)) (-3569 (((-876) $) 16))) +(((-1127 |#1| |#2|) (-13 (-407) (-10 -8 (-15 -2789 ($ (-1197) (-446) |#2|)))) (-1121) (-442 |#1|)) (T -1127)) +((-2789 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-446)) (-4 *5 (-1121)) (-5 *1 (-1127 *5 *4)) (-4 *4 (-442 *5))))) +(-13 (-407) (-10 -8 (-15 -2789 ($ (-1197) (-446) |#2|)))) +((-1367 (((-112) |#5| |#5|) 44)) (-2132 (((-112) |#5| |#5|) 59)) (-3227 (((-112) |#5| (-656 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-1900 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-3724 (((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) 70)) (-1552 (((-1293)) 32)) (-4410 (((-1293) (-1179) (-1179) (-1179)) 28)) (-1585 (((-656 |#5|) (-656 |#5|)) 101)) (-3897 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)))) 93)) (-3241 (((-656 (-2 (|:| -4026 (-656 |#4|)) (|:| -3987 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112)) 123)) (-2905 (((-112) |#5| |#5|) 53)) (-3706 (((-3 (-112) "failed") |#5| |#5|) 78)) (-3443 (((-112) (-656 |#4|) (-656 |#4|)) 64)) (-3664 (((-112) (-656 |#4|) (-656 |#4|)) 66)) (-2264 (((-112) (-656 |#4|) (-656 |#4|)) 67)) (-2677 (((-3 (-2 (|:| -4026 (-656 |#4|)) (|:| -3987 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-3318 (((-656 |#5|) (-656 |#5|)) 49))) +(((-1128 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4410 ((-1293) (-1179) (-1179) (-1179))) (-15 -1552 ((-1293))) (-15 -1367 ((-112) |#5| |#5|)) (-15 -3318 ((-656 |#5|) (-656 |#5|))) (-15 -2905 ((-112) |#5| |#5|)) (-15 -2132 ((-112) |#5| |#5|)) (-15 -1900 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3443 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3664 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2264 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3706 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3227 ((-112) |#5| |#5|)) (-15 -3227 ((-112) |#5| (-656 |#5|))) (-15 -1585 ((-656 |#5|) (-656 |#5|))) (-15 -3724 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)))) (-15 -3897 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) (-15 -3241 ((-656 (-2 (|:| -4026 (-656 |#4|)) (|:| -3987 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2677 ((-3 (-2 (|:| -4026 (-656 |#4|)) (|:| -3987 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -1128)) +((-2677 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| -4026 (-656 *9)) (|:| -3987 *4) (|:| |ineq| (-656 *9)))) (-5 *1 (-1128 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) (-4 *4 (-1092 *6 *7 *8 *9)))) (-3241 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1092 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| -4026 (-656 *9)) (|:| -3987 *10) (|:| |ineq| (-656 *9))))) (-5 *1 (-1128 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -3987 *7)))) (-4 *6 (-1086 *3 *4 *5)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1128 *3 *4 *5 *6 *7)))) (-3724 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3987 *8))) (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *8)))) (-1585 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-1128 *3 *4 *5 *6 *7)))) (-3227 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1128 *5 *6 *7 *8 *3)))) (-3227 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-3706 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-2264 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-3664 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-3443 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-1900 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-2132 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-2905 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-3318 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-1128 *3 *4 *5 *6 *7)))) (-1367 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-1552 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-4410 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) +(-10 -7 (-15 -4410 ((-1293) (-1179) (-1179) (-1179))) (-15 -1552 ((-1293))) (-15 -1367 ((-112) |#5| |#5|)) (-15 -3318 ((-656 |#5|) (-656 |#5|))) (-15 -2905 ((-112) |#5| |#5|)) (-15 -2132 ((-112) |#5| |#5|)) (-15 -1900 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3443 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3664 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2264 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3706 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3227 ((-112) |#5| |#5|)) (-15 -3227 ((-112) |#5| (-656 |#5|))) (-15 -1585 ((-656 |#5|) (-656 |#5|))) (-15 -3724 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)))) (-15 -3897 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) (-15 -3241 ((-656 (-2 (|:| -4026 (-656 |#4|)) (|:| -3987 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2677 ((-3 (-2 (|:| -4026 (-656 |#4|)) (|:| -3987 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-3449 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#5|) 108)) (-3885 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) |#4| |#4| |#5|) 80)) (-4007 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5|) 102)) (-2621 (((-656 |#5|) |#4| |#5|) 124)) (-1818 (((-656 |#5|) |#4| |#5|) 131)) (-1464 (((-656 |#5|) |#4| |#5|) 132)) (-1633 (((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|) 109)) (-3644 (((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|) 130)) (-1542 (((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-4187 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) |#3| (-112)) 92) (((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3477 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5|) 87)) (-3159 (((-1293)) 36)) (-1409 (((-1293)) 25)) (-3893 (((-1293) (-1179) (-1179) (-1179)) 32)) (-1557 (((-1293) (-1179) (-1179) (-1179)) 21))) +(((-1129 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1557 ((-1293) (-1179) (-1179) (-1179))) (-15 -1409 ((-1293))) (-15 -3893 ((-1293) (-1179) (-1179) (-1179))) (-15 -3159 ((-1293))) (-15 -3885 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) |#4| |#4| |#5|)) (-15 -4187 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -4187 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) |#3| (-112))) (-15 -3477 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5|)) (-15 -4007 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5|)) (-15 -1542 ((-112) |#4| |#5|)) (-15 -1633 ((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|)) (-15 -2621 ((-656 |#5|) |#4| |#5|)) (-15 -3644 ((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|)) (-15 -1818 ((-656 |#5|) |#4| |#5|)) (-15 -1542 ((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|)) (-15 -1464 ((-656 |#5|) |#4| |#5|)) (-15 -3449 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#5|))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -1129)) +((-3449 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-1464 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-1542 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3987 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-1818 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3644 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3987 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-2621 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-1633 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3987 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-1542 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-4007 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3477 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-4187 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3987 *9)))) (-5 *5 (-112)) (-4 *8 (-1086 *6 *7 *4)) (-4 *9 (-1092 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-861)) (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -3987 *9)))) (-5 *1 (-1129 *6 *7 *4 *8 *9)))) (-4187 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) (-5 *1 (-1129 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) (-3885 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3159 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1129 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-3893 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-1409 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1129 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-1557 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) +(-10 -7 (-15 -1557 ((-1293) (-1179) (-1179) (-1179))) (-15 -1409 ((-1293))) (-15 -3893 ((-1293) (-1179) (-1179) (-1179))) (-15 -3159 ((-1293))) (-15 -3885 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) |#4| |#4| |#5|)) (-15 -4187 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -4187 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) |#3| (-112))) (-15 -3477 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5|)) (-15 -4007 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#4| |#5|)) (-15 -1542 ((-112) |#4| |#5|)) (-15 -1633 ((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|)) (-15 -2621 ((-656 |#5|) |#4| |#5|)) (-15 -3644 ((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|)) (-15 -1818 ((-656 |#5|) |#4| |#5|)) (-15 -1542 ((-656 (-2 (|:| |val| (-112)) (|:| -3987 |#5|))) |#4| |#5|)) (-15 -1464 ((-656 |#5|) |#4| |#5|)) (-15 -3449 ((-656 (-2 (|:| |val| |#4|) (|:| -3987 |#5|))) |#4| |#5|))) +((-3488 (((-112) $ $) 7)) (-4093 (((-656 (-2 (|:| -1958 $) (|:| -3256 (-656 |#4|)))) (-656 |#4|)) 86)) (-3668 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1969 (((-656 |#3|) $) 34)) (-4255 (((-112) $) 27)) (-2136 (((-112) $) 18 (|has| |#1| (-568)))) (-2899 (((-112) |#4| $) 102) (((-112) $) 98)) (-3798 ((|#4| |#4| $) 93)) (-3444 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 $))) |#4| $) 127)) (-1795 (((-2 (|:| |under| $) (|:| -4236 $) (|:| |upper| $)) $ |#3|) 28)) (-4264 (((-112) $ (-783)) 45)) (-1974 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4464))) (((-3 |#4| "failed") $ |#3|) 80)) (-3404 (($) 46 T CONST)) (-2203 (((-112) $) 23 (|has| |#1| (-568)))) (-3438 (((-112) $ $) 25 (|has| |#1| (-568)))) (-1990 (((-112) $ $) 24 (|has| |#1| (-568)))) (-3740 (((-112) $) 26 (|has| |#1| (-568)))) (-2149 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2239 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-2514 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) 37)) (-2859 (($ (-656 |#4|)) 36)) (-3592 (((-3 $ "failed") $) 83)) (-3142 ((|#4| |#4| $) 90)) (-2034 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4464)))) (-3891 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-1483 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4022 ((|#4| |#4| $) 88)) (-3685 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4464))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1599 (((-2 (|:| -1958 (-656 |#4|)) (|:| -3256 (-656 |#4|))) $) 106)) (-4064 (((-112) |#4| $) 137)) (-1608 (((-112) |#4| $) 134)) (-1921 (((-112) |#4| $) 138) (((-112) $) 135)) (-3965 (((-656 |#4|) $) 53 (|has| $ (-6 -4464)))) (-1918 (((-112) |#4| $) 105) (((-112) $) 104)) (-2235 ((|#3| $) 35)) (-1368 (((-112) $ (-783)) 44)) (-2425 (((-656 |#4|) $) 54 (|has| $ (-6 -4464)))) (-2885 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-4326 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#4| |#4|) $) 48)) (-2666 (((-656 |#3|) $) 33)) (-4001 (((-112) |#3| $) 32)) (-2883 (((-112) $ (-783)) 43)) (-2046 (((-1179) $) 10)) (-3299 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-3422 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 $))) |#4| |#4| $) 128)) (-3968 (((-3 |#4| "failed") $) 84)) (-3955 (((-656 $) |#4| $) 130)) (-1843 (((-3 (-112) (-656 $)) |#4| $) 133)) (-1751 (((-656 (-2 (|:| |val| (-112)) (|:| -3987 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3651 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-2381 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-2795 (((-656 |#4|) $) 108)) (-2785 (((-112) |#4| $) 100) (((-112) $) 96)) (-3640 ((|#4| |#4| $) 91)) (-2264 (((-112) $ $) 111)) (-3196 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3420 (((-112) |#4| $) 101) (((-112) $) 97)) (-3235 ((|#4| |#4| $) 92)) (-1450 (((-1141) $) 11)) (-3580 (((-3 |#4| "failed") $) 85)) (-3434 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2101 (((-3 $ "failed") $ |#4|) 79)) (-1743 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-3252 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-2252 (((-112) $ $) 39)) (-2940 (((-112) $) 42)) (-3579 (($) 41)) (-2683 (((-783) $) 107)) (-1460 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4464)))) (-1870 (($ $) 40)) (-4171 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3581 (($ (-656 |#4|)) 61)) (-2479 (($ $ |#3|) 29)) (-2394 (($ $ |#3|) 31)) (-2582 (($ $) 89)) (-2665 (($ $ |#3|) 30)) (-3569 (((-876) $) 12) (((-656 |#4|) $) 38)) (-3451 (((-783) $) 77 (|has| |#3| (-379)))) (-2399 (((-112) $ $) 6)) (-1530 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3653 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-3788 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2708 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4464)))) (-2572 (((-656 |#3|) $) 82)) (-1777 (((-112) |#4| $) 136)) (-2476 (((-112) |#3| $) 81)) (-2924 (((-112) $ $) 8)) (-3502 (((-783) $) 47 (|has| $ (-6 -4464))))) (((-1130 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-861) (-1086 |t#1| |t#2| |t#3|)) (T -1130)) NIL (-13 (-1092 |t#1| |t#2| |t#3| |t#4|)) (((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-876)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-997 |#1| |#2| |#3| |#4|) . T) ((-1092 |#1| |#2| |#3| |#4|) . T) ((-1121) . T) ((-1231 |#1| |#2| |#3| |#4|) . T) ((-1238) . T)) -((-2645 (((-656 (-576)) (-576) (-576) (-576)) 38)) (-2765 (((-656 (-576)) (-576) (-576) (-576)) 28)) (-1661 (((-656 (-576)) (-576) (-576) (-576)) 33)) (-2530 (((-576) (-576) (-576)) 21)) (-4272 (((-1288 (-576)) (-656 (-576)) (-1288 (-576)) (-576)) 77) (((-1288 (-576)) (-1288 (-576)) (-1288 (-576)) (-576)) 72)) (-2871 (((-656 (-576)) (-656 (-940)) (-656 (-576)) (-112)) 54)) (-4154 (((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576))) 76)) (-2348 (((-701 (-576)) (-656 (-940)) (-656 (-576))) 59)) (-2295 (((-656 (-701 (-576))) (-656 (-940))) 65)) (-3840 (((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576))) 80)) (-3888 (((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576))) 90))) -(((-1131) (-10 -7 (-15 -3888 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576)))) (-15 -3840 ((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -2295 ((-656 (-701 (-576))) (-656 (-940)))) (-15 -2348 ((-701 (-576)) (-656 (-940)) (-656 (-576)))) (-15 -4154 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -2871 ((-656 (-576)) (-656 (-940)) (-656 (-576)) (-112))) (-15 -4272 ((-1288 (-576)) (-1288 (-576)) (-1288 (-576)) (-576))) (-15 -4272 ((-1288 (-576)) (-656 (-576)) (-1288 (-576)) (-576))) (-15 -2530 ((-576) (-576) (-576))) (-15 -1661 ((-656 (-576)) (-576) (-576) (-576))) (-15 -2765 ((-656 (-576)) (-576) (-576) (-576))) (-15 -2645 ((-656 (-576)) (-576) (-576) (-576))))) (T -1131)) -((-2645 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1131)) (-5 *3 (-576)))) (-2765 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1131)) (-5 *3 (-576)))) (-1661 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1131)) (-5 *3 (-576)))) (-2530 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1131)))) (-4272 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1288 (-576))) (-5 *3 (-656 (-576))) (-5 *4 (-576)) (-5 *1 (-1131)))) (-4272 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1288 (-576))) (-5 *3 (-576)) (-5 *1 (-1131)))) (-2871 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-656 (-576))) (-5 *3 (-656 (-940))) (-5 *4 (-112)) (-5 *1 (-1131)))) (-4154 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-701 (-576))) (-5 *3 (-656 (-576))) (-5 *1 (-1131)))) (-2348 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-940))) (-5 *4 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1131)))) (-2295 (*1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-1131)))) (-3840 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *3 (-701 (-576))) (-5 *1 (-1131)))) (-3888 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1131))))) -(-10 -7 (-15 -3888 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576)))) (-15 -3840 ((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -2295 ((-656 (-701 (-576))) (-656 (-940)))) (-15 -2348 ((-701 (-576)) (-656 (-940)) (-656 (-576)))) (-15 -4154 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -2871 ((-656 (-576)) (-656 (-940)) (-656 (-576)) (-112))) (-15 -4272 ((-1288 (-576)) (-1288 (-576)) (-1288 (-576)) (-576))) (-15 -4272 ((-1288 (-576)) (-656 (-576)) (-1288 (-576)) (-576))) (-15 -2530 ((-576) (-576) (-576))) (-15 -1661 ((-656 (-576)) (-576) (-576) (-576))) (-15 -2765 ((-656 (-576)) (-576) (-576) (-576))) (-15 -2645 ((-656 (-576)) (-576) (-576) (-576)))) +((-2460 (((-656 (-576)) (-576) (-576) (-576)) 38)) (-4244 (((-656 (-576)) (-576) (-576) (-576)) 28)) (-2087 (((-656 (-576)) (-576) (-576) (-576)) 33)) (-3922 (((-576) (-576) (-576)) 21)) (-2771 (((-1288 (-576)) (-656 (-576)) (-1288 (-576)) (-576)) 77) (((-1288 (-576)) (-1288 (-576)) (-1288 (-576)) (-576)) 72)) (-2713 (((-656 (-576)) (-656 (-940)) (-656 (-576)) (-112)) 54)) (-4115 (((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576))) 76)) (-2585 (((-701 (-576)) (-656 (-940)) (-656 (-576))) 59)) (-2069 (((-656 (-701 (-576))) (-656 (-940))) 65)) (-4234 (((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576))) 80)) (-3426 (((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576))) 90))) +(((-1131) (-10 -7 (-15 -3426 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576)))) (-15 -4234 ((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -2069 ((-656 (-701 (-576))) (-656 (-940)))) (-15 -2585 ((-701 (-576)) (-656 (-940)) (-656 (-576)))) (-15 -4115 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -2713 ((-656 (-576)) (-656 (-940)) (-656 (-576)) (-112))) (-15 -2771 ((-1288 (-576)) (-1288 (-576)) (-1288 (-576)) (-576))) (-15 -2771 ((-1288 (-576)) (-656 (-576)) (-1288 (-576)) (-576))) (-15 -3922 ((-576) (-576) (-576))) (-15 -2087 ((-656 (-576)) (-576) (-576) (-576))) (-15 -4244 ((-656 (-576)) (-576) (-576) (-576))) (-15 -2460 ((-656 (-576)) (-576) (-576) (-576))))) (T -1131)) +((-2460 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1131)) (-5 *3 (-576)))) (-4244 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1131)) (-5 *3 (-576)))) (-2087 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1131)) (-5 *3 (-576)))) (-3922 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1131)))) (-2771 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1288 (-576))) (-5 *3 (-656 (-576))) (-5 *4 (-576)) (-5 *1 (-1131)))) (-2771 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1288 (-576))) (-5 *3 (-576)) (-5 *1 (-1131)))) (-2713 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-656 (-576))) (-5 *3 (-656 (-940))) (-5 *4 (-112)) (-5 *1 (-1131)))) (-4115 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-701 (-576))) (-5 *3 (-656 (-576))) (-5 *1 (-1131)))) (-2585 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-940))) (-5 *4 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1131)))) (-2069 (*1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-1131)))) (-4234 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *3 (-701 (-576))) (-5 *1 (-1131)))) (-3426 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1131))))) +(-10 -7 (-15 -3426 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576)))) (-15 -4234 ((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -2069 ((-656 (-701 (-576))) (-656 (-940)))) (-15 -2585 ((-701 (-576)) (-656 (-940)) (-656 (-576)))) (-15 -4115 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -2713 ((-656 (-576)) (-656 (-940)) (-656 (-576)) (-112))) (-15 -2771 ((-1288 (-576)) (-1288 (-576)) (-1288 (-576)) (-576))) (-15 -2771 ((-1288 (-576)) (-656 (-576)) (-1288 (-576)) (-576))) (-15 -3922 ((-576) (-576) (-576))) (-15 -2087 ((-656 (-576)) (-576) (-576) (-576))) (-15 -4244 ((-656 (-576)) (-576) (-576) (-576))) (-15 -2460 ((-656 (-576)) (-576) (-576) (-576)))) ((** (($ $ (-940)) 10))) (((-1132 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-940)))) (-1133)) (T -1132)) NIL (-10 -8 (-15 ** (|#1| |#1| (-940)))) -((-3489 (((-112) $ $) 7)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2925 (((-112) $ $) 8)) (** (($ $ (-940)) 14)) (* (($ $ $) 15))) +((-3488 (((-112) $ $) 7)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2924 (((-112) $ $) 8)) (** (($ $ (-940)) 14)) (* (($ $ $) 15))) (((-1133) (-141)) (T -1133)) ((* (*1 *1 *1 *1) (-4 *1 (-1133))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1133)) (-5 *2 (-940))))) (-13 (-1121) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-940))))) (((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL (|has| |#3| (-102)))) (-4308 (((-112) $) NIL (|has| |#3| (-23)))) (-2052 (($ (-940)) NIL (|has| |#3| (-1070)))) (-2047 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4466)))) (-2324 (($ $ $) NIL (|has| |#3| (-805)))) (-4367 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)))) (-1808 (((-112) $ (-783)) NIL)) (-2098 (((-783)) NIL (|has| |#3| (-379)))) (-3756 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4466)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1121)))) (-2860 (((-576) $) NIL (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121)))) (((-419 (-576)) $) NIL (-12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121)))) ((|#3| $) NIL (|has| |#3| (-1121)))) (-2204 (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) (((-2 (|:| -2590 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 $) (-1288 $)) NIL (|has| |#3| (-1070))) (((-701 |#3|) (-701 $)) NIL (|has| |#3| (-1070)))) (-1561 (((-3 $ "failed") $) NIL (|has| |#3| (-1070)))) (-1836 (($) NIL (|has| |#3| (-379)))) (-4335 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4466)))) (-4274 ((|#3| $ (-576)) 12)) (-3966 (((-656 |#3|) $) NIL (|has| $ (-6 -4465)))) (-4193 (((-112) $) NIL (|has| |#3| (-1070)))) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-576) $) NIL (|has| (-576) (-861)))) (-3125 (($ $ $) NIL (|has| |#3| (-861)))) (-2014 (((-656 |#3|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#3| (-1121))))) (-2137 (((-576) $) NIL (|has| (-576) (-861)))) (-3133 (($ $ $) NIL (|has| |#3| (-861)))) (-4323 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#3| |#3|) $) NIL)) (-4401 (((-940) $) NIL (|has| |#3| (-379)))) (-1330 (((-112) $ (-783)) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) (((-2 (|:| -2590 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-1288 $) $) NIL (|has| |#3| (-1070))) (((-701 |#3|) (-1288 $)) NIL (|has| |#3| (-1070)))) (-3699 (((-1179) $) NIL (|has| |#3| (-1121)))) (-4234 (((-656 (-576)) $) NIL)) (-3354 (((-112) (-576) $) NIL)) (-3224 (($ (-940)) NIL (|has| |#3| (-379)))) (-1450 (((-1141) $) NIL (|has| |#3| (-1121)))) (-3581 ((|#3| $) NIL (|has| (-576) (-861)))) (-4046 (($ $ |#3|) NIL (|has| $ (-6 -4466)))) (-4320 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#3| (-1121))))) (-2281 (((-656 |#3|) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#3| $ (-576) |#3|) NIL) ((|#3| $ (-576)) NIL)) (-2118 ((|#3| $ $) NIL (|has| |#3| (-1070)))) (-1872 (($ (-1288 |#3|)) NIL)) (-2003 (((-135)) NIL (|has| |#3| (-374)))) (-2775 (($ $ (-783)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1070))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1070)))) (-1460 (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4465))) (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#3| (-1121))))) (-1870 (($ $) NIL)) (-3570 (((-1288 |#3|) $) NIL) (($ (-576)) NIL (-2760 (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121))) (|has| |#3| (-1070)))) (($ (-419 (-576))) NIL (-12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121)))) (($ |#3|) NIL (|has| |#3| (-1121))) (((-876) $) NIL (|has| |#3| (-625 (-876))))) (-3996 (((-783)) NIL (|has| |#3| (-1070)) CONST)) (-4055 (((-112) $ $) NIL (|has| |#3| (-102)))) (-3321 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4465)))) (-2721 (($) NIL (|has| |#3| (-23)) CONST)) (-2732 (($) NIL (|has| |#3| (-1070)) CONST)) (-2020 (($ $ (-783)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1070))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1070)))) (-2992 (((-112) $ $) NIL (|has| |#3| (-861)))) (-2964 (((-112) $ $) NIL (|has| |#3| (-861)))) (-2925 (((-112) $ $) NIL (|has| |#3| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#3| (-861)))) (-2950 (((-112) $ $) 24 (|has| |#3| (-861)))) (-3057 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-3044 (($ $ $) NIL (|has| |#3| (-21))) (($ $) NIL (|has| |#3| (-21)))) (-3030 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-783)) NIL (|has| |#3| (-1070))) (($ $ (-940)) NIL (|has| |#3| (-1070)))) (* (($ $ $) NIL (|has| |#3| (-1070))) (($ $ |#3|) NIL (|has| |#3| (-738))) (($ |#3| $) NIL (|has| |#3| (-738))) (($ (-576) $) NIL (|has| |#3| (-21))) (($ (-783) $) NIL (|has| |#3| (-23))) (($ (-940) $) NIL (|has| |#3| (-25)))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) NIL (|has| |#3| (-102)))) (-3135 (((-112) $) NIL (|has| |#3| (-23)))) (-1545 (($ (-940)) NIL (|has| |#3| (-1070)))) (-1512 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2386 (($ $ $) NIL (|has| |#3| (-805)))) (-2428 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)))) (-4264 (((-112) $ (-783)) NIL)) (-2098 (((-783)) NIL (|has| |#3| (-379)))) (-3755 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4465)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1121)))) (-2859 (((-576) $) NIL (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121)))) (((-419 (-576)) $) NIL (-12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121)))) ((|#3| $) NIL (|has| |#3| (-1121)))) (-3674 (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) (((-2 (|:| -3232 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 $) (-1288 $)) NIL (|has| |#3| (-1070))) (((-701 |#3|) (-701 $)) NIL (|has| |#3| (-1070)))) (-3673 (((-3 $ "failed") $) NIL (|has| |#3| (-1070)))) (-1836 (($) NIL (|has| |#3| (-379)))) (-4332 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#3| $ (-576)) 12)) (-3965 (((-656 |#3|) $) NIL (|has| $ (-6 -4464)))) (-1351 (((-112) $) NIL (|has| |#3| (-1070)))) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#3| (-861)))) (-2425 (((-656 |#3|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#3| (-1121))))) (-4280 (((-576) $) NIL (|has| (-576) (-861)))) (-1441 (($ $ $) NIL (|has| |#3| (-861)))) (-4326 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#3| |#3|) $) NIL)) (-1558 (((-940) $) NIL (|has| |#3| (-379)))) (-2883 (((-112) $ (-783)) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) (((-2 (|:| -3232 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-1288 $) $) NIL (|has| |#3| (-1070))) (((-701 |#3|) (-1288 $)) NIL (|has| |#3| (-1070)))) (-2046 (((-1179) $) NIL (|has| |#3| (-1121)))) (-3669 (((-656 (-576)) $) NIL)) (-3090 (((-112) (-576) $) NIL)) (-3223 (($ (-940)) NIL (|has| |#3| (-379)))) (-1450 (((-1141) $) NIL (|has| |#3| (-1121)))) (-3580 ((|#3| $) NIL (|has| (-576) (-861)))) (-2304 (($ $ |#3|) NIL (|has| $ (-6 -4465)))) (-3252 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#3| (-1121))))) (-3207 (((-656 |#3|) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#3| $ (-576) |#3|) NIL) ((|#3| $ (-576)) NIL)) (-4099 ((|#3| $ $) NIL (|has| |#3| (-1070)))) (-1871 (($ (-1288 |#3|)) NIL)) (-2319 (((-135)) NIL (|has| |#3| (-374)))) (-2774 (($ $ (-783)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1070))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1070)))) (-1460 (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4464))) (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#3| (-1121))))) (-1870 (($ $) NIL)) (-3569 (((-1288 |#3|) $) NIL) (($ (-576)) NIL (-2759 (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121))) (|has| |#3| (-1070)))) (($ (-419 (-576))) NIL (-12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121)))) (($ |#3|) NIL (|has| |#3| (-1121))) (((-876) $) NIL (|has| |#3| (-625 (-876))))) (-3154 (((-783)) NIL (|has| |#3| (-1070)) CONST)) (-2399 (((-112) $ $) NIL (|has| |#3| (-102)))) (-2708 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4464)))) (-2721 (($) NIL (|has| |#3| (-23)) CONST)) (-2731 (($) NIL (|has| |#3| (-1070)) CONST)) (-2020 (($ $ (-783)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1070))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1070)))) (-2990 (((-112) $ $) NIL (|has| |#3| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#3| (-861)))) (-2924 (((-112) $ $) NIL (|has| |#3| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#3| (-861)))) (-2949 (((-112) $ $) 24 (|has| |#3| (-861)))) (-3056 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-3043 (($ $ $) NIL (|has| |#3| (-21))) (($ $) NIL (|has| |#3| (-21)))) (-3029 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-783)) NIL (|has| |#3| (-1070))) (($ $ (-940)) NIL (|has| |#3| (-1070)))) (* (($ $ $) NIL (|has| |#3| (-1070))) (($ $ |#3|) NIL (|has| |#3| (-738))) (($ |#3| $) NIL (|has| |#3| (-738))) (($ (-576) $) NIL (|has| |#3| (-21))) (($ (-783) $) NIL (|has| |#3| (-23))) (($ (-940) $) NIL (|has| |#3| (-25)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) (((-1134 |#1| |#2| |#3|) (-243 |#1| |#3|) (-783) (-783) (-805)) (T -1134)) NIL (-243 |#1| |#3|) -((-2483 (((-656 (-1261 |#2| |#1|)) (-1261 |#2| |#1|) (-1261 |#2| |#1|)) 50)) (-2169 (((-576) (-1261 |#2| |#1|)) 94 (|has| |#1| (-464)))) (-3700 (((-576) (-1261 |#2| |#1|)) 76)) (-1405 (((-656 (-1261 |#2| |#1|)) (-1261 |#2| |#1|) (-1261 |#2| |#1|)) 58)) (-3696 (((-576) (-1261 |#2| |#1|) (-1261 |#2| |#1|)) 93 (|has| |#1| (-464)))) (-1693 (((-656 |#1|) (-1261 |#2| |#1|) (-1261 |#2| |#1|)) 61)) (-2044 (((-576) (-1261 |#2| |#1|) (-1261 |#2| |#1|)) 75))) -(((-1135 |#1| |#2|) (-10 -7 (-15 -2483 ((-656 (-1261 |#2| |#1|)) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -1405 ((-656 (-1261 |#2| |#1|)) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -1693 ((-656 |#1|) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -2044 ((-576) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -3700 ((-576) (-1261 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -3696 ((-576) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -2169 ((-576) (-1261 |#2| |#1|)))) |%noBranch|)) (-832) (-1197)) (T -1135)) -((-2169 (*1 *2 *3) (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-576)) (-5 *1 (-1135 *4 *5)))) (-3696 (*1 *2 *3 *3) (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-576)) (-5 *1 (-1135 *4 *5)))) (-3700 (*1 *2 *3) (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-576)) (-5 *1 (-1135 *4 *5)))) (-2044 (*1 *2 *3 *3) (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-576)) (-5 *1 (-1135 *4 *5)))) (-1693 (*1 *2 *3 *3) (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-656 *4)) (-5 *1 (-1135 *4 *5)))) (-1405 (*1 *2 *3 *3) (-12 (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-656 (-1261 *5 *4))) (-5 *1 (-1135 *4 *5)) (-5 *3 (-1261 *5 *4)))) (-2483 (*1 *2 *3 *3) (-12 (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-656 (-1261 *5 *4))) (-5 *1 (-1135 *4 *5)) (-5 *3 (-1261 *5 *4))))) -(-10 -7 (-15 -2483 ((-656 (-1261 |#2| |#1|)) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -1405 ((-656 (-1261 |#2| |#1|)) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -1693 ((-656 |#1|) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -2044 ((-576) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -3700 ((-576) (-1261 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -3696 ((-576) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -2169 ((-576) (-1261 |#2| |#1|)))) |%noBranch|)) -((-3489 (((-112) $ $) NIL)) (-4268 (($ (-518) (-1139)) 13)) (-2705 (((-1139) $) 19)) (-2629 (((-518) $) 16)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 26) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-1136) (-13 (-1104) (-10 -8 (-15 -4268 ($ (-518) (-1139))) (-15 -2629 ((-518) $)) (-15 -2705 ((-1139) $))))) (T -1136)) -((-4268 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1139)) (-5 *1 (-1136)))) (-2629 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1136)))) (-2705 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1136))))) -(-13 (-1104) (-10 -8 (-15 -4268 ($ (-518) (-1139))) (-15 -2629 ((-518) $)) (-15 -2705 ((-1139) $)))) -((-3308 (((-3 (-576) "failed") |#2| (-1197) |#2| (-1179)) 19) (((-3 (-576) "failed") |#2| (-1197) (-855 |#2|)) 17) (((-3 (-576) "failed") |#2|) 60))) -(((-1137 |#1| |#2|) (-10 -7 (-15 -3308 ((-3 (-576) "failed") |#2|)) (-15 -3308 ((-3 (-576) "failed") |#2| (-1197) (-855 |#2|))) (-15 -3308 ((-3 (-576) "failed") |#2| (-1197) |#2| (-1179)))) (-13 (-568) (-1059 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1223) (-442 |#1|))) (T -1137)) -((-3308 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-1179)) (-4 *6 (-13 (-568) (-1059 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1137 *6 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))))) (-3308 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-855 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-568) (-1059 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1137 *6 *3)))) (-3308 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-1059 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1137 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4)))))) -(-10 -7 (-15 -3308 ((-3 (-576) "failed") |#2|)) (-15 -3308 ((-3 (-576) "failed") |#2| (-1197) (-855 |#2|))) (-15 -3308 ((-3 (-576) "failed") |#2| (-1197) |#2| (-1179)))) -((-3308 (((-3 (-576) "failed") (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|)) (-1179)) 38) (((-3 (-576) "failed") (-419 (-971 |#1|)) (-1197) (-855 (-419 (-971 |#1|)))) 33) (((-3 (-576) "failed") (-419 (-971 |#1|))) 14))) -(((-1138 |#1|) (-10 -7 (-15 -3308 ((-3 (-576) "failed") (-419 (-971 |#1|)))) (-15 -3308 ((-3 (-576) "failed") (-419 (-971 |#1|)) (-1197) (-855 (-419 (-971 |#1|))))) (-15 -3308 ((-3 (-576) "failed") (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|)) (-1179)))) (-464)) (T -1138)) -((-3308 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-419 (-971 *6))) (-5 *4 (-1197)) (-5 *5 (-1179)) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1138 *6)))) (-3308 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-855 (-419 (-971 *6)))) (-5 *3 (-419 (-971 *6))) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1138 *6)))) (-3308 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-464)) (-5 *2 (-576)) (-5 *1 (-1138 *4))))) -(-10 -7 (-15 -3308 ((-3 (-576) "failed") (-419 (-971 |#1|)))) (-15 -3308 ((-3 (-576) "failed") (-419 (-971 |#1|)) (-1197) (-855 (-419 (-971 |#1|))))) (-15 -3308 ((-3 (-576) "failed") (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|)) (-1179)))) -((-3489 (((-112) $ $) NIL)) (-2984 (((-1202) $) 12)) (-2916 (((-656 (-1202)) $) 14)) (-2705 (($ (-656 (-1202)) (-1202)) 10)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 29)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 17))) -(((-1139) (-13 (-1121) (-10 -8 (-15 -2705 ($ (-656 (-1202)) (-1202))) (-15 -2984 ((-1202) $)) (-15 -2916 ((-656 (-1202)) $))))) (T -1139)) -((-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1202))) (-5 *3 (-1202)) (-5 *1 (-1139)))) (-2984 (*1 *2 *1) (-12 (-5 *2 (-1202)) (-5 *1 (-1139)))) (-2916 (*1 *2 *1) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-1139))))) -(-13 (-1121) (-10 -8 (-15 -2705 ($ (-656 (-1202)) (-1202))) (-15 -2984 ((-1202) $)) (-15 -2916 ((-656 (-1202)) $)))) -((-4206 (((-326 (-576)) (-48)) 12))) -(((-1140) (-10 -7 (-15 -4206 ((-326 (-576)) (-48))))) (T -1140)) -((-4206 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-576))) (-5 *1 (-1140))))) -(-10 -7 (-15 -4206 ((-326 (-576)) (-48)))) -((-3489 (((-112) $ $) NIL)) (-3517 (($ $) 44)) (-4308 (((-112) $) 70)) (-2695 (($ $ $) 53)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 98)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-3475 (($ $ $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-4417 (($ $ $ $) 81)) (-2487 (($ $) NIL)) (-3921 (((-430 $) $) NIL)) (-4016 (((-112) $ $) NIL)) (-2098 (((-783)) 83)) (-3308 (((-576) $) NIL)) (-2745 (($ $ $) 78)) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL)) (-2860 (((-576) $) NIL)) (-3429 (($ $ $) 64)) (-2204 (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 92) (((-701 (-576)) (-701 $)) 32)) (-1561 (((-3 $ "failed") $) NIL)) (-3104 (((-3 (-419 (-576)) "failed") $) NIL)) (-2545 (((-112) $) NIL)) (-2568 (((-419 (-576)) $) NIL)) (-1836 (($) 95) (($ $) 96)) (-3441 (($ $ $) 63)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL)) (-4249 (((-112) $) NIL)) (-3271 (($ $ $ $) NIL)) (-3941 (($ $ $) 93)) (-2087 (((-112) $) NIL)) (-1432 (($ $ $) NIL)) (-1840 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL)) (-2686 (($ $ $) 52)) (-4193 (((-112) $) 72)) (-2946 (((-112) $) 69)) (-2663 (($ $) 45)) (-2240 (((-3 $ "failed") $) NIL)) (-1634 (((-112) $) 82)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4379 (($ $ $ $) 79)) (-3125 (($ $ $) 74) (($) 42 T CONST)) (-3133 (($ $ $) 73) (($) 41 T CONST)) (-2242 (($ $) NIL)) (-4401 (((-940) $) 88)) (-2437 (($ $) 77)) (-3913 (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3458 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3699 (((-1179) $) NIL)) (-3893 (($ $ $) NIL)) (-3540 (($) NIL T CONST)) (-3224 (($ (-940)) 87)) (-1373 (($ $) 57)) (-1450 (((-1141) $) 76)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3498 (($ $ $) 67) (($ (-656 $)) NIL)) (-1803 (($ $) NIL)) (-1828 (((-430 $) $) NIL)) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL)) (-3476 (((-3 $ "failed") $ $) NIL)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3644 (((-112) $) NIL)) (-1967 (((-783) $) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 66)) (-2775 (($ $) NIL) (($ $ (-783)) NIL)) (-1806 (($ $) 58)) (-1870 (($ $) NIL)) (-4172 (((-576) $) 17) (((-548) $) NIL) (((-907 (-576)) $) NIL) (((-390) $) NIL) (((-227) $) NIL)) (-3570 (((-876) $) 35) (($ (-576)) 94) (($ $) NIL) (($ (-576)) 94)) (-3996 (((-783)) NIL T CONST)) (-3586 (((-112) $ $) NIL)) (-2979 (($ $ $) NIL)) (-4055 (((-112) $ $) NIL)) (-3516 (($) 40)) (-2672 (((-112) $ $) NIL)) (-2675 (($ $ $) 50)) (-1701 (($ $ $ $) 80)) (-2122 (($ $) 68)) (-3563 (($ $ $) 47)) (-2721 (($) 7 T CONST)) (-3869 (($ $ $) 51)) (-2732 (($) 39 T CONST)) (-1636 (((-1179) $) 26) (((-1179) $ (-112)) 27) (((-1293) (-834) $) 28) (((-1293) (-834) $ (-112)) 29)) (-3882 (($ $) 48)) (-2020 (($ $) NIL) (($ $ (-783)) NIL)) (-3857 (($ $ $) 49)) (-2992 (((-112) $ $) 56)) (-2964 (((-112) $ $) 54)) (-2925 (((-112) $ $) 43)) (-2978 (((-112) $ $) 55)) (-2950 (((-112) $ $) 10)) (-3552 (($ $ $) 46)) (-3044 (($ $) 16) (($ $ $) 60)) (-3030 (($ $ $) 59)) (** (($ $ (-940)) NIL) (($ $ (-783)) 62)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 38) (($ $ $) 37) (($ (-576) $) 38))) -(((-1141) (-13 (-557) (-856) (-113) (-673) (-840) (-10 -8 (-6 -4452) (-6 -4457) (-6 -4453) (-15 -2695 ($ $ $)) (-15 -3882 ($ $)) (-15 -3857 ($ $ $)) (-15 -3869 ($ $ $))))) (T -1141)) -((-2695 (*1 *1 *1 *1) (-5 *1 (-1141))) (-3882 (*1 *1 *1) (-5 *1 (-1141))) (-3857 (*1 *1 *1 *1) (-5 *1 (-1141))) (-3869 (*1 *1 *1 *1) (-5 *1 (-1141)))) -(-13 (-557) (-856) (-113) (-673) (-840) (-10 -8 (-6 -4452) (-6 -4457) (-6 -4453) (-15 -2695 ($ $ $)) (-15 -3882 ($ $)) (-15 -3857 ($ $ $)) (-15 -3869 ($ $ $)))) +((-3398 (((-656 (-1261 |#2| |#1|)) (-1261 |#2| |#1|) (-1261 |#2| |#1|)) 50)) (-3321 (((-576) (-1261 |#2| |#1|)) 94 (|has| |#1| (-464)))) (-2056 (((-576) (-1261 |#2| |#1|)) 76)) (-4075 (((-656 (-1261 |#2| |#1|)) (-1261 |#2| |#1|) (-1261 |#2| |#1|)) 58)) (-3304 (((-576) (-1261 |#2| |#1|) (-1261 |#2| |#1|)) 93 (|has| |#1| (-464)))) (-2397 (((-656 |#1|) (-1261 |#2| |#1|) (-1261 |#2| |#1|)) 61)) (-1486 (((-576) (-1261 |#2| |#1|) (-1261 |#2| |#1|)) 75))) +(((-1135 |#1| |#2|) (-10 -7 (-15 -3398 ((-656 (-1261 |#2| |#1|)) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -4075 ((-656 (-1261 |#2| |#1|)) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -2397 ((-656 |#1|) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -1486 ((-576) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -2056 ((-576) (-1261 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -3304 ((-576) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -3321 ((-576) (-1261 |#2| |#1|)))) |%noBranch|)) (-832) (-1197)) (T -1135)) +((-3321 (*1 *2 *3) (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-576)) (-5 *1 (-1135 *4 *5)))) (-3304 (*1 *2 *3 *3) (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-576)) (-5 *1 (-1135 *4 *5)))) (-2056 (*1 *2 *3) (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-576)) (-5 *1 (-1135 *4 *5)))) (-1486 (*1 *2 *3 *3) (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-576)) (-5 *1 (-1135 *4 *5)))) (-2397 (*1 *2 *3 *3) (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-656 *4)) (-5 *1 (-1135 *4 *5)))) (-4075 (*1 *2 *3 *3) (-12 (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-656 (-1261 *5 *4))) (-5 *1 (-1135 *4 *5)) (-5 *3 (-1261 *5 *4)))) (-3398 (*1 *2 *3 *3) (-12 (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-656 (-1261 *5 *4))) (-5 *1 (-1135 *4 *5)) (-5 *3 (-1261 *5 *4))))) +(-10 -7 (-15 -3398 ((-656 (-1261 |#2| |#1|)) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -4075 ((-656 (-1261 |#2| |#1|)) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -2397 ((-656 |#1|) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -1486 ((-576) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -2056 ((-576) (-1261 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -3304 ((-576) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -3321 ((-576) (-1261 |#2| |#1|)))) |%noBranch|)) +((-3488 (((-112) $ $) NIL)) (-4029 (($ (-518) (-1139)) 13)) (-2704 (((-1139) $) 19)) (-2628 (((-518) $) 16)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 26) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-1136) (-13 (-1104) (-10 -8 (-15 -4029 ($ (-518) (-1139))) (-15 -2628 ((-518) $)) (-15 -2704 ((-1139) $))))) (T -1136)) +((-4029 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1139)) (-5 *1 (-1136)))) (-2628 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1136)))) (-2704 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1136))))) +(-13 (-1104) (-10 -8 (-15 -4029 ($ (-518) (-1139))) (-15 -2628 ((-518) $)) (-15 -2704 ((-1139) $)))) +((-3906 (((-3 (-576) "failed") |#2| (-1197) |#2| (-1179)) 19) (((-3 (-576) "failed") |#2| (-1197) (-855 |#2|)) 17) (((-3 (-576) "failed") |#2|) 60))) +(((-1137 |#1| |#2|) (-10 -7 (-15 -3906 ((-3 (-576) "failed") |#2|)) (-15 -3906 ((-3 (-576) "failed") |#2| (-1197) (-855 |#2|))) (-15 -3906 ((-3 (-576) "failed") |#2| (-1197) |#2| (-1179)))) (-13 (-568) (-1059 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1223) (-442 |#1|))) (T -1137)) +((-3906 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-1179)) (-4 *6 (-13 (-568) (-1059 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1137 *6 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))))) (-3906 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-855 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-568) (-1059 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1137 *6 *3)))) (-3906 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-1059 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1137 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4)))))) +(-10 -7 (-15 -3906 ((-3 (-576) "failed") |#2|)) (-15 -3906 ((-3 (-576) "failed") |#2| (-1197) (-855 |#2|))) (-15 -3906 ((-3 (-576) "failed") |#2| (-1197) |#2| (-1179)))) +((-3906 (((-3 (-576) "failed") (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|)) (-1179)) 38) (((-3 (-576) "failed") (-419 (-971 |#1|)) (-1197) (-855 (-419 (-971 |#1|)))) 33) (((-3 (-576) "failed") (-419 (-971 |#1|))) 14))) +(((-1138 |#1|) (-10 -7 (-15 -3906 ((-3 (-576) "failed") (-419 (-971 |#1|)))) (-15 -3906 ((-3 (-576) "failed") (-419 (-971 |#1|)) (-1197) (-855 (-419 (-971 |#1|))))) (-15 -3906 ((-3 (-576) "failed") (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|)) (-1179)))) (-464)) (T -1138)) +((-3906 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-419 (-971 *6))) (-5 *4 (-1197)) (-5 *5 (-1179)) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1138 *6)))) (-3906 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-855 (-419 (-971 *6)))) (-5 *3 (-419 (-971 *6))) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1138 *6)))) (-3906 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-464)) (-5 *2 (-576)) (-5 *1 (-1138 *4))))) +(-10 -7 (-15 -3906 ((-3 (-576) "failed") (-419 (-971 |#1|)))) (-15 -3906 ((-3 (-576) "failed") (-419 (-971 |#1|)) (-1197) (-855 (-419 (-971 |#1|))))) (-15 -3906 ((-3 (-576) "failed") (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|)) (-1179)))) +((-3488 (((-112) $ $) NIL)) (-2983 (((-1202) $) 12)) (-2915 (((-656 (-1202)) $) 14)) (-2704 (($ (-656 (-1202)) (-1202)) 10)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 29)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 17))) +(((-1139) (-13 (-1121) (-10 -8 (-15 -2704 ($ (-656 (-1202)) (-1202))) (-15 -2983 ((-1202) $)) (-15 -2915 ((-656 (-1202)) $))))) (T -1139)) +((-2704 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1202))) (-5 *3 (-1202)) (-5 *1 (-1139)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-1202)) (-5 *1 (-1139)))) (-2915 (*1 *2 *1) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-1139))))) +(-13 (-1121) (-10 -8 (-15 -2704 ($ (-656 (-1202)) (-1202))) (-15 -2983 ((-1202) $)) (-15 -2915 ((-656 (-1202)) $)))) +((-1469 (((-326 (-576)) (-48)) 12))) +(((-1140) (-10 -7 (-15 -1469 ((-326 (-576)) (-48))))) (T -1140)) +((-1469 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-576))) (-5 *1 (-1140))))) +(-10 -7 (-15 -1469 ((-326 (-576)) (-48)))) +((-3488 (((-112) $ $) NIL)) (-3516 (($ $) 44)) (-3135 (((-112) $) 70)) (-2694 (($ $ $) 53)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 98)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-1775 (($ $ $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-1724 (($ $ $ $) 81)) (-3444 (($ $) NIL)) (-3760 (((-430 $) $) NIL)) (-3330 (((-112) $ $) NIL)) (-2098 (((-783)) 83)) (-3906 (((-576) $) NIL)) (-2743 (($ $ $) 78)) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL)) (-2859 (((-576) $) NIL)) (-3428 (($ $ $) 64)) (-3674 (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 92) (((-701 (-576)) (-701 $)) 32)) (-3673 (((-3 $ "failed") $) NIL)) (-2358 (((-3 (-419 (-576)) "failed") $) NIL)) (-2769 (((-112) $) NIL)) (-3025 (((-419 (-576)) $) NIL)) (-1836 (($) 95) (($ $) 96)) (-3440 (($ $ $) 63)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL)) (-3833 (((-112) $) NIL)) (-3495 (($ $ $ $) NIL)) (-3948 (($ $ $) 93)) (-1866 (((-112) $) NIL)) (-2199 (($ $ $) NIL)) (-3325 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL)) (-2685 (($ $ $) 52)) (-1351 (((-112) $) 72)) (-3376 (((-112) $) 69)) (-2663 (($ $) 45)) (-2734 (((-3 $ "failed") $) NIL)) (-3137 (((-112) $) 82)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2542 (($ $ $ $) 79)) (-3124 (($ $ $) 74) (($) 42 T CONST)) (-1441 (($ $ $) 73) (($) 41 T CONST)) (-2243 (($ $) NIL)) (-1558 (((-940) $) 88)) (-2435 (($ $) 77)) (-3676 (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2046 (((-1179) $) NIL)) (-3473 (($ $ $) NIL)) (-3539 (($) NIL T CONST)) (-3223 (($ (-940)) 87)) (-1373 (($ $) 57)) (-1450 (((-1141) $) 76)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3497 (($ $ $) 67) (($ (-656 $)) NIL)) (-4225 (($ $) NIL)) (-1828 (((-430 $) $) NIL)) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL)) (-3475 (((-3 $ "failed") $ $) NIL)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2768 (((-112) $) NIL)) (-1979 (((-783) $) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 66)) (-2774 (($ $) NIL) (($ $ (-783)) NIL)) (-1807 (($ $) 58)) (-1870 (($ $) NIL)) (-4171 (((-576) $) 17) (((-548) $) NIL) (((-907 (-576)) $) NIL) (((-390) $) NIL) (((-227) $) NIL)) (-3569 (((-876) $) 35) (($ (-576)) 94) (($ $) NIL) (($ (-576)) 94)) (-3154 (((-783)) NIL T CONST)) (-3479 (((-112) $ $) NIL)) (-3679 (($ $ $) NIL)) (-2399 (((-112) $ $) NIL)) (-3515 (($) 40)) (-1505 (((-112) $ $) NIL)) (-2674 (($ $ $) 50)) (-2474 (($ $ $ $) 80)) (-4143 (($ $) 68)) (-3562 (($ $ $) 47)) (-2721 (($) 7 T CONST)) (-3868 (($ $ $) 51)) (-2731 (($) 39 T CONST)) (-3160 (((-1179) $) 26) (((-1179) $ (-112)) 27) (((-1293) (-834) $) 28) (((-1293) (-834) $ (-112)) 29)) (-3881 (($ $) 48)) (-2020 (($ $) NIL) (($ $ (-783)) NIL)) (-3856 (($ $ $) 49)) (-2990 (((-112) $ $) 56)) (-2962 (((-112) $ $) 54)) (-2924 (((-112) $ $) 43)) (-2978 (((-112) $ $) 55)) (-2949 (((-112) $ $) 10)) (-3551 (($ $ $) 46)) (-3043 (($ $) 16) (($ $ $) 60)) (-3029 (($ $ $) 59)) (** (($ $ (-940)) NIL) (($ $ (-783)) 62)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 38) (($ $ $) 37) (($ (-576) $) 38))) +(((-1141) (-13 (-557) (-856) (-113) (-673) (-840) (-10 -8 (-6 -4451) (-6 -4456) (-6 -4452) (-15 -2694 ($ $ $)) (-15 -3881 ($ $)) (-15 -3856 ($ $ $)) (-15 -3868 ($ $ $))))) (T -1141)) +((-2694 (*1 *1 *1 *1) (-5 *1 (-1141))) (-3881 (*1 *1 *1) (-5 *1 (-1141))) (-3856 (*1 *1 *1 *1) (-5 *1 (-1141))) (-3868 (*1 *1 *1 *1) (-5 *1 (-1141)))) +(-13 (-557) (-856) (-113) (-673) (-840) (-10 -8 (-6 -4451) (-6 -4456) (-6 -4452) (-15 -2694 ($ $ $)) (-15 -3881 ($ $)) (-15 -3856 ($ $ $)) (-15 -3868 ($ $ $)))) ((|Integer|) (SMINTP |#1|)) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1419 ((|#1| $) 45)) (-1808 (((-112) $ (-783)) 8)) (-3886 (($) 7 T CONST)) (-3659 ((|#1| |#1| $) 47)) (-3469 ((|#1| $) 46)) (-3966 (((-656 |#1|) $) 31 (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) 9)) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-4323 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 36)) (-1330 (((-112) $ (-783)) 10)) (-3699 (((-1179) $) 23 (|has| |#1| (-1121)))) (-1597 ((|#1| $) 40)) (-1901 (($ |#1| $) 41)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3449 ((|#1| $) 42)) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-1888 (((-783) $) 44)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 13)) (-3570 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3943 (($ (-656 |#1|)) 43)) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1419 ((|#1| $) 45)) (-4264 (((-112) $ (-783)) 8)) (-3404 (($) 7 T CONST)) (-2944 ((|#1| |#1| $) 47)) (-1718 ((|#1| $) 46)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) 9)) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4326 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-2883 (((-112) $ (-783)) 10)) (-2046 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2722 ((|#1| $) 40)) (-2597 (($ |#1| $) 41)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-1541 ((|#1| $) 42)) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-1887 (((-783) $) 44)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3972 (($ (-656 |#1|)) 43)) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-1142 |#1|) (-141) (-1238)) (T -1142)) -((-3659 (*1 *2 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238)))) (-3469 (*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238)))) (-1419 (*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238)))) (-1888 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1238)) (-5 *2 (-783))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4465) (-15 -3659 (|t#1| |t#1| $)) (-15 -3469 (|t#1| $)) (-15 -1419 (|t#1| $)) (-15 -1888 ((-783) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2760 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2760 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-2210 ((|#3| $) 87)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2860 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#3| $) 47)) (-2204 (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-2 (|:| -2590 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 $) (-1288 $)) 84) (((-701 |#3|) (-701 $)) 76)) (-2775 (($ $ (-1 |#3| |#3|) (-783)) NIL) (($ $ (-1 |#3| |#3|)) 28) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-3367 ((|#3| $) 89)) (-2625 ((|#4| $) 43)) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#3|) 25)) (** (($ $ (-940)) NIL) (($ $ (-783)) 24) (($ $ (-576)) 95))) -(((-1143 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2775 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2775 (|#1| |#1| (-1197) (-783))) (-15 -2775 (|#1| |#1| (-656 (-1197)))) (-15 -2775 (|#1| |#1| (-1197))) (-15 -2775 (|#1| |#1| (-783))) (-15 -2775 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3367 (|#3| |#1|)) (-15 -2210 (|#3| |#1|)) (-15 -2625 (|#4| |#1|)) (-15 -2204 ((-701 |#3|) (-701 |#1|))) (-15 -2204 ((-2 (|:| -2590 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 |#1|) (-1288 |#1|))) (-15 -2204 ((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -2204 ((-701 (-576)) (-701 |#1|))) (-15 -3570 (|#1| |#3|)) (-15 -1572 ((-3 |#3| "failed") |#1|)) (-15 -2860 (|#3| |#1|)) (-15 -2860 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3570 (|#1| (-419 (-576)))) (-15 -2860 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2775 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2775 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -3570 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940))) (-15 -3570 ((-876) |#1|))) (-1144 |#2| |#3| |#4| |#5|) (-783) (-1070) (-243 |#2| |#3|) (-243 |#2| |#3|)) (T -1143)) -NIL -(-10 -8 (-15 -2775 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2775 (|#1| |#1| (-1197) (-783))) (-15 -2775 (|#1| |#1| (-656 (-1197)))) (-15 -2775 (|#1| |#1| (-1197))) (-15 -2775 (|#1| |#1| (-783))) (-15 -2775 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3367 (|#3| |#1|)) (-15 -2210 (|#3| |#1|)) (-15 -2625 (|#4| |#1|)) (-15 -2204 ((-701 |#3|) (-701 |#1|))) (-15 -2204 ((-2 (|:| -2590 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 |#1|) (-1288 |#1|))) (-15 -2204 ((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -2204 ((-701 (-576)) (-701 |#1|))) (-15 -3570 (|#1| |#3|)) (-15 -1572 ((-3 |#3| "failed") |#1|)) (-15 -2860 (|#3| |#1|)) (-15 -2860 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3570 (|#1| (-419 (-576)))) (-15 -2860 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2775 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2775 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -3570 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940))) (-15 -3570 ((-876) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2210 ((|#2| $) 80)) (-2283 (((-112) $) 124)) (-4367 (((-3 $ "failed") $ $) 20)) (-3240 (((-112) $) 122)) (-1808 (((-112) $ (-783)) 114)) (-1787 (($ |#2|) 83)) (-3886 (($) 18 T CONST)) (-2030 (($ $) 141 (|has| |#2| (-317)))) (-4093 ((|#3| $ (-576)) 136)) (-1572 (((-3 (-576) "failed") $) 99 (|has| |#2| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 96 (|has| |#2| (-1059 (-419 (-576))))) (((-3 |#2| "failed") $) 93)) (-2860 (((-576) $) 98 (|has| |#2| (-1059 (-576)))) (((-419 (-576)) $) 95 (|has| |#2| (-1059 (-419 (-576))))) ((|#2| $) 94)) (-2204 (((-701 (-576)) (-701 $)) 89 (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 88 (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) 87) (((-701 |#2|) (-701 $)) 86)) (-1561 (((-3 $ "failed") $) 37)) (-3734 (((-783) $) 142 (|has| |#2| (-568)))) (-4274 ((|#2| $ (-576) (-576)) 134)) (-3966 (((-656 |#2|) $) 107 (|has| $ (-6 -4465)))) (-4193 (((-112) $) 35)) (-1394 (((-783) $) 143 (|has| |#2| (-568)))) (-2196 (((-656 |#4|) $) 144 (|has| |#2| (-568)))) (-1689 (((-783) $) 130)) (-1699 (((-783) $) 131)) (-3870 (((-112) $ (-783)) 115)) (-2471 ((|#2| $) 75 (|has| |#2| (-6 (-4467 "*"))))) (-4267 (((-576) $) 126)) (-1952 (((-576) $) 128)) (-2014 (((-656 |#2|) $) 106 (|has| $ (-6 -4465)))) (-1612 (((-112) |#2| $) 104 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4465))))) (-3900 (((-576) $) 127)) (-2569 (((-576) $) 129)) (-2467 (($ (-656 (-656 |#2|))) 121)) (-4323 (($ (-1 |#2| |#2|) $) 111 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#2| |#2| |#2|) $ $) 138) (($ (-1 |#2| |#2|) $) 112)) (-1907 (((-656 (-656 |#2|)) $) 132)) (-1330 (((-112) $ (-783)) 116)) (-3913 (((-701 (-576)) (-1288 $)) 91 (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 90 (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) 85) (((-701 |#2|) (-1288 $)) 84)) (-3699 (((-1179) $) 10)) (-2807 (((-3 $ "failed") $) 74 (|has| |#2| (-374)))) (-1450 (((-1141) $) 11)) (-3476 (((-3 $ "failed") $ |#2|) 139 (|has| |#2| (-568)))) (-4320 (((-112) (-1 (-112) |#2|) $) 109 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#2|))) 103 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) 102 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) 101 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) 100 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-4040 (((-112) $ $) 120)) (-3973 (((-112) $) 117)) (-4225 (($) 118)) (-2797 ((|#2| $ (-576) (-576) |#2|) 135) ((|#2| $ (-576) (-576)) 133)) (-2775 (($ $ (-1 |#2| |#2|) (-783)) 57) (($ $ (-1 |#2| |#2|)) 56) (($ $) 47 (|has| |#2| (-237))) (($ $ (-783)) 45 (|has| |#2| (-237))) (($ $ (-1197)) 55 (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) 53 (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) 52 (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 51 (|has| |#2| (-919 (-1197))))) (-3367 ((|#2| $) 79)) (-2784 (($ (-656 |#2|)) 82)) (-4002 (((-112) $) 123)) (-2625 ((|#3| $) 81)) (-4223 ((|#2| $) 76 (|has| |#2| (-6 (-4467 "*"))))) (-1460 (((-783) (-1 (-112) |#2|) $) 108 (|has| $ (-6 -4465))) (((-783) |#2| $) 105 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 119)) (-2129 ((|#4| $ (-576)) 137)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 97 (|has| |#2| (-1059 (-419 (-576))))) (($ |#2|) 92)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-3321 (((-112) (-1 (-112) |#2|) $) 110 (|has| $ (-6 -4465)))) (-3830 (((-112) $) 125)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2020 (($ $ (-1 |#2| |#2|) (-783)) 59) (($ $ (-1 |#2| |#2|)) 58) (($ $) 46 (|has| |#2| (-237))) (($ $ (-783)) 44 (|has| |#2| (-237))) (($ $ (-1197)) 54 (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) 50 (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) 49 (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 48 (|has| |#2| (-919 (-1197))))) (-2925 (((-112) $ $) 8)) (-3057 (($ $ |#2|) 140 (|has| |#2| (-374)))) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 73 (|has| |#2| (-374)))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#2|) 146) (($ |#2| $) 145) ((|#4| $ |#4|) 78) ((|#3| |#3| $) 77)) (-3503 (((-783) $) 113 (|has| $ (-6 -4465))))) +((-2944 (*1 *2 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238)))) (-1718 (*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238)))) (-1419 (*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238)))) (-1887 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1238)) (-5 *2 (-783))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4464) (-15 -2944 (|t#1| |t#1| $)) (-15 -1718 (|t#1| $)) (-15 -1419 (|t#1| $)) (-15 -1887 ((-783) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2759 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2759 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-2210 ((|#3| $) 87)) (-1572 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2859 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#3| $) 47)) (-3674 (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-2 (|:| -3232 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 $) (-1288 $)) 84) (((-701 |#3|) (-701 $)) 76)) (-2774 (($ $ (-1 |#3| |#3|) (-783)) NIL) (($ $ (-1 |#3| |#3|)) 28) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-3216 ((|#3| $) 89)) (-2279 ((|#4| $) 43)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#3|) 25)) (** (($ $ (-940)) NIL) (($ $ (-783)) 24) (($ $ (-576)) 95))) +(((-1143 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2774 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2774 (|#1| |#1| (-1197) (-783))) (-15 -2774 (|#1| |#1| (-656 (-1197)))) (-15 -2774 (|#1| |#1| (-1197))) (-15 -2774 (|#1| |#1| (-783))) (-15 -2774 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3216 (|#3| |#1|)) (-15 -2210 (|#3| |#1|)) (-15 -2279 (|#4| |#1|)) (-15 -3674 ((-701 |#3|) (-701 |#1|))) (-15 -3674 ((-2 (|:| -3232 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 |#1|) (-1288 |#1|))) (-15 -3674 ((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -3674 ((-701 (-576)) (-701 |#1|))) (-15 -3569 (|#1| |#3|)) (-15 -1572 ((-3 |#3| "failed") |#1|)) (-15 -2859 (|#3| |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2774 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2774 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -3569 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940))) (-15 -3569 ((-876) |#1|))) (-1144 |#2| |#3| |#4| |#5|) (-783) (-1070) (-243 |#2| |#3|) (-243 |#2| |#3|)) (T -1143)) +NIL +(-10 -8 (-15 -2774 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2774 (|#1| |#1| (-1197) (-783))) (-15 -2774 (|#1| |#1| (-656 (-1197)))) (-15 -2774 (|#1| |#1| (-1197))) (-15 -2774 (|#1| |#1| (-783))) (-15 -2774 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3216 (|#3| |#1|)) (-15 -2210 (|#3| |#1|)) (-15 -2279 (|#4| |#1|)) (-15 -3674 ((-701 |#3|) (-701 |#1|))) (-15 -3674 ((-2 (|:| -3232 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 |#1|) (-1288 |#1|))) (-15 -3674 ((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -3674 ((-701 (-576)) (-701 |#1|))) (-15 -3569 (|#1| |#3|)) (-15 -1572 ((-3 |#3| "failed") |#1|)) (-15 -2859 (|#3| |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2774 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2774 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -3569 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940))) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2210 ((|#2| $) 80)) (-3226 (((-112) $) 124)) (-2428 (((-3 $ "failed") $ $) 20)) (-4434 (((-112) $) 122)) (-4264 (((-112) $ (-783)) 114)) (-4083 (($ |#2|) 83)) (-3404 (($) 18 T CONST)) (-2548 (($ $) 141 (|has| |#2| (-317)))) (-1575 ((|#3| $ (-576)) 136)) (-1572 (((-3 (-576) "failed") $) 99 (|has| |#2| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 96 (|has| |#2| (-1059 (-419 (-576))))) (((-3 |#2| "failed") $) 93)) (-2859 (((-576) $) 98 (|has| |#2| (-1059 (-576)))) (((-419 (-576)) $) 95 (|has| |#2| (-1059 (-419 (-576))))) ((|#2| $) 94)) (-3674 (((-701 (-576)) (-701 $)) 89 (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 88 (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) 87) (((-701 |#2|) (-701 $)) 86)) (-3673 (((-3 $ "failed") $) 37)) (-3733 (((-783) $) 142 (|has| |#2| (-568)))) (-4272 ((|#2| $ (-576) (-576)) 134)) (-3965 (((-656 |#2|) $) 107 (|has| $ (-6 -4464)))) (-1351 (((-112) $) 35)) (-1768 (((-783) $) 143 (|has| |#2| (-568)))) (-3595 (((-656 |#4|) $) 144 (|has| |#2| (-568)))) (-1689 (((-783) $) 130)) (-1699 (((-783) $) 131)) (-1368 (((-112) $ (-783)) 115)) (-1381 ((|#2| $) 75 (|has| |#2| (-6 (-4466 "*"))))) (-4017 (((-576) $) 126)) (-3144 (((-576) $) 128)) (-2425 (((-656 |#2|) $) 106 (|has| $ (-6 -4464)))) (-2885 (((-112) |#2| $) 104 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464))))) (-3550 (((-576) $) 127)) (-3037 (((-576) $) 129)) (-2466 (($ (-656 (-656 |#2|))) 121)) (-4326 (($ (-1 |#2| |#2|) $) 111 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#2| |#2| |#2|) $ $) 138) (($ (-1 |#2| |#2|) $) 112)) (-2650 (((-656 (-656 |#2|)) $) 132)) (-2883 (((-112) $ (-783)) 116)) (-3676 (((-701 (-576)) (-1288 $)) 91 (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 90 (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) 85) (((-701 |#2|) (-1288 $)) 84)) (-2046 (((-1179) $) 10)) (-3375 (((-3 $ "failed") $) 74 (|has| |#2| (-374)))) (-1450 (((-1141) $) 11)) (-3475 (((-3 $ "failed") $ |#2|) 139 (|has| |#2| (-568)))) (-3252 (((-112) (-1 (-112) |#2|) $) 109 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#2|))) 103 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) 102 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) 101 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) 100 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-2252 (((-112) $ $) 120)) (-2940 (((-112) $) 117)) (-3579 (($) 118)) (-2796 ((|#2| $ (-576) (-576) |#2|) 135) ((|#2| $ (-576) (-576)) 133)) (-2774 (($ $ (-1 |#2| |#2|) (-783)) 57) (($ $ (-1 |#2| |#2|)) 56) (($ $) 47 (|has| |#2| (-237))) (($ $ (-783)) 45 (|has| |#2| (-237))) (($ $ (-1197)) 55 (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) 53 (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) 52 (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 51 (|has| |#2| (-919 (-1197))))) (-3216 ((|#2| $) 79)) (-4406 (($ (-656 |#2|)) 82)) (-3218 (((-112) $) 123)) (-2279 ((|#3| $) 81)) (-3556 ((|#2| $) 76 (|has| |#2| (-6 (-4466 "*"))))) (-1460 (((-783) (-1 (-112) |#2|) $) 108 (|has| $ (-6 -4464))) (((-783) |#2| $) 105 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 119)) (-4203 ((|#4| $ (-576)) 137)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 97 (|has| |#2| (-1059 (-419 (-576))))) (($ |#2|) 92)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-2708 (((-112) (-1 (-112) |#2|) $) 110 (|has| $ (-6 -4464)))) (-4155 (((-112) $) 125)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2020 (($ $ (-1 |#2| |#2|) (-783)) 59) (($ $ (-1 |#2| |#2|)) 58) (($ $) 46 (|has| |#2| (-237))) (($ $ (-783)) 44 (|has| |#2| (-237))) (($ $ (-1197)) 54 (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) 50 (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) 49 (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 48 (|has| |#2| (-919 (-1197))))) (-2924 (((-112) $ $) 8)) (-3056 (($ $ |#2|) 140 (|has| |#2| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 73 (|has| |#2| (-374)))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#2|) 146) (($ |#2| $) 145) ((|#4| $ |#4|) 78) ((|#3| |#3| $) 77)) (-3502 (((-783) $) 113 (|has| $ (-6 -4464))))) (((-1144 |#1| |#2| |#3| |#4|) (-141) (-783) (-1070) (-243 |t#1| |t#2|) (-243 |t#1| |t#2|)) (T -1144)) -((-1787 (*1 *1 *2) (-12 (-4 *2 (-1070)) (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)))) (-2784 (*1 *1 *2) (-12 (-5 *2 (-656 *4)) (-4 *4 (-1070)) (-4 *1 (-1144 *3 *4 *5 *6)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)))) (-2625 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *4 *2 *5)) (-4 *4 (-1070)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (-2210 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1070)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1070)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1144 *3 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1144 *3 *4 *2 *5)) (-4 *4 (-1070)) (-4 *2 (-243 *3 *4)) (-4 *5 (-243 *3 *4)))) (-4223 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4467 "*"))) (-4 *2 (-1070)))) (-2471 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4467 "*"))) (-4 *2 (-1070)))) (-2807 (*1 *1 *1) (|partial| -12 (-4 *1 (-1144 *2 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-374)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1144 *3 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)) (-4 *4 (-374))))) -(-13 (-232 |t#2|) (-111 |t#2| |t#2|) (-1074 |t#1| |t#1| |t#2| |t#3| |t#4|) (-423 |t#2|) (-388 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-729 |t#2|)) |%noBranch|) (-15 -1787 ($ |t#2|)) (-15 -2784 ($ (-656 |t#2|))) (-15 -2625 (|t#3| $)) (-15 -2210 (|t#2| $)) (-15 -3367 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4467 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -4223 (|t#2| $)) (-15 -2471 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-374)) (PROGN (-15 -2807 ((-3 $ "failed") $)) (-15 ** ($ $ (-576)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4467 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#2| (-1059 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#2|) . T) ((-625 (-876)) . T) ((-234 $) -2760 (|has| |#2| (-237)) (|has| |#2| (-238))) ((-232 |#2|) . T) ((-238) |has| |#2| (-238)) ((-237) -2760 (|has| |#2| (-237)) (|has| |#2| (-238))) ((-272 |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-388 |#2|) . T) ((-423 |#2|) . T) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 #1=(-576)) |has| |#2| (-651 (-576))) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) -2760 (|has| |#2| (-174)) (|has| |#2| (-6 (-4467 "*")))) ((-651 #1#) |has| |#2| (-651 (-576))) ((-651 |#2|) . T) ((-729 |#2|) -2760 (|has| |#2| (-174)) (|has| |#2| (-6 (-4467 "*")))) ((-738) . T) ((-911 $ #2=(-1197)) -2760 (|has| |#2| (-919 (-1197))) (|has| |#2| (-917 (-1197)))) ((-917 (-1197)) |has| |#2| (-917 (-1197))) ((-919 #2#) -2760 (|has| |#2| (-919 (-1197))) (|has| |#2| (-917 (-1197)))) ((-1074 |#1| |#1| |#2| |#3| |#4|) . T) ((-1059 #0#) |has| |#2| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#2| (-1059 (-576))) ((-1059 |#2|) . T) ((-1072 |#2|) . T) ((-1077 |#2|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-1594 ((|#4| |#4|) 81)) (-3218 ((|#4| |#4|) 76)) (-1400 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1593 (-656 |#3|))) |#4| |#3|) 91)) (-3254 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-2861 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) -(((-1145 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3218 (|#4| |#4|)) (-15 -2861 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1594 (|#4| |#4|)) (-15 -3254 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1400 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1593 (-656 |#3|))) |#4| |#3|))) (-317) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -1145)) -((-1400 (*1 *2 *3 *4) (-12 (-4 *5 (-317)) (-4 *6 (-384 *5)) (-4 *4 (-384 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1593 (-656 *4)))) (-5 *1 (-1145 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-3254 (*1 *2 *3) (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1145 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-1594 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1145 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-2861 (*1 *2 *3) (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1145 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3218 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1145 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(-10 -7 (-15 -3218 (|#4| |#4|)) (-15 -2861 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1594 (|#4| |#4|)) (-15 -3254 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1400 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1593 (-656 |#3|))) |#4| |#3|))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 18)) (-1969 (((-656 |#2|) $) 174)) (-1798 (((-1193 $) $ |#2|) 60) (((-1193 |#1|) $) 49)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 116 (|has| |#1| (-568)))) (-2757 (($ $) 118 (|has| |#1| (-568)))) (-3788 (((-112) $) 120 (|has| |#1| (-568)))) (-3543 (((-783) $) NIL) (((-783) $ (-656 |#2|)) 213)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3601 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2487 (($ $) NIL (|has| |#1| (-464)))) (-3921 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) 167) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 |#2| "failed") $) NIL)) (-2860 ((|#1| $) 165) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) ((|#2| $) NIL)) (-3230 (($ $ $ |#2|) NIL (|has| |#1| (-174)))) (-2114 (($ $) 217)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-1561 (((-3 $ "failed") $) 90)) (-3767 (($ $) NIL (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-2103 (((-656 $) $) NIL)) (-4249 (((-112) $) NIL (|has| |#1| (-928)))) (-2431 (($ $ |#1| (-543 |#2|) $) NIL)) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| |#1| (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| |#1| (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-4193 (((-112) $) 20)) (-2217 (((-783) $) 30)) (-1955 (($ (-1193 |#1|) |#2|) 54) (($ (-1193 $) |#2|) 71)) (-1608 (((-656 $) $) NIL)) (-2823 (((-112) $) 38)) (-1945 (($ |#1| (-543 |#2|)) 78) (($ $ |#2| (-783)) 58) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-4130 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $ |#2|) NIL)) (-3751 (((-543 |#2|) $) 205) (((-783) $ |#2|) 206) (((-656 (-783)) $ (-656 |#2|)) 207)) (-2999 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL)) (-4117 (($ (-1 |#1| |#1|) $) 128)) (-3721 (((-3 |#2| "failed") $) 177)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2081 (($ $) 216)) (-2091 ((|#1| $) 43)) (-3458 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3699 (((-1179) $) NIL)) (-1385 (((-3 (-656 $) "failed") $) NIL)) (-1690 (((-3 (-656 $) "failed") $) NIL)) (-2040 (((-3 (-2 (|:| |var| |#2|) (|:| -3422 (-783))) "failed") $) NIL)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) 39)) (-2070 ((|#1| $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 148 (|has| |#1| (-464)))) (-3498 (($ (-656 $)) 153 (|has| |#1| (-464))) (($ $ $) 138 (|has| |#1| (-464)))) (-4100 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-928)))) (-3476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-568)))) (-3284 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-656 |#2|) (-656 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-656 |#2|) (-656 $)) 194)) (-4352 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-2775 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) 215)) (-3634 (((-543 |#2|) $) 201) (((-783) $ |#2|) 196) (((-656 (-783)) $ (-656 |#2|)) 199)) (-4172 (((-907 (-390)) $) NIL (-12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-2457 ((|#1| $) 134 (|has| |#1| (-464))) (($ $ |#2|) 137 (|has| |#1| (-464)))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-3570 (((-876) $) 159) (($ (-576)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (-2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-1618 (((-656 |#1|) $) 162)) (-3177 ((|#1| $ (-543 |#2|)) 80) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-4336 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3996 (((-783)) 87 T CONST)) (-2541 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) 123 (|has| |#1| (-568)))) (-2721 (($) 12 T CONST)) (-2732 (($) 14 T CONST)) (-2020 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-2925 (((-112) $ $) 106)) (-3057 (($ $ |#1|) 132 (|has| |#1| (-374)))) (-3044 (($ $) 93) (($ $ $) 104)) (-3030 (($ $ $) 55)) (** (($ $ (-940)) 110) (($ $ (-783)) 109)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 96) (($ $ $) 72) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 99) (($ $ |#1|) NIL))) +((-4083 (*1 *1 *2) (-12 (-4 *2 (-1070)) (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)))) (-4406 (*1 *1 *2) (-12 (-5 *2 (-656 *4)) (-4 *4 (-1070)) (-4 *1 (-1144 *3 *4 *5 *6)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)))) (-2279 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *4 *2 *5)) (-4 *4 (-1070)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (-2210 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1070)))) (-3216 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1070)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1144 *3 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1144 *3 *4 *2 *5)) (-4 *4 (-1070)) (-4 *2 (-243 *3 *4)) (-4 *5 (-243 *3 *4)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4466 "*"))) (-4 *2 (-1070)))) (-1381 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4466 "*"))) (-4 *2 (-1070)))) (-3375 (*1 *1 *1) (|partial| -12 (-4 *1 (-1144 *2 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-374)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1144 *3 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)) (-4 *4 (-374))))) +(-13 (-232 |t#2|) (-111 |t#2| |t#2|) (-1074 |t#1| |t#1| |t#2| |t#3| |t#4|) (-423 |t#2|) (-388 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-729 |t#2|)) |%noBranch|) (-15 -4083 ($ |t#2|)) (-15 -4406 ($ (-656 |t#2|))) (-15 -2279 (|t#3| $)) (-15 -2210 (|t#2| $)) (-15 -3216 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4466 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3556 (|t#2| $)) (-15 -1381 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-374)) (PROGN (-15 -3375 ((-3 $ "failed") $)) (-15 ** ($ $ (-576)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4466 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#2| (-1059 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#2|) . T) ((-625 (-876)) . T) ((-234 $) -2759 (|has| |#2| (-237)) (|has| |#2| (-238))) ((-232 |#2|) . T) ((-238) |has| |#2| (-238)) ((-237) -2759 (|has| |#2| (-237)) (|has| |#2| (-238))) ((-272 |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-388 |#2|) . T) ((-423 |#2|) . T) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 #1=(-576)) |has| |#2| (-651 (-576))) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) -2759 (|has| |#2| (-174)) (|has| |#2| (-6 (-4466 "*")))) ((-651 #1#) |has| |#2| (-651 (-576))) ((-651 |#2|) . T) ((-729 |#2|) -2759 (|has| |#2| (-174)) (|has| |#2| (-6 (-4466 "*")))) ((-738) . T) ((-911 $ #2=(-1197)) -2759 (|has| |#2| (-919 (-1197))) (|has| |#2| (-917 (-1197)))) ((-917 (-1197)) |has| |#2| (-917 (-1197))) ((-919 #2#) -2759 (|has| |#2| (-919 (-1197))) (|has| |#2| (-917 (-1197)))) ((-1074 |#1| |#1| |#2| |#3| |#4|) . T) ((-1059 #0#) |has| |#2| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#2| (-1059 (-576))) ((-1059 |#2|) . T) ((-1072 |#2|) . T) ((-1077 |#2|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-2686 ((|#4| |#4|) 81)) (-4221 ((|#4| |#4|) 76)) (-2897 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2675 (-656 |#3|))) |#4| |#3|) 91)) (-3342 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-3918 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) +(((-1145 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4221 (|#4| |#4|)) (-15 -3918 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2686 (|#4| |#4|)) (-15 -3342 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2897 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2675 (-656 |#3|))) |#4| |#3|))) (-317) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -1145)) +((-2897 (*1 *2 *3 *4) (-12 (-4 *5 (-317)) (-4 *6 (-384 *5)) (-4 *4 (-384 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2675 (-656 *4)))) (-5 *1 (-1145 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-3342 (*1 *2 *3) (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1145 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-2686 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1145 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3918 (*1 *2 *3) (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1145 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-4221 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1145 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) +(-10 -7 (-15 -4221 (|#4| |#4|)) (-15 -3918 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2686 (|#4| |#4|)) (-15 -3342 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2897 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2675 (-656 |#3|))) |#4| |#3|))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 18)) (-1969 (((-656 |#2|) $) 174)) (-1797 (((-1193 $) $ |#2|) 60) (((-1193 |#1|) $) 49)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 116 (|has| |#1| (-568)))) (-4195 (($ $) 118 (|has| |#1| (-568)))) (-1760 (((-112) $) 120 (|has| |#1| (-568)))) (-4329 (((-783) $) NIL) (((-783) $ (-656 |#2|)) 213)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3646 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3444 (($ $) NIL (|has| |#1| (-464)))) (-3760 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) 167) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 |#2| "failed") $) NIL)) (-2859 ((|#1| $) 165) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) ((|#2| $) NIL)) (-4334 (($ $ $ |#2|) NIL (|has| |#1| (-174)))) (-2114 (($ $) 217)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3673 (((-3 $ "failed") $) 90)) (-1547 (($ $) NIL (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-2103 (((-656 $) $) NIL)) (-3833 (((-112) $) NIL (|has| |#1| (-928)))) (-4124 (($ $ |#1| (-543 |#2|) $) NIL)) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| |#1| (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| |#1| (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-1351 (((-112) $) 20)) (-3799 (((-783) $) 30)) (-1956 (($ (-1193 |#1|) |#2|) 54) (($ (-1193 $) |#2|) 71)) (-2846 (((-656 $) $) NIL)) (-3538 (((-112) $) 38)) (-1944 (($ |#1| (-543 |#2|)) 78) (($ $ |#2| (-783)) 58) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-1915 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $ |#2|) NIL)) (-2578 (((-543 |#2|) $) 205) (((-783) $ |#2|) 206) (((-656 (-783)) $ (-656 |#2|)) 207)) (-3878 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) 128)) (-2289 (((-3 |#2| "failed") $) 177)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2081 (($ $) 216)) (-2091 ((|#1| $) 43)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2046 (((-1179) $) NIL)) (-3845 (((-3 (-656 $) "failed") $) NIL)) (-2363 (((-3 (-656 $) "failed") $) NIL)) (-1452 (((-3 (-2 (|:| |var| |#2|) (|:| -2508 (-783))) "failed") $) NIL)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) 39)) (-2070 ((|#1| $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 148 (|has| |#1| (-464)))) (-3497 (($ (-656 $)) 153 (|has| |#1| (-464))) (($ $ $) 138 (|has| |#1| (-464)))) (-1644 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-928)))) (-3475 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-568)))) (-3282 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-656 |#2|) (-656 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-656 |#2|) (-656 $)) 194)) (-2269 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-2774 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) 215)) (-2683 (((-543 |#2|) $) 201) (((-783) $ |#2|) 196) (((-656 (-783)) $ (-656 |#2|)) 199)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-4370 ((|#1| $) 134 (|has| |#1| (-464))) (($ $ |#2|) 137 (|has| |#1| (-464)))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-3569 (((-876) $) 159) (($ (-576)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (-2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-2937 (((-656 |#1|) $) 162)) (-1822 ((|#1| $ (-543 |#2|)) 80) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-3390 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3154 (((-783)) 87 T CONST)) (-2717 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) 123 (|has| |#1| (-568)))) (-2721 (($) 12 T CONST)) (-2731 (($) 14 T CONST)) (-2020 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-2924 (((-112) $ $) 106)) (-3056 (($ $ |#1|) 132 (|has| |#1| (-374)))) (-3043 (($ $) 93) (($ $ $) 104)) (-3029 (($ $ $) 55)) (** (($ $ (-940)) 110) (($ $ (-783)) 109)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 96) (($ $ $) 72) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 99) (($ $ |#1|) NIL))) (((-1146 |#1| |#2|) (-968 |#1| (-543 |#2|) |#2|) (-1070) (-861)) (T -1146)) NIL (-968 |#1| (-543 |#2|) |#2|) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-1969 (((-656 |#2|) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2757 (($ $) NIL (|has| |#1| (-568)))) (-3788 (((-112) $) NIL (|has| |#1| (-568)))) (-4025 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3901 (($ $) 128 (|has| |#1| (-38 (-419 (-576)))))) (-4367 (((-3 $ "failed") $ $) NIL)) (-1839 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4006 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3877 (($ $) 124 (|has| |#1| (-38 (-419 (-576)))))) (-4050 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-2383 (((-971 |#1|) $ (-783)) NIL) (((-971 |#1|) $ (-783) (-783)) NIL)) (-1424 (((-112) $) NIL)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3917 (((-783) $ |#2|) NIL) (((-783) $ |#2| (-783)) NIL)) (-4193 (((-112) $) NIL)) (-2121 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2823 (((-112) $) NIL)) (-1945 (($ $ (-656 |#2|) (-656 (-543 |#2|))) NIL) (($ $ |#2| (-543 |#2|)) NIL) (($ |#1| (-543 |#2|)) NIL) (($ $ |#2| (-783)) 63) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-3745 (($ $) 122 (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-3699 (((-1179) $) NIL)) (-1491 (($ $ |#2|) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-419 (-576)))))) (-1450 (((-1141) $) NIL)) (-2384 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-419 (-576)))))) (-1749 (($ $ (-783)) 16)) (-3476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4104 (($ $) 120 (|has| |#1| (-38 (-419 (-576)))))) (-3284 (($ $ |#2| $) 106) (($ $ (-656 |#2|) (-656 $)) 99) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL)) (-2775 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) 109)) (-3634 (((-543 |#2|) $) NIL)) (-2394 (((-1 (-1178 |#3|) |#3|) (-656 |#2|) (-656 (-1178 |#3|))) 87)) (-4061 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3930 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-4037 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) 130 (|has| |#1| (-38 (-419 (-576)))))) (-4014 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3889 (($ $) 126 (|has| |#1| (-38 (-419 (-576)))))) (-3126 (($ $) 18)) (-3570 (((-876) $) 198) (($ (-576)) NIL) (($ |#1|) 45 (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#2|) 70) (($ |#3|) 68)) (-3177 ((|#1| $ (-543 |#2|)) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|) (-656 (-783))) NIL) ((|#3| $ (-783)) 43)) (-4336 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-2791 (($ $) 164 (|has| |#1| (-38 (-419 (-576)))))) (-3961 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-2672 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4071 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2815 (($ $) 168 (|has| |#1| (-38 (-419 (-576)))))) (-3983 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-4388 (($ $) 170 (|has| |#1| (-38 (-419 (-576)))))) (-3995 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-2803 (($ $) 166 (|has| |#1| (-38 (-419 (-576)))))) (-3974 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4083 (($ $) 162 (|has| |#1| (-38 (-419 (-576)))))) (-3951 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) 52 T CONST)) (-2732 (($) 62 T CONST)) (-2020 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ |#1|) 200 (|has| |#1| (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) 66)) (** (($ $ (-940)) NIL) (($ $ (-783)) 77) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 112 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 65) (($ $ (-419 (-576))) 117 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 115 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) -(((-1147 |#1| |#2| |#3|) (-13 (-752 |#1| |#2|) (-10 -8 (-15 -3177 (|#3| $ (-783))) (-15 -3570 ($ |#2|)) (-15 -3570 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2394 ((-1 (-1178 |#3|) |#3|) (-656 |#2|) (-656 (-1178 |#3|)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1491 ($ $ |#2| |#1|)) (-15 -2384 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1070) (-861) (-968 |#1| (-543 |#2|) |#2|)) (T -1147)) -((-3177 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *2 (-968 *4 (-543 *5) *5)) (-5 *1 (-1147 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-861)))) (-3570 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-4 *2 (-861)) (-5 *1 (-1147 *3 *2 *4)) (-4 *4 (-968 *3 (-543 *2) *2)))) (-3570 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-4 *4 (-861)) (-5 *1 (-1147 *3 *4 *2)) (-4 *2 (-968 *3 (-543 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-861)) (-5 *1 (-1147 *3 *4 *2)) (-4 *2 (-968 *3 (-543 *4) *4)))) (-2394 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1178 *7))) (-4 *6 (-861)) (-4 *7 (-968 *5 (-543 *6) *6)) (-4 *5 (-1070)) (-5 *2 (-1 (-1178 *7) *7)) (-5 *1 (-1147 *5 *6 *7)))) (-1491 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-4 *2 (-861)) (-5 *1 (-1147 *3 *2 *4)) (-4 *4 (-968 *3 (-543 *2) *2)))) (-2384 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1147 *4 *3 *5))) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1070)) (-4 *3 (-861)) (-5 *1 (-1147 *4 *3 *5)) (-4 *5 (-968 *4 (-543 *3) *3))))) -(-13 (-752 |#1| |#2|) (-10 -8 (-15 -3177 (|#3| $ (-783))) (-15 -3570 ($ |#2|)) (-15 -3570 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2394 ((-1 (-1178 |#3|) |#3|) (-656 |#2|) (-656 (-1178 |#3|)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1491 ($ $ |#2| |#1|)) (-15 -2384 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-3489 (((-112) $ $) 7)) (-1788 (((-656 (-2 (|:| -1958 $) (|:| -3257 (-656 |#4|)))) (-656 |#4|)) 86)) (-3603 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1969 (((-656 |#3|) $) 34)) (-1807 (((-112) $) 27)) (-4026 (((-112) $) 18 (|has| |#1| (-568)))) (-1613 (((-112) |#4| $) 102) (((-112) $) 98)) (-1377 ((|#4| |#4| $) 93)) (-2487 (((-656 (-2 (|:| |val| |#4|) (|:| -3988 $))) |#4| $) 127)) (-1795 (((-2 (|:| |under| $) (|:| -2443 $) (|:| |upper| $)) $ |#3|) 28)) (-1808 (((-112) $ (-783)) 45)) (-1974 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4465))) (((-3 |#4| "failed") $ |#3|) 80)) (-3886 (($) 46 T CONST)) (-3713 (((-112) $) 23 (|has| |#1| (-568)))) (-2813 (((-112) $ $) 25 (|has| |#1| (-568)))) (-3812 (((-112) $ $) 24 (|has| |#1| (-568)))) (-1884 (((-112) $) 26 (|has| |#1| (-568)))) (-3388 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2311 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-4376 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) 37)) (-2860 (($ (-656 |#4|)) 36)) (-3593 (((-3 $ "failed") $) 83)) (-3994 ((|#4| |#4| $) 90)) (-1415 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465))))) (-3946 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4465)))) (-3624 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3439 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2737 ((|#4| |#4| $) 88)) (-3686 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4465))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4465))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4405 (((-2 (|:| -1958 (-656 |#4|)) (|:| -3257 (-656 |#4|))) $) 106)) (-4148 (((-112) |#4| $) 137)) (-3773 (((-112) |#4| $) 134)) (-4441 (((-112) |#4| $) 138) (((-112) $) 135)) (-3966 (((-656 |#4|) $) 53 (|has| $ (-6 -4465)))) (-3186 (((-112) |#4| $) 105) (((-112) $) 104)) (-2620 ((|#3| $) 35)) (-3870 (((-112) $ (-783)) 44)) (-2014 (((-656 |#4|) $) 54 (|has| $ (-6 -4465)))) (-1612 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465))))) (-4323 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#4| |#4|) $) 48)) (-2234 (((-656 |#3|) $) 33)) (-2106 (((-112) |#3| $) 32)) (-1330 (((-112) $ (-783)) 43)) (-3699 (((-1179) $) 10)) (-2166 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-1540 (((-656 (-2 (|:| |val| |#4|) (|:| -3988 $))) |#4| |#4| $) 128)) (-3969 (((-3 |#4| "failed") $) 84)) (-1471 (((-656 $) |#4| $) 130)) (-3179 (((-3 (-112) (-656 $)) |#4| $) 133)) (-3787 (((-656 (-2 (|:| |val| (-112)) (|:| -3988 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3285 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-2008 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-4275 (((-656 |#4|) $) 108)) (-1603 (((-112) |#4| $) 100) (((-112) $) 96)) (-3909 ((|#4| |#4| $) 91)) (-1438 (((-112) $ $) 111)) (-2280 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3579 (((-112) |#4| $) 101) (((-112) $) 97)) (-1522 ((|#4| |#4| $) 92)) (-1450 (((-1141) $) 11)) (-3581 (((-3 |#4| "failed") $) 85)) (-1541 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3384 (((-3 $ "failed") $ |#4|) 79)) (-1749 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-4320 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-4040 (((-112) $ $) 39)) (-3973 (((-112) $) 42)) (-4225 (($) 41)) (-3634 (((-783) $) 107)) (-1460 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4465)))) (-1870 (($ $) 40)) (-4172 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3582 (($ (-656 |#4|)) 61)) (-3118 (($ $ |#3|) 29)) (-2637 (($ $ |#3|) 31)) (-1584 (($ $) 89)) (-3317 (($ $ |#3|) 30)) (-3570 (((-876) $) 12) (((-656 |#4|) $) 38)) (-3891 (((-783) $) 77 (|has| |#3| (-379)))) (-4055 (((-112) $ $) 6)) (-3765 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2833 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-3298 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-3321 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4465)))) (-1583 (((-656 |#3|) $) 82)) (-2392 (((-112) |#4| $) 136)) (-3419 (((-112) |#3| $) 81)) (-2925 (((-112) $ $) 8)) (-3503 (((-783) $) 47 (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-1969 (((-656 |#2|) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4195 (($ $) NIL (|has| |#1| (-568)))) (-1760 (((-112) $) NIL (|has| |#1| (-568)))) (-4024 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) 128 (|has| |#1| (-38 (-419 (-576)))))) (-2428 (((-3 $ "failed") $ $) NIL)) (-1840 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4005 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) 124 (|has| |#1| (-38 (-419 (-576)))))) (-4049 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3404 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-2383 (((-971 |#1|) $ (-783)) NIL) (((-971 |#1|) $ (-783) (-783)) NIL)) (-2116 (((-112) $) NIL)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3726 (((-783) $ |#2|) NIL) (((-783) $ |#2| (-783)) NIL)) (-1351 (((-112) $) NIL)) (-4131 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3538 (((-112) $) NIL)) (-1944 (($ $ (-656 |#2|) (-656 (-543 |#2|))) NIL) (($ $ |#2| (-543 |#2|)) NIL) (($ |#1| (-543 |#2|)) NIL) (($ $ |#2| (-783)) 63) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3744 (($ $) 122 (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-2046 (((-1179) $) NIL)) (-4160 (($ $ |#2|) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-419 (-576)))))) (-1450 (((-1141) $) NIL)) (-1708 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-419 (-576)))))) (-1743 (($ $ (-783)) 16)) (-3475 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4103 (($ $) 120 (|has| |#1| (-38 (-419 (-576)))))) (-3282 (($ $ |#2| $) 106) (($ $ (-656 |#2|) (-656 $)) 99) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL)) (-2774 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) 109)) (-2683 (((-543 |#2|) $) NIL)) (-1798 (((-1 (-1178 |#3|) |#3|) (-656 |#2|) (-656 (-1178 |#3|))) 87)) (-4060 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) 130 (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) 126 (|has| |#1| (-38 (-419 (-576)))))) (-2539 (($ $) 18)) (-3569 (((-876) $) 198) (($ (-576)) NIL) (($ |#1|) 45 (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#2|) 70) (($ |#3|) 68)) (-1822 ((|#1| $ (-543 |#2|)) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|) (-656 (-783))) NIL) ((|#3| $ (-783)) 43)) (-3390 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-2790 (($ $) 164 (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-1505 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4070 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) 168 (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-4387 (($ $) 170 (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) 166 (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) 162 (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) 52 T CONST)) (-2731 (($) 62 T CONST)) (-2020 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) 200 (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 66)) (** (($ $ (-940)) NIL) (($ $ (-783)) 77) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 112 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 65) (($ $ (-419 (-576))) 117 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 115 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) +(((-1147 |#1| |#2| |#3|) (-13 (-752 |#1| |#2|) (-10 -8 (-15 -1822 (|#3| $ (-783))) (-15 -3569 ($ |#2|)) (-15 -3569 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1798 ((-1 (-1178 |#3|) |#3|) (-656 |#2|) (-656 (-1178 |#3|)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4160 ($ $ |#2| |#1|)) (-15 -1708 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1070) (-861) (-968 |#1| (-543 |#2|) |#2|)) (T -1147)) +((-1822 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *2 (-968 *4 (-543 *5) *5)) (-5 *1 (-1147 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-861)))) (-3569 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-4 *2 (-861)) (-5 *1 (-1147 *3 *2 *4)) (-4 *4 (-968 *3 (-543 *2) *2)))) (-3569 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-4 *4 (-861)) (-5 *1 (-1147 *3 *4 *2)) (-4 *2 (-968 *3 (-543 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-861)) (-5 *1 (-1147 *3 *4 *2)) (-4 *2 (-968 *3 (-543 *4) *4)))) (-1798 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1178 *7))) (-4 *6 (-861)) (-4 *7 (-968 *5 (-543 *6) *6)) (-4 *5 (-1070)) (-5 *2 (-1 (-1178 *7) *7)) (-5 *1 (-1147 *5 *6 *7)))) (-4160 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-4 *2 (-861)) (-5 *1 (-1147 *3 *2 *4)) (-4 *4 (-968 *3 (-543 *2) *2)))) (-1708 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1147 *4 *3 *5))) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1070)) (-4 *3 (-861)) (-5 *1 (-1147 *4 *3 *5)) (-4 *5 (-968 *4 (-543 *3) *3))))) +(-13 (-752 |#1| |#2|) (-10 -8 (-15 -1822 (|#3| $ (-783))) (-15 -3569 ($ |#2|)) (-15 -3569 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1798 ((-1 (-1178 |#3|) |#3|) (-656 |#2|) (-656 (-1178 |#3|)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4160 ($ $ |#2| |#1|)) (-15 -1708 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-3488 (((-112) $ $) 7)) (-4093 (((-656 (-2 (|:| -1958 $) (|:| -3256 (-656 |#4|)))) (-656 |#4|)) 86)) (-3668 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1969 (((-656 |#3|) $) 34)) (-4255 (((-112) $) 27)) (-2136 (((-112) $) 18 (|has| |#1| (-568)))) (-2899 (((-112) |#4| $) 102) (((-112) $) 98)) (-3798 ((|#4| |#4| $) 93)) (-3444 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 $))) |#4| $) 127)) (-1795 (((-2 (|:| |under| $) (|:| -4236 $) (|:| |upper| $)) $ |#3|) 28)) (-4264 (((-112) $ (-783)) 45)) (-1974 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4464))) (((-3 |#4| "failed") $ |#3|) 80)) (-3404 (($) 46 T CONST)) (-2203 (((-112) $) 23 (|has| |#1| (-568)))) (-3438 (((-112) $ $) 25 (|has| |#1| (-568)))) (-1990 (((-112) $ $) 24 (|has| |#1| (-568)))) (-3740 (((-112) $) 26 (|has| |#1| (-568)))) (-2149 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2239 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-2514 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) 37)) (-2859 (($ (-656 |#4|)) 36)) (-3592 (((-3 $ "failed") $) 83)) (-3142 ((|#4| |#4| $) 90)) (-2034 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4464)))) (-3891 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-1483 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4022 ((|#4| |#4| $) 88)) (-3685 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4464))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1599 (((-2 (|:| -1958 (-656 |#4|)) (|:| -3256 (-656 |#4|))) $) 106)) (-4064 (((-112) |#4| $) 137)) (-1608 (((-112) |#4| $) 134)) (-1921 (((-112) |#4| $) 138) (((-112) $) 135)) (-3965 (((-656 |#4|) $) 53 (|has| $ (-6 -4464)))) (-1918 (((-112) |#4| $) 105) (((-112) $) 104)) (-2235 ((|#3| $) 35)) (-1368 (((-112) $ (-783)) 44)) (-2425 (((-656 |#4|) $) 54 (|has| $ (-6 -4464)))) (-2885 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-4326 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#4| |#4|) $) 48)) (-2666 (((-656 |#3|) $) 33)) (-4001 (((-112) |#3| $) 32)) (-2883 (((-112) $ (-783)) 43)) (-2046 (((-1179) $) 10)) (-3299 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-3422 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 $))) |#4| |#4| $) 128)) (-3968 (((-3 |#4| "failed") $) 84)) (-3955 (((-656 $) |#4| $) 130)) (-1843 (((-3 (-112) (-656 $)) |#4| $) 133)) (-1751 (((-656 (-2 (|:| |val| (-112)) (|:| -3987 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3651 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-2381 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-2795 (((-656 |#4|) $) 108)) (-2785 (((-112) |#4| $) 100) (((-112) $) 96)) (-3640 ((|#4| |#4| $) 91)) (-2264 (((-112) $ $) 111)) (-3196 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3420 (((-112) |#4| $) 101) (((-112) $) 97)) (-3235 ((|#4| |#4| $) 92)) (-1450 (((-1141) $) 11)) (-3580 (((-3 |#4| "failed") $) 85)) (-3434 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2101 (((-3 $ "failed") $ |#4|) 79)) (-1743 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-3252 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-2252 (((-112) $ $) 39)) (-2940 (((-112) $) 42)) (-3579 (($) 41)) (-2683 (((-783) $) 107)) (-1460 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4464)))) (-1870 (($ $) 40)) (-4171 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3581 (($ (-656 |#4|)) 61)) (-2479 (($ $ |#3|) 29)) (-2394 (($ $ |#3|) 31)) (-2582 (($ $) 89)) (-2665 (($ $ |#3|) 30)) (-3569 (((-876) $) 12) (((-656 |#4|) $) 38)) (-3451 (((-783) $) 77 (|has| |#3| (-379)))) (-2399 (((-112) $ $) 6)) (-1530 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3653 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-3788 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2708 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4464)))) (-2572 (((-656 |#3|) $) 82)) (-1777 (((-112) |#4| $) 136)) (-2476 (((-112) |#3| $) 81)) (-2924 (((-112) $ $) 8)) (-3502 (((-783) $) 47 (|has| $ (-6 -4464))))) (((-1148 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-861) (-1086 |t#1| |t#2| |t#3|)) (T -1148)) NIL (-13 (-1130 |t#1| |t#2| |t#3| |t#4|) (-796 |t#1| |t#2| |t#3| |t#4|)) (((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-876)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-796 |#1| |#2| |#3| |#4|) . T) ((-997 |#1| |#2| |#3| |#4|) . T) ((-1092 |#1| |#2| |#3| |#4|) . T) ((-1121) . T) ((-1130 |#1| |#2| |#3| |#4|) . T) ((-1231 |#1| |#2| |#3| |#4|) . T) ((-1238) . T)) -((-2767 (((-656 |#2|) |#1|) 15)) (-3706 (((-656 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-656 |#2|) |#1|) 61)) (-1771 (((-656 |#2|) |#2| |#2| |#2|) 45) (((-656 |#2|) |#1|) 59)) (-1483 ((|#2| |#1|) 54)) (-4192 (((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-2361 (((-656 |#2|) |#2| |#2|) 42) (((-656 |#2|) |#1|) 58)) (-2074 (((-656 |#2|) |#2| |#2| |#2| |#2|) 46) (((-656 |#2|) |#1|) 60)) (-3130 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53)) (-1895 ((|#2| |#2| |#2| |#2|) 51)) (-2254 ((|#2| |#2| |#2|) 50)) (-4123 ((|#2| |#2| |#2| |#2| |#2|) 52))) -(((-1149 |#1| |#2|) (-10 -7 (-15 -2767 ((-656 |#2|) |#1|)) (-15 -1483 (|#2| |#1|)) (-15 -4192 ((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2361 ((-656 |#2|) |#1|)) (-15 -1771 ((-656 |#2|) |#1|)) (-15 -2074 ((-656 |#2|) |#1|)) (-15 -3706 ((-656 |#2|) |#1|)) (-15 -2361 ((-656 |#2|) |#2| |#2|)) (-15 -1771 ((-656 |#2|) |#2| |#2| |#2|)) (-15 -2074 ((-656 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3706 ((-656 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2254 (|#2| |#2| |#2|)) (-15 -1895 (|#2| |#2| |#2| |#2|)) (-15 -4123 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3130 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1264 |#2|) (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (T -1149)) -((-3130 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2)))) (-4123 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2)))) (-1895 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2)))) (-2254 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2)))) (-3706 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3)))) (-2074 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3)))) (-1771 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3)))) (-2361 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3)))) (-3706 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) (-2074 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) (-1771 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) (-2361 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) (-4192 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-2 (|:| |solns| (-656 *5)) (|:| |maps| (-656 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1149 *3 *5)) (-4 *3 (-1264 *5)))) (-1483 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2)))) (-2767 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4))))) -(-10 -7 (-15 -2767 ((-656 |#2|) |#1|)) (-15 -1483 (|#2| |#1|)) (-15 -4192 ((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2361 ((-656 |#2|) |#1|)) (-15 -1771 ((-656 |#2|) |#1|)) (-15 -2074 ((-656 |#2|) |#1|)) (-15 -3706 ((-656 |#2|) |#1|)) (-15 -2361 ((-656 |#2|) |#2| |#2|)) (-15 -1771 ((-656 |#2|) |#2| |#2| |#2|)) (-15 -2074 ((-656 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3706 ((-656 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2254 (|#2| |#2| |#2|)) (-15 -1895 (|#2| |#2| |#2| |#2|)) (-15 -4123 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3130 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-2847 (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-971 |#1|))))) 118) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-971 |#1|)))) (-656 (-1197))) 117) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-971 |#1|)))) 115) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-971 |#1|))) (-656 (-1197))) 113) (((-656 (-304 (-326 |#1|))) (-304 (-419 (-971 |#1|)))) 97) (((-656 (-304 (-326 |#1|))) (-304 (-419 (-971 |#1|))) (-1197)) 98) (((-656 (-304 (-326 |#1|))) (-419 (-971 |#1|))) 92) (((-656 (-304 (-326 |#1|))) (-419 (-971 |#1|)) (-1197)) 82)) (-3096 (((-656 (-656 (-326 |#1|))) (-656 (-419 (-971 |#1|))) (-656 (-1197))) 111) (((-656 (-326 |#1|)) (-419 (-971 |#1|)) (-1197)) 54)) (-1497 (((-1186 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-971 |#1|)) (-1197)) 122) (((-1186 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-971 |#1|))) (-1197)) 121))) -(((-1150 |#1|) (-10 -7 (-15 -2847 ((-656 (-304 (-326 |#1|))) (-419 (-971 |#1|)) (-1197))) (-15 -2847 ((-656 (-304 (-326 |#1|))) (-419 (-971 |#1|)))) (-15 -2847 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-971 |#1|))) (-1197))) (-15 -2847 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-971 |#1|))))) (-15 -2847 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -2847 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-971 |#1|))))) (-15 -2847 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-971 |#1|)))) (-656 (-1197)))) (-15 -2847 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-971 |#1|)))))) (-15 -3096 ((-656 (-326 |#1|)) (-419 (-971 |#1|)) (-1197))) (-15 -3096 ((-656 (-656 (-326 |#1|))) (-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -1497 ((-1186 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-971 |#1|))) (-1197))) (-15 -1497 ((-1186 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-971 |#1|)) (-1197)))) (-13 (-317) (-148))) (T -1150)) -((-1497 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-1186 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) (-5 *1 (-1150 *5)))) (-1497 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-971 *5)))) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-1186 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) (-5 *1 (-1150 *5)))) (-3096 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-326 *5)))) (-5 *1 (-1150 *5)))) (-3096 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-326 *5))) (-5 *1 (-1150 *5)))) (-2847 (*1 *2 *3) (-12 (-5 *3 (-656 (-304 (-419 (-971 *4))))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1150 *4)))) (-2847 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-971 *5))))) (-5 *4 (-656 (-1197))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1150 *5)))) (-2847 (*1 *2 *3) (-12 (-5 *3 (-656 (-419 (-971 *4)))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1150 *4)))) (-2847 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1150 *5)))) (-2847 (*1 *2 *3) (-12 (-5 *3 (-304 (-419 (-971 *4)))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4)))) (-2847 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-971 *5)))) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1150 *5)))) (-2847 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4)))) (-2847 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1150 *5))))) -(-10 -7 (-15 -2847 ((-656 (-304 (-326 |#1|))) (-419 (-971 |#1|)) (-1197))) (-15 -2847 ((-656 (-304 (-326 |#1|))) (-419 (-971 |#1|)))) (-15 -2847 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-971 |#1|))) (-1197))) (-15 -2847 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-971 |#1|))))) (-15 -2847 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -2847 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-971 |#1|))))) (-15 -2847 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-971 |#1|)))) (-656 (-1197)))) (-15 -2847 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-971 |#1|)))))) (-15 -3096 ((-656 (-326 |#1|)) (-419 (-971 |#1|)) (-1197))) (-15 -3096 ((-656 (-656 (-326 |#1|))) (-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -1497 ((-1186 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-971 |#1|))) (-1197))) (-15 -1497 ((-1186 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-971 |#1|)) (-1197)))) -((-1834 (((-419 (-1193 (-326 |#1|))) (-1288 (-326 |#1|)) (-419 (-1193 (-326 |#1|))) (-576)) 36)) (-2944 (((-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|)))) 48))) -(((-1151 |#1|) (-10 -7 (-15 -2944 ((-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))))) (-15 -1834 ((-419 (-1193 (-326 |#1|))) (-1288 (-326 |#1|)) (-419 (-1193 (-326 |#1|))) (-576)))) (-568)) (T -1151)) -((-1834 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-419 (-1193 (-326 *5)))) (-5 *3 (-1288 (-326 *5))) (-5 *4 (-576)) (-4 *5 (-568)) (-5 *1 (-1151 *5)))) (-2944 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-419 (-1193 (-326 *3)))) (-4 *3 (-568)) (-5 *1 (-1151 *3))))) -(-10 -7 (-15 -2944 ((-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))))) (-15 -1834 ((-419 (-1193 (-326 |#1|))) (-1288 (-326 |#1|)) (-419 (-1193 (-326 |#1|))) (-576)))) -((-2767 (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1197))) 244) (((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1197)) 23) (((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1197)) 29) (((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|))) 28) (((-656 (-304 (-326 |#1|))) (-326 |#1|)) 24))) -(((-1152 |#1|) (-10 -7 (-15 -2767 ((-656 (-304 (-326 |#1|))) (-326 |#1|))) (-15 -2767 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)))) (-15 -2767 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1197))) (-15 -2767 ((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1197))) (-15 -2767 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1197))))) (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (T -1152)) -((-2767 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1197))) (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1152 *5)) (-5 *3 (-656 (-304 (-326 *5)))))) (-2767 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1152 *5)) (-5 *3 (-326 *5)))) (-2767 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1152 *5)) (-5 *3 (-304 (-326 *5))))) (-2767 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1152 *4)) (-5 *3 (-304 (-326 *4))))) (-2767 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1152 *4)) (-5 *3 (-326 *4))))) -(-10 -7 (-15 -2767 ((-656 (-304 (-326 |#1|))) (-326 |#1|))) (-15 -2767 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)))) (-15 -2767 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1197))) (-15 -2767 ((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1197))) (-15 -2767 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1197))))) -((-2112 ((|#2| |#2|) 28 (|has| |#1| (-861))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25)) (-2718 ((|#2| |#2|) 27 (|has| |#1| (-861))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) -(((-1153 |#1| |#2|) (-10 -7 (-15 -2718 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2112 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-861)) (PROGN (-15 -2718 (|#2| |#2|)) (-15 -2112 (|#2| |#2|))) |%noBranch|)) (-1238) (-13 (-616 (-576) |#1|) (-10 -7 (-6 -4465) (-6 -4466)))) (T -1153)) -((-2112 (*1 *2 *2) (-12 (-4 *3 (-861)) (-4 *3 (-1238)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4465) (-6 -4466)))))) (-2718 (*1 *2 *2) (-12 (-4 *3 (-861)) (-4 *3 (-1238)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4465) (-6 -4466)))))) (-2112 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-1153 *4 *2)) (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4465) (-6 -4466)))))) (-2718 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-1153 *4 *2)) (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4465) (-6 -4466))))))) -(-10 -7 (-15 -2718 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2112 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-861)) (PROGN (-15 -2718 (|#2| |#2|)) (-15 -2112 (|#2| |#2|))) |%noBranch|)) -((-3489 (((-112) $ $) NIL)) (-3732 (((-1185 3 |#1|) $) 141)) (-1656 (((-112) $) 101)) (-3252 (($ $ (-656 (-962 |#1|))) 44) (($ $ (-656 (-656 |#1|))) 104) (($ (-656 (-962 |#1|))) 103) (((-656 (-962 |#1|)) $) 102)) (-4115 (((-112) $) 72)) (-3043 (($ $ (-962 |#1|)) 76) (($ $ (-656 |#1|)) 81) (($ $ (-783)) 83) (($ (-962 |#1|)) 77) (((-962 |#1|) $) 75)) (-3502 (((-2 (|:| -1793 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $) 139)) (-3935 (((-783) $) 53)) (-3247 (((-783) $) 52)) (-2684 (($ $ (-783) (-962 |#1|)) 67)) (-1336 (((-112) $) 111)) (-2013 (($ $ (-656 (-656 (-962 |#1|))) (-656 (-173)) (-173)) 118) (($ $ (-656 (-656 (-656 |#1|))) (-656 (-173)) (-173)) 120) (($ $ (-656 (-656 (-962 |#1|))) (-112) (-112)) 115) (($ $ (-656 (-656 (-656 |#1|))) (-112) (-112)) 127) (($ (-656 (-656 (-962 |#1|)))) 116) (($ (-656 (-656 (-962 |#1|))) (-112) (-112)) 117) (((-656 (-656 (-962 |#1|))) $) 114)) (-3391 (($ (-656 $)) 56) (($ $ $) 57)) (-1433 (((-656 (-173)) $) 133)) (-1395 (((-656 (-962 |#1|)) $) 130)) (-3639 (((-656 (-656 (-173))) $) 132)) (-1443 (((-656 (-656 (-656 (-962 |#1|)))) $) NIL)) (-3202 (((-656 (-656 (-656 (-783)))) $) 131)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3799 (((-783) $ (-656 (-962 |#1|))) 65)) (-1725 (((-112) $) 84)) (-1739 (($ $ (-656 (-962 |#1|))) 86) (($ $ (-656 (-656 |#1|))) 92) (($ (-656 (-962 |#1|))) 87) (((-656 (-962 |#1|)) $) 85)) (-2493 (($) 48) (($ (-1185 3 |#1|)) 49)) (-1870 (($ $) 63)) (-1686 (((-656 $) $) 62)) (-2507 (($ (-656 $)) 59)) (-3499 (((-656 $) $) 61)) (-3570 (((-876) $) 146)) (-1978 (((-112) $) 94)) (-3268 (($ $ (-656 (-962 |#1|))) 96) (($ $ (-656 (-656 |#1|))) 99) (($ (-656 (-962 |#1|))) 97) (((-656 (-962 |#1|)) $) 95)) (-4181 (($ $) 140)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) +((-4263 (((-656 |#2|) |#1|) 15)) (-2120 (((-656 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-656 |#2|) |#1|) 61)) (-3930 (((-656 |#2|) |#2| |#2| |#2|) 45) (((-656 |#2|) |#1|) 59)) (-4077 ((|#2| |#1|) 54)) (-1341 (((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-2361 (((-656 |#2|) |#2| |#2|) 42) (((-656 |#2|) |#1|) 58)) (-1739 (((-656 |#2|) |#2| |#2| |#2| |#2|) 46) (((-656 |#2|) |#1|) 60)) (-1414 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53)) (-3841 ((|#2| |#2| |#2| |#2|) 51)) (-2887 ((|#2| |#2| |#2|) 50)) (-1862 ((|#2| |#2| |#2| |#2| |#2|) 52))) +(((-1149 |#1| |#2|) (-10 -7 (-15 -4263 ((-656 |#2|) |#1|)) (-15 -4077 (|#2| |#1|)) (-15 -1341 ((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2361 ((-656 |#2|) |#1|)) (-15 -3930 ((-656 |#2|) |#1|)) (-15 -1739 ((-656 |#2|) |#1|)) (-15 -2120 ((-656 |#2|) |#1|)) (-15 -2361 ((-656 |#2|) |#2| |#2|)) (-15 -3930 ((-656 |#2|) |#2| |#2| |#2|)) (-15 -1739 ((-656 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2120 ((-656 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2887 (|#2| |#2| |#2|)) (-15 -3841 (|#2| |#2| |#2| |#2|)) (-15 -1862 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1414 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1264 |#2|) (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (T -1149)) +((-1414 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2)))) (-1862 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2)))) (-3841 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2)))) (-2887 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2)))) (-2120 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3)))) (-1739 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3)))) (-3930 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3)))) (-2361 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3)))) (-2120 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) (-1739 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) (-3930 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) (-2361 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) (-1341 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-2 (|:| |solns| (-656 *5)) (|:| |maps| (-656 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1149 *3 *5)) (-4 *3 (-1264 *5)))) (-4077 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2)))) (-4263 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4))))) +(-10 -7 (-15 -4263 ((-656 |#2|) |#1|)) (-15 -4077 (|#2| |#1|)) (-15 -1341 ((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2361 ((-656 |#2|) |#1|)) (-15 -3930 ((-656 |#2|) |#1|)) (-15 -1739 ((-656 |#2|) |#1|)) (-15 -2120 ((-656 |#2|) |#1|)) (-15 -2361 ((-656 |#2|) |#2| |#2|)) (-15 -3930 ((-656 |#2|) |#2| |#2| |#2|)) (-15 -1739 ((-656 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2120 ((-656 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2887 (|#2| |#2| |#2|)) (-15 -3841 (|#2| |#2| |#2| |#2|)) (-15 -1862 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1414 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-3791 (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-971 |#1|))))) 118) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-971 |#1|)))) (-656 (-1197))) 117) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-971 |#1|)))) 115) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-971 |#1|))) (-656 (-1197))) 113) (((-656 (-304 (-326 |#1|))) (-304 (-419 (-971 |#1|)))) 97) (((-656 (-304 (-326 |#1|))) (-304 (-419 (-971 |#1|))) (-1197)) 98) (((-656 (-304 (-326 |#1|))) (-419 (-971 |#1|))) 92) (((-656 (-304 (-326 |#1|))) (-419 (-971 |#1|)) (-1197)) 82)) (-2276 (((-656 (-656 (-326 |#1|))) (-656 (-419 (-971 |#1|))) (-656 (-1197))) 111) (((-656 (-326 |#1|)) (-419 (-971 |#1|)) (-1197)) 54)) (-4210 (((-1186 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-971 |#1|)) (-1197)) 122) (((-1186 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-971 |#1|))) (-1197)) 121))) +(((-1150 |#1|) (-10 -7 (-15 -3791 ((-656 (-304 (-326 |#1|))) (-419 (-971 |#1|)) (-1197))) (-15 -3791 ((-656 (-304 (-326 |#1|))) (-419 (-971 |#1|)))) (-15 -3791 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-971 |#1|))) (-1197))) (-15 -3791 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-971 |#1|))))) (-15 -3791 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -3791 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-971 |#1|))))) (-15 -3791 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-971 |#1|)))) (-656 (-1197)))) (-15 -3791 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-971 |#1|)))))) (-15 -2276 ((-656 (-326 |#1|)) (-419 (-971 |#1|)) (-1197))) (-15 -2276 ((-656 (-656 (-326 |#1|))) (-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -4210 ((-1186 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-971 |#1|))) (-1197))) (-15 -4210 ((-1186 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-971 |#1|)) (-1197)))) (-13 (-317) (-148))) (T -1150)) +((-4210 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-1186 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) (-5 *1 (-1150 *5)))) (-4210 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-971 *5)))) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-1186 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) (-5 *1 (-1150 *5)))) (-2276 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-326 *5)))) (-5 *1 (-1150 *5)))) (-2276 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-326 *5))) (-5 *1 (-1150 *5)))) (-3791 (*1 *2 *3) (-12 (-5 *3 (-656 (-304 (-419 (-971 *4))))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1150 *4)))) (-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-971 *5))))) (-5 *4 (-656 (-1197))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1150 *5)))) (-3791 (*1 *2 *3) (-12 (-5 *3 (-656 (-419 (-971 *4)))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1150 *4)))) (-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1150 *5)))) (-3791 (*1 *2 *3) (-12 (-5 *3 (-304 (-419 (-971 *4)))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4)))) (-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-971 *5)))) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1150 *5)))) (-3791 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4)))) (-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1150 *5))))) +(-10 -7 (-15 -3791 ((-656 (-304 (-326 |#1|))) (-419 (-971 |#1|)) (-1197))) (-15 -3791 ((-656 (-304 (-326 |#1|))) (-419 (-971 |#1|)))) (-15 -3791 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-971 |#1|))) (-1197))) (-15 -3791 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-971 |#1|))))) (-15 -3791 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -3791 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-971 |#1|))))) (-15 -3791 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-971 |#1|)))) (-656 (-1197)))) (-15 -3791 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-971 |#1|)))))) (-15 -2276 ((-656 (-326 |#1|)) (-419 (-971 |#1|)) (-1197))) (-15 -2276 ((-656 (-656 (-326 |#1|))) (-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -4210 ((-1186 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-971 |#1|))) (-1197))) (-15 -4210 ((-1186 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-971 |#1|)) (-1197)))) +((-3283 (((-419 (-1193 (-326 |#1|))) (-1288 (-326 |#1|)) (-419 (-1193 (-326 |#1|))) (-576)) 36)) (-3356 (((-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|)))) 48))) +(((-1151 |#1|) (-10 -7 (-15 -3356 ((-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))))) (-15 -3283 ((-419 (-1193 (-326 |#1|))) (-1288 (-326 |#1|)) (-419 (-1193 (-326 |#1|))) (-576)))) (-568)) (T -1151)) +((-3283 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-419 (-1193 (-326 *5)))) (-5 *3 (-1288 (-326 *5))) (-5 *4 (-576)) (-4 *5 (-568)) (-5 *1 (-1151 *5)))) (-3356 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-419 (-1193 (-326 *3)))) (-4 *3 (-568)) (-5 *1 (-1151 *3))))) +(-10 -7 (-15 -3356 ((-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))))) (-15 -3283 ((-419 (-1193 (-326 |#1|))) (-1288 (-326 |#1|)) (-419 (-1193 (-326 |#1|))) (-576)))) +((-4263 (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1197))) 244) (((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1197)) 23) (((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1197)) 29) (((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|))) 28) (((-656 (-304 (-326 |#1|))) (-326 |#1|)) 24))) +(((-1152 |#1|) (-10 -7 (-15 -4263 ((-656 (-304 (-326 |#1|))) (-326 |#1|))) (-15 -4263 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)))) (-15 -4263 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1197))) (-15 -4263 ((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1197))) (-15 -4263 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1197))))) (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (T -1152)) +((-4263 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1197))) (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1152 *5)) (-5 *3 (-656 (-304 (-326 *5)))))) (-4263 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1152 *5)) (-5 *3 (-326 *5)))) (-4263 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1152 *5)) (-5 *3 (-304 (-326 *5))))) (-4263 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1152 *4)) (-5 *3 (-304 (-326 *4))))) (-4263 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1152 *4)) (-5 *3 (-326 *4))))) +(-10 -7 (-15 -4263 ((-656 (-304 (-326 |#1|))) (-326 |#1|))) (-15 -4263 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)))) (-15 -4263 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1197))) (-15 -4263 ((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1197))) (-15 -4263 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1197))))) +((-4066 ((|#2| |#2|) 28 (|has| |#1| (-861))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25)) (-1879 ((|#2| |#2|) 27 (|has| |#1| (-861))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) +(((-1153 |#1| |#2|) (-10 -7 (-15 -1879 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4066 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-861)) (PROGN (-15 -1879 (|#2| |#2|)) (-15 -4066 (|#2| |#2|))) |%noBranch|)) (-1238) (-13 (-616 (-576) |#1|) (-10 -7 (-6 -4464) (-6 -4465)))) (T -1153)) +((-4066 (*1 *2 *2) (-12 (-4 *3 (-861)) (-4 *3 (-1238)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4464) (-6 -4465)))))) (-1879 (*1 *2 *2) (-12 (-4 *3 (-861)) (-4 *3 (-1238)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4464) (-6 -4465)))))) (-4066 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-1153 *4 *2)) (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4464) (-6 -4465)))))) (-1879 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-1153 *4 *2)) (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4464) (-6 -4465))))))) +(-10 -7 (-15 -1879 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4066 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-861)) (PROGN (-15 -1879 (|#2| |#2|)) (-15 -4066 (|#2| |#2|))) |%noBranch|)) +((-3488 (((-112) $ $) NIL)) (-2404 (((-1185 3 |#1|) $) 141)) (-2047 (((-112) $) 101)) (-3329 (($ $ (-656 (-962 |#1|))) 44) (($ $ (-656 (-656 |#1|))) 104) (($ (-656 (-962 |#1|))) 103) (((-656 (-962 |#1|)) $) 102)) (-1789 (((-112) $) 72)) (-3042 (($ $ (-962 |#1|)) 76) (($ $ (-656 |#1|)) 81) (($ $ (-783)) 83) (($ (-962 |#1|)) 77) (((-962 |#1|) $) 75)) (-3501 (((-2 (|:| -4147 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $) 139)) (-3908 (((-783) $) 53)) (-1386 (((-783) $) 52)) (-1598 (($ $ (-783) (-962 |#1|)) 67)) (-2960 (((-112) $) 111)) (-2413 (($ $ (-656 (-656 (-962 |#1|))) (-656 (-173)) (-173)) 118) (($ $ (-656 (-656 (-656 |#1|))) (-656 (-173)) (-173)) 120) (($ $ (-656 (-656 (-962 |#1|))) (-112) (-112)) 115) (($ $ (-656 (-656 (-656 |#1|))) (-112) (-112)) 127) (($ (-656 (-656 (-962 |#1|)))) 116) (($ (-656 (-656 (-962 |#1|))) (-112) (-112)) 117) (((-656 (-656 (-962 |#1|))) $) 114)) (-2185 (($ (-656 $)) 56) (($ $ $) 57)) (-2211 (((-656 (-173)) $) 133)) (-1395 (((-656 (-962 |#1|)) $) 130)) (-2730 (((-656 (-656 (-173))) $) 132)) (-2317 (((-656 (-656 (-656 (-962 |#1|)))) $) NIL)) (-4067 (((-656 (-656 (-656 (-783)))) $) 131)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1880 (((-783) $ (-656 (-962 |#1|))) 65)) (-1515 (((-112) $) 84)) (-1653 (($ $ (-656 (-962 |#1|))) 86) (($ $ (-656 (-656 |#1|))) 92) (($ (-656 (-962 |#1|))) 87) (((-656 (-962 |#1|)) $) 85)) (-3520 (($) 48) (($ (-1185 3 |#1|)) 49)) (-1870 (($ $) 63)) (-2338 (((-656 $) $) 62)) (-3657 (($ (-656 $)) 59)) (-1976 (((-656 $) $) 61)) (-3569 (((-876) $) 146)) (-2053 (((-112) $) 94)) (-3460 (($ $ (-656 (-962 |#1|))) 96) (($ $ (-656 (-656 |#1|))) 99) (($ (-656 (-962 |#1|))) 97) (((-656 (-962 |#1|)) $) 95)) (-4352 (($ $) 140)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) (((-1154 |#1|) (-1155 |#1|) (-1070)) (T -1154)) NIL (-1155 |#1|) -((-3489 (((-112) $ $) 7)) (-3732 (((-1185 3 |#1|) $) 14)) (-1656 (((-112) $) 30)) (-3252 (($ $ (-656 (-962 |#1|))) 34) (($ $ (-656 (-656 |#1|))) 33) (($ (-656 (-962 |#1|))) 32) (((-656 (-962 |#1|)) $) 31)) (-4115 (((-112) $) 45)) (-3043 (($ $ (-962 |#1|)) 50) (($ $ (-656 |#1|)) 49) (($ $ (-783)) 48) (($ (-962 |#1|)) 47) (((-962 |#1|) $) 46)) (-3502 (((-2 (|:| -1793 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $) 16)) (-3935 (((-783) $) 59)) (-3247 (((-783) $) 60)) (-2684 (($ $ (-783) (-962 |#1|)) 51)) (-1336 (((-112) $) 22)) (-2013 (($ $ (-656 (-656 (-962 |#1|))) (-656 (-173)) (-173)) 29) (($ $ (-656 (-656 (-656 |#1|))) (-656 (-173)) (-173)) 28) (($ $ (-656 (-656 (-962 |#1|))) (-112) (-112)) 27) (($ $ (-656 (-656 (-656 |#1|))) (-112) (-112)) 26) (($ (-656 (-656 (-962 |#1|)))) 25) (($ (-656 (-656 (-962 |#1|))) (-112) (-112)) 24) (((-656 (-656 (-962 |#1|))) $) 23)) (-3391 (($ (-656 $)) 58) (($ $ $) 57)) (-1433 (((-656 (-173)) $) 17)) (-1395 (((-656 (-962 |#1|)) $) 21)) (-3639 (((-656 (-656 (-173))) $) 18)) (-1443 (((-656 (-656 (-656 (-962 |#1|)))) $) 19)) (-3202 (((-656 (-656 (-656 (-783)))) $) 20)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3799 (((-783) $ (-656 (-962 |#1|))) 52)) (-1725 (((-112) $) 40)) (-1739 (($ $ (-656 (-962 |#1|))) 44) (($ $ (-656 (-656 |#1|))) 43) (($ (-656 (-962 |#1|))) 42) (((-656 (-962 |#1|)) $) 41)) (-2493 (($) 62) (($ (-1185 3 |#1|)) 61)) (-1870 (($ $) 53)) (-1686 (((-656 $) $) 54)) (-2507 (($ (-656 $)) 56)) (-3499 (((-656 $) $) 55)) (-3570 (((-876) $) 12)) (-1978 (((-112) $) 35)) (-3268 (($ $ (-656 (-962 |#1|))) 39) (($ $ (-656 (-656 |#1|))) 38) (($ (-656 (-962 |#1|))) 37) (((-656 (-962 |#1|)) $) 36)) (-4181 (($ $) 15)) (-4055 (((-112) $ $) 6)) (-2925 (((-112) $ $) 8))) +((-3488 (((-112) $ $) 7)) (-2404 (((-1185 3 |#1|) $) 14)) (-2047 (((-112) $) 30)) (-3329 (($ $ (-656 (-962 |#1|))) 34) (($ $ (-656 (-656 |#1|))) 33) (($ (-656 (-962 |#1|))) 32) (((-656 (-962 |#1|)) $) 31)) (-1789 (((-112) $) 45)) (-3042 (($ $ (-962 |#1|)) 50) (($ $ (-656 |#1|)) 49) (($ $ (-783)) 48) (($ (-962 |#1|)) 47) (((-962 |#1|) $) 46)) (-3501 (((-2 (|:| -4147 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $) 16)) (-3908 (((-783) $) 59)) (-1386 (((-783) $) 60)) (-1598 (($ $ (-783) (-962 |#1|)) 51)) (-2960 (((-112) $) 22)) (-2413 (($ $ (-656 (-656 (-962 |#1|))) (-656 (-173)) (-173)) 29) (($ $ (-656 (-656 (-656 |#1|))) (-656 (-173)) (-173)) 28) (($ $ (-656 (-656 (-962 |#1|))) (-112) (-112)) 27) (($ $ (-656 (-656 (-656 |#1|))) (-112) (-112)) 26) (($ (-656 (-656 (-962 |#1|)))) 25) (($ (-656 (-656 (-962 |#1|))) (-112) (-112)) 24) (((-656 (-656 (-962 |#1|))) $) 23)) (-2185 (($ (-656 $)) 58) (($ $ $) 57)) (-2211 (((-656 (-173)) $) 17)) (-1395 (((-656 (-962 |#1|)) $) 21)) (-2730 (((-656 (-656 (-173))) $) 18)) (-2317 (((-656 (-656 (-656 (-962 |#1|)))) $) 19)) (-4067 (((-656 (-656 (-656 (-783)))) $) 20)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-1880 (((-783) $ (-656 (-962 |#1|))) 52)) (-1515 (((-112) $) 40)) (-1653 (($ $ (-656 (-962 |#1|))) 44) (($ $ (-656 (-656 |#1|))) 43) (($ (-656 (-962 |#1|))) 42) (((-656 (-962 |#1|)) $) 41)) (-3520 (($) 62) (($ (-1185 3 |#1|)) 61)) (-1870 (($ $) 53)) (-2338 (((-656 $) $) 54)) (-3657 (($ (-656 $)) 56)) (-1976 (((-656 $) $) 55)) (-3569 (((-876) $) 12)) (-2053 (((-112) $) 35)) (-3460 (($ $ (-656 (-962 |#1|))) 39) (($ $ (-656 (-656 |#1|))) 38) (($ (-656 (-962 |#1|))) 37) (((-656 (-962 |#1|)) $) 36)) (-4352 (($ $) 15)) (-2399 (((-112) $ $) 6)) (-2924 (((-112) $ $) 8))) (((-1155 |#1|) (-141) (-1070)) (T -1155)) -((-3570 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-876)))) (-2493 (*1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) (-2493 (*1 *1 *2) (-12 (-5 *2 (-1185 3 *3)) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-3247 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) (-3391 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3391 (*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) (-2507 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3499 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-5 *2 (-656 *1)) (-4 *1 (-1155 *3)))) (-1686 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-5 *2 (-656 *1)) (-4 *1 (-1155 *3)))) (-1870 (*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) (-3799 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-962 *4))) (-4 *1 (-1155 *4)) (-4 *4 (-1070)) (-5 *2 (-783)))) (-2684 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-962 *4)) (-4 *1 (-1155 *4)) (-4 *4 (-1070)))) (-3043 (*1 *1 *1 *2) (-12 (-5 *2 (-962 *3)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3043 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3043 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-3043 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-962 *3)))) (-4115 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) (-1739 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-1739 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-1739 (*1 *1 *2) (-12 (-5 *2 (-656 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-1739 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) (-1725 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) (-3268 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3268 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3268 (*1 *1 *2) (-12 (-5 *2 (-656 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-3268 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) (-1978 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) (-3252 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3252 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3252 (*1 *1 *2) (-12 (-5 *2 (-656 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-3252 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) (-1656 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) (-2013 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-656 (-962 *5)))) (-5 *3 (-656 (-173))) (-5 *4 (-173)) (-4 *1 (-1155 *5)) (-4 *5 (-1070)))) (-2013 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-656 (-173))) (-5 *4 (-173)) (-4 *1 (-1155 *5)) (-4 *5 (-1070)))) (-2013 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-962 *4)))) (-5 *3 (-112)) (-4 *1 (-1155 *4)) (-4 *4 (-1070)))) (-2013 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-112)) (-4 *1 (-1155 *4)) (-4 *4 (-1070)))) (-2013 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-962 *3)))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-2013 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-962 *4)))) (-5 *3 (-112)) (-4 *4 (-1070)) (-4 *1 (-1155 *4)))) (-2013 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-656 (-962 *3)))))) (-1336 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) (-1395 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-656 (-656 (-783))))))) (-1443 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-656 (-656 (-962 *3))))))) (-3639 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-656 (-173)))))) (-1433 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-173))))) (-3502 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -1793 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783)))))) (-4181 (*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) (-3732 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-1185 3 *3))))) -(-13 (-1121) (-10 -8 (-15 -2493 ($)) (-15 -2493 ($ (-1185 3 |t#1|))) (-15 -3247 ((-783) $)) (-15 -3935 ((-783) $)) (-15 -3391 ($ (-656 $))) (-15 -3391 ($ $ $)) (-15 -2507 ($ (-656 $))) (-15 -3499 ((-656 $) $)) (-15 -1686 ((-656 $) $)) (-15 -1870 ($ $)) (-15 -3799 ((-783) $ (-656 (-962 |t#1|)))) (-15 -2684 ($ $ (-783) (-962 |t#1|))) (-15 -3043 ($ $ (-962 |t#1|))) (-15 -3043 ($ $ (-656 |t#1|))) (-15 -3043 ($ $ (-783))) (-15 -3043 ($ (-962 |t#1|))) (-15 -3043 ((-962 |t#1|) $)) (-15 -4115 ((-112) $)) (-15 -1739 ($ $ (-656 (-962 |t#1|)))) (-15 -1739 ($ $ (-656 (-656 |t#1|)))) (-15 -1739 ($ (-656 (-962 |t#1|)))) (-15 -1739 ((-656 (-962 |t#1|)) $)) (-15 -1725 ((-112) $)) (-15 -3268 ($ $ (-656 (-962 |t#1|)))) (-15 -3268 ($ $ (-656 (-656 |t#1|)))) (-15 -3268 ($ (-656 (-962 |t#1|)))) (-15 -3268 ((-656 (-962 |t#1|)) $)) (-15 -1978 ((-112) $)) (-15 -3252 ($ $ (-656 (-962 |t#1|)))) (-15 -3252 ($ $ (-656 (-656 |t#1|)))) (-15 -3252 ($ (-656 (-962 |t#1|)))) (-15 -3252 ((-656 (-962 |t#1|)) $)) (-15 -1656 ((-112) $)) (-15 -2013 ($ $ (-656 (-656 (-962 |t#1|))) (-656 (-173)) (-173))) (-15 -2013 ($ $ (-656 (-656 (-656 |t#1|))) (-656 (-173)) (-173))) (-15 -2013 ($ $ (-656 (-656 (-962 |t#1|))) (-112) (-112))) (-15 -2013 ($ $ (-656 (-656 (-656 |t#1|))) (-112) (-112))) (-15 -2013 ($ (-656 (-656 (-962 |t#1|))))) (-15 -2013 ($ (-656 (-656 (-962 |t#1|))) (-112) (-112))) (-15 -2013 ((-656 (-656 (-962 |t#1|))) $)) (-15 -1336 ((-112) $)) (-15 -1395 ((-656 (-962 |t#1|)) $)) (-15 -3202 ((-656 (-656 (-656 (-783)))) $)) (-15 -1443 ((-656 (-656 (-656 (-962 |t#1|)))) $)) (-15 -3639 ((-656 (-656 (-173))) $)) (-15 -1433 ((-656 (-173)) $)) (-15 -3502 ((-2 (|:| -1793 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $)) (-15 -4181 ($ $)) (-15 -3732 ((-1185 3 |t#1|) $)) (-15 -3570 ((-876) $)))) +((-3569 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-876)))) (-3520 (*1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) (-3520 (*1 *1 *2) (-12 (-5 *2 (-1185 3 *3)) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-1386 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) (-3908 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) (-2185 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-2185 (*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) (-3657 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-1976 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-5 *2 (-656 *1)) (-4 *1 (-1155 *3)))) (-2338 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-5 *2 (-656 *1)) (-4 *1 (-1155 *3)))) (-1870 (*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) (-1880 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-962 *4))) (-4 *1 (-1155 *4)) (-4 *4 (-1070)) (-5 *2 (-783)))) (-1598 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-962 *4)) (-4 *1 (-1155 *4)) (-4 *4 (-1070)))) (-3042 (*1 *1 *1 *2) (-12 (-5 *2 (-962 *3)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3042 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3042 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3042 (*1 *1 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-3042 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-962 *3)))) (-1789 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) (-1653 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-1653 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-1653 (*1 *1 *2) (-12 (-5 *2 (-656 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-1653 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) (-1515 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) (-3460 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3460 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3460 (*1 *1 *2) (-12 (-5 *2 (-656 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-3460 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) (-2053 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) (-3329 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3329 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3329 (*1 *1 *2) (-12 (-5 *2 (-656 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) (-2047 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) (-2413 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-656 (-962 *5)))) (-5 *3 (-656 (-173))) (-5 *4 (-173)) (-4 *1 (-1155 *5)) (-4 *5 (-1070)))) (-2413 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-656 (-173))) (-5 *4 (-173)) (-4 *1 (-1155 *5)) (-4 *5 (-1070)))) (-2413 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-962 *4)))) (-5 *3 (-112)) (-4 *1 (-1155 *4)) (-4 *4 (-1070)))) (-2413 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-112)) (-4 *1 (-1155 *4)) (-4 *4 (-1070)))) (-2413 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-962 *3)))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-2413 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-962 *4)))) (-5 *3 (-112)) (-4 *4 (-1070)) (-4 *1 (-1155 *4)))) (-2413 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-656 (-962 *3)))))) (-2960 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) (-1395 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) (-4067 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-656 (-656 (-783))))))) (-2317 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-656 (-656 (-962 *3))))))) (-2730 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-656 (-173)))))) (-2211 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-173))))) (-3501 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -4147 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783)))))) (-4352 (*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) (-2404 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-1185 3 *3))))) +(-13 (-1121) (-10 -8 (-15 -3520 ($)) (-15 -3520 ($ (-1185 3 |t#1|))) (-15 -1386 ((-783) $)) (-15 -3908 ((-783) $)) (-15 -2185 ($ (-656 $))) (-15 -2185 ($ $ $)) (-15 -3657 ($ (-656 $))) (-15 -1976 ((-656 $) $)) (-15 -2338 ((-656 $) $)) (-15 -1870 ($ $)) (-15 -1880 ((-783) $ (-656 (-962 |t#1|)))) (-15 -1598 ($ $ (-783) (-962 |t#1|))) (-15 -3042 ($ $ (-962 |t#1|))) (-15 -3042 ($ $ (-656 |t#1|))) (-15 -3042 ($ $ (-783))) (-15 -3042 ($ (-962 |t#1|))) (-15 -3042 ((-962 |t#1|) $)) (-15 -1789 ((-112) $)) (-15 -1653 ($ $ (-656 (-962 |t#1|)))) (-15 -1653 ($ $ (-656 (-656 |t#1|)))) (-15 -1653 ($ (-656 (-962 |t#1|)))) (-15 -1653 ((-656 (-962 |t#1|)) $)) (-15 -1515 ((-112) $)) (-15 -3460 ($ $ (-656 (-962 |t#1|)))) (-15 -3460 ($ $ (-656 (-656 |t#1|)))) (-15 -3460 ($ (-656 (-962 |t#1|)))) (-15 -3460 ((-656 (-962 |t#1|)) $)) (-15 -2053 ((-112) $)) (-15 -3329 ($ $ (-656 (-962 |t#1|)))) (-15 -3329 ($ $ (-656 (-656 |t#1|)))) (-15 -3329 ($ (-656 (-962 |t#1|)))) (-15 -3329 ((-656 (-962 |t#1|)) $)) (-15 -2047 ((-112) $)) (-15 -2413 ($ $ (-656 (-656 (-962 |t#1|))) (-656 (-173)) (-173))) (-15 -2413 ($ $ (-656 (-656 (-656 |t#1|))) (-656 (-173)) (-173))) (-15 -2413 ($ $ (-656 (-656 (-962 |t#1|))) (-112) (-112))) (-15 -2413 ($ $ (-656 (-656 (-656 |t#1|))) (-112) (-112))) (-15 -2413 ($ (-656 (-656 (-962 |t#1|))))) (-15 -2413 ($ (-656 (-656 (-962 |t#1|))) (-112) (-112))) (-15 -2413 ((-656 (-656 (-962 |t#1|))) $)) (-15 -2960 ((-112) $)) (-15 -1395 ((-656 (-962 |t#1|)) $)) (-15 -4067 ((-656 (-656 (-656 (-783)))) $)) (-15 -2317 ((-656 (-656 (-656 (-962 |t#1|)))) $)) (-15 -2730 ((-656 (-656 (-173))) $)) (-15 -2211 ((-656 (-173)) $)) (-15 -3501 ((-2 (|:| -4147 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $)) (-15 -4352 ($ $)) (-15 -2404 ((-1185 3 |t#1|) $)) (-15 -3569 ((-876) $)))) (((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 184) (($ (-1202)) NIL) (((-1202) $) 7)) (-2708 (((-112) $ (|[\|\|]| (-536))) 19) (((-112) $ (|[\|\|]| (-220))) 23) (((-112) $ (|[\|\|]| (-688))) 27) (((-112) $ (|[\|\|]| (-1298))) 31) (((-112) $ (|[\|\|]| (-139))) 35) (((-112) $ (|[\|\|]| (-618))) 39) (((-112) $ (|[\|\|]| (-134))) 43) (((-112) $ (|[\|\|]| (-1136))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-693))) 55) (((-112) $ (|[\|\|]| (-529))) 59) (((-112) $ (|[\|\|]| (-1087))) 63) (((-112) $ (|[\|\|]| (-1299))) 67) (((-112) $ (|[\|\|]| (-537))) 71) (((-112) $ (|[\|\|]| (-1172))) 75) (((-112) $ (|[\|\|]| (-155))) 79) (((-112) $ (|[\|\|]| (-683))) 83) (((-112) $ (|[\|\|]| (-321))) 87) (((-112) $ (|[\|\|]| (-1057))) 91) (((-112) $ (|[\|\|]| (-182))) 95) (((-112) $ (|[\|\|]| (-991))) 99) (((-112) $ (|[\|\|]| (-1094))) 103) (((-112) $ (|[\|\|]| (-1111))) 107) (((-112) $ (|[\|\|]| (-1117))) 111) (((-112) $ (|[\|\|]| (-638))) 115) (((-112) $ (|[\|\|]| (-1187))) 119) (((-112) $ (|[\|\|]| (-157))) 123) (((-112) $ (|[\|\|]| (-138))) 127) (((-112) $ (|[\|\|]| (-490))) 131) (((-112) $ (|[\|\|]| (-604))) 135) (((-112) $ (|[\|\|]| (-518))) 139) (((-112) $ (|[\|\|]| (-1179))) 143) (((-112) $ (|[\|\|]| (-576))) 147)) (-4055 (((-112) $ $) NIL)) (-1922 (((-536) $) 20) (((-220) $) 24) (((-688) $) 28) (((-1298) $) 32) (((-139) $) 36) (((-618) $) 40) (((-134) $) 44) (((-1136) $) 48) (((-96) $) 52) (((-693) $) 56) (((-529) $) 60) (((-1087) $) 64) (((-1299) $) 68) (((-537) $) 72) (((-1172) $) 76) (((-155) $) 80) (((-683) $) 84) (((-321) $) 88) (((-1057) $) 92) (((-182) $) 96) (((-991) $) 100) (((-1094) $) 104) (((-1111) $) 108) (((-1117) $) 112) (((-638) $) 116) (((-1187) $) 120) (((-157) $) 124) (((-138) $) 128) (((-490) $) 132) (((-604) $) 136) (((-518) $) 140) (((-1179) $) 144) (((-576) $) 148)) (-2925 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 184) (($ (-1202)) NIL) (((-1202) $) 7)) (-2707 (((-112) $ (|[\|\|]| (-536))) 19) (((-112) $ (|[\|\|]| (-220))) 23) (((-112) $ (|[\|\|]| (-688))) 27) (((-112) $ (|[\|\|]| (-1298))) 31) (((-112) $ (|[\|\|]| (-139))) 35) (((-112) $ (|[\|\|]| (-618))) 39) (((-112) $ (|[\|\|]| (-134))) 43) (((-112) $ (|[\|\|]| (-1136))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-693))) 55) (((-112) $ (|[\|\|]| (-529))) 59) (((-112) $ (|[\|\|]| (-1087))) 63) (((-112) $ (|[\|\|]| (-1299))) 67) (((-112) $ (|[\|\|]| (-537))) 71) (((-112) $ (|[\|\|]| (-1172))) 75) (((-112) $ (|[\|\|]| (-155))) 79) (((-112) $ (|[\|\|]| (-683))) 83) (((-112) $ (|[\|\|]| (-321))) 87) (((-112) $ (|[\|\|]| (-1057))) 91) (((-112) $ (|[\|\|]| (-182))) 95) (((-112) $ (|[\|\|]| (-991))) 99) (((-112) $ (|[\|\|]| (-1094))) 103) (((-112) $ (|[\|\|]| (-1111))) 107) (((-112) $ (|[\|\|]| (-1117))) 111) (((-112) $ (|[\|\|]| (-638))) 115) (((-112) $ (|[\|\|]| (-1187))) 119) (((-112) $ (|[\|\|]| (-157))) 123) (((-112) $ (|[\|\|]| (-138))) 127) (((-112) $ (|[\|\|]| (-490))) 131) (((-112) $ (|[\|\|]| (-604))) 135) (((-112) $ (|[\|\|]| (-518))) 139) (((-112) $ (|[\|\|]| (-1179))) 143) (((-112) $ (|[\|\|]| (-576))) 147)) (-2399 (((-112) $ $) NIL)) (-1922 (((-536) $) 20) (((-220) $) 24) (((-688) $) 28) (((-1298) $) 32) (((-139) $) 36) (((-618) $) 40) (((-134) $) 44) (((-1136) $) 48) (((-96) $) 52) (((-693) $) 56) (((-529) $) 60) (((-1087) $) 64) (((-1299) $) 68) (((-537) $) 72) (((-1172) $) 76) (((-155) $) 80) (((-683) $) 84) (((-321) $) 88) (((-1057) $) 92) (((-182) $) 96) (((-991) $) 100) (((-1094) $) 104) (((-1111) $) 108) (((-1117) $) 112) (((-638) $) 116) (((-1187) $) 120) (((-157) $) 124) (((-138) $) 128) (((-490) $) 132) (((-604) $) 136) (((-518) $) 140) (((-1179) $) 144) (((-576) $) 148)) (-2924 (((-112) $ $) NIL))) (((-1156) (-1158)) (T -1156)) NIL (-1158) -((-4343 (((-656 (-1202)) (-1179)) 9))) -(((-1157) (-10 -7 (-15 -4343 ((-656 (-1202)) (-1179))))) (T -1157)) -((-4343 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-656 (-1202))) (-5 *1 (-1157))))) -(-10 -7 (-15 -4343 ((-656 (-1202)) (-1179)))) -((-3489 (((-112) $ $) 7)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12) (($ (-1202)) 17) (((-1202) $) 16)) (-2708 (((-112) $ (|[\|\|]| (-536))) 85) (((-112) $ (|[\|\|]| (-220))) 83) (((-112) $ (|[\|\|]| (-688))) 81) (((-112) $ (|[\|\|]| (-1298))) 79) (((-112) $ (|[\|\|]| (-139))) 77) (((-112) $ (|[\|\|]| (-618))) 75) (((-112) $ (|[\|\|]| (-134))) 73) (((-112) $ (|[\|\|]| (-1136))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-693))) 67) (((-112) $ (|[\|\|]| (-529))) 65) (((-112) $ (|[\|\|]| (-1087))) 63) (((-112) $ (|[\|\|]| (-1299))) 61) (((-112) $ (|[\|\|]| (-537))) 59) (((-112) $ (|[\|\|]| (-1172))) 57) (((-112) $ (|[\|\|]| (-155))) 55) (((-112) $ (|[\|\|]| (-683))) 53) (((-112) $ (|[\|\|]| (-321))) 51) (((-112) $ (|[\|\|]| (-1057))) 49) (((-112) $ (|[\|\|]| (-182))) 47) (((-112) $ (|[\|\|]| (-991))) 45) (((-112) $ (|[\|\|]| (-1094))) 43) (((-112) $ (|[\|\|]| (-1111))) 41) (((-112) $ (|[\|\|]| (-1117))) 39) (((-112) $ (|[\|\|]| (-638))) 37) (((-112) $ (|[\|\|]| (-1187))) 35) (((-112) $ (|[\|\|]| (-157))) 33) (((-112) $ (|[\|\|]| (-138))) 31) (((-112) $ (|[\|\|]| (-490))) 29) (((-112) $ (|[\|\|]| (-604))) 27) (((-112) $ (|[\|\|]| (-518))) 25) (((-112) $ (|[\|\|]| (-1179))) 23) (((-112) $ (|[\|\|]| (-576))) 21)) (-4055 (((-112) $ $) 6)) (-1922 (((-536) $) 84) (((-220) $) 82) (((-688) $) 80) (((-1298) $) 78) (((-139) $) 76) (((-618) $) 74) (((-134) $) 72) (((-1136) $) 70) (((-96) $) 68) (((-693) $) 66) (((-529) $) 64) (((-1087) $) 62) (((-1299) $) 60) (((-537) $) 58) (((-1172) $) 56) (((-155) $) 54) (((-683) $) 52) (((-321) $) 50) (((-1057) $) 48) (((-182) $) 46) (((-991) $) 44) (((-1094) $) 42) (((-1111) $) 40) (((-1117) $) 38) (((-638) $) 36) (((-1187) $) 34) (((-157) $) 32) (((-138) $) 30) (((-490) $) 28) (((-604) $) 26) (((-518) $) 24) (((-1179) $) 22) (((-576) $) 20)) (-2925 (((-112) $ $) 8))) +((-4342 (((-656 (-1202)) (-1179)) 9))) +(((-1157) (-10 -7 (-15 -4342 ((-656 (-1202)) (-1179))))) (T -1157)) +((-4342 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-656 (-1202))) (-5 *1 (-1157))))) +(-10 -7 (-15 -4342 ((-656 (-1202)) (-1179)))) +((-3488 (((-112) $ $) 7)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ (-1202)) 17) (((-1202) $) 16)) (-2707 (((-112) $ (|[\|\|]| (-536))) 85) (((-112) $ (|[\|\|]| (-220))) 83) (((-112) $ (|[\|\|]| (-688))) 81) (((-112) $ (|[\|\|]| (-1298))) 79) (((-112) $ (|[\|\|]| (-139))) 77) (((-112) $ (|[\|\|]| (-618))) 75) (((-112) $ (|[\|\|]| (-134))) 73) (((-112) $ (|[\|\|]| (-1136))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-693))) 67) (((-112) $ (|[\|\|]| (-529))) 65) (((-112) $ (|[\|\|]| (-1087))) 63) (((-112) $ (|[\|\|]| (-1299))) 61) (((-112) $ (|[\|\|]| (-537))) 59) (((-112) $ (|[\|\|]| (-1172))) 57) (((-112) $ (|[\|\|]| (-155))) 55) (((-112) $ (|[\|\|]| (-683))) 53) (((-112) $ (|[\|\|]| (-321))) 51) (((-112) $ (|[\|\|]| (-1057))) 49) (((-112) $ (|[\|\|]| (-182))) 47) (((-112) $ (|[\|\|]| (-991))) 45) (((-112) $ (|[\|\|]| (-1094))) 43) (((-112) $ (|[\|\|]| (-1111))) 41) (((-112) $ (|[\|\|]| (-1117))) 39) (((-112) $ (|[\|\|]| (-638))) 37) (((-112) $ (|[\|\|]| (-1187))) 35) (((-112) $ (|[\|\|]| (-157))) 33) (((-112) $ (|[\|\|]| (-138))) 31) (((-112) $ (|[\|\|]| (-490))) 29) (((-112) $ (|[\|\|]| (-604))) 27) (((-112) $ (|[\|\|]| (-518))) 25) (((-112) $ (|[\|\|]| (-1179))) 23) (((-112) $ (|[\|\|]| (-576))) 21)) (-2399 (((-112) $ $) 6)) (-1922 (((-536) $) 84) (((-220) $) 82) (((-688) $) 80) (((-1298) $) 78) (((-139) $) 76) (((-618) $) 74) (((-134) $) 72) (((-1136) $) 70) (((-96) $) 68) (((-693) $) 66) (((-529) $) 64) (((-1087) $) 62) (((-1299) $) 60) (((-537) $) 58) (((-1172) $) 56) (((-155) $) 54) (((-683) $) 52) (((-321) $) 50) (((-1057) $) 48) (((-182) $) 46) (((-991) $) 44) (((-1094) $) 42) (((-1111) $) 40) (((-1117) $) 38) (((-638) $) 36) (((-1187) $) 34) (((-157) $) 32) (((-138) $) 30) (((-490) $) 28) (((-604) $) 26) (((-518) $) 24) (((-1179) $) 22) (((-576) $) 20)) (-2924 (((-112) $ $) 8))) (((-1158) (-141)) (T -1158)) -((-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-536)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-220)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-688))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-688)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1298))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1298)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-139)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-618)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-134)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1136))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1136)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-96)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-693))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-693)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-529)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1087))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1087)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1299))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1299)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-537)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1172))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1172)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-155)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-683))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-683)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-321))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-321)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1057))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1057)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-182)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-991))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-991)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1094))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1094)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1111))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1111)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1117))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1117)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-638))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-638)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1187))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1187)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-157)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-138)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-490)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-604)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-518)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1179)))) (-2708 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-576))))) -(-13 (-1104) (-1283) (-10 -8 (-15 -2708 ((-112) $ (|[\|\|]| (-536)))) (-15 -1922 ((-536) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-220)))) (-15 -1922 ((-220) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-688)))) (-15 -1922 ((-688) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-1298)))) (-15 -1922 ((-1298) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-139)))) (-15 -1922 ((-139) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-618)))) (-15 -1922 ((-618) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-134)))) (-15 -1922 ((-134) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-1136)))) (-15 -1922 ((-1136) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-96)))) (-15 -1922 ((-96) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-693)))) (-15 -1922 ((-693) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-529)))) (-15 -1922 ((-529) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-1087)))) (-15 -1922 ((-1087) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-1299)))) (-15 -1922 ((-1299) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-537)))) (-15 -1922 ((-537) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-1172)))) (-15 -1922 ((-1172) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-155)))) (-15 -1922 ((-155) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-683)))) (-15 -1922 ((-683) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-321)))) (-15 -1922 ((-321) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-1057)))) (-15 -1922 ((-1057) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-182)))) (-15 -1922 ((-182) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-991)))) (-15 -1922 ((-991) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-1094)))) (-15 -1922 ((-1094) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-1111)))) (-15 -1922 ((-1111) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-1117)))) (-15 -1922 ((-1117) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-638)))) (-15 -1922 ((-638) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-1187)))) (-15 -1922 ((-1187) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-157)))) (-15 -1922 ((-157) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-138)))) (-15 -1922 ((-138) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-490)))) (-15 -1922 ((-490) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-604)))) (-15 -1922 ((-604) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-518)))) (-15 -1922 ((-518) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-1179)))) (-15 -1922 ((-1179) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-576)))) (-15 -1922 ((-576) $)))) +((-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-536)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-220)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-688))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-688)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1298))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1298)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-139)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-618)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-134)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1136))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1136)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-96)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-693))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-693)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-529)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1087))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1087)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1299))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1299)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-537)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1172))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1172)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-155)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-683))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-683)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-321))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-321)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1057))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1057)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-182)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-991))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-991)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1094))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1094)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1111))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1111)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1117))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1117)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-638))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-638)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1187))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1187)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-157)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-138)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-490)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-604)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-518)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1179)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-576))))) +(-13 (-1104) (-1283) (-10 -8 (-15 -2707 ((-112) $ (|[\|\|]| (-536)))) (-15 -1922 ((-536) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-220)))) (-15 -1922 ((-220) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-688)))) (-15 -1922 ((-688) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-1298)))) (-15 -1922 ((-1298) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-139)))) (-15 -1922 ((-139) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-618)))) (-15 -1922 ((-618) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-134)))) (-15 -1922 ((-134) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-1136)))) (-15 -1922 ((-1136) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-96)))) (-15 -1922 ((-96) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-693)))) (-15 -1922 ((-693) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-529)))) (-15 -1922 ((-529) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-1087)))) (-15 -1922 ((-1087) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-1299)))) (-15 -1922 ((-1299) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-537)))) (-15 -1922 ((-537) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-1172)))) (-15 -1922 ((-1172) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-155)))) (-15 -1922 ((-155) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-683)))) (-15 -1922 ((-683) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-321)))) (-15 -1922 ((-321) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-1057)))) (-15 -1922 ((-1057) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-182)))) (-15 -1922 ((-182) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-991)))) (-15 -1922 ((-991) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-1094)))) (-15 -1922 ((-1094) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-1111)))) (-15 -1922 ((-1111) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-1117)))) (-15 -1922 ((-1117) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-638)))) (-15 -1922 ((-638) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-1187)))) (-15 -1922 ((-1187) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-157)))) (-15 -1922 ((-157) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-138)))) (-15 -1922 ((-138) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-490)))) (-15 -1922 ((-490) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-604)))) (-15 -1922 ((-604) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-518)))) (-15 -1922 ((-518) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-1179)))) (-15 -1922 ((-1179) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-576)))) (-15 -1922 ((-576) $)))) (((-93) . T) ((-102) . T) ((-628 #0=(-1202)) . T) ((-625 (-876)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1121) . T) ((-1104) . T) ((-1238) . T) ((-1283) . T)) -((-4103 (((-1293) (-656 (-876))) 22) (((-1293) (-876)) 21)) (-2703 (((-1293) (-656 (-876))) 20) (((-1293) (-876)) 19)) (-2623 (((-1293) (-656 (-876))) 18) (((-1293) (-876)) 10) (((-1293) (-1179) (-876)) 16))) -(((-1159) (-10 -7 (-15 -2623 ((-1293) (-1179) (-876))) (-15 -2623 ((-1293) (-876))) (-15 -2703 ((-1293) (-876))) (-15 -4103 ((-1293) (-876))) (-15 -2623 ((-1293) (-656 (-876)))) (-15 -2703 ((-1293) (-656 (-876)))) (-15 -4103 ((-1293) (-656 (-876)))))) (T -1159)) -((-4103 (*1 *2 *3) (-12 (-5 *3 (-656 (-876))) (-5 *2 (-1293)) (-5 *1 (-1159)))) (-2703 (*1 *2 *3) (-12 (-5 *3 (-656 (-876))) (-5 *2 (-1293)) (-5 *1 (-1159)))) (-2623 (*1 *2 *3) (-12 (-5 *3 (-656 (-876))) (-5 *2 (-1293)) (-5 *1 (-1159)))) (-4103 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159)))) (-2703 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159)))) (-2623 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159)))) (-2623 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159))))) -(-10 -7 (-15 -2623 ((-1293) (-1179) (-876))) (-15 -2623 ((-1293) (-876))) (-15 -2703 ((-1293) (-876))) (-15 -4103 ((-1293) (-876))) (-15 -2623 ((-1293) (-656 (-876)))) (-15 -2703 ((-1293) (-656 (-876)))) (-15 -4103 ((-1293) (-656 (-876))))) -((-3667 (($ $ $) 10)) (-1854 (($ $) 9)) (-2221 (($ $ $) 13)) (-1918 (($ $ $) 15)) (-3775 (($ $ $) 12)) (-2089 (($ $ $) 14)) (-4386 (($ $) 17)) (-2097 (($ $) 16)) (-2122 (($ $) 6)) (-3625 (($ $ $) 11) (($ $) 7)) (-4000 (($ $ $) 8))) +((-1678 (((-1293) (-656 (-876))) 22) (((-1293) (-876)) 21)) (-1772 (((-1293) (-656 (-876))) 20) (((-1293) (-876)) 19)) (-2622 (((-1293) (-656 (-876))) 18) (((-1293) (-876)) 10) (((-1293) (-1179) (-876)) 16))) +(((-1159) (-10 -7 (-15 -2622 ((-1293) (-1179) (-876))) (-15 -2622 ((-1293) (-876))) (-15 -1772 ((-1293) (-876))) (-15 -1678 ((-1293) (-876))) (-15 -2622 ((-1293) (-656 (-876)))) (-15 -1772 ((-1293) (-656 (-876)))) (-15 -1678 ((-1293) (-656 (-876)))))) (T -1159)) +((-1678 (*1 *2 *3) (-12 (-5 *3 (-656 (-876))) (-5 *2 (-1293)) (-5 *1 (-1159)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-656 (-876))) (-5 *2 (-1293)) (-5 *1 (-1159)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-656 (-876))) (-5 *2 (-1293)) (-5 *1 (-1159)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159))))) +(-10 -7 (-15 -2622 ((-1293) (-1179) (-876))) (-15 -2622 ((-1293) (-876))) (-15 -1772 ((-1293) (-876))) (-15 -1678 ((-1293) (-876))) (-15 -2622 ((-1293) (-656 (-876)))) (-15 -1772 ((-1293) (-656 (-876)))) (-15 -1678 ((-1293) (-656 (-876))))) +((-3038 (($ $ $) 10)) (-3452 (($ $) 9)) (-3849 (($ $ $) 13)) (-2767 (($ $ $) 15)) (-1629 (($ $ $) 12)) (-1888 (($ $ $) 14)) (-2612 (($ $) 17)) (-1948 (($ $) 16)) (-4143 (($ $) 6)) (-3902 (($ $ $) 11) (($ $) 7)) (-3198 (($ $ $) 8))) (((-1160) (-141)) (T -1160)) -((-4386 (*1 *1 *1) (-4 *1 (-1160))) (-2097 (*1 *1 *1) (-4 *1 (-1160))) (-1918 (*1 *1 *1 *1) (-4 *1 (-1160))) (-2089 (*1 *1 *1 *1) (-4 *1 (-1160))) (-2221 (*1 *1 *1 *1) (-4 *1 (-1160))) (-3775 (*1 *1 *1 *1) (-4 *1 (-1160))) (-3625 (*1 *1 *1 *1) (-4 *1 (-1160))) (-3667 (*1 *1 *1 *1) (-4 *1 (-1160))) (-1854 (*1 *1 *1) (-4 *1 (-1160))) (-4000 (*1 *1 *1 *1) (-4 *1 (-1160))) (-3625 (*1 *1 *1) (-4 *1 (-1160))) (-2122 (*1 *1 *1) (-4 *1 (-1160)))) -(-13 (-10 -8 (-15 -2122 ($ $)) (-15 -3625 ($ $)) (-15 -4000 ($ $ $)) (-15 -1854 ($ $)) (-15 -3667 ($ $ $)) (-15 -3625 ($ $ $)) (-15 -3775 ($ $ $)) (-15 -2221 ($ $ $)) (-15 -2089 ($ $ $)) (-15 -1918 ($ $ $)) (-15 -2097 ($ $)) (-15 -4386 ($ $)))) -((-3489 (((-112) $ $) 44)) (-3106 ((|#1| $) 17)) (-4035 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-1545 (((-112) $) 19)) (-3296 (($ $ |#1|) 30)) (-2827 (($ $ (-112)) 32)) (-4070 (($ $) 33)) (-2139 (($ $ |#2|) 31)) (-3699 (((-1179) $) NIL)) (-4270 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-1450 (((-1141) $) NIL)) (-3973 (((-112) $) 16)) (-4225 (($) 13)) (-1870 (($ $) 29)) (-3582 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -3988 |#2|))) 23) (((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -3988 |#2|)))) 26) (((-656 $) |#1| (-656 |#2|)) 28)) (-3987 ((|#2| $) 18)) (-3570 (((-876) $) 53)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 42))) -(((-1161 |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -4225 ($)) (-15 -3973 ((-112) $)) (-15 -3106 (|#1| $)) (-15 -3987 (|#2| $)) (-15 -1545 ((-112) $)) (-15 -3582 ($ |#1| |#2| (-112))) (-15 -3582 ($ |#1| |#2|)) (-15 -3582 ($ (-2 (|:| |val| |#1|) (|:| -3988 |#2|)))) (-15 -3582 ((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -3988 |#2|))))) (-15 -3582 ((-656 $) |#1| (-656 |#2|))) (-15 -1870 ($ $)) (-15 -3296 ($ $ |#1|)) (-15 -2139 ($ $ |#2|)) (-15 -2827 ($ $ (-112))) (-15 -4070 ($ $)) (-15 -4270 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -4035 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1121) (-34)) (-13 (-1121) (-34))) (T -1161)) -((-4225 (*1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))))) (-3106 (*1 *2 *1) (-12 (-4 *2 (-13 (-1121) (-34))) (-5 *1 (-1161 *2 *3)) (-4 *3 (-13 (-1121) (-34))))) (-3987 (*1 *2 *1) (-12 (-4 *2 (-13 (-1121) (-34))) (-5 *1 (-1161 *3 *2)) (-4 *3 (-13 (-1121) (-34))))) (-1545 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))))) (-3582 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-3582 (*1 *1 *2 *3) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-3582 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3988 *4))) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1161 *3 *4)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |val| *4) (|:| -3988 *5)))) (-4 *4 (-13 (-1121) (-34))) (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-656 (-1161 *4 *5))) (-5 *1 (-1161 *4 *5)))) (-3582 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *5)) (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-656 (-1161 *3 *5))) (-5 *1 (-1161 *3 *5)) (-4 *3 (-13 (-1121) (-34))))) (-1870 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-3296 (*1 *1 *1 *2) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-2139 (*1 *1 *1 *2) (-12 (-5 *1 (-1161 *3 *2)) (-4 *3 (-13 (-1121) (-34))) (-4 *2 (-13 (-1121) (-34))))) (-2827 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))))) (-4070 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-4270 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1121) (-34))) (-4 *6 (-13 (-1121) (-34))) (-5 *2 (-112)) (-5 *1 (-1161 *5 *6)))) (-4035 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-112)) (-5 *1 (-1161 *4 *5)) (-4 *4 (-13 (-1121) (-34)))))) -(-13 (-1121) (-10 -8 (-15 -4225 ($)) (-15 -3973 ((-112) $)) (-15 -3106 (|#1| $)) (-15 -3987 (|#2| $)) (-15 -1545 ((-112) $)) (-15 -3582 ($ |#1| |#2| (-112))) (-15 -3582 ($ |#1| |#2|)) (-15 -3582 ($ (-2 (|:| |val| |#1|) (|:| -3988 |#2|)))) (-15 -3582 ((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -3988 |#2|))))) (-15 -3582 ((-656 $) |#1| (-656 |#2|))) (-15 -1870 ($ $)) (-15 -3296 ($ $ |#1|)) (-15 -2139 ($ $ |#2|)) (-15 -2827 ($ $ (-112))) (-15 -4070 ($ $)) (-15 -4270 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -4035 ((-112) $ $ (-1 (-112) |#2| |#2|))))) -((-3489 (((-112) $ $) NIL (|has| (-1161 |#1| |#2|) (-102)))) (-3106 (((-1161 |#1| |#2|) $) 27)) (-3242 (($ $) 91)) (-2307 (((-112) (-1161 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-2549 (($ $ $ (-656 (-1161 |#1| |#2|))) 108) (($ $ $ (-656 (-1161 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-1808 (((-112) $ (-783)) NIL)) (-2647 (((-1161 |#1| |#2|) $ (-1161 |#1| |#2|)) 46 (|has| $ (-6 -4466)))) (-3756 (((-1161 |#1| |#2|) $ "value" (-1161 |#1| |#2|)) NIL (|has| $ (-6 -4466)))) (-1894 (($ $ (-656 $)) 44 (|has| $ (-6 -4466)))) (-3886 (($) NIL T CONST)) (-2531 (((-656 (-2 (|:| |val| |#1|) (|:| -3988 |#2|))) $) 95)) (-1671 (($ (-1161 |#1| |#2|) $) 42)) (-3946 (($ (-1161 |#1| |#2|) $) 34)) (-3966 (((-656 (-1161 |#1| |#2|)) $) NIL (|has| $ (-6 -4465)))) (-2387 (((-656 $) $) 54)) (-3013 (((-112) (-1161 |#1| |#2|) $) 97)) (-3295 (((-112) $ $) NIL (|has| (-1161 |#1| |#2|) (-1121)))) (-3870 (((-112) $ (-783)) NIL)) (-2014 (((-656 (-1161 |#1| |#2|)) $) 58 (|has| $ (-6 -4465)))) (-1612 (((-112) (-1161 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-1161 |#1| |#2|) (-1121))))) (-4323 (($ (-1 (-1161 |#1| |#2|) (-1161 |#1| |#2|)) $) 50 (|has| $ (-6 -4466)))) (-4117 (($ (-1 (-1161 |#1| |#2|) (-1161 |#1| |#2|)) $) 49)) (-1330 (((-112) $ (-783)) NIL)) (-2353 (((-656 (-1161 |#1| |#2|)) $) 56)) (-3443 (((-112) $) 45)) (-3699 (((-1179) $) NIL (|has| (-1161 |#1| |#2|) (-1121)))) (-1450 (((-1141) $) NIL (|has| (-1161 |#1| |#2|) (-1121)))) (-2561 (((-3 $ "failed") $) 89)) (-4320 (((-112) (-1 (-112) (-1161 |#1| |#2|)) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 (-1161 |#1| |#2|)))) NIL (-12 (|has| (-1161 |#1| |#2|) (-319 (-1161 |#1| |#2|))) (|has| (-1161 |#1| |#2|) (-1121)))) (($ $ (-304 (-1161 |#1| |#2|))) NIL (-12 (|has| (-1161 |#1| |#2|) (-319 (-1161 |#1| |#2|))) (|has| (-1161 |#1| |#2|) (-1121)))) (($ $ (-1161 |#1| |#2|) (-1161 |#1| |#2|)) NIL (-12 (|has| (-1161 |#1| |#2|) (-319 (-1161 |#1| |#2|))) (|has| (-1161 |#1| |#2|) (-1121)))) (($ $ (-656 (-1161 |#1| |#2|)) (-656 (-1161 |#1| |#2|))) NIL (-12 (|has| (-1161 |#1| |#2|) (-319 (-1161 |#1| |#2|))) (|has| (-1161 |#1| |#2|) (-1121))))) (-4040 (((-112) $ $) 53)) (-3973 (((-112) $) 24)) (-4225 (($) 26)) (-2797 (((-1161 |#1| |#2|) $ "value") NIL)) (-2789 (((-576) $ $) NIL)) (-3617 (((-112) $) 47)) (-1460 (((-783) (-1 (-112) (-1161 |#1| |#2|)) $) NIL (|has| $ (-6 -4465))) (((-783) (-1161 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-1161 |#1| |#2|) (-1121))))) (-1870 (($ $) 52)) (-3582 (($ (-1161 |#1| |#2|)) 10) (($ |#1| |#2| (-656 $)) 13) (($ |#1| |#2| (-656 (-1161 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-656 |#2|)) 18)) (-1347 (((-656 |#2|) $) 96)) (-3570 (((-876) $) 87 (|has| (-1161 |#1| |#2|) (-625 (-876))))) (-2902 (((-656 $) $) 31)) (-2621 (((-112) $ $) NIL (|has| (-1161 |#1| |#2|) (-1121)))) (-4055 (((-112) $ $) NIL (|has| (-1161 |#1| |#2|) (-102)))) (-3321 (((-112) (-1 (-112) (-1161 |#1| |#2|)) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 70 (|has| (-1161 |#1| |#2|) (-102)))) (-3503 (((-783) $) 64 (|has| $ (-6 -4465))))) -(((-1162 |#1| |#2|) (-13 (-1031 (-1161 |#1| |#2|)) (-10 -8 (-6 -4466) (-6 -4465) (-15 -2561 ((-3 $ "failed") $)) (-15 -3242 ($ $)) (-15 -3582 ($ (-1161 |#1| |#2|))) (-15 -3582 ($ |#1| |#2| (-656 $))) (-15 -3582 ($ |#1| |#2| (-656 (-1161 |#1| |#2|)))) (-15 -3582 ($ |#1| |#2| |#1| (-656 |#2|))) (-15 -1347 ((-656 |#2|) $)) (-15 -2531 ((-656 (-2 (|:| |val| |#1|) (|:| -3988 |#2|))) $)) (-15 -3013 ((-112) (-1161 |#1| |#2|) $)) (-15 -2307 ((-112) (-1161 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3946 ($ (-1161 |#1| |#2|) $)) (-15 -1671 ($ (-1161 |#1| |#2|) $)) (-15 -2549 ($ $ $ (-656 (-1161 |#1| |#2|)))) (-15 -2549 ($ $ $ (-656 (-1161 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1121) (-34)) (-13 (-1121) (-34))) (T -1162)) -((-2561 (*1 *1 *1) (|partial| -12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-3242 (*1 *1 *1) (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-3582 (*1 *1 *2) (-12 (-5 *2 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4)))) (-3582 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-656 (-1162 *2 *3))) (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-3582 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-656 (-1161 *2 *3))) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))) (-5 *1 (-1162 *2 *3)))) (-3582 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-13 (-1121) (-34))) (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1121) (-34))))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-656 *4)) (-5 *1 (-1162 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))))) (-2531 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3988 *4)))) (-5 *1 (-1162 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))))) (-3013 (*1 *2 *3 *1) (-12 (-5 *3 (-1161 *4 *5)) (-4 *4 (-13 (-1121) (-34))) (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-112)) (-5 *1 (-1162 *4 *5)))) (-2307 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1161 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1121) (-34))) (-4 *6 (-13 (-1121) (-34))) (-5 *2 (-112)) (-5 *1 (-1162 *5 *6)))) (-3946 (*1 *1 *2 *1) (-12 (-5 *2 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4)))) (-1671 (*1 *1 *2 *1) (-12 (-5 *2 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4)))) (-2549 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-656 (-1161 *3 *4))) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4)))) (-2549 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1161 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1121) (-34))) (-4 *5 (-13 (-1121) (-34))) (-5 *1 (-1162 *4 *5))))) -(-13 (-1031 (-1161 |#1| |#2|)) (-10 -8 (-6 -4466) (-6 -4465) (-15 -2561 ((-3 $ "failed") $)) (-15 -3242 ($ $)) (-15 -3582 ($ (-1161 |#1| |#2|))) (-15 -3582 ($ |#1| |#2| (-656 $))) (-15 -3582 ($ |#1| |#2| (-656 (-1161 |#1| |#2|)))) (-15 -3582 ($ |#1| |#2| |#1| (-656 |#2|))) (-15 -1347 ((-656 |#2|) $)) (-15 -2531 ((-656 (-2 (|:| |val| |#1|) (|:| -3988 |#2|))) $)) (-15 -3013 ((-112) (-1161 |#1| |#2|) $)) (-15 -2307 ((-112) (-1161 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3946 ($ (-1161 |#1| |#2|) $)) (-15 -1671 ($ (-1161 |#1| |#2|) $)) (-15 -2549 ($ $ $ (-656 (-1161 |#1| |#2|)))) (-15 -2549 ($ $ $ (-656 (-1161 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-3244 (($ $) NIL)) (-2210 ((|#2| $) NIL)) (-2283 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-2133 (($ (-701 |#2|)) 56)) (-3240 (((-112) $) NIL)) (-1808 (((-112) $ (-783)) NIL)) (-1787 (($ |#2|) 14)) (-3886 (($) NIL T CONST)) (-2030 (($ $) 69 (|has| |#2| (-317)))) (-4093 (((-245 |#1| |#2|) $ (-576)) 42)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-2860 (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) ((|#2| $) NIL)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-1561 (((-3 $ "failed") $) 83)) (-3734 (((-783) $) 71 (|has| |#2| (-568)))) (-4274 ((|#2| $ (-576) (-576)) NIL)) (-3966 (((-656 |#2|) $) NIL (|has| $ (-6 -4465)))) (-4193 (((-112) $) NIL)) (-1394 (((-783) $) 73 (|has| |#2| (-568)))) (-2196 (((-656 (-245 |#1| |#2|)) $) 77 (|has| |#2| (-568)))) (-1689 (((-783) $) NIL)) (-4141 (($ |#2|) 25)) (-1699 (((-783) $) NIL)) (-3870 (((-112) $ (-783)) NIL)) (-2471 ((|#2| $) 67 (|has| |#2| (-6 (-4467 "*"))))) (-4267 (((-576) $) NIL)) (-1952 (((-576) $) NIL)) (-2014 (((-656 |#2|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-3900 (((-576) $) NIL)) (-2569 (((-576) $) NIL)) (-2467 (($ (-656 (-656 |#2|))) 37)) (-4323 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1907 (((-656 (-656 |#2|)) $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-3699 (((-1179) $) NIL)) (-2807 (((-3 $ "failed") $) 80 (|has| |#2| (-374)))) (-1450 (((-1141) $) NIL)) (-3476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-4320 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#2| $ (-576) (-576) |#2|) NIL) ((|#2| $ (-576) (-576)) NIL)) (-2775 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-3367 ((|#2| $) NIL)) (-2784 (($ (-656 |#2|)) 50)) (-4002 (((-112) $) NIL)) (-2625 (((-245 |#1| |#2|) $) NIL)) (-4223 ((|#2| $) 65 (|has| |#2| (-6 (-4467 "*"))))) (-1460 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-1870 (($ $) NIL)) (-4172 (((-548) $) 89 (|has| |#2| (-626 (-548))))) (-2129 (((-245 |#1| |#2|) $ (-576)) 44)) (-3570 (((-876) $) 47) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1059 (-419 (-576))))) (($ |#2|) NIL) (((-701 |#2|) $) 52)) (-3996 (((-783)) 23 T CONST)) (-4055 (((-112) $ $) NIL)) (-3321 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465)))) (-3830 (((-112) $) NIL)) (-2721 (($) 16 T CONST)) (-2732 (($) 21 T CONST)) (-2020 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) 63) (($ $ (-576)) 82 (|has| |#2| (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) 59) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) 61)) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-1163 |#1| |#2|) (-13 (-1144 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-10 -8 (-15 -4141 ($ |#2|)) (-15 -3244 ($ $)) (-15 -2133 ($ (-701 |#2|))) (IF (|has| |#2| (-6 (-4467 "*"))) (-6 -4454) |%noBranch|) (IF (|has| |#2| (-6 (-4467 "*"))) (IF (|has| |#2| (-6 -4462)) (-6 -4462) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) (-783) (-1070)) (T -1163)) -((-4141 (*1 *1 *2) (-12 (-5 *1 (-1163 *3 *2)) (-14 *3 (-783)) (-4 *2 (-1070)))) (-3244 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-783)) (-4 *3 (-1070)))) (-2133 (*1 *1 *2) (-12 (-5 *2 (-701 *4)) (-4 *4 (-1070)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-783))))) -(-13 (-1144 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-10 -8 (-15 -4141 ($ |#2|)) (-15 -3244 ($ $)) (-15 -2133 ($ (-701 |#2|))) (IF (|has| |#2| (-6 (-4467 "*"))) (-6 -4454) |%noBranch|) (IF (|has| |#2| (-6 (-4467 "*"))) (IF (|has| |#2| (-6 -4462)) (-6 -4462) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) -((-3343 (($ $) 19)) (-3350 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-2167 (((-112) $ $) 24)) (-4056 (($ $) 17)) (-2797 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) NIL) (($ $ (-1255 (-576))) NIL) (($ $ $) 31)) (-3570 (($ (-145)) 29) (((-876) $) NIL))) -(((-1164 |#1|) (-10 -8 (-15 -3570 ((-876) |#1|)) (-15 -2797 (|#1| |#1| |#1|)) (-15 -3350 (|#1| |#1| (-142))) (-15 -3350 (|#1| |#1| (-145))) (-15 -3570 (|#1| (-145))) (-15 -2167 ((-112) |#1| |#1|)) (-15 -3343 (|#1| |#1|)) (-15 -4056 (|#1| |#1|)) (-15 -2797 (|#1| |#1| (-1255 (-576)))) (-15 -2797 ((-145) |#1| (-576))) (-15 -2797 ((-145) |#1| (-576) (-145)))) (-1165)) (T -1164)) -NIL -(-10 -8 (-15 -3570 ((-876) |#1|)) (-15 -2797 (|#1| |#1| |#1|)) (-15 -3350 (|#1| |#1| (-142))) (-15 -3350 (|#1| |#1| (-145))) (-15 -3570 (|#1| (-145))) (-15 -2167 ((-112) |#1| |#1|)) (-15 -3343 (|#1| |#1|)) (-15 -4056 (|#1| |#1|)) (-15 -2797 (|#1| |#1| (-1255 (-576)))) (-15 -2797 ((-145) |#1| (-576))) (-15 -2797 ((-145) |#1| (-576) (-145)))) -((-3489 (((-112) $ $) 20 (|has| (-145) (-102)))) (-3557 (($ $) 123)) (-3343 (($ $) 124)) (-3350 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-2047 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4466)))) (-2141 (((-112) $ $) 121)) (-2117 (((-112) $ $ (-576)) 120)) (-2488 (((-656 $) $ (-145)) 113) (((-656 $) $ (-142)) 112)) (-1710 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-861)))) (-4298 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4466))) (($ $) 91 (-12 (|has| (-145) (-861)) (|has| $ (-6 -4466))))) (-1795 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-861)))) (-1808 (((-112) $ (-783)) 8)) (-3756 (((-145) $ (-576) (-145)) 53 (|has| $ (-6 -4466))) (((-145) $ (-1255 (-576)) (-145)) 60 (|has| $ (-6 -4466)))) (-1974 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4465)))) (-3886 (($) 7 T CONST)) (-2638 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-3990 (($ $) 93 (|has| $ (-6 -4466)))) (-3836 (($ $) 103)) (-3716 (($ $ (-1255 (-576)) $) 117)) (-1415 (($ $) 80 (-12 (|has| (-145) (-1121)) (|has| $ (-6 -4465))))) (-3946 (($ (-145) $) 79 (-12 (|has| (-145) (-1121)) (|has| $ (-6 -4465)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4465)))) (-3686 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1121)) (|has| $ (-6 -4465)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4465))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4465)))) (-4335 (((-145) $ (-576) (-145)) 54 (|has| $ (-6 -4466)))) (-4274 (((-145) $ (-576)) 52)) (-2167 (((-112) $ $) 122)) (-3660 (((-576) (-1 (-112) (-145)) $) 100) (((-576) (-145) $) 99 (|has| (-145) (-1121))) (((-576) (-145) $ (-576)) 98 (|has| (-145) (-1121))) (((-576) $ $ (-576)) 116) (((-576) (-142) $ (-576)) 115)) (-3966 (((-656 (-145)) $) 31 (|has| $ (-6 -4465)))) (-4141 (($ (-783) (-145)) 70)) (-3870 (((-112) $ (-783)) 9)) (-2924 (((-576) $) 44 (|has| (-576) (-861)))) (-3125 (($ $ $) 85 (|has| (-145) (-861)))) (-3391 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-861)))) (-2014 (((-656 (-145)) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1121)) (|has| $ (-6 -4465))))) (-2137 (((-576) $) 45 (|has| (-576) (-861)))) (-3133 (($ $ $) 86 (|has| (-145) (-861)))) (-1916 (((-112) $ $ (-145)) 118)) (-1358 (((-783) $ $ (-145)) 119)) (-4323 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-2936 (($ $) 125)) (-4056 (($ $) 126)) (-1330 (((-112) $ (-783)) 10)) (-2648 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-3699 (((-1179) $) 23 (|has| (-145) (-1121)))) (-2176 (($ (-145) $ (-576)) 62) (($ $ $ (-576)) 61)) (-4234 (((-656 (-576)) $) 47)) (-3354 (((-112) (-576) $) 48)) (-1450 (((-1141) $) 22 (|has| (-145) (-1121)))) (-3581 (((-145) $) 43 (|has| (-576) (-861)))) (-1541 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-4046 (($ $ (-145)) 42 (|has| $ (-6 -4466)))) (-4320 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 (-145)))) 27 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-304 (-145))) 26 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-656 (-145)) (-656 (-145))) 24 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121))))) (-4040 (((-112) $ $) 14)) (-3845 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4465)) (|has| (-145) (-1121))))) (-2281 (((-656 (-145)) $) 49)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-2797 (((-145) $ (-576) (-145)) 51) (((-145) $ (-576)) 50) (($ $ (-1255 (-576))) 71) (($ $ $) 105)) (-3466 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-1460 (((-783) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4465))) (((-783) (-145) $) 29 (-12 (|has| (-145) (-1121)) (|has| $ (-6 -4465))))) (-3025 (($ $ $ (-576)) 94 (|has| $ (-6 -4466)))) (-1870 (($ $) 13)) (-4172 (((-548) $) 81 (|has| (-145) (-626 (-548))))) (-3582 (($ (-656 (-145))) 72)) (-1615 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3570 (($ (-145)) 114) (((-876) $) 18 (|has| (-145) (-625 (-876))))) (-4055 (((-112) $ $) 21 (|has| (-145) (-102)))) (-3321 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4465)))) (-2992 (((-112) $ $) 87 (|has| (-145) (-861)))) (-2964 (((-112) $ $) 89 (|has| (-145) (-861)))) (-2925 (((-112) $ $) 19 (|has| (-145) (-102)))) (-2978 (((-112) $ $) 88 (|has| (-145) (-861)))) (-2950 (((-112) $ $) 90 (|has| (-145) (-861)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-2612 (*1 *1 *1) (-4 *1 (-1160))) (-1948 (*1 *1 *1) (-4 *1 (-1160))) (-2767 (*1 *1 *1 *1) (-4 *1 (-1160))) (-1888 (*1 *1 *1 *1) (-4 *1 (-1160))) (-3849 (*1 *1 *1 *1) (-4 *1 (-1160))) (-1629 (*1 *1 *1 *1) (-4 *1 (-1160))) (-3902 (*1 *1 *1 *1) (-4 *1 (-1160))) (-3038 (*1 *1 *1 *1) (-4 *1 (-1160))) (-3452 (*1 *1 *1) (-4 *1 (-1160))) (-3198 (*1 *1 *1 *1) (-4 *1 (-1160))) (-3902 (*1 *1 *1) (-4 *1 (-1160))) (-4143 (*1 *1 *1) (-4 *1 (-1160)))) +(-13 (-10 -8 (-15 -4143 ($ $)) (-15 -3902 ($ $)) (-15 -3198 ($ $ $)) (-15 -3452 ($ $)) (-15 -3038 ($ $ $)) (-15 -3902 ($ $ $)) (-15 -1629 ($ $ $)) (-15 -3849 ($ $ $)) (-15 -1888 ($ $ $)) (-15 -2767 ($ $ $)) (-15 -1948 ($ $)) (-15 -2612 ($ $)))) +((-3488 (((-112) $ $) 44)) (-3104 ((|#1| $) 17)) (-2230 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-3483 (((-112) $) 19)) (-3779 (($ $ |#1|) 30)) (-3586 (($ $ (-112)) 32)) (-2545 (($ $) 33)) (-4303 (($ $ |#2|) 31)) (-2046 (((-1179) $) NIL)) (-2744 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-1450 (((-1141) $) NIL)) (-2940 (((-112) $) 16)) (-3579 (($) 13)) (-1870 (($ $) 29)) (-3581 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -3987 |#2|))) 23) (((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -3987 |#2|)))) 26) (((-656 $) |#1| (-656 |#2|)) 28)) (-3986 ((|#2| $) 18)) (-3569 (((-876) $) 53)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 42))) +(((-1161 |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -3579 ($)) (-15 -2940 ((-112) $)) (-15 -3104 (|#1| $)) (-15 -3986 (|#2| $)) (-15 -3483 ((-112) $)) (-15 -3581 ($ |#1| |#2| (-112))) (-15 -3581 ($ |#1| |#2|)) (-15 -3581 ($ (-2 (|:| |val| |#1|) (|:| -3987 |#2|)))) (-15 -3581 ((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -3987 |#2|))))) (-15 -3581 ((-656 $) |#1| (-656 |#2|))) (-15 -1870 ($ $)) (-15 -3779 ($ $ |#1|)) (-15 -4303 ($ $ |#2|)) (-15 -3586 ($ $ (-112))) (-15 -2545 ($ $)) (-15 -2744 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2230 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1121) (-34)) (-13 (-1121) (-34))) (T -1161)) +((-3579 (*1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))))) (-3104 (*1 *2 *1) (-12 (-4 *2 (-13 (-1121) (-34))) (-5 *1 (-1161 *2 *3)) (-4 *3 (-13 (-1121) (-34))))) (-3986 (*1 *2 *1) (-12 (-4 *2 (-13 (-1121) (-34))) (-5 *1 (-1161 *3 *2)) (-4 *3 (-13 (-1121) (-34))))) (-3483 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))))) (-3581 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-3581 (*1 *1 *2 *3) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-3581 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3987 *4))) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1161 *3 *4)))) (-3581 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |val| *4) (|:| -3987 *5)))) (-4 *4 (-13 (-1121) (-34))) (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-656 (-1161 *4 *5))) (-5 *1 (-1161 *4 *5)))) (-3581 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *5)) (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-656 (-1161 *3 *5))) (-5 *1 (-1161 *3 *5)) (-4 *3 (-13 (-1121) (-34))))) (-1870 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-3779 (*1 *1 *1 *2) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-4303 (*1 *1 *1 *2) (-12 (-5 *1 (-1161 *3 *2)) (-4 *3 (-13 (-1121) (-34))) (-4 *2 (-13 (-1121) (-34))))) (-3586 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))))) (-2545 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-2744 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1121) (-34))) (-4 *6 (-13 (-1121) (-34))) (-5 *2 (-112)) (-5 *1 (-1161 *5 *6)))) (-2230 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-112)) (-5 *1 (-1161 *4 *5)) (-4 *4 (-13 (-1121) (-34)))))) +(-13 (-1121) (-10 -8 (-15 -3579 ($)) (-15 -2940 ((-112) $)) (-15 -3104 (|#1| $)) (-15 -3986 (|#2| $)) (-15 -3483 ((-112) $)) (-15 -3581 ($ |#1| |#2| (-112))) (-15 -3581 ($ |#1| |#2|)) (-15 -3581 ($ (-2 (|:| |val| |#1|) (|:| -3987 |#2|)))) (-15 -3581 ((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -3987 |#2|))))) (-15 -3581 ((-656 $) |#1| (-656 |#2|))) (-15 -1870 ($ $)) (-15 -3779 ($ $ |#1|)) (-15 -4303 ($ $ |#2|)) (-15 -3586 ($ $ (-112))) (-15 -2545 ($ $)) (-15 -2744 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2230 ((-112) $ $ (-1 (-112) |#2| |#2|))))) +((-3488 (((-112) $ $) NIL (|has| (-1161 |#1| |#2|) (-102)))) (-3104 (((-1161 |#1| |#2|) $) 27)) (-1334 (($ $) 91)) (-2208 (((-112) (-1161 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-2819 (($ $ $ (-656 (-1161 |#1| |#2|))) 108) (($ $ $ (-656 (-1161 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-4264 (((-112) $ (-783)) NIL)) (-2482 (((-1161 |#1| |#2|) $ (-1161 |#1| |#2|)) 46 (|has| $ (-6 -4465)))) (-3755 (((-1161 |#1| |#2|) $ "value" (-1161 |#1| |#2|)) NIL (|has| $ (-6 -4465)))) (-3829 (($ $ (-656 $)) 44 (|has| $ (-6 -4465)))) (-3404 (($) NIL T CONST)) (-2530 (((-656 (-2 (|:| |val| |#1|) (|:| -3987 |#2|))) $) 95)) (-2172 (($ (-1161 |#1| |#2|) $) 42)) (-3945 (($ (-1161 |#1| |#2|) $) 34)) (-3965 (((-656 (-1161 |#1| |#2|)) $) NIL (|has| $ (-6 -4464)))) (-1736 (((-656 $) $) 54)) (-2702 (((-112) (-1161 |#1| |#2|) $) 97)) (-3768 (((-112) $ $) NIL (|has| (-1161 |#1| |#2|) (-1121)))) (-1368 (((-112) $ (-783)) NIL)) (-2425 (((-656 (-1161 |#1| |#2|)) $) 58 (|has| $ (-6 -4464)))) (-2885 (((-112) (-1161 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-1161 |#1| |#2|) (-1121))))) (-4326 (($ (-1 (-1161 |#1| |#2|) (-1161 |#1| |#2|)) $) 50 (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-1161 |#1| |#2|) (-1161 |#1| |#2|)) $) 49)) (-2883 (((-112) $ (-783)) NIL)) (-2353 (((-656 (-1161 |#1| |#2|)) $) 56)) (-1508 (((-112) $) 45)) (-2046 (((-1179) $) NIL (|has| (-1161 |#1| |#2|) (-1121)))) (-1450 (((-1141) $) NIL (|has| (-1161 |#1| |#2|) (-1121)))) (-2945 (((-3 $ "failed") $) 89)) (-3252 (((-112) (-1 (-112) (-1161 |#1| |#2|)) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 (-1161 |#1| |#2|)))) NIL (-12 (|has| (-1161 |#1| |#2|) (-319 (-1161 |#1| |#2|))) (|has| (-1161 |#1| |#2|) (-1121)))) (($ $ (-304 (-1161 |#1| |#2|))) NIL (-12 (|has| (-1161 |#1| |#2|) (-319 (-1161 |#1| |#2|))) (|has| (-1161 |#1| |#2|) (-1121)))) (($ $ (-1161 |#1| |#2|) (-1161 |#1| |#2|)) NIL (-12 (|has| (-1161 |#1| |#2|) (-319 (-1161 |#1| |#2|))) (|has| (-1161 |#1| |#2|) (-1121)))) (($ $ (-656 (-1161 |#1| |#2|)) (-656 (-1161 |#1| |#2|))) NIL (-12 (|has| (-1161 |#1| |#2|) (-319 (-1161 |#1| |#2|))) (|has| (-1161 |#1| |#2|) (-1121))))) (-2252 (((-112) $ $) 53)) (-2940 (((-112) $) 24)) (-3579 (($) 26)) (-2796 (((-1161 |#1| |#2|) $ "value") NIL)) (-1335 (((-576) $ $) NIL)) (-3806 (((-112) $) 47)) (-1460 (((-783) (-1 (-112) (-1161 |#1| |#2|)) $) NIL (|has| $ (-6 -4464))) (((-783) (-1161 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-1161 |#1| |#2|) (-1121))))) (-1870 (($ $) 52)) (-3581 (($ (-1161 |#1| |#2|)) 10) (($ |#1| |#2| (-656 $)) 13) (($ |#1| |#2| (-656 (-1161 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-656 |#2|)) 18)) (-1347 (((-656 |#2|) $) 96)) (-3569 (((-876) $) 87 (|has| (-1161 |#1| |#2|) (-625 (-876))))) (-3059 (((-656 $) $) 31)) (-2247 (((-112) $ $) NIL (|has| (-1161 |#1| |#2|) (-1121)))) (-2399 (((-112) $ $) NIL (|has| (-1161 |#1| |#2|) (-102)))) (-2708 (((-112) (-1 (-112) (-1161 |#1| |#2|)) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 70 (|has| (-1161 |#1| |#2|) (-102)))) (-3502 (((-783) $) 64 (|has| $ (-6 -4464))))) +(((-1162 |#1| |#2|) (-13 (-1031 (-1161 |#1| |#2|)) (-10 -8 (-6 -4465) (-6 -4464) (-15 -2945 ((-3 $ "failed") $)) (-15 -1334 ($ $)) (-15 -3581 ($ (-1161 |#1| |#2|))) (-15 -3581 ($ |#1| |#2| (-656 $))) (-15 -3581 ($ |#1| |#2| (-656 (-1161 |#1| |#2|)))) (-15 -3581 ($ |#1| |#2| |#1| (-656 |#2|))) (-15 -1347 ((-656 |#2|) $)) (-15 -2530 ((-656 (-2 (|:| |val| |#1|) (|:| -3987 |#2|))) $)) (-15 -2702 ((-112) (-1161 |#1| |#2|) $)) (-15 -2208 ((-112) (-1161 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3945 ($ (-1161 |#1| |#2|) $)) (-15 -2172 ($ (-1161 |#1| |#2|) $)) (-15 -2819 ($ $ $ (-656 (-1161 |#1| |#2|)))) (-15 -2819 ($ $ $ (-656 (-1161 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1121) (-34)) (-13 (-1121) (-34))) (T -1162)) +((-2945 (*1 *1 *1) (|partial| -12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-1334 (*1 *1 *1) (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-3581 (*1 *1 *2) (-12 (-5 *2 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4)))) (-3581 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-656 (-1162 *2 *3))) (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-3581 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-656 (-1161 *2 *3))) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))) (-5 *1 (-1162 *2 *3)))) (-3581 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-13 (-1121) (-34))) (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1121) (-34))))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-656 *4)) (-5 *1 (-1162 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))))) (-2530 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) (-5 *1 (-1162 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))))) (-2702 (*1 *2 *3 *1) (-12 (-5 *3 (-1161 *4 *5)) (-4 *4 (-13 (-1121) (-34))) (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-112)) (-5 *1 (-1162 *4 *5)))) (-2208 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1161 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1121) (-34))) (-4 *6 (-13 (-1121) (-34))) (-5 *2 (-112)) (-5 *1 (-1162 *5 *6)))) (-3945 (*1 *1 *2 *1) (-12 (-5 *2 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4)))) (-2172 (*1 *1 *2 *1) (-12 (-5 *2 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4)))) (-2819 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-656 (-1161 *3 *4))) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4)))) (-2819 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1161 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1121) (-34))) (-4 *5 (-13 (-1121) (-34))) (-5 *1 (-1162 *4 *5))))) +(-13 (-1031 (-1161 |#1| |#2|)) (-10 -8 (-6 -4465) (-6 -4464) (-15 -2945 ((-3 $ "failed") $)) (-15 -1334 ($ $)) (-15 -3581 ($ (-1161 |#1| |#2|))) (-15 -3581 ($ |#1| |#2| (-656 $))) (-15 -3581 ($ |#1| |#2| (-656 (-1161 |#1| |#2|)))) (-15 -3581 ($ |#1| |#2| |#1| (-656 |#2|))) (-15 -1347 ((-656 |#2|) $)) (-15 -2530 ((-656 (-2 (|:| |val| |#1|) (|:| -3987 |#2|))) $)) (-15 -2702 ((-112) (-1161 |#1| |#2|) $)) (-15 -2208 ((-112) (-1161 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3945 ($ (-1161 |#1| |#2|) $)) (-15 -2172 ($ (-1161 |#1| |#2|) $)) (-15 -2819 ($ $ $ (-656 (-1161 |#1| |#2|)))) (-15 -2819 ($ $ $ (-656 (-1161 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-1354 (($ $) NIL)) (-2210 ((|#2| $) NIL)) (-3226 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-4242 (($ (-701 |#2|)) 56)) (-4434 (((-112) $) NIL)) (-4264 (((-112) $ (-783)) NIL)) (-4083 (($ |#2|) 14)) (-3404 (($) NIL T CONST)) (-2548 (($ $) 69 (|has| |#2| (-317)))) (-1575 (((-245 |#1| |#2|) $ (-576)) 42)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-2859 (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) ((|#2| $) NIL)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-3673 (((-3 $ "failed") $) 83)) (-3733 (((-783) $) 71 (|has| |#2| (-568)))) (-4272 ((|#2| $ (-576) (-576)) NIL)) (-3965 (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-1351 (((-112) $) NIL)) (-1768 (((-783) $) 73 (|has| |#2| (-568)))) (-3595 (((-656 (-245 |#1| |#2|)) $) 77 (|has| |#2| (-568)))) (-1689 (((-783) $) NIL)) (-4140 (($ |#2|) 25)) (-1699 (((-783) $) NIL)) (-1368 (((-112) $ (-783)) NIL)) (-1381 ((|#2| $) 67 (|has| |#2| (-6 (-4466 "*"))))) (-4017 (((-576) $) NIL)) (-3144 (((-576) $) NIL)) (-2425 (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-3550 (((-576) $) NIL)) (-3037 (((-576) $) NIL)) (-2466 (($ (-656 (-656 |#2|))) 37)) (-4326 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2650 (((-656 (-656 |#2|)) $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-2046 (((-1179) $) NIL)) (-3375 (((-3 $ "failed") $) 80 (|has| |#2| (-374)))) (-1450 (((-1141) $) NIL)) (-3475 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-3252 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#2| $ (-576) (-576) |#2|) NIL) ((|#2| $ (-576) (-576)) NIL)) (-2774 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-3216 ((|#2| $) NIL)) (-4406 (($ (-656 |#2|)) 50)) (-3218 (((-112) $) NIL)) (-2279 (((-245 |#1| |#2|) $) NIL)) (-3556 ((|#2| $) 65 (|has| |#2| (-6 (-4466 "*"))))) (-1460 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1870 (($ $) NIL)) (-4171 (((-548) $) 89 (|has| |#2| (-626 (-548))))) (-4203 (((-245 |#1| |#2|) $ (-576)) 44)) (-3569 (((-876) $) 47) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1059 (-419 (-576))))) (($ |#2|) NIL) (((-701 |#2|) $) 52)) (-3154 (((-783)) 23 T CONST)) (-2399 (((-112) $ $) NIL)) (-2708 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-4155 (((-112) $) NIL)) (-2721 (($) 16 T CONST)) (-2731 (($) 21 T CONST)) (-2020 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) 63) (($ $ (-576)) 82 (|has| |#2| (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) 59) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) 61)) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1163 |#1| |#2|) (-13 (-1144 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-10 -8 (-15 -4140 ($ |#2|)) (-15 -1354 ($ $)) (-15 -4242 ($ (-701 |#2|))) (IF (|has| |#2| (-6 (-4466 "*"))) (-6 -4453) |%noBranch|) (IF (|has| |#2| (-6 (-4466 "*"))) (IF (|has| |#2| (-6 -4461)) (-6 -4461) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) (-783) (-1070)) (T -1163)) +((-4140 (*1 *1 *2) (-12 (-5 *1 (-1163 *3 *2)) (-14 *3 (-783)) (-4 *2 (-1070)))) (-1354 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-783)) (-4 *3 (-1070)))) (-4242 (*1 *1 *2) (-12 (-5 *2 (-701 *4)) (-4 *4 (-1070)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-783))))) +(-13 (-1144 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-10 -8 (-15 -4140 ($ |#2|)) (-15 -1354 ($ $)) (-15 -4242 ($ (-701 |#2|))) (IF (|has| |#2| (-6 (-4466 "*"))) (-6 -4453) |%noBranch|) (IF (|has| |#2| (-6 (-4466 "*"))) (IF (|has| |#2| (-6 -4461)) (-6 -4461) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) +((-2951 (($ $) 19)) (-3045 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-2167 (((-112) $ $) 24)) (-2409 (($ $) 17)) (-2796 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) NIL) (($ $ (-1255 (-576))) NIL) (($ $ $) 31)) (-3569 (($ (-145)) 29) (((-876) $) NIL))) +(((-1164 |#1|) (-10 -8 (-15 -3569 ((-876) |#1|)) (-15 -2796 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1| (-142))) (-15 -3045 (|#1| |#1| (-145))) (-15 -3569 (|#1| (-145))) (-15 -2167 ((-112) |#1| |#1|)) (-15 -2951 (|#1| |#1|)) (-15 -2409 (|#1| |#1|)) (-15 -2796 (|#1| |#1| (-1255 (-576)))) (-15 -2796 ((-145) |#1| (-576))) (-15 -2796 ((-145) |#1| (-576) (-145)))) (-1165)) (T -1164)) +NIL +(-10 -8 (-15 -3569 ((-876) |#1|)) (-15 -2796 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1| (-142))) (-15 -3045 (|#1| |#1| (-145))) (-15 -3569 (|#1| (-145))) (-15 -2167 ((-112) |#1| |#1|)) (-15 -2951 (|#1| |#1|)) (-15 -2409 (|#1| |#1|)) (-15 -2796 (|#1| |#1| (-1255 (-576)))) (-15 -2796 ((-145) |#1| (-576))) (-15 -2796 ((-145) |#1| (-576) (-145)))) +((-3488 (((-112) $ $) 20 (|has| (-145) (-102)))) (-1329 (($ $) 123)) (-2951 (($ $) 124)) (-3045 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-1512 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4465)))) (-2140 (((-112) $ $) 121)) (-2118 (((-112) $ $ (-576)) 120)) (-3455 (((-656 $) $ (-145)) 113) (((-656 $) $ (-142)) 112)) (-1390 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-861)))) (-3039 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4465))) (($ $) 91 (-12 (|has| (-145) (-861)) (|has| $ (-6 -4465))))) (-1795 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-861)))) (-4264 (((-112) $ (-783)) 8)) (-3755 (((-145) $ (-576) (-145)) 53 (|has| $ (-6 -4465))) (((-145) $ (-1255 (-576)) (-145)) 60 (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4464)))) (-3404 (($) 7 T CONST)) (-2636 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-3092 (($ $) 93 (|has| $ (-6 -4465)))) (-3835 (($ $) 103)) (-2236 (($ $ (-1255 (-576)) $) 117)) (-2034 (($ $) 80 (-12 (|has| (-145) (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ (-145) $) 79 (-12 (|has| (-145) (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4464)))) (-3685 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1121)) (|has| $ (-6 -4464)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4464))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4464)))) (-4332 (((-145) $ (-576) (-145)) 54 (|has| $ (-6 -4465)))) (-4272 (((-145) $ (-576)) 52)) (-2167 (((-112) $ $) 122)) (-3659 (((-576) (-1 (-112) (-145)) $) 100) (((-576) (-145) $) 99 (|has| (-145) (-1121))) (((-576) (-145) $ (-576)) 98 (|has| (-145) (-1121))) (((-576) $ $ (-576)) 116) (((-576) (-142) $ (-576)) 115)) (-3965 (((-656 (-145)) $) 31 (|has| $ (-6 -4464)))) (-4140 (($ (-783) (-145)) 70)) (-1368 (((-112) $ (-783)) 9)) (-3281 (((-576) $) 44 (|has| (-576) (-861)))) (-3124 (($ $ $) 85 (|has| (-145) (-861)))) (-2185 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-861)))) (-2425 (((-656 (-145)) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1121)) (|has| $ (-6 -4464))))) (-4280 (((-576) $) 45 (|has| (-576) (-861)))) (-1441 (($ $ $) 86 (|has| (-145) (-861)))) (-1916 (((-112) $ $ (-145)) 118)) (-1358 (((-783) $ $ (-145)) 119)) (-4326 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-3284 (($ $) 125)) (-2409 (($ $) 126)) (-2883 (((-112) $ (-783)) 10)) (-2648 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-2046 (((-1179) $) 23 (|has| (-145) (-1121)))) (-2176 (($ (-145) $ (-576)) 62) (($ $ $ (-576)) 61)) (-3669 (((-656 (-576)) $) 47)) (-3090 (((-112) (-576) $) 48)) (-1450 (((-1141) $) 22 (|has| (-145) (-1121)))) (-3580 (((-145) $) 43 (|has| (-576) (-861)))) (-3434 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-2304 (($ $ (-145)) 42 (|has| $ (-6 -4465)))) (-3252 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 (-145)))) 27 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-304 (-145))) 26 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-656 (-145)) (-656 (-145))) 24 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121))))) (-2252 (((-112) $ $) 14)) (-4282 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-3207 (((-656 (-145)) $) 49)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-2796 (((-145) $ (-576) (-145)) 51) (((-145) $ (-576)) 50) (($ $ (-1255 (-576))) 71) (($ $ $) 105)) (-3465 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-1460 (((-783) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4464))) (((-783) (-145) $) 29 (-12 (|has| (-145) (-1121)) (|has| $ (-6 -4464))))) (-2840 (($ $ $ (-576)) 94 (|has| $ (-6 -4465)))) (-1870 (($ $) 13)) (-4171 (((-548) $) 81 (|has| (-145) (-626 (-548))))) (-3581 (($ (-656 (-145))) 72)) (-1615 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3569 (($ (-145)) 114) (((-876) $) 18 (|has| (-145) (-625 (-876))))) (-2399 (((-112) $ $) 21 (|has| (-145) (-102)))) (-2708 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4464)))) (-2990 (((-112) $ $) 87 (|has| (-145) (-861)))) (-2962 (((-112) $ $) 89 (|has| (-145) (-861)))) (-2924 (((-112) $ $) 19 (|has| (-145) (-102)))) (-2978 (((-112) $ $) 88 (|has| (-145) (-861)))) (-2949 (((-112) $ $) 90 (|has| (-145) (-861)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-1165) (-141)) (T -1165)) -((-4056 (*1 *1 *1) (-4 *1 (-1165))) (-2936 (*1 *1 *1) (-4 *1 (-1165))) (-3343 (*1 *1 *1) (-4 *1 (-1165))) (-3557 (*1 *1 *1) (-4 *1 (-1165))) (-2167 (*1 *2 *1 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-112)))) (-2141 (*1 *2 *1 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-112)))) (-2117 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1165)) (-5 *3 (-576)) (-5 *2 (-112)))) (-1358 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1165)) (-5 *3 (-145)) (-5 *2 (-783)))) (-1916 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1165)) (-5 *3 (-145)) (-5 *2 (-112)))) (-3716 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-1255 (-576))))) (-3660 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-576)))) (-3660 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-576)) (-5 *3 (-142)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1165)))) (-2488 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-656 *1)) (-4 *1 (-1165)))) (-2488 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-656 *1)) (-4 *1 (-1165)))) (-3350 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-145)))) (-3350 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-142)))) (-2648 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-145)))) (-2648 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-142)))) (-2638 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-145)))) (-2638 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-142)))) (-2797 (*1 *1 *1 *1) (-4 *1 (-1165)))) -(-13 (-19 (-145)) (-10 -8 (-15 -4056 ($ $)) (-15 -2936 ($ $)) (-15 -3343 ($ $)) (-15 -3557 ($ $)) (-15 -2167 ((-112) $ $)) (-15 -2141 ((-112) $ $)) (-15 -2117 ((-112) $ $ (-576))) (-15 -1358 ((-783) $ $ (-145))) (-15 -1916 ((-112) $ $ (-145))) (-15 -3716 ($ $ (-1255 (-576)) $)) (-15 -3660 ((-576) $ $ (-576))) (-15 -3660 ((-576) (-142) $ (-576))) (-15 -3570 ($ (-145))) (-15 -2488 ((-656 $) $ (-145))) (-15 -2488 ((-656 $) $ (-142))) (-15 -3350 ($ $ (-145))) (-15 -3350 ($ $ (-142))) (-15 -2648 ($ $ (-145))) (-15 -2648 ($ $ (-142))) (-15 -2638 ($ $ (-145))) (-15 -2638 ($ $ (-142))) (-15 -2797 ($ $ $)))) -(((-34) . T) ((-102) -2760 (|has| (-145) (-1121)) (|has| (-145) (-861)) (|has| (-145) (-102))) ((-625 (-876)) -2760 (|has| (-145) (-1121)) (|has| (-145) (-861)) (|has| (-145) (-625 (-876)))) ((-152 #0=(-145)) . T) ((-626 (-548)) |has| (-145) (-626 (-548))) ((-296 #1=(-576) #0#) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #1# #0#) . T) ((-319 #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121))) ((-384 #0#) . T) ((-501 #0#) . T) ((-616 #1# #0#) . T) ((-526 #0# #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121))) ((-663 #0#) . T) ((-19 #0#) . T) ((-861) |has| (-145) (-861)) ((-864) |has| (-145) (-861)) ((-1121) -2760 (|has| (-145) (-1121)) (|has| (-145) (-861))) ((-1238) . T)) -((-3264 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) (-783)) 112)) (-3532 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5| (-783)) 61)) (-4396 (((-1293) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) (-783)) 97)) (-3227 (((-783) (-656 |#4|) (-656 |#5|)) 30)) (-3766 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5| (-783)) 63) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5| (-783) (-112)) 65)) (-1508 (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112)) 85)) (-4172 (((-1179) (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) 90)) (-1568 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5|) 60)) (-4029 (((-783) (-656 |#4|) (-656 |#5|)) 21))) -(((-1166 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4029 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3227 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1568 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5|)) (-15 -3532 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5| (-783))) (-15 -3532 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5|)) (-15 -3766 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -3766 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5| (-783))) (-15 -3766 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5|)) (-15 -1508 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -1508 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3264 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) (-783))) (-15 -4172 ((-1179) (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|)))) (-15 -4396 ((-1293) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) (-783)))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1130 |#1| |#2| |#3| |#4|)) (T -1166)) -((-4396 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3988 *9)))) (-5 *4 (-783)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-1293)) (-5 *1 (-1166 *5 *6 *7 *8 *9)))) (-4172 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3988 *8))) (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1130 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1179)) (-5 *1 (-1166 *4 *5 *6 *7 *8)))) (-3264 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-656 *11)) (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -3988 *11)))))) (-5 *6 (-783)) (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -3988 *11)))) (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1086 *7 *8 *9)) (-4 *11 (-1130 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-861)) (-5 *1 (-1166 *7 *8 *9 *10 *11)))) (-1508 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1166 *5 *6 *7 *8 *9)))) (-1508 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1166 *5 *6 *7 *8 *9)))) (-3766 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))))) (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3)))) (-3766 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))))) (-5 *1 (-1166 *6 *7 *8 *3 *4)) (-4 *4 (-1130 *6 *7 *8 *3)))) (-3766 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-861)) (-4 *3 (-1086 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))))) (-5 *1 (-1166 *7 *8 *9 *3 *4)) (-4 *4 (-1130 *7 *8 *9 *3)))) (-3532 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))))) (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3)))) (-3532 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))))) (-5 *1 (-1166 *6 *7 *8 *3 *4)) (-4 *4 (-1130 *6 *7 *8 *3)))) (-1568 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))))) (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3)))) (-3227 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1166 *5 *6 *7 *8 *9)))) (-4029 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1166 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -4029 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3227 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1568 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5|)) (-15 -3532 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5| (-783))) (-15 -3532 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5|)) (-15 -3766 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -3766 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5| (-783))) (-15 -3766 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) |#4| |#5|)) (-15 -1508 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -1508 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3264 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))))) (-783))) (-15 -4172 ((-1179) (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|)))) (-15 -4396 ((-1293) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3988 |#5|))) (-783)))) -((-3489 (((-112) $ $) NIL)) (-1788 (((-656 (-2 (|:| -1958 $) (|:| -3257 (-656 |#4|)))) (-656 |#4|)) NIL)) (-3603 (((-656 $) (-656 |#4|)) 124) (((-656 $) (-656 |#4|) (-112)) 125) (((-656 $) (-656 |#4|) (-112) (-112)) 123) (((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112)) 126)) (-1969 (((-656 |#3|) $) NIL)) (-1807 (((-112) $) NIL)) (-4026 (((-112) $) NIL (|has| |#1| (-568)))) (-1613 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1377 ((|#4| |#4| $) NIL)) (-2487 (((-656 (-2 (|:| |val| |#4|) (|:| -3988 $))) |#4| $) 97)) (-1795 (((-2 (|:| |under| $) (|:| -2443 $) (|:| |upper| $)) $ |#3|) NIL)) (-1808 (((-112) $ (-783)) NIL)) (-1974 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465))) (((-3 |#4| "failed") $ |#3|) 75)) (-3886 (($) NIL T CONST)) (-3713 (((-112) $) 29 (|has| |#1| (-568)))) (-2813 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3812 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1884 (((-112) $) NIL (|has| |#1| (-568)))) (-3388 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2311 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-4376 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2860 (($ (-656 |#4|)) NIL)) (-3593 (((-3 $ "failed") $) 45)) (-3994 ((|#4| |#4| $) 78)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121))))) (-3946 (($ |#4| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465)))) (-3624 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-568)))) (-3439 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2737 ((|#4| |#4| $) NIL)) (-3686 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4465))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4465))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4405 (((-2 (|:| -1958 (-656 |#4|)) (|:| -3257 (-656 |#4|))) $) NIL)) (-4148 (((-112) |#4| $) NIL)) (-3773 (((-112) |#4| $) NIL)) (-4441 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2155 (((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112)) 139)) (-3966 (((-656 |#4|) $) 18 (|has| $ (-6 -4465)))) (-3186 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2620 ((|#3| $) 38)) (-3870 (((-112) $ (-783)) NIL)) (-2014 (((-656 |#4|) $) 19 (|has| $ (-6 -4465)))) (-1612 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121))))) (-4323 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#4| |#4|) $) 23)) (-2234 (((-656 |#3|) $) NIL)) (-2106 (((-112) |#3| $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL)) (-2166 (((-3 |#4| (-656 $)) |#4| |#4| $) NIL)) (-1540 (((-656 (-2 (|:| |val| |#4|) (|:| -3988 $))) |#4| |#4| $) 117)) (-3969 (((-3 |#4| "failed") $) 42)) (-1471 (((-656 $) |#4| $) 102)) (-3179 (((-3 (-112) (-656 $)) |#4| $) NIL)) (-3787 (((-656 (-2 (|:| |val| (-112)) (|:| -3988 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-3285 (((-656 $) |#4| $) 121) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 122) (((-656 $) |#4| (-656 $)) NIL)) (-2913 (((-656 $) (-656 |#4|) (-112) (-112) (-112)) 134)) (-2008 (($ |#4| $) 88) (($ (-656 |#4|) $) 89) (((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-4275 (((-656 |#4|) $) NIL)) (-1603 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3909 ((|#4| |#4| $) NIL)) (-1438 (((-112) $ $) NIL)) (-2280 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3579 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1522 ((|#4| |#4| $) NIL)) (-1450 (((-1141) $) NIL)) (-3581 (((-3 |#4| "failed") $) 40)) (-1541 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3384 (((-3 $ "failed") $ |#4|) 59)) (-1749 (($ $ |#4|) NIL) (((-656 $) |#4| $) 104) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 99)) (-4320 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) 17)) (-4225 (($) 14)) (-3634 (((-783) $) NIL)) (-1460 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) 13)) (-4172 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-3582 (($ (-656 |#4|)) 22)) (-3118 (($ $ |#3|) 52)) (-2637 (($ $ |#3|) 54)) (-1584 (($ $) NIL)) (-3317 (($ $ |#3|) NIL)) (-3570 (((-876) $) 35) (((-656 |#4|) $) 46)) (-3891 (((-783) $) NIL (|has| |#3| (-379)))) (-4055 (((-112) $ $) NIL)) (-3765 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2833 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-3298 (((-656 $) |#4| $) 66) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) NIL)) (-3321 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465)))) (-1583 (((-656 |#3|) $) NIL)) (-2392 (((-112) |#4| $) NIL)) (-3419 (((-112) |#3| $) 74)) (-2925 (((-112) $ $) NIL)) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-1167 |#1| |#2| |#3| |#4|) (-13 (-1130 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2008 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3603 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -3603 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -2913 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -2155 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|)) (T -1167)) -((-2008 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1167 *5 *6 *7 *3))) (-5 *1 (-1167 *5 *6 *7 *3)) (-4 *3 (-1086 *5 *6 *7)))) (-3603 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1167 *5 *6 *7 *8))) (-5 *1 (-1167 *5 *6 *7 *8)))) (-3603 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1167 *5 *6 *7 *8))) (-5 *1 (-1167 *5 *6 *7 *8)))) (-2913 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1167 *5 *6 *7 *8))) (-5 *1 (-1167 *5 *6 *7 *8)))) (-2155 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-656 *8)) (|:| |towers| (-656 (-1167 *5 *6 *7 *8))))) (-5 *1 (-1167 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) -(-13 (-1130 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2008 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3603 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -3603 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -2913 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -2155 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1419 ((|#1| $) 37)) (-2658 (($ (-656 |#1|)) 45)) (-1808 (((-112) $ (-783)) NIL)) (-3886 (($) NIL T CONST)) (-3659 ((|#1| |#1| $) 40)) (-3469 ((|#1| $) 35)) (-3966 (((-656 |#1|) $) 18 (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) NIL)) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-4323 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 22)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1597 ((|#1| $) 38)) (-1901 (($ |#1| $) 41)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3449 ((|#1| $) 36)) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) 32)) (-4225 (($) 43)) (-1888 (((-783) $) 30)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1870 (($ $) 27)) (-3570 (((-876) $) 14 (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3943 (($ (-656 |#1|)) NIL)) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 17 (|has| |#1| (-102)))) (-3503 (((-783) $) 31 (|has| $ (-6 -4465))))) -(((-1168 |#1|) (-13 (-1142 |#1|) (-10 -8 (-15 -2658 ($ (-656 |#1|))))) (-1238)) (T -1168)) -((-2658 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-1168 *3))))) -(-13 (-1142 |#1|) (-10 -8 (-15 -2658 ($ (-656 |#1|))))) -((-3756 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1255 (-576)) |#2|) 53) ((|#2| $ (-576) |#2|) 50)) (-4419 (((-112) $) 12)) (-4323 (($ (-1 |#2| |#2|) $) 48)) (-3581 ((|#2| $) NIL) (($ $ (-783)) 17)) (-4046 (($ $ |#2|) 49)) (-3166 (((-112) $) 11)) (-2797 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1255 (-576))) 36) ((|#2| $ (-576)) 26) ((|#2| $ (-576) |#2|) NIL)) (-2974 (($ $ $) 56) (($ $ |#2|) NIL)) (-1615 (($ $ $) 38) (($ |#2| $) NIL) (($ (-656 $)) 45) (($ $ |#2|) NIL))) -(((-1169 |#1| |#2|) (-10 -8 (-15 -4419 ((-112) |#1|)) (-15 -3166 ((-112) |#1|)) (-15 -3756 (|#2| |#1| (-576) |#2|)) (-15 -2797 (|#2| |#1| (-576) |#2|)) (-15 -2797 (|#2| |#1| (-576))) (-15 -4046 (|#1| |#1| |#2|)) (-15 -2797 (|#1| |#1| (-1255 (-576)))) (-15 -1615 (|#1| |#1| |#2|)) (-15 -1615 (|#1| (-656 |#1|))) (-15 -3756 (|#2| |#1| (-1255 (-576)) |#2|)) (-15 -3756 (|#2| |#1| "last" |#2|)) (-15 -3756 (|#1| |#1| "rest" |#1|)) (-15 -3756 (|#2| |#1| "first" |#2|)) (-15 -2974 (|#1| |#1| |#2|)) (-15 -2974 (|#1| |#1| |#1|)) (-15 -2797 (|#2| |#1| "last")) (-15 -2797 (|#1| |#1| "rest")) (-15 -3581 (|#1| |#1| (-783))) (-15 -2797 (|#2| |#1| "first")) (-15 -3581 (|#2| |#1|)) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#1|)) (-15 -3756 (|#2| |#1| "value" |#2|)) (-15 -2797 (|#2| |#1| "value")) (-15 -4323 (|#1| (-1 |#2| |#2|) |#1|))) (-1170 |#2|) (-1238)) (T -1169)) -NIL -(-10 -8 (-15 -4419 ((-112) |#1|)) (-15 -3166 ((-112) |#1|)) (-15 -3756 (|#2| |#1| (-576) |#2|)) (-15 -2797 (|#2| |#1| (-576) |#2|)) (-15 -2797 (|#2| |#1| (-576))) (-15 -4046 (|#1| |#1| |#2|)) (-15 -2797 (|#1| |#1| (-1255 (-576)))) (-15 -1615 (|#1| |#1| |#2|)) (-15 -1615 (|#1| (-656 |#1|))) (-15 -3756 (|#2| |#1| (-1255 (-576)) |#2|)) (-15 -3756 (|#2| |#1| "last" |#2|)) (-15 -3756 (|#1| |#1| "rest" |#1|)) (-15 -3756 (|#2| |#1| "first" |#2|)) (-15 -2974 (|#1| |#1| |#2|)) (-15 -2974 (|#1| |#1| |#1|)) (-15 -2797 (|#2| |#1| "last")) (-15 -2797 (|#1| |#1| "rest")) (-15 -3581 (|#1| |#1| (-783))) (-15 -2797 (|#2| |#1| "first")) (-15 -3581 (|#2| |#1|)) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#1|)) (-15 -3756 (|#2| |#1| "value" |#2|)) (-15 -2797 (|#2| |#1| "value")) (-15 -4323 (|#1| (-1 |#2| |#2|) |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3106 ((|#1| $) 49)) (-2898 ((|#1| $) 66)) (-4426 (($ $) 68)) (-2047 (((-1293) $ (-576) (-576)) 99 (|has| $ (-6 -4466)))) (-2587 (($ $ (-576)) 53 (|has| $ (-6 -4466)))) (-1808 (((-112) $ (-783)) 8)) (-2647 ((|#1| $ |#1|) 40 (|has| $ (-6 -4466)))) (-4364 (($ $ $) 57 (|has| $ (-6 -4466)))) (-2297 ((|#1| $ |#1|) 55 (|has| $ (-6 -4466)))) (-1350 ((|#1| $ |#1|) 59 (|has| $ (-6 -4466)))) (-3756 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4466))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4466))) (($ $ "rest" $) 56 (|has| $ (-6 -4466))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4466))) ((|#1| $ (-1255 (-576)) |#1|) 119 (|has| $ (-6 -4466))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4466)))) (-1894 (($ $ (-656 $)) 42 (|has| $ (-6 -4466)))) (-1974 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4465)))) (-2883 ((|#1| $) 67)) (-3886 (($) 7 T CONST)) (-3593 (($ $) 74) (($ $ (-783)) 72)) (-1415 (($ $) 101 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-3946 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4465))) (($ |#1| $) 102 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-4335 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4466)))) (-4274 ((|#1| $ (-576)) 89)) (-4419 (((-112) $) 85)) (-3966 (((-656 |#1|) $) 31 (|has| $ (-6 -4465)))) (-2387 (((-656 $) $) 51)) (-3295 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-4141 (($ (-783) |#1|) 111)) (-3870 (((-112) $ (-783)) 9)) (-2924 (((-576) $) 97 (|has| (-576) (-861)))) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-2137 (((-576) $) 96 (|has| (-576) (-861)))) (-4323 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1330 (((-112) $ (-783)) 10)) (-2353 (((-656 |#1|) $) 46)) (-3443 (((-112) $) 50)) (-3699 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3969 ((|#1| $) 71) (($ $ (-783)) 69)) (-2176 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-4234 (((-656 (-576)) $) 94)) (-3354 (((-112) (-576) $) 93)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3581 ((|#1| $) 77) (($ $ (-783)) 75)) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-4046 (($ $ |#1|) 98 (|has| $ (-6 -4466)))) (-3166 (((-112) $) 86)) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3845 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2281 (((-656 |#1|) $) 92)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-2797 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1255 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-2789 (((-576) $ $) 45)) (-3466 (($ $ (-1255 (-576))) 116) (($ $ (-576)) 115)) (-3617 (((-112) $) 47)) (-2934 (($ $) 63)) (-3852 (($ $) 60 (|has| $ (-6 -4466)))) (-2687 (((-783) $) 64)) (-3369 (($ $) 65)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 13)) (-4172 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) 109)) (-2974 (($ $ $) 62 (|has| $ (-6 -4466))) (($ $ |#1|) 61 (|has| $ (-6 -4466)))) (-1615 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-3570 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2902 (((-656 $) $) 52)) (-2621 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-4055 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-2409 (*1 *1 *1) (-4 *1 (-1165))) (-3284 (*1 *1 *1) (-4 *1 (-1165))) (-2951 (*1 *1 *1) (-4 *1 (-1165))) (-1329 (*1 *1 *1) (-4 *1 (-1165))) (-2167 (*1 *2 *1 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-112)))) (-2140 (*1 *2 *1 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-112)))) (-2118 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1165)) (-5 *3 (-576)) (-5 *2 (-112)))) (-1358 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1165)) (-5 *3 (-145)) (-5 *2 (-783)))) (-1916 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1165)) (-5 *3 (-145)) (-5 *2 (-112)))) (-2236 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-1255 (-576))))) (-3659 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-576)))) (-3659 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-576)) (-5 *3 (-142)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1165)))) (-3455 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-656 *1)) (-4 *1 (-1165)))) (-3455 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-656 *1)) (-4 *1 (-1165)))) (-3045 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-145)))) (-3045 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-142)))) (-2648 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-145)))) (-2648 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-142)))) (-2636 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-145)))) (-2636 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-142)))) (-2796 (*1 *1 *1 *1) (-4 *1 (-1165)))) +(-13 (-19 (-145)) (-10 -8 (-15 -2409 ($ $)) (-15 -3284 ($ $)) (-15 -2951 ($ $)) (-15 -1329 ($ $)) (-15 -2167 ((-112) $ $)) (-15 -2140 ((-112) $ $)) (-15 -2118 ((-112) $ $ (-576))) (-15 -1358 ((-783) $ $ (-145))) (-15 -1916 ((-112) $ $ (-145))) (-15 -2236 ($ $ (-1255 (-576)) $)) (-15 -3659 ((-576) $ $ (-576))) (-15 -3659 ((-576) (-142) $ (-576))) (-15 -3569 ($ (-145))) (-15 -3455 ((-656 $) $ (-145))) (-15 -3455 ((-656 $) $ (-142))) (-15 -3045 ($ $ (-145))) (-15 -3045 ($ $ (-142))) (-15 -2648 ($ $ (-145))) (-15 -2648 ($ $ (-142))) (-15 -2636 ($ $ (-145))) (-15 -2636 ($ $ (-142))) (-15 -2796 ($ $ $)))) +(((-34) . T) ((-102) -2759 (|has| (-145) (-1121)) (|has| (-145) (-861)) (|has| (-145) (-102))) ((-625 (-876)) -2759 (|has| (-145) (-1121)) (|has| (-145) (-861)) (|has| (-145) (-625 (-876)))) ((-152 #0=(-145)) . T) ((-626 (-548)) |has| (-145) (-626 (-548))) ((-296 #1=(-576) #0#) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #1# #0#) . T) ((-319 #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121))) ((-384 #0#) . T) ((-501 #0#) . T) ((-616 #1# #0#) . T) ((-526 #0# #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121))) ((-663 #0#) . T) ((-19 #0#) . T) ((-861) |has| (-145) (-861)) ((-864) |has| (-145) (-861)) ((-1121) -2759 (|has| (-145) (-1121)) (|has| (-145) (-861))) ((-1238) . T)) +((-3414 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) (-783)) 112)) (-4237 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783)) 61)) (-4394 (((-1293) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-783)) 97)) (-4304 (((-783) (-656 |#4|) (-656 |#5|)) 30)) (-1538 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783)) 63) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783) (-112)) 65)) (-4323 (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112)) 85)) (-4171 (((-1179) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) 90)) (-3745 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|) 60)) (-2163 (((-783) (-656 |#4|) (-656 |#5|)) 21))) +(((-1166 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2163 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -4304 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3745 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|)) (-15 -4237 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783))) (-15 -4237 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|)) (-15 -1538 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -1538 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783))) (-15 -1538 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|)) (-15 -4323 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -4323 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3414 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) (-783))) (-15 -4171 ((-1179) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)))) (-15 -4394 ((-1293) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-783)))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1130 |#1| |#2| |#3| |#4|)) (T -1166)) +((-4394 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3987 *9)))) (-5 *4 (-783)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-1293)) (-5 *1 (-1166 *5 *6 *7 *8 *9)))) (-4171 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3987 *8))) (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1130 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1179)) (-5 *1 (-1166 *4 *5 *6 *7 *8)))) (-3414 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-656 *11)) (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -3987 *11)))))) (-5 *6 (-783)) (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -3987 *11)))) (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1086 *7 *8 *9)) (-4 *11 (-1130 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-861)) (-5 *1 (-1166 *7 *8 *9 *10 *11)))) (-4323 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1166 *5 *6 *7 *8 *9)))) (-4323 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1166 *5 *6 *7 *8 *9)))) (-1538 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3)))) (-1538 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) (-5 *1 (-1166 *6 *7 *8 *3 *4)) (-4 *4 (-1130 *6 *7 *8 *3)))) (-1538 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-861)) (-4 *3 (-1086 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) (-5 *1 (-1166 *7 *8 *9 *3 *4)) (-4 *4 (-1130 *7 *8 *9 *3)))) (-4237 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3)))) (-4237 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) (-5 *1 (-1166 *6 *7 *8 *3 *4)) (-4 *4 (-1130 *6 *7 *8 *3)))) (-3745 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3)))) (-4304 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1166 *5 *6 *7 *8 *9)))) (-2163 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1166 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -2163 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -4304 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3745 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|)) (-15 -4237 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783))) (-15 -4237 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|)) (-15 -1538 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -1538 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5| (-783))) (-15 -1538 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) |#4| |#5|)) (-15 -4323 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -4323 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3414 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))))) (-783))) (-15 -4171 ((-1179) (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|)))) (-15 -4394 ((-1293) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3987 |#5|))) (-783)))) +((-3488 (((-112) $ $) NIL)) (-4093 (((-656 (-2 (|:| -1958 $) (|:| -3256 (-656 |#4|)))) (-656 |#4|)) NIL)) (-3668 (((-656 $) (-656 |#4|)) 124) (((-656 $) (-656 |#4|) (-112)) 125) (((-656 $) (-656 |#4|) (-112) (-112)) 123) (((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112)) 126)) (-1969 (((-656 |#3|) $) NIL)) (-4255 (((-112) $) NIL)) (-2136 (((-112) $) NIL (|has| |#1| (-568)))) (-2899 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3798 ((|#4| |#4| $) NIL)) (-3444 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 $))) |#4| $) 97)) (-1795 (((-2 (|:| |under| $) (|:| -4236 $) (|:| |upper| $)) $ |#3|) NIL)) (-4264 (((-112) $ (-783)) NIL)) (-1974 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464))) (((-3 |#4| "failed") $ |#3|) 75)) (-3404 (($) NIL T CONST)) (-2203 (((-112) $) 29 (|has| |#1| (-568)))) (-3438 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1990 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3740 (((-112) $) NIL (|has| |#1| (-568)))) (-2149 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2239 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2514 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2859 (($ (-656 |#4|)) NIL)) (-3592 (((-3 $ "failed") $) 45)) (-3142 ((|#4| |#4| $) 78)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-3945 (($ |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3891 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-568)))) (-1483 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4022 ((|#4| |#4| $) NIL)) (-3685 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4464))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1599 (((-2 (|:| -1958 (-656 |#4|)) (|:| -3256 (-656 |#4|))) $) NIL)) (-4064 (((-112) |#4| $) NIL)) (-1608 (((-112) |#4| $) NIL)) (-1921 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4423 (((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112)) 139)) (-3965 (((-656 |#4|) $) 18 (|has| $ (-6 -4464)))) (-1918 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2235 ((|#3| $) 38)) (-1368 (((-112) $ (-783)) NIL)) (-2425 (((-656 |#4|) $) 19 (|has| $ (-6 -4464)))) (-2885 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-4326 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#4| |#4|) $) 23)) (-2666 (((-656 |#3|) $) NIL)) (-4001 (((-112) |#3| $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL)) (-3299 (((-3 |#4| (-656 $)) |#4| |#4| $) NIL)) (-3422 (((-656 (-2 (|:| |val| |#4|) (|:| -3987 $))) |#4| |#4| $) 117)) (-3968 (((-3 |#4| "failed") $) 42)) (-3955 (((-656 $) |#4| $) 102)) (-1843 (((-3 (-112) (-656 $)) |#4| $) NIL)) (-1751 (((-656 (-2 (|:| |val| (-112)) (|:| -3987 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-3651 (((-656 $) |#4| $) 121) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 122) (((-656 $) |#4| (-656 $)) NIL)) (-3186 (((-656 $) (-656 |#4|) (-112) (-112) (-112)) 134)) (-2381 (($ |#4| $) 88) (($ (-656 |#4|) $) 89) (((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-2795 (((-656 |#4|) $) NIL)) (-2785 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3640 ((|#4| |#4| $) NIL)) (-2264 (((-112) $ $) NIL)) (-3196 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3420 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3235 ((|#4| |#4| $) NIL)) (-1450 (((-1141) $) NIL)) (-3580 (((-3 |#4| "failed") $) 40)) (-3434 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2101 (((-3 $ "failed") $ |#4|) 59)) (-1743 (($ $ |#4|) NIL) (((-656 $) |#4| $) 104) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 99)) (-3252 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) 17)) (-3579 (($) 14)) (-2683 (((-783) $) NIL)) (-1460 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) 13)) (-4171 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-3581 (($ (-656 |#4|)) 22)) (-2479 (($ $ |#3|) 52)) (-2394 (($ $ |#3|) 54)) (-2582 (($ $) NIL)) (-2665 (($ $ |#3|) NIL)) (-3569 (((-876) $) 35) (((-656 |#4|) $) 46)) (-3451 (((-783) $) NIL (|has| |#3| (-379)))) (-2399 (((-112) $ $) NIL)) (-1530 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3653 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-3788 (((-656 $) |#4| $) 66) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) NIL)) (-2708 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-2572 (((-656 |#3|) $) NIL)) (-1777 (((-112) |#4| $) NIL)) (-2476 (((-112) |#3| $) 74)) (-2924 (((-112) $ $) NIL)) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1167 |#1| |#2| |#3| |#4|) (-13 (-1130 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2381 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3668 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -3668 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -3186 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -4423 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|)) (T -1167)) +((-2381 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1167 *5 *6 *7 *3))) (-5 *1 (-1167 *5 *6 *7 *3)) (-4 *3 (-1086 *5 *6 *7)))) (-3668 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1167 *5 *6 *7 *8))) (-5 *1 (-1167 *5 *6 *7 *8)))) (-3668 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1167 *5 *6 *7 *8))) (-5 *1 (-1167 *5 *6 *7 *8)))) (-3186 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1167 *5 *6 *7 *8))) (-5 *1 (-1167 *5 *6 *7 *8)))) (-4423 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-656 *8)) (|:| |towers| (-656 (-1167 *5 *6 *7 *8))))) (-5 *1 (-1167 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) +(-13 (-1130 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2381 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3668 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -3668 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -3186 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -4423 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1419 ((|#1| $) 37)) (-2657 (($ (-656 |#1|)) 45)) (-4264 (((-112) $ (-783)) NIL)) (-3404 (($) NIL T CONST)) (-2944 ((|#1| |#1| $) 40)) (-1718 ((|#1| $) 35)) (-3965 (((-656 |#1|) $) 18 (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) NIL)) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4326 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 22)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2722 ((|#1| $) 38)) (-2597 (($ |#1| $) 41)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-1541 ((|#1| $) 36)) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) 32)) (-3579 (($) 43)) (-1887 (((-783) $) 30)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) 27)) (-3569 (((-876) $) 14 (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3972 (($ (-656 |#1|)) NIL)) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 17 (|has| |#1| (-102)))) (-3502 (((-783) $) 31 (|has| $ (-6 -4464))))) +(((-1168 |#1|) (-13 (-1142 |#1|) (-10 -8 (-15 -2657 ($ (-656 |#1|))))) (-1238)) (T -1168)) +((-2657 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-1168 *3))))) +(-13 (-1142 |#1|) (-10 -8 (-15 -2657 ($ (-656 |#1|))))) +((-3755 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1255 (-576)) |#2|) 53) ((|#2| $ (-576) |#2|) 50)) (-1742 (((-112) $) 12)) (-4326 (($ (-1 |#2| |#2|) $) 48)) (-3580 ((|#2| $) NIL) (($ $ (-783)) 17)) (-2304 (($ $ |#2|) 49)) (-1721 (((-112) $) 11)) (-2796 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1255 (-576))) 36) ((|#2| $ (-576)) 26) ((|#2| $ (-576) |#2|) NIL)) (-3631 (($ $ $) 56) (($ $ |#2|) NIL)) (-1615 (($ $ $) 38) (($ |#2| $) NIL) (($ (-656 $)) 45) (($ $ |#2|) NIL))) +(((-1169 |#1| |#2|) (-10 -8 (-15 -1742 ((-112) |#1|)) (-15 -1721 ((-112) |#1|)) (-15 -3755 (|#2| |#1| (-576) |#2|)) (-15 -2796 (|#2| |#1| (-576) |#2|)) (-15 -2796 (|#2| |#1| (-576))) (-15 -2304 (|#1| |#1| |#2|)) (-15 -2796 (|#1| |#1| (-1255 (-576)))) (-15 -1615 (|#1| |#1| |#2|)) (-15 -1615 (|#1| (-656 |#1|))) (-15 -3755 (|#2| |#1| (-1255 (-576)) |#2|)) (-15 -3755 (|#2| |#1| "last" |#2|)) (-15 -3755 (|#1| |#1| "rest" |#1|)) (-15 -3755 (|#2| |#1| "first" |#2|)) (-15 -3631 (|#1| |#1| |#2|)) (-15 -3631 (|#1| |#1| |#1|)) (-15 -2796 (|#2| |#1| "last")) (-15 -2796 (|#1| |#1| "rest")) (-15 -3580 (|#1| |#1| (-783))) (-15 -2796 (|#2| |#1| "first")) (-15 -3580 (|#2| |#1|)) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#1|)) (-15 -3755 (|#2| |#1| "value" |#2|)) (-15 -2796 (|#2| |#1| "value")) (-15 -4326 (|#1| (-1 |#2| |#2|) |#1|))) (-1170 |#2|) (-1238)) (T -1169)) +NIL +(-10 -8 (-15 -1742 ((-112) |#1|)) (-15 -1721 ((-112) |#1|)) (-15 -3755 (|#2| |#1| (-576) |#2|)) (-15 -2796 (|#2| |#1| (-576) |#2|)) (-15 -2796 (|#2| |#1| (-576))) (-15 -2304 (|#1| |#1| |#2|)) (-15 -2796 (|#1| |#1| (-1255 (-576)))) (-15 -1615 (|#1| |#1| |#2|)) (-15 -1615 (|#1| (-656 |#1|))) (-15 -3755 (|#2| |#1| (-1255 (-576)) |#2|)) (-15 -3755 (|#2| |#1| "last" |#2|)) (-15 -3755 (|#1| |#1| "rest" |#1|)) (-15 -3755 (|#2| |#1| "first" |#2|)) (-15 -3631 (|#1| |#1| |#2|)) (-15 -3631 (|#1| |#1| |#1|)) (-15 -2796 (|#2| |#1| "last")) (-15 -2796 (|#1| |#1| "rest")) (-15 -3580 (|#1| |#1| (-783))) (-15 -2796 (|#2| |#1| "first")) (-15 -3580 (|#2| |#1|)) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#1|)) (-15 -3755 (|#2| |#1| "value" |#2|)) (-15 -2796 (|#2| |#1| "value")) (-15 -4326 (|#1| (-1 |#2| |#2|) |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3104 ((|#1| $) 49)) (-2898 ((|#1| $) 66)) (-4424 (($ $) 68)) (-1512 (((-1293) $ (-576) (-576)) 99 (|has| $ (-6 -4465)))) (-3203 (($ $ (-576)) 53 (|has| $ (-6 -4465)))) (-4264 (((-112) $ (-783)) 8)) (-2482 ((|#1| $ |#1|) 40 (|has| $ (-6 -4465)))) (-2395 (($ $ $) 57 (|has| $ (-6 -4465)))) (-2089 ((|#1| $ |#1|) 55 (|has| $ (-6 -4465)))) (-1336 ((|#1| $ |#1|) 59 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4465))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4465))) (($ $ "rest" $) 56 (|has| $ (-6 -4465))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 119 (|has| $ (-6 -4465))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4465)))) (-3829 (($ $ (-656 $)) 42 (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4464)))) (-2882 ((|#1| $) 67)) (-3404 (($) 7 T CONST)) (-3592 (($ $) 74) (($ $ (-783)) 72)) (-2034 (($ $) 101 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4464))) (($ |#1| $) 102 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4332 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) 89)) (-1742 (((-112) $) 85)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-1736 (((-656 $) $) 51)) (-3768 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-4140 (($ (-783) |#1|) 111)) (-1368 (((-112) $ (-783)) 9)) (-3281 (((-576) $) 97 (|has| (-576) (-861)))) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4280 (((-576) $) 96 (|has| (-576) (-861)))) (-4326 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-2883 (((-112) $ (-783)) 10)) (-2353 (((-656 |#1|) $) 46)) (-1508 (((-112) $) 50)) (-2046 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3968 ((|#1| $) 71) (($ $ (-783)) 69)) (-2176 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-3669 (((-656 (-576)) $) 94)) (-3090 (((-112) (-576) $) 93)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3580 ((|#1| $) 77) (($ $ (-783)) 75)) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-2304 (($ $ |#1|) 98 (|has| $ (-6 -4465)))) (-1721 (((-112) $) 86)) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-4282 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3207 (((-656 |#1|) $) 92)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-2796 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1255 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-1335 (((-576) $ $) 45)) (-3465 (($ $ (-1255 (-576))) 116) (($ $ (-576)) 115)) (-3806 (((-112) $) 47)) (-3262 (($ $) 63)) (-4347 (($ $) 60 (|has| $ (-6 -4465)))) (-1619 (((-783) $) 64)) (-3237 (($ $) 65)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-4171 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 109)) (-3631 (($ $ $) 62 (|has| $ (-6 -4465))) (($ $ |#1|) 61 (|has| $ (-6 -4465)))) (-1615 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-3059 (((-656 $) $) 52)) (-2247 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-2399 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-1170 |#1|) (-141) (-1238)) (T -1170)) -((-3166 (*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) (-4419 (*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1238)) (-5 *2 (-112))))) -(-13 (-1276 |t#1|) (-663 |t#1|) (-10 -8 (-15 -3166 ((-112) $)) (-15 -4419 ((-112) $)))) -(((-34) . T) ((-102) -2760 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2760 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-1031 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1238) . T) ((-1276 |#1|) . T)) -((-3489 (((-112) $ $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-4128 (($) NIL) (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-2047 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4466)))) (-1808 (((-112) $ (-783)) NIL)) (-3756 ((|#2| $ |#1| |#2|) NIL)) (-2300 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-2197 (((-3 |#2| "failed") |#1| $) NIL)) (-3886 (($) NIL T CONST)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121))))) (-1671 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (|has| $ (-6 -4465))) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-3 |#2| "failed") |#1| $) NIL)) (-3946 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-3686 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4465))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-4335 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4466)))) (-4274 ((|#2| $ |#1|) NIL)) (-3966 (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-656 |#2|) $) NIL (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) NIL)) (-2924 ((|#1| $) NIL (|has| |#1| (-861)))) (-2014 (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-656 |#2|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-2137 ((|#1| $) NIL (|has| |#1| (-861)))) (-4323 (($ (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3203 (((-656 |#1|) $) NIL)) (-4008 (((-112) |#1| $) NIL)) (-1597 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL)) (-1901 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL)) (-4234 (((-656 |#1|) $) NIL)) (-3354 (((-112) |#1| $) NIL)) (-1450 (((-1141) $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3581 ((|#2| $) NIL (|has| |#1| (-861)))) (-1541 (((-3 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL)) (-4046 (($ $ |#2|) NIL (|has| $ (-6 -4466)))) (-3449 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL)) (-4320 (((-112) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-2281 (((-656 |#2|) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2271 (($) NIL) (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-783) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4172 (((-548) $) NIL (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-626 (-548))))) (-3582 (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-3570 (((-876) $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-4055 (((-112) $ $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3943 (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-3321 (((-112) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) +((-1721 (*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) (-1742 (*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1238)) (-5 *2 (-112))))) +(-13 (-1276 |t#1|) (-663 |t#1|) (-10 -8 (-15 -1721 ((-112) $)) (-15 -1742 ((-112) $)))) +(((-34) . T) ((-102) -2759 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2759 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-1031 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1238) . T) ((-1276 |#1|) . T)) +((-3488 (((-112) $ $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102)) (|has| |#2| (-102))))) (-4127 (($) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-1512 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4465)))) (-4264 (((-112) $ (-783)) NIL)) (-3755 ((|#2| $ |#1| |#2|) NIL)) (-2123 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-1974 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2198 (((-3 |#2| "failed") |#1| $) NIL)) (-3404 (($) NIL T CONST)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121))))) (-2172 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) NIL)) (-3945 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#2| $ |#1|) NIL)) (-3965 (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) NIL)) (-3281 ((|#1| $) NIL (|has| |#1| (-861)))) (-2425 (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-4280 ((|#1| $) NIL (|has| |#1| (-861)))) (-4326 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4465))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3200 (((-656 |#1|) $) NIL)) (-3259 (((-112) |#1| $) NIL)) (-2722 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL)) (-2597 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL)) (-3669 (((-656 |#1|) $) NIL)) (-3090 (((-112) |#1| $) NIL)) (-1450 (((-1141) $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3580 ((|#2| $) NIL (|has| |#1| (-861)))) (-3434 (((-3 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) "failed") (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL)) (-2304 (($ $ |#2|) NIL (|has| $ (-6 -4465)))) (-1541 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL)) (-3252 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-3207 (((-656 |#2|) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3101 (($) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-3569 (((-876) $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-2399 (((-112) $ $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102)) (|has| |#2| (-102))))) (-3972 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-2708 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102)) (|has| |#2| (-102))))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) (((-1171 |#1| |#2| |#3|) (-1214 |#1| |#2|) (-1121) (-1121) |#2|) (T -1171)) NIL (-1214 |#1| |#2|) -((-3489 (((-112) $ $) NIL)) (-3408 (((-703 (-1156)) $) 27)) (-1616 (((-1156) $) 15)) (-2770 (((-1156) $) 17)) (-3699 (((-1179) $) NIL)) (-3861 (((-518) $) 13)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 37) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-1172) (-13 (-1104) (-10 -8 (-15 -3861 ((-518) $)) (-15 -2770 ((-1156) $)) (-15 -3408 ((-703 (-1156)) $)) (-15 -1616 ((-1156) $))))) (T -1172)) -((-3861 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1172)))) (-2770 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1172)))) (-3408 (*1 *2 *1) (-12 (-5 *2 (-703 (-1156))) (-5 *1 (-1172)))) (-1616 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1172))))) -(-13 (-1104) (-10 -8 (-15 -3861 ((-518) $)) (-15 -2770 ((-1156) $)) (-15 -3408 ((-703 (-1156)) $)) (-15 -1616 ((-1156) $)))) -((-3489 (((-112) $ $) 7)) (-2240 (((-3 $ "failed") $) 14)) (-3699 (((-1179) $) 10)) (-3540 (($) 15 T CONST)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2925 (((-112) $ $) 8))) +((-3488 (((-112) $ $) NIL)) (-2351 (((-703 (-1156)) $) 27)) (-1616 (((-1156) $) 15)) (-4294 (((-1156) $) 17)) (-2046 (((-1179) $) NIL)) (-4425 (((-518) $) 13)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 37) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-1172) (-13 (-1104) (-10 -8 (-15 -4425 ((-518) $)) (-15 -4294 ((-1156) $)) (-15 -2351 ((-703 (-1156)) $)) (-15 -1616 ((-1156) $))))) (T -1172)) +((-4425 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1172)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1172)))) (-2351 (*1 *2 *1) (-12 (-5 *2 (-703 (-1156))) (-5 *1 (-1172)))) (-1616 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1172))))) +(-13 (-1104) (-10 -8 (-15 -4425 ((-518) $)) (-15 -4294 ((-1156) $)) (-15 -2351 ((-703 (-1156)) $)) (-15 -1616 ((-1156) $)))) +((-3488 (((-112) $ $) 7)) (-2734 (((-3 $ "failed") $) 14)) (-2046 (((-1179) $) 10)) (-3539 (($) 15 T CONST)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2924 (((-112) $ $) 8))) (((-1173) (-141)) (T -1173)) -((-3540 (*1 *1) (-4 *1 (-1173))) (-2240 (*1 *1 *1) (|partial| -4 *1 (-1173)))) -(-13 (-1121) (-10 -8 (-15 -3540 ($) -1480) (-15 -2240 ((-3 $ "failed") $)))) +((-3539 (*1 *1) (-4 *1 (-1173))) (-2734 (*1 *1 *1) (|partial| -4 *1 (-1173)))) +(-13 (-1121) (-10 -8 (-15 -3539 ($) -1480) (-15 -2734 ((-3 $ "failed") $)))) (((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-1356 (((-1178 |#1|) (-1178 |#1|)) 17)) (-2850 (((-1178 |#1|) (-1178 |#1|)) 13)) (-2966 (((-1178 |#1|) (-1178 |#1|) (-576) (-576)) 20)) (-3217 (((-1178 |#1|) (-1178 |#1|)) 15))) -(((-1174 |#1|) (-10 -7 (-15 -2850 ((-1178 |#1|) (-1178 |#1|))) (-15 -3217 ((-1178 |#1|) (-1178 |#1|))) (-15 -1356 ((-1178 |#1|) (-1178 |#1|))) (-15 -2966 ((-1178 |#1|) (-1178 |#1|) (-576) (-576)))) (-13 (-568) (-148))) (T -1174)) -((-2966 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1174 *4)))) (-1356 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1174 *3)))) (-3217 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1174 *3)))) (-2850 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1174 *3))))) -(-10 -7 (-15 -2850 ((-1178 |#1|) (-1178 |#1|))) (-15 -3217 ((-1178 |#1|) (-1178 |#1|))) (-15 -1356 ((-1178 |#1|) (-1178 |#1|))) (-15 -2966 ((-1178 |#1|) (-1178 |#1|) (-576) (-576)))) +((-1399 (((-1178 |#1|) (-1178 |#1|)) 17)) (-3824 (((-1178 |#1|) (-1178 |#1|)) 13)) (-3564 (((-1178 |#1|) (-1178 |#1|) (-576) (-576)) 20)) (-4212 (((-1178 |#1|) (-1178 |#1|)) 15))) +(((-1174 |#1|) (-10 -7 (-15 -3824 ((-1178 |#1|) (-1178 |#1|))) (-15 -4212 ((-1178 |#1|) (-1178 |#1|))) (-15 -1399 ((-1178 |#1|) (-1178 |#1|))) (-15 -3564 ((-1178 |#1|) (-1178 |#1|) (-576) (-576)))) (-13 (-568) (-148))) (T -1174)) +((-3564 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1174 *4)))) (-1399 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1174 *3)))) (-4212 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1174 *3)))) (-3824 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1174 *3))))) +(-10 -7 (-15 -3824 ((-1178 |#1|) (-1178 |#1|))) (-15 -4212 ((-1178 |#1|) (-1178 |#1|))) (-15 -1399 ((-1178 |#1|) (-1178 |#1|))) (-15 -3564 ((-1178 |#1|) (-1178 |#1|) (-576) (-576)))) ((-1615 (((-1178 |#1|) (-1178 (-1178 |#1|))) 15))) (((-1175 |#1|) (-10 -7 (-15 -1615 ((-1178 |#1|) (-1178 (-1178 |#1|))))) (-1238)) (T -1175)) ((-1615 (*1 *2 *3) (-12 (-5 *3 (-1178 (-1178 *4))) (-5 *2 (-1178 *4)) (-5 *1 (-1175 *4)) (-4 *4 (-1238))))) (-10 -7 (-15 -1615 ((-1178 |#1|) (-1178 (-1178 |#1|))))) -((-1950 (((-1178 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1178 |#1|)) 25)) (-3686 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1178 |#1|)) 26)) (-4117 (((-1178 |#2|) (-1 |#2| |#1|) (-1178 |#1|)) 16))) -(((-1176 |#1| |#2|) (-10 -7 (-15 -4117 ((-1178 |#2|) (-1 |#2| |#1|) (-1178 |#1|))) (-15 -1950 ((-1178 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1178 |#1|))) (-15 -3686 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1178 |#1|)))) (-1238) (-1238)) (T -1176)) -((-3686 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1178 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-1176 *5 *2)))) (-1950 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1178 *6)) (-4 *6 (-1238)) (-4 *3 (-1238)) (-5 *2 (-1178 *3)) (-5 *1 (-1176 *6 *3)))) (-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1178 *6)) (-5 *1 (-1176 *5 *6))))) -(-10 -7 (-15 -4117 ((-1178 |#2|) (-1 |#2| |#1|) (-1178 |#1|))) (-15 -1950 ((-1178 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1178 |#1|))) (-15 -3686 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1178 |#1|)))) -((-4117 (((-1178 |#3|) (-1 |#3| |#1| |#2|) (-1178 |#1|) (-1178 |#2|)) 21))) -(((-1177 |#1| |#2| |#3|) (-10 -7 (-15 -4117 ((-1178 |#3|) (-1 |#3| |#1| |#2|) (-1178 |#1|) (-1178 |#2|)))) (-1238) (-1238) (-1238)) (T -1177)) -((-4117 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1178 *6)) (-5 *5 (-1178 *7)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-1178 *8)) (-5 *1 (-1177 *6 *7 *8))))) -(-10 -7 (-15 -4117 ((-1178 |#3|) (-1 |#3| |#1| |#2|) (-1178 |#1|) (-1178 |#2|)))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3106 ((|#1| $) NIL)) (-2898 ((|#1| $) NIL)) (-4426 (($ $) 67)) (-2047 (((-1293) $ (-576) (-576)) 99 (|has| $ (-6 -4466)))) (-2587 (($ $ (-576)) 128 (|has| $ (-6 -4466)))) (-1808 (((-112) $ (-783)) NIL)) (-3032 (((-876) $) 56 (|has| |#1| (-1121)))) (-3092 (((-112)) 55 (|has| |#1| (-1121)))) (-2647 ((|#1| $ |#1|) NIL (|has| $ (-6 -4466)))) (-4364 (($ $ $) 115 (|has| $ (-6 -4466))) (($ $ (-576) $) 141)) (-2297 ((|#1| $ |#1|) 125 (|has| $ (-6 -4466)))) (-1350 ((|#1| $ |#1|) 120 (|has| $ (-6 -4466)))) (-3756 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4466))) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4466))) (($ $ "rest" $) 124 (|has| $ (-6 -4466))) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4466))) ((|#1| $ (-1255 (-576)) |#1|) 112 (|has| $ (-6 -4466))) ((|#1| $ (-576) |#1|) 77 (|has| $ (-6 -4466)))) (-1894 (($ $ (-656 $)) NIL (|has| $ (-6 -4466)))) (-1974 (($ (-1 (-112) |#1|) $) 80)) (-2883 ((|#1| $) NIL)) (-3886 (($) NIL T CONST)) (-1988 (($ $) 14)) (-3593 (($ $) 40) (($ $ (-783)) 111)) (-1876 (((-112) (-656 |#1|) $) 134 (|has| |#1| (-1121)))) (-3248 (($ (-656 |#1|)) 130)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3946 (($ |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) 79)) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-4335 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4466)))) (-4274 ((|#1| $ (-576)) NIL)) (-4419 (((-112) $) NIL)) (-3966 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-2751 (((-1293) (-576) $) 140 (|has| |#1| (-1121)))) (-2556 (((-783) $) 137)) (-2387 (((-656 $) $) NIL)) (-3295 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-4141 (($ (-783) |#1|) NIL)) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-576) $) NIL (|has| (-576) (-861)))) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2137 (((-576) $) NIL (|has| (-576) (-861)))) (-4323 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-1330 (((-112) $ (-783)) NIL)) (-2353 (((-656 |#1|) $) NIL)) (-3443 (((-112) $) NIL)) (-3486 (($ $) 113)) (-4047 (((-112) $) 13)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3969 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2176 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-4234 (((-656 (-576)) $) NIL)) (-3354 (((-112) (-576) $) 96)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4354 (($ (-1 |#1|)) 143) (($ (-1 |#1| |#1|) |#1|) 144)) (-3585 ((|#1| $) 10)) (-3581 ((|#1| $) 39) (($ $ (-783)) 65)) (-3275 (((-2 (|:| |cycle?| (-112)) (|:| -4005 (-783)) (|:| |period| (-783))) (-783) $) 34)) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1953 (($ (-1 (-112) |#1|) $) 145)) (-1966 (($ (-1 (-112) |#1|) $) 146)) (-4046 (($ $ |#1|) 90 (|has| $ (-6 -4466)))) (-1749 (($ $ (-576)) 45)) (-3166 (((-112) $) 94)) (-2677 (((-112) $) 12)) (-2605 (((-112) $) 136)) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 30)) (-3845 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2281 (((-656 |#1|) $) NIL)) (-3973 (((-112) $) 20)) (-4225 (($) 60)) (-2797 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1255 (-576))) NIL) ((|#1| $ (-576)) 75) ((|#1| $ (-576) |#1|) NIL)) (-2789 (((-576) $ $) 64)) (-3466 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-3712 (($ (-1 $)) 63)) (-3617 (((-112) $) 91)) (-2934 (($ $) 92)) (-3852 (($ $) 116 (|has| $ (-6 -4466)))) (-2687 (((-783) $) NIL)) (-3369 (($ $) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1870 (($ $) 59)) (-4172 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) 73)) (-2840 (($ |#1| $) 114)) (-2974 (($ $ $) 118 (|has| $ (-6 -4466))) (($ $ |#1|) 119 (|has| $ (-6 -4466)))) (-1615 (($ $ $) 101) (($ |#1| $) 61) (($ (-656 $)) 106) (($ $ |#1|) 100)) (-3126 (($ $) 66)) (-3570 (($ (-656 |#1|)) 129) (((-876) $) 57 (|has| |#1| (-625 (-876))))) (-2902 (((-656 $) $) NIL)) (-2621 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 132 (|has| |#1| (-102)))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-1178 |#1|) (-13 (-686 |#1|) (-628 (-656 |#1|)) (-10 -8 (-6 -4466) (-15 -3248 ($ (-656 |#1|))) (IF (|has| |#1| (-1121)) (-15 -1876 ((-112) (-656 |#1|) $)) |%noBranch|) (-15 -3275 ((-2 (|:| |cycle?| (-112)) (|:| -4005 (-783)) (|:| |period| (-783))) (-783) $)) (-15 -3712 ($ (-1 $))) (-15 -2840 ($ |#1| $)) (IF (|has| |#1| (-1121)) (PROGN (-15 -2751 ((-1293) (-576) $)) (-15 -3032 ((-876) $)) (-15 -3092 ((-112)))) |%noBranch|) (-15 -4364 ($ $ (-576) $)) (-15 -4354 ($ (-1 |#1|))) (-15 -4354 ($ (-1 |#1| |#1|) |#1|)) (-15 -1953 ($ (-1 (-112) |#1|) $)) (-15 -1966 ($ (-1 (-112) |#1|) $)))) (-1238)) (T -1178)) -((-3248 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3)))) (-1876 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1121)) (-4 *4 (-1238)) (-5 *2 (-112)) (-5 *1 (-1178 *4)))) (-3275 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -4005 (-783)) (|:| |period| (-783)))) (-5 *1 (-1178 *4)) (-4 *4 (-1238)) (-5 *3 (-783)))) (-3712 (*1 *1 *2) (-12 (-5 *2 (-1 (-1178 *3))) (-5 *1 (-1178 *3)) (-4 *3 (-1238)))) (-2840 (*1 *1 *2 *1) (-12 (-5 *1 (-1178 *2)) (-4 *2 (-1238)))) (-2751 (*1 *2 *3 *1) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1178 *4)) (-4 *4 (-1121)) (-4 *4 (-1238)))) (-3032 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-1178 *3)) (-4 *3 (-1121)) (-4 *3 (-1238)))) (-3092 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1178 *3)) (-4 *3 (-1121)) (-4 *3 (-1238)))) (-4364 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1178 *3)) (-4 *3 (-1238)))) (-4354 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3)))) (-4354 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3)))) (-1953 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3)))) (-1966 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3))))) -(-13 (-686 |#1|) (-628 (-656 |#1|)) (-10 -8 (-6 -4466) (-15 -3248 ($ (-656 |#1|))) (IF (|has| |#1| (-1121)) (-15 -1876 ((-112) (-656 |#1|) $)) |%noBranch|) (-15 -3275 ((-2 (|:| |cycle?| (-112)) (|:| -4005 (-783)) (|:| |period| (-783))) (-783) $)) (-15 -3712 ($ (-1 $))) (-15 -2840 ($ |#1| $)) (IF (|has| |#1| (-1121)) (PROGN (-15 -2751 ((-1293) (-576) $)) (-15 -3032 ((-876) $)) (-15 -3092 ((-112)))) |%noBranch|) (-15 -4364 ($ $ (-576) $)) (-15 -4354 ($ (-1 |#1|))) (-15 -4354 ($ (-1 |#1| |#1|) |#1|)) (-15 -1953 ($ (-1 (-112) |#1|) $)) (-15 -1966 ($ (-1 (-112) |#1|) $)))) -((-3489 (((-112) $ $) NIL (|has| (-145) (-102)))) (-3557 (($ $) NIL)) (-3343 (($ $) NIL)) (-3350 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2047 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4466)))) (-2141 (((-112) $ $) NIL)) (-2117 (((-112) $ $ (-576)) NIL)) (-1327 (($ (-576)) 8) (($ (-227)) 10)) (-2488 (((-656 $) $ (-145)) NIL) (((-656 $) $ (-142)) NIL)) (-1710 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-861)))) (-4298 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4466))) (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-861))))) (-1795 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-861)))) (-1808 (((-112) $ (-783)) NIL)) (-3756 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4466))) (((-145) $ (-1255 (-576)) (-145)) NIL (|has| $ (-6 -4466)))) (-1974 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4465)))) (-3886 (($) NIL T CONST)) (-2638 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3990 (($ $) NIL (|has| $ (-6 -4466)))) (-3836 (($ $) NIL)) (-3716 (($ $ (-1255 (-576)) $) NIL)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-145) (-1121))))) (-3946 (($ (-145) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-145) (-1121)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4465)))) (-3686 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4465)) (|has| (-145) (-1121)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4465))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4465)))) (-4335 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4466)))) (-4274 (((-145) $ (-576)) NIL)) (-2167 (((-112) $ $) NIL)) (-3660 (((-576) (-1 (-112) (-145)) $) NIL) (((-576) (-145) $) NIL (|has| (-145) (-1121))) (((-576) (-145) $ (-576)) NIL (|has| (-145) (-1121))) (((-576) $ $ (-576)) NIL) (((-576) (-142) $ (-576)) NIL)) (-3966 (((-656 (-145)) $) NIL (|has| $ (-6 -4465)))) (-4141 (($ (-783) (-145)) NIL)) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-576) $) NIL (|has| (-576) (-861)))) (-3125 (($ $ $) NIL (|has| (-145) (-861)))) (-3391 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-861)))) (-2014 (((-656 (-145)) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-145) (-1121))))) (-2137 (((-576) $) NIL (|has| (-576) (-861)))) (-3133 (($ $ $) NIL (|has| (-145) (-861)))) (-1916 (((-112) $ $ (-145)) NIL)) (-1358 (((-783) $ $ (-145)) NIL)) (-4323 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-2936 (($ $) NIL)) (-4056 (($ $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-2648 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3699 (((-1179) $) NIL (|has| (-145) (-1121)))) (-2176 (($ (-145) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-4234 (((-656 (-576)) $) NIL)) (-3354 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| (-145) (-1121)))) (-3581 (((-145) $) NIL (|has| (-576) (-861)))) (-1541 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-4046 (($ $ (-145)) NIL (|has| $ (-6 -4466)))) (-4320 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-145) (-1121))))) (-2281 (((-656 (-145)) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) NIL) (($ $ (-1255 (-576))) NIL) (($ $ $) NIL)) (-3466 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1460 (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4465))) (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-145) (-1121))))) (-3025 (($ $ $ (-576)) NIL (|has| $ (-6 -4466)))) (-1870 (($ $) NIL)) (-4172 (((-548) $) NIL (|has| (-145) (-626 (-548))))) (-3582 (($ (-656 (-145))) NIL)) (-1615 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3570 (($ (-145)) NIL) (((-876) $) NIL (|has| (-145) (-625 (-876))))) (-4055 (((-112) $ $) NIL (|has| (-145) (-102)))) (-3321 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4465)))) (-1636 (((-1179) $) 21) (((-1179) $ (-112)) 23) (((-1293) (-834) $) 24) (((-1293) (-834) $ (-112)) 25)) (-2992 (((-112) $ $) NIL (|has| (-145) (-861)))) (-2964 (((-112) $ $) NIL (|has| (-145) (-861)))) (-2925 (((-112) $ $) NIL (|has| (-145) (-102)))) (-2978 (((-112) $ $) NIL (|has| (-145) (-861)))) (-2950 (((-112) $ $) NIL (|has| (-145) (-861)))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-1179) (-13 (-1165) (-840) (-10 -8 (-15 -1327 ($ (-576))) (-15 -1327 ($ (-227)))))) (T -1179)) -((-1327 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1179)))) (-1327 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1179))))) -(-13 (-1165) (-840) (-10 -8 (-15 -1327 ($ (-576))) (-15 -1327 ($ (-227))))) -((-3489 (((-112) $ $) NIL (-2760 (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-102)) (|has| |#1| (-102))))) (-4128 (($) NIL) (($ (-656 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)))) NIL)) (-2047 (((-1293) $ (-1179) (-1179)) NIL (|has| $ (-6 -4466)))) (-1808 (((-112) $ (-783)) NIL)) (-3756 ((|#1| $ (-1179) |#1|) NIL)) (-2300 (($ (-1 (-112) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4465)))) (-2197 (((-3 |#1| "failed") (-1179) $) NIL)) (-3886 (($) NIL T CONST)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-1121))))) (-1671 (($ (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) $) NIL (|has| $ (-6 -4465))) (($ (-1 (-112) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4465))) (((-3 |#1| "failed") (-1179) $) NIL)) (-3946 (($ (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4465)))) (-3686 (((-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-1 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $ (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-1121)))) (((-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-1 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $ (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) NIL (|has| $ (-6 -4465))) (((-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-1 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4465)))) (-4335 ((|#1| $ (-1179) |#1|) NIL (|has| $ (-6 -4466)))) (-4274 ((|#1| $ (-1179)) NIL)) (-3966 (((-656 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4465))) (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-1179) $) NIL (|has| (-1179) (-861)))) (-2014 (((-656 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4465))) (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-1121)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2137 (((-1179) $) NIL (|has| (-1179) (-861)))) (-4323 (($ (-1 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL (-2760 (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-1121)) (|has| |#1| (-1121))))) (-3203 (((-656 (-1179)) $) NIL)) (-4008 (((-112) (-1179) $) NIL)) (-1597 (((-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) $) NIL)) (-1901 (($ (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) $) NIL)) (-4234 (((-656 (-1179)) $) NIL)) (-3354 (((-112) (-1179) $) NIL)) (-1450 (((-1141) $) NIL (-2760 (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-1121)) (|has| |#1| (-1121))))) (-3581 ((|#1| $) NIL (|has| (-1179) (-861)))) (-1541 (((-3 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) "failed") (-1 (-112) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $) NIL)) (-4046 (($ $ |#1|) NIL (|has| $ (-6 -4466)))) (-3449 (((-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) $) NIL)) (-4320 (((-112) (-1 (-112) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))))) NIL (-12 (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)))) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-1121)))) (($ $ (-304 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)))) NIL (-12 (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)))) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-1121)))) (($ $ (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) NIL (-12 (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)))) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-1121)))) (($ $ (-656 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) (-656 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)))) NIL (-12 (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)))) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2281 (((-656 |#1|) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#1| $ (-1179)) NIL) ((|#1| $ (-1179) |#1|) NIL)) (-2271 (($) NIL) (($ (-656 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)))) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4465))) (((-783) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-1121)))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121)))) (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4172 (((-548) $) NIL (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-626 (-548))))) (-3582 (($ (-656 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)))) NIL)) (-3570 (((-876) $) NIL (-2760 (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-625 (-876))) (|has| |#1| (-625 (-876)))))) (-4055 (((-112) $ $) NIL (-2760 (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-102)) (|has| |#1| (-102))))) (-3943 (($ (-656 (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)))) NIL)) (-3321 (((-112) (-1 (-112) (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) NIL (-2760 (|has| (-2 (|:| -4301 (-1179)) (|:| -4440 |#1|)) (-102)) (|has| |#1| (-102))))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-1180 |#1|) (-13 (-1214 (-1179) |#1|) (-10 -7 (-6 -4465))) (-1121)) (T -1180)) -NIL -(-13 (-1214 (-1179) |#1|) (-10 -7 (-6 -4465))) -((-4203 (((-1178 |#1|) (-1178 |#1|)) 83)) (-1561 (((-3 (-1178 |#1|) "failed") (-1178 |#1|)) 39)) (-2345 (((-1178 |#1|) (-419 (-576)) (-1178 |#1|)) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2066 (((-1178 |#1|) |#1| (-1178 |#1|)) 139 (|has| |#1| (-374)))) (-2649 (((-1178 |#1|) (-1178 |#1|)) 97)) (-2151 (((-1178 (-576)) (-576)) 63)) (-3680 (((-1178 |#1|) (-1178 (-1178 |#1|))) 116 (|has| |#1| (-38 (-419 (-576)))))) (-2766 (((-1178 |#1|) (-576) (-576) (-1178 |#1|)) 102)) (-3685 (((-1178 |#1|) |#1| (-576)) 51)) (-3958 (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 66)) (-1363 (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 136 (|has| |#1| (-374)))) (-1349 (((-1178 |#1|) |#1| (-1 (-1178 |#1|))) 115 (|has| |#1| (-38 (-419 (-576)))))) (-2260 (((-1178 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1178 |#1|))) 137 (|has| |#1| (-374)))) (-2381 (((-1178 |#1|) (-1178 |#1|)) 96)) (-1428 (((-1178 |#1|) (-1178 |#1|)) 82)) (-1653 (((-1178 |#1|) (-576) (-576) (-1178 |#1|)) 103)) (-1491 (((-1178 |#1|) |#1| (-1178 |#1|)) 112 (|has| |#1| (-38 (-419 (-576)))))) (-2959 (((-1178 (-576)) (-576)) 62)) (-3896 (((-1178 |#1|) |#1|) 65)) (-1458 (((-1178 |#1|) (-1178 |#1|) (-576) (-576)) 99)) (-1638 (((-1178 |#1|) (-1 |#1| (-576)) (-1178 |#1|)) 72)) (-3476 (((-3 (-1178 |#1|) "failed") (-1178 |#1|) (-1178 |#1|)) 37)) (-3302 (((-1178 |#1|) (-1178 |#1|)) 98)) (-3284 (((-1178 |#1|) (-1178 |#1|) |#1|) 77)) (-2293 (((-1178 |#1|) (-1178 |#1|)) 68)) (-2265 (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 78)) (-3570 (((-1178 |#1|) |#1|) 73)) (-2192 (((-1178 |#1|) (-1178 (-1178 |#1|))) 88)) (-3057 (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 38)) (-3044 (((-1178 |#1|) (-1178 |#1|)) 21) (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 23)) (-3030 (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 17)) (* (((-1178 |#1|) (-1178 |#1|) |#1|) 29) (((-1178 |#1|) |#1| (-1178 |#1|)) 26) (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 27))) -(((-1181 |#1|) (-10 -7 (-15 -3030 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3044 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3044 ((-1178 |#1|) (-1178 |#1|))) (-15 * ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 * ((-1178 |#1|) |#1| (-1178 |#1|))) (-15 * ((-1178 |#1|) (-1178 |#1|) |#1|)) (-15 -3476 ((-3 (-1178 |#1|) "failed") (-1178 |#1|) (-1178 |#1|))) (-15 -3057 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -1561 ((-3 (-1178 |#1|) "failed") (-1178 |#1|))) (-15 -3685 ((-1178 |#1|) |#1| (-576))) (-15 -2959 ((-1178 (-576)) (-576))) (-15 -2151 ((-1178 (-576)) (-576))) (-15 -3896 ((-1178 |#1|) |#1|)) (-15 -3958 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -2293 ((-1178 |#1|) (-1178 |#1|))) (-15 -1638 ((-1178 |#1|) (-1 |#1| (-576)) (-1178 |#1|))) (-15 -3570 ((-1178 |#1|) |#1|)) (-15 -3284 ((-1178 |#1|) (-1178 |#1|) |#1|)) (-15 -2265 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -1428 ((-1178 |#1|) (-1178 |#1|))) (-15 -4203 ((-1178 |#1|) (-1178 |#1|))) (-15 -2192 ((-1178 |#1|) (-1178 (-1178 |#1|)))) (-15 -2381 ((-1178 |#1|) (-1178 |#1|))) (-15 -2649 ((-1178 |#1|) (-1178 |#1|))) (-15 -3302 ((-1178 |#1|) (-1178 |#1|))) (-15 -1458 ((-1178 |#1|) (-1178 |#1|) (-576) (-576))) (-15 -2766 ((-1178 |#1|) (-576) (-576) (-1178 |#1|))) (-15 -1653 ((-1178 |#1|) (-576) (-576) (-1178 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1491 ((-1178 |#1|) |#1| (-1178 |#1|))) (-15 -1349 ((-1178 |#1|) |#1| (-1 (-1178 |#1|)))) (-15 -3680 ((-1178 |#1|) (-1178 (-1178 |#1|)))) (-15 -2345 ((-1178 |#1|) (-419 (-576)) (-1178 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -1363 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -2260 ((-1178 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1178 |#1|)))) (-15 -2066 ((-1178 |#1|) |#1| (-1178 |#1|)))) |%noBranch|)) (-1070)) (T -1181)) -((-2066 (*1 *2 *3 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-374)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-2260 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-576))) (-5 *5 (-1 (-1178 *4))) (-4 *4 (-374)) (-4 *4 (-1070)) (-5 *2 (-1178 *4)) (-5 *1 (-1181 *4)))) (-1363 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-374)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-2345 (*1 *2 *3 *2) (-12 (-5 *2 (-1178 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1070)) (-5 *3 (-419 (-576))) (-5 *1 (-1181 *4)))) (-3680 (*1 *2 *3) (-12 (-5 *3 (-1178 (-1178 *4))) (-5 *2 (-1178 *4)) (-5 *1 (-1181 *4)) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1070)))) (-1349 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1178 *3))) (-5 *2 (-1178 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)))) (-1491 (*1 *2 *3 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-1653 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-1070)) (-5 *1 (-1181 *4)))) (-2766 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-1070)) (-5 *1 (-1181 *4)))) (-1458 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-1070)) (-5 *1 (-1181 *4)))) (-3302 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-2649 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-2381 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-2192 (*1 *2 *3) (-12 (-5 *3 (-1178 (-1178 *4))) (-5 *2 (-1178 *4)) (-5 *1 (-1181 *4)) (-4 *4 (-1070)))) (-4203 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-1428 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-2265 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3284 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3570 (*1 *2 *3) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-1070)))) (-1638 (*1 *2 *3 *2) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1 *4 (-576))) (-4 *4 (-1070)) (-5 *1 (-1181 *4)))) (-2293 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3958 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3896 (*1 *2 *3) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-1070)))) (-2151 (*1 *2 *3) (-12 (-5 *2 (-1178 (-576))) (-5 *1 (-1181 *4)) (-4 *4 (-1070)) (-5 *3 (-576)))) (-2959 (*1 *2 *3) (-12 (-5 *2 (-1178 (-576))) (-5 *1 (-1181 *4)) (-4 *4 (-1070)) (-5 *3 (-576)))) (-3685 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-1178 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-1070)))) (-1561 (*1 *2 *2) (|partial| -12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3057 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3476 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3044 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3044 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3030 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3))))) -(-10 -7 (-15 -3030 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3044 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3044 ((-1178 |#1|) (-1178 |#1|))) (-15 * ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 * ((-1178 |#1|) |#1| (-1178 |#1|))) (-15 * ((-1178 |#1|) (-1178 |#1|) |#1|)) (-15 -3476 ((-3 (-1178 |#1|) "failed") (-1178 |#1|) (-1178 |#1|))) (-15 -3057 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -1561 ((-3 (-1178 |#1|) "failed") (-1178 |#1|))) (-15 -3685 ((-1178 |#1|) |#1| (-576))) (-15 -2959 ((-1178 (-576)) (-576))) (-15 -2151 ((-1178 (-576)) (-576))) (-15 -3896 ((-1178 |#1|) |#1|)) (-15 -3958 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -2293 ((-1178 |#1|) (-1178 |#1|))) (-15 -1638 ((-1178 |#1|) (-1 |#1| (-576)) (-1178 |#1|))) (-15 -3570 ((-1178 |#1|) |#1|)) (-15 -3284 ((-1178 |#1|) (-1178 |#1|) |#1|)) (-15 -2265 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -1428 ((-1178 |#1|) (-1178 |#1|))) (-15 -4203 ((-1178 |#1|) (-1178 |#1|))) (-15 -2192 ((-1178 |#1|) (-1178 (-1178 |#1|)))) (-15 -2381 ((-1178 |#1|) (-1178 |#1|))) (-15 -2649 ((-1178 |#1|) (-1178 |#1|))) (-15 -3302 ((-1178 |#1|) (-1178 |#1|))) (-15 -1458 ((-1178 |#1|) (-1178 |#1|) (-576) (-576))) (-15 -2766 ((-1178 |#1|) (-576) (-576) (-1178 |#1|))) (-15 -1653 ((-1178 |#1|) (-576) (-576) (-1178 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1491 ((-1178 |#1|) |#1| (-1178 |#1|))) (-15 -1349 ((-1178 |#1|) |#1| (-1 (-1178 |#1|)))) (-15 -3680 ((-1178 |#1|) (-1178 (-1178 |#1|)))) (-15 -2345 ((-1178 |#1|) (-419 (-576)) (-1178 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -1363 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -2260 ((-1178 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1178 |#1|)))) (-15 -2066 ((-1178 |#1|) |#1| (-1178 |#1|)))) |%noBranch|)) -((-4025 (((-1178 |#1|) (-1178 |#1|)) 60)) (-3901 (((-1178 |#1|) (-1178 |#1|)) 42)) (-4006 (((-1178 |#1|) (-1178 |#1|)) 56)) (-3877 (((-1178 |#1|) (-1178 |#1|)) 38)) (-4050 (((-1178 |#1|) (-1178 |#1|)) 63)) (-3920 (((-1178 |#1|) (-1178 |#1|)) 45)) (-3745 (((-1178 |#1|) (-1178 |#1|)) 34)) (-4104 (((-1178 |#1|) (-1178 |#1|)) 29)) (-4061 (((-1178 |#1|) (-1178 |#1|)) 64)) (-3930 (((-1178 |#1|) (-1178 |#1|)) 46)) (-4037 (((-1178 |#1|) (-1178 |#1|)) 61)) (-3910 (((-1178 |#1|) (-1178 |#1|)) 43)) (-4014 (((-1178 |#1|) (-1178 |#1|)) 58)) (-3889 (((-1178 |#1|) (-1178 |#1|)) 40)) (-2791 (((-1178 |#1|) (-1178 |#1|)) 68)) (-3961 (((-1178 |#1|) (-1178 |#1|)) 50)) (-4071 (((-1178 |#1|) (-1178 |#1|)) 66)) (-3938 (((-1178 |#1|) (-1178 |#1|)) 48)) (-2815 (((-1178 |#1|) (-1178 |#1|)) 71)) (-3983 (((-1178 |#1|) (-1178 |#1|)) 53)) (-4388 (((-1178 |#1|) (-1178 |#1|)) 72)) (-3995 (((-1178 |#1|) (-1178 |#1|)) 54)) (-2803 (((-1178 |#1|) (-1178 |#1|)) 70)) (-3974 (((-1178 |#1|) (-1178 |#1|)) 52)) (-4083 (((-1178 |#1|) (-1178 |#1|)) 69)) (-3951 (((-1178 |#1|) (-1178 |#1|)) 51)) (** (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 36))) -(((-1182 |#1|) (-10 -7 (-15 -4104 ((-1178 |#1|) (-1178 |#1|))) (-15 -3745 ((-1178 |#1|) (-1178 |#1|))) (-15 ** ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3877 ((-1178 |#1|) (-1178 |#1|))) (-15 -3889 ((-1178 |#1|) (-1178 |#1|))) (-15 -3901 ((-1178 |#1|) (-1178 |#1|))) (-15 -3910 ((-1178 |#1|) (-1178 |#1|))) (-15 -3920 ((-1178 |#1|) (-1178 |#1|))) (-15 -3930 ((-1178 |#1|) (-1178 |#1|))) (-15 -3938 ((-1178 |#1|) (-1178 |#1|))) (-15 -3951 ((-1178 |#1|) (-1178 |#1|))) (-15 -3961 ((-1178 |#1|) (-1178 |#1|))) (-15 -3974 ((-1178 |#1|) (-1178 |#1|))) (-15 -3983 ((-1178 |#1|) (-1178 |#1|))) (-15 -3995 ((-1178 |#1|) (-1178 |#1|))) (-15 -4006 ((-1178 |#1|) (-1178 |#1|))) (-15 -4014 ((-1178 |#1|) (-1178 |#1|))) (-15 -4025 ((-1178 |#1|) (-1178 |#1|))) (-15 -4037 ((-1178 |#1|) (-1178 |#1|))) (-15 -4050 ((-1178 |#1|) (-1178 |#1|))) (-15 -4061 ((-1178 |#1|) (-1178 |#1|))) (-15 -4071 ((-1178 |#1|) (-1178 |#1|))) (-15 -4083 ((-1178 |#1|) (-1178 |#1|))) (-15 -2791 ((-1178 |#1|) (-1178 |#1|))) (-15 -2803 ((-1178 |#1|) (-1178 |#1|))) (-15 -2815 ((-1178 |#1|) (-1178 |#1|))) (-15 -4388 ((-1178 |#1|) (-1178 |#1|)))) (-38 (-419 (-576)))) (T -1182)) -((-4388 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2815 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2803 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2791 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-4083 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-4071 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-4061 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-4050 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-4037 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-4025 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-4014 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-4006 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3995 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3983 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3974 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3961 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3951 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3938 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3930 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3920 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3910 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3889 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3877 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3745 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-4104 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3))))) -(-10 -7 (-15 -4104 ((-1178 |#1|) (-1178 |#1|))) (-15 -3745 ((-1178 |#1|) (-1178 |#1|))) (-15 ** ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3877 ((-1178 |#1|) (-1178 |#1|))) (-15 -3889 ((-1178 |#1|) (-1178 |#1|))) (-15 -3901 ((-1178 |#1|) (-1178 |#1|))) (-15 -3910 ((-1178 |#1|) (-1178 |#1|))) (-15 -3920 ((-1178 |#1|) (-1178 |#1|))) (-15 -3930 ((-1178 |#1|) (-1178 |#1|))) (-15 -3938 ((-1178 |#1|) (-1178 |#1|))) (-15 -3951 ((-1178 |#1|) (-1178 |#1|))) (-15 -3961 ((-1178 |#1|) (-1178 |#1|))) (-15 -3974 ((-1178 |#1|) (-1178 |#1|))) (-15 -3983 ((-1178 |#1|) (-1178 |#1|))) (-15 -3995 ((-1178 |#1|) (-1178 |#1|))) (-15 -4006 ((-1178 |#1|) (-1178 |#1|))) (-15 -4014 ((-1178 |#1|) (-1178 |#1|))) (-15 -4025 ((-1178 |#1|) (-1178 |#1|))) (-15 -4037 ((-1178 |#1|) (-1178 |#1|))) (-15 -4050 ((-1178 |#1|) (-1178 |#1|))) (-15 -4061 ((-1178 |#1|) (-1178 |#1|))) (-15 -4071 ((-1178 |#1|) (-1178 |#1|))) (-15 -4083 ((-1178 |#1|) (-1178 |#1|))) (-15 -2791 ((-1178 |#1|) (-1178 |#1|))) (-15 -2803 ((-1178 |#1|) (-1178 |#1|))) (-15 -2815 ((-1178 |#1|) (-1178 |#1|))) (-15 -4388 ((-1178 |#1|) (-1178 |#1|)))) -((-4025 (((-1178 |#1|) (-1178 |#1|)) 102)) (-3901 (((-1178 |#1|) (-1178 |#1|)) 61)) (-4291 (((-2 (|:| -4006 (-1178 |#1|)) (|:| -4014 (-1178 |#1|))) (-1178 |#1|)) 98)) (-4006 (((-1178 |#1|) (-1178 |#1|)) 99)) (-3505 (((-2 (|:| -3877 (-1178 |#1|)) (|:| -3889 (-1178 |#1|))) (-1178 |#1|)) 54)) (-3877 (((-1178 |#1|) (-1178 |#1|)) 55)) (-4050 (((-1178 |#1|) (-1178 |#1|)) 104)) (-3920 (((-1178 |#1|) (-1178 |#1|)) 68)) (-3745 (((-1178 |#1|) (-1178 |#1|)) 40)) (-4104 (((-1178 |#1|) (-1178 |#1|)) 37)) (-4061 (((-1178 |#1|) (-1178 |#1|)) 105)) (-3930 (((-1178 |#1|) (-1178 |#1|)) 69)) (-4037 (((-1178 |#1|) (-1178 |#1|)) 103)) (-3910 (((-1178 |#1|) (-1178 |#1|)) 64)) (-4014 (((-1178 |#1|) (-1178 |#1|)) 100)) (-3889 (((-1178 |#1|) (-1178 |#1|)) 56)) (-2791 (((-1178 |#1|) (-1178 |#1|)) 113)) (-3961 (((-1178 |#1|) (-1178 |#1|)) 88)) (-4071 (((-1178 |#1|) (-1178 |#1|)) 107)) (-3938 (((-1178 |#1|) (-1178 |#1|)) 84)) (-2815 (((-1178 |#1|) (-1178 |#1|)) 117)) (-3983 (((-1178 |#1|) (-1178 |#1|)) 92)) (-4388 (((-1178 |#1|) (-1178 |#1|)) 119)) (-3995 (((-1178 |#1|) (-1178 |#1|)) 94)) (-2803 (((-1178 |#1|) (-1178 |#1|)) 115)) (-3974 (((-1178 |#1|) (-1178 |#1|)) 90)) (-4083 (((-1178 |#1|) (-1178 |#1|)) 109)) (-3951 (((-1178 |#1|) (-1178 |#1|)) 86)) (** (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 41))) -(((-1183 |#1|) (-10 -7 (-15 -4104 ((-1178 |#1|) (-1178 |#1|))) (-15 -3745 ((-1178 |#1|) (-1178 |#1|))) (-15 ** ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3505 ((-2 (|:| -3877 (-1178 |#1|)) (|:| -3889 (-1178 |#1|))) (-1178 |#1|))) (-15 -3877 ((-1178 |#1|) (-1178 |#1|))) (-15 -3889 ((-1178 |#1|) (-1178 |#1|))) (-15 -3901 ((-1178 |#1|) (-1178 |#1|))) (-15 -3910 ((-1178 |#1|) (-1178 |#1|))) (-15 -3920 ((-1178 |#1|) (-1178 |#1|))) (-15 -3930 ((-1178 |#1|) (-1178 |#1|))) (-15 -3938 ((-1178 |#1|) (-1178 |#1|))) (-15 -3951 ((-1178 |#1|) (-1178 |#1|))) (-15 -3961 ((-1178 |#1|) (-1178 |#1|))) (-15 -3974 ((-1178 |#1|) (-1178 |#1|))) (-15 -3983 ((-1178 |#1|) (-1178 |#1|))) (-15 -3995 ((-1178 |#1|) (-1178 |#1|))) (-15 -4291 ((-2 (|:| -4006 (-1178 |#1|)) (|:| -4014 (-1178 |#1|))) (-1178 |#1|))) (-15 -4006 ((-1178 |#1|) (-1178 |#1|))) (-15 -4014 ((-1178 |#1|) (-1178 |#1|))) (-15 -4025 ((-1178 |#1|) (-1178 |#1|))) (-15 -4037 ((-1178 |#1|) (-1178 |#1|))) (-15 -4050 ((-1178 |#1|) (-1178 |#1|))) (-15 -4061 ((-1178 |#1|) (-1178 |#1|))) (-15 -4071 ((-1178 |#1|) (-1178 |#1|))) (-15 -4083 ((-1178 |#1|) (-1178 |#1|))) (-15 -2791 ((-1178 |#1|) (-1178 |#1|))) (-15 -2803 ((-1178 |#1|) (-1178 |#1|))) (-15 -2815 ((-1178 |#1|) (-1178 |#1|))) (-15 -4388 ((-1178 |#1|) (-1178 |#1|)))) (-38 (-419 (-576)))) (T -1183)) -((-4388 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2815 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2803 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2791 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4083 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4071 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4061 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4050 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4037 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4025 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4014 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4006 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4291 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-2 (|:| -4006 (-1178 *4)) (|:| -4014 (-1178 *4)))) (-5 *1 (-1183 *4)) (-5 *3 (-1178 *4)))) (-3995 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3983 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3974 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3961 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3951 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3938 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3930 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3920 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3910 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3889 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3877 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3505 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-2 (|:| -3877 (-1178 *4)) (|:| -3889 (-1178 *4)))) (-5 *1 (-1183 *4)) (-5 *3 (-1178 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3745 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4104 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3))))) -(-10 -7 (-15 -4104 ((-1178 |#1|) (-1178 |#1|))) (-15 -3745 ((-1178 |#1|) (-1178 |#1|))) (-15 ** ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3505 ((-2 (|:| -3877 (-1178 |#1|)) (|:| -3889 (-1178 |#1|))) (-1178 |#1|))) (-15 -3877 ((-1178 |#1|) (-1178 |#1|))) (-15 -3889 ((-1178 |#1|) (-1178 |#1|))) (-15 -3901 ((-1178 |#1|) (-1178 |#1|))) (-15 -3910 ((-1178 |#1|) (-1178 |#1|))) (-15 -3920 ((-1178 |#1|) (-1178 |#1|))) (-15 -3930 ((-1178 |#1|) (-1178 |#1|))) (-15 -3938 ((-1178 |#1|) (-1178 |#1|))) (-15 -3951 ((-1178 |#1|) (-1178 |#1|))) (-15 -3961 ((-1178 |#1|) (-1178 |#1|))) (-15 -3974 ((-1178 |#1|) (-1178 |#1|))) (-15 -3983 ((-1178 |#1|) (-1178 |#1|))) (-15 -3995 ((-1178 |#1|) (-1178 |#1|))) (-15 -4291 ((-2 (|:| -4006 (-1178 |#1|)) (|:| -4014 (-1178 |#1|))) (-1178 |#1|))) (-15 -4006 ((-1178 |#1|) (-1178 |#1|))) (-15 -4014 ((-1178 |#1|) (-1178 |#1|))) (-15 -4025 ((-1178 |#1|) (-1178 |#1|))) (-15 -4037 ((-1178 |#1|) (-1178 |#1|))) (-15 -4050 ((-1178 |#1|) (-1178 |#1|))) (-15 -4061 ((-1178 |#1|) (-1178 |#1|))) (-15 -4071 ((-1178 |#1|) (-1178 |#1|))) (-15 -4083 ((-1178 |#1|) (-1178 |#1|))) (-15 -2791 ((-1178 |#1|) (-1178 |#1|))) (-15 -2803 ((-1178 |#1|) (-1178 |#1|))) (-15 -2815 ((-1178 |#1|) (-1178 |#1|))) (-15 -4388 ((-1178 |#1|) (-1178 |#1|)))) -((-2906 (((-977 |#2|) |#2| |#2|) 50)) (-3767 ((|#2| |#2| |#1|) 19 (|has| |#1| (-317))))) -(((-1184 |#1| |#2|) (-10 -7 (-15 -2906 ((-977 |#2|) |#2| |#2|)) (IF (|has| |#1| (-317)) (-15 -3767 (|#2| |#2| |#1|)) |%noBranch|)) (-568) (-1264 |#1|)) (T -1184)) -((-3767 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-1184 *3 *2)) (-4 *2 (-1264 *3)))) (-2906 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-977 *3)) (-5 *1 (-1184 *4 *3)) (-4 *3 (-1264 *4))))) -(-10 -7 (-15 -2906 ((-977 |#2|) |#2| |#2|)) (IF (|has| |#1| (-317)) (-15 -3767 (|#2| |#2| |#1|)) |%noBranch|)) -((-3489 (((-112) $ $) NIL)) (-1582 (($ $ (-656 (-783))) 79)) (-3732 (($) 33)) (-3266 (($ $) 51)) (-2772 (((-656 $) $) 60)) (-3507 (((-112) $) 19)) (-2230 (((-656 (-962 |#2|)) $) 86)) (-1818 (($ $) 80)) (-2359 (((-783) $) 47)) (-4141 (($) 32)) (-1723 (($ $ (-656 (-783)) (-962 |#2|)) 72) (($ $ (-656 (-783)) (-783)) 73) (($ $ (-783) (-962 |#2|)) 75)) (-3391 (($ $ $) 57) (($ (-656 $)) 59)) (-2816 (((-783) $) 87)) (-3443 (((-112) $) 15)) (-3699 (((-1179) $) NIL)) (-2325 (((-112) $) 22)) (-1450 (((-1141) $) NIL)) (-1414 (((-173) $) 85)) (-1867 (((-962 |#2|) $) 81)) (-2023 (((-783) $) 82)) (-3463 (((-112) $) 84)) (-1791 (($ $ (-656 (-783)) (-173)) 78)) (-1337 (($ $) 52)) (-3570 (((-876) $) 99)) (-1736 (($ $ (-656 (-783)) (-112)) 77)) (-2902 (((-656 $) $) 11)) (-2580 (($ $ (-783)) 46)) (-3874 (($ $) 43)) (-4055 (((-112) $ $) NIL)) (-4201 (($ $ $ (-962 |#2|) (-783)) 68)) (-3873 (($ $ (-962 |#2|)) 67)) (-1444 (($ $ (-656 (-783)) (-962 |#2|)) 66) (($ $ (-656 (-783)) (-783)) 70) (((-783) $ (-962 |#2|)) 71)) (-2925 (((-112) $ $) 92))) -(((-1185 |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -3443 ((-112) $)) (-15 -3507 ((-112) $)) (-15 -2325 ((-112) $)) (-15 -4141 ($)) (-15 -3732 ($)) (-15 -3874 ($ $)) (-15 -2580 ($ $ (-783))) (-15 -2902 ((-656 $) $)) (-15 -2359 ((-783) $)) (-15 -3266 ($ $)) (-15 -1337 ($ $)) (-15 -3391 ($ $ $)) (-15 -3391 ($ (-656 $))) (-15 -2772 ((-656 $) $)) (-15 -1444 ($ $ (-656 (-783)) (-962 |#2|))) (-15 -3873 ($ $ (-962 |#2|))) (-15 -4201 ($ $ $ (-962 |#2|) (-783))) (-15 -1723 ($ $ (-656 (-783)) (-962 |#2|))) (-15 -1444 ($ $ (-656 (-783)) (-783))) (-15 -1723 ($ $ (-656 (-783)) (-783))) (-15 -1444 ((-783) $ (-962 |#2|))) (-15 -1723 ($ $ (-783) (-962 |#2|))) (-15 -1736 ($ $ (-656 (-783)) (-112))) (-15 -1791 ($ $ (-656 (-783)) (-173))) (-15 -1582 ($ $ (-656 (-783)))) (-15 -1867 ((-962 |#2|) $)) (-15 -2023 ((-783) $)) (-15 -3463 ((-112) $)) (-15 -1414 ((-173) $)) (-15 -2816 ((-783) $)) (-15 -1818 ($ $)) (-15 -2230 ((-656 (-962 |#2|)) $)))) (-940) (-1070)) (T -1185)) -((-3443 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-2325 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-4141 (*1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-3732 (*1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-3874 (*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-2580 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-2902 (*1 *2 *1) (-12 (-5 *2 (-656 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-2359 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-3266 (*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-1337 (*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-3391 (*1 *1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-3391 (*1 *1 *2) (-12 (-5 *2 (-656 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-2772 (*1 *2 *1) (-12 (-5 *2 (-656 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-1444 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-962 *5)) (-4 *5 (-1070)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) (-3873 (*1 *1 *1 *2) (-12 (-5 *2 (-962 *4)) (-4 *4 (-1070)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)))) (-4201 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-962 *5)) (-5 *3 (-783)) (-4 *5 (-1070)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) (-1723 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-962 *5)) (-4 *5 (-1070)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) (-1444 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)) (-4 *5 (-1070)))) (-1723 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)) (-4 *5 (-1070)))) (-1444 (*1 *2 *1 *3) (-12 (-5 *3 (-962 *5)) (-4 *5 (-1070)) (-5 *2 (-783)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) (-1723 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-962 *5)) (-4 *5 (-1070)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) (-1736 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-112)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)) (-4 *5 (-1070)))) (-1791 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-173)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)) (-4 *5 (-1070)))) (-1582 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-1867 (*1 *2 *1) (-12 (-5 *2 (-962 *4)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-2023 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-1414 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-2816 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-1818 (*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-2230 (*1 *2 *1) (-12 (-5 *2 (-656 (-962 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070))))) -(-13 (-1121) (-10 -8 (-15 -3443 ((-112) $)) (-15 -3507 ((-112) $)) (-15 -2325 ((-112) $)) (-15 -4141 ($)) (-15 -3732 ($)) (-15 -3874 ($ $)) (-15 -2580 ($ $ (-783))) (-15 -2902 ((-656 $) $)) (-15 -2359 ((-783) $)) (-15 -3266 ($ $)) (-15 -1337 ($ $)) (-15 -3391 ($ $ $)) (-15 -3391 ($ (-656 $))) (-15 -2772 ((-656 $) $)) (-15 -1444 ($ $ (-656 (-783)) (-962 |#2|))) (-15 -3873 ($ $ (-962 |#2|))) (-15 -4201 ($ $ $ (-962 |#2|) (-783))) (-15 -1723 ($ $ (-656 (-783)) (-962 |#2|))) (-15 -1444 ($ $ (-656 (-783)) (-783))) (-15 -1723 ($ $ (-656 (-783)) (-783))) (-15 -1444 ((-783) $ (-962 |#2|))) (-15 -1723 ($ $ (-783) (-962 |#2|))) (-15 -1736 ($ $ (-656 (-783)) (-112))) (-15 -1791 ($ $ (-656 (-783)) (-173))) (-15 -1582 ($ $ (-656 (-783)))) (-15 -1867 ((-962 |#2|) $)) (-15 -2023 ((-783) $)) (-15 -3463 ((-112) $)) (-15 -1414 ((-173) $)) (-15 -2816 ((-783) $)) (-15 -1818 ($ $)) (-15 -2230 ((-656 (-962 |#2|)) $)))) -((-3489 (((-112) $ $) NIL)) (-1669 ((|#2| $) 11)) (-1657 ((|#1| $) 10)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3582 (($ |#1| |#2|) 9)) (-3570 (((-876) $) 16)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-1186 |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -3582 ($ |#1| |#2|)) (-15 -1657 (|#1| $)) (-15 -1669 (|#2| $)))) (-1121) (-1121)) (T -1186)) -((-3582 (*1 *1 *2 *3) (-12 (-5 *1 (-1186 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-1657 (*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-1186 *2 *3)) (-4 *3 (-1121)))) (-1669 (*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-1121))))) -(-13 (-1121) (-10 -8 (-15 -3582 ($ |#1| |#2|)) (-15 -1657 (|#1| $)) (-15 -1669 (|#2| $)))) -((-3489 (((-112) $ $) NIL)) (-2001 (((-1156) $) 9)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 15) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) +((-3120 (((-1178 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1178 |#1|)) 25)) (-3685 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1178 |#1|)) 26)) (-4116 (((-1178 |#2|) (-1 |#2| |#1|) (-1178 |#1|)) 16))) +(((-1176 |#1| |#2|) (-10 -7 (-15 -4116 ((-1178 |#2|) (-1 |#2| |#1|) (-1178 |#1|))) (-15 -3120 ((-1178 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1178 |#1|))) (-15 -3685 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1178 |#1|)))) (-1238) (-1238)) (T -1176)) +((-3685 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1178 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-1176 *5 *2)))) (-3120 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1178 *6)) (-4 *6 (-1238)) (-4 *3 (-1238)) (-5 *2 (-1178 *3)) (-5 *1 (-1176 *6 *3)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1178 *6)) (-5 *1 (-1176 *5 *6))))) +(-10 -7 (-15 -4116 ((-1178 |#2|) (-1 |#2| |#1|) (-1178 |#1|))) (-15 -3120 ((-1178 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1178 |#1|))) (-15 -3685 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1178 |#1|)))) +((-4116 (((-1178 |#3|) (-1 |#3| |#1| |#2|) (-1178 |#1|) (-1178 |#2|)) 21))) +(((-1177 |#1| |#2| |#3|) (-10 -7 (-15 -4116 ((-1178 |#3|) (-1 |#3| |#1| |#2|) (-1178 |#1|) (-1178 |#2|)))) (-1238) (-1238) (-1238)) (T -1177)) +((-4116 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1178 *6)) (-5 *5 (-1178 *7)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-1178 *8)) (-5 *1 (-1177 *6 *7 *8))))) +(-10 -7 (-15 -4116 ((-1178 |#3|) (-1 |#3| |#1| |#2|) (-1178 |#1|) (-1178 |#2|)))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3104 ((|#1| $) NIL)) (-2898 ((|#1| $) NIL)) (-4424 (($ $) 67)) (-1512 (((-1293) $ (-576) (-576)) 99 (|has| $ (-6 -4465)))) (-3203 (($ $ (-576)) 128 (|has| $ (-6 -4465)))) (-4264 (((-112) $ (-783)) NIL)) (-2917 (((-876) $) 56 (|has| |#1| (-1121)))) (-2234 (((-112)) 55 (|has| |#1| (-1121)))) (-2482 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-2395 (($ $ $) 115 (|has| $ (-6 -4465))) (($ $ (-576) $) 141)) (-2089 ((|#1| $ |#1|) 125 (|has| $ (-6 -4465)))) (-1336 ((|#1| $ |#1|) 120 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4465))) (($ $ "rest" $) 124 (|has| $ (-6 -4465))) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 112 (|has| $ (-6 -4465))) ((|#1| $ (-576) |#1|) 77 (|has| $ (-6 -4465)))) (-3829 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) |#1|) $) 80)) (-2882 ((|#1| $) NIL)) (-3404 (($) NIL T CONST)) (-2164 (($ $) 14)) (-3592 (($ $) 40) (($ $ (-783)) 111)) (-3654 (((-112) (-656 |#1|) $) 134 (|has| |#1| (-1121)))) (-1398 (($ (-656 |#1|)) 130)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3945 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) 79)) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4332 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) NIL)) (-1742 (((-112) $) NIL)) (-3965 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2750 (((-1293) (-576) $) 140 (|has| |#1| (-1121)))) (-2896 (((-783) $) 137)) (-1736 (((-656 $) $) NIL)) (-3768 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-4140 (($ (-783) |#1|) NIL)) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-576) $) NIL (|has| (-576) (-861)))) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4280 (((-576) $) NIL (|has| (-576) (-861)))) (-4326 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-2883 (((-112) $ (-783)) NIL)) (-2353 (((-656 |#1|) $) NIL)) (-1508 (((-112) $) NIL)) (-1858 (($ $) 113)) (-2315 (((-112) $) 13)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3968 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2176 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3669 (((-656 (-576)) $) NIL)) (-3090 (((-112) (-576) $) 96)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4353 (($ (-1 |#1|)) 143) (($ (-1 |#1| |#1|) |#1|) 144)) (-3468 ((|#1| $) 10)) (-3580 ((|#1| $) 39) (($ $ (-783)) 65)) (-3547 (((-2 (|:| |cycle?| (-112)) (|:| -4002 (-783)) (|:| |period| (-783))) (-783) $) 34)) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1952 (($ (-1 (-112) |#1|) $) 145)) (-1966 (($ (-1 (-112) |#1|) $) 146)) (-2304 (($ $ |#1|) 90 (|has| $ (-6 -4465)))) (-1743 (($ $ (-576)) 45)) (-1721 (((-112) $) 94)) (-1537 (((-112) $) 12)) (-2085 (((-112) $) 136)) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 30)) (-4282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3207 (((-656 |#1|) $) NIL)) (-2940 (((-112) $) 20)) (-3579 (($) 60)) (-2796 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1255 (-576))) NIL) ((|#1| $ (-576)) 75) ((|#1| $ (-576) |#1|) NIL)) (-1335 (((-576) $ $) 64)) (-3465 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-2192 (($ (-1 $)) 63)) (-3806 (((-112) $) 91)) (-3262 (($ $) 92)) (-4347 (($ $) 116 (|has| $ (-6 -4465)))) (-1619 (((-783) $) NIL)) (-3237 (($ $) NIL)) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) 59)) (-4171 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 73)) (-2839 (($ |#1| $) 114)) (-3631 (($ $ $) 118 (|has| $ (-6 -4465))) (($ $ |#1|) 119 (|has| $ (-6 -4465)))) (-1615 (($ $ $) 101) (($ |#1| $) 61) (($ (-656 $)) 106) (($ $ |#1|) 100)) (-2539 (($ $) 66)) (-3569 (($ (-656 |#1|)) 129) (((-876) $) 57 (|has| |#1| (-625 (-876))))) (-3059 (((-656 $) $) NIL)) (-2247 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 132 (|has| |#1| (-102)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1178 |#1|) (-13 (-686 |#1|) (-628 (-656 |#1|)) (-10 -8 (-6 -4465) (-15 -1398 ($ (-656 |#1|))) (IF (|has| |#1| (-1121)) (-15 -3654 ((-112) (-656 |#1|) $)) |%noBranch|) (-15 -3547 ((-2 (|:| |cycle?| (-112)) (|:| -4002 (-783)) (|:| |period| (-783))) (-783) $)) (-15 -2192 ($ (-1 $))) (-15 -2839 ($ |#1| $)) (IF (|has| |#1| (-1121)) (PROGN (-15 -2750 ((-1293) (-576) $)) (-15 -2917 ((-876) $)) (-15 -2234 ((-112)))) |%noBranch|) (-15 -2395 ($ $ (-576) $)) (-15 -4353 ($ (-1 |#1|))) (-15 -4353 ($ (-1 |#1| |#1|) |#1|)) (-15 -1952 ($ (-1 (-112) |#1|) $)) (-15 -1966 ($ (-1 (-112) |#1|) $)))) (-1238)) (T -1178)) +((-1398 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3)))) (-3654 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1121)) (-4 *4 (-1238)) (-5 *2 (-112)) (-5 *1 (-1178 *4)))) (-3547 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -4002 (-783)) (|:| |period| (-783)))) (-5 *1 (-1178 *4)) (-4 *4 (-1238)) (-5 *3 (-783)))) (-2192 (*1 *1 *2) (-12 (-5 *2 (-1 (-1178 *3))) (-5 *1 (-1178 *3)) (-4 *3 (-1238)))) (-2839 (*1 *1 *2 *1) (-12 (-5 *1 (-1178 *2)) (-4 *2 (-1238)))) (-2750 (*1 *2 *3 *1) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1178 *4)) (-4 *4 (-1121)) (-4 *4 (-1238)))) (-2917 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-1178 *3)) (-4 *3 (-1121)) (-4 *3 (-1238)))) (-2234 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1178 *3)) (-4 *3 (-1121)) (-4 *3 (-1238)))) (-2395 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1178 *3)) (-4 *3 (-1238)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3)))) (-4353 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3)))) (-1952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3)))) (-1966 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3))))) +(-13 (-686 |#1|) (-628 (-656 |#1|)) (-10 -8 (-6 -4465) (-15 -1398 ($ (-656 |#1|))) (IF (|has| |#1| (-1121)) (-15 -3654 ((-112) (-656 |#1|) $)) |%noBranch|) (-15 -3547 ((-2 (|:| |cycle?| (-112)) (|:| -4002 (-783)) (|:| |period| (-783))) (-783) $)) (-15 -2192 ($ (-1 $))) (-15 -2839 ($ |#1| $)) (IF (|has| |#1| (-1121)) (PROGN (-15 -2750 ((-1293) (-576) $)) (-15 -2917 ((-876) $)) (-15 -2234 ((-112)))) |%noBranch|) (-15 -2395 ($ $ (-576) $)) (-15 -4353 ($ (-1 |#1|))) (-15 -4353 ($ (-1 |#1| |#1|) |#1|)) (-15 -1952 ($ (-1 (-112) |#1|) $)) (-15 -1966 ($ (-1 (-112) |#1|) $)))) +((-3488 (((-112) $ $) NIL (|has| (-145) (-102)))) (-1329 (($ $) NIL)) (-2951 (($ $) NIL)) (-3045 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-1512 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2140 (((-112) $ $) NIL)) (-2118 (((-112) $ $ (-576)) NIL)) (-1328 (($ (-576)) 8) (($ (-227)) 10)) (-3455 (((-656 $) $ (-145)) NIL) (((-656 $) $ (-142)) NIL)) (-1390 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-861)))) (-3039 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-145) (-861))))) (-1795 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-861)))) (-4264 (((-112) $ (-783)) NIL)) (-3755 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4465))) (((-145) $ (-1255 (-576)) (-145)) NIL (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-3404 (($) NIL T CONST)) (-2636 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3092 (($ $) NIL (|has| $ (-6 -4465)))) (-3835 (($ $) NIL)) (-2236 (($ $ (-1255 (-576)) $) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-3945 (($ (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4464))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4464)))) (-4332 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4465)))) (-4272 (((-145) $ (-576)) NIL)) (-2167 (((-112) $ $) NIL)) (-3659 (((-576) (-1 (-112) (-145)) $) NIL) (((-576) (-145) $) NIL (|has| (-145) (-1121))) (((-576) (-145) $ (-576)) NIL (|has| (-145) (-1121))) (((-576) $ $ (-576)) NIL) (((-576) (-142) $ (-576)) NIL)) (-3965 (((-656 (-145)) $) NIL (|has| $ (-6 -4464)))) (-4140 (($ (-783) (-145)) NIL)) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| (-145) (-861)))) (-2185 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-861)))) (-2425 (((-656 (-145)) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-4280 (((-576) $) NIL (|has| (-576) (-861)))) (-1441 (($ $ $) NIL (|has| (-145) (-861)))) (-1916 (((-112) $ $ (-145)) NIL)) (-1358 (((-783) $ $ (-145)) NIL)) (-4326 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-3284 (($ $) NIL)) (-2409 (($ $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2648 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2046 (((-1179) $) NIL (|has| (-145) (-1121)))) (-2176 (($ (-145) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3669 (((-656 (-576)) $) NIL)) (-3090 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| (-145) (-1121)))) (-3580 (((-145) $) NIL (|has| (-576) (-861)))) (-3434 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-2304 (($ $ (-145)) NIL (|has| $ (-6 -4465)))) (-3252 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-3207 (((-656 (-145)) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) NIL) (($ $ (-1255 (-576))) NIL) (($ $ $) NIL)) (-3465 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1460 (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464))) (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-2840 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-145) (-626 (-548))))) (-3581 (($ (-656 (-145))) NIL)) (-1615 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3569 (($ (-145)) NIL) (((-876) $) NIL (|has| (-145) (-625 (-876))))) (-2399 (((-112) $ $) NIL (|has| (-145) (-102)))) (-2708 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-3160 (((-1179) $) 21) (((-1179) $ (-112)) 23) (((-1293) (-834) $) 24) (((-1293) (-834) $ (-112)) 25)) (-2990 (((-112) $ $) NIL (|has| (-145) (-861)))) (-2962 (((-112) $ $) NIL (|has| (-145) (-861)))) (-2924 (((-112) $ $) NIL (|has| (-145) (-102)))) (-2978 (((-112) $ $) NIL (|has| (-145) (-861)))) (-2949 (((-112) $ $) NIL (|has| (-145) (-861)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1179) (-13 (-1165) (-840) (-10 -8 (-15 -1328 ($ (-576))) (-15 -1328 ($ (-227)))))) (T -1179)) +((-1328 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1179)))) (-1328 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1179))))) +(-13 (-1165) (-840) (-10 -8 (-15 -1328 ($ (-576))) (-15 -1328 ($ (-227))))) +((-3488 (((-112) $ $) NIL (-2759 (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-102)) (|has| |#1| (-102))))) (-4127 (($) NIL) (($ (-656 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)))) NIL)) (-1512 (((-1293) $ (-1179) (-1179)) NIL (|has| $ (-6 -4465)))) (-4264 (((-112) $ (-783)) NIL)) (-3755 ((|#1| $ (-1179) |#1|) NIL)) (-2123 (($ (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-1974 (($ (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-2198 (((-3 |#1| "failed") (-1179) $) NIL)) (-3404 (($) NIL T CONST)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-1121))))) (-2172 (($ (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $) NIL (|has| $ (-6 -4464))) (((-3 |#1| "failed") (-1179) $) NIL)) (-3945 (($ (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-1 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $ (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-1121)))) (((-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-1 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $ (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-1 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-1179) |#1|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-1179)) NIL)) (-3965 (((-656 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-1179) $) NIL (|has| (-1179) (-861)))) (-2425 (((-656 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-1121)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4280 (((-1179) $) NIL (|has| (-1179) (-861)))) (-4326 (($ (-1 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $) NIL (|has| $ (-6 -4465))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL (-2759 (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-1121)) (|has| |#1| (-1121))))) (-3200 (((-656 (-1179)) $) NIL)) (-3259 (((-112) (-1179) $) NIL)) (-2722 (((-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) $) NIL)) (-2597 (($ (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) $) NIL)) (-3669 (((-656 (-1179)) $) NIL)) (-3090 (((-112) (-1179) $) NIL)) (-1450 (((-1141) $) NIL (-2759 (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-1121)) (|has| |#1| (-1121))))) (-3580 ((|#1| $) NIL (|has| (-1179) (-861)))) (-3434 (((-3 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) "failed") (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $) NIL)) (-2304 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-1541 (((-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) $) NIL)) (-3252 (((-112) (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))))) NIL (-12 (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-319 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)))) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)))) NIL (-12 (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-319 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)))) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-1121)))) (($ $ (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) NIL (-12 (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-319 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)))) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-1121)))) (($ $ (-656 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) (-656 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)))) NIL (-12 (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-319 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)))) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3207 (((-656 |#1|) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#1| $ (-1179)) NIL) ((|#1| $ (-1179) |#1|) NIL)) (-3101 (($) NIL) (($ (-656 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)))) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-1121)))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)))) NIL)) (-3569 (((-876) $) NIL (-2759 (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-625 (-876))) (|has| |#1| (-625 (-876)))))) (-2399 (((-112) $ $) NIL (-2759 (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-102)) (|has| |#1| (-102))))) (-3972 (($ (-656 (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)))) NIL)) (-2708 (((-112) (-1 (-112) (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) NIL (-2759 (|has| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (-102)) (|has| |#1| (-102))))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1180 |#1|) (-13 (-1214 (-1179) |#1|) (-10 -7 (-6 -4464))) (-1121)) (T -1180)) +NIL +(-13 (-1214 (-1179) |#1|) (-10 -7 (-6 -4464))) +((-1439 (((-1178 |#1|) (-1178 |#1|)) 83)) (-3673 (((-3 (-1178 |#1|) "failed") (-1178 |#1|)) 39)) (-2554 (((-1178 |#1|) (-419 (-576)) (-1178 |#1|)) 133 (|has| |#1| (-38 (-419 (-576)))))) (-1679 (((-1178 |#1|) |#1| (-1178 |#1|)) 139 (|has| |#1| (-374)))) (-2491 (((-1178 |#1|) (-1178 |#1|)) 97)) (-4395 (((-1178 (-576)) (-576)) 63)) (-3169 (((-1178 |#1|) (-1178 (-1178 |#1|))) 116 (|has| |#1| (-38 (-419 (-576)))))) (-4254 (((-1178 |#1|) (-576) (-576) (-1178 |#1|)) 102)) (-3684 (((-1178 |#1|) |#1| (-576)) 51)) (-2801 (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 66)) (-1437 (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 136 (|has| |#1| (-374)))) (-1324 (((-1178 |#1|) |#1| (-1 (-1178 |#1|))) 115 (|has| |#1| (-38 (-419 (-576)))))) (-2965 (((-1178 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1178 |#1|))) 137 (|has| |#1| (-374)))) (-1686 (((-1178 |#1|) (-1178 |#1|)) 96)) (-2165 (((-1178 |#1|) (-1178 |#1|)) 82)) (-2017 (((-1178 |#1|) (-576) (-576) (-1178 |#1|)) 103)) (-4160 (((-1178 |#1|) |#1| (-1178 |#1|)) 112 (|has| |#1| (-38 (-419 (-576)))))) (-3504 (((-1178 (-576)) (-576)) 62)) (-3894 (((-1178 |#1|) |#1|) 65)) (-2468 (((-1178 |#1|) (-1178 |#1|) (-576) (-576)) 99)) (-3183 (((-1178 |#1|) (-1 |#1| (-576)) (-1178 |#1|)) 72)) (-3475 (((-3 (-1178 |#1|) "failed") (-1178 |#1|) (-1178 |#1|)) 37)) (-3837 (((-1178 |#1|) (-1178 |#1|)) 98)) (-3282 (((-1178 |#1|) (-1178 |#1|) |#1|) 77)) (-2049 (((-1178 |#1|) (-1178 |#1|)) 68)) (-3031 (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 78)) (-3569 (((-1178 |#1|) |#1|) 73)) (-3548 (((-1178 |#1|) (-1178 (-1178 |#1|))) 88)) (-3056 (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 38)) (-3043 (((-1178 |#1|) (-1178 |#1|)) 21) (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 23)) (-3029 (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 17)) (* (((-1178 |#1|) (-1178 |#1|) |#1|) 29) (((-1178 |#1|) |#1| (-1178 |#1|)) 26) (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 27))) +(((-1181 |#1|) (-10 -7 (-15 -3029 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3043 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3043 ((-1178 |#1|) (-1178 |#1|))) (-15 * ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 * ((-1178 |#1|) |#1| (-1178 |#1|))) (-15 * ((-1178 |#1|) (-1178 |#1|) |#1|)) (-15 -3475 ((-3 (-1178 |#1|) "failed") (-1178 |#1|) (-1178 |#1|))) (-15 -3056 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3673 ((-3 (-1178 |#1|) "failed") (-1178 |#1|))) (-15 -3684 ((-1178 |#1|) |#1| (-576))) (-15 -3504 ((-1178 (-576)) (-576))) (-15 -4395 ((-1178 (-576)) (-576))) (-15 -3894 ((-1178 |#1|) |#1|)) (-15 -2801 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -2049 ((-1178 |#1|) (-1178 |#1|))) (-15 -3183 ((-1178 |#1|) (-1 |#1| (-576)) (-1178 |#1|))) (-15 -3569 ((-1178 |#1|) |#1|)) (-15 -3282 ((-1178 |#1|) (-1178 |#1|) |#1|)) (-15 -3031 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -2165 ((-1178 |#1|) (-1178 |#1|))) (-15 -1439 ((-1178 |#1|) (-1178 |#1|))) (-15 -3548 ((-1178 |#1|) (-1178 (-1178 |#1|)))) (-15 -1686 ((-1178 |#1|) (-1178 |#1|))) (-15 -2491 ((-1178 |#1|) (-1178 |#1|))) (-15 -3837 ((-1178 |#1|) (-1178 |#1|))) (-15 -2468 ((-1178 |#1|) (-1178 |#1|) (-576) (-576))) (-15 -4254 ((-1178 |#1|) (-576) (-576) (-1178 |#1|))) (-15 -2017 ((-1178 |#1|) (-576) (-576) (-1178 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4160 ((-1178 |#1|) |#1| (-1178 |#1|))) (-15 -1324 ((-1178 |#1|) |#1| (-1 (-1178 |#1|)))) (-15 -3169 ((-1178 |#1|) (-1178 (-1178 |#1|)))) (-15 -2554 ((-1178 |#1|) (-419 (-576)) (-1178 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -1437 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -2965 ((-1178 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1178 |#1|)))) (-15 -1679 ((-1178 |#1|) |#1| (-1178 |#1|)))) |%noBranch|)) (-1070)) (T -1181)) +((-1679 (*1 *2 *3 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-374)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-2965 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-576))) (-5 *5 (-1 (-1178 *4))) (-4 *4 (-374)) (-4 *4 (-1070)) (-5 *2 (-1178 *4)) (-5 *1 (-1181 *4)))) (-1437 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-374)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-2554 (*1 *2 *3 *2) (-12 (-5 *2 (-1178 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1070)) (-5 *3 (-419 (-576))) (-5 *1 (-1181 *4)))) (-3169 (*1 *2 *3) (-12 (-5 *3 (-1178 (-1178 *4))) (-5 *2 (-1178 *4)) (-5 *1 (-1181 *4)) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1070)))) (-1324 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1178 *3))) (-5 *2 (-1178 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)))) (-4160 (*1 *2 *3 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-2017 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-1070)) (-5 *1 (-1181 *4)))) (-4254 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-1070)) (-5 *1 (-1181 *4)))) (-2468 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-1070)) (-5 *1 (-1181 *4)))) (-3837 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-2491 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-1686 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3548 (*1 *2 *3) (-12 (-5 *3 (-1178 (-1178 *4))) (-5 *2 (-1178 *4)) (-5 *1 (-1181 *4)) (-4 *4 (-1070)))) (-1439 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-2165 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3031 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3282 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3569 (*1 *2 *3) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-1070)))) (-3183 (*1 *2 *3 *2) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1 *4 (-576))) (-4 *4 (-1070)) (-5 *1 (-1181 *4)))) (-2049 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-2801 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3894 (*1 *2 *3) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-1070)))) (-4395 (*1 *2 *3) (-12 (-5 *2 (-1178 (-576))) (-5 *1 (-1181 *4)) (-4 *4 (-1070)) (-5 *3 (-576)))) (-3504 (*1 *2 *3) (-12 (-5 *2 (-1178 (-576))) (-5 *1 (-1181 *4)) (-4 *4 (-1070)) (-5 *3 (-576)))) (-3684 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-1178 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-1070)))) (-3673 (*1 *2 *2) (|partial| -12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3056 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3475 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3043 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3043 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3029 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3))))) +(-10 -7 (-15 -3029 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3043 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3043 ((-1178 |#1|) (-1178 |#1|))) (-15 * ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 * ((-1178 |#1|) |#1| (-1178 |#1|))) (-15 * ((-1178 |#1|) (-1178 |#1|) |#1|)) (-15 -3475 ((-3 (-1178 |#1|) "failed") (-1178 |#1|) (-1178 |#1|))) (-15 -3056 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3673 ((-3 (-1178 |#1|) "failed") (-1178 |#1|))) (-15 -3684 ((-1178 |#1|) |#1| (-576))) (-15 -3504 ((-1178 (-576)) (-576))) (-15 -4395 ((-1178 (-576)) (-576))) (-15 -3894 ((-1178 |#1|) |#1|)) (-15 -2801 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -2049 ((-1178 |#1|) (-1178 |#1|))) (-15 -3183 ((-1178 |#1|) (-1 |#1| (-576)) (-1178 |#1|))) (-15 -3569 ((-1178 |#1|) |#1|)) (-15 -3282 ((-1178 |#1|) (-1178 |#1|) |#1|)) (-15 -3031 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -2165 ((-1178 |#1|) (-1178 |#1|))) (-15 -1439 ((-1178 |#1|) (-1178 |#1|))) (-15 -3548 ((-1178 |#1|) (-1178 (-1178 |#1|)))) (-15 -1686 ((-1178 |#1|) (-1178 |#1|))) (-15 -2491 ((-1178 |#1|) (-1178 |#1|))) (-15 -3837 ((-1178 |#1|) (-1178 |#1|))) (-15 -2468 ((-1178 |#1|) (-1178 |#1|) (-576) (-576))) (-15 -4254 ((-1178 |#1|) (-576) (-576) (-1178 |#1|))) (-15 -2017 ((-1178 |#1|) (-576) (-576) (-1178 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4160 ((-1178 |#1|) |#1| (-1178 |#1|))) (-15 -1324 ((-1178 |#1|) |#1| (-1 (-1178 |#1|)))) (-15 -3169 ((-1178 |#1|) (-1178 (-1178 |#1|)))) (-15 -2554 ((-1178 |#1|) (-419 (-576)) (-1178 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -1437 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -2965 ((-1178 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1178 |#1|)))) (-15 -1679 ((-1178 |#1|) |#1| (-1178 |#1|)))) |%noBranch|)) +((-4024 (((-1178 |#1|) (-1178 |#1|)) 60)) (-3900 (((-1178 |#1|) (-1178 |#1|)) 42)) (-4005 (((-1178 |#1|) (-1178 |#1|)) 56)) (-3876 (((-1178 |#1|) (-1178 |#1|)) 38)) (-4049 (((-1178 |#1|) (-1178 |#1|)) 63)) (-3919 (((-1178 |#1|) (-1178 |#1|)) 45)) (-3744 (((-1178 |#1|) (-1178 |#1|)) 34)) (-4103 (((-1178 |#1|) (-1178 |#1|)) 29)) (-4060 (((-1178 |#1|) (-1178 |#1|)) 64)) (-3929 (((-1178 |#1|) (-1178 |#1|)) 46)) (-4036 (((-1178 |#1|) (-1178 |#1|)) 61)) (-3909 (((-1178 |#1|) (-1178 |#1|)) 43)) (-4013 (((-1178 |#1|) (-1178 |#1|)) 58)) (-3888 (((-1178 |#1|) (-1178 |#1|)) 40)) (-2790 (((-1178 |#1|) (-1178 |#1|)) 68)) (-3960 (((-1178 |#1|) (-1178 |#1|)) 50)) (-4070 (((-1178 |#1|) (-1178 |#1|)) 66)) (-3937 (((-1178 |#1|) (-1178 |#1|)) 48)) (-2814 (((-1178 |#1|) (-1178 |#1|)) 71)) (-3982 (((-1178 |#1|) (-1178 |#1|)) 53)) (-4387 (((-1178 |#1|) (-1178 |#1|)) 72)) (-3994 (((-1178 |#1|) (-1178 |#1|)) 54)) (-2802 (((-1178 |#1|) (-1178 |#1|)) 70)) (-3973 (((-1178 |#1|) (-1178 |#1|)) 52)) (-4082 (((-1178 |#1|) (-1178 |#1|)) 69)) (-3950 (((-1178 |#1|) (-1178 |#1|)) 51)) (** (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 36))) +(((-1182 |#1|) (-10 -7 (-15 -4103 ((-1178 |#1|) (-1178 |#1|))) (-15 -3744 ((-1178 |#1|) (-1178 |#1|))) (-15 ** ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3876 ((-1178 |#1|) (-1178 |#1|))) (-15 -3888 ((-1178 |#1|) (-1178 |#1|))) (-15 -3900 ((-1178 |#1|) (-1178 |#1|))) (-15 -3909 ((-1178 |#1|) (-1178 |#1|))) (-15 -3919 ((-1178 |#1|) (-1178 |#1|))) (-15 -3929 ((-1178 |#1|) (-1178 |#1|))) (-15 -3937 ((-1178 |#1|) (-1178 |#1|))) (-15 -3950 ((-1178 |#1|) (-1178 |#1|))) (-15 -3960 ((-1178 |#1|) (-1178 |#1|))) (-15 -3973 ((-1178 |#1|) (-1178 |#1|))) (-15 -3982 ((-1178 |#1|) (-1178 |#1|))) (-15 -3994 ((-1178 |#1|) (-1178 |#1|))) (-15 -4005 ((-1178 |#1|) (-1178 |#1|))) (-15 -4013 ((-1178 |#1|) (-1178 |#1|))) (-15 -4024 ((-1178 |#1|) (-1178 |#1|))) (-15 -4036 ((-1178 |#1|) (-1178 |#1|))) (-15 -4049 ((-1178 |#1|) (-1178 |#1|))) (-15 -4060 ((-1178 |#1|) (-1178 |#1|))) (-15 -4070 ((-1178 |#1|) (-1178 |#1|))) (-15 -4082 ((-1178 |#1|) (-1178 |#1|))) (-15 -2790 ((-1178 |#1|) (-1178 |#1|))) (-15 -2802 ((-1178 |#1|) (-1178 |#1|))) (-15 -2814 ((-1178 |#1|) (-1178 |#1|))) (-15 -4387 ((-1178 |#1|) (-1178 |#1|)))) (-38 (-419 (-576)))) (T -1182)) +((-4387 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2814 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2802 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2790 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-4082 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-4070 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-4060 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-4049 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-4036 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-4024 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-4013 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-4005 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3994 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3982 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3973 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3960 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3950 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3937 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3929 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3888 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3876 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3744 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-4103 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3))))) +(-10 -7 (-15 -4103 ((-1178 |#1|) (-1178 |#1|))) (-15 -3744 ((-1178 |#1|) (-1178 |#1|))) (-15 ** ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3876 ((-1178 |#1|) (-1178 |#1|))) (-15 -3888 ((-1178 |#1|) (-1178 |#1|))) (-15 -3900 ((-1178 |#1|) (-1178 |#1|))) (-15 -3909 ((-1178 |#1|) (-1178 |#1|))) (-15 -3919 ((-1178 |#1|) (-1178 |#1|))) (-15 -3929 ((-1178 |#1|) (-1178 |#1|))) (-15 -3937 ((-1178 |#1|) (-1178 |#1|))) (-15 -3950 ((-1178 |#1|) (-1178 |#1|))) (-15 -3960 ((-1178 |#1|) (-1178 |#1|))) (-15 -3973 ((-1178 |#1|) (-1178 |#1|))) (-15 -3982 ((-1178 |#1|) (-1178 |#1|))) (-15 -3994 ((-1178 |#1|) (-1178 |#1|))) (-15 -4005 ((-1178 |#1|) (-1178 |#1|))) (-15 -4013 ((-1178 |#1|) (-1178 |#1|))) (-15 -4024 ((-1178 |#1|) (-1178 |#1|))) (-15 -4036 ((-1178 |#1|) (-1178 |#1|))) (-15 -4049 ((-1178 |#1|) (-1178 |#1|))) (-15 -4060 ((-1178 |#1|) (-1178 |#1|))) (-15 -4070 ((-1178 |#1|) (-1178 |#1|))) (-15 -4082 ((-1178 |#1|) (-1178 |#1|))) (-15 -2790 ((-1178 |#1|) (-1178 |#1|))) (-15 -2802 ((-1178 |#1|) (-1178 |#1|))) (-15 -2814 ((-1178 |#1|) (-1178 |#1|))) (-15 -4387 ((-1178 |#1|) (-1178 |#1|)))) +((-4024 (((-1178 |#1|) (-1178 |#1|)) 102)) (-3900 (((-1178 |#1|) (-1178 |#1|)) 61)) (-2974 (((-2 (|:| -4005 (-1178 |#1|)) (|:| -4013 (-1178 |#1|))) (-1178 |#1|)) 98)) (-4005 (((-1178 |#1|) (-1178 |#1|)) 99)) (-3997 (((-2 (|:| -3876 (-1178 |#1|)) (|:| -3888 (-1178 |#1|))) (-1178 |#1|)) 54)) (-3876 (((-1178 |#1|) (-1178 |#1|)) 55)) (-4049 (((-1178 |#1|) (-1178 |#1|)) 104)) (-3919 (((-1178 |#1|) (-1178 |#1|)) 68)) (-3744 (((-1178 |#1|) (-1178 |#1|)) 40)) (-4103 (((-1178 |#1|) (-1178 |#1|)) 37)) (-4060 (((-1178 |#1|) (-1178 |#1|)) 105)) (-3929 (((-1178 |#1|) (-1178 |#1|)) 69)) (-4036 (((-1178 |#1|) (-1178 |#1|)) 103)) (-3909 (((-1178 |#1|) (-1178 |#1|)) 64)) (-4013 (((-1178 |#1|) (-1178 |#1|)) 100)) (-3888 (((-1178 |#1|) (-1178 |#1|)) 56)) (-2790 (((-1178 |#1|) (-1178 |#1|)) 113)) (-3960 (((-1178 |#1|) (-1178 |#1|)) 88)) (-4070 (((-1178 |#1|) (-1178 |#1|)) 107)) (-3937 (((-1178 |#1|) (-1178 |#1|)) 84)) (-2814 (((-1178 |#1|) (-1178 |#1|)) 117)) (-3982 (((-1178 |#1|) (-1178 |#1|)) 92)) (-4387 (((-1178 |#1|) (-1178 |#1|)) 119)) (-3994 (((-1178 |#1|) (-1178 |#1|)) 94)) (-2802 (((-1178 |#1|) (-1178 |#1|)) 115)) (-3973 (((-1178 |#1|) (-1178 |#1|)) 90)) (-4082 (((-1178 |#1|) (-1178 |#1|)) 109)) (-3950 (((-1178 |#1|) (-1178 |#1|)) 86)) (** (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 41))) +(((-1183 |#1|) (-10 -7 (-15 -4103 ((-1178 |#1|) (-1178 |#1|))) (-15 -3744 ((-1178 |#1|) (-1178 |#1|))) (-15 ** ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3997 ((-2 (|:| -3876 (-1178 |#1|)) (|:| -3888 (-1178 |#1|))) (-1178 |#1|))) (-15 -3876 ((-1178 |#1|) (-1178 |#1|))) (-15 -3888 ((-1178 |#1|) (-1178 |#1|))) (-15 -3900 ((-1178 |#1|) (-1178 |#1|))) (-15 -3909 ((-1178 |#1|) (-1178 |#1|))) (-15 -3919 ((-1178 |#1|) (-1178 |#1|))) (-15 -3929 ((-1178 |#1|) (-1178 |#1|))) (-15 -3937 ((-1178 |#1|) (-1178 |#1|))) (-15 -3950 ((-1178 |#1|) (-1178 |#1|))) (-15 -3960 ((-1178 |#1|) (-1178 |#1|))) (-15 -3973 ((-1178 |#1|) (-1178 |#1|))) (-15 -3982 ((-1178 |#1|) (-1178 |#1|))) (-15 -3994 ((-1178 |#1|) (-1178 |#1|))) (-15 -2974 ((-2 (|:| -4005 (-1178 |#1|)) (|:| -4013 (-1178 |#1|))) (-1178 |#1|))) (-15 -4005 ((-1178 |#1|) (-1178 |#1|))) (-15 -4013 ((-1178 |#1|) (-1178 |#1|))) (-15 -4024 ((-1178 |#1|) (-1178 |#1|))) (-15 -4036 ((-1178 |#1|) (-1178 |#1|))) (-15 -4049 ((-1178 |#1|) (-1178 |#1|))) (-15 -4060 ((-1178 |#1|) (-1178 |#1|))) (-15 -4070 ((-1178 |#1|) (-1178 |#1|))) (-15 -4082 ((-1178 |#1|) (-1178 |#1|))) (-15 -2790 ((-1178 |#1|) (-1178 |#1|))) (-15 -2802 ((-1178 |#1|) (-1178 |#1|))) (-15 -2814 ((-1178 |#1|) (-1178 |#1|))) (-15 -4387 ((-1178 |#1|) (-1178 |#1|)))) (-38 (-419 (-576)))) (T -1183)) +((-4387 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2814 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2802 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2790 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4082 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4070 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4060 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4049 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4036 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4024 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4013 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4005 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2974 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-2 (|:| -4005 (-1178 *4)) (|:| -4013 (-1178 *4)))) (-5 *1 (-1183 *4)) (-5 *3 (-1178 *4)))) (-3994 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3982 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3973 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3960 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3950 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3937 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3929 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3888 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3876 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3997 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-2 (|:| -3876 (-1178 *4)) (|:| -3888 (-1178 *4)))) (-5 *1 (-1183 *4)) (-5 *3 (-1178 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3744 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4103 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3))))) +(-10 -7 (-15 -4103 ((-1178 |#1|) (-1178 |#1|))) (-15 -3744 ((-1178 |#1|) (-1178 |#1|))) (-15 ** ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3997 ((-2 (|:| -3876 (-1178 |#1|)) (|:| -3888 (-1178 |#1|))) (-1178 |#1|))) (-15 -3876 ((-1178 |#1|) (-1178 |#1|))) (-15 -3888 ((-1178 |#1|) (-1178 |#1|))) (-15 -3900 ((-1178 |#1|) (-1178 |#1|))) (-15 -3909 ((-1178 |#1|) (-1178 |#1|))) (-15 -3919 ((-1178 |#1|) (-1178 |#1|))) (-15 -3929 ((-1178 |#1|) (-1178 |#1|))) (-15 -3937 ((-1178 |#1|) (-1178 |#1|))) (-15 -3950 ((-1178 |#1|) (-1178 |#1|))) (-15 -3960 ((-1178 |#1|) (-1178 |#1|))) (-15 -3973 ((-1178 |#1|) (-1178 |#1|))) (-15 -3982 ((-1178 |#1|) (-1178 |#1|))) (-15 -3994 ((-1178 |#1|) (-1178 |#1|))) (-15 -2974 ((-2 (|:| -4005 (-1178 |#1|)) (|:| -4013 (-1178 |#1|))) (-1178 |#1|))) (-15 -4005 ((-1178 |#1|) (-1178 |#1|))) (-15 -4013 ((-1178 |#1|) (-1178 |#1|))) (-15 -4024 ((-1178 |#1|) (-1178 |#1|))) (-15 -4036 ((-1178 |#1|) (-1178 |#1|))) (-15 -4049 ((-1178 |#1|) (-1178 |#1|))) (-15 -4060 ((-1178 |#1|) (-1178 |#1|))) (-15 -4070 ((-1178 |#1|) (-1178 |#1|))) (-15 -4082 ((-1178 |#1|) (-1178 |#1|))) (-15 -2790 ((-1178 |#1|) (-1178 |#1|))) (-15 -2802 ((-1178 |#1|) (-1178 |#1|))) (-15 -2814 ((-1178 |#1|) (-1178 |#1|))) (-15 -4387 ((-1178 |#1|) (-1178 |#1|)))) +((-3105 (((-977 |#2|) |#2| |#2|) 50)) (-1547 ((|#2| |#2| |#1|) 19 (|has| |#1| (-317))))) +(((-1184 |#1| |#2|) (-10 -7 (-15 -3105 ((-977 |#2|) |#2| |#2|)) (IF (|has| |#1| (-317)) (-15 -1547 (|#2| |#2| |#1|)) |%noBranch|)) (-568) (-1264 |#1|)) (T -1184)) +((-1547 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-1184 *3 *2)) (-4 *2 (-1264 *3)))) (-3105 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-977 *3)) (-5 *1 (-1184 *4 *3)) (-4 *3 (-1264 *4))))) +(-10 -7 (-15 -3105 ((-977 |#2|) |#2| |#2|)) (IF (|has| |#1| (-317)) (-15 -1547 (|#2| |#2| |#1|)) |%noBranch|)) +((-3488 (((-112) $ $) NIL)) (-2562 (($ $ (-656 (-783))) 79)) (-2404 (($) 33)) (-3435 (($ $) 51)) (-4306 (((-656 $) $) 60)) (-4016 (((-112) $) 19)) (-2635 (((-656 (-962 |#2|)) $) 86)) (-4368 (($ $) 80)) (-1491 (((-783) $) 47)) (-4140 (($) 32)) (-1498 (($ $ (-656 (-783)) (-962 |#2|)) 72) (($ $ (-656 (-783)) (-783)) 73) (($ $ (-783) (-962 |#2|)) 75)) (-2185 (($ $ $) 57) (($ (-656 $)) 59)) (-2815 (((-783) $) 87)) (-1508 (((-112) $) 15)) (-2046 (((-1179) $) NIL)) (-2398 (((-112) $) 22)) (-1450 (((-1141) $) NIL)) (-3711 (((-173) $) 85)) (-3576 (((-962 |#2|) $) 81)) (-2480 (((-783) $) 82)) (-1677 (((-112) $) 84)) (-4123 (($ $ (-656 (-783)) (-173)) 78)) (-2975 (($ $) 52)) (-3569 (((-876) $) 99)) (-1622 (($ $ (-656 (-783)) (-112)) 77)) (-3059 (((-656 $) $) 11)) (-3146 (($ $ (-783)) 46)) (-1408 (($ $) 43)) (-2399 (((-112) $ $) NIL)) (-1422 (($ $ $ (-962 |#2|) (-783)) 68)) (-1400 (($ $ (-962 |#2|)) 67)) (-2331 (($ $ (-656 (-783)) (-962 |#2|)) 66) (($ $ (-656 (-783)) (-783)) 70) (((-783) $ (-962 |#2|)) 71)) (-2924 (((-112) $ $) 92))) +(((-1185 |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -1508 ((-112) $)) (-15 -4016 ((-112) $)) (-15 -2398 ((-112) $)) (-15 -4140 ($)) (-15 -2404 ($)) (-15 -1408 ($ $)) (-15 -3146 ($ $ (-783))) (-15 -3059 ((-656 $) $)) (-15 -1491 ((-783) $)) (-15 -3435 ($ $)) (-15 -2975 ($ $)) (-15 -2185 ($ $ $)) (-15 -2185 ($ (-656 $))) (-15 -4306 ((-656 $) $)) (-15 -2331 ($ $ (-656 (-783)) (-962 |#2|))) (-15 -1400 ($ $ (-962 |#2|))) (-15 -1422 ($ $ $ (-962 |#2|) (-783))) (-15 -1498 ($ $ (-656 (-783)) (-962 |#2|))) (-15 -2331 ($ $ (-656 (-783)) (-783))) (-15 -1498 ($ $ (-656 (-783)) (-783))) (-15 -2331 ((-783) $ (-962 |#2|))) (-15 -1498 ($ $ (-783) (-962 |#2|))) (-15 -1622 ($ $ (-656 (-783)) (-112))) (-15 -4123 ($ $ (-656 (-783)) (-173))) (-15 -2562 ($ $ (-656 (-783)))) (-15 -3576 ((-962 |#2|) $)) (-15 -2480 ((-783) $)) (-15 -1677 ((-112) $)) (-15 -3711 ((-173) $)) (-15 -2815 ((-783) $)) (-15 -4368 ($ $)) (-15 -2635 ((-656 (-962 |#2|)) $)))) (-940) (-1070)) (T -1185)) +((-1508 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-4016 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-2398 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-4140 (*1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-2404 (*1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-1408 (*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-3146 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-3059 (*1 *2 *1) (-12 (-5 *2 (-656 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-3435 (*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-2975 (*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-2185 (*1 *1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-2185 (*1 *1 *2) (-12 (-5 *2 (-656 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-4306 (*1 *2 *1) (-12 (-5 *2 (-656 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-2331 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-962 *5)) (-4 *5 (-1070)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) (-1400 (*1 *1 *1 *2) (-12 (-5 *2 (-962 *4)) (-4 *4 (-1070)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)))) (-1422 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-962 *5)) (-5 *3 (-783)) (-4 *5 (-1070)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) (-1498 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-962 *5)) (-4 *5 (-1070)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) (-2331 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)) (-4 *5 (-1070)))) (-1498 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)) (-4 *5 (-1070)))) (-2331 (*1 *2 *1 *3) (-12 (-5 *3 (-962 *5)) (-4 *5 (-1070)) (-5 *2 (-783)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) (-1498 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-962 *5)) (-4 *5 (-1070)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) (-1622 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-112)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)) (-4 *5 (-1070)))) (-4123 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-173)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)) (-4 *5 (-1070)))) (-2562 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-3576 (*1 *2 *1) (-12 (-5 *2 (-962 *4)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-2480 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-1677 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-3711 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-2815 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-4368 (*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-2635 (*1 *2 *1) (-12 (-5 *2 (-656 (-962 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070))))) +(-13 (-1121) (-10 -8 (-15 -1508 ((-112) $)) (-15 -4016 ((-112) $)) (-15 -2398 ((-112) $)) (-15 -4140 ($)) (-15 -2404 ($)) (-15 -1408 ($ $)) (-15 -3146 ($ $ (-783))) (-15 -3059 ((-656 $) $)) (-15 -1491 ((-783) $)) (-15 -3435 ($ $)) (-15 -2975 ($ $)) (-15 -2185 ($ $ $)) (-15 -2185 ($ (-656 $))) (-15 -4306 ((-656 $) $)) (-15 -2331 ($ $ (-656 (-783)) (-962 |#2|))) (-15 -1400 ($ $ (-962 |#2|))) (-15 -1422 ($ $ $ (-962 |#2|) (-783))) (-15 -1498 ($ $ (-656 (-783)) (-962 |#2|))) (-15 -2331 ($ $ (-656 (-783)) (-783))) (-15 -1498 ($ $ (-656 (-783)) (-783))) (-15 -2331 ((-783) $ (-962 |#2|))) (-15 -1498 ($ $ (-783) (-962 |#2|))) (-15 -1622 ($ $ (-656 (-783)) (-112))) (-15 -4123 ($ $ (-656 (-783)) (-173))) (-15 -2562 ($ $ (-656 (-783)))) (-15 -3576 ((-962 |#2|) $)) (-15 -2480 ((-783) $)) (-15 -1677 ((-112) $)) (-15 -3711 ((-173) $)) (-15 -2815 ((-783) $)) (-15 -4368 ($ $)) (-15 -2635 ((-656 (-962 |#2|)) $)))) +((-3488 (((-112) $ $) NIL)) (-1669 ((|#2| $) 11)) (-1657 ((|#1| $) 10)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3581 (($ |#1| |#2|) 9)) (-3569 (((-876) $) 16)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-1186 |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -3581 ($ |#1| |#2|)) (-15 -1657 (|#1| $)) (-15 -1669 (|#2| $)))) (-1121) (-1121)) (T -1186)) +((-3581 (*1 *1 *2 *3) (-12 (-5 *1 (-1186 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-1657 (*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-1186 *2 *3)) (-4 *3 (-1121)))) (-1669 (*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-1121))))) +(-13 (-1121) (-10 -8 (-15 -3581 ($ |#1| |#2|)) (-15 -1657 (|#1| $)) (-15 -1669 (|#2| $)))) +((-3488 (((-112) $ $) NIL)) (-2001 (((-1156) $) 9)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 15) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) (((-1187) (-13 (-1104) (-10 -8 (-15 -2001 ((-1156) $))))) (T -1187)) ((-2001 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1187))))) (-13 (-1104) (-10 -8 (-15 -2001 ((-1156) $)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2575 (((-1195 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-1969 (((-656 (-1103)) $) NIL)) (-3055 (((-1197) $) 11)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2757 (($ $) NIL (-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-3788 (((-112) $) NIL (-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2326 (($ $ (-576)) NIL) (($ $ (-576) (-576)) 75)) (-3669 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) NIL)) (-3707 (((-1195 |#1| |#2| |#3|) $) 42)) (-2897 (((-3 (-1195 |#1| |#2| |#3|) "failed") $) 32)) (-2010 (((-1195 |#1| |#2| |#3|) $) 33)) (-4025 (($ $) 116 (|has| |#1| (-38 (-419 (-576)))))) (-3901 (($ $) 92 (|has| |#1| (-38 (-419 (-576)))))) (-4367 (((-3 $ "failed") $ $) NIL)) (-3601 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-2487 (($ $) NIL (|has| |#1| (-374)))) (-3921 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1839 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-4016 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4006 (($ $) 112 (|has| |#1| (-38 (-419 (-576)))))) (-3877 (($ $) 88 (|has| |#1| (-38 (-419 (-576)))))) (-3308 (((-576) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-3080 (($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) NIL)) (-4050 (($ $) 120 (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $) 96 (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-1195 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1197) "failed") $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-1197))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374)))) (((-3 (-576) "failed") $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374))))) (-2860 (((-1195 |#1| |#2| |#3|) $) 140) (((-1197) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-1197))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374)))) (((-576) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374))))) (-2257 (($ $) 37) (($ (-576) $) 38)) (-3429 (($ $ $) NIL (|has| |#1| (-374)))) (-2114 (($ $) NIL)) (-2204 (((-701 (-1195 |#1| |#2| |#3|)) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2590 (-701 (-1195 |#1| |#2| |#3|))) (|:| |vec| (-1288 (-1195 |#1| |#2| |#3|)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-1561 (((-3 $ "failed") $) 54)) (-2251 (((-419 (-971 |#1|)) $ (-576)) 74 (|has| |#1| (-568))) (((-419 (-971 |#1|)) $ (-576) (-576)) 76 (|has| |#1| (-568)))) (-1836 (($) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-3441 (($ $ $) NIL (|has| |#1| (-374)))) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-4249 (((-112) $) NIL (|has| |#1| (-374)))) (-2087 (((-112) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-1424 (((-112) $) 28)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-901 (-390))) (|has| |#1| (-374)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-901 (-576))) (|has| |#1| (-374))))) (-3917 (((-576) $) NIL) (((-576) $ (-576)) 26)) (-4193 (((-112) $) NIL)) (-2171 (($ $) NIL (|has| |#1| (-374)))) (-1570 (((-1195 |#1| |#2| |#3|) $) 44 (|has| |#1| (-374)))) (-2121 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2240 (((-3 $ "failed") $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1173)) (|has| |#1| (-374))))) (-1634 (((-112) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-4116 (($ $ (-940)) NIL)) (-1378 (($ (-1 |#1| (-576)) $) NIL)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2823 (((-112) $) NIL)) (-1945 (($ |#1| (-576)) 19) (($ $ (-1103) (-576)) NIL) (($ $ (-656 (-1103)) (-656 (-576))) NIL)) (-3125 (($ $ $) NIL (-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-3133 (($ $ $) NIL (-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-4117 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-374)))) (-3745 (($ $) 81 (|has| |#1| (-38 (-419 (-576)))))) (-3913 (((-701 (-1195 |#1| |#2| |#3|)) (-1288 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2590 (-701 (-1195 |#1| |#2| |#3|))) (|:| |vec| (-1288 (-1195 |#1| |#2| |#3|)))) (-1288 $) $) NIL (|has| |#1| (-374))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1288 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-3458 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2021 (($ (-576) (-1195 |#1| |#2| |#3|)) 36)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL (|has| |#1| (-374)))) (-1491 (($ $) 79 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) NIL (-2760 (-12 (|has| |#1| (-15 -1491 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 80 (|has| |#1| (-38 (-419 (-576)))))) (-3540 (($) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1173)) (|has| |#1| (-374))) CONST)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2393 (($ $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-2443 (((-1195 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-4100 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-1811 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-1828 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| |#1| (-374)))) (-1749 (($ $ (-576)) 158)) (-3476 (((-3 $ "failed") $ $) 55 (-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4104 (($ $) 82 (|has| |#1| (-38 (-419 (-576)))))) (-3284 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1197) (-1195 |#1| |#2| |#3|)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-526 (-1197) (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1197)) (-656 (-1195 |#1| |#2| |#3|))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-526 (-1197) (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-304 (-1195 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-319 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-304 (-1195 |#1| |#2| |#3|))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-319 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-319 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1195 |#1| |#2| |#3|)) (-656 (-1195 |#1| |#2| |#3|))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-319 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-1967 (((-783) $) NIL (|has| |#1| (-374)))) (-2797 ((|#1| $ (-576)) NIL) (($ $ $) 61 (|has| (-576) (-1133))) (($ $ (-1195 |#1| |#2| |#3|)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-296 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#1| (-374)))) (-2775 (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1284 |#2|)) 57) (($ $) 56 (-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) NIL (-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))))) (-2143 (($ $) NIL (|has| |#1| (-374)))) (-1581 (((-1195 |#1| |#2| |#3|) $) 46 (|has| |#1| (-374)))) (-3634 (((-576) $) 43)) (-4061 (($ $) 122 (|has| |#1| (-38 (-419 (-576)))))) (-3930 (($ $) 98 (|has| |#1| (-38 (-419 (-576)))))) (-4037 (($ $) 118 (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) 94 (|has| |#1| (-38 (-419 (-576)))))) (-4014 (($ $) 114 (|has| |#1| (-38 (-419 (-576)))))) (-3889 (($ $) 90 (|has| |#1| (-38 (-419 (-576)))))) (-4172 (((-548) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-626 (-548))) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1043)) (|has| |#1| (-374)))) (((-227) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1043)) (|has| |#1| (-374)))) (((-907 (-390)) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-626 (-907 (-390)))) (|has| |#1| (-374)))) (((-907 (-576)) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-626 (-907 (-576)))) (|has| |#1| (-374))))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-3126 (($ $) NIL)) (-3570 (((-876) $) 162) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1195 |#1| |#2| |#3|)) 30) (($ (-1284 |#2|)) 25) (($ (-1197)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-1197))) (|has| |#1| (-374)))) (($ $) NIL (-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568)))) (($ (-419 (-576))) NIL (-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374))) (|has| |#1| (-38 (-419 (-576))))))) (-3177 ((|#1| $ (-576)) 77)) (-4336 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| $ (-146)) (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-3996 (((-783)) NIL T CONST)) (-2396 ((|#1| $) 12)) (-4118 (((-1195 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-4055 (((-112) $ $) NIL)) (-2791 (($ $) 128 (|has| |#1| (-38 (-419 (-576)))))) (-3961 (($ $) 104 (|has| |#1| (-38 (-419 (-576)))))) (-2672 (((-112) $ $) NIL (-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4071 (($ $) 124 (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) 100 (|has| |#1| (-38 (-419 (-576)))))) (-2815 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3983 (($ $) 108 (|has| |#1| (-38 (-419 (-576)))))) (-4166 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3570 (|#1| (-1197))))))) (-4388 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3995 (($ $) 110 (|has| |#1| (-38 (-419 (-576)))))) (-2803 (($ $) 130 (|has| |#1| (-38 (-419 (-576)))))) (-3974 (($ $) 106 (|has| |#1| (-38 (-419 (-576)))))) (-4083 (($ $) 126 (|has| |#1| (-38 (-419 (-576)))))) (-3951 (($ $) 102 (|has| |#1| (-38 (-419 (-576)))))) (-2122 (($ $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2721 (($) 21 T CONST)) (-2732 (($) 16 T CONST)) (-2020 (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1284 |#2|)) NIL) (($ $) NIL (-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) NIL (-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))))) (-2992 (((-112) $ $) NIL (-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-2964 (((-112) $ $) NIL (-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-2950 (((-112) $ $) NIL (-2760 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-3057 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 49 (|has| |#1| (-374))) (($ (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) 50 (|has| |#1| (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) 23)) (** (($ $ (-940)) NIL) (($ $ (-783)) 60) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) 83 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 137 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1195 |#1| |#2| |#3|)) 48 (|has| |#1| (-374))) (($ (-1195 |#1| |#2| |#3|) $) 47 (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1188 |#1| |#2| |#3|) (-13 (-1250 |#1| (-1195 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3570 ($ (-1284 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1491 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -1188)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1188 *3 *4 *5)) (-4 *3 (-1070)) (-14 *5 *3))) (-1491 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1188 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) -(-13 (-1250 |#1| (-1195 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3570 ($ (-1284 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1491 ($ $ (-1284 |#2|))) |%noBranch|))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-3110 (((-1195 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-1969 (((-656 (-1103)) $) NIL)) (-3054 (((-1197) $) 11)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4195 (($ $) NIL (-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-1760 (((-112) $) NIL (-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2408 (($ $ (-576)) NIL) (($ $ (-576) (-576)) 75)) (-3064 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) NIL)) (-2131 (((-1195 |#1| |#2| |#3|) $) 42)) (-3008 (((-3 (-1195 |#1| |#2| |#3|) "failed") $) 32)) (-2010 (((-1195 |#1| |#2| |#3|) $) 33)) (-4024 (($ $) 116 (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) 92 (|has| |#1| (-38 (-419 (-576)))))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3646 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-3444 (($ $) NIL (|has| |#1| (-374)))) (-3760 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1840 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-3330 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4005 (($ $) 112 (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) 88 (|has| |#1| (-38 (-419 (-576)))))) (-3906 (((-576) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-3079 (($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) NIL)) (-4049 (($ $) 120 (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) 96 (|has| |#1| (-38 (-419 (-576)))))) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-1195 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1197) "failed") $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-1197))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374)))) (((-3 (-576) "failed") $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374))))) (-2859 (((-1195 |#1| |#2| |#3|) $) 140) (((-1197) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-1197))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374)))) (((-576) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374))))) (-2926 (($ $) 37) (($ (-576) $) 38)) (-3428 (($ $ $) NIL (|has| |#1| (-374)))) (-2114 (($ $) NIL)) (-3674 (((-701 (-1195 |#1| |#2| |#3|)) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3232 (-701 (-1195 |#1| |#2| |#3|))) (|:| |vec| (-1288 (-1195 |#1| |#2| |#3|)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-3673 (((-3 $ "failed") $) 54)) (-2862 (((-419 (-971 |#1|)) $ (-576)) 74 (|has| |#1| (-568))) (((-419 (-971 |#1|)) $ (-576) (-576)) 76 (|has| |#1| (-568)))) (-1836 (($) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-3440 (($ $ $) NIL (|has| |#1| (-374)))) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3833 (((-112) $) NIL (|has| |#1| (-374)))) (-1866 (((-112) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2116 (((-112) $) 28)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-901 (-390))) (|has| |#1| (-374)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-901 (-576))) (|has| |#1| (-374))))) (-3726 (((-576) $) NIL) (((-576) $ (-576)) 26)) (-1351 (((-112) $) NIL)) (-3328 (($ $) NIL (|has| |#1| (-374)))) (-1570 (((-1195 |#1| |#2| |#3|) $) 44 (|has| |#1| (-374)))) (-4131 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2734 (((-3 $ "failed") $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1173)) (|has| |#1| (-374))))) (-3137 (((-112) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-1800 (($ $ (-940)) NIL)) (-3811 (($ (-1 |#1| (-576)) $) NIL)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3538 (((-112) $) NIL)) (-1944 (($ |#1| (-576)) 19) (($ $ (-1103) (-576)) NIL) (($ $ (-656 (-1103)) (-656 (-576))) NIL)) (-3124 (($ $ $) NIL (-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-1441 (($ $ $) NIL (-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-374)))) (-3744 (($ $) 81 (|has| |#1| (-38 (-419 (-576)))))) (-3676 (((-701 (-1195 |#1| |#2| |#3|)) (-1288 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3232 (-701 (-1195 |#1| |#2| |#3|))) (|:| |vec| (-1288 (-1195 |#1| |#2| |#3|)))) (-1288 $) $) NIL (|has| |#1| (-374))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1288 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2021 (($ (-576) (-1195 |#1| |#2| |#3|)) 36)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL (|has| |#1| (-374)))) (-4160 (($ $) 79 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) NIL (-2759 (-12 (|has| |#1| (-15 -4160 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 80 (|has| |#1| (-38 (-419 (-576)))))) (-3539 (($) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1173)) (|has| |#1| (-374))) CONST)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3497 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1788 (($ $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-4236 (((-1195 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-1644 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-4296 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-1828 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-1743 (($ $ (-576)) 158)) (-3475 (((-3 $ "failed") $ $) 55 (-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4103 (($ $) 82 (|has| |#1| (-38 (-419 (-576)))))) (-3282 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1197) (-1195 |#1| |#2| |#3|)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-526 (-1197) (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1197)) (-656 (-1195 |#1| |#2| |#3|))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-526 (-1197) (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-304 (-1195 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-319 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-304 (-1195 |#1| |#2| |#3|))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-319 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-319 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1195 |#1| |#2| |#3|)) (-656 (-1195 |#1| |#2| |#3|))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-319 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-1979 (((-783) $) NIL (|has| |#1| (-374)))) (-2796 ((|#1| $ (-576)) NIL) (($ $ $) 61 (|has| (-576) (-1133))) (($ $ (-1195 |#1| |#2| |#3|)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-296 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#1| (-374)))) (-2774 (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1284 |#2|)) 57) (($ $) 56 (-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) NIL (-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))))) (-4325 (($ $) NIL (|has| |#1| (-374)))) (-1581 (((-1195 |#1| |#2| |#3|) $) 46 (|has| |#1| (-374)))) (-2683 (((-576) $) 43)) (-4060 (($ $) 122 (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) 98 (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) 118 (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) 94 (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) 114 (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) 90 (|has| |#1| (-38 (-419 (-576)))))) (-4171 (((-548) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-626 (-548))) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1043)) (|has| |#1| (-374)))) (((-227) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1043)) (|has| |#1| (-374)))) (((-907 (-390)) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-626 (-907 (-390)))) (|has| |#1| (-374)))) (((-907 (-576)) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-626 (-907 (-576)))) (|has| |#1| (-374))))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-2539 (($ $) NIL)) (-3569 (((-876) $) 162) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1195 |#1| |#2| |#3|)) 30) (($ (-1284 |#2|)) 25) (($ (-1197)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-1197))) (|has| |#1| (-374)))) (($ $) NIL (-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568)))) (($ (-419 (-576))) NIL (-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374))) (|has| |#1| (-38 (-419 (-576))))))) (-1822 ((|#1| $ (-576)) 77)) (-3390 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| $ (-146)) (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-3154 (((-783)) NIL T CONST)) (-2396 ((|#1| $) 12)) (-1810 (((-1195 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-2399 (((-112) $ $) NIL)) (-2790 (($ $) 128 (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) 104 (|has| |#1| (-38 (-419 (-576)))))) (-1505 (((-112) $ $) NIL (-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4070 (($ $) 124 (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) 100 (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) 108 (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) 110 (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) 130 (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) 106 (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) 126 (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) 102 (|has| |#1| (-38 (-419 (-576)))))) (-4143 (($ $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2721 (($) 21 T CONST)) (-2731 (($) 16 T CONST)) (-2020 (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1284 |#2|)) NIL) (($ $) NIL (-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) NIL (-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))))) (-2990 (((-112) $ $) NIL (-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-2962 (((-112) $ $) NIL (-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-2949 (((-112) $ $) NIL (-2759 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 49 (|has| |#1| (-374))) (($ (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) 50 (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 23)) (** (($ $ (-940)) NIL) (($ $ (-783)) 60) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) 83 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 137 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1195 |#1| |#2| |#3|)) 48 (|has| |#1| (-374))) (($ (-1195 |#1| |#2| |#3|) $) 47 (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1188 |#1| |#2| |#3|) (-13 (-1250 |#1| (-1195 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3569 ($ (-1284 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4160 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -1188)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1188 *3 *4 *5)) (-4 *3 (-1070)) (-14 *5 *3))) (-4160 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1188 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) +(-13 (-1250 |#1| (-1195 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3569 ($ (-1284 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4160 ($ $ (-1284 |#2|))) |%noBranch|))) ((-1369 ((|#2| |#2| (-1113 |#2|)) 26) ((|#2| |#2| (-1197)) 28))) (((-1189 |#1| |#2|) (-10 -7 (-15 -1369 (|#2| |#2| (-1197))) (-15 -1369 (|#2| |#2| (-1113 |#2|)))) (-13 (-568) (-1059 (-576)) (-651 (-576))) (-13 (-442 |#1|) (-161) (-27) (-1223))) (T -1189)) ((-1369 (*1 *2 *2 *3) (-12 (-5 *3 (-1113 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1223))) (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1189 *4 *2)))) (-1369 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1189 *4 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1223)))))) @@ -4897,535 +4897,535 @@ NIL (((-1190 |#1|) (-10 -7 (-15 -1369 ((-419 (-971 |#1|)) (-971 |#1|) (-1197))) (-15 -1369 ((-3 (-419 (-971 |#1|)) (-326 |#1|)) (-419 (-971 |#1|)) (-1197))) (-15 -1369 ((-419 (-971 |#1|)) (-971 |#1|) (-1113 (-971 |#1|)))) (-15 -1369 ((-3 (-419 (-971 |#1|)) (-326 |#1|)) (-419 (-971 |#1|)) (-1113 (-419 (-971 |#1|)))))) (-13 (-568) (-1059 (-576)))) (T -1190)) ((-1369 (*1 *2 *3 *4) (-12 (-5 *4 (-1113 (-419 (-971 *5)))) (-5 *3 (-419 (-971 *5))) (-4 *5 (-13 (-568) (-1059 (-576)))) (-5 *2 (-3 *3 (-326 *5))) (-5 *1 (-1190 *5)))) (-1369 (*1 *2 *3 *4) (-12 (-5 *4 (-1113 (-971 *5))) (-5 *3 (-971 *5)) (-4 *5 (-13 (-568) (-1059 (-576)))) (-5 *2 (-419 *3)) (-5 *1 (-1190 *5)))) (-1369 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-568) (-1059 (-576)))) (-5 *2 (-3 (-419 (-971 *5)) (-326 *5))) (-5 *1 (-1190 *5)) (-5 *3 (-419 (-971 *5))))) (-1369 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-568) (-1059 (-576)))) (-5 *2 (-419 (-971 *5))) (-5 *1 (-1190 *5)) (-5 *3 (-971 *5))))) (-10 -7 (-15 -1369 ((-419 (-971 |#1|)) (-971 |#1|) (-1197))) (-15 -1369 ((-3 (-419 (-971 |#1|)) (-326 |#1|)) (-419 (-971 |#1|)) (-1197))) (-15 -1369 ((-419 (-971 |#1|)) (-971 |#1|) (-1113 (-971 |#1|)))) (-15 -1369 ((-3 (-419 (-971 |#1|)) (-326 |#1|)) (-419 (-971 |#1|)) (-1113 (-419 (-971 |#1|)))))) -((-4117 (((-1193 |#2|) (-1 |#2| |#1|) (-1193 |#1|)) 13))) -(((-1191 |#1| |#2|) (-10 -7 (-15 -4117 ((-1193 |#2|) (-1 |#2| |#1|) (-1193 |#1|)))) (-1070) (-1070)) (T -1191)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1193 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-5 *2 (-1193 *6)) (-5 *1 (-1191 *5 *6))))) -(-10 -7 (-15 -4117 ((-1193 |#2|) (-1 |#2| |#1|) (-1193 |#1|)))) -((-3921 (((-430 (-1193 (-419 |#4|))) (-1193 (-419 |#4|))) 51)) (-1828 (((-430 (-1193 (-419 |#4|))) (-1193 (-419 |#4|))) 52))) -(((-1192 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1828 ((-430 (-1193 (-419 |#4|))) (-1193 (-419 |#4|)))) (-15 -3921 ((-430 (-1193 (-419 |#4|))) (-1193 (-419 |#4|))))) (-805) (-861) (-464) (-968 |#3| |#1| |#2|)) (T -1192)) -((-3921 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-464)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-430 (-1193 (-419 *7)))) (-5 *1 (-1192 *4 *5 *6 *7)) (-5 *3 (-1193 (-419 *7))))) (-1828 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-464)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-430 (-1193 (-419 *7)))) (-5 *1 (-1192 *4 *5 *6 *7)) (-5 *3 (-1193 (-419 *7)))))) -(-10 -7 (-15 -1828 ((-430 (-1193 (-419 |#4|))) (-1193 (-419 |#4|)))) (-15 -3921 ((-430 (-1193 (-419 |#4|))) (-1193 (-419 |#4|))))) -((-3489 (((-112) $ $) 171)) (-4308 (((-112) $) 43)) (-2516 (((-1288 |#1|) $ (-783)) NIL)) (-1969 (((-656 (-1103)) $) NIL)) (-3591 (($ (-1193 |#1|)) NIL)) (-1798 (((-1193 $) $ (-1103)) 82) (((-1193 |#1|) $) 71)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2757 (($ $) 164 (|has| |#1| (-568)))) (-3788 (((-112) $) NIL (|has| |#1| (-568)))) (-3543 (((-783) $) NIL) (((-783) $ (-656 (-1103))) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3049 (($ $ $) 158 (|has| |#1| (-568)))) (-3601 (((-430 (-1193 $)) (-1193 $)) 95 (|has| |#1| (-928)))) (-2487 (($ $) NIL (|has| |#1| (-464)))) (-3921 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 115 (|has| |#1| (-928)))) (-4016 (((-112) $ $) NIL (|has| |#1| (-374)))) (-1533 (($ $ (-783)) 61)) (-2266 (($ $ (-783)) 63)) (-2772 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-1103) "failed") $) NIL)) (-2860 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-1103) $) NIL)) (-3230 (($ $ $ (-1103)) NIL (|has| |#1| (-174))) ((|#1| $ $) 160 (|has| |#1| (-174)))) (-3429 (($ $ $) NIL (|has| |#1| (-374)))) (-2114 (($ $) 80)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-3441 (($ $ $) NIL (|has| |#1| (-374)))) (-1898 (($ $ $) 131)) (-1804 (($ $ $) NIL (|has| |#1| (-568)))) (-2865 (((-2 (|:| -1714 |#1|) (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#1| (-568)))) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3767 (($ $) 165 (|has| |#1| (-464))) (($ $ (-1103)) NIL (|has| |#1| (-464)))) (-2103 (((-656 $) $) NIL)) (-4249 (((-112) $) NIL (|has| |#1| (-928)))) (-2431 (($ $ |#1| (-783) $) 69)) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1103) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1103) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3234 (((-876) $ (-876)) 148)) (-3917 (((-783) $ $) NIL (|has| |#1| (-568)))) (-4193 (((-112) $) 48)) (-2217 (((-783) $) NIL)) (-2240 (((-3 $ "failed") $) NIL (|has| |#1| (-1173)))) (-1955 (($ (-1193 |#1|) (-1103)) 73) (($ (-1193 $) (-1103)) 89)) (-4116 (($ $ (-783)) 51)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1608 (((-656 $) $) NIL)) (-2823 (((-112) $) NIL)) (-1945 (($ |#1| (-783)) 87) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-4130 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $ (-1103)) NIL) (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 153)) (-3751 (((-783) $) NIL) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-2999 (($ (-1 (-783) (-783)) $) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-1732 (((-1193 |#1|) $) NIL)) (-3721 (((-3 (-1103) "failed") $) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2081 (($ $) NIL)) (-2091 ((|#1| $) 76)) (-3458 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3699 (((-1179) $) NIL)) (-2015 (((-2 (|:| -2715 $) (|:| -3624 $)) $ (-783)) 60)) (-1385 (((-3 (-656 $) "failed") $) NIL)) (-1690 (((-3 (-656 $) "failed") $) NIL)) (-2040 (((-3 (-2 (|:| |var| (-1103)) (|:| -3422 (-783))) "failed") $) NIL)) (-1491 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3540 (($) NIL (|has| |#1| (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) 50)) (-2070 ((|#1| $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 103 (|has| |#1| (-464)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) 167 (|has| |#1| (-464)))) (-2598 (($ $ (-783) |#1| $) 123)) (-4100 (((-430 (-1193 $)) (-1193 $)) 101 (|has| |#1| (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) 100 (|has| |#1| (-928)))) (-1828 (((-430 $) $) 108 (|has| |#1| (-928)))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| |#1| (-374)))) (-3476 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-568)))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3284 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1103) |#1|) NIL) (($ $ (-656 (-1103)) (-656 |#1|)) NIL) (($ $ (-1103) $) NIL) (($ $ (-656 (-1103)) (-656 $)) NIL)) (-1967 (((-783) $) NIL (|has| |#1| (-374)))) (-2797 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-4177 (((-3 $ "failed") $ (-783)) 54)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 172 (|has| |#1| (-374)))) (-4352 (($ $ (-1103)) NIL (|has| |#1| (-174))) ((|#1| $) 156 (|has| |#1| (-174)))) (-2775 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-3634 (((-783) $) 78) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-4172 (((-907 (-390)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-1103) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-2457 ((|#1| $) 162 (|has| |#1| (-464))) (($ $ (-1103)) NIL (|has| |#1| (-464)))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-2507 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-3570 (((-876) $) 149) (($ (-576)) NIL) (($ |#1|) 77) (($ (-1103)) NIL) (($ (-419 (-576))) NIL (-2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-1618 (((-656 |#1|) $) NIL)) (-3177 ((|#1| $ (-783)) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-4336 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3996 (((-783)) NIL T CONST)) (-2541 (($ $ $ (-783)) 41 (|has| |#1| (-174)))) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2721 (($) 17 T CONST)) (-2732 (($) 19 T CONST)) (-2020 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-2925 (((-112) $ $) 120)) (-3057 (($ $ |#1|) 173 (|has| |#1| (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) 90)) (** (($ $ (-940)) 14) (($ $ (-783)) 12)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 39) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) -(((-1193 |#1|) (-13 (-1264 |#1|) (-10 -8 (-15 -3234 ((-876) $ (-876))) (-15 -2598 ($ $ (-783) |#1| $)))) (-1070)) (T -1193)) -((-3234 (*1 *2 *1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1193 *3)) (-4 *3 (-1070)))) (-2598 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1193 *3)) (-4 *3 (-1070))))) -(-13 (-1264 |#1|) (-10 -8 (-15 -3234 ((-876) $ (-876))) (-15 -2598 ($ $ (-783) |#1| $)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-1969 (((-656 (-1103)) $) NIL)) (-3055 (((-1197) $) 11)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2757 (($ $) NIL (|has| |#1| (-568)))) (-3788 (((-112) $) NIL (|has| |#1| (-568)))) (-2326 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-3669 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-4025 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3901 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL (|has| |#1| (-374)))) (-3921 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1839 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4016 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4006 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3877 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3080 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-4050 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-1188 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1195 |#1| |#2| |#3|) "failed") $) 36)) (-2860 (((-1188 |#1| |#2| |#3|) $) NIL) (((-1195 |#1| |#2| |#3|) $) NIL)) (-3429 (($ $ $) NIL (|has| |#1| (-374)))) (-2114 (($ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-1422 (((-419 (-576)) $) 59)) (-3441 (($ $ $) NIL (|has| |#1| (-374)))) (-2031 (($ (-419 (-576)) (-1188 |#1| |#2| |#3|)) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-4249 (((-112) $) NIL (|has| |#1| (-374)))) (-1424 (((-112) $) NIL)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3917 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-4193 (((-112) $) NIL)) (-2121 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4116 (($ $ (-940)) NIL) (($ $ (-419 (-576))) NIL)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2823 (((-112) $) NIL)) (-1945 (($ |#1| (-419 (-576))) 20) (($ $ (-1103) (-419 (-576))) NIL) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-3745 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-3458 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2264 (((-1188 |#1| |#2| |#3|) $) 41)) (-1851 (((-3 (-1188 |#1| |#2| |#3|) "failed") $) NIL)) (-2021 (((-1188 |#1| |#2| |#3|) $) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL (|has| |#1| (-374)))) (-1491 (($ $) 39 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) NIL (-2760 (-12 (|has| |#1| (-15 -1491 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 40 (|has| |#1| (-38 (-419 (-576)))))) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| |#1| (-374)))) (-1749 (($ $ (-419 (-576))) NIL)) (-3476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4104 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3284 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-1967 (((-783) $) NIL (|has| |#1| (-374)))) (-2797 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1133)))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#1| (-374)))) (-2775 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1284 |#2|)) 38)) (-3634 (((-419 (-576)) $) NIL)) (-4061 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3930 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4037 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4014 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3889 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3126 (($ $) NIL)) (-3570 (((-876) $) 62) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1188 |#1| |#2| |#3|)) 30) (($ (-1195 |#1| |#2| |#3|)) 31) (($ (-1284 |#2|)) 26) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-3177 ((|#1| $ (-419 (-576))) NIL)) (-4336 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3996 (((-783)) NIL T CONST)) (-2396 ((|#1| $) 12)) (-4055 (((-112) $ $) NIL)) (-2791 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3961 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2672 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4071 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2815 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3983 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4166 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3570 (|#1| (-1197))))))) (-4388 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3995 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2803 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3974 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4083 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3951 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) 22 T CONST)) (-2732 (($) 16 T CONST)) (-2020 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1284 |#2|)) NIL)) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) 24)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1194 |#1| |#2| |#3|) (-13 (-1271 |#1| (-1188 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-1059 (-1195 |#1| |#2| |#3|)) (-628 (-1284 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1491 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -1194)) -((-1491 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1194 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) -(-13 (-1271 |#1| (-1188 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-1059 (-1195 |#1| |#2| |#3|)) (-628 (-1284 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1491 ($ $ (-1284 |#2|))) |%noBranch|))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 129)) (-1969 (((-656 (-1103)) $) NIL)) (-3055 (((-1197) $) 119)) (-3155 (((-1261 |#2| |#1|) $ (-783)) 69)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2757 (($ $) NIL (|has| |#1| (-568)))) (-3788 (((-112) $) NIL (|has| |#1| (-568)))) (-2326 (($ $ (-783)) 85) (($ $ (-783) (-783)) 82)) (-3669 (((-1178 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 105)) (-4025 (($ $) 173 (|has| |#1| (-38 (-419 (-576)))))) (-3901 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-4367 (((-3 $ "failed") $ $) NIL)) (-1839 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4006 (($ $) 169 (|has| |#1| (-38 (-419 (-576)))))) (-3877 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3080 (($ (-1178 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 118) (($ (-1178 |#1|)) 113)) (-4050 (($ $) 177 (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-1561 (((-3 $ "failed") $) 25)) (-1344 (($ $) 28)) (-2383 (((-971 |#1|) $ (-783)) 81) (((-971 |#1|) $ (-783) (-783)) 83)) (-1424 (((-112) $) 124)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3917 (((-783) $) 126) (((-783) $ (-783)) 128)) (-4193 (((-112) $) NIL)) (-2121 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4116 (($ $ (-940)) NIL)) (-1378 (($ (-1 |#1| (-576)) $) NIL)) (-2823 (((-112) $) NIL)) (-1945 (($ |#1| (-783)) 13) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-3745 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-3699 (((-1179) $) NIL)) (-1491 (($ $) 133 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) NIL (-2760 (-12 (|has| |#1| (-15 -1491 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 134 (|has| |#1| (-38 (-419 (-576)))))) (-1450 (((-1141) $) NIL)) (-1749 (($ $ (-783)) 15)) (-3476 (((-3 $ "failed") $ $) 26 (|has| |#1| (-568)))) (-4104 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3284 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-2797 ((|#1| $ (-783)) 122) (($ $ $) 132 (|has| (-783) (-1133)))) (-2775 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1284 |#2|)) 31)) (-3634 (((-783) $) NIL)) (-4061 (($ $) 179 (|has| |#1| (-38 (-419 (-576)))))) (-3930 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-4037 (($ $) 175 (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-4014 (($ $) 171 (|has| |#1| (-38 (-419 (-576)))))) (-3889 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3126 (($ $) NIL)) (-3570 (((-876) $) 206) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 130 (|has| |#1| (-174))) (($ (-1261 |#2| |#1|)) 55) (($ (-1284 |#2|)) 36)) (-1618 (((-1178 |#1|) $) 101)) (-3177 ((|#1| $ (-783)) 121)) (-4336 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3996 (((-783)) NIL T CONST)) (-2396 ((|#1| $) 58)) (-4055 (((-112) $ $) NIL)) (-2791 (($ $) 185 (|has| |#1| (-38 (-419 (-576)))))) (-3961 (($ $) 161 (|has| |#1| (-38 (-419 (-576)))))) (-2672 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4071 (($ $) 181 (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2815 (($ $) 189 (|has| |#1| (-38 (-419 (-576)))))) (-3983 (($ $) 165 (|has| |#1| (-38 (-419 (-576)))))) (-4166 ((|#1| $ (-783)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -3570 (|#1| (-1197))))))) (-4388 (($ $) 191 (|has| |#1| (-38 (-419 (-576)))))) (-3995 (($ $) 167 (|has| |#1| (-38 (-419 (-576)))))) (-2803 (($ $) 187 (|has| |#1| (-38 (-419 (-576)))))) (-3974 (($ $) 163 (|has| |#1| (-38 (-419 (-576)))))) (-4083 (($ $) 183 (|has| |#1| (-38 (-419 (-576)))))) (-3951 (($ $) 159 (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) 17 T CONST)) (-2732 (($) 20 T CONST)) (-2020 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1284 |#2|)) NIL)) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3044 (($ $) NIL) (($ $ $) 198)) (-3030 (($ $ $) 35)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ |#1|) 203 (|has| |#1| (-374))) (($ $ $) 138 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 141 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1195 |#1| |#2| |#3|) (-13 (-1279 |#1|) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3570 ($ (-1261 |#2| |#1|))) (-15 -3155 ((-1261 |#2| |#1|) $ (-783))) (-15 -3570 ($ (-1284 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1491 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -1195)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-1261 *4 *3)) (-4 *3 (-1070)) (-14 *4 (-1197)) (-14 *5 *3) (-5 *1 (-1195 *3 *4 *5)))) (-3155 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1261 *5 *4)) (-5 *1 (-1195 *4 *5 *6)) (-4 *4 (-1070)) (-14 *5 (-1197)) (-14 *6 *4))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-1070)) (-14 *5 *3))) (-1491 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) -(-13 (-1279 |#1|) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3570 ($ (-1261 |#2| |#1|))) (-15 -3155 ((-1261 |#2| |#1|) $ (-783))) (-15 -3570 ($ (-1284 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1491 ($ $ (-1284 |#2|))) |%noBranch|))) -((-3570 (((-876) $) 33) (($ (-1197)) 35)) (-2760 (($ (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 46)) (-2746 (($ (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 39) (($ $) 40)) (-3173 (($ (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 41)) (-3162 (($ (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 43)) (-3151 (($ (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 42)) (-3139 (($ (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 44)) (-2037 (($ (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 45))) -(((-1196) (-13 (-625 (-876)) (-10 -8 (-15 -3570 ($ (-1197))) (-15 -3173 ($ (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3151 ($ (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3162 ($ (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3139 ($ (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2760 ($ (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2037 ($ (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2746 ($ (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2746 ($ $))))) (T -1196)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1196)))) (-3173 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-3151 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-3162 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-3139 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-2760 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-2037 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-2746 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-2746 (*1 *1 *1) (-5 *1 (-1196)))) -(-13 (-625 (-876)) (-10 -8 (-15 -3570 ($ (-1197))) (-15 -3173 ($ (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3151 ($ (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3162 ($ (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3139 ($ (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2760 ($ (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2037 ($ (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2746 ($ (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2746 ($ $)))) -((-3489 (((-112) $ $) NIL)) (-4366 (($ $ (-656 (-876))) 62)) (-3015 (($ $ (-656 (-876))) 60)) (-1327 (((-1179) $) 101)) (-2445 (((-2 (|:| -2229 (-656 (-876))) (|:| -2324 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -3509 (-656 (-876))) (|:| |args| (-656 (-876)))) $) 108)) (-3390 (((-112) $) 23)) (-2942 (($ $ (-656 (-656 (-876)))) 59) (($ $ (-2 (|:| -2229 (-656 (-876))) (|:| -2324 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -3509 (-656 (-876))) (|:| |args| (-656 (-876))))) 99)) (-3886 (($) 163 T CONST)) (-2216 (((-1293)) 135)) (-1840 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 69) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 76)) (-4141 (($) 122) (($ $) 131)) (-2629 (($ $) 100)) (-3125 (($ $ $) NIL)) (-3133 (($ $ $) NIL)) (-1650 (((-656 $) $) 136)) (-3699 (((-1179) $) 114)) (-1450 (((-1141) $) NIL)) (-2797 (($ $ (-656 (-876))) 61)) (-4172 (((-548) $) 48) (((-1197) $) 49) (((-907 (-576)) $) 80) (((-907 (-390)) $) 78)) (-3570 (((-876) $) 55) (($ (-1179)) 50)) (-4055 (((-112) $ $) NIL)) (-3577 (($ $ (-656 (-876))) 63)) (-1636 (((-1179) $) 34) (((-1179) $ (-112)) 35) (((-1293) (-834) $) 36) (((-1293) (-834) $ (-112)) 37)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 51)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) 52))) -(((-1197) (-13 (-861) (-626 (-548)) (-840) (-626 (-1197)) (-628 (-1179)) (-626 (-907 (-576))) (-626 (-907 (-390))) (-901 (-576)) (-901 (-390)) (-10 -8 (-15 -4141 ($)) (-15 -4141 ($ $)) (-15 -2216 ((-1293))) (-15 -2629 ($ $)) (-15 -3390 ((-112) $)) (-15 -2445 ((-2 (|:| -2229 (-656 (-876))) (|:| -2324 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -3509 (-656 (-876))) (|:| |args| (-656 (-876)))) $)) (-15 -2942 ($ $ (-656 (-656 (-876))))) (-15 -2942 ($ $ (-2 (|:| -2229 (-656 (-876))) (|:| -2324 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -3509 (-656 (-876))) (|:| |args| (-656 (-876)))))) (-15 -3015 ($ $ (-656 (-876)))) (-15 -4366 ($ $ (-656 (-876)))) (-15 -3577 ($ $ (-656 (-876)))) (-15 -2797 ($ $ (-656 (-876)))) (-15 -1327 ((-1179) $)) (-15 -1650 ((-656 $) $)) (-15 -3886 ($) -1480)))) (T -1197)) -((-4141 (*1 *1) (-5 *1 (-1197))) (-4141 (*1 *1 *1) (-5 *1 (-1197))) (-2216 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1197)))) (-2629 (*1 *1 *1) (-5 *1 (-1197))) (-3390 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1197)))) (-2445 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2229 (-656 (-876))) (|:| -2324 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -3509 (-656 (-876))) (|:| |args| (-656 (-876))))) (-5 *1 (-1197)))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 (-876)))) (-5 *1 (-1197)))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2229 (-656 (-876))) (|:| -2324 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -3509 (-656 (-876))) (|:| |args| (-656 (-876))))) (-5 *1 (-1197)))) (-3015 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197)))) (-4366 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197)))) (-3577 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197)))) (-2797 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197)))) (-1327 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1197)))) (-1650 (*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1197)))) (-3886 (*1 *1) (-5 *1 (-1197)))) -(-13 (-861) (-626 (-548)) (-840) (-626 (-1197)) (-628 (-1179)) (-626 (-907 (-576))) (-626 (-907 (-390))) (-901 (-576)) (-901 (-390)) (-10 -8 (-15 -4141 ($)) (-15 -4141 ($ $)) (-15 -2216 ((-1293))) (-15 -2629 ($ $)) (-15 -3390 ((-112) $)) (-15 -2445 ((-2 (|:| -2229 (-656 (-876))) (|:| -2324 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -3509 (-656 (-876))) (|:| |args| (-656 (-876)))) $)) (-15 -2942 ($ $ (-656 (-656 (-876))))) (-15 -2942 ($ $ (-2 (|:| -2229 (-656 (-876))) (|:| -2324 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -3509 (-656 (-876))) (|:| |args| (-656 (-876)))))) (-15 -3015 ($ $ (-656 (-876)))) (-15 -4366 ($ $ (-656 (-876)))) (-15 -3577 ($ $ (-656 (-876)))) (-15 -2797 ($ $ (-656 (-876)))) (-15 -1327 ((-1179) $)) (-15 -1650 ((-656 $) $)) (-15 -3886 ($) -1480))) -((-2908 (((-1288 |#1|) |#1| (-940)) 18) (((-1288 |#1|) (-656 |#1|)) 25))) -(((-1198 |#1|) (-10 -7 (-15 -2908 ((-1288 |#1|) (-656 |#1|))) (-15 -2908 ((-1288 |#1|) |#1| (-940)))) (-1070)) (T -1198)) -((-2908 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-5 *2 (-1288 *3)) (-5 *1 (-1198 *3)) (-4 *3 (-1070)))) (-2908 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1070)) (-5 *2 (-1288 *4)) (-5 *1 (-1198 *4))))) -(-10 -7 (-15 -2908 ((-1288 |#1|) (-656 |#1|))) (-15 -2908 ((-1288 |#1|) |#1| (-940)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2757 (($ $) NIL (|has| |#1| (-568)))) (-3788 (((-112) $) NIL (|has| |#1| (-568)))) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2860 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-2114 (($ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-3767 (($ $) NIL (|has| |#1| (-464)))) (-2431 (($ $ |#1| (-992) $) NIL)) (-4193 (((-112) $) 17)) (-2217 (((-783) $) NIL)) (-2823 (((-112) $) NIL)) (-1945 (($ |#1| (-992)) NIL)) (-3751 (((-992) $) NIL)) (-2999 (($ (-1 (-992) (-992)) $) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) NIL)) (-2070 ((|#1| $) NIL)) (-2598 (($ $ (-992) |#1| $) NIL (-12 (|has| (-992) (-132)) (|has| |#1| (-568))))) (-3476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-3634 (((-992) $) NIL)) (-2457 ((|#1| $) NIL (|has| |#1| (-464)))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) NIL) (($ (-419 (-576))) NIL (-2760 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-1618 (((-656 |#1|) $) NIL)) (-3177 ((|#1| $ (-992)) NIL)) (-4336 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3996 (((-783)) NIL T CONST)) (-2541 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2721 (($) 10 T CONST)) (-2732 (($) NIL T CONST)) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) 21)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1199 |#1|) (-13 (-336 |#1| (-992)) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| (-992) (-132)) (-15 -2598 ($ $ (-992) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4463)) (-6 -4463) |%noBranch|))) (-1070)) (T -1199)) -((-2598 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-992)) (-4 *2 (-132)) (-5 *1 (-1199 *3)) (-4 *3 (-568)) (-4 *3 (-1070))))) -(-13 (-336 |#1| (-992)) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| (-992) (-132)) (-15 -2598 ($ $ (-992) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4463)) (-6 -4463) |%noBranch|))) -((-1716 (((-1201) (-1197) $) 25)) (-2597 (($) 29)) (-1505 (((-3 (|:| |fst| (-446)) (|:| -2917 "void")) (-1197) $) 22)) (-4185 (((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -2917 "void")) $) 41) (((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) 42) (((-1293) (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) 43)) (-2046 (((-1293) (-1197)) 58)) (-2519 (((-1293) (-1197) $) 55) (((-1293) (-1197)) 56) (((-1293)) 57)) (-2064 (((-1293) (-1197)) 37)) (-2660 (((-1197)) 36)) (-4225 (($) 34)) (-3446 (((-449) (-1197) (-449) (-1197) $) 45) (((-449) (-656 (-1197)) (-449) (-1197) $) 49) (((-449) (-1197) (-449)) 46) (((-449) (-1197) (-449) (-1197)) 50)) (-2615 (((-1197)) 35)) (-3570 (((-876) $) 28)) (-3221 (((-1293)) 30) (((-1293) (-1197)) 33)) (-2973 (((-656 (-1197)) (-1197) $) 24)) (-2736 (((-1293) (-1197) (-656 (-1197)) $) 38) (((-1293) (-1197) (-656 (-1197))) 39) (((-1293) (-656 (-1197))) 40))) -(((-1200) (-13 (-625 (-876)) (-10 -8 (-15 -2597 ($)) (-15 -3221 ((-1293))) (-15 -3221 ((-1293) (-1197))) (-15 -3446 ((-449) (-1197) (-449) (-1197) $)) (-15 -3446 ((-449) (-656 (-1197)) (-449) (-1197) $)) (-15 -3446 ((-449) (-1197) (-449))) (-15 -3446 ((-449) (-1197) (-449) (-1197))) (-15 -2064 ((-1293) (-1197))) (-15 -2615 ((-1197))) (-15 -2660 ((-1197))) (-15 -2736 ((-1293) (-1197) (-656 (-1197)) $)) (-15 -2736 ((-1293) (-1197) (-656 (-1197)))) (-15 -2736 ((-1293) (-656 (-1197)))) (-15 -4185 ((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -2917 "void")) $)) (-15 -4185 ((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -2917 "void")))) (-15 -4185 ((-1293) (-3 (|:| |fst| (-446)) (|:| -2917 "void")))) (-15 -2519 ((-1293) (-1197) $)) (-15 -2519 ((-1293) (-1197))) (-15 -2519 ((-1293))) (-15 -2046 ((-1293) (-1197))) (-15 -4225 ($)) (-15 -1505 ((-3 (|:| |fst| (-446)) (|:| -2917 "void")) (-1197) $)) (-15 -2973 ((-656 (-1197)) (-1197) $)) (-15 -1716 ((-1201) (-1197) $))))) (T -1200)) -((-2597 (*1 *1) (-5 *1 (-1200))) (-3221 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3221 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3446 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-449)) (-5 *3 (-1197)) (-5 *1 (-1200)))) (-3446 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1197))) (-5 *4 (-1197)) (-5 *1 (-1200)))) (-3446 (*1 *2 *3 *2) (-12 (-5 *2 (-449)) (-5 *3 (-1197)) (-5 *1 (-1200)))) (-3446 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-449)) (-5 *3 (-1197)) (-5 *1 (-1200)))) (-2064 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-2615 (*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1200)))) (-2660 (*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1200)))) (-2736 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-2736 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-4185 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1197)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-4185 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-4185 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-2519 (*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-2519 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-2519 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1200)))) (-2046 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-4225 (*1 *1) (-5 *1 (-1200))) (-1505 (*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) (-5 *1 (-1200)))) (-2973 (*1 *2 *3 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1200)) (-5 *3 (-1197)))) (-1716 (*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-1201)) (-5 *1 (-1200))))) -(-13 (-625 (-876)) (-10 -8 (-15 -2597 ($)) (-15 -3221 ((-1293))) (-15 -3221 ((-1293) (-1197))) (-15 -3446 ((-449) (-1197) (-449) (-1197) $)) (-15 -3446 ((-449) (-656 (-1197)) (-449) (-1197) $)) (-15 -3446 ((-449) (-1197) (-449))) (-15 -3446 ((-449) (-1197) (-449) (-1197))) (-15 -2064 ((-1293) (-1197))) (-15 -2615 ((-1197))) (-15 -2660 ((-1197))) (-15 -2736 ((-1293) (-1197) (-656 (-1197)) $)) (-15 -2736 ((-1293) (-1197) (-656 (-1197)))) (-15 -2736 ((-1293) (-656 (-1197)))) (-15 -4185 ((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -2917 "void")) $)) (-15 -4185 ((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -2917 "void")))) (-15 -4185 ((-1293) (-3 (|:| |fst| (-446)) (|:| -2917 "void")))) (-15 -2519 ((-1293) (-1197) $)) (-15 -2519 ((-1293) (-1197))) (-15 -2519 ((-1293))) (-15 -2046 ((-1293) (-1197))) (-15 -4225 ($)) (-15 -1505 ((-3 (|:| |fst| (-446)) (|:| -2917 "void")) (-1197) $)) (-15 -2973 ((-656 (-1197)) (-1197) $)) (-15 -1716 ((-1201) (-1197) $)))) -((-2786 (((-656 (-656 (-3 (|:| -2629 (-1197)) (|:| -3059 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576))))))))) $) 66)) (-3211 (((-656 (-3 (|:| -2629 (-1197)) (|:| -3059 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576)))))))) (-446) $) 47)) (-2583 (($ (-656 (-2 (|:| -4301 (-1197)) (|:| -4440 (-449))))) 17)) (-2046 (((-1293) $) 73)) (-2455 (((-656 (-1197)) $) 22)) (-2961 (((-1125) $) 60)) (-2976 (((-449) (-1197) $) 27)) (-3816 (((-656 (-1197)) $) 30)) (-4225 (($) 19)) (-3446 (((-449) (-656 (-1197)) (-449) $) 25) (((-449) (-1197) (-449) $) 24)) (-3570 (((-876) $) 9) (((-1210 (-1197) (-449)) $) 13))) -(((-1201) (-13 (-625 (-876)) (-10 -8 (-15 -3570 ((-1210 (-1197) (-449)) $)) (-15 -4225 ($)) (-15 -3446 ((-449) (-656 (-1197)) (-449) $)) (-15 -3446 ((-449) (-1197) (-449) $)) (-15 -2976 ((-449) (-1197) $)) (-15 -2455 ((-656 (-1197)) $)) (-15 -3211 ((-656 (-3 (|:| -2629 (-1197)) (|:| -3059 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576)))))))) (-446) $)) (-15 -3816 ((-656 (-1197)) $)) (-15 -2786 ((-656 (-656 (-3 (|:| -2629 (-1197)) (|:| -3059 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576))))))))) $)) (-15 -2961 ((-1125) $)) (-15 -2046 ((-1293) $)) (-15 -2583 ($ (-656 (-2 (|:| -4301 (-1197)) (|:| -4440 (-449))))))))) (T -1201)) -((-3570 (*1 *2 *1) (-12 (-5 *2 (-1210 (-1197) (-449))) (-5 *1 (-1201)))) (-4225 (*1 *1) (-5 *1 (-1201))) (-3446 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1197))) (-5 *1 (-1201)))) (-3446 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-449)) (-5 *3 (-1197)) (-5 *1 (-1201)))) (-2976 (*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-449)) (-5 *1 (-1201)))) (-2455 (*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1201)))) (-3211 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-656 (-3 (|:| -2629 (-1197)) (|:| -3059 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576))))))))) (-5 *1 (-1201)))) (-3816 (*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1201)))) (-2786 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-3 (|:| -2629 (-1197)) (|:| -3059 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576)))))))))) (-5 *1 (-1201)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1201)))) (-2046 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1201)))) (-2583 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4301 (-1197)) (|:| -4440 (-449))))) (-5 *1 (-1201))))) -(-13 (-625 (-876)) (-10 -8 (-15 -3570 ((-1210 (-1197) (-449)) $)) (-15 -4225 ($)) (-15 -3446 ((-449) (-656 (-1197)) (-449) $)) (-15 -3446 ((-449) (-1197) (-449) $)) (-15 -2976 ((-449) (-1197) $)) (-15 -2455 ((-656 (-1197)) $)) (-15 -3211 ((-656 (-3 (|:| -2629 (-1197)) (|:| -3059 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576)))))))) (-446) $)) (-15 -3816 ((-656 (-1197)) $)) (-15 -2786 ((-656 (-656 (-3 (|:| -2629 (-1197)) (|:| -3059 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576))))))))) $)) (-15 -2961 ((-1125) $)) (-15 -2046 ((-1293) $)) (-15 -2583 ($ (-656 (-2 (|:| -4301 (-1197)) (|:| -4440 (-449)))))))) -((-3489 (((-112) $ $) NIL)) (-1572 (((-3 (-576) "failed") $) 29) (((-3 (-227) "failed") $) 35) (((-3 (-518) "failed") $) 43) (((-3 (-1179) "failed") $) 47)) (-2860 (((-576) $) 30) (((-227) $) 36) (((-518) $) 40) (((-1179) $) 48)) (-3238 (((-112) $) 53)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2294 (((-3 (-576) (-227) (-518) (-1179) $) $) 55)) (-3326 (((-656 $) $) 57)) (-4172 (((-1125) $) 24) (($ (-1125)) 25)) (-1859 (((-112) $) 56)) (-3570 (((-876) $) 23) (($ (-576)) 26) (($ (-227)) 32) (($ (-518)) 38) (($ (-1179)) 44) (((-548) $) 59) (((-576) $) 31) (((-227) $) 37) (((-518) $) 41) (((-1179) $) 49)) (-2708 (((-112) $ (|[\|\|]| (-576))) 10) (((-112) $ (|[\|\|]| (-227))) 13) (((-112) $ (|[\|\|]| (-518))) 19) (((-112) $ (|[\|\|]| (-1179))) 16)) (-2041 (($ (-518) (-656 $)) 51) (($ $ (-656 $)) 52)) (-4055 (((-112) $ $) NIL)) (-1922 (((-576) $) 27) (((-227) $) 33) (((-518) $) 39) (((-1179) $) 45)) (-2925 (((-112) $ $) 7))) -(((-1202) (-13 (-1283) (-1121) (-1059 (-576)) (-1059 (-227)) (-1059 (-518)) (-1059 (-1179)) (-625 (-548)) (-10 -8 (-15 -4172 ((-1125) $)) (-15 -4172 ($ (-1125))) (-15 -3570 ((-576) $)) (-15 -1922 ((-576) $)) (-15 -3570 ((-227) $)) (-15 -1922 ((-227) $)) (-15 -3570 ((-518) $)) (-15 -1922 ((-518) $)) (-15 -3570 ((-1179) $)) (-15 -1922 ((-1179) $)) (-15 -2041 ($ (-518) (-656 $))) (-15 -2041 ($ $ (-656 $))) (-15 -3238 ((-112) $)) (-15 -2294 ((-3 (-576) (-227) (-518) (-1179) $) $)) (-15 -3326 ((-656 $) $)) (-15 -1859 ((-112) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-576)))) (-15 -2708 ((-112) $ (|[\|\|]| (-227)))) (-15 -2708 ((-112) $ (|[\|\|]| (-518)))) (-15 -2708 ((-112) $ (|[\|\|]| (-1179))))))) (T -1202)) -((-4172 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1202)))) (-4172 (*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1202)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1202)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1202)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1202)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1202)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1202)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1202)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1202)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1202)))) (-2041 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-1202))) (-5 *1 (-1202)))) (-2041 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-1202)))) (-3238 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202)))) (-2294 (*1 *2 *1) (-12 (-5 *2 (-3 (-576) (-227) (-518) (-1179) (-1202))) (-5 *1 (-1202)))) (-3326 (*1 *2 *1) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-1202)))) (-1859 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202)))) (-2708 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)) (-5 *1 (-1202)))) (-2708 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1202)))) (-2708 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-1202)))) (-2708 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-112)) (-5 *1 (-1202))))) -(-13 (-1283) (-1121) (-1059 (-576)) (-1059 (-227)) (-1059 (-518)) (-1059 (-1179)) (-625 (-548)) (-10 -8 (-15 -4172 ((-1125) $)) (-15 -4172 ($ (-1125))) (-15 -3570 ((-576) $)) (-15 -1922 ((-576) $)) (-15 -3570 ((-227) $)) (-15 -1922 ((-227) $)) (-15 -3570 ((-518) $)) (-15 -1922 ((-518) $)) (-15 -3570 ((-1179) $)) (-15 -1922 ((-1179) $)) (-15 -2041 ($ (-518) (-656 $))) (-15 -2041 ($ $ (-656 $))) (-15 -3238 ((-112) $)) (-15 -2294 ((-3 (-576) (-227) (-518) (-1179) $) $)) (-15 -3326 ((-656 $) $)) (-15 -1859 ((-112) $)) (-15 -2708 ((-112) $ (|[\|\|]| (-576)))) (-15 -2708 ((-112) $ (|[\|\|]| (-227)))) (-15 -2708 ((-112) $ (|[\|\|]| (-518)))) (-15 -2708 ((-112) $ (|[\|\|]| (-1179)))))) -((-3489 (((-112) $ $) NIL)) (-2098 (((-783)) 22)) (-3886 (($) 12 T CONST)) (-1836 (($) 26)) (-3125 (($ $ $) NIL) (($) 19 T CONST)) (-3133 (($ $ $) NIL) (($) 20 T CONST)) (-4401 (((-940) $) 24)) (-3699 (((-1179) $) NIL)) (-3224 (($ (-940)) 23)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) NIL))) -(((-1203 |#1|) (-13 (-856) (-10 -8 (-15 -3886 ($) -1480))) (-940)) (T -1203)) -((-3886 (*1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-940))))) -(-13 (-856) (-10 -8 (-15 -3886 ($) -1480))) +((-4116 (((-1193 |#2|) (-1 |#2| |#1|) (-1193 |#1|)) 13))) +(((-1191 |#1| |#2|) (-10 -7 (-15 -4116 ((-1193 |#2|) (-1 |#2| |#1|) (-1193 |#1|)))) (-1070) (-1070)) (T -1191)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1193 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-5 *2 (-1193 *6)) (-5 *1 (-1191 *5 *6))))) +(-10 -7 (-15 -4116 ((-1193 |#2|) (-1 |#2| |#1|) (-1193 |#1|)))) +((-3760 (((-430 (-1193 (-419 |#4|))) (-1193 (-419 |#4|))) 51)) (-1828 (((-430 (-1193 (-419 |#4|))) (-1193 (-419 |#4|))) 52))) +(((-1192 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1828 ((-430 (-1193 (-419 |#4|))) (-1193 (-419 |#4|)))) (-15 -3760 ((-430 (-1193 (-419 |#4|))) (-1193 (-419 |#4|))))) (-805) (-861) (-464) (-968 |#3| |#1| |#2|)) (T -1192)) +((-3760 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-464)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-430 (-1193 (-419 *7)))) (-5 *1 (-1192 *4 *5 *6 *7)) (-5 *3 (-1193 (-419 *7))))) (-1828 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-464)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-430 (-1193 (-419 *7)))) (-5 *1 (-1192 *4 *5 *6 *7)) (-5 *3 (-1193 (-419 *7)))))) +(-10 -7 (-15 -1828 ((-430 (-1193 (-419 |#4|))) (-1193 (-419 |#4|)))) (-15 -3760 ((-430 (-1193 (-419 |#4|))) (-1193 (-419 |#4|))))) +((-3488 (((-112) $ $) 171)) (-3135 (((-112) $) 43)) (-3764 (((-1288 |#1|) $ (-783)) NIL)) (-1969 (((-656 (-1103)) $) NIL)) (-3543 (($ (-1193 |#1|)) NIL)) (-1797 (((-1193 $) $ (-1103)) 82) (((-1193 |#1|) $) 71)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4195 (($ $) 164 (|has| |#1| (-568)))) (-1760 (((-112) $) NIL (|has| |#1| (-568)))) (-4329 (((-783) $) NIL) (((-783) $ (-656 (-1103))) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3085 (($ $ $) 158 (|has| |#1| (-568)))) (-3646 (((-430 (-1193 $)) (-1193 $)) 95 (|has| |#1| (-928)))) (-3444 (($ $) NIL (|has| |#1| (-464)))) (-3760 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 115 (|has| |#1| (-928)))) (-3330 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3350 (($ $ (-783)) 61)) (-3046 (($ $ (-783)) 63)) (-4306 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-1103) "failed") $) NIL)) (-2859 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-1103) $) NIL)) (-4334 (($ $ $ (-1103)) NIL (|has| |#1| (-174))) ((|#1| $ $) 160 (|has| |#1| (-174)))) (-3428 (($ $ $) NIL (|has| |#1| (-374)))) (-2114 (($ $) 80)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-3440 (($ $ $) NIL (|has| |#1| (-374)))) (-3879 (($ $ $) 131)) (-4235 (($ $ $) NIL (|has| |#1| (-568)))) (-3958 (((-2 (|:| -1715 |#1|) (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#1| (-568)))) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-1547 (($ $) 165 (|has| |#1| (-464))) (($ $ (-1103)) NIL (|has| |#1| (-464)))) (-2103 (((-656 $) $) NIL)) (-3833 (((-112) $) NIL (|has| |#1| (-928)))) (-4124 (($ $ |#1| (-783) $) 69)) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1103) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1103) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-4375 (((-876) $ (-876)) 148)) (-3726 (((-783) $ $) NIL (|has| |#1| (-568)))) (-1351 (((-112) $) 48)) (-3799 (((-783) $) NIL)) (-2734 (((-3 $ "failed") $) NIL (|has| |#1| (-1173)))) (-1956 (($ (-1193 |#1|) (-1103)) 73) (($ (-1193 $) (-1103)) 89)) (-1800 (($ $ (-783)) 51)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2846 (((-656 $) $) NIL)) (-3538 (((-112) $) NIL)) (-1944 (($ |#1| (-783)) 87) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-1915 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $ (-1103)) NIL) (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 153)) (-2578 (((-783) $) NIL) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-3878 (($ (-1 (-783) (-783)) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-1582 (((-1193 |#1|) $) NIL)) (-2289 (((-3 (-1103) "failed") $) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2081 (($ $) NIL)) (-2091 ((|#1| $) 76)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2046 (((-1179) $) NIL)) (-2436 (((-2 (|:| -1855 $) (|:| -3891 $)) $ (-783)) 60)) (-3845 (((-3 (-656 $) "failed") $) NIL)) (-2363 (((-3 (-656 $) "failed") $) NIL)) (-1452 (((-3 (-2 (|:| |var| (-1103)) (|:| -2508 (-783))) "failed") $) NIL)) (-4160 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3539 (($) NIL (|has| |#1| (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) 50)) (-2070 ((|#1| $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 103 (|has| |#1| (-464)))) (-3497 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) 167 (|has| |#1| (-464)))) (-3317 (($ $ (-783) |#1| $) 123)) (-1644 (((-430 (-1193 $)) (-1193 $)) 101 (|has| |#1| (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) 100 (|has| |#1| (-928)))) (-1828 (((-430 $) $) 108 (|has| |#1| (-928)))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-3475 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-568)))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3282 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1103) |#1|) NIL) (($ $ (-656 (-1103)) (-656 |#1|)) NIL) (($ $ (-1103) $) NIL) (($ $ (-656 (-1103)) (-656 $)) NIL)) (-1979 (((-783) $) NIL (|has| |#1| (-374)))) (-2796 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-4320 (((-3 $ "failed") $ (-783)) 54)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 172 (|has| |#1| (-374)))) (-2269 (($ $ (-1103)) NIL (|has| |#1| (-174))) ((|#1| $) 156 (|has| |#1| (-174)))) (-2774 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-2683 (((-783) $) 78) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-1103) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-4370 ((|#1| $) 162 (|has| |#1| (-464))) (($ $ (-1103)) NIL (|has| |#1| (-464)))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-3657 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-3569 (((-876) $) 149) (($ (-576)) NIL) (($ |#1|) 77) (($ (-1103)) NIL) (($ (-419 (-576))) NIL (-2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2937 (((-656 |#1|) $) NIL)) (-1822 ((|#1| $ (-783)) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-3390 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3154 (((-783)) NIL T CONST)) (-2717 (($ $ $ (-783)) 41 (|has| |#1| (-174)))) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2721 (($) 17 T CONST)) (-2731 (($) 19 T CONST)) (-2020 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-2924 (((-112) $ $) 120)) (-3056 (($ $ |#1|) 173 (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 90)) (** (($ $ (-940)) 14) (($ $ (-783)) 12)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 39) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) +(((-1193 |#1|) (-13 (-1264 |#1|) (-10 -8 (-15 -4375 ((-876) $ (-876))) (-15 -3317 ($ $ (-783) |#1| $)))) (-1070)) (T -1193)) +((-4375 (*1 *2 *1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1193 *3)) (-4 *3 (-1070)))) (-3317 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1193 *3)) (-4 *3 (-1070))))) +(-13 (-1264 |#1|) (-10 -8 (-15 -4375 ((-876) $ (-876))) (-15 -3317 ($ $ (-783) |#1| $)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-1969 (((-656 (-1103)) $) NIL)) (-3054 (((-1197) $) 11)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4195 (($ $) NIL (|has| |#1| (-568)))) (-1760 (((-112) $) NIL (|has| |#1| (-568)))) (-2408 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-3064 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-4024 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL (|has| |#1| (-374)))) (-3760 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1840 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3330 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4005 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3079 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-4049 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-1188 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1195 |#1| |#2| |#3|) "failed") $) 36)) (-2859 (((-1188 |#1| |#2| |#3|) $) NIL) (((-1195 |#1| |#2| |#3|) $) NIL)) (-3428 (($ $ $) NIL (|has| |#1| (-374)))) (-2114 (($ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-2093 (((-419 (-576)) $) 59)) (-3440 (($ $ $) NIL (|has| |#1| (-374)))) (-2031 (($ (-419 (-576)) (-1188 |#1| |#2| |#3|)) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3833 (((-112) $) NIL (|has| |#1| (-374)))) (-2116 (((-112) $) NIL)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3726 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-1351 (((-112) $) NIL)) (-4131 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1800 (($ $ (-940)) NIL) (($ $ (-419 (-576))) NIL)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3538 (((-112) $) NIL)) (-1944 (($ |#1| (-419 (-576))) 20) (($ $ (-1103) (-419 (-576))) NIL) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3744 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3019 (((-1188 |#1| |#2| |#3|) $) 41)) (-3418 (((-3 (-1188 |#1| |#2| |#3|) "failed") $) NIL)) (-2021 (((-1188 |#1| |#2| |#3|) $) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL (|has| |#1| (-374)))) (-4160 (($ $) 39 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) NIL (-2759 (-12 (|has| |#1| (-15 -4160 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 40 (|has| |#1| (-38 (-419 (-576)))))) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3497 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-1743 (($ $ (-419 (-576))) NIL)) (-3475 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4103 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3282 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-1979 (((-783) $) NIL (|has| |#1| (-374)))) (-2796 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1133)))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#1| (-374)))) (-2774 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1284 |#2|)) 38)) (-2683 (((-419 (-576)) $) NIL)) (-4060 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2539 (($ $) NIL)) (-3569 (((-876) $) 62) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1188 |#1| |#2| |#3|)) 30) (($ (-1195 |#1| |#2| |#3|)) 31) (($ (-1284 |#2|)) 26) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-1822 ((|#1| $ (-419 (-576))) NIL)) (-3390 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3154 (((-783)) NIL T CONST)) (-2396 ((|#1| $) 12)) (-2399 (((-112) $ $) NIL)) (-2790 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1505 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) 22 T CONST)) (-2731 (($) 16 T CONST)) (-2020 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1284 |#2|)) NIL)) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 24)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1194 |#1| |#2| |#3|) (-13 (-1271 |#1| (-1188 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-1059 (-1195 |#1| |#2| |#3|)) (-628 (-1284 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4160 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -1194)) +((-4160 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1194 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) +(-13 (-1271 |#1| (-1188 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-1059 (-1195 |#1| |#2| |#3|)) (-628 (-1284 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4160 ($ $ (-1284 |#2|))) |%noBranch|))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 129)) (-1969 (((-656 (-1103)) $) NIL)) (-3054 (((-1197) $) 119)) (-1618 (((-1261 |#2| |#1|) $ (-783)) 69)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4195 (($ $) NIL (|has| |#1| (-568)))) (-1760 (((-112) $) NIL (|has| |#1| (-568)))) (-2408 (($ $ (-783)) 85) (($ $ (-783) (-783)) 82)) (-3064 (((-1178 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 105)) (-4024 (($ $) 173 (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-2428 (((-3 $ "failed") $ $) NIL)) (-1840 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4005 (($ $) 169 (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3079 (($ (-1178 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 118) (($ (-1178 |#1|)) 113)) (-4049 (($ $) 177 (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3404 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-3673 (((-3 $ "failed") $) 25)) (-3136 (($ $) 28)) (-2383 (((-971 |#1|) $ (-783)) 81) (((-971 |#1|) $ (-783) (-783)) 83)) (-2116 (((-112) $) 124)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3726 (((-783) $) 126) (((-783) $ (-783)) 128)) (-1351 (((-112) $) NIL)) (-4131 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1800 (($ $ (-940)) NIL)) (-3811 (($ (-1 |#1| (-576)) $) NIL)) (-3538 (((-112) $) NIL)) (-1944 (($ |#1| (-783)) 13) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3744 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-2046 (((-1179) $) NIL)) (-4160 (($ $) 133 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) NIL (-2759 (-12 (|has| |#1| (-15 -4160 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 134 (|has| |#1| (-38 (-419 (-576)))))) (-1450 (((-1141) $) NIL)) (-1743 (($ $ (-783)) 15)) (-3475 (((-3 $ "failed") $ $) 26 (|has| |#1| (-568)))) (-4103 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3282 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-2796 ((|#1| $ (-783)) 122) (($ $ $) 132 (|has| (-783) (-1133)))) (-2774 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1284 |#2|)) 31)) (-2683 (((-783) $) NIL)) (-4060 (($ $) 179 (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) 175 (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) 171 (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-2539 (($ $) NIL)) (-3569 (((-876) $) 206) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 130 (|has| |#1| (-174))) (($ (-1261 |#2| |#1|)) 55) (($ (-1284 |#2|)) 36)) (-2937 (((-1178 |#1|) $) 101)) (-1822 ((|#1| $ (-783)) 121)) (-3390 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3154 (((-783)) NIL T CONST)) (-2396 ((|#1| $) 58)) (-2399 (((-112) $ $) NIL)) (-2790 (($ $) 185 (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) 161 (|has| |#1| (-38 (-419 (-576)))))) (-1505 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4070 (($ $) 181 (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) 189 (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) 165 (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-783)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) 191 (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) 167 (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) 187 (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) 163 (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) 183 (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) 159 (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) 17 T CONST)) (-2731 (($) 20 T CONST)) (-2020 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1284 |#2|)) NIL)) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) 198)) (-3029 (($ $ $) 35)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ |#1|) 203 (|has| |#1| (-374))) (($ $ $) 138 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 141 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1195 |#1| |#2| |#3|) (-13 (-1279 |#1|) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3569 ($ (-1261 |#2| |#1|))) (-15 -1618 ((-1261 |#2| |#1|) $ (-783))) (-15 -3569 ($ (-1284 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4160 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -1195)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1261 *4 *3)) (-4 *3 (-1070)) (-14 *4 (-1197)) (-14 *5 *3) (-5 *1 (-1195 *3 *4 *5)))) (-1618 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1261 *5 *4)) (-5 *1 (-1195 *4 *5 *6)) (-4 *4 (-1070)) (-14 *5 (-1197)) (-14 *6 *4))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-1070)) (-14 *5 *3))) (-4160 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) +(-13 (-1279 |#1|) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3569 ($ (-1261 |#2| |#1|))) (-15 -1618 ((-1261 |#2| |#1|) $ (-783))) (-15 -3569 ($ (-1284 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4160 ($ $ (-1284 |#2|))) |%noBranch|))) +((-3569 (((-876) $) 33) (($ (-1197)) 35)) (-2759 (($ (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 46)) (-2745 (($ (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 39) (($ $) 40)) (-3172 (($ (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 41)) (-3161 (($ (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 43)) (-3150 (($ (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 42)) (-3138 (($ (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 44)) (-2037 (($ (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 45))) +(((-1196) (-13 (-625 (-876)) (-10 -8 (-15 -3569 ($ (-1197))) (-15 -3172 ($ (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3150 ($ (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3161 ($ (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3138 ($ (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2759 ($ (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2037 ($ (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2745 ($ (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2745 ($ $))))) (T -1196)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1196)))) (-3172 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-3150 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-3161 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-3138 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-2759 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-2037 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-2745 (*1 *1 *1) (-5 *1 (-1196)))) +(-13 (-625 (-876)) (-10 -8 (-15 -3569 ($ (-1197))) (-15 -3172 ($ (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3150 ($ (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3161 ($ (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3138 ($ (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2759 ($ (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2037 ($ (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2745 ($ (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2745 ($ $)))) +((-3488 (((-112) $ $) NIL)) (-2416 (($ $ (-656 (-876))) 62)) (-2716 (($ $ (-656 (-876))) 60)) (-1328 (((-1179) $) 101)) (-2447 (((-2 (|:| -2624 (-656 (-876))) (|:| -2386 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -4040 (-656 (-876))) (|:| |args| (-656 (-876)))) $) 108)) (-2174 (((-112) $) 23)) (-2941 (($ $ (-656 (-656 (-876)))) 59) (($ $ (-2 (|:| -2624 (-656 (-876))) (|:| -2386 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -4040 (-656 (-876))) (|:| |args| (-656 (-876))))) 99)) (-3404 (($) 163 T CONST)) (-3789 (((-1293)) 135)) (-3325 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 69) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 76)) (-4140 (($) 122) (($ $) 131)) (-2628 (($ $) 100)) (-3124 (($ $ $) NIL)) (-1441 (($ $ $) NIL)) (-1649 (((-656 $) $) 136)) (-2046 (((-1179) $) 114)) (-1450 (((-1141) $) NIL)) (-2796 (($ $ (-656 (-876))) 61)) (-4171 (((-548) $) 48) (((-1197) $) 49) (((-907 (-576)) $) 80) (((-907 (-390)) $) 78)) (-3569 (((-876) $) 55) (($ (-1179)) 50)) (-2399 (((-112) $ $) NIL)) (-3399 (($ $ (-656 (-876))) 63)) (-3160 (((-1179) $) 34) (((-1179) $ (-112)) 35) (((-1293) (-834) $) 36) (((-1293) (-834) $ (-112)) 37)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 51)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) 52))) +(((-1197) (-13 (-861) (-626 (-548)) (-840) (-626 (-1197)) (-628 (-1179)) (-626 (-907 (-576))) (-626 (-907 (-390))) (-901 (-576)) (-901 (-390)) (-10 -8 (-15 -4140 ($)) (-15 -4140 ($ $)) (-15 -3789 ((-1293))) (-15 -2628 ($ $)) (-15 -2174 ((-112) $)) (-15 -2447 ((-2 (|:| -2624 (-656 (-876))) (|:| -2386 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -4040 (-656 (-876))) (|:| |args| (-656 (-876)))) $)) (-15 -2941 ($ $ (-656 (-656 (-876))))) (-15 -2941 ($ $ (-2 (|:| -2624 (-656 (-876))) (|:| -2386 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -4040 (-656 (-876))) (|:| |args| (-656 (-876)))))) (-15 -2716 ($ $ (-656 (-876)))) (-15 -2416 ($ $ (-656 (-876)))) (-15 -3399 ($ $ (-656 (-876)))) (-15 -2796 ($ $ (-656 (-876)))) (-15 -1328 ((-1179) $)) (-15 -1649 ((-656 $) $)) (-15 -3404 ($) -1480)))) (T -1197)) +((-4140 (*1 *1) (-5 *1 (-1197))) (-4140 (*1 *1 *1) (-5 *1 (-1197))) (-3789 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1197)))) (-2628 (*1 *1 *1) (-5 *1 (-1197))) (-2174 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1197)))) (-2447 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2624 (-656 (-876))) (|:| -2386 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -4040 (-656 (-876))) (|:| |args| (-656 (-876))))) (-5 *1 (-1197)))) (-2941 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 (-876)))) (-5 *1 (-1197)))) (-2941 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2624 (-656 (-876))) (|:| -2386 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -4040 (-656 (-876))) (|:| |args| (-656 (-876))))) (-5 *1 (-1197)))) (-2716 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197)))) (-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197)))) (-3399 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197)))) (-2796 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197)))) (-1328 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1197)))) (-1649 (*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1197)))) (-3404 (*1 *1) (-5 *1 (-1197)))) +(-13 (-861) (-626 (-548)) (-840) (-626 (-1197)) (-628 (-1179)) (-626 (-907 (-576))) (-626 (-907 (-390))) (-901 (-576)) (-901 (-390)) (-10 -8 (-15 -4140 ($)) (-15 -4140 ($ $)) (-15 -3789 ((-1293))) (-15 -2628 ($ $)) (-15 -2174 ((-112) $)) (-15 -2447 ((-2 (|:| -2624 (-656 (-876))) (|:| -2386 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -4040 (-656 (-876))) (|:| |args| (-656 (-876)))) $)) (-15 -2941 ($ $ (-656 (-656 (-876))))) (-15 -2941 ($ $ (-2 (|:| -2624 (-656 (-876))) (|:| -2386 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -4040 (-656 (-876))) (|:| |args| (-656 (-876)))))) (-15 -2716 ($ $ (-656 (-876)))) (-15 -2416 ($ $ (-656 (-876)))) (-15 -3399 ($ $ (-656 (-876)))) (-15 -2796 ($ $ (-656 (-876)))) (-15 -1328 ((-1179) $)) (-15 -1649 ((-656 $) $)) (-15 -3404 ($) -1480))) +((-3129 (((-1288 |#1|) |#1| (-940)) 18) (((-1288 |#1|) (-656 |#1|)) 25))) +(((-1198 |#1|) (-10 -7 (-15 -3129 ((-1288 |#1|) (-656 |#1|))) (-15 -3129 ((-1288 |#1|) |#1| (-940)))) (-1070)) (T -1198)) +((-3129 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-5 *2 (-1288 *3)) (-5 *1 (-1198 *3)) (-4 *3 (-1070)))) (-3129 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1070)) (-5 *2 (-1288 *4)) (-5 *1 (-1198 *4))))) +(-10 -7 (-15 -3129 ((-1288 |#1|) (-656 |#1|))) (-15 -3129 ((-1288 |#1|) |#1| (-940)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4195 (($ $) NIL (|has| |#1| (-568)))) (-1760 (((-112) $) NIL (|has| |#1| (-568)))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2859 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-2114 (($ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-1547 (($ $) NIL (|has| |#1| (-464)))) (-4124 (($ $ |#1| (-992) $) NIL)) (-1351 (((-112) $) 17)) (-3799 (((-783) $) NIL)) (-3538 (((-112) $) NIL)) (-1944 (($ |#1| (-992)) NIL)) (-2578 (((-992) $) NIL)) (-3878 (($ (-1 (-992) (-992)) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) NIL)) (-2070 ((|#1| $) NIL)) (-3317 (($ $ (-992) |#1| $) NIL (-12 (|has| (-992) (-132)) (|has| |#1| (-568))))) (-3475 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2683 (((-992) $) NIL)) (-4370 ((|#1| $) NIL (|has| |#1| (-464)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) NIL) (($ (-419 (-576))) NIL (-2759 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-2937 (((-656 |#1|) $) NIL)) (-1822 ((|#1| $ (-992)) NIL)) (-3390 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3154 (((-783)) NIL T CONST)) (-2717 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2721 (($) 10 T CONST)) (-2731 (($) NIL T CONST)) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 21)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1199 |#1|) (-13 (-336 |#1| (-992)) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| (-992) (-132)) (-15 -3317 ($ $ (-992) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4462)) (-6 -4462) |%noBranch|))) (-1070)) (T -1199)) +((-3317 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-992)) (-4 *2 (-132)) (-5 *1 (-1199 *3)) (-4 *3 (-568)) (-4 *3 (-1070))))) +(-13 (-336 |#1| (-992)) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| (-992) (-132)) (-15 -3317 ($ $ (-992) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4462)) (-6 -4462) |%noBranch|))) +((-1438 (((-1201) (-1197) $) 25)) (-3305 (($) 29)) (-4290 (((-3 (|:| |fst| (-446)) (|:| -2916 "void")) (-1197) $) 22)) (-4391 (((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -2916 "void")) $) 41) (((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) 42) (((-1293) (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) 43)) (-1503 (((-1293) (-1197)) 58)) (-3795 (((-1293) (-1197) $) 55) (((-1293) (-1197)) 56) (((-1293)) 57)) (-1658 (((-1293) (-1197)) 37)) (-2579 (((-1197)) 36)) (-3579 (($) 34)) (-3445 (((-449) (-1197) (-449) (-1197) $) 45) (((-449) (-656 (-1197)) (-449) (-1197) $) 49) (((-449) (-1197) (-449)) 46) (((-449) (-1197) (-449) (-1197)) 50)) (-2181 (((-1197)) 35)) (-3569 (((-876) $) 28)) (-4252 (((-1293)) 30) (((-1293) (-1197)) 33)) (-3621 (((-656 (-1197)) (-1197) $) 24)) (-2026 (((-1293) (-1197) (-656 (-1197)) $) 38) (((-1293) (-1197) (-656 (-1197))) 39) (((-1293) (-656 (-1197))) 40))) +(((-1200) (-13 (-625 (-876)) (-10 -8 (-15 -3305 ($)) (-15 -4252 ((-1293))) (-15 -4252 ((-1293) (-1197))) (-15 -3445 ((-449) (-1197) (-449) (-1197) $)) (-15 -3445 ((-449) (-656 (-1197)) (-449) (-1197) $)) (-15 -3445 ((-449) (-1197) (-449))) (-15 -3445 ((-449) (-1197) (-449) (-1197))) (-15 -1658 ((-1293) (-1197))) (-15 -2181 ((-1197))) (-15 -2579 ((-1197))) (-15 -2026 ((-1293) (-1197) (-656 (-1197)) $)) (-15 -2026 ((-1293) (-1197) (-656 (-1197)))) (-15 -2026 ((-1293) (-656 (-1197)))) (-15 -4391 ((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -2916 "void")) $)) (-15 -4391 ((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -2916 "void")))) (-15 -4391 ((-1293) (-3 (|:| |fst| (-446)) (|:| -2916 "void")))) (-15 -3795 ((-1293) (-1197) $)) (-15 -3795 ((-1293) (-1197))) (-15 -3795 ((-1293))) (-15 -1503 ((-1293) (-1197))) (-15 -3579 ($)) (-15 -4290 ((-3 (|:| |fst| (-446)) (|:| -2916 "void")) (-1197) $)) (-15 -3621 ((-656 (-1197)) (-1197) $)) (-15 -1438 ((-1201) (-1197) $))))) (T -1200)) +((-3305 (*1 *1) (-5 *1 (-1200))) (-4252 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1200)))) (-4252 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3445 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-449)) (-5 *3 (-1197)) (-5 *1 (-1200)))) (-3445 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1197))) (-5 *4 (-1197)) (-5 *1 (-1200)))) (-3445 (*1 *2 *3 *2) (-12 (-5 *2 (-449)) (-5 *3 (-1197)) (-5 *1 (-1200)))) (-3445 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-449)) (-5 *3 (-1197)) (-5 *1 (-1200)))) (-1658 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-2181 (*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1200)))) (-2579 (*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1200)))) (-2026 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-2026 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-2026 (*1 *2 *3) (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-4391 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1197)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-4391 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-4391 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3795 (*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3795 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3795 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1200)))) (-1503 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3579 (*1 *1) (-5 *1 (-1200))) (-4290 (*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-5 *1 (-1200)))) (-3621 (*1 *2 *3 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1200)) (-5 *3 (-1197)))) (-1438 (*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-1201)) (-5 *1 (-1200))))) +(-13 (-625 (-876)) (-10 -8 (-15 -3305 ($)) (-15 -4252 ((-1293))) (-15 -4252 ((-1293) (-1197))) (-15 -3445 ((-449) (-1197) (-449) (-1197) $)) (-15 -3445 ((-449) (-656 (-1197)) (-449) (-1197) $)) (-15 -3445 ((-449) (-1197) (-449))) (-15 -3445 ((-449) (-1197) (-449) (-1197))) (-15 -1658 ((-1293) (-1197))) (-15 -2181 ((-1197))) (-15 -2579 ((-1197))) (-15 -2026 ((-1293) (-1197) (-656 (-1197)) $)) (-15 -2026 ((-1293) (-1197) (-656 (-1197)))) (-15 -2026 ((-1293) (-656 (-1197)))) (-15 -4391 ((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -2916 "void")) $)) (-15 -4391 ((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -2916 "void")))) (-15 -4391 ((-1293) (-3 (|:| |fst| (-446)) (|:| -2916 "void")))) (-15 -3795 ((-1293) (-1197) $)) (-15 -3795 ((-1293) (-1197))) (-15 -3795 ((-1293))) (-15 -1503 ((-1293) (-1197))) (-15 -3579 ($)) (-15 -4290 ((-3 (|:| |fst| (-446)) (|:| -2916 "void")) (-1197) $)) (-15 -3621 ((-656 (-1197)) (-1197) $)) (-15 -1438 ((-1201) (-1197) $)))) +((-4426 (((-656 (-656 (-3 (|:| -2628 (-1197)) (|:| -3178 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576))))))))) $) 66)) (-4153 (((-656 (-3 (|:| -2628 (-1197)) (|:| -3178 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576)))))))) (-446) $) 47)) (-2581 (($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4439 (-449))))) 17)) (-1503 (((-1293) $) 73)) (-4351 (((-656 (-1197)) $) 22)) (-3529 (((-1125) $) 60)) (-3655 (((-449) (-1197) $) 27)) (-2027 (((-656 (-1197)) $) 30)) (-3579 (($) 19)) (-3445 (((-449) (-656 (-1197)) (-449) $) 25) (((-449) (-1197) (-449) $) 24)) (-3569 (((-876) $) 9) (((-1210 (-1197) (-449)) $) 13))) +(((-1201) (-13 (-625 (-876)) (-10 -8 (-15 -3569 ((-1210 (-1197) (-449)) $)) (-15 -3579 ($)) (-15 -3445 ((-449) (-656 (-1197)) (-449) $)) (-15 -3445 ((-449) (-1197) (-449) $)) (-15 -3655 ((-449) (-1197) $)) (-15 -4351 ((-656 (-1197)) $)) (-15 -4153 ((-656 (-3 (|:| -2628 (-1197)) (|:| -3178 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576)))))))) (-446) $)) (-15 -2027 ((-656 (-1197)) $)) (-15 -4426 ((-656 (-656 (-3 (|:| -2628 (-1197)) (|:| -3178 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576))))))))) $)) (-15 -3529 ((-1125) $)) (-15 -1503 ((-1293) $)) (-15 -2581 ($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4439 (-449))))))))) (T -1201)) +((-3569 (*1 *2 *1) (-12 (-5 *2 (-1210 (-1197) (-449))) (-5 *1 (-1201)))) (-3579 (*1 *1) (-5 *1 (-1201))) (-3445 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1197))) (-5 *1 (-1201)))) (-3445 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-449)) (-5 *3 (-1197)) (-5 *1 (-1201)))) (-3655 (*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-449)) (-5 *1 (-1201)))) (-4351 (*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1201)))) (-4153 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-656 (-3 (|:| -2628 (-1197)) (|:| -3178 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576))))))))) (-5 *1 (-1201)))) (-2027 (*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1201)))) (-4426 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-3 (|:| -2628 (-1197)) (|:| -3178 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576)))))))))) (-5 *1 (-1201)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1201)))) (-1503 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1201)))) (-2581 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4300 (-1197)) (|:| -4439 (-449))))) (-5 *1 (-1201))))) +(-13 (-625 (-876)) (-10 -8 (-15 -3569 ((-1210 (-1197) (-449)) $)) (-15 -3579 ($)) (-15 -3445 ((-449) (-656 (-1197)) (-449) $)) (-15 -3445 ((-449) (-1197) (-449) $)) (-15 -3655 ((-449) (-1197) $)) (-15 -4351 ((-656 (-1197)) $)) (-15 -4153 ((-656 (-3 (|:| -2628 (-1197)) (|:| -3178 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576)))))))) (-446) $)) (-15 -2027 ((-656 (-1197)) $)) (-15 -4426 ((-656 (-656 (-3 (|:| -2628 (-1197)) (|:| -3178 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576))))))))) $)) (-15 -3529 ((-1125) $)) (-15 -1503 ((-1293) $)) (-15 -2581 ($ (-656 (-2 (|:| -4300 (-1197)) (|:| -4439 (-449)))))))) +((-3488 (((-112) $ $) NIL)) (-1572 (((-3 (-576) "failed") $) 29) (((-3 (-227) "failed") $) 35) (((-3 (-518) "failed") $) 43) (((-3 (-1179) "failed") $) 47)) (-2859 (((-576) $) 30) (((-227) $) 36) (((-518) $) 40) (((-1179) $) 48)) (-4413 (((-112) $) 53)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2058 (((-3 (-576) (-227) (-518) (-1179) $) $) 55)) (-2776 (((-656 $) $) 57)) (-4171 (((-1125) $) 24) (($ (-1125)) 25)) (-3518 (((-112) $) 56)) (-3569 (((-876) $) 23) (($ (-576)) 26) (($ (-227)) 32) (($ (-518)) 38) (($ (-1179)) 44) (((-548) $) 59) (((-576) $) 31) (((-227) $) 37) (((-518) $) 41) (((-1179) $) 49)) (-2707 (((-112) $ (|[\|\|]| (-576))) 10) (((-112) $ (|[\|\|]| (-227))) 13) (((-112) $ (|[\|\|]| (-518))) 19) (((-112) $ (|[\|\|]| (-1179))) 16)) (-1462 (($ (-518) (-656 $)) 51) (($ $ (-656 $)) 52)) (-2399 (((-112) $ $) NIL)) (-1922 (((-576) $) 27) (((-227) $) 33) (((-518) $) 39) (((-1179) $) 45)) (-2924 (((-112) $ $) 7))) +(((-1202) (-13 (-1283) (-1121) (-1059 (-576)) (-1059 (-227)) (-1059 (-518)) (-1059 (-1179)) (-625 (-548)) (-10 -8 (-15 -4171 ((-1125) $)) (-15 -4171 ($ (-1125))) (-15 -3569 ((-576) $)) (-15 -1922 ((-576) $)) (-15 -3569 ((-227) $)) (-15 -1922 ((-227) $)) (-15 -3569 ((-518) $)) (-15 -1922 ((-518) $)) (-15 -3569 ((-1179) $)) (-15 -1922 ((-1179) $)) (-15 -1462 ($ (-518) (-656 $))) (-15 -1462 ($ $ (-656 $))) (-15 -4413 ((-112) $)) (-15 -2058 ((-3 (-576) (-227) (-518) (-1179) $) $)) (-15 -2776 ((-656 $) $)) (-15 -3518 ((-112) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-576)))) (-15 -2707 ((-112) $ (|[\|\|]| (-227)))) (-15 -2707 ((-112) $ (|[\|\|]| (-518)))) (-15 -2707 ((-112) $ (|[\|\|]| (-1179))))))) (T -1202)) +((-4171 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1202)))) (-4171 (*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1202)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1202)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1202)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1202)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1202)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1202)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1202)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1202)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1202)))) (-1462 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-1202))) (-5 *1 (-1202)))) (-1462 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-1202)))) (-4413 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202)))) (-2058 (*1 *2 *1) (-12 (-5 *2 (-3 (-576) (-227) (-518) (-1179) (-1202))) (-5 *1 (-1202)))) (-2776 (*1 *2 *1) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-1202)))) (-3518 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202)))) (-2707 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)) (-5 *1 (-1202)))) (-2707 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1202)))) (-2707 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-1202)))) (-2707 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-112)) (-5 *1 (-1202))))) +(-13 (-1283) (-1121) (-1059 (-576)) (-1059 (-227)) (-1059 (-518)) (-1059 (-1179)) (-625 (-548)) (-10 -8 (-15 -4171 ((-1125) $)) (-15 -4171 ($ (-1125))) (-15 -3569 ((-576) $)) (-15 -1922 ((-576) $)) (-15 -3569 ((-227) $)) (-15 -1922 ((-227) $)) (-15 -3569 ((-518) $)) (-15 -1922 ((-518) $)) (-15 -3569 ((-1179) $)) (-15 -1922 ((-1179) $)) (-15 -1462 ($ (-518) (-656 $))) (-15 -1462 ($ $ (-656 $))) (-15 -4413 ((-112) $)) (-15 -2058 ((-3 (-576) (-227) (-518) (-1179) $) $)) (-15 -2776 ((-656 $) $)) (-15 -3518 ((-112) $)) (-15 -2707 ((-112) $ (|[\|\|]| (-576)))) (-15 -2707 ((-112) $ (|[\|\|]| (-227)))) (-15 -2707 ((-112) $ (|[\|\|]| (-518)))) (-15 -2707 ((-112) $ (|[\|\|]| (-1179)))))) +((-3488 (((-112) $ $) NIL)) (-2098 (((-783)) 22)) (-3404 (($) 12 T CONST)) (-1836 (($) 26)) (-3124 (($ $ $) NIL) (($) 19 T CONST)) (-1441 (($ $ $) NIL) (($) 20 T CONST)) (-1558 (((-940) $) 24)) (-2046 (((-1179) $) NIL)) (-3223 (($ (-940)) 23)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) NIL))) +(((-1203 |#1|) (-13 (-856) (-10 -8 (-15 -3404 ($) -1480))) (-940)) (T -1203)) +((-3404 (*1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-940))))) +(-13 (-856) (-10 -8 (-15 -3404 ($) -1480))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1))) -((-3489 (((-112) $ $) NIL)) (-2098 (((-783)) NIL)) (-3886 (($) 19 T CONST)) (-1836 (($) NIL)) (-3125 (($ $ $) NIL) (($) 12 T CONST)) (-3133 (($ $ $) NIL) (($) 18 T CONST)) (-4401 (((-940) $) NIL)) (-3699 (((-1179) $) NIL)) (-3224 (($ (-940)) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-2356 (($ $ $) 21)) (-2343 (($ $ $) 20)) (-4055 (((-112) $ $) NIL)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) NIL))) -(((-1204 |#1|) (-13 (-856) (-10 -8 (-15 -2343 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -3886 ($) -1480))) (-940)) (T -1204)) -((-2343 (*1 *1 *1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-940)))) (-2356 (*1 *1 *1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-940)))) (-3886 (*1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-940))))) -(-13 (-856) (-10 -8 (-15 -2343 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -3886 ($) -1480))) +((-3488 (((-112) $ $) NIL)) (-2098 (((-783)) NIL)) (-3404 (($) 19 T CONST)) (-1836 (($) NIL)) (-3124 (($ $ $) NIL) (($) 12 T CONST)) (-1441 (($ $ $) NIL) (($) 18 T CONST)) (-1558 (((-940) $) NIL)) (-2046 (((-1179) $) NIL)) (-3223 (($ (-940)) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2357 (($ $ $) 21)) (-2343 (($ $ $) 20)) (-2399 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) NIL))) +(((-1204 |#1|) (-13 (-856) (-10 -8 (-15 -2343 ($ $ $)) (-15 -2357 ($ $ $)) (-15 -3404 ($) -1480))) (-940)) (T -1204)) +((-2343 (*1 *1 *1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-940)))) (-2357 (*1 *1 *1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-940)))) (-3404 (*1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-940))))) +(-13 (-856) (-10 -8 (-15 -2343 ($ $ $)) (-15 -2357 ($ $ $)) (-15 -3404 ($) -1480))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1))) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 9)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 7))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 9)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 7))) (((-1205) (-1121)) (T -1205)) NIL (-1121) -((-2572 (((-656 (-656 (-971 |#1|))) (-656 (-419 (-971 |#1|))) (-656 (-1197))) 69)) (-2767 (((-656 (-304 (-419 (-971 |#1|)))) (-304 (-419 (-971 |#1|)))) 80) (((-656 (-304 (-419 (-971 |#1|)))) (-419 (-971 |#1|))) 76) (((-656 (-304 (-419 (-971 |#1|)))) (-304 (-419 (-971 |#1|))) (-1197)) 81) (((-656 (-304 (-419 (-971 |#1|)))) (-419 (-971 |#1|)) (-1197)) 75) (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-304 (-419 (-971 |#1|))))) 106) (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-419 (-971 |#1|)))) 105) (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-304 (-419 (-971 |#1|)))) (-656 (-1197))) 107) (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-419 (-971 |#1|))) (-656 (-1197))) 104))) -(((-1206 |#1|) (-10 -7 (-15 -2767 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -2767 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-304 (-419 (-971 |#1|)))) (-656 (-1197)))) (-15 -2767 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-419 (-971 |#1|))))) (-15 -2767 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-304 (-419 (-971 |#1|)))))) (-15 -2767 ((-656 (-304 (-419 (-971 |#1|)))) (-419 (-971 |#1|)) (-1197))) (-15 -2767 ((-656 (-304 (-419 (-971 |#1|)))) (-304 (-419 (-971 |#1|))) (-1197))) (-15 -2767 ((-656 (-304 (-419 (-971 |#1|)))) (-419 (-971 |#1|)))) (-15 -2767 ((-656 (-304 (-419 (-971 |#1|)))) (-304 (-419 (-971 |#1|))))) (-15 -2572 ((-656 (-656 (-971 |#1|))) (-656 (-419 (-971 |#1|))) (-656 (-1197))))) (-568)) (T -1206)) -((-2572 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-971 *5)))) (-5 *1 (-1206 *5)))) (-2767 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-971 *4))))) (-5 *1 (-1206 *4)) (-5 *3 (-304 (-419 (-971 *4)))))) (-2767 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-971 *4))))) (-5 *1 (-1206 *4)) (-5 *3 (-419 (-971 *4))))) (-2767 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-568)) (-5 *2 (-656 (-304 (-419 (-971 *5))))) (-5 *1 (-1206 *5)) (-5 *3 (-304 (-419 (-971 *5)))))) (-2767 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-568)) (-5 *2 (-656 (-304 (-419 (-971 *5))))) (-5 *1 (-1206 *5)) (-5 *3 (-419 (-971 *5))))) (-2767 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-1206 *4)) (-5 *3 (-656 (-304 (-419 (-971 *4))))))) (-2767 (*1 *2 *3) (-12 (-5 *3 (-656 (-419 (-971 *4)))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-1206 *4)))) (-2767 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1197))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-1206 *5)) (-5 *3 (-656 (-304 (-419 (-971 *5))))))) (-2767 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-1206 *5))))) -(-10 -7 (-15 -2767 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -2767 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-304 (-419 (-971 |#1|)))) (-656 (-1197)))) (-15 -2767 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-419 (-971 |#1|))))) (-15 -2767 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-304 (-419 (-971 |#1|)))))) (-15 -2767 ((-656 (-304 (-419 (-971 |#1|)))) (-419 (-971 |#1|)) (-1197))) (-15 -2767 ((-656 (-304 (-419 (-971 |#1|)))) (-304 (-419 (-971 |#1|))) (-1197))) (-15 -2767 ((-656 (-304 (-419 (-971 |#1|)))) (-419 (-971 |#1|)))) (-15 -2767 ((-656 (-304 (-419 (-971 |#1|)))) (-304 (-419 (-971 |#1|))))) (-15 -2572 ((-656 (-656 (-971 |#1|))) (-656 (-419 (-971 |#1|))) (-656 (-1197))))) -((-1375 (((-1179)) 7)) (-2424 (((-1179)) 11 T CONST)) (-3698 (((-1293) (-1179)) 13)) (-3537 (((-1179)) 8 T CONST)) (-1809 (((-131)) 10 T CONST))) -(((-1207) (-13 (-1238) (-10 -7 (-15 -1375 ((-1179))) (-15 -3537 ((-1179)) -1480) (-15 -1809 ((-131)) -1480) (-15 -2424 ((-1179)) -1480) (-15 -3698 ((-1293) (-1179)))))) (T -1207)) -((-1375 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207)))) (-3537 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207)))) (-1809 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1207)))) (-2424 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207)))) (-3698 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1207))))) -(-13 (-1238) (-10 -7 (-15 -1375 ((-1179))) (-15 -3537 ((-1179)) -1480) (-15 -1809 ((-131)) -1480) (-15 -2424 ((-1179)) -1480) (-15 -3698 ((-1293) (-1179))))) -((-2714 (((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|)))) 56)) (-3674 (((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|))) 38)) (-4402 (((-1209 (-656 |#1|)) (-656 |#1|)) 49)) (-4303 (((-656 (-656 |#1|)) (-656 |#1|)) 45)) (-3407 (((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))) 53)) (-3075 (((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|)))) 52)) (-1434 (((-656 (-656 |#1|)) (-656 (-656 |#1|))) 43)) (-2807 (((-656 |#1|) (-656 |#1|)) 46)) (-2888 (((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|)))) 32)) (-2682 (((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|)))) 29)) (-3651 (((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|))) 24)) (-3743 (((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|)))) 58)) (-3150 (((-656 (-656 |#1|)) (-1209 (-656 |#1|))) 60))) -(((-1208 |#1|) (-10 -7 (-15 -3651 ((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|)))) (-15 -2682 ((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -2888 ((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -2714 ((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -3743 ((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -3150 ((-656 (-656 |#1|)) (-1209 (-656 |#1|)))) (-15 -3674 ((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)))) (-15 -4402 ((-1209 (-656 |#1|)) (-656 |#1|))) (-15 -1434 ((-656 (-656 |#1|)) (-656 (-656 |#1|)))) (-15 -4303 ((-656 (-656 |#1|)) (-656 |#1|))) (-15 -2807 ((-656 |#1|) (-656 |#1|))) (-15 -3075 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))))) (-15 -3407 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))))) (-861)) (T -1208)) -((-3407 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-2 (|:| |f1| (-656 *4)) (|:| |f2| (-656 (-656 (-656 *4)))) (|:| |f3| (-656 (-656 *4))) (|:| |f4| (-656 (-656 (-656 *4)))))) (-5 *1 (-1208 *4)) (-5 *3 (-656 (-656 (-656 *4)))))) (-3075 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-861)) (-5 *3 (-656 *6)) (-5 *5 (-656 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-656 *5)) (|:| |f3| *5) (|:| |f4| (-656 *5)))) (-5 *1 (-1208 *6)) (-5 *4 (-656 *5)))) (-2807 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-1208 *3)))) (-4303 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1208 *4)) (-5 *3 (-656 *4)))) (-1434 (*1 *2 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-861)) (-5 *1 (-1208 *3)))) (-4402 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-1209 (-656 *4))) (-5 *1 (-1208 *4)) (-5 *3 (-656 *4)))) (-3674 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-656 (-656 (-656 *4)))) (-5 *1 (-1208 *4)) (-5 *3 (-656 (-656 *4))))) (-3150 (*1 *2 *3) (-12 (-5 *3 (-1209 (-656 *4))) (-4 *4 (-861)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1208 *4)))) (-3743 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1208 *4)) (-4 *4 (-861)))) (-2714 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) (-4 *4 (-861)) (-5 *1 (-1208 *4)))) (-2888 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-656 *4)) (-4 *4 (-861)) (-5 *1 (-1208 *4)))) (-2682 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-656 *5)) (-4 *5 (-861)) (-5 *1 (-1208 *5)))) (-3651 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-861)) (-5 *4 (-656 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-656 *4)))) (-5 *1 (-1208 *6)) (-5 *5 (-656 *4))))) -(-10 -7 (-15 -3651 ((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|)))) (-15 -2682 ((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -2888 ((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -2714 ((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -3743 ((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -3150 ((-656 (-656 |#1|)) (-1209 (-656 |#1|)))) (-15 -3674 ((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)))) (-15 -4402 ((-1209 (-656 |#1|)) (-656 |#1|))) (-15 -1434 ((-656 (-656 |#1|)) (-656 (-656 |#1|)))) (-15 -4303 ((-656 (-656 |#1|)) (-656 |#1|))) (-15 -2807 ((-656 |#1|) (-656 |#1|))) (-15 -3075 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))))) (-15 -3407 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))))) -((-4430 (($ (-656 (-656 |#1|))) 10)) (-1907 (((-656 (-656 |#1|)) $) 11)) (-3570 (((-876) $) 33))) -(((-1209 |#1|) (-10 -8 (-15 -4430 ($ (-656 (-656 |#1|)))) (-15 -1907 ((-656 (-656 |#1|)) $)) (-15 -3570 ((-876) $))) (-1121)) (T -1209)) -((-3570 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-1209 *3)) (-4 *3 (-1121)))) (-1907 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 *3))) (-5 *1 (-1209 *3)) (-4 *3 (-1121)))) (-4430 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-1209 *3))))) -(-10 -8 (-15 -4430 ($ (-656 (-656 |#1|)))) (-15 -1907 ((-656 (-656 |#1|)) $)) (-15 -3570 ((-876) $))) -((-3489 (((-112) $ $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-4128 (($) NIL) (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-2047 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4466)))) (-1808 (((-112) $ (-783)) NIL)) (-3756 ((|#2| $ |#1| |#2|) NIL)) (-2300 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-2197 (((-3 |#2| "failed") |#1| $) NIL)) (-3886 (($) NIL T CONST)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121))))) (-1671 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (|has| $ (-6 -4465))) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-3 |#2| "failed") |#1| $) NIL)) (-3946 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-3686 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4465))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-4335 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4466)))) (-4274 ((|#2| $ |#1|) NIL)) (-3966 (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-656 |#2|) $) NIL (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) NIL)) (-2924 ((|#1| $) NIL (|has| |#1| (-861)))) (-2014 (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-656 |#2|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-2137 ((|#1| $) NIL (|has| |#1| (-861)))) (-4323 (($ (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3203 (((-656 |#1|) $) NIL)) (-4008 (((-112) |#1| $) NIL)) (-1597 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL)) (-1901 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL)) (-4234 (((-656 |#1|) $) NIL)) (-3354 (((-112) |#1| $) NIL)) (-1450 (((-1141) $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3581 ((|#2| $) NIL (|has| |#1| (-861)))) (-1541 (((-3 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL)) (-4046 (($ $ |#2|) NIL (|has| $ (-6 -4466)))) (-3449 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL)) (-4320 (((-112) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-2281 (((-656 |#2|) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2271 (($) NIL) (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-783) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4172 (((-548) $) NIL (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-626 (-548))))) (-3582 (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-3570 (((-876) $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-4055 (((-112) $ $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3943 (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) NIL)) (-3321 (((-112) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4465))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) NIL (-2760 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-1210 |#1| |#2|) (-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4465))) (-1121) (-1121)) (T -1210)) -NIL -(-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4465))) -((-3489 (((-112) $ $) NIL)) (-1777 (($ |#1| (-55)) 10)) (-2629 ((|#1| $) 12)) (-3699 (((-1179) $) NIL)) (-1322 (((-112) $ |#1|) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-4055 (((-112) $ $) NIL)) (-4045 (((-55) $) 14)) (-2925 (((-112) $ $) NIL))) -(((-1211 |#1|) (-13 (-847 |#1|) (-10 -8 (-15 -1777 ($ |#1| (-55))))) (-1121)) (T -1211)) -((-1777 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1211 *2)) (-4 *2 (-1121))))) -(-13 (-847 |#1|) (-10 -8 (-15 -1777 ($ |#1| (-55))))) -((-1715 ((|#1| (-656 |#1|)) 46)) (-3493 ((|#1| |#1| (-576)) 24)) (-3278 (((-1193 |#1|) |#1| (-940)) 20))) -(((-1212 |#1|) (-10 -7 (-15 -1715 (|#1| (-656 |#1|))) (-15 -3278 ((-1193 |#1|) |#1| (-940))) (-15 -3493 (|#1| |#1| (-576)))) (-374)) (T -1212)) -((-3493 (*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-1212 *2)) (-4 *2 (-374)))) (-3278 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-5 *2 (-1193 *3)) (-5 *1 (-1212 *3)) (-4 *3 (-374)))) (-1715 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-1212 *2)) (-4 *2 (-374))))) -(-10 -7 (-15 -1715 (|#1| (-656 |#1|))) (-15 -3278 ((-1193 |#1|) |#1| (-940))) (-15 -3493 (|#1| |#1| (-576)))) -((-4128 (($) 10) (($ (-656 (-2 (|:| -4301 |#2|) (|:| -4440 |#3|)))) 14)) (-1671 (($ (-2 (|:| -4301 |#2|) (|:| -4440 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -4301 |#2|) (|:| -4440 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3966 (((-656 (-2 (|:| -4301 |#2|) (|:| -4440 |#3|))) $) 39) (((-656 |#3|) $) 41)) (-4323 (($ (-1 (-2 (|:| -4301 |#2|) (|:| -4440 |#3|)) (-2 (|:| -4301 |#2|) (|:| -4440 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-4117 (($ (-1 (-2 (|:| -4301 |#2|) (|:| -4440 |#3|)) (-2 (|:| -4301 |#2|) (|:| -4440 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1597 (((-2 (|:| -4301 |#2|) (|:| -4440 |#3|)) $) 60)) (-1901 (($ (-2 (|:| -4301 |#2|) (|:| -4440 |#3|)) $) 16)) (-4234 (((-656 |#2|) $) 19)) (-3354 (((-112) |#2| $) 65)) (-1541 (((-3 (-2 (|:| -4301 |#2|) (|:| -4440 |#3|)) "failed") (-1 (-112) (-2 (|:| -4301 |#2|) (|:| -4440 |#3|))) $) 64)) (-3449 (((-2 (|:| -4301 |#2|) (|:| -4440 |#3|)) $) 69)) (-4320 (((-112) (-1 (-112) (-2 (|:| -4301 |#2|) (|:| -4440 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-2281 (((-656 |#3|) $) 43)) (-2797 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4301 |#2|) (|:| -4440 |#3|))) $) NIL) (((-783) (-2 (|:| -4301 |#2|) (|:| -4440 |#3|)) $) NIL) (((-783) |#3| $) NIL) (((-783) (-1 (-112) |#3|) $) 79)) (-3570 (((-876) $) 27)) (-3321 (((-112) (-1 (-112) (-2 (|:| -4301 |#2|) (|:| -4440 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2925 (((-112) $ $) 51))) -(((-1213 |#1| |#2| |#3|) (-10 -8 (-15 -2925 ((-112) |#1| |#1|)) (-15 -3570 ((-876) |#1|)) (-15 -4117 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4128 (|#1| (-656 (-2 (|:| -4301 |#2|) (|:| -4440 |#3|))))) (-15 -4128 (|#1|)) (-15 -4117 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4323 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3321 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4320 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1460 ((-783) (-1 (-112) |#3|) |#1|)) (-15 -3966 ((-656 |#3|) |#1|)) (-15 -1460 ((-783) |#3| |#1|)) (-15 -2797 (|#3| |#1| |#2| |#3|)) (-15 -2797 (|#3| |#1| |#2|)) (-15 -2281 ((-656 |#3|) |#1|)) (-15 -3354 ((-112) |#2| |#1|)) (-15 -4234 ((-656 |#2|) |#1|)) (-15 -1671 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1671 (|#1| (-1 (-112) (-2 (|:| -4301 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -1671 (|#1| (-2 (|:| -4301 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -1541 ((-3 (-2 (|:| -4301 |#2|) (|:| -4440 |#3|)) "failed") (-1 (-112) (-2 (|:| -4301 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -1597 ((-2 (|:| -4301 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -1901 (|#1| (-2 (|:| -4301 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -3449 ((-2 (|:| -4301 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -1460 ((-783) (-2 (|:| -4301 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -3966 ((-656 (-2 (|:| -4301 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -1460 ((-783) (-1 (-112) (-2 (|:| -4301 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -4320 ((-112) (-1 (-112) (-2 (|:| -4301 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -3321 ((-112) (-1 (-112) (-2 (|:| -4301 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -4323 (|#1| (-1 (-2 (|:| -4301 |#2|) (|:| -4440 |#3|)) (-2 (|:| -4301 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -4117 (|#1| (-1 (-2 (|:| -4301 |#2|) (|:| -4440 |#3|)) (-2 (|:| -4301 |#2|) (|:| -4440 |#3|))) |#1|))) (-1214 |#2| |#3|) (-1121) (-1121)) (T -1213)) -NIL -(-10 -8 (-15 -2925 ((-112) |#1| |#1|)) (-15 -3570 ((-876) |#1|)) (-15 -4117 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4128 (|#1| (-656 (-2 (|:| -4301 |#2|) (|:| -4440 |#3|))))) (-15 -4128 (|#1|)) (-15 -4117 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4323 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3321 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4320 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1460 ((-783) (-1 (-112) |#3|) |#1|)) (-15 -3966 ((-656 |#3|) |#1|)) (-15 -1460 ((-783) |#3| |#1|)) (-15 -2797 (|#3| |#1| |#2| |#3|)) (-15 -2797 (|#3| |#1| |#2|)) (-15 -2281 ((-656 |#3|) |#1|)) (-15 -3354 ((-112) |#2| |#1|)) (-15 -4234 ((-656 |#2|) |#1|)) (-15 -1671 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1671 (|#1| (-1 (-112) (-2 (|:| -4301 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -1671 (|#1| (-2 (|:| -4301 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -1541 ((-3 (-2 (|:| -4301 |#2|) (|:| -4440 |#3|)) "failed") (-1 (-112) (-2 (|:| -4301 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -1597 ((-2 (|:| -4301 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -1901 (|#1| (-2 (|:| -4301 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -3449 ((-2 (|:| -4301 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -1460 ((-783) (-2 (|:| -4301 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -3966 ((-656 (-2 (|:| -4301 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -1460 ((-783) (-1 (-112) (-2 (|:| -4301 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -4320 ((-112) (-1 (-112) (-2 (|:| -4301 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -3321 ((-112) (-1 (-112) (-2 (|:| -4301 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -4323 (|#1| (-1 (-2 (|:| -4301 |#2|) (|:| -4440 |#3|)) (-2 (|:| -4301 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -4117 (|#1| (-1 (-2 (|:| -4301 |#2|) (|:| -4440 |#3|)) (-2 (|:| -4301 |#2|) (|:| -4440 |#3|))) |#1|))) -((-3489 (((-112) $ $) 20 (-2760 (|has| |#2| (-102)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102))))) (-4128 (($) 73) (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) 72)) (-2047 (((-1293) $ |#1| |#1|) 100 (|has| $ (-6 -4466)))) (-1808 (((-112) $ (-783)) 8)) (-3756 ((|#2| $ |#1| |#2|) 74)) (-2300 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 46 (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 56 (|has| $ (-6 -4465)))) (-2197 (((-3 |#2| "failed") |#1| $) 62)) (-3886 (($) 7 T CONST)) (-1415 (($ $) 59 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| $ (-6 -4465))))) (-1671 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 48 (|has| $ (-6 -4465))) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 47 (|has| $ (-6 -4465))) (((-3 |#2| "failed") |#1| $) 63)) (-3946 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| $ (-6 -4465)))) (($ (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 55 (|has| $ (-6 -4465)))) (-3686 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 57 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| $ (-6 -4465)))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 54 (|has| $ (-6 -4465))) (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 53 (|has| $ (-6 -4465)))) (-4335 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4466)))) (-4274 ((|#2| $ |#1|) 89)) (-3966 (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 31 (|has| $ (-6 -4465))) (((-656 |#2|) $) 80 (|has| $ (-6 -4465)))) (-3870 (((-112) $ (-783)) 9)) (-2924 ((|#1| $) 97 (|has| |#1| (-861)))) (-2014 (((-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 30 (|has| $ (-6 -4465))) (((-656 |#2|) $) 81 (|has| $ (-6 -4465)))) (-1612 (((-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| $ (-6 -4465)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4465))))) (-2137 ((|#1| $) 96 (|has| |#1| (-861)))) (-4323 (($ (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 35 (|has| $ (-6 -4466))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4466)))) (-4117 (($ (-1 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-1330 (((-112) $ (-783)) 10)) (-3699 (((-1179) $) 23 (-2760 (|has| |#2| (-1121)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121))))) (-3203 (((-656 |#1|) $) 64)) (-4008 (((-112) |#1| $) 65)) (-1597 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 40)) (-1901 (($ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 41)) (-4234 (((-656 |#1|) $) 94)) (-3354 (((-112) |#1| $) 93)) (-1450 (((-1141) $) 22 (-2760 (|has| |#2| (-1121)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121))))) (-3581 ((|#2| $) 98 (|has| |#1| (-861)))) (-1541 (((-3 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 52)) (-4046 (($ $ |#2|) 99 (|has| $ (-6 -4466)))) (-3449 (((-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 42)) (-4320 (((-112) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 33 (|has| $ (-6 -4465))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))))) 27 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) 26 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) 25 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) 24 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) 87 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) 85 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) 84 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-4040 (((-112) $ $) 14)) (-3845 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4465)) (|has| |#2| (-1121))))) (-2281 (((-656 |#2|) $) 92)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-2797 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-2271 (($) 50) (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) 49)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 32 (|has| $ (-6 -4465))) (((-783) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| $ (-6 -4465)))) (((-783) |#2| $) 82 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4465)))) (((-783) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4465)))) (-1870 (($ $) 13)) (-4172 (((-548) $) 60 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-626 (-548))))) (-3582 (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) 51)) (-3570 (((-876) $) 18 (-2760 (|has| |#2| (-625 (-876))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-625 (-876)))))) (-4055 (((-112) $ $) 21 (-2760 (|has| |#2| (-102)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102))))) (-3943 (($ (-656 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) 43)) (-3321 (((-112) (-1 (-112) (-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) $) 34 (|has| $ (-6 -4465))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 19 (-2760 (|has| |#2| (-102)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102))))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-3076 (((-656 (-656 (-971 |#1|))) (-656 (-419 (-971 |#1|))) (-656 (-1197))) 69)) (-4263 (((-656 (-304 (-419 (-971 |#1|)))) (-304 (-419 (-971 |#1|)))) 80) (((-656 (-304 (-419 (-971 |#1|)))) (-419 (-971 |#1|))) 76) (((-656 (-304 (-419 (-971 |#1|)))) (-304 (-419 (-971 |#1|))) (-1197)) 81) (((-656 (-304 (-419 (-971 |#1|)))) (-419 (-971 |#1|)) (-1197)) 75) (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-304 (-419 (-971 |#1|))))) 106) (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-419 (-971 |#1|)))) 105) (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-304 (-419 (-971 |#1|)))) (-656 (-1197))) 107) (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-419 (-971 |#1|))) (-656 (-1197))) 104))) +(((-1206 |#1|) (-10 -7 (-15 -4263 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -4263 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-304 (-419 (-971 |#1|)))) (-656 (-1197)))) (-15 -4263 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-419 (-971 |#1|))))) (-15 -4263 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-304 (-419 (-971 |#1|)))))) (-15 -4263 ((-656 (-304 (-419 (-971 |#1|)))) (-419 (-971 |#1|)) (-1197))) (-15 -4263 ((-656 (-304 (-419 (-971 |#1|)))) (-304 (-419 (-971 |#1|))) (-1197))) (-15 -4263 ((-656 (-304 (-419 (-971 |#1|)))) (-419 (-971 |#1|)))) (-15 -4263 ((-656 (-304 (-419 (-971 |#1|)))) (-304 (-419 (-971 |#1|))))) (-15 -3076 ((-656 (-656 (-971 |#1|))) (-656 (-419 (-971 |#1|))) (-656 (-1197))))) (-568)) (T -1206)) +((-3076 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-971 *5)))) (-5 *1 (-1206 *5)))) (-4263 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-971 *4))))) (-5 *1 (-1206 *4)) (-5 *3 (-304 (-419 (-971 *4)))))) (-4263 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-971 *4))))) (-5 *1 (-1206 *4)) (-5 *3 (-419 (-971 *4))))) (-4263 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-568)) (-5 *2 (-656 (-304 (-419 (-971 *5))))) (-5 *1 (-1206 *5)) (-5 *3 (-304 (-419 (-971 *5)))))) (-4263 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-568)) (-5 *2 (-656 (-304 (-419 (-971 *5))))) (-5 *1 (-1206 *5)) (-5 *3 (-419 (-971 *5))))) (-4263 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-1206 *4)) (-5 *3 (-656 (-304 (-419 (-971 *4))))))) (-4263 (*1 *2 *3) (-12 (-5 *3 (-656 (-419 (-971 *4)))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-1206 *4)))) (-4263 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1197))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-1206 *5)) (-5 *3 (-656 (-304 (-419 (-971 *5))))))) (-4263 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-1206 *5))))) +(-10 -7 (-15 -4263 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -4263 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-304 (-419 (-971 |#1|)))) (-656 (-1197)))) (-15 -4263 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-419 (-971 |#1|))))) (-15 -4263 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-304 (-419 (-971 |#1|)))))) (-15 -4263 ((-656 (-304 (-419 (-971 |#1|)))) (-419 (-971 |#1|)) (-1197))) (-15 -4263 ((-656 (-304 (-419 (-971 |#1|)))) (-304 (-419 (-971 |#1|))) (-1197))) (-15 -4263 ((-656 (-304 (-419 (-971 |#1|)))) (-419 (-971 |#1|)))) (-15 -4263 ((-656 (-304 (-419 (-971 |#1|)))) (-304 (-419 (-971 |#1|))))) (-15 -3076 ((-656 (-656 (-971 |#1|))) (-656 (-419 (-971 |#1|))) (-656 (-1197))))) +((-2137 (((-1179)) 7)) (-4063 (((-1179)) 11 T CONST)) (-3697 (((-1293) (-1179)) 13)) (-4276 (((-1179)) 8 T CONST)) (-4274 (((-131)) 10 T CONST))) +(((-1207) (-13 (-1238) (-10 -7 (-15 -2137 ((-1179))) (-15 -4276 ((-1179)) -1480) (-15 -4274 ((-131)) -1480) (-15 -4063 ((-1179)) -1480) (-15 -3697 ((-1293) (-1179)))))) (T -1207)) +((-2137 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207)))) (-4276 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207)))) (-4274 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1207)))) (-4063 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207)))) (-3697 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1207))))) +(-13 (-1238) (-10 -7 (-15 -2137 ((-1179))) (-15 -4276 ((-1179)) -1480) (-15 -4274 ((-131)) -1480) (-15 -4063 ((-1179)) -1480) (-15 -3697 ((-1293) (-1179))))) +((-1845 (((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|)))) 56)) (-3097 (((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|))) 38)) (-1569 (((-1209 (-656 |#1|)) (-656 |#1|)) 49)) (-3088 (((-656 (-656 |#1|)) (-656 |#1|)) 45)) (-3406 (((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))) 53)) (-2054 (((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|)))) 52)) (-2221 (((-656 (-656 |#1|)) (-656 (-656 |#1|))) 43)) (-3375 (((-656 |#1|) (-656 |#1|)) 46)) (-2903 (((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|)))) 32)) (-1579 (((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|)))) 29)) (-2843 (((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|))) 24)) (-2513 (((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|)))) 58)) (-1577 (((-656 (-656 |#1|)) (-1209 (-656 |#1|))) 60))) +(((-1208 |#1|) (-10 -7 (-15 -2843 ((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|)))) (-15 -1579 ((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -2903 ((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -1845 ((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -2513 ((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -1577 ((-656 (-656 |#1|)) (-1209 (-656 |#1|)))) (-15 -3097 ((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)))) (-15 -1569 ((-1209 (-656 |#1|)) (-656 |#1|))) (-15 -2221 ((-656 (-656 |#1|)) (-656 (-656 |#1|)))) (-15 -3088 ((-656 (-656 |#1|)) (-656 |#1|))) (-15 -3375 ((-656 |#1|) (-656 |#1|))) (-15 -2054 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))))) (-15 -3406 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))))) (-861)) (T -1208)) +((-3406 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-2 (|:| |f1| (-656 *4)) (|:| |f2| (-656 (-656 (-656 *4)))) (|:| |f3| (-656 (-656 *4))) (|:| |f4| (-656 (-656 (-656 *4)))))) (-5 *1 (-1208 *4)) (-5 *3 (-656 (-656 (-656 *4)))))) (-2054 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-861)) (-5 *3 (-656 *6)) (-5 *5 (-656 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-656 *5)) (|:| |f3| *5) (|:| |f4| (-656 *5)))) (-5 *1 (-1208 *6)) (-5 *4 (-656 *5)))) (-3375 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-1208 *3)))) (-3088 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1208 *4)) (-5 *3 (-656 *4)))) (-2221 (*1 *2 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-861)) (-5 *1 (-1208 *3)))) (-1569 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-1209 (-656 *4))) (-5 *1 (-1208 *4)) (-5 *3 (-656 *4)))) (-3097 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-656 (-656 (-656 *4)))) (-5 *1 (-1208 *4)) (-5 *3 (-656 (-656 *4))))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-1209 (-656 *4))) (-4 *4 (-861)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1208 *4)))) (-2513 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1208 *4)) (-4 *4 (-861)))) (-1845 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) (-4 *4 (-861)) (-5 *1 (-1208 *4)))) (-2903 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-656 *4)) (-4 *4 (-861)) (-5 *1 (-1208 *4)))) (-1579 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-656 *5)) (-4 *5 (-861)) (-5 *1 (-1208 *5)))) (-2843 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-861)) (-5 *4 (-656 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-656 *4)))) (-5 *1 (-1208 *6)) (-5 *5 (-656 *4))))) +(-10 -7 (-15 -2843 ((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|)))) (-15 -1579 ((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -2903 ((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -1845 ((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -2513 ((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -1577 ((-656 (-656 |#1|)) (-1209 (-656 |#1|)))) (-15 -3097 ((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)))) (-15 -1569 ((-1209 (-656 |#1|)) (-656 |#1|))) (-15 -2221 ((-656 (-656 |#1|)) (-656 (-656 |#1|)))) (-15 -3088 ((-656 (-656 |#1|)) (-656 |#1|))) (-15 -3375 ((-656 |#1|) (-656 |#1|))) (-15 -2054 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))))) (-15 -3406 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))))) +((-1825 (($ (-656 (-656 |#1|))) 10)) (-2650 (((-656 (-656 |#1|)) $) 11)) (-3569 (((-876) $) 33))) +(((-1209 |#1|) (-10 -8 (-15 -1825 ($ (-656 (-656 |#1|)))) (-15 -2650 ((-656 (-656 |#1|)) $)) (-15 -3569 ((-876) $))) (-1121)) (T -1209)) +((-3569 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-1209 *3)) (-4 *3 (-1121)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 *3))) (-5 *1 (-1209 *3)) (-4 *3 (-1121)))) (-1825 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-1209 *3))))) +(-10 -8 (-15 -1825 ($ (-656 (-656 |#1|)))) (-15 -2650 ((-656 (-656 |#1|)) $)) (-15 -3569 ((-876) $))) +((-3488 (((-112) $ $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102)) (|has| |#2| (-102))))) (-4127 (($) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-1512 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4465)))) (-4264 (((-112) $ (-783)) NIL)) (-3755 ((|#2| $ |#1| |#2|) NIL)) (-2123 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-1974 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2198 (((-3 |#2| "failed") |#1| $) NIL)) (-3404 (($) NIL T CONST)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121))))) (-2172 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) NIL)) (-3945 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#2| $ |#1|) NIL)) (-3965 (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) NIL)) (-3281 ((|#1| $) NIL (|has| |#1| (-861)))) (-2425 (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-4280 ((|#1| $) NIL (|has| |#1| (-861)))) (-4326 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4465))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3200 (((-656 |#1|) $) NIL)) (-3259 (((-112) |#1| $) NIL)) (-2722 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL)) (-2597 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL)) (-3669 (((-656 |#1|) $) NIL)) (-3090 (((-112) |#1| $) NIL)) (-1450 (((-1141) $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-3580 ((|#2| $) NIL (|has| |#1| (-861)))) (-3434 (((-3 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) "failed") (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL)) (-2304 (($ $ |#2|) NIL (|has| $ (-6 -4465)))) (-1541 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL)) (-3252 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-3207 (((-656 |#2|) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3101 (($) NIL) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-3569 (((-876) $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-2399 (((-112) $ $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102)) (|has| |#2| (-102))))) (-3972 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) NIL)) (-2708 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) NIL (-2759 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102)) (|has| |#2| (-102))))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1210 |#1| |#2|) (-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4464))) (-1121) (-1121)) (T -1210)) +NIL +(-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4464))) +((-3488 (((-112) $ $) NIL)) (-1776 (($ |#1| (-55)) 10)) (-2628 ((|#1| $) 12)) (-2046 (((-1179) $) NIL)) (-2808 (((-112) $ |#1|) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2294 (((-55) $) 14)) (-2924 (((-112) $ $) NIL))) +(((-1211 |#1|) (-13 (-847 |#1|) (-10 -8 (-15 -1776 ($ |#1| (-55))))) (-1121)) (T -1211)) +((-1776 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1211 *2)) (-4 *2 (-1121))))) +(-13 (-847 |#1|) (-10 -8 (-15 -1776 ($ |#1| (-55))))) +((-1428 ((|#1| (-656 |#1|)) 46)) (-1925 ((|#1| |#1| (-576)) 24)) (-3584 (((-1193 |#1|) |#1| (-940)) 20))) +(((-1212 |#1|) (-10 -7 (-15 -1428 (|#1| (-656 |#1|))) (-15 -3584 ((-1193 |#1|) |#1| (-940))) (-15 -1925 (|#1| |#1| (-576)))) (-374)) (T -1212)) +((-1925 (*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-1212 *2)) (-4 *2 (-374)))) (-3584 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-5 *2 (-1193 *3)) (-5 *1 (-1212 *3)) (-4 *3 (-374)))) (-1428 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-1212 *2)) (-4 *2 (-374))))) +(-10 -7 (-15 -1428 (|#1| (-656 |#1|))) (-15 -3584 ((-1193 |#1|) |#1| (-940))) (-15 -1925 (|#1| |#1| (-576)))) +((-4127 (($) 10) (($ (-656 (-2 (|:| -4300 |#2|) (|:| -4439 |#3|)))) 14)) (-2172 (($ (-2 (|:| -4300 |#2|) (|:| -4439 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4439 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3965 (((-656 (-2 (|:| -4300 |#2|) (|:| -4439 |#3|))) $) 39) (((-656 |#3|) $) 41)) (-4326 (($ (-1 (-2 (|:| -4300 |#2|) (|:| -4439 |#3|)) (-2 (|:| -4300 |#2|) (|:| -4439 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-4116 (($ (-1 (-2 (|:| -4300 |#2|) (|:| -4439 |#3|)) (-2 (|:| -4300 |#2|) (|:| -4439 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2722 (((-2 (|:| -4300 |#2|) (|:| -4439 |#3|)) $) 60)) (-2597 (($ (-2 (|:| -4300 |#2|) (|:| -4439 |#3|)) $) 16)) (-3669 (((-656 |#2|) $) 19)) (-3090 (((-112) |#2| $) 65)) (-3434 (((-3 (-2 (|:| -4300 |#2|) (|:| -4439 |#3|)) "failed") (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4439 |#3|))) $) 64)) (-1541 (((-2 (|:| -4300 |#2|) (|:| -4439 |#3|)) $) 69)) (-3252 (((-112) (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4439 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-3207 (((-656 |#3|) $) 43)) (-2796 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4439 |#3|))) $) NIL) (((-783) (-2 (|:| -4300 |#2|) (|:| -4439 |#3|)) $) NIL) (((-783) |#3| $) NIL) (((-783) (-1 (-112) |#3|) $) 79)) (-3569 (((-876) $) 27)) (-2708 (((-112) (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4439 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2924 (((-112) $ $) 51))) +(((-1213 |#1| |#2| |#3|) (-10 -8 (-15 -2924 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -4116 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4127 (|#1| (-656 (-2 (|:| -4300 |#2|) (|:| -4439 |#3|))))) (-15 -4127 (|#1|)) (-15 -4116 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4326 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2708 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3252 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1460 ((-783) (-1 (-112) |#3|) |#1|)) (-15 -3965 ((-656 |#3|) |#1|)) (-15 -1460 ((-783) |#3| |#1|)) (-15 -2796 (|#3| |#1| |#2| |#3|)) (-15 -2796 (|#3| |#1| |#2|)) (-15 -3207 ((-656 |#3|) |#1|)) (-15 -3090 ((-112) |#2| |#1|)) (-15 -3669 ((-656 |#2|) |#1|)) (-15 -2172 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2172 (|#1| (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4439 |#3|))) |#1|)) (-15 -2172 (|#1| (-2 (|:| -4300 |#2|) (|:| -4439 |#3|)) |#1|)) (-15 -3434 ((-3 (-2 (|:| -4300 |#2|) (|:| -4439 |#3|)) "failed") (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4439 |#3|))) |#1|)) (-15 -2722 ((-2 (|:| -4300 |#2|) (|:| -4439 |#3|)) |#1|)) (-15 -2597 (|#1| (-2 (|:| -4300 |#2|) (|:| -4439 |#3|)) |#1|)) (-15 -1541 ((-2 (|:| -4300 |#2|) (|:| -4439 |#3|)) |#1|)) (-15 -1460 ((-783) (-2 (|:| -4300 |#2|) (|:| -4439 |#3|)) |#1|)) (-15 -3965 ((-656 (-2 (|:| -4300 |#2|) (|:| -4439 |#3|))) |#1|)) (-15 -1460 ((-783) (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4439 |#3|))) |#1|)) (-15 -3252 ((-112) (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4439 |#3|))) |#1|)) (-15 -2708 ((-112) (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4439 |#3|))) |#1|)) (-15 -4326 (|#1| (-1 (-2 (|:| -4300 |#2|) (|:| -4439 |#3|)) (-2 (|:| -4300 |#2|) (|:| -4439 |#3|))) |#1|)) (-15 -4116 (|#1| (-1 (-2 (|:| -4300 |#2|) (|:| -4439 |#3|)) (-2 (|:| -4300 |#2|) (|:| -4439 |#3|))) |#1|))) (-1214 |#2| |#3|) (-1121) (-1121)) (T -1213)) +NIL +(-10 -8 (-15 -2924 ((-112) |#1| |#1|)) (-15 -3569 ((-876) |#1|)) (-15 -4116 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4127 (|#1| (-656 (-2 (|:| -4300 |#2|) (|:| -4439 |#3|))))) (-15 -4127 (|#1|)) (-15 -4116 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4326 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2708 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3252 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1460 ((-783) (-1 (-112) |#3|) |#1|)) (-15 -3965 ((-656 |#3|) |#1|)) (-15 -1460 ((-783) |#3| |#1|)) (-15 -2796 (|#3| |#1| |#2| |#3|)) (-15 -2796 (|#3| |#1| |#2|)) (-15 -3207 ((-656 |#3|) |#1|)) (-15 -3090 ((-112) |#2| |#1|)) (-15 -3669 ((-656 |#2|) |#1|)) (-15 -2172 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2172 (|#1| (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4439 |#3|))) |#1|)) (-15 -2172 (|#1| (-2 (|:| -4300 |#2|) (|:| -4439 |#3|)) |#1|)) (-15 -3434 ((-3 (-2 (|:| -4300 |#2|) (|:| -4439 |#3|)) "failed") (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4439 |#3|))) |#1|)) (-15 -2722 ((-2 (|:| -4300 |#2|) (|:| -4439 |#3|)) |#1|)) (-15 -2597 (|#1| (-2 (|:| -4300 |#2|) (|:| -4439 |#3|)) |#1|)) (-15 -1541 ((-2 (|:| -4300 |#2|) (|:| -4439 |#3|)) |#1|)) (-15 -1460 ((-783) (-2 (|:| -4300 |#2|) (|:| -4439 |#3|)) |#1|)) (-15 -3965 ((-656 (-2 (|:| -4300 |#2|) (|:| -4439 |#3|))) |#1|)) (-15 -1460 ((-783) (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4439 |#3|))) |#1|)) (-15 -3252 ((-112) (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4439 |#3|))) |#1|)) (-15 -2708 ((-112) (-1 (-112) (-2 (|:| -4300 |#2|) (|:| -4439 |#3|))) |#1|)) (-15 -4326 (|#1| (-1 (-2 (|:| -4300 |#2|) (|:| -4439 |#3|)) (-2 (|:| -4300 |#2|) (|:| -4439 |#3|))) |#1|)) (-15 -4116 (|#1| (-1 (-2 (|:| -4300 |#2|) (|:| -4439 |#3|)) (-2 (|:| -4300 |#2|) (|:| -4439 |#3|))) |#1|))) +((-3488 (((-112) $ $) 20 (-2759 (|has| |#2| (-102)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102))))) (-4127 (($) 73) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) 72)) (-1512 (((-1293) $ |#1| |#1|) 100 (|has| $ (-6 -4465)))) (-4264 (((-112) $ (-783)) 8)) (-3755 ((|#2| $ |#1| |#2|) 74)) (-2123 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 46 (|has| $ (-6 -4464)))) (-1974 (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 56 (|has| $ (-6 -4464)))) (-2198 (((-3 |#2| "failed") |#1| $) 62)) (-3404 (($) 7 T CONST)) (-2034 (($ $) 59 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| $ (-6 -4464))))) (-2172 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 48 (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 47 (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) 63)) (-3945 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 55 (|has| $ (-6 -4464)))) (-3685 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 57 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 54 (|has| $ (-6 -4464))) (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 53 (|has| $ (-6 -4464)))) (-4332 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4465)))) (-4272 ((|#2| $ |#1|) 89)) (-3965 (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 31 (|has| $ (-6 -4464))) (((-656 |#2|) $) 80 (|has| $ (-6 -4464)))) (-1368 (((-112) $ (-783)) 9)) (-3281 ((|#1| $) 97 (|has| |#1| (-861)))) (-2425 (((-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 30 (|has| $ (-6 -4464))) (((-656 |#2|) $) 81 (|has| $ (-6 -4464)))) (-2885 (((-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464))))) (-4280 ((|#1| $) 96 (|has| |#1| (-861)))) (-4326 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 35 (|has| $ (-6 -4465))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4465)))) (-4116 (($ (-1 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-2883 (((-112) $ (-783)) 10)) (-2046 (((-1179) $) 23 (-2759 (|has| |#2| (-1121)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121))))) (-3200 (((-656 |#1|) $) 64)) (-3259 (((-112) |#1| $) 65)) (-2722 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 40)) (-2597 (($ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 41)) (-3669 (((-656 |#1|) $) 94)) (-3090 (((-112) |#1| $) 93)) (-1450 (((-1141) $) 22 (-2759 (|has| |#2| (-1121)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121))))) (-3580 ((|#2| $) 98 (|has| |#1| (-861)))) (-3434 (((-3 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) "failed") (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 52)) (-2304 (($ $ |#2|) 99 (|has| $ (-6 -4465)))) (-1541 (((-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 42)) (-3252 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 33 (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))))) 27 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) 26 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) 25 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) 24 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) 87 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) 85 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) 84 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-2252 (((-112) $ $) 14)) (-4282 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-3207 (((-656 |#2|) $) 92)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-2796 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-3101 (($) 50) (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) 49)) (-1460 (((-783) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 32 (|has| $ (-6 -4464))) (((-783) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (((-783) |#2| $) 82 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4464)))) (-1870 (($ $) 13)) (-4171 (((-548) $) 60 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-626 (-548))))) (-3581 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) 51)) (-3569 (((-876) $) 18 (-2759 (|has| |#2| (-625 (-876))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-625 (-876)))))) (-2399 (((-112) $ $) 21 (-2759 (|has| |#2| (-102)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102))))) (-3972 (($ (-656 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) 43)) (-2708 (((-112) (-1 (-112) (-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) $) 34 (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 19 (-2759 (|has| |#2| (-102)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102))))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-1214 |#1| |#2|) (-141) (-1121) (-1121)) (T -1214)) -((-3756 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1214 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) (-4128 (*1 *1) (-12 (-4 *1 (-1214 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-4128 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4301 *3) (|:| -4440 *4)))) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *1 (-1214 *3 *4)))) (-4117 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1214 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121))))) -(-13 (-622 |t#1| |t#2|) (-616 |t#1| |t#2|) (-10 -8 (-15 -3756 (|t#2| $ |t#1| |t#2|)) (-15 -4128 ($)) (-15 -4128 ($ (-656 (-2 (|:| -4301 |t#1|) (|:| -4440 |t#2|))))) (-15 -4117 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -4301 |#1|) (|:| -4440 |#2|))) . T) ((-102) -2760 (|has| |#2| (-1121)) (|has| |#2| (-102)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-102))) ((-625 (-876)) -2760 (|has| |#2| (-1121)) (|has| |#2| (-625 (-876))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-625 (-876)))) ((-152 #0#) . T) ((-626 (-548)) |has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-296 |#1| |#2|) . T) ((-298 |#1| |#2|) . T) ((-319 #0#) -12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121))) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-501 #0#) . T) ((-501 |#2|) . T) ((-616 |#1| |#2|) . T) ((-526 #0# #0#) -12 (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121))) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-622 |#1| |#2|) . T) ((-1121) -2760 (|has| |#2| (-1121)) (|has| (-2 (|:| -4301 |#1|) (|:| -4440 |#2|)) (-1121))) ((-1238) . T)) -((-4182 (((-112)) 29)) (-1718 (((-1293) (-1179)) 31)) (-4209 (((-112)) 41)) (-1412 (((-1293)) 39)) (-4080 (((-1293) (-1179) (-1179)) 30)) (-2419 (((-112)) 42)) (-1901 (((-1293) |#1| |#2|) 53)) (-1691 (((-1293)) 26)) (-2181 (((-3 |#2| "failed") |#1|) 51)) (-3980 (((-1293)) 40))) -(((-1215 |#1| |#2|) (-10 -7 (-15 -1691 ((-1293))) (-15 -4080 ((-1293) (-1179) (-1179))) (-15 -1718 ((-1293) (-1179))) (-15 -1412 ((-1293))) (-15 -3980 ((-1293))) (-15 -4182 ((-112))) (-15 -4209 ((-112))) (-15 -2419 ((-112))) (-15 -2181 ((-3 |#2| "failed") |#1|)) (-15 -1901 ((-1293) |#1| |#2|))) (-1121) (-1121)) (T -1215)) -((-1901 (*1 *2 *3 *4) (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-2181 (*1 *2 *3) (|partial| -12 (-4 *2 (-1121)) (-5 *1 (-1215 *3 *2)) (-4 *3 (-1121)))) (-2419 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-4209 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-4182 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-3980 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-1412 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-1718 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1215 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)))) (-4080 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1215 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)))) (-1691 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121))))) -(-10 -7 (-15 -1691 ((-1293))) (-15 -4080 ((-1293) (-1179) (-1179))) (-15 -1718 ((-1293) (-1179))) (-15 -1412 ((-1293))) (-15 -3980 ((-1293))) (-15 -4182 ((-112))) (-15 -4209 ((-112))) (-15 -2419 ((-112))) (-15 -2181 ((-3 |#2| "failed") |#1|)) (-15 -1901 ((-1293) |#1| |#2|))) -((-3438 (((-1179) (-1179)) 22)) (-2994 (((-52) (-1179)) 25))) -(((-1216) (-10 -7 (-15 -2994 ((-52) (-1179))) (-15 -3438 ((-1179) (-1179))))) (T -1216)) -((-3438 (*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1216)))) (-2994 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-1216))))) -(-10 -7 (-15 -2994 ((-52) (-1179))) (-15 -3438 ((-1179) (-1179)))) -((-3570 (((-1218) |#1|) 11))) -(((-1217 |#1|) (-10 -7 (-15 -3570 ((-1218) |#1|))) (-1121)) (T -1217)) -((-3570 (*1 *2 *3) (-12 (-5 *2 (-1218)) (-5 *1 (-1217 *3)) (-4 *3 (-1121))))) -(-10 -7 (-15 -3570 ((-1218) |#1|))) -((-3489 (((-112) $ $) NIL)) (-2983 (((-656 (-1179)) $) 39)) (-1934 (((-656 (-1179)) $ (-656 (-1179))) 42)) (-4311 (((-656 (-1179)) $ (-656 (-1179))) 41)) (-2896 (((-656 (-1179)) $ (-656 (-1179))) 43)) (-2863 (((-656 (-1179)) $) 38)) (-4141 (($) 28)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1824 (((-656 (-1179)) $) 40)) (-1977 (((-1293) $ (-576)) 35) (((-1293) $) 36)) (-4172 (($ (-876) (-576)) 33) (($ (-876) (-576) (-876)) NIL)) (-3570 (((-876) $) 49) (($ (-876)) 32)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-1218) (-13 (-1121) (-628 (-876)) (-10 -8 (-15 -4172 ($ (-876) (-576))) (-15 -4172 ($ (-876) (-576) (-876))) (-15 -1977 ((-1293) $ (-576))) (-15 -1977 ((-1293) $)) (-15 -1824 ((-656 (-1179)) $)) (-15 -2983 ((-656 (-1179)) $)) (-15 -4141 ($)) (-15 -2863 ((-656 (-1179)) $)) (-15 -2896 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -1934 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -4311 ((-656 (-1179)) $ (-656 (-1179))))))) (T -1218)) -((-4172 (*1 *1 *2 *3) (-12 (-5 *2 (-876)) (-5 *3 (-576)) (-5 *1 (-1218)))) (-4172 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-876)) (-5 *3 (-576)) (-5 *1 (-1218)))) (-1977 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1218)))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1218)))) (-1824 (*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218)))) (-4141 (*1 *1) (-5 *1 (-1218))) (-2863 (*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218)))) (-2896 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218)))) (-1934 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218)))) (-4311 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218))))) -(-13 (-1121) (-628 (-876)) (-10 -8 (-15 -4172 ($ (-876) (-576))) (-15 -4172 ($ (-876) (-576) (-876))) (-15 -1977 ((-1293) $ (-576))) (-15 -1977 ((-1293) $)) (-15 -1824 ((-656 (-1179)) $)) (-15 -2983 ((-656 (-1179)) $)) (-15 -4141 ($)) (-15 -2863 ((-656 (-1179)) $)) (-15 -2896 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -1934 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -4311 ((-656 (-1179)) $ (-656 (-1179)))))) -((-3489 (((-112) $ $) NIL)) (-3018 (((-1179) $ (-1179)) 17) (((-1179) $) 16)) (-1768 (((-1179) $ (-1179)) 15)) (-1635 (($ $ (-1179)) NIL)) (-2768 (((-3 (-1179) "failed") $) 11)) (-4245 (((-1179) $) 8)) (-1506 (((-3 (-1179) "failed") $) 12)) (-3936 (((-1179) $) 9)) (-3257 (($ (-400)) NIL) (($ (-400) (-1179)) NIL)) (-2629 (((-400) $) NIL)) (-3699 (((-1179) $) NIL)) (-4013 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3752 (((-112) $) 21)) (-3570 (((-876) $) NIL)) (-3423 (($ $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-1219) (-13 (-375 (-400) (-1179)) (-10 -8 (-15 -3018 ((-1179) $ (-1179))) (-15 -3018 ((-1179) $)) (-15 -4245 ((-1179) $)) (-15 -2768 ((-3 (-1179) "failed") $)) (-15 -1506 ((-3 (-1179) "failed") $)) (-15 -3752 ((-112) $))))) (T -1219)) -((-3018 (*1 *2 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1219)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1219)))) (-4245 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1219)))) (-2768 (*1 *2 *1) (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-1219)))) (-1506 (*1 *2 *1) (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-1219)))) (-3752 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1219))))) -(-13 (-375 (-400) (-1179)) (-10 -8 (-15 -3018 ((-1179) $ (-1179))) (-15 -3018 ((-1179) $)) (-15 -4245 ((-1179) $)) (-15 -2768 ((-3 (-1179) "failed") $)) (-15 -1506 ((-3 (-1179) "failed") $)) (-15 -3752 ((-112) $)))) -((-3308 (((-3 (-576) "failed") |#1|) 19)) (-2640 (((-3 (-576) "failed") |#1|) 14)) (-1323 (((-576) (-1179)) 33))) -(((-1220 |#1|) (-10 -7 (-15 -3308 ((-3 (-576) "failed") |#1|)) (-15 -2640 ((-3 (-576) "failed") |#1|)) (-15 -1323 ((-576) (-1179)))) (-1070)) (T -1220)) -((-1323 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-576)) (-5 *1 (-1220 *4)) (-4 *4 (-1070)))) (-2640 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1220 *3)) (-4 *3 (-1070)))) (-3308 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1220 *3)) (-4 *3 (-1070))))) -(-10 -7 (-15 -3308 ((-3 (-576) "failed") |#1|)) (-15 -2640 ((-3 (-576) "failed") |#1|)) (-15 -1323 ((-576) (-1179)))) -((-2042 (((-1154 (-227))) 9))) -(((-1221) (-10 -7 (-15 -2042 ((-1154 (-227)))))) (T -1221)) -((-2042 (*1 *2) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-1221))))) -(-10 -7 (-15 -2042 ((-1154 (-227))))) -((-1600 (($) 12)) (-2791 (($ $) 36)) (-4071 (($ $) 34)) (-3938 (($ $) 26)) (-2815 (($ $) 18)) (-4388 (($ $) 16)) (-2803 (($ $) 20)) (-3974 (($ $) 31)) (-4083 (($ $) 35)) (-3951 (($ $) 30))) -(((-1222 |#1|) (-10 -8 (-15 -1600 (|#1|)) (-15 -2791 (|#1| |#1|)) (-15 -4071 (|#1| |#1|)) (-15 -2815 (|#1| |#1|)) (-15 -4388 (|#1| |#1|)) (-15 -2803 (|#1| |#1|)) (-15 -4083 (|#1| |#1|)) (-15 -3938 (|#1| |#1|)) (-15 -3974 (|#1| |#1|)) (-15 -3951 (|#1| |#1|))) (-1223)) (T -1222)) -NIL -(-10 -8 (-15 -1600 (|#1|)) (-15 -2791 (|#1| |#1|)) (-15 -4071 (|#1| |#1|)) (-15 -2815 (|#1| |#1|)) (-15 -4388 (|#1| |#1|)) (-15 -2803 (|#1| |#1|)) (-15 -4083 (|#1| |#1|)) (-15 -3938 (|#1| |#1|)) (-15 -3974 (|#1| |#1|)) (-15 -3951 (|#1| |#1|))) -((-4025 (($ $) 26)) (-3901 (($ $) 11)) (-4006 (($ $) 27)) (-3877 (($ $) 10)) (-4050 (($ $) 28)) (-3920 (($ $) 9)) (-1600 (($) 16)) (-3745 (($ $) 19)) (-4104 (($ $) 18)) (-4061 (($ $) 29)) (-3930 (($ $) 8)) (-4037 (($ $) 30)) (-3910 (($ $) 7)) (-4014 (($ $) 31)) (-3889 (($ $) 6)) (-2791 (($ $) 20)) (-3961 (($ $) 32)) (-4071 (($ $) 21)) (-3938 (($ $) 33)) (-2815 (($ $) 22)) (-3983 (($ $) 34)) (-4388 (($ $) 23)) (-3995 (($ $) 35)) (-2803 (($ $) 24)) (-3974 (($ $) 36)) (-4083 (($ $) 25)) (-3951 (($ $) 37)) (** (($ $ $) 17))) +((-3755 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1214 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) (-4127 (*1 *1) (-12 (-4 *1 (-1214 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4300 *3) (|:| -4439 *4)))) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *1 (-1214 *3 *4)))) (-4116 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1214 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121))))) +(-13 (-622 |t#1| |t#2|) (-616 |t#1| |t#2|) (-10 -8 (-15 -3755 (|t#2| $ |t#1| |t#2|)) (-15 -4127 ($)) (-15 -4127 ($ (-656 (-2 (|:| -4300 |t#1|) (|:| -4439 |t#2|))))) (-15 -4116 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -4300 |#1|) (|:| -4439 |#2|))) . T) ((-102) -2759 (|has| |#2| (-1121)) (|has| |#2| (-102)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-102))) ((-625 (-876)) -2759 (|has| |#2| (-1121)) (|has| |#2| (-625 (-876))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-625 (-876)))) ((-152 #0#) . T) ((-626 (-548)) |has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-296 |#1| |#2|) . T) ((-298 |#1| |#2|) . T) ((-319 #0#) -12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121))) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-501 #0#) . T) ((-501 |#2|) . T) ((-616 |#1| |#2|) . T) ((-526 #0# #0#) -12 (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-319 (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)))) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121))) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-622 |#1| |#2|) . T) ((-1121) -2759 (|has| |#2| (-1121)) (|has| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (-1121))) ((-1238) . T)) +((-4362 (((-112)) 29)) (-1456 (((-1293) (-1179)) 31)) (-1493 (((-112)) 41)) (-3687 (((-1293)) 39)) (-2637 (((-1293) (-1179) (-1179)) 30)) (-4008 (((-112)) 42)) (-2597 (((-1293) |#1| |#2|) 53)) (-2373 (((-1293)) 26)) (-3424 (((-3 |#2| "failed") |#1|) 51)) (-3007 (((-1293)) 40))) +(((-1215 |#1| |#2|) (-10 -7 (-15 -2373 ((-1293))) (-15 -2637 ((-1293) (-1179) (-1179))) (-15 -1456 ((-1293) (-1179))) (-15 -3687 ((-1293))) (-15 -3007 ((-1293))) (-15 -4362 ((-112))) (-15 -1493 ((-112))) (-15 -4008 ((-112))) (-15 -3424 ((-3 |#2| "failed") |#1|)) (-15 -2597 ((-1293) |#1| |#2|))) (-1121) (-1121)) (T -1215)) +((-2597 (*1 *2 *3 *4) (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-3424 (*1 *2 *3) (|partial| -12 (-4 *2 (-1121)) (-5 *1 (-1215 *3 *2)) (-4 *3 (-1121)))) (-4008 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-1493 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-4362 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-3007 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-3687 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-1456 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1215 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)))) (-2637 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1215 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)))) (-2373 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121))))) +(-10 -7 (-15 -2373 ((-1293))) (-15 -2637 ((-1293) (-1179) (-1179))) (-15 -1456 ((-1293) (-1179))) (-15 -3687 ((-1293))) (-15 -3007 ((-1293))) (-15 -4362 ((-112))) (-15 -1493 ((-112))) (-15 -4008 ((-112))) (-15 -3424 ((-3 |#2| "failed") |#1|)) (-15 -2597 ((-1293) |#1| |#2|))) +((-1474 (((-1179) (-1179)) 22)) (-3817 (((-52) (-1179)) 25))) +(((-1216) (-10 -7 (-15 -3817 ((-52) (-1179))) (-15 -1474 ((-1179) (-1179))))) (T -1216)) +((-1474 (*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1216)))) (-3817 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-1216))))) +(-10 -7 (-15 -3817 ((-52) (-1179))) (-15 -1474 ((-1179) (-1179)))) +((-3569 (((-1218) |#1|) 11))) +(((-1217 |#1|) (-10 -7 (-15 -3569 ((-1218) |#1|))) (-1121)) (T -1217)) +((-3569 (*1 *2 *3) (-12 (-5 *2 (-1218)) (-5 *1 (-1217 *3)) (-4 *3 (-1121))))) +(-10 -7 (-15 -3569 ((-1218) |#1|))) +((-3488 (((-112) $ $) NIL)) (-2982 (((-656 (-1179)) $) 39)) (-2943 (((-656 (-1179)) $ (-656 (-1179))) 42)) (-3170 (((-656 (-1179)) $ (-656 (-1179))) 41)) (-2995 (((-656 (-1179)) $ (-656 (-1179))) 43)) (-3936 (((-656 (-1179)) $) 38)) (-4140 (($) 28)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-4417 (((-656 (-1179)) $) 40)) (-1977 (((-1293) $ (-576)) 35) (((-1293) $) 36)) (-4171 (($ (-876) (-576)) 33) (($ (-876) (-576) (-876)) NIL)) (-3569 (((-876) $) 49) (($ (-876)) 32)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-1218) (-13 (-1121) (-628 (-876)) (-10 -8 (-15 -4171 ($ (-876) (-576))) (-15 -4171 ($ (-876) (-576) (-876))) (-15 -1977 ((-1293) $ (-576))) (-15 -1977 ((-1293) $)) (-15 -4417 ((-656 (-1179)) $)) (-15 -2982 ((-656 (-1179)) $)) (-15 -4140 ($)) (-15 -3936 ((-656 (-1179)) $)) (-15 -2995 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -2943 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -3170 ((-656 (-1179)) $ (-656 (-1179))))))) (T -1218)) +((-4171 (*1 *1 *2 *3) (-12 (-5 *2 (-876)) (-5 *3 (-576)) (-5 *1 (-1218)))) (-4171 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-876)) (-5 *3 (-576)) (-5 *1 (-1218)))) (-1977 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1218)))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1218)))) (-4417 (*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218)))) (-2982 (*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218)))) (-4140 (*1 *1) (-5 *1 (-1218))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218)))) (-2995 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218)))) (-2943 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218)))) (-3170 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218))))) +(-13 (-1121) (-628 (-876)) (-10 -8 (-15 -4171 ($ (-876) (-576))) (-15 -4171 ($ (-876) (-576) (-876))) (-15 -1977 ((-1293) $ (-576))) (-15 -1977 ((-1293) $)) (-15 -4417 ((-656 (-1179)) $)) (-15 -2982 ((-656 (-1179)) $)) (-15 -4140 ($)) (-15 -3936 ((-656 (-1179)) $)) (-15 -2995 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -2943 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -3170 ((-656 (-1179)) $ (-656 (-1179)))))) +((-3488 (((-112) $ $) NIL)) (-2754 (((-1179) $ (-1179)) 17) (((-1179) $) 16)) (-1923 (((-1179) $ (-1179)) 15)) (-3149 (($ $ (-1179)) NIL)) (-4273 (((-3 (-1179) "failed") $) 11)) (-3786 (((-1179) $) 8)) (-4302 (((-3 (-1179) "failed") $) 12)) (-3917 (((-1179) $) 9)) (-3256 (($ (-400)) NIL) (($ (-400) (-1179)) NIL)) (-2628 (((-400) $) NIL)) (-2046 (((-1179) $) NIL)) (-3311 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2590 (((-112) $) 21)) (-3569 (((-876) $) NIL)) (-2516 (($ $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-1219) (-13 (-375 (-400) (-1179)) (-10 -8 (-15 -2754 ((-1179) $ (-1179))) (-15 -2754 ((-1179) $)) (-15 -3786 ((-1179) $)) (-15 -4273 ((-3 (-1179) "failed") $)) (-15 -4302 ((-3 (-1179) "failed") $)) (-15 -2590 ((-112) $))))) (T -1219)) +((-2754 (*1 *2 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1219)))) (-2754 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1219)))) (-3786 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1219)))) (-4273 (*1 *2 *1) (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-1219)))) (-4302 (*1 *2 *1) (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-1219)))) (-2590 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1219))))) +(-13 (-375 (-400) (-1179)) (-10 -8 (-15 -2754 ((-1179) $ (-1179))) (-15 -2754 ((-1179) $)) (-15 -3786 ((-1179) $)) (-15 -4273 ((-3 (-1179) "failed") $)) (-15 -4302 ((-3 (-1179) "failed") $)) (-15 -2590 ((-112) $)))) +((-3906 (((-3 (-576) "failed") |#1|) 19)) (-2415 (((-3 (-576) "failed") |#1|) 14)) (-2820 (((-576) (-1179)) 33))) +(((-1220 |#1|) (-10 -7 (-15 -3906 ((-3 (-576) "failed") |#1|)) (-15 -2415 ((-3 (-576) "failed") |#1|)) (-15 -2820 ((-576) (-1179)))) (-1070)) (T -1220)) +((-2820 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-576)) (-5 *1 (-1220 *4)) (-4 *4 (-1070)))) (-2415 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1220 *3)) (-4 *3 (-1070)))) (-3906 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1220 *3)) (-4 *3 (-1070))))) +(-10 -7 (-15 -3906 ((-3 (-576) "failed") |#1|)) (-15 -2415 ((-3 (-576) "failed") |#1|)) (-15 -2820 ((-576) (-1179)))) +((-1471 (((-1154 (-227))) 9))) +(((-1221) (-10 -7 (-15 -1471 ((-1154 (-227)))))) (T -1221)) +((-1471 (*1 *2) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-1221))))) +(-10 -7 (-15 -1471 ((-1154 (-227))))) +((-1600 (($) 12)) (-2790 (($ $) 36)) (-4070 (($ $) 34)) (-3937 (($ $) 26)) (-2814 (($ $) 18)) (-4387 (($ $) 16)) (-2802 (($ $) 20)) (-3973 (($ $) 31)) (-4082 (($ $) 35)) (-3950 (($ $) 30))) +(((-1222 |#1|) (-10 -8 (-15 -1600 (|#1|)) (-15 -2790 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -2814 (|#1| |#1|)) (-15 -4387 (|#1| |#1|)) (-15 -2802 (|#1| |#1|)) (-15 -4082 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3973 (|#1| |#1|)) (-15 -3950 (|#1| |#1|))) (-1223)) (T -1222)) +NIL +(-10 -8 (-15 -1600 (|#1|)) (-15 -2790 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -2814 (|#1| |#1|)) (-15 -4387 (|#1| |#1|)) (-15 -2802 (|#1| |#1|)) (-15 -4082 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3973 (|#1| |#1|)) (-15 -3950 (|#1| |#1|))) +((-4024 (($ $) 26)) (-3900 (($ $) 11)) (-4005 (($ $) 27)) (-3876 (($ $) 10)) (-4049 (($ $) 28)) (-3919 (($ $) 9)) (-1600 (($) 16)) (-3744 (($ $) 19)) (-4103 (($ $) 18)) (-4060 (($ $) 29)) (-3929 (($ $) 8)) (-4036 (($ $) 30)) (-3909 (($ $) 7)) (-4013 (($ $) 31)) (-3888 (($ $) 6)) (-2790 (($ $) 20)) (-3960 (($ $) 32)) (-4070 (($ $) 21)) (-3937 (($ $) 33)) (-2814 (($ $) 22)) (-3982 (($ $) 34)) (-4387 (($ $) 23)) (-3994 (($ $) 35)) (-2802 (($ $) 24)) (-3973 (($ $) 36)) (-4082 (($ $) 25)) (-3950 (($ $) 37)) (** (($ $ $) 17))) (((-1223) (-141)) (T -1223)) ((-1600 (*1 *1) (-4 *1 (-1223)))) (-13 (-1226) (-95) (-505) (-35) (-294) (-10 -8 (-15 -1600 ($)))) (((-35) . T) ((-95) . T) ((-294) . T) ((-505) . T) ((-1226) . T)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3106 ((|#1| $) 19)) (-3256 (($ |#1| (-656 $)) 28) (($ (-656 |#1|)) 35) (($ |#1|) 30)) (-1808 (((-112) $ (-783)) 72)) (-2647 ((|#1| $ |#1|) 14 (|has| $ (-6 -4466)))) (-3756 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4466)))) (-1894 (($ $ (-656 $)) 13 (|has| $ (-6 -4466)))) (-3886 (($) NIL T CONST)) (-3966 (((-656 |#1|) $) 77 (|has| $ (-6 -4465)))) (-2387 (((-656 $) $) 64)) (-3295 (((-112) $ $) 50 (|has| |#1| (-1121)))) (-3870 (((-112) $ (-783)) 62)) (-2014 (((-656 |#1|) $) 78 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-4323 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 27)) (-1330 (((-112) $ (-783)) 60)) (-2353 (((-656 |#1|) $) 55)) (-3443 (((-112) $) 53)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4320 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 107)) (-3973 (((-112) $) 9)) (-4225 (($) 10)) (-2797 ((|#1| $ "value") NIL)) (-2789 (((-576) $ $) 48)) (-3521 (((-656 $) $) 89)) (-1816 (((-112) $ $) 110)) (-3320 (((-656 $) $) 105)) (-4190 (($ $) 106)) (-3617 (((-112) $) 84)) (-1460 (((-783) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4465))) (((-783) |#1| $) 17 (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-1870 (($ $) 88)) (-3570 (((-876) $) 91 (|has| |#1| (-625 (-876))))) (-2902 (((-656 $) $) 12)) (-2621 (((-112) $ $) 39 (|has| |#1| (-1121)))) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 37 (|has| |#1| (-102)))) (-3503 (((-783) $) 58 (|has| $ (-6 -4465))))) -(((-1224 |#1|) (-13 (-1031 |#1|) (-10 -8 (-6 -4465) (-6 -4466) (-15 -3256 ($ |#1| (-656 $))) (-15 -3256 ($ (-656 |#1|))) (-15 -3256 ($ |#1|)) (-15 -3617 ((-112) $)) (-15 -4190 ($ $)) (-15 -3320 ((-656 $) $)) (-15 -1816 ((-112) $ $)) (-15 -3521 ((-656 $) $)))) (-1121)) (T -1224)) -((-3617 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1121)))) (-3256 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-1224 *2))) (-5 *1 (-1224 *2)) (-4 *2 (-1121)))) (-3256 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-1224 *3)))) (-3256 (*1 *1 *2) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1121)))) (-4190 (*1 *1 *1) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1121)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-656 (-1224 *3))) (-5 *1 (-1224 *3)) (-4 *3 (-1121)))) (-1816 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1121)))) (-3521 (*1 *2 *1) (-12 (-5 *2 (-656 (-1224 *3))) (-5 *1 (-1224 *3)) (-4 *3 (-1121))))) -(-13 (-1031 |#1|) (-10 -8 (-6 -4465) (-6 -4466) (-15 -3256 ($ |#1| (-656 $))) (-15 -3256 ($ (-656 |#1|))) (-15 -3256 ($ |#1|)) (-15 -3617 ((-112) $)) (-15 -4190 ($ $)) (-15 -3320 ((-656 $) $)) (-15 -1816 ((-112) $ $)) (-15 -3521 ((-656 $) $)))) -((-3901 (($ $) 15)) (-3920 (($ $) 12)) (-3930 (($ $) 10)) (-3910 (($ $) 17))) -(((-1225 |#1|) (-10 -8 (-15 -3910 (|#1| |#1|)) (-15 -3930 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3901 (|#1| |#1|))) (-1226)) (T -1225)) -NIL -(-10 -8 (-15 -3910 (|#1| |#1|)) (-15 -3930 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3901 (|#1| |#1|))) -((-3901 (($ $) 11)) (-3877 (($ $) 10)) (-3920 (($ $) 9)) (-3930 (($ $) 8)) (-3910 (($ $) 7)) (-3889 (($ $) 6))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3104 ((|#1| $) 19)) (-3255 (($ |#1| (-656 $)) 28) (($ (-656 |#1|)) 35) (($ |#1|) 30)) (-4264 (((-112) $ (-783)) 72)) (-2482 ((|#1| $ |#1|) 14 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465)))) (-3829 (($ $ (-656 $)) 13 (|has| $ (-6 -4465)))) (-3404 (($) NIL T CONST)) (-3965 (((-656 |#1|) $) 77 (|has| $ (-6 -4464)))) (-1736 (((-656 $) $) 64)) (-3768 (((-112) $ $) 50 (|has| |#1| (-1121)))) (-1368 (((-112) $ (-783)) 62)) (-2425 (((-656 |#1|) $) 78 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4326 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 27)) (-2883 (((-112) $ (-783)) 60)) (-2353 (((-656 |#1|) $) 55)) (-1508 (((-112) $) 53)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3252 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 107)) (-2940 (((-112) $) 9)) (-3579 (($) 10)) (-2796 ((|#1| $ "value") NIL)) (-1335 (((-576) $ $) 48)) (-4138 (((-656 $) $) 89)) (-4349 (((-112) $ $) 110)) (-2696 (((-656 $) $) 105)) (-4442 (($ $) 106)) (-3806 (((-112) $) 84)) (-1460 (((-783) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4464))) (((-783) |#1| $) 17 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1870 (($ $) 88)) (-3569 (((-876) $) 91 (|has| |#1| (-625 (-876))))) (-3059 (((-656 $) $) 12)) (-2247 (((-112) $ $) 39 (|has| |#1| (-1121)))) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 37 (|has| |#1| (-102)))) (-3502 (((-783) $) 58 (|has| $ (-6 -4464))))) +(((-1224 |#1|) (-13 (-1031 |#1|) (-10 -8 (-6 -4464) (-6 -4465) (-15 -3255 ($ |#1| (-656 $))) (-15 -3255 ($ (-656 |#1|))) (-15 -3255 ($ |#1|)) (-15 -3806 ((-112) $)) (-15 -4442 ($ $)) (-15 -2696 ((-656 $) $)) (-15 -4349 ((-112) $ $)) (-15 -4138 ((-656 $) $)))) (-1121)) (T -1224)) +((-3806 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1121)))) (-3255 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-1224 *2))) (-5 *1 (-1224 *2)) (-4 *2 (-1121)))) (-3255 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-1224 *3)))) (-3255 (*1 *1 *2) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1121)))) (-4442 (*1 *1 *1) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1121)))) (-2696 (*1 *2 *1) (-12 (-5 *2 (-656 (-1224 *3))) (-5 *1 (-1224 *3)) (-4 *3 (-1121)))) (-4349 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1121)))) (-4138 (*1 *2 *1) (-12 (-5 *2 (-656 (-1224 *3))) (-5 *1 (-1224 *3)) (-4 *3 (-1121))))) +(-13 (-1031 |#1|) (-10 -8 (-6 -4464) (-6 -4465) (-15 -3255 ($ |#1| (-656 $))) (-15 -3255 ($ (-656 |#1|))) (-15 -3255 ($ |#1|)) (-15 -3806 ((-112) $)) (-15 -4442 ($ $)) (-15 -2696 ((-656 $) $)) (-15 -4349 ((-112) $ $)) (-15 -4138 ((-656 $) $)))) +((-3900 (($ $) 15)) (-3919 (($ $) 12)) (-3929 (($ $) 10)) (-3909 (($ $) 17))) +(((-1225 |#1|) (-10 -8 (-15 -3909 (|#1| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3900 (|#1| |#1|))) (-1226)) (T -1225)) +NIL +(-10 -8 (-15 -3909 (|#1| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3900 (|#1| |#1|))) +((-3900 (($ $) 11)) (-3876 (($ $) 10)) (-3919 (($ $) 9)) (-3929 (($ $) 8)) (-3909 (($ $) 7)) (-3888 (($ $) 6))) (((-1226) (-141)) (T -1226)) -((-3901 (*1 *1 *1) (-4 *1 (-1226))) (-3877 (*1 *1 *1) (-4 *1 (-1226))) (-3920 (*1 *1 *1) (-4 *1 (-1226))) (-3930 (*1 *1 *1) (-4 *1 (-1226))) (-3910 (*1 *1 *1) (-4 *1 (-1226))) (-3889 (*1 *1 *1) (-4 *1 (-1226)))) -(-13 (-10 -8 (-15 -3889 ($ $)) (-15 -3910 ($ $)) (-15 -3930 ($ $)) (-15 -3920 ($ $)) (-15 -3877 ($ $)) (-15 -3901 ($ $)))) -((-3876 ((|#2| |#2|) 98)) (-3159 (((-112) |#2|) 29)) (-1850 ((|#2| |#2|) 33)) (-1860 ((|#2| |#2|) 35)) (-2475 ((|#2| |#2| (-1197)) 92) ((|#2| |#2|) 93)) (-1986 (((-171 |#2|) |#2|) 31)) (-1530 ((|#2| |#2| (-1197)) 94) ((|#2| |#2|) 95))) -(((-1227 |#1| |#2|) (-10 -7 (-15 -2475 (|#2| |#2|)) (-15 -2475 (|#2| |#2| (-1197))) (-15 -1530 (|#2| |#2|)) (-15 -1530 (|#2| |#2| (-1197))) (-15 -3876 (|#2| |#2|)) (-15 -1850 (|#2| |#2|)) (-15 -1860 (|#2| |#2|)) (-15 -3159 ((-112) |#2|)) (-15 -1986 ((-171 |#2|) |#2|))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -1227)) -((-1986 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-171 *3)) (-5 *1 (-1227 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) (-3159 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-1227 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) (-1860 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) (-1850 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) (-3876 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) (-1530 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) (-2475 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) (-2475 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3)))))) -(-10 -7 (-15 -2475 (|#2| |#2|)) (-15 -2475 (|#2| |#2| (-1197))) (-15 -1530 (|#2| |#2|)) (-15 -1530 (|#2| |#2| (-1197))) (-15 -3876 (|#2| |#2|)) (-15 -1850 (|#2| |#2|)) (-15 -1860 (|#2| |#2|)) (-15 -3159 ((-112) |#2|)) (-15 -1986 ((-171 |#2|) |#2|))) -((-4221 ((|#4| |#4| |#1|) 31)) (-3007 ((|#4| |#4| |#1|) 32))) -(((-1228 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4221 (|#4| |#4| |#1|)) (-15 -3007 (|#4| |#4| |#1|))) (-568) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -1228)) -((-3007 (*1 *2 *2 *3) (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1228 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-4221 (*1 *2 *2 *3) (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1228 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(-10 -7 (-15 -4221 (|#4| |#4| |#1|)) (-15 -3007 (|#4| |#4| |#1|))) -((-3842 ((|#2| |#2|) 148)) (-1371 ((|#2| |#2|) 145)) (-4059 ((|#2| |#2|) 136)) (-3572 ((|#2| |#2|) 133)) (-2237 ((|#2| |#2|) 141)) (-3219 ((|#2| |#2|) 129)) (-3985 ((|#2| |#2|) 44)) (-2299 ((|#2| |#2|) 105)) (-4206 ((|#2| |#2|) 88)) (-3478 ((|#2| |#2|) 143)) (-3020 ((|#2| |#2|) 131)) (-3070 ((|#2| |#2|) 153)) (-2719 ((|#2| |#2|) 151)) (-3450 ((|#2| |#2|) 152)) (-1772 ((|#2| |#2|) 150)) (-4317 ((|#2| |#2|) 163)) (-2851 ((|#2| |#2|) 30 (-12 (|has| |#2| (-626 (-907 |#1|))) (|has| |#2| (-901 |#1|)) (|has| |#1| (-626 (-907 |#1|))) (|has| |#1| (-901 |#1|))))) (-1932 ((|#2| |#2|) 89)) (-3176 ((|#2| |#2|) 154)) (-1942 ((|#2| |#2|) 155)) (-3598 ((|#2| |#2|) 142)) (-2025 ((|#2| |#2|) 130)) (-3927 ((|#2| |#2|) 149)) (-4288 ((|#2| |#2|) 147)) (-1674 ((|#2| |#2|) 137)) (-1713 ((|#2| |#2|) 135)) (-3437 ((|#2| |#2|) 139)) (-3190 ((|#2| |#2|) 127))) -(((-1229 |#1| |#2|) (-10 -7 (-15 -1942 (|#2| |#2|)) (-15 -4206 (|#2| |#2|)) (-15 -4317 (|#2| |#2|)) (-15 -2299 (|#2| |#2|)) (-15 -3985 (|#2| |#2|)) (-15 -1932 (|#2| |#2|)) (-15 -3176 (|#2| |#2|)) (-15 -3190 (|#2| |#2|)) (-15 -3437 (|#2| |#2|)) (-15 -1674 (|#2| |#2|)) (-15 -3927 (|#2| |#2|)) (-15 -2025 (|#2| |#2|)) (-15 -3598 (|#2| |#2|)) (-15 -3020 (|#2| |#2|)) (-15 -3478 (|#2| |#2|)) (-15 -3219 (|#2| |#2|)) (-15 -2237 (|#2| |#2|)) (-15 -4059 (|#2| |#2|)) (-15 -3842 (|#2| |#2|)) (-15 -3572 (|#2| |#2|)) (-15 -1371 (|#2| |#2|)) (-15 -1713 (|#2| |#2|)) (-15 -4288 (|#2| |#2|)) (-15 -1772 (|#2| |#2|)) (-15 -2719 (|#2| |#2|)) (-15 -3450 (|#2| |#2|)) (-15 -3070 (|#2| |#2|)) (IF (|has| |#1| (-901 |#1|)) (IF (|has| |#1| (-626 (-907 |#1|))) (IF (|has| |#2| (-626 (-907 |#1|))) (IF (|has| |#2| (-901 |#1|)) (-15 -2851 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-464) (-13 (-442 |#1|) (-1223))) (T -1229)) -((-2851 (*1 *2 *2) (-12 (-4 *3 (-626 (-907 *3))) (-4 *3 (-901 *3)) (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-626 (-907 *3))) (-4 *2 (-901 *3)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3070 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3450 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2719 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-1772 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-4288 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-1713 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-1371 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3572 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3842 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-4059 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2237 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3219 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3478 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3020 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3598 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2025 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3927 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-1674 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3437 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3190 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3176 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-1932 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3985 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2299 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-4317 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-4206 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-1942 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223)))))) -(-10 -7 (-15 -1942 (|#2| |#2|)) (-15 -4206 (|#2| |#2|)) (-15 -4317 (|#2| |#2|)) (-15 -2299 (|#2| |#2|)) (-15 -3985 (|#2| |#2|)) (-15 -1932 (|#2| |#2|)) (-15 -3176 (|#2| |#2|)) (-15 -3190 (|#2| |#2|)) (-15 -3437 (|#2| |#2|)) (-15 -1674 (|#2| |#2|)) (-15 -3927 (|#2| |#2|)) (-15 -2025 (|#2| |#2|)) (-15 -3598 (|#2| |#2|)) (-15 -3020 (|#2| |#2|)) (-15 -3478 (|#2| |#2|)) (-15 -3219 (|#2| |#2|)) (-15 -2237 (|#2| |#2|)) (-15 -4059 (|#2| |#2|)) (-15 -3842 (|#2| |#2|)) (-15 -3572 (|#2| |#2|)) (-15 -1371 (|#2| |#2|)) (-15 -1713 (|#2| |#2|)) (-15 -4288 (|#2| |#2|)) (-15 -1772 (|#2| |#2|)) (-15 -2719 (|#2| |#2|)) (-15 -3450 (|#2| |#2|)) (-15 -3070 (|#2| |#2|)) (IF (|has| |#1| (-901 |#1|)) (IF (|has| |#1| (-626 (-907 |#1|))) (IF (|has| |#2| (-626 (-907 |#1|))) (IF (|has| |#2| (-901 |#1|)) (-15 -2851 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-1613 (((-112) |#5| $) 68) (((-112) $) 110)) (-1377 ((|#5| |#5| $) 83)) (-1974 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-3388 (((-656 |#5|) (-656 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-1572 (((-3 $ "failed") (-656 |#5|)) 135)) (-3593 (((-3 $ "failed") $) 120)) (-3994 ((|#5| |#5| $) 102)) (-3439 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-2737 ((|#5| |#5| $) 106)) (-3686 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-4405 (((-2 (|:| -1958 (-656 |#5|)) (|:| -3257 (-656 |#5|))) $) 63)) (-3186 (((-112) |#5| $) 66) (((-112) $) 111)) (-2620 ((|#4| $) 116)) (-3969 (((-3 |#5| "failed") $) 118)) (-4275 (((-656 |#5|) $) 55)) (-1603 (((-112) |#5| $) 75) (((-112) $) 115)) (-3909 ((|#5| |#5| $) 89)) (-1438 (((-112) $ $) 29)) (-3579 (((-112) |#5| $) 71) (((-112) $) 113)) (-1522 ((|#5| |#5| $) 86)) (-3581 (((-3 |#5| "failed") $) 117)) (-1749 (($ $ |#5|) 136)) (-3634 (((-783) $) 60)) (-3582 (($ (-656 |#5|)) 133)) (-3118 (($ $ |#4|) 131)) (-2637 (($ $ |#4|) 129)) (-1584 (($ $) 128)) (-3570 (((-876) $) NIL) (((-656 |#5|) $) 121)) (-3891 (((-783) $) 140)) (-3765 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-2833 (((-112) $ (-1 (-112) |#5| (-656 |#5|))) 108)) (-1583 (((-656 |#4|) $) 123)) (-3419 (((-112) |#4| $) 126)) (-2925 (((-112) $ $) 20))) -(((-1230 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3891 ((-783) |#1|)) (-15 -1749 (|#1| |#1| |#5|)) (-15 -1974 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3419 ((-112) |#4| |#1|)) (-15 -1583 ((-656 |#4|) |#1|)) (-15 -3593 ((-3 |#1| "failed") |#1|)) (-15 -3969 ((-3 |#5| "failed") |#1|)) (-15 -3581 ((-3 |#5| "failed") |#1|)) (-15 -2737 (|#5| |#5| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -3994 (|#5| |#5| |#1|)) (-15 -3909 (|#5| |#5| |#1|)) (-15 -1522 (|#5| |#5| |#1|)) (-15 -1377 (|#5| |#5| |#1|)) (-15 -3388 ((-656 |#5|) (-656 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3686 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1603 ((-112) |#1|)) (-15 -3579 ((-112) |#1|)) (-15 -1613 ((-112) |#1|)) (-15 -2833 ((-112) |#1| (-1 (-112) |#5| (-656 |#5|)))) (-15 -1603 ((-112) |#5| |#1|)) (-15 -3579 ((-112) |#5| |#1|)) (-15 -1613 ((-112) |#5| |#1|)) (-15 -3439 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3186 ((-112) |#1|)) (-15 -3186 ((-112) |#5| |#1|)) (-15 -4405 ((-2 (|:| -1958 (-656 |#5|)) (|:| -3257 (-656 |#5|))) |#1|)) (-15 -3634 ((-783) |#1|)) (-15 -4275 ((-656 |#5|) |#1|)) (-15 -3765 ((-3 (-2 (|:| |bas| |#1|) (|:| -1419 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3765 ((-3 (-2 (|:| |bas| |#1|) (|:| -1419 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1438 ((-112) |#1| |#1|)) (-15 -3118 (|#1| |#1| |#4|)) (-15 -2637 (|#1| |#1| |#4|)) (-15 -2620 (|#4| |#1|)) (-15 -1572 ((-3 |#1| "failed") (-656 |#5|))) (-15 -3570 ((-656 |#5|) |#1|)) (-15 -3582 (|#1| (-656 |#5|))) (-15 -3686 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3686 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1974 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3686 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3570 ((-876) |#1|)) (-15 -2925 ((-112) |#1| |#1|))) (-1231 |#2| |#3| |#4| |#5|) (-568) (-805) (-861) (-1086 |#2| |#3| |#4|)) (T -1230)) -NIL -(-10 -8 (-15 -3891 ((-783) |#1|)) (-15 -1749 (|#1| |#1| |#5|)) (-15 -1974 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3419 ((-112) |#4| |#1|)) (-15 -1583 ((-656 |#4|) |#1|)) (-15 -3593 ((-3 |#1| "failed") |#1|)) (-15 -3969 ((-3 |#5| "failed") |#1|)) (-15 -3581 ((-3 |#5| "failed") |#1|)) (-15 -2737 (|#5| |#5| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -3994 (|#5| |#5| |#1|)) (-15 -3909 (|#5| |#5| |#1|)) (-15 -1522 (|#5| |#5| |#1|)) (-15 -1377 (|#5| |#5| |#1|)) (-15 -3388 ((-656 |#5|) (-656 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3686 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1603 ((-112) |#1|)) (-15 -3579 ((-112) |#1|)) (-15 -1613 ((-112) |#1|)) (-15 -2833 ((-112) |#1| (-1 (-112) |#5| (-656 |#5|)))) (-15 -1603 ((-112) |#5| |#1|)) (-15 -3579 ((-112) |#5| |#1|)) (-15 -1613 ((-112) |#5| |#1|)) (-15 -3439 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3186 ((-112) |#1|)) (-15 -3186 ((-112) |#5| |#1|)) (-15 -4405 ((-2 (|:| -1958 (-656 |#5|)) (|:| -3257 (-656 |#5|))) |#1|)) (-15 -3634 ((-783) |#1|)) (-15 -4275 ((-656 |#5|) |#1|)) (-15 -3765 ((-3 (-2 (|:| |bas| |#1|) (|:| -1419 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3765 ((-3 (-2 (|:| |bas| |#1|) (|:| -1419 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1438 ((-112) |#1| |#1|)) (-15 -3118 (|#1| |#1| |#4|)) (-15 -2637 (|#1| |#1| |#4|)) (-15 -2620 (|#4| |#1|)) (-15 -1572 ((-3 |#1| "failed") (-656 |#5|))) (-15 -3570 ((-656 |#5|) |#1|)) (-15 -3582 (|#1| (-656 |#5|))) (-15 -3686 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3686 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1974 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3686 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3570 ((-876) |#1|)) (-15 -2925 ((-112) |#1| |#1|))) -((-3489 (((-112) $ $) 7)) (-1788 (((-656 (-2 (|:| -1958 $) (|:| -3257 (-656 |#4|)))) (-656 |#4|)) 86)) (-3603 (((-656 $) (-656 |#4|)) 87)) (-1969 (((-656 |#3|) $) 34)) (-1807 (((-112) $) 27)) (-4026 (((-112) $) 18 (|has| |#1| (-568)))) (-1613 (((-112) |#4| $) 102) (((-112) $) 98)) (-1377 ((|#4| |#4| $) 93)) (-1795 (((-2 (|:| |under| $) (|:| -2443 $) (|:| |upper| $)) $ |#3|) 28)) (-1808 (((-112) $ (-783)) 45)) (-1974 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4465))) (((-3 |#4| "failed") $ |#3|) 80)) (-3886 (($) 46 T CONST)) (-3713 (((-112) $) 23 (|has| |#1| (-568)))) (-2813 (((-112) $ $) 25 (|has| |#1| (-568)))) (-3812 (((-112) $ $) 24 (|has| |#1| (-568)))) (-1884 (((-112) $) 26 (|has| |#1| (-568)))) (-3388 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2311 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-4376 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) 37)) (-2860 (($ (-656 |#4|)) 36)) (-3593 (((-3 $ "failed") $) 83)) (-3994 ((|#4| |#4| $) 90)) (-1415 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465))))) (-3946 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4465)))) (-3624 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3439 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2737 ((|#4| |#4| $) 88)) (-3686 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4465))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4465))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4405 (((-2 (|:| -1958 (-656 |#4|)) (|:| -3257 (-656 |#4|))) $) 106)) (-3966 (((-656 |#4|) $) 53 (|has| $ (-6 -4465)))) (-3186 (((-112) |#4| $) 105) (((-112) $) 104)) (-2620 ((|#3| $) 35)) (-3870 (((-112) $ (-783)) 44)) (-2014 (((-656 |#4|) $) 54 (|has| $ (-6 -4465)))) (-1612 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465))))) (-4323 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#4| |#4|) $) 48)) (-2234 (((-656 |#3|) $) 33)) (-2106 (((-112) |#3| $) 32)) (-1330 (((-112) $ (-783)) 43)) (-3699 (((-1179) $) 10)) (-3969 (((-3 |#4| "failed") $) 84)) (-4275 (((-656 |#4|) $) 108)) (-1603 (((-112) |#4| $) 100) (((-112) $) 96)) (-3909 ((|#4| |#4| $) 91)) (-1438 (((-112) $ $) 111)) (-2280 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3579 (((-112) |#4| $) 101) (((-112) $) 97)) (-1522 ((|#4| |#4| $) 92)) (-1450 (((-1141) $) 11)) (-3581 (((-3 |#4| "failed") $) 85)) (-1541 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3384 (((-3 $ "failed") $ |#4|) 79)) (-1749 (($ $ |#4|) 78)) (-4320 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-4040 (((-112) $ $) 39)) (-3973 (((-112) $) 42)) (-4225 (($) 41)) (-3634 (((-783) $) 107)) (-1460 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4465)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4465)))) (-1870 (($ $) 40)) (-4172 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3582 (($ (-656 |#4|)) 61)) (-3118 (($ $ |#3|) 29)) (-2637 (($ $ |#3|) 31)) (-1584 (($ $) 89)) (-3317 (($ $ |#3|) 30)) (-3570 (((-876) $) 12) (((-656 |#4|) $) 38)) (-3891 (((-783) $) 77 (|has| |#3| (-379)))) (-4055 (((-112) $ $) 6)) (-3765 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2833 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-3321 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4465)))) (-1583 (((-656 |#3|) $) 82)) (-3419 (((-112) |#3| $) 81)) (-2925 (((-112) $ $) 8)) (-3503 (((-783) $) 47 (|has| $ (-6 -4465))))) +((-3900 (*1 *1 *1) (-4 *1 (-1226))) (-3876 (*1 *1 *1) (-4 *1 (-1226))) (-3919 (*1 *1 *1) (-4 *1 (-1226))) (-3929 (*1 *1 *1) (-4 *1 (-1226))) (-3909 (*1 *1 *1) (-4 *1 (-1226))) (-3888 (*1 *1 *1) (-4 *1 (-1226)))) +(-13 (-10 -8 (-15 -3888 ($ $)) (-15 -3909 ($ $)) (-15 -3929 ($ $)) (-15 -3919 ($ $)) (-15 -3876 ($ $)) (-15 -3900 ($ $)))) +((-1426 ((|#2| |#2|) 98)) (-1659 (((-112) |#2|) 29)) (-1850 ((|#2| |#2|) 33)) (-1860 ((|#2| |#2|) 35)) (-1421 ((|#2| |#2| (-1197)) 92) ((|#2| |#2|) 93)) (-2141 (((-171 |#2|) |#2|) 31)) (-3319 ((|#2| |#2| (-1197)) 94) ((|#2| |#2|) 95))) +(((-1227 |#1| |#2|) (-10 -7 (-15 -1421 (|#2| |#2|)) (-15 -1421 (|#2| |#2| (-1197))) (-15 -3319 (|#2| |#2|)) (-15 -3319 (|#2| |#2| (-1197))) (-15 -1426 (|#2| |#2|)) (-15 -1850 (|#2| |#2|)) (-15 -1860 (|#2| |#2|)) (-15 -1659 ((-112) |#2|)) (-15 -2141 ((-171 |#2|) |#2|))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -1227)) +((-2141 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-171 *3)) (-5 *1 (-1227 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) (-1659 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-1227 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) (-1860 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) (-1850 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) (-1426 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) (-3319 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) (-3319 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) (-1421 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) (-1421 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3)))))) +(-10 -7 (-15 -1421 (|#2| |#2|)) (-15 -1421 (|#2| |#2| (-1197))) (-15 -3319 (|#2| |#2|)) (-15 -3319 (|#2| |#2| (-1197))) (-15 -1426 (|#2| |#2|)) (-15 -1850 (|#2| |#2|)) (-15 -1860 (|#2| |#2|)) (-15 -1659 ((-112) |#2|)) (-15 -2141 ((-171 |#2|) |#2|))) +((-3532 ((|#4| |#4| |#1|) 31)) (-2638 ((|#4| |#4| |#1|) 32))) +(((-1228 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3532 (|#4| |#4| |#1|)) (-15 -2638 (|#4| |#4| |#1|))) (-568) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -1228)) +((-2638 (*1 *2 *2 *3) (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1228 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3532 (*1 *2 *2 *3) (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1228 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) +(-10 -7 (-15 -3532 (|#4| |#4| |#1|)) (-15 -2638 (|#4| |#4| |#1|))) +((-4253 ((|#2| |#2|) 148)) (-3766 ((|#2| |#2|) 145)) (-2443 ((|#2| |#2|) 136)) (-3347 ((|#2| |#2|) 133)) (-2697 ((|#2| |#2|) 141)) (-4232 ((|#2| |#2|) 129)) (-3060 ((|#2| |#2|) 44)) (-2112 ((|#2| |#2|) 105)) (-1469 ((|#2| |#2|) 88)) (-1799 ((|#2| |#2|) 143)) (-2780 ((|#2| |#2|) 131)) (-2003 ((|#2| |#2|) 153)) (-1890 ((|#2| |#2|) 151)) (-1551 ((|#2| |#2|) 152)) (-3938 ((|#2| |#2|) 150)) (-3224 ((|#2| |#2|) 163)) (-3839 ((|#2| |#2|) 30 (-12 (|has| |#2| (-626 (-907 |#1|))) (|has| |#2| (-901 |#1|)) (|has| |#1| (-626 (-907 |#1|))) (|has| |#1| (-901 |#1|))))) (-2918 ((|#2| |#2|) 89)) (-1812 ((|#2| |#2|) 154)) (-1942 ((|#2| |#2|) 155)) (-3613 ((|#2| |#2|) 142)) (-2502 ((|#2| |#2|) 130)) (-3825 ((|#2| |#2|) 149)) (-2935 ((|#2| |#2|) 147)) (-2206 ((|#2| |#2|) 137)) (-1418 ((|#2| |#2|) 135)) (-1468 ((|#2| |#2|) 139)) (-1961 ((|#2| |#2|) 127))) +(((-1229 |#1| |#2|) (-10 -7 (-15 -1942 (|#2| |#2|)) (-15 -1469 (|#2| |#2|)) (-15 -3224 (|#2| |#2|)) (-15 -2112 (|#2| |#2|)) (-15 -3060 (|#2| |#2|)) (-15 -2918 (|#2| |#2|)) (-15 -1812 (|#2| |#2|)) (-15 -1961 (|#2| |#2|)) (-15 -1468 (|#2| |#2|)) (-15 -2206 (|#2| |#2|)) (-15 -3825 (|#2| |#2|)) (-15 -2502 (|#2| |#2|)) (-15 -3613 (|#2| |#2|)) (-15 -2780 (|#2| |#2|)) (-15 -1799 (|#2| |#2|)) (-15 -4232 (|#2| |#2|)) (-15 -2697 (|#2| |#2|)) (-15 -2443 (|#2| |#2|)) (-15 -4253 (|#2| |#2|)) (-15 -3347 (|#2| |#2|)) (-15 -3766 (|#2| |#2|)) (-15 -1418 (|#2| |#2|)) (-15 -2935 (|#2| |#2|)) (-15 -3938 (|#2| |#2|)) (-15 -1890 (|#2| |#2|)) (-15 -1551 (|#2| |#2|)) (-15 -2003 (|#2| |#2|)) (IF (|has| |#1| (-901 |#1|)) (IF (|has| |#1| (-626 (-907 |#1|))) (IF (|has| |#2| (-626 (-907 |#1|))) (IF (|has| |#2| (-901 |#1|)) (-15 -3839 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-464) (-13 (-442 |#1|) (-1223))) (T -1229)) +((-3839 (*1 *2 *2) (-12 (-4 *3 (-626 (-907 *3))) (-4 *3 (-901 *3)) (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-626 (-907 *3))) (-4 *2 (-901 *3)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2003 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-1551 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-1890 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3938 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2935 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-1418 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3766 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3347 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-4253 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2443 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2697 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-4232 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-1799 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2780 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3613 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2502 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3825 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2206 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-1468 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-1961 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-1812 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2918 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3060 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2112 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3224 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-1469 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-1942 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223)))))) +(-10 -7 (-15 -1942 (|#2| |#2|)) (-15 -1469 (|#2| |#2|)) (-15 -3224 (|#2| |#2|)) (-15 -2112 (|#2| |#2|)) (-15 -3060 (|#2| |#2|)) (-15 -2918 (|#2| |#2|)) (-15 -1812 (|#2| |#2|)) (-15 -1961 (|#2| |#2|)) (-15 -1468 (|#2| |#2|)) (-15 -2206 (|#2| |#2|)) (-15 -3825 (|#2| |#2|)) (-15 -2502 (|#2| |#2|)) (-15 -3613 (|#2| |#2|)) (-15 -2780 (|#2| |#2|)) (-15 -1799 (|#2| |#2|)) (-15 -4232 (|#2| |#2|)) (-15 -2697 (|#2| |#2|)) (-15 -2443 (|#2| |#2|)) (-15 -4253 (|#2| |#2|)) (-15 -3347 (|#2| |#2|)) (-15 -3766 (|#2| |#2|)) (-15 -1418 (|#2| |#2|)) (-15 -2935 (|#2| |#2|)) (-15 -3938 (|#2| |#2|)) (-15 -1890 (|#2| |#2|)) (-15 -1551 (|#2| |#2|)) (-15 -2003 (|#2| |#2|)) (IF (|has| |#1| (-901 |#1|)) (IF (|has| |#1| (-626 (-907 |#1|))) (IF (|has| |#2| (-626 (-907 |#1|))) (IF (|has| |#2| (-901 |#1|)) (-15 -3839 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2899 (((-112) |#5| $) 68) (((-112) $) 110)) (-3798 ((|#5| |#5| $) 83)) (-1974 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-2149 (((-656 |#5|) (-656 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-1572 (((-3 $ "failed") (-656 |#5|)) 135)) (-3592 (((-3 $ "failed") $) 120)) (-3142 ((|#5| |#5| $) 102)) (-1483 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-4022 ((|#5| |#5| $) 106)) (-3685 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-1599 (((-2 (|:| -1958 (-656 |#5|)) (|:| -3256 (-656 |#5|))) $) 63)) (-1918 (((-112) |#5| $) 66) (((-112) $) 111)) (-2235 ((|#4| $) 116)) (-3968 (((-3 |#5| "failed") $) 118)) (-2795 (((-656 |#5|) $) 55)) (-2785 (((-112) |#5| $) 75) (((-112) $) 115)) (-3640 ((|#5| |#5| $) 89)) (-2264 (((-112) $ $) 29)) (-3420 (((-112) |#5| $) 71) (((-112) $) 113)) (-3235 ((|#5| |#5| $) 86)) (-3580 (((-3 |#5| "failed") $) 117)) (-1743 (($ $ |#5|) 136)) (-2683 (((-783) $) 60)) (-3581 (($ (-656 |#5|)) 133)) (-2479 (($ $ |#4|) 131)) (-2394 (($ $ |#4|) 129)) (-2582 (($ $) 128)) (-3569 (((-876) $) NIL) (((-656 |#5|) $) 121)) (-3451 (((-783) $) 140)) (-1530 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-3653 (((-112) $ (-1 (-112) |#5| (-656 |#5|))) 108)) (-2572 (((-656 |#4|) $) 123)) (-2476 (((-112) |#4| $) 126)) (-2924 (((-112) $ $) 20))) +(((-1230 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3451 ((-783) |#1|)) (-15 -1743 (|#1| |#1| |#5|)) (-15 -1974 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2476 ((-112) |#4| |#1|)) (-15 -2572 ((-656 |#4|) |#1|)) (-15 -3592 ((-3 |#1| "failed") |#1|)) (-15 -3968 ((-3 |#5| "failed") |#1|)) (-15 -3580 ((-3 |#5| "failed") |#1|)) (-15 -4022 (|#5| |#5| |#1|)) (-15 -2582 (|#1| |#1|)) (-15 -3142 (|#5| |#5| |#1|)) (-15 -3640 (|#5| |#5| |#1|)) (-15 -3235 (|#5| |#5| |#1|)) (-15 -3798 (|#5| |#5| |#1|)) (-15 -2149 ((-656 |#5|) (-656 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3685 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2785 ((-112) |#1|)) (-15 -3420 ((-112) |#1|)) (-15 -2899 ((-112) |#1|)) (-15 -3653 ((-112) |#1| (-1 (-112) |#5| (-656 |#5|)))) (-15 -2785 ((-112) |#5| |#1|)) (-15 -3420 ((-112) |#5| |#1|)) (-15 -2899 ((-112) |#5| |#1|)) (-15 -1483 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1918 ((-112) |#1|)) (-15 -1918 ((-112) |#5| |#1|)) (-15 -1599 ((-2 (|:| -1958 (-656 |#5|)) (|:| -3256 (-656 |#5|))) |#1|)) (-15 -2683 ((-783) |#1|)) (-15 -2795 ((-656 |#5|) |#1|)) (-15 -1530 ((-3 (-2 (|:| |bas| |#1|) (|:| -1419 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -1530 ((-3 (-2 (|:| |bas| |#1|) (|:| -1419 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2264 ((-112) |#1| |#1|)) (-15 -2479 (|#1| |#1| |#4|)) (-15 -2394 (|#1| |#1| |#4|)) (-15 -2235 (|#4| |#1|)) (-15 -1572 ((-3 |#1| "failed") (-656 |#5|))) (-15 -3569 ((-656 |#5|) |#1|)) (-15 -3581 (|#1| (-656 |#5|))) (-15 -3685 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3685 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1974 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3685 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3569 ((-876) |#1|)) (-15 -2924 ((-112) |#1| |#1|))) (-1231 |#2| |#3| |#4| |#5|) (-568) (-805) (-861) (-1086 |#2| |#3| |#4|)) (T -1230)) +NIL +(-10 -8 (-15 -3451 ((-783) |#1|)) (-15 -1743 (|#1| |#1| |#5|)) (-15 -1974 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2476 ((-112) |#4| |#1|)) (-15 -2572 ((-656 |#4|) |#1|)) (-15 -3592 ((-3 |#1| "failed") |#1|)) (-15 -3968 ((-3 |#5| "failed") |#1|)) (-15 -3580 ((-3 |#5| "failed") |#1|)) (-15 -4022 (|#5| |#5| |#1|)) (-15 -2582 (|#1| |#1|)) (-15 -3142 (|#5| |#5| |#1|)) (-15 -3640 (|#5| |#5| |#1|)) (-15 -3235 (|#5| |#5| |#1|)) (-15 -3798 (|#5| |#5| |#1|)) (-15 -2149 ((-656 |#5|) (-656 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3685 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2785 ((-112) |#1|)) (-15 -3420 ((-112) |#1|)) (-15 -2899 ((-112) |#1|)) (-15 -3653 ((-112) |#1| (-1 (-112) |#5| (-656 |#5|)))) (-15 -2785 ((-112) |#5| |#1|)) (-15 -3420 ((-112) |#5| |#1|)) (-15 -2899 ((-112) |#5| |#1|)) (-15 -1483 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1918 ((-112) |#1|)) (-15 -1918 ((-112) |#5| |#1|)) (-15 -1599 ((-2 (|:| -1958 (-656 |#5|)) (|:| -3256 (-656 |#5|))) |#1|)) (-15 -2683 ((-783) |#1|)) (-15 -2795 ((-656 |#5|) |#1|)) (-15 -1530 ((-3 (-2 (|:| |bas| |#1|) (|:| -1419 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -1530 ((-3 (-2 (|:| |bas| |#1|) (|:| -1419 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2264 ((-112) |#1| |#1|)) (-15 -2479 (|#1| |#1| |#4|)) (-15 -2394 (|#1| |#1| |#4|)) (-15 -2235 (|#4| |#1|)) (-15 -1572 ((-3 |#1| "failed") (-656 |#5|))) (-15 -3569 ((-656 |#5|) |#1|)) (-15 -3581 (|#1| (-656 |#5|))) (-15 -3685 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3685 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1974 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3685 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3569 ((-876) |#1|)) (-15 -2924 ((-112) |#1| |#1|))) +((-3488 (((-112) $ $) 7)) (-4093 (((-656 (-2 (|:| -1958 $) (|:| -3256 (-656 |#4|)))) (-656 |#4|)) 86)) (-3668 (((-656 $) (-656 |#4|)) 87)) (-1969 (((-656 |#3|) $) 34)) (-4255 (((-112) $) 27)) (-2136 (((-112) $) 18 (|has| |#1| (-568)))) (-2899 (((-112) |#4| $) 102) (((-112) $) 98)) (-3798 ((|#4| |#4| $) 93)) (-1795 (((-2 (|:| |under| $) (|:| -4236 $) (|:| |upper| $)) $ |#3|) 28)) (-4264 (((-112) $ (-783)) 45)) (-1974 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4464))) (((-3 |#4| "failed") $ |#3|) 80)) (-3404 (($) 46 T CONST)) (-2203 (((-112) $) 23 (|has| |#1| (-568)))) (-3438 (((-112) $ $) 25 (|has| |#1| (-568)))) (-1990 (((-112) $ $) 24 (|has| |#1| (-568)))) (-3740 (((-112) $) 26 (|has| |#1| (-568)))) (-2149 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2239 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-2514 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) 37)) (-2859 (($ (-656 |#4|)) 36)) (-3592 (((-3 $ "failed") $) 83)) (-3142 ((|#4| |#4| $) 90)) (-2034 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4464)))) (-3891 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-1483 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4022 ((|#4| |#4| $) 88)) (-3685 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4464))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1599 (((-2 (|:| -1958 (-656 |#4|)) (|:| -3256 (-656 |#4|))) $) 106)) (-3965 (((-656 |#4|) $) 53 (|has| $ (-6 -4464)))) (-1918 (((-112) |#4| $) 105) (((-112) $) 104)) (-2235 ((|#3| $) 35)) (-1368 (((-112) $ (-783)) 44)) (-2425 (((-656 |#4|) $) 54 (|has| $ (-6 -4464)))) (-2885 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-4326 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#4| |#4|) $) 48)) (-2666 (((-656 |#3|) $) 33)) (-4001 (((-112) |#3| $) 32)) (-2883 (((-112) $ (-783)) 43)) (-2046 (((-1179) $) 10)) (-3968 (((-3 |#4| "failed") $) 84)) (-2795 (((-656 |#4|) $) 108)) (-2785 (((-112) |#4| $) 100) (((-112) $) 96)) (-3640 ((|#4| |#4| $) 91)) (-2264 (((-112) $ $) 111)) (-3196 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3420 (((-112) |#4| $) 101) (((-112) $) 97)) (-3235 ((|#4| |#4| $) 92)) (-1450 (((-1141) $) 11)) (-3580 (((-3 |#4| "failed") $) 85)) (-3434 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2101 (((-3 $ "failed") $ |#4|) 79)) (-1743 (($ $ |#4|) 78)) (-3252 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-2252 (((-112) $ $) 39)) (-2940 (((-112) $) 42)) (-3579 (($) 41)) (-2683 (((-783) $) 107)) (-1460 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4464)))) (-1870 (($ $) 40)) (-4171 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3581 (($ (-656 |#4|)) 61)) (-2479 (($ $ |#3|) 29)) (-2394 (($ $ |#3|) 31)) (-2582 (($ $) 89)) (-2665 (($ $ |#3|) 30)) (-3569 (((-876) $) 12) (((-656 |#4|) $) 38)) (-3451 (((-783) $) 77 (|has| |#3| (-379)))) (-2399 (((-112) $ $) 6)) (-1530 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3653 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-2708 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4464)))) (-2572 (((-656 |#3|) $) 82)) (-2476 (((-112) |#3| $) 81)) (-2924 (((-112) $ $) 8)) (-3502 (((-783) $) 47 (|has| $ (-6 -4464))))) (((-1231 |#1| |#2| |#3| |#4|) (-141) (-568) (-805) (-861) (-1086 |t#1| |t#2| |t#3|)) (T -1231)) -((-1438 (*1 *2 *1 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-3765 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1419 (-656 *8)))) (-5 *3 (-656 *8)) (-4 *1 (-1231 *5 *6 *7 *8)))) (-3765 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-861)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1419 (-656 *9)))) (-5 *3 (-656 *9)) (-4 *1 (-1231 *6 *7 *8 *9)))) (-4275 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *6)))) (-3634 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-783)))) (-4405 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-2 (|:| -1958 (-656 *6)) (|:| -3257 (-656 *6)))))) (-3186 (*1 *2 *3 *1) (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-3186 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-3439 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1231 *5 *6 *7 *3)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-112)))) (-1613 (*1 *2 *3 *1) (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-3579 (*1 *2 *3 *1) (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-1603 (*1 *2 *3 *1) (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-2833 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-656 *7))) (-4 *1 (-1231 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-1613 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-3579 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-1603 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-3686 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1231 *5 *6 *7 *2)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *2 (-1086 *5 *6 *7)))) (-3388 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1231 *5 *6 *7 *8)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)))) (-1377 (*1 *2 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-1522 (*1 *2 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-3909 (*1 *2 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-3994 (*1 *2 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-1584 (*1 *1 *1) (-12 (-4 *1 (-1231 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-1086 *2 *3 *4)))) (-2737 (*1 *2 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-3603 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1231 *4 *5 *6 *7)))) (-1788 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| -1958 *1) (|:| -3257 (-656 *7))))) (-5 *3 (-656 *7)) (-4 *1 (-1231 *4 *5 *6 *7)))) (-3581 (*1 *2 *1) (|partial| -12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-3969 (*1 *2 *1) (|partial| -12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-3593 (*1 *1 *1) (|partial| -12 (-4 *1 (-1231 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-1086 *2 *3 *4)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *5)))) (-3419 (*1 *2 *3 *1) (-12 (-4 *1 (-1231 *4 *5 *3 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *3 (-861)) (-4 *6 (-1086 *4 *5 *3)) (-5 *2 (-112)))) (-1974 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1231 *4 *5 *3 *2)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *3 (-861)) (-4 *2 (-1086 *4 *5 *3)))) (-3384 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-1749 (*1 *1 *1 *2) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-3891 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *5 (-379)) (-5 *2 (-783))))) -(-13 (-997 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4465) (-6 -4466) (-15 -1438 ((-112) $ $)) (-15 -3765 ((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |t#4|))) "failed") (-656 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3765 ((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |t#4|))) "failed") (-656 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4275 ((-656 |t#4|) $)) (-15 -3634 ((-783) $)) (-15 -4405 ((-2 (|:| -1958 (-656 |t#4|)) (|:| -3257 (-656 |t#4|))) $)) (-15 -3186 ((-112) |t#4| $)) (-15 -3186 ((-112) $)) (-15 -3439 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -1613 ((-112) |t#4| $)) (-15 -3579 ((-112) |t#4| $)) (-15 -1603 ((-112) |t#4| $)) (-15 -2833 ((-112) $ (-1 (-112) |t#4| (-656 |t#4|)))) (-15 -1613 ((-112) $)) (-15 -3579 ((-112) $)) (-15 -1603 ((-112) $)) (-15 -3686 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3388 ((-656 |t#4|) (-656 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1377 (|t#4| |t#4| $)) (-15 -1522 (|t#4| |t#4| $)) (-15 -3909 (|t#4| |t#4| $)) (-15 -3994 (|t#4| |t#4| $)) (-15 -1584 ($ $)) (-15 -2737 (|t#4| |t#4| $)) (-15 -3603 ((-656 $) (-656 |t#4|))) (-15 -1788 ((-656 (-2 (|:| -1958 $) (|:| -3257 (-656 |t#4|)))) (-656 |t#4|))) (-15 -3581 ((-3 |t#4| "failed") $)) (-15 -3969 ((-3 |t#4| "failed") $)) (-15 -3593 ((-3 $ "failed") $)) (-15 -1583 ((-656 |t#3|) $)) (-15 -3419 ((-112) |t#3| $)) (-15 -1974 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3384 ((-3 $ "failed") $ |t#4|)) (-15 -1749 ($ $ |t#4|)) (IF (|has| |t#3| (-379)) (-15 -3891 ((-783) $)) |%noBranch|))) +((-2264 (*1 *2 *1 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-1530 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1419 (-656 *8)))) (-5 *3 (-656 *8)) (-4 *1 (-1231 *5 *6 *7 *8)))) (-1530 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-861)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1419 (-656 *9)))) (-5 *3 (-656 *9)) (-4 *1 (-1231 *6 *7 *8 *9)))) (-2795 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *6)))) (-2683 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-783)))) (-1599 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-2 (|:| -1958 (-656 *6)) (|:| -3256 (-656 *6)))))) (-1918 (*1 *2 *3 *1) (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-1918 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-1483 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1231 *5 *6 *7 *3)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-112)))) (-2899 (*1 *2 *3 *1) (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-3420 (*1 *2 *3 *1) (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-2785 (*1 *2 *3 *1) (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-3653 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-656 *7))) (-4 *1 (-1231 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-2899 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-3420 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-2785 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-3685 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1231 *5 *6 *7 *2)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *2 (-1086 *5 *6 *7)))) (-2149 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1231 *5 *6 *7 *8)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)))) (-3798 (*1 *2 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-3235 (*1 *2 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-3640 (*1 *2 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-3142 (*1 *2 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-2582 (*1 *1 *1) (-12 (-4 *1 (-1231 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-1086 *2 *3 *4)))) (-4022 (*1 *2 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-3668 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1231 *4 *5 *6 *7)))) (-4093 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| -1958 *1) (|:| -3256 (-656 *7))))) (-5 *3 (-656 *7)) (-4 *1 (-1231 *4 *5 *6 *7)))) (-3580 (*1 *2 *1) (|partial| -12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-3968 (*1 *2 *1) (|partial| -12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-3592 (*1 *1 *1) (|partial| -12 (-4 *1 (-1231 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-1086 *2 *3 *4)))) (-2572 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *5)))) (-2476 (*1 *2 *3 *1) (-12 (-4 *1 (-1231 *4 *5 *3 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *3 (-861)) (-4 *6 (-1086 *4 *5 *3)) (-5 *2 (-112)))) (-1974 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1231 *4 *5 *3 *2)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *3 (-861)) (-4 *2 (-1086 *4 *5 *3)))) (-2101 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-1743 (*1 *1 *1 *2) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-3451 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *5 (-379)) (-5 *2 (-783))))) +(-13 (-997 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4464) (-6 -4465) (-15 -2264 ((-112) $ $)) (-15 -1530 ((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |t#4|))) "failed") (-656 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1530 ((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |t#4|))) "failed") (-656 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2795 ((-656 |t#4|) $)) (-15 -2683 ((-783) $)) (-15 -1599 ((-2 (|:| -1958 (-656 |t#4|)) (|:| -3256 (-656 |t#4|))) $)) (-15 -1918 ((-112) |t#4| $)) (-15 -1918 ((-112) $)) (-15 -1483 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2899 ((-112) |t#4| $)) (-15 -3420 ((-112) |t#4| $)) (-15 -2785 ((-112) |t#4| $)) (-15 -3653 ((-112) $ (-1 (-112) |t#4| (-656 |t#4|)))) (-15 -2899 ((-112) $)) (-15 -3420 ((-112) $)) (-15 -2785 ((-112) $)) (-15 -3685 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2149 ((-656 |t#4|) (-656 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3798 (|t#4| |t#4| $)) (-15 -3235 (|t#4| |t#4| $)) (-15 -3640 (|t#4| |t#4| $)) (-15 -3142 (|t#4| |t#4| $)) (-15 -2582 ($ $)) (-15 -4022 (|t#4| |t#4| $)) (-15 -3668 ((-656 $) (-656 |t#4|))) (-15 -4093 ((-656 (-2 (|:| -1958 $) (|:| -3256 (-656 |t#4|)))) (-656 |t#4|))) (-15 -3580 ((-3 |t#4| "failed") $)) (-15 -3968 ((-3 |t#4| "failed") $)) (-15 -3592 ((-3 $ "failed") $)) (-15 -2572 ((-656 |t#3|) $)) (-15 -2476 ((-112) |t#3| $)) (-15 -1974 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2101 ((-3 $ "failed") $ |t#4|)) (-15 -1743 ($ $ |t#4|)) (IF (|has| |t#3| (-379)) (-15 -3451 ((-783) $)) |%noBranch|))) (((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-876)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-997 |#1| |#2| |#3| |#4|) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-1969 (((-656 (-1197)) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2757 (($ $) NIL (|has| |#1| (-568)))) (-3788 (((-112) $) NIL (|has| |#1| (-568)))) (-4025 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3901 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4367 (((-3 $ "failed") $ $) NIL)) (-1839 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4006 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3877 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4050 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-2383 (((-971 |#1|) $ (-783)) 17) (((-971 |#1|) $ (-783) (-783)) NIL)) (-1424 (((-112) $) NIL)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3917 (((-783) $ (-1197)) NIL) (((-783) $ (-1197) (-783)) NIL)) (-4193 (((-112) $) NIL)) (-2121 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2823 (((-112) $) NIL)) (-1945 (($ $ (-656 (-1197)) (-656 (-543 (-1197)))) NIL) (($ $ (-1197) (-543 (-1197))) NIL) (($ |#1| (-543 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-3745 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-3699 (((-1179) $) NIL)) (-1491 (($ $ (-1197)) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1450 (((-1141) $) NIL)) (-2384 (($ (-1 $) (-1197) |#1|) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1749 (($ $ (-783)) NIL)) (-3476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4104 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3284 (($ $ (-1197) $) NIL) (($ $ (-656 (-1197)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL)) (-2775 (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL)) (-3634 (((-543 (-1197)) $) NIL)) (-4061 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3930 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4037 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4014 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3889 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3126 (($ $) NIL)) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-1197)) NIL) (($ (-971 |#1|)) NIL)) (-3177 ((|#1| $ (-543 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (((-971 |#1|) $ (-783)) NIL)) (-4336 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-2791 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3961 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2672 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4071 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2815 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3983 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4388 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3995 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2803 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3974 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4083 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3951 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2020 (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL)) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1232 |#1|) (-13 (-752 |#1| (-1197)) (-10 -8 (-15 -3177 ((-971 |#1|) $ (-783))) (-15 -3570 ($ (-1197))) (-15 -3570 ($ (-971 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1491 ($ $ (-1197) |#1|)) (-15 -2384 ($ (-1 $) (-1197) |#1|))) |%noBranch|))) (-1070)) (T -1232)) -((-3177 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-971 *4)) (-5 *1 (-1232 *4)) (-4 *4 (-1070)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1232 *3)) (-4 *3 (-1070)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-1070)) (-5 *1 (-1232 *3)))) (-1491 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *1 (-1232 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)))) (-2384 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1232 *4))) (-5 *3 (-1197)) (-5 *1 (-1232 *4)) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1070))))) -(-13 (-752 |#1| (-1197)) (-10 -8 (-15 -3177 ((-971 |#1|) $ (-783))) (-15 -3570 ($ (-1197))) (-15 -3570 ($ (-971 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1491 ($ $ (-1197) |#1|)) (-15 -2384 ($ (-1 $) (-1197) |#1|))) |%noBranch|))) -((-2182 (($ |#1| (-656 (-656 (-962 (-227)))) (-112)) 19)) (-4065 (((-112) $ (-112)) 18)) (-2954 (((-112) $) 17)) (-2199 (((-656 (-656 (-962 (-227)))) $) 13)) (-1923 ((|#1| $) 8)) (-1652 (((-112) $) 15))) -(((-1233 |#1|) (-10 -8 (-15 -1923 (|#1| $)) (-15 -2199 ((-656 (-656 (-962 (-227)))) $)) (-15 -1652 ((-112) $)) (-15 -2954 ((-112) $)) (-15 -4065 ((-112) $ (-112))) (-15 -2182 ($ |#1| (-656 (-656 (-962 (-227)))) (-112)))) (-995)) (T -1233)) -((-2182 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-112)) (-5 *1 (-1233 *2)) (-4 *2 (-995)))) (-4065 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-995)))) (-2954 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-995)))) (-1652 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-995)))) (-2199 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-1233 *3)) (-4 *3 (-995)))) (-1923 (*1 *2 *1) (-12 (-5 *1 (-1233 *2)) (-4 *2 (-995))))) -(-10 -8 (-15 -1923 (|#1| $)) (-15 -2199 ((-656 (-656 (-962 (-227)))) $)) (-15 -1652 ((-112) $)) (-15 -2954 ((-112) $)) (-15 -4065 ((-112) $ (-112))) (-15 -2182 ($ |#1| (-656 (-656 (-962 (-227)))) (-112)))) -((-2052 (((-962 (-227)) (-962 (-227))) 31)) (-3043 (((-962 (-227)) (-227) (-227) (-227) (-227)) 10)) (-3473 (((-656 (-962 (-227))) (-962 (-227)) (-962 (-227)) (-962 (-227)) (-227) (-656 (-656 (-227)))) 56)) (-2118 (((-227) (-962 (-227)) (-962 (-227))) 27)) (-3409 (((-962 (-227)) (-962 (-227)) (-962 (-227))) 28)) (-4355 (((-656 (-656 (-227))) (-576)) 44)) (-3044 (((-962 (-227)) (-962 (-227)) (-962 (-227))) 26)) (-3030 (((-962 (-227)) (-962 (-227)) (-962 (-227))) 24)) (* (((-962 (-227)) (-227) (-962 (-227))) 22))) -(((-1234) (-10 -7 (-15 -3043 ((-962 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-962 (-227)) (-227) (-962 (-227)))) (-15 -3030 ((-962 (-227)) (-962 (-227)) (-962 (-227)))) (-15 -3044 ((-962 (-227)) (-962 (-227)) (-962 (-227)))) (-15 -2118 ((-227) (-962 (-227)) (-962 (-227)))) (-15 -3409 ((-962 (-227)) (-962 (-227)) (-962 (-227)))) (-15 -2052 ((-962 (-227)) (-962 (-227)))) (-15 -4355 ((-656 (-656 (-227))) (-576))) (-15 -3473 ((-656 (-962 (-227))) (-962 (-227)) (-962 (-227)) (-962 (-227)) (-227) (-656 (-656 (-227))))))) (T -1234)) -((-3473 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-656 (-656 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 (-962 *4))) (-5 *1 (-1234)) (-5 *3 (-962 *4)))) (-4355 (*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-1234)))) (-2052 (*1 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)))) (-3409 (*1 *2 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)))) (-2118 (*1 *2 *3 *3) (-12 (-5 *3 (-962 (-227))) (-5 *2 (-227)) (-5 *1 (-1234)))) (-3044 (*1 *2 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)))) (-3030 (*1 *2 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-962 (-227))) (-5 *3 (-227)) (-5 *1 (-1234)))) (-3043 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)) (-5 *3 (-227))))) -(-10 -7 (-15 -3043 ((-962 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-962 (-227)) (-227) (-962 (-227)))) (-15 -3030 ((-962 (-227)) (-962 (-227)) (-962 (-227)))) (-15 -3044 ((-962 (-227)) (-962 (-227)) (-962 (-227)))) (-15 -2118 ((-227) (-962 (-227)) (-962 (-227)))) (-15 -3409 ((-962 (-227)) (-962 (-227)) (-962 (-227)))) (-15 -2052 ((-962 (-227)) (-962 (-227)))) (-15 -4355 ((-656 (-656 (-227))) (-576))) (-15 -3473 ((-656 (-962 (-227))) (-962 (-227)) (-962 (-227)) (-962 (-227)) (-227) (-656 (-656 (-227)))))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-1974 ((|#1| $ (-783)) 18)) (-2437 (((-783) $) 13)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3570 (((-977 |#1|) $) 12) (($ (-977 |#1|)) 11) (((-876) $) 29 (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2925 (((-112) $ $) 22 (|has| |#1| (-1121))))) -(((-1235 |#1|) (-13 (-502 (-977 |#1|)) (-10 -8 (-15 -1974 (|#1| $ (-783))) (-15 -2437 ((-783) $)) (IF (|has| |#1| (-625 (-876))) (-6 (-625 (-876))) |%noBranch|) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|))) (-1238)) (T -1235)) -((-1974 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-1235 *2)) (-4 *2 (-1238)))) (-2437 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1235 *3)) (-4 *3 (-1238))))) -(-13 (-502 (-977 |#1|)) (-10 -8 (-15 -1974 (|#1| $ (-783))) (-15 -2437 ((-783) $)) (IF (|has| |#1| (-625 (-876))) (-6 (-625 (-876))) |%noBranch|) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|))) -((-3330 (((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)) (-576)) 94)) (-3228 (((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|))) 86)) (-3047 (((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|))) 70))) -(((-1236 |#1|) (-10 -7 (-15 -3228 ((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)))) (-15 -3047 ((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)))) (-15 -3330 ((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)) (-576)))) (-360)) (T -1236)) -((-3330 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *5 (-360)) (-5 *2 (-430 (-1193 (-1193 *5)))) (-5 *1 (-1236 *5)) (-5 *3 (-1193 (-1193 *5))))) (-3047 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1193 (-1193 *4)))) (-5 *1 (-1236 *4)) (-5 *3 (-1193 (-1193 *4))))) (-3228 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1193 (-1193 *4)))) (-5 *1 (-1236 *4)) (-5 *3 (-1193 (-1193 *4)))))) -(-10 -7 (-15 -3228 ((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)))) (-15 -3047 ((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)))) (-15 -3330 ((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)) (-576)))) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 9) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-1969 (((-656 (-1197)) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4195 (($ $) NIL (|has| |#1| (-568)))) (-1760 (((-112) $) NIL (|has| |#1| (-568)))) (-4024 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2428 (((-3 $ "failed") $ $) NIL)) (-1840 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4005 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4049 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3404 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-2383 (((-971 |#1|) $ (-783)) 17) (((-971 |#1|) $ (-783) (-783)) NIL)) (-2116 (((-112) $) NIL)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3726 (((-783) $ (-1197)) NIL) (((-783) $ (-1197) (-783)) NIL)) (-1351 (((-112) $) NIL)) (-4131 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3538 (((-112) $) NIL)) (-1944 (($ $ (-656 (-1197)) (-656 (-543 (-1197)))) NIL) (($ $ (-1197) (-543 (-1197))) NIL) (($ |#1| (-543 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3744 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-2046 (((-1179) $) NIL)) (-4160 (($ $ (-1197)) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1450 (((-1141) $) NIL)) (-1708 (($ (-1 $) (-1197) |#1|) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1743 (($ $ (-783)) NIL)) (-3475 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4103 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3282 (($ $ (-1197) $) NIL) (($ $ (-656 (-1197)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL)) (-2774 (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL)) (-2683 (((-543 (-1197)) $) NIL)) (-4060 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2539 (($ $) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-1197)) NIL) (($ (-971 |#1|)) NIL)) (-1822 ((|#1| $ (-543 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (((-971 |#1|) $ (-783)) NIL)) (-3390 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-2790 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1505 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4387 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2020 (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL)) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1232 |#1|) (-13 (-752 |#1| (-1197)) (-10 -8 (-15 -1822 ((-971 |#1|) $ (-783))) (-15 -3569 ($ (-1197))) (-15 -3569 ($ (-971 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4160 ($ $ (-1197) |#1|)) (-15 -1708 ($ (-1 $) (-1197) |#1|))) |%noBranch|))) (-1070)) (T -1232)) +((-1822 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-971 *4)) (-5 *1 (-1232 *4)) (-4 *4 (-1070)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1232 *3)) (-4 *3 (-1070)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-1070)) (-5 *1 (-1232 *3)))) (-4160 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *1 (-1232 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)))) (-1708 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1232 *4))) (-5 *3 (-1197)) (-5 *1 (-1232 *4)) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1070))))) +(-13 (-752 |#1| (-1197)) (-10 -8 (-15 -1822 ((-971 |#1|) $ (-783))) (-15 -3569 ($ (-1197))) (-15 -3569 ($ (-971 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4160 ($ $ (-1197) |#1|)) (-15 -1708 ($ (-1 $) (-1197) |#1|))) |%noBranch|))) +((-3436 (($ |#1| (-656 (-656 (-962 (-227)))) (-112)) 19)) (-2498 (((-112) $ (-112)) 18)) (-3453 (((-112) $) 17)) (-3617 (((-656 (-656 (-962 (-227)))) $) 13)) (-2817 ((|#1| $) 8)) (-2006 (((-112) $) 15))) +(((-1233 |#1|) (-10 -8 (-15 -2817 (|#1| $)) (-15 -3617 ((-656 (-656 (-962 (-227)))) $)) (-15 -2006 ((-112) $)) (-15 -3453 ((-112) $)) (-15 -2498 ((-112) $ (-112))) (-15 -3436 ($ |#1| (-656 (-656 (-962 (-227)))) (-112)))) (-995)) (T -1233)) +((-3436 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-112)) (-5 *1 (-1233 *2)) (-4 *2 (-995)))) (-2498 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-995)))) (-3453 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-995)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-995)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-1233 *3)) (-4 *3 (-995)))) (-2817 (*1 *2 *1) (-12 (-5 *1 (-1233 *2)) (-4 *2 (-995))))) +(-10 -8 (-15 -2817 (|#1| $)) (-15 -3617 ((-656 (-656 (-962 (-227)))) $)) (-15 -2006 ((-112) $)) (-15 -3453 ((-112) $)) (-15 -2498 ((-112) $ (-112))) (-15 -3436 ($ |#1| (-656 (-656 (-962 (-227)))) (-112)))) +((-1545 (((-962 (-227)) (-962 (-227))) 31)) (-3042 (((-962 (-227)) (-227) (-227) (-227) (-227)) 10)) (-1755 (((-656 (-962 (-227))) (-962 (-227)) (-962 (-227)) (-962 (-227)) (-227) (-656 (-656 (-227)))) 56)) (-4099 (((-227) (-962 (-227)) (-962 (-227))) 27)) (-2365 (((-962 (-227)) (-962 (-227)) (-962 (-227))) 28)) (-2290 (((-656 (-656 (-227))) (-576)) 44)) (-3043 (((-962 (-227)) (-962 (-227)) (-962 (-227))) 26)) (-3029 (((-962 (-227)) (-962 (-227)) (-962 (-227))) 24)) (* (((-962 (-227)) (-227) (-962 (-227))) 22))) +(((-1234) (-10 -7 (-15 -3042 ((-962 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-962 (-227)) (-227) (-962 (-227)))) (-15 -3029 ((-962 (-227)) (-962 (-227)) (-962 (-227)))) (-15 -3043 ((-962 (-227)) (-962 (-227)) (-962 (-227)))) (-15 -4099 ((-227) (-962 (-227)) (-962 (-227)))) (-15 -2365 ((-962 (-227)) (-962 (-227)) (-962 (-227)))) (-15 -1545 ((-962 (-227)) (-962 (-227)))) (-15 -2290 ((-656 (-656 (-227))) (-576))) (-15 -1755 ((-656 (-962 (-227))) (-962 (-227)) (-962 (-227)) (-962 (-227)) (-227) (-656 (-656 (-227))))))) (T -1234)) +((-1755 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-656 (-656 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 (-962 *4))) (-5 *1 (-1234)) (-5 *3 (-962 *4)))) (-2290 (*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-1234)))) (-1545 (*1 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)))) (-2365 (*1 *2 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)))) (-4099 (*1 *2 *3 *3) (-12 (-5 *3 (-962 (-227))) (-5 *2 (-227)) (-5 *1 (-1234)))) (-3043 (*1 *2 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)))) (-3029 (*1 *2 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-962 (-227))) (-5 *3 (-227)) (-5 *1 (-1234)))) (-3042 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)) (-5 *3 (-227))))) +(-10 -7 (-15 -3042 ((-962 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-962 (-227)) (-227) (-962 (-227)))) (-15 -3029 ((-962 (-227)) (-962 (-227)) (-962 (-227)))) (-15 -3043 ((-962 (-227)) (-962 (-227)) (-962 (-227)))) (-15 -4099 ((-227) (-962 (-227)) (-962 (-227)))) (-15 -2365 ((-962 (-227)) (-962 (-227)) (-962 (-227)))) (-15 -1545 ((-962 (-227)) (-962 (-227)))) (-15 -2290 ((-656 (-656 (-227))) (-576))) (-15 -1755 ((-656 (-962 (-227))) (-962 (-227)) (-962 (-227)) (-962 (-227)) (-227) (-656 (-656 (-227)))))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-1974 ((|#1| $ (-783)) 18)) (-2435 (((-783) $) 13)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3569 (((-977 |#1|) $) 12) (($ (-977 |#1|)) 11) (((-876) $) 29 (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2924 (((-112) $ $) 22 (|has| |#1| (-1121))))) +(((-1235 |#1|) (-13 (-502 (-977 |#1|)) (-10 -8 (-15 -1974 (|#1| $ (-783))) (-15 -2435 ((-783) $)) (IF (|has| |#1| (-625 (-876))) (-6 (-625 (-876))) |%noBranch|) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|))) (-1238)) (T -1235)) +((-1974 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-1235 *2)) (-4 *2 (-1238)))) (-2435 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1235 *3)) (-4 *3 (-1238))))) +(-13 (-502 (-977 |#1|)) (-10 -8 (-15 -1974 (|#1| $ (-783))) (-15 -2435 ((-783) $)) (IF (|has| |#1| (-625 (-876))) (-6 (-625 (-876))) |%noBranch|) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|))) +((-2824 (((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)) (-576)) 94)) (-4314 (((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|))) 86)) (-3062 (((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|))) 70))) +(((-1236 |#1|) (-10 -7 (-15 -4314 ((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)))) (-15 -3062 ((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)))) (-15 -2824 ((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)) (-576)))) (-360)) (T -1236)) +((-2824 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *5 (-360)) (-5 *2 (-430 (-1193 (-1193 *5)))) (-5 *1 (-1236 *5)) (-5 *3 (-1193 (-1193 *5))))) (-3062 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1193 (-1193 *4)))) (-5 *1 (-1236 *4)) (-5 *3 (-1193 (-1193 *4))))) (-4314 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1193 (-1193 *4)))) (-5 *1 (-1236 *4)) (-5 *3 (-1193 (-1193 *4)))))) +(-10 -7 (-15 -4314 ((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)))) (-15 -3062 ((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)))) (-15 -2824 ((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)) (-576)))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 9) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) (((-1237) (-1104)) (T -1237)) NIL (-1104) NIL (((-1238) (-141)) (T -1238)) NIL -(-13 (-10 -7 (-6 -4135))) -((-3805 (((-112)) 18)) (-2831 (((-1293) (-656 |#1|) (-656 |#1|)) 22) (((-1293) (-656 |#1|)) 23)) (-3870 (((-112) |#1| |#1|) 37 (|has| |#1| (-861)))) (-1330 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-3161 ((|#1| (-656 |#1|)) 38 (|has| |#1| (-861))) ((|#1| (-656 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-4060 (((-2 (|:| -3848 (-656 |#1|)) (|:| -2319 (-656 |#1|)))) 20))) -(((-1239 |#1|) (-10 -7 (-15 -2831 ((-1293) (-656 |#1|))) (-15 -2831 ((-1293) (-656 |#1|) (-656 |#1|))) (-15 -4060 ((-2 (|:| -3848 (-656 |#1|)) (|:| -2319 (-656 |#1|))))) (-15 -1330 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1330 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3161 (|#1| (-656 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3805 ((-112))) (IF (|has| |#1| (-861)) (PROGN (-15 -3161 (|#1| (-656 |#1|))) (-15 -3870 ((-112) |#1| |#1|))) |%noBranch|)) (-1121)) (T -1239)) -((-3870 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1239 *3)) (-4 *3 (-861)) (-4 *3 (-1121)))) (-3161 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-861)) (-5 *1 (-1239 *2)))) (-3805 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1239 *3)) (-4 *3 (-1121)))) (-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1239 *2)) (-4 *2 (-1121)))) (-1330 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1121)) (-5 *2 (-112)) (-5 *1 (-1239 *3)))) (-1330 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1239 *3)) (-4 *3 (-1121)))) (-4060 (*1 *2) (-12 (-5 *2 (-2 (|:| -3848 (-656 *3)) (|:| -2319 (-656 *3)))) (-5 *1 (-1239 *3)) (-4 *3 (-1121)))) (-2831 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1121)) (-5 *2 (-1293)) (-5 *1 (-1239 *4)))) (-2831 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1121)) (-5 *2 (-1293)) (-5 *1 (-1239 *4))))) -(-10 -7 (-15 -2831 ((-1293) (-656 |#1|))) (-15 -2831 ((-1293) (-656 |#1|) (-656 |#1|))) (-15 -4060 ((-2 (|:| -3848 (-656 |#1|)) (|:| -2319 (-656 |#1|))))) (-15 -1330 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1330 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3161 (|#1| (-656 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3805 ((-112))) (IF (|has| |#1| (-861)) (PROGN (-15 -3161 (|#1| (-656 |#1|))) (-15 -3870 ((-112) |#1| |#1|))) |%noBranch|)) -((-4146 (((-1293) (-656 (-1197)) (-656 (-1197))) 14) (((-1293) (-656 (-1197))) 12)) (-3898 (((-1293)) 16)) (-4019 (((-2 (|:| -2319 (-656 (-1197))) (|:| -3848 (-656 (-1197))))) 20))) -(((-1240) (-10 -7 (-15 -4146 ((-1293) (-656 (-1197)))) (-15 -4146 ((-1293) (-656 (-1197)) (-656 (-1197)))) (-15 -4019 ((-2 (|:| -2319 (-656 (-1197))) (|:| -3848 (-656 (-1197)))))) (-15 -3898 ((-1293))))) (T -1240)) -((-3898 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1240)))) (-4019 (*1 *2) (-12 (-5 *2 (-2 (|:| -2319 (-656 (-1197))) (|:| -3848 (-656 (-1197))))) (-5 *1 (-1240)))) (-4146 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1240)))) (-4146 (*1 *2 *3) (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1240))))) -(-10 -7 (-15 -4146 ((-1293) (-656 (-1197)))) (-15 -4146 ((-1293) (-656 (-1197)) (-656 (-1197)))) (-15 -4019 ((-2 (|:| -2319 (-656 (-1197))) (|:| -3848 (-656 (-1197)))))) (-15 -3898 ((-1293)))) -((-2487 (($ $) 17)) (-4249 (((-112) $) 28))) -(((-1241 |#1|) (-10 -8 (-15 -2487 (|#1| |#1|)) (-15 -4249 ((-112) |#1|))) (-1242)) (T -1241)) -NIL -(-10 -8 (-15 -2487 (|#1| |#1|)) (-15 -4249 ((-112) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 47)) (-2757 (($ $) 46)) (-3788 (((-112) $) 44)) (-4367 (((-3 $ "failed") $ $) 20)) (-2487 (($ $) 57)) (-3921 (((-430 $) $) 58)) (-3886 (($) 18 T CONST)) (-1561 (((-3 $ "failed") $) 37)) (-4249 (((-112) $) 59)) (-4193 (((-112) $) 35)) (-3458 (($ $ $) 52) (($ (-656 $)) 51)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-1828 (((-430 $) $) 56)) (-3476 (((-3 $ "failed") $ $) 48)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2672 (((-112) $ $) 45)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +(-13 (-10 -7 (-6 -4134))) +((-1939 (((-112)) 18)) (-3629 (((-1293) (-656 |#1|) (-656 |#1|)) 22) (((-1293) (-656 |#1|)) 23)) (-1368 (((-112) |#1| |#1|) 37 (|has| |#1| (-861)))) (-2883 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-1680 ((|#1| (-656 |#1|)) 38 (|has| |#1| (-861))) ((|#1| (-656 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-2455 (((-2 (|:| -4316 (-656 |#1|)) (|:| -2326 (-656 |#1|)))) 20))) +(((-1239 |#1|) (-10 -7 (-15 -3629 ((-1293) (-656 |#1|))) (-15 -3629 ((-1293) (-656 |#1|) (-656 |#1|))) (-15 -2455 ((-2 (|:| -4316 (-656 |#1|)) (|:| -2326 (-656 |#1|))))) (-15 -2883 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2883 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1680 (|#1| (-656 |#1|) (-1 (-112) |#1| |#1|))) (-15 -1939 ((-112))) (IF (|has| |#1| (-861)) (PROGN (-15 -1680 (|#1| (-656 |#1|))) (-15 -1368 ((-112) |#1| |#1|))) |%noBranch|)) (-1121)) (T -1239)) +((-1368 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1239 *3)) (-4 *3 (-861)) (-4 *3 (-1121)))) (-1680 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-861)) (-5 *1 (-1239 *2)))) (-1939 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1239 *3)) (-4 *3 (-1121)))) (-1680 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1239 *2)) (-4 *2 (-1121)))) (-2883 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1121)) (-5 *2 (-112)) (-5 *1 (-1239 *3)))) (-2883 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1239 *3)) (-4 *3 (-1121)))) (-2455 (*1 *2) (-12 (-5 *2 (-2 (|:| -4316 (-656 *3)) (|:| -2326 (-656 *3)))) (-5 *1 (-1239 *3)) (-4 *3 (-1121)))) (-3629 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1121)) (-5 *2 (-1293)) (-5 *1 (-1239 *4)))) (-3629 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1121)) (-5 *2 (-1293)) (-5 *1 (-1239 *4))))) +(-10 -7 (-15 -3629 ((-1293) (-656 |#1|))) (-15 -3629 ((-1293) (-656 |#1|) (-656 |#1|))) (-15 -2455 ((-2 (|:| -4316 (-656 |#1|)) (|:| -2326 (-656 |#1|))))) (-15 -2883 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2883 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1680 (|#1| (-656 |#1|) (-1 (-112) |#1| |#1|))) (-15 -1939 ((-112))) (IF (|has| |#1| (-861)) (PROGN (-15 -1680 (|#1| (-656 |#1|))) (-15 -1368 ((-112) |#1| |#1|))) |%noBranch|)) +((-2051 (((-1293) (-656 (-1197)) (-656 (-1197))) 14) (((-1293) (-656 (-1197))) 12)) (-3525 (((-1293)) 16)) (-2080 (((-2 (|:| -2326 (-656 (-1197))) (|:| -4316 (-656 (-1197))))) 20))) +(((-1240) (-10 -7 (-15 -2051 ((-1293) (-656 (-1197)))) (-15 -2051 ((-1293) (-656 (-1197)) (-656 (-1197)))) (-15 -2080 ((-2 (|:| -2326 (-656 (-1197))) (|:| -4316 (-656 (-1197)))))) (-15 -3525 ((-1293))))) (T -1240)) +((-3525 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1240)))) (-2080 (*1 *2) (-12 (-5 *2 (-2 (|:| -2326 (-656 (-1197))) (|:| -4316 (-656 (-1197))))) (-5 *1 (-1240)))) (-2051 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1240)))) (-2051 (*1 *2 *3) (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1240))))) +(-10 -7 (-15 -2051 ((-1293) (-656 (-1197)))) (-15 -2051 ((-1293) (-656 (-1197)) (-656 (-1197)))) (-15 -2080 ((-2 (|:| -2326 (-656 (-1197))) (|:| -4316 (-656 (-1197)))))) (-15 -3525 ((-1293)))) +((-3444 (($ $) 17)) (-3833 (((-112) $) 28))) +(((-1241 |#1|) (-10 -8 (-15 -3444 (|#1| |#1|)) (-15 -3833 ((-112) |#1|))) (-1242)) (T -1241)) +NIL +(-10 -8 (-15 -3444 (|#1| |#1|)) (-15 -3833 ((-112) |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-4195 (($ $) 46)) (-1760 (((-112) $) 44)) (-2428 (((-3 $ "failed") $ $) 20)) (-3444 (($ $) 57)) (-3760 (((-430 $) $) 58)) (-3404 (($) 18 T CONST)) (-3673 (((-3 $ "failed") $) 37)) (-3833 (((-112) $) 59)) (-1351 (((-112) $) 35)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3497 (($ $ $) 54) (($ (-656 $)) 53)) (-1828 (((-430 $) $) 56)) (-3475 (((-3 $ "failed") $ $) 48)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-1505 (((-112) $ $) 45)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-1242) (-141)) (T -1242)) -((-4249 (*1 *2 *1) (-12 (-4 *1 (-1242)) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1242)))) (-2487 (*1 *1 *1) (-4 *1 (-1242))) (-1828 (*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1242))))) -(-13 (-464) (-10 -8 (-15 -4249 ((-112) $)) (-15 -3921 ((-430 $) $)) (-15 -2487 ($ $)) (-15 -1828 ((-430 $) $)))) +((-3833 (*1 *2 *1) (-12 (-4 *1 (-1242)) (-5 *2 (-112)))) (-3760 (*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1242)))) (-3444 (*1 *1 *1) (-4 *1 (-1242))) (-1828 (*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1242))))) +(-13 (-464) (-10 -8 (-15 -3833 ((-112) $)) (-15 -3760 ((-430 $) $)) (-15 -3444 ($ $)) (-15 -1828 ((-430 $) $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) NIL)) (-2098 (((-783)) NIL)) (-3886 (($) NIL T CONST)) (-1836 (($) NIL)) (-3125 (($ $ $) NIL) (($) NIL T CONST)) (-3133 (($ $ $) NIL) (($) NIL T CONST)) (-4401 (((-940) $) NIL)) (-3699 (((-1179) $) NIL)) (-3224 (($ (-940)) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-2356 (($ $ $) NIL)) (-2343 (($ $ $) NIL)) (-4055 (((-112) $ $) NIL)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) NIL))) -(((-1243) (-13 (-856) (-10 -8 (-15 -2343 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -3886 ($) -1480)))) (T -1243)) -((-2343 (*1 *1 *1 *1) (-5 *1 (-1243))) (-2356 (*1 *1 *1 *1) (-5 *1 (-1243))) (-3886 (*1 *1) (-5 *1 (-1243)))) -(-13 (-856) (-10 -8 (-15 -2343 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -3886 ($) -1480))) +((-3488 (((-112) $ $) NIL)) (-2098 (((-783)) NIL)) (-3404 (($) NIL T CONST)) (-1836 (($) NIL)) (-3124 (($ $ $) NIL) (($) NIL T CONST)) (-1441 (($ $ $) NIL) (($) NIL T CONST)) (-1558 (((-940) $) NIL)) (-2046 (((-1179) $) NIL)) (-3223 (($ (-940)) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2357 (($ $ $) NIL)) (-2343 (($ $ $) NIL)) (-2399 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) NIL))) +(((-1243) (-13 (-856) (-10 -8 (-15 -2343 ($ $ $)) (-15 -2357 ($ $ $)) (-15 -3404 ($) -1480)))) (T -1243)) +((-2343 (*1 *1 *1 *1) (-5 *1 (-1243))) (-2357 (*1 *1 *1 *1) (-5 *1 (-1243))) (-3404 (*1 *1) (-5 *1 (-1243)))) +(-13 (-856) (-10 -8 (-15 -2343 ($ $ $)) (-15 -2357 ($ $ $)) (-15 -3404 ($) -1480))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16))) -((-3489 (((-112) $ $) NIL)) (-2098 (((-783)) NIL)) (-3886 (($) NIL T CONST)) (-1836 (($) NIL)) (-3125 (($ $ $) NIL) (($) NIL T CONST)) (-3133 (($ $ $) NIL) (($) NIL T CONST)) (-4401 (((-940) $) NIL)) (-3699 (((-1179) $) NIL)) (-3224 (($ (-940)) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-2356 (($ $ $) NIL)) (-2343 (($ $ $) NIL)) (-4055 (((-112) $ $) NIL)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) NIL))) -(((-1244) (-13 (-856) (-10 -8 (-15 -2343 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -3886 ($) -1480)))) (T -1244)) -((-2343 (*1 *1 *1 *1) (-5 *1 (-1244))) (-2356 (*1 *1 *1 *1) (-5 *1 (-1244))) (-3886 (*1 *1) (-5 *1 (-1244)))) -(-13 (-856) (-10 -8 (-15 -2343 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -3886 ($) -1480))) +((-3488 (((-112) $ $) NIL)) (-2098 (((-783)) NIL)) (-3404 (($) NIL T CONST)) (-1836 (($) NIL)) (-3124 (($ $ $) NIL) (($) NIL T CONST)) (-1441 (($ $ $) NIL) (($) NIL T CONST)) (-1558 (((-940) $) NIL)) (-2046 (((-1179) $) NIL)) (-3223 (($ (-940)) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2357 (($ $ $) NIL)) (-2343 (($ $ $) NIL)) (-2399 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) NIL))) +(((-1244) (-13 (-856) (-10 -8 (-15 -2343 ($ $ $)) (-15 -2357 ($ $ $)) (-15 -3404 ($) -1480)))) (T -1244)) +((-2343 (*1 *1 *1 *1) (-5 *1 (-1244))) (-2357 (*1 *1 *1 *1) (-5 *1 (-1244))) (-3404 (*1 *1) (-5 *1 (-1244)))) +(-13 (-856) (-10 -8 (-15 -2343 ($ $ $)) (-15 -2357 ($ $ $)) (-15 -3404 ($) -1480))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32))) -((-3489 (((-112) $ $) NIL)) (-2098 (((-783)) NIL)) (-3886 (($) NIL T CONST)) (-1836 (($) NIL)) (-3125 (($ $ $) NIL) (($) NIL T CONST)) (-3133 (($ $ $) NIL) (($) NIL T CONST)) (-4401 (((-940) $) NIL)) (-3699 (((-1179) $) NIL)) (-3224 (($ (-940)) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-2356 (($ $ $) NIL)) (-2343 (($ $ $) NIL)) (-4055 (((-112) $ $) NIL)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) NIL))) -(((-1245) (-13 (-856) (-10 -8 (-15 -2343 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -3886 ($) -1480)))) (T -1245)) -((-2343 (*1 *1 *1 *1) (-5 *1 (-1245))) (-2356 (*1 *1 *1 *1) (-5 *1 (-1245))) (-3886 (*1 *1) (-5 *1 (-1245)))) -(-13 (-856) (-10 -8 (-15 -2343 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -3886 ($) -1480))) +((-3488 (((-112) $ $) NIL)) (-2098 (((-783)) NIL)) (-3404 (($) NIL T CONST)) (-1836 (($) NIL)) (-3124 (($ $ $) NIL) (($) NIL T CONST)) (-1441 (($ $ $) NIL) (($) NIL T CONST)) (-1558 (((-940) $) NIL)) (-2046 (((-1179) $) NIL)) (-3223 (($ (-940)) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2357 (($ $ $) NIL)) (-2343 (($ $ $) NIL)) (-2399 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) NIL))) +(((-1245) (-13 (-856) (-10 -8 (-15 -2343 ($ $ $)) (-15 -2357 ($ $ $)) (-15 -3404 ($) -1480)))) (T -1245)) +((-2343 (*1 *1 *1 *1) (-5 *1 (-1245))) (-2357 (*1 *1 *1 *1) (-5 *1 (-1245))) (-3404 (*1 *1) (-5 *1 (-1245)))) +(-13 (-856) (-10 -8 (-15 -2343 ($ $ $)) (-15 -2357 ($ $ $)) (-15 -3404 ($) -1480))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64))) -((-3489 (((-112) $ $) NIL)) (-2098 (((-783)) NIL)) (-3886 (($) NIL T CONST)) (-1836 (($) NIL)) (-3125 (($ $ $) NIL) (($) NIL T CONST)) (-3133 (($ $ $) NIL) (($) NIL T CONST)) (-4401 (((-940) $) NIL)) (-3699 (((-1179) $) NIL)) (-3224 (($ (-940)) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) NIL)) (-2356 (($ $ $) NIL)) (-2343 (($ $ $) NIL)) (-4055 (((-112) $ $) NIL)) (-2992 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2950 (((-112) $ $) NIL))) -(((-1246) (-13 (-856) (-10 -8 (-15 -2343 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -3886 ($) -1480)))) (T -1246)) -((-2343 (*1 *1 *1 *1) (-5 *1 (-1246))) (-2356 (*1 *1 *1 *1) (-5 *1 (-1246))) (-3886 (*1 *1) (-5 *1 (-1246)))) -(-13 (-856) (-10 -8 (-15 -2343 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -3886 ($) -1480))) +((-3488 (((-112) $ $) NIL)) (-2098 (((-783)) NIL)) (-3404 (($) NIL T CONST)) (-1836 (($) NIL)) (-3124 (($ $ $) NIL) (($) NIL T CONST)) (-1441 (($ $ $) NIL) (($) NIL T CONST)) (-1558 (((-940) $) NIL)) (-2046 (((-1179) $) NIL)) (-3223 (($ (-940)) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) NIL)) (-2357 (($ $ $) NIL)) (-2343 (($ $ $) NIL)) (-2399 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2962 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2949 (((-112) $ $) NIL))) +(((-1246) (-13 (-856) (-10 -8 (-15 -2343 ($ $ $)) (-15 -2357 ($ $ $)) (-15 -3404 ($) -1480)))) (T -1246)) +((-2343 (*1 *1 *1 *1) (-5 *1 (-1246))) (-2357 (*1 *1 *1 *1) (-5 *1 (-1246))) (-3404 (*1 *1) (-5 *1 (-1246)))) +(-13 (-856) (-10 -8 (-15 -2343 ($ $ $)) (-15 -2357 ($ $ $)) (-15 -3404 ($) -1480))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8))) -((-4117 (((-1252 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1252 |#1| |#3| |#5|)) 23))) -(((-1247 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4117 ((-1252 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1252 |#1| |#3| |#5|)))) (-1070) (-1070) (-1197) (-1197) |#1| |#2|) (T -1247)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1252 *5 *7 *9)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-14 *7 (-1197)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1252 *6 *8 *10)) (-5 *1 (-1247 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1197))))) -(-10 -7 (-15 -4117 ((-1252 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1252 |#1| |#3| |#5|)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-1969 (((-656 (-1103)) $) 86)) (-3055 (((-1197) $) 118)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2757 (($ $) 64 (|has| |#1| (-568)))) (-3788 (((-112) $) 66 (|has| |#1| (-568)))) (-2326 (($ $ (-576)) 113) (($ $ (-576) (-576)) 112)) (-3669 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 119)) (-4025 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3901 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-4367 (((-3 $ "failed") $ $) 20)) (-2487 (($ $) 177 (|has| |#1| (-374)))) (-3921 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1839 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-4016 (((-112) $ $) 168 (|has| |#1| (-374)))) (-4006 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3877 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3080 (($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 188)) (-4050 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($) 18 T CONST)) (-3429 (($ $ $) 172 (|has| |#1| (-374)))) (-2114 (($ $) 72)) (-1561 (((-3 $ "failed") $) 37)) (-2251 (((-419 (-971 |#1|)) $ (-576)) 186 (|has| |#1| (-568))) (((-419 (-971 |#1|)) $ (-576) (-576)) 185 (|has| |#1| (-568)))) (-3441 (($ $ $) 171 (|has| |#1| (-374)))) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-4249 (((-112) $) 179 (|has| |#1| (-374)))) (-1424 (((-112) $) 85)) (-1600 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3917 (((-576) $) 115) (((-576) $ (-576)) 114)) (-4193 (((-112) $) 35)) (-2121 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-4116 (($ $ (-940)) 116)) (-1378 (($ (-1 |#1| (-576)) $) 187)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-2823 (((-112) $) 74)) (-1945 (($ |#1| (-576)) 73) (($ $ (-1103) (-576)) 88) (($ $ (-656 (-1103)) (-656 (-576))) 87)) (-4117 (($ (-1 |#1| |#1|) $) 75)) (-3745 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) 77)) (-2091 ((|#1| $) 78)) (-3458 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-3699 (((-1179) $) 10)) (-2050 (($ $) 180 (|has| |#1| (-374)))) (-1491 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 183 (-2760 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-978)) (|has| |#1| (-1223)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-15 -1491 (|#1| |#1| (-1197)))) (|has| |#1| (-38 (-419 (-576)))))))) (-1450 (((-1141) $) 11)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 165 (|has| |#1| (-374)))) (-3498 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1828 (((-430 $) $) 176 (|has| |#1| (-374)))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 173 (|has| |#1| (-374)))) (-1749 (($ $ (-576)) 110)) (-3476 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-4104 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3284 (((-1178 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-576)))))) (-1967 (((-783) $) 169 (|has| |#1| (-374)))) (-2797 ((|#1| $ (-576)) 120) (($ $ $) 96 (|has| (-576) (-1133)))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 170 (|has| |#1| (-374)))) (-2775 (($ $ (-1197)) 108 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1197))) 106 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197) (-783)) 105 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 104 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-3634 (((-576) $) 76)) (-4061 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3930 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-4037 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-4014 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3889 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-3126 (($ $) 84)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-3177 ((|#1| $ (-576)) 71)) (-4336 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3996 (((-783)) 32 T CONST)) (-2396 ((|#1| $) 117)) (-4055 (((-112) $ $) 6)) (-2791 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3961 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2672 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4071 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-2815 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3983 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4166 ((|#1| $ (-576)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3570 (|#1| (-1197))))))) (-4388 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3995 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-2803 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3974 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-4083 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3951 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2020 (($ $ (-1197)) 107 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1197))) 103 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197) (-783)) 102 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 101 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-2925 (((-112) $ $) 8)) (-3057 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +((-4116 (((-1252 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1252 |#1| |#3| |#5|)) 23))) +(((-1247 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4116 ((-1252 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1252 |#1| |#3| |#5|)))) (-1070) (-1070) (-1197) (-1197) |#1| |#2|) (T -1247)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1252 *5 *7 *9)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-14 *7 (-1197)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1252 *6 *8 *10)) (-5 *1 (-1247 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1197))))) +(-10 -7 (-15 -4116 ((-1252 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1252 |#1| |#3| |#5|)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-1969 (((-656 (-1103)) $) 86)) (-3054 (((-1197) $) 118)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4195 (($ $) 64 (|has| |#1| (-568)))) (-1760 (((-112) $) 66 (|has| |#1| (-568)))) (-2408 (($ $ (-576)) 113) (($ $ (-576) (-576)) 112)) (-3064 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 119)) (-4024 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2428 (((-3 $ "failed") $ $) 20)) (-3444 (($ $) 177 (|has| |#1| (-374)))) (-3760 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1840 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3330 (((-112) $ $) 168 (|has| |#1| (-374)))) (-4005 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3079 (($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 188)) (-4049 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3404 (($) 18 T CONST)) (-3428 (($ $ $) 172 (|has| |#1| (-374)))) (-2114 (($ $) 72)) (-3673 (((-3 $ "failed") $) 37)) (-2862 (((-419 (-971 |#1|)) $ (-576)) 186 (|has| |#1| (-568))) (((-419 (-971 |#1|)) $ (-576) (-576)) 185 (|has| |#1| (-568)))) (-3440 (($ $ $) 171 (|has| |#1| (-374)))) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-3833 (((-112) $) 179 (|has| |#1| (-374)))) (-2116 (((-112) $) 85)) (-1600 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3726 (((-576) $) 115) (((-576) $ (-576)) 114)) (-1351 (((-112) $) 35)) (-4131 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-1800 (($ $ (-940)) 116)) (-3811 (($ (-1 |#1| (-576)) $) 187)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-3538 (((-112) $) 74)) (-1944 (($ |#1| (-576)) 73) (($ $ (-1103) (-576)) 88) (($ $ (-656 (-1103)) (-656 (-576))) 87)) (-4116 (($ (-1 |#1| |#1|) $) 75)) (-3744 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) 77)) (-2091 ((|#1| $) 78)) (-3457 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-2046 (((-1179) $) 10)) (-2050 (($ $) 180 (|has| |#1| (-374)))) (-4160 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 183 (-2759 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-978)) (|has| |#1| (-1223)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-15 -4160 (|#1| |#1| (-1197)))) (|has| |#1| (-38 (-419 (-576)))))))) (-1450 (((-1141) $) 11)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 165 (|has| |#1| (-374)))) (-3497 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1828 (((-430 $) $) 176 (|has| |#1| (-374)))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 173 (|has| |#1| (-374)))) (-1743 (($ $ (-576)) 110)) (-3475 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-4103 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3282 (((-1178 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-576)))))) (-1979 (((-783) $) 169 (|has| |#1| (-374)))) (-2796 ((|#1| $ (-576)) 120) (($ $ $) 96 (|has| (-576) (-1133)))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 170 (|has| |#1| (-374)))) (-2774 (($ $ (-1197)) 108 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1197))) 106 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197) (-783)) 105 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 104 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-2683 (((-576) $) 76)) (-4060 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-2539 (($ $) 84)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-1822 ((|#1| $ (-576)) 71)) (-3390 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3154 (((-783)) 32 T CONST)) (-2396 ((|#1| $) 117)) (-2399 (((-112) $ $) 6)) (-2790 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-1505 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4070 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-576)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2020 (($ $ (-1197)) 107 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1197))) 103 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197) (-783)) 102 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 101 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-2924 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) (((-1248 |#1|) (-141) (-1070)) (T -1248)) -((-3080 (*1 *1 *2) (-12 (-5 *2 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-4 *3 (-1070)) (-4 *1 (-1248 *3)))) (-1378 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1248 *3)) (-4 *3 (-1070)))) (-2251 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1248 *4)) (-4 *4 (-1070)) (-4 *4 (-568)) (-5 *2 (-419 (-971 *4))))) (-2251 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1248 *4)) (-4 *4 (-1070)) (-4 *4 (-568)) (-5 *2 (-419 (-971 *4))))) (-1491 (*1 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) (-1491 (*1 *1 *1 *2) (-2760 (-12 (-5 *2 (-1197)) (-4 *1 (-1248 *3)) (-4 *3 (-1070)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-978)) (-4 *3 (-1223)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1197)) (-4 *1 (-1248 *3)) (-4 *3 (-1070)) (-12 (|has| *3 (-15 -1969 ((-656 *2) *3))) (|has| *3 (-15 -1491 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) -(-13 (-1266 |t#1| (-576)) (-10 -8 (-15 -3080 ($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |t#1|))))) (-15 -1378 ($ (-1 |t#1| (-576)) $)) (IF (|has| |t#1| (-568)) (PROGN (-15 -2251 ((-419 (-971 |t#1|)) $ (-576))) (-15 -2251 ((-419 (-971 |t#1|)) $ (-576) (-576)))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -1491 ($ $)) (IF (|has| |t#1| (-15 -1491 (|t#1| |t#1| (-1197)))) (IF (|has| |t#1| (-15 -1969 ((-656 (-1197)) |t#1|))) (-15 -1491 ($ $ (-1197))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1223)) (IF (|has| |t#1| (-978)) (IF (|has| |t#1| (-29 (-576))) (-15 -1491 ($ $ (-1197))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1023)) (-6 (-1223))) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-576)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-876)) . T) ((-174) -2760 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-576) (-1133)) ((-300) -2760 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -2760 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-911 $ #2=(-1197)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))) ((-919 #2#) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))) ((-994 |#1| #0# (-1103)) . T) ((-939) |has| |#1| (-374)) ((-1023) |has| |#1| (-38 (-419 (-576)))) ((-1072 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1072 |#1|) . T) ((-1072 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1077 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1077 |#1|) . T) ((-1077 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1223) |has| |#1| (-38 (-419 (-576)))) ((-1226) |has| |#1| (-38 (-419 (-576)))) ((-1238) . T) ((-1242) |has| |#1| (-374)) ((-1266 |#1| #0#) . T)) -((-4308 (((-112) $) 12)) (-1572 (((-3 |#3| "failed") $) 17) (((-3 (-1197) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL)) (-2860 ((|#3| $) 14) (((-1197) $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL))) -(((-1249 |#1| |#2| |#3|) (-10 -8 (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2860 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2860 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-1197) "failed") |#1|)) (-15 -2860 ((-1197) |#1|)) (-15 -1572 ((-3 |#3| "failed") |#1|)) (-15 -2860 (|#3| |#1|)) (-15 -4308 ((-112) |#1|))) (-1250 |#2| |#3|) (-1070) (-1279 |#2|)) (T -1249)) -NIL -(-10 -8 (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2860 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2860 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-1197) "failed") |#1|)) (-15 -2860 ((-1197) |#1|)) (-15 -1572 ((-3 |#3| "failed") |#1|)) (-15 -2860 (|#3| |#1|)) (-15 -4308 ((-112) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2575 ((|#2| $) 251 (-2675 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-1969 (((-656 (-1103)) $) 86)) (-3055 (((-1197) $) 118)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2757 (($ $) 64 (|has| |#1| (-568)))) (-3788 (((-112) $) 66 (|has| |#1| (-568)))) (-2326 (($ $ (-576)) 113) (($ $ (-576) (-576)) 112)) (-3669 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 119)) (-3707 ((|#2| $) 287)) (-2897 (((-3 |#2| "failed") $) 283)) (-2010 ((|#2| $) 284)) (-4025 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3901 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-4367 (((-3 $ "failed") $ $) 20)) (-3601 (((-430 (-1193 $)) (-1193 $)) 260 (-2675 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-2487 (($ $) 177 (|has| |#1| (-374)))) (-3921 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1839 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 257 (-2675 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-4016 (((-112) $ $) 168 (|has| |#1| (-374)))) (-4006 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3877 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3308 (((-576) $) 269 (-2675 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-3080 (($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 188)) (-4050 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($) 18 T CONST)) (-1572 (((-3 |#2| "failed") $) 290) (((-3 (-576) "failed") $) 280 (-2675 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) 278 (-2675 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-3 (-1197) "failed") $) 262 (-2675 (|has| |#2| (-1059 (-1197))) (|has| |#1| (-374))))) (-2860 ((|#2| $) 291) (((-576) $) 279 (-2675 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-419 (-576)) $) 277 (-2675 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-1197) $) 261 (-2675 (|has| |#2| (-1059 (-1197))) (|has| |#1| (-374))))) (-2257 (($ $) 286) (($ (-576) $) 285)) (-3429 (($ $ $) 172 (|has| |#1| (-374)))) (-2114 (($ $) 72)) (-2204 (((-701 |#2|) (-701 $)) 239 (|has| |#1| (-374))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) 238 (|has| |#1| (-374))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 237 (-2675 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) 236 (-2675 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-1561 (((-3 $ "failed") $) 37)) (-2251 (((-419 (-971 |#1|)) $ (-576)) 186 (|has| |#1| (-568))) (((-419 (-971 |#1|)) $ (-576) (-576)) 185 (|has| |#1| (-568)))) (-1836 (($) 253 (-2675 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-3441 (($ $ $) 171 (|has| |#1| (-374)))) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-4249 (((-112) $) 179 (|has| |#1| (-374)))) (-2087 (((-112) $) 267 (-2675 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-1424 (((-112) $) 85)) (-1600 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 245 (-2675 (|has| |#2| (-901 (-390))) (|has| |#1| (-374)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 244 (-2675 (|has| |#2| (-901 (-576))) (|has| |#1| (-374))))) (-3917 (((-576) $) 115) (((-576) $ (-576)) 114)) (-4193 (((-112) $) 35)) (-2171 (($ $) 249 (|has| |#1| (-374)))) (-1570 ((|#2| $) 247 (|has| |#1| (-374)))) (-2121 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-2240 (((-3 $ "failed") $) 281 (-2675 (|has| |#2| (-1173)) (|has| |#1| (-374))))) (-1634 (((-112) $) 268 (-2675 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-4116 (($ $ (-940)) 116)) (-1378 (($ (-1 |#1| (-576)) $) 187)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-2823 (((-112) $) 74)) (-1945 (($ |#1| (-576)) 73) (($ $ (-1103) (-576)) 88) (($ $ (-656 (-1103)) (-656 (-576))) 87)) (-3125 (($ $ $) 276 (-2675 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-3133 (($ $ $) 275 (-2675 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-4117 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 229 (|has| |#1| (-374)))) (-3745 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-3913 (((-701 |#2|) (-1288 $)) 241 (|has| |#1| (-374))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) 240 (|has| |#1| (-374))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 235 (-2675 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1288 $)) 234 (-2675 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-2081 (($ $) 77)) (-2091 ((|#1| $) 78)) (-3458 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-2021 (($ (-576) |#2|) 288)) (-3699 (((-1179) $) 10)) (-2050 (($ $) 180 (|has| |#1| (-374)))) (-1491 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 183 (-2760 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-978)) (|has| |#1| (-1223)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-15 -1491 (|#1| |#1| (-1197)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3540 (($) 282 (-2675 (|has| |#2| (-1173)) (|has| |#1| (-374))) CONST)) (-1450 (((-1141) $) 11)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 165 (|has| |#1| (-374)))) (-3498 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-2393 (($ $) 252 (-2675 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-2443 ((|#2| $) 255 (-2675 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-4100 (((-430 (-1193 $)) (-1193 $)) 258 (-2675 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-1811 (((-430 (-1193 $)) (-1193 $)) 259 (-2675 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-1828 (((-430 $) $) 176 (|has| |#1| (-374)))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 173 (|has| |#1| (-374)))) (-1749 (($ $ (-576)) 110)) (-3476 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-4104 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3284 (((-1178 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1197) |#2|) 228 (-2675 (|has| |#2| (-526 (-1197) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-1197)) (-656 |#2|)) 227 (-2675 (|has| |#2| (-526 (-1197) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-304 |#2|))) 226 (-2675 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-304 |#2|)) 225 (-2675 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ |#2| |#2|) 224 (-2675 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-656 |#2|) (-656 |#2|)) 223 (-2675 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374))))) (-1967 (((-783) $) 169 (|has| |#1| (-374)))) (-2797 ((|#1| $ (-576)) 120) (($ $ $) 96 (|has| (-576) (-1133))) (($ $ |#2|) 222 (-2675 (|has| |#2| (-296 |#2| |#2|)) (|has| |#1| (-374))))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 170 (|has| |#1| (-374)))) (-2775 (($ $ (-1 |#2| |#2|) (-783)) 231 (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) 230 (|has| |#1| (-374))) (($ $) 100 (-2760 (-2675 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) 98 (-2760 (-2675 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) 108 (-2760 (-2675 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1197))) 106 (-2760 (-2675 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-1197) (-783)) 105 (-2760 (-2675 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1197)) (-656 (-783))) 104 (-2760 (-2675 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))))) (-2143 (($ $) 250 (|has| |#1| (-374)))) (-1581 ((|#2| $) 248 (|has| |#1| (-374)))) (-3634 (((-576) $) 76)) (-4061 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3930 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-4037 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-4014 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3889 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-4172 (((-227) $) 266 (-2675 (|has| |#2| (-1043)) (|has| |#1| (-374)))) (((-390) $) 265 (-2675 (|has| |#2| (-1043)) (|has| |#1| (-374)))) (((-548) $) 264 (-2675 (|has| |#2| (-626 (-548))) (|has| |#1| (-374)))) (((-907 (-390)) $) 243 (-2675 (|has| |#2| (-626 (-907 (-390)))) (|has| |#1| (-374)))) (((-907 (-576)) $) 242 (-2675 (|has| |#2| (-626 (-907 (-576)))) (|has| |#1| (-374))))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) 256 (-2675 (-2675 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#1| (-374))))) (-3126 (($ $) 84)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 289) (($ (-1197)) 263 (-2675 (|has| |#2| (-1059 (-1197))) (|has| |#1| (-374)))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-3177 ((|#1| $ (-576)) 71)) (-4336 (((-3 $ "failed") $) 60 (-2760 (-2675 (-2760 (|has| |#2| (-146)) (-2675 (|has| $ (-146)) (|has| |#2| (-928)))) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-3996 (((-783)) 32 T CONST)) (-2396 ((|#1| $) 117)) (-4118 ((|#2| $) 254 (-2675 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-4055 (((-112) $ $) 6)) (-2791 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3961 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2672 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4071 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-2815 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3983 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4166 ((|#1| $ (-576)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3570 (|#1| (-1197))))))) (-4388 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3995 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-2803 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3974 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-4083 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3951 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2122 (($ $) 270 (-2675 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2020 (($ $ (-1 |#2| |#2|) (-783)) 233 (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) 232 (|has| |#1| (-374))) (($ $) 99 (-2760 (-2675 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) 97 (-2760 (-2675 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) 107 (-2760 (-2675 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1197))) 103 (-2760 (-2675 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-1197) (-783)) 102 (-2760 (-2675 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1197)) (-656 (-783))) 101 (-2760 (-2675 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))))) (-2992 (((-112) $ $) 274 (-2675 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-2964 (((-112) $ $) 272 (-2675 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-2925 (((-112) $ $) 8)) (-2978 (((-112) $ $) 273 (-2675 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-2950 (((-112) $ $) 271 (-2675 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-3057 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374))) (($ |#2| |#2|) 246 (|has| |#1| (-374)))) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 221 (|has| |#1| (-374))) (($ |#2| $) 220 (|has| |#1| (-374))) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +((-3079 (*1 *1 *2) (-12 (-5 *2 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-4 *3 (-1070)) (-4 *1 (-1248 *3)))) (-3811 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1248 *3)) (-4 *3 (-1070)))) (-2862 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1248 *4)) (-4 *4 (-1070)) (-4 *4 (-568)) (-5 *2 (-419 (-971 *4))))) (-2862 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1248 *4)) (-4 *4 (-1070)) (-4 *4 (-568)) (-5 *2 (-419 (-971 *4))))) (-4160 (*1 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) (-4160 (*1 *1 *1 *2) (-2759 (-12 (-5 *2 (-1197)) (-4 *1 (-1248 *3)) (-4 *3 (-1070)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-978)) (-4 *3 (-1223)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1197)) (-4 *1 (-1248 *3)) (-4 *3 (-1070)) (-12 (|has| *3 (-15 -1969 ((-656 *2) *3))) (|has| *3 (-15 -4160 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) +(-13 (-1266 |t#1| (-576)) (-10 -8 (-15 -3079 ($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |t#1|))))) (-15 -3811 ($ (-1 |t#1| (-576)) $)) (IF (|has| |t#1| (-568)) (PROGN (-15 -2862 ((-419 (-971 |t#1|)) $ (-576))) (-15 -2862 ((-419 (-971 |t#1|)) $ (-576) (-576)))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -4160 ($ $)) (IF (|has| |t#1| (-15 -4160 (|t#1| |t#1| (-1197)))) (IF (|has| |t#1| (-15 -1969 ((-656 (-1197)) |t#1|))) (-15 -4160 ($ $ (-1197))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1223)) (IF (|has| |t#1| (-978)) (IF (|has| |t#1| (-29 (-576))) (-15 -4160 ($ $ (-1197))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1023)) (-6 (-1223))) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-576)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-876)) . T) ((-174) -2759 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-576) (-1133)) ((-300) -2759 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -2759 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-911 $ #2=(-1197)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))) ((-919 #2#) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))) ((-994 |#1| #0# (-1103)) . T) ((-939) |has| |#1| (-374)) ((-1023) |has| |#1| (-38 (-419 (-576)))) ((-1072 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1072 |#1|) . T) ((-1072 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1077 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1077 |#1|) . T) ((-1077 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1223) |has| |#1| (-38 (-419 (-576)))) ((-1226) |has| |#1| (-38 (-419 (-576)))) ((-1238) . T) ((-1242) |has| |#1| (-374)) ((-1266 |#1| #0#) . T)) +((-3135 (((-112) $) 12)) (-1572 (((-3 |#3| "failed") $) 17) (((-3 (-1197) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL)) (-2859 ((|#3| $) 14) (((-1197) $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL))) +(((-1249 |#1| |#2| |#3|) (-10 -8 (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-1197) "failed") |#1|)) (-15 -2859 ((-1197) |#1|)) (-15 -1572 ((-3 |#3| "failed") |#1|)) (-15 -2859 (|#3| |#1|)) (-15 -3135 ((-112) |#1|))) (-1250 |#2| |#3|) (-1070) (-1279 |#2|)) (T -1249)) +NIL +(-10 -8 (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -1572 ((-3 (-1197) "failed") |#1|)) (-15 -2859 ((-1197) |#1|)) (-15 -1572 ((-3 |#3| "failed") |#1|)) (-15 -2859 (|#3| |#1|)) (-15 -3135 ((-112) |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-3110 ((|#2| $) 251 (-2674 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-1969 (((-656 (-1103)) $) 86)) (-3054 (((-1197) $) 118)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4195 (($ $) 64 (|has| |#1| (-568)))) (-1760 (((-112) $) 66 (|has| |#1| (-568)))) (-2408 (($ $ (-576)) 113) (($ $ (-576) (-576)) 112)) (-3064 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 119)) (-2131 ((|#2| $) 287)) (-3008 (((-3 |#2| "failed") $) 283)) (-2010 ((|#2| $) 284)) (-4024 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2428 (((-3 $ "failed") $ $) 20)) (-3646 (((-430 (-1193 $)) (-1193 $)) 260 (-2674 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-3444 (($ $) 177 (|has| |#1| (-374)))) (-3760 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1840 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 257 (-2674 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-3330 (((-112) $ $) 168 (|has| |#1| (-374)))) (-4005 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3906 (((-576) $) 269 (-2674 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-3079 (($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 188)) (-4049 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3404 (($) 18 T CONST)) (-1572 (((-3 |#2| "failed") $) 290) (((-3 (-576) "failed") $) 280 (-2674 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) 278 (-2674 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-3 (-1197) "failed") $) 262 (-2674 (|has| |#2| (-1059 (-1197))) (|has| |#1| (-374))))) (-2859 ((|#2| $) 291) (((-576) $) 279 (-2674 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-419 (-576)) $) 277 (-2674 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-1197) $) 261 (-2674 (|has| |#2| (-1059 (-1197))) (|has| |#1| (-374))))) (-2926 (($ $) 286) (($ (-576) $) 285)) (-3428 (($ $ $) 172 (|has| |#1| (-374)))) (-2114 (($ $) 72)) (-3674 (((-701 |#2|) (-701 $)) 239 (|has| |#1| (-374))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) 238 (|has| |#1| (-374))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 237 (-2674 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) 236 (-2674 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-3673 (((-3 $ "failed") $) 37)) (-2862 (((-419 (-971 |#1|)) $ (-576)) 186 (|has| |#1| (-568))) (((-419 (-971 |#1|)) $ (-576) (-576)) 185 (|has| |#1| (-568)))) (-1836 (($) 253 (-2674 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-3440 (($ $ $) 171 (|has| |#1| (-374)))) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-3833 (((-112) $) 179 (|has| |#1| (-374)))) (-1866 (((-112) $) 267 (-2674 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2116 (((-112) $) 85)) (-1600 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 245 (-2674 (|has| |#2| (-901 (-390))) (|has| |#1| (-374)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 244 (-2674 (|has| |#2| (-901 (-576))) (|has| |#1| (-374))))) (-3726 (((-576) $) 115) (((-576) $ (-576)) 114)) (-1351 (((-112) $) 35)) (-3328 (($ $) 249 (|has| |#1| (-374)))) (-1570 ((|#2| $) 247 (|has| |#1| (-374)))) (-4131 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-2734 (((-3 $ "failed") $) 281 (-2674 (|has| |#2| (-1173)) (|has| |#1| (-374))))) (-3137 (((-112) $) 268 (-2674 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-1800 (($ $ (-940)) 116)) (-3811 (($ (-1 |#1| (-576)) $) 187)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-3538 (((-112) $) 74)) (-1944 (($ |#1| (-576)) 73) (($ $ (-1103) (-576)) 88) (($ $ (-656 (-1103)) (-656 (-576))) 87)) (-3124 (($ $ $) 276 (-2674 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-1441 (($ $ $) 275 (-2674 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-4116 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 229 (|has| |#1| (-374)))) (-3744 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-3676 (((-701 |#2|) (-1288 $)) 241 (|has| |#1| (-374))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) 240 (|has| |#1| (-374))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 235 (-2674 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1288 $)) 234 (-2674 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-2081 (($ $) 77)) (-2091 ((|#1| $) 78)) (-3457 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-2021 (($ (-576) |#2|) 288)) (-2046 (((-1179) $) 10)) (-2050 (($ $) 180 (|has| |#1| (-374)))) (-4160 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 183 (-2759 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-978)) (|has| |#1| (-1223)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-15 -4160 (|#1| |#1| (-1197)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3539 (($) 282 (-2674 (|has| |#2| (-1173)) (|has| |#1| (-374))) CONST)) (-1450 (((-1141) $) 11)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 165 (|has| |#1| (-374)))) (-3497 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1788 (($ $) 252 (-2674 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-4236 ((|#2| $) 255 (-2674 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-1644 (((-430 (-1193 $)) (-1193 $)) 258 (-2674 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-4296 (((-430 (-1193 $)) (-1193 $)) 259 (-2674 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-1828 (((-430 $) $) 176 (|has| |#1| (-374)))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 173 (|has| |#1| (-374)))) (-1743 (($ $ (-576)) 110)) (-3475 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-4103 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3282 (((-1178 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1197) |#2|) 228 (-2674 (|has| |#2| (-526 (-1197) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-1197)) (-656 |#2|)) 227 (-2674 (|has| |#2| (-526 (-1197) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-304 |#2|))) 226 (-2674 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-304 |#2|)) 225 (-2674 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ |#2| |#2|) 224 (-2674 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-656 |#2|) (-656 |#2|)) 223 (-2674 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374))))) (-1979 (((-783) $) 169 (|has| |#1| (-374)))) (-2796 ((|#1| $ (-576)) 120) (($ $ $) 96 (|has| (-576) (-1133))) (($ $ |#2|) 222 (-2674 (|has| |#2| (-296 |#2| |#2|)) (|has| |#1| (-374))))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 170 (|has| |#1| (-374)))) (-2774 (($ $ (-1 |#2| |#2|) (-783)) 231 (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) 230 (|has| |#1| (-374))) (($ $) 100 (-2759 (-2674 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) 98 (-2759 (-2674 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) 108 (-2759 (-2674 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1197))) 106 (-2759 (-2674 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-1197) (-783)) 105 (-2759 (-2674 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1197)) (-656 (-783))) 104 (-2759 (-2674 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))))) (-4325 (($ $) 250 (|has| |#1| (-374)))) (-1581 ((|#2| $) 248 (|has| |#1| (-374)))) (-2683 (((-576) $) 76)) (-4060 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-4171 (((-227) $) 266 (-2674 (|has| |#2| (-1043)) (|has| |#1| (-374)))) (((-390) $) 265 (-2674 (|has| |#2| (-1043)) (|has| |#1| (-374)))) (((-548) $) 264 (-2674 (|has| |#2| (-626 (-548))) (|has| |#1| (-374)))) (((-907 (-390)) $) 243 (-2674 (|has| |#2| (-626 (-907 (-390)))) (|has| |#1| (-374)))) (((-907 (-576)) $) 242 (-2674 (|has| |#2| (-626 (-907 (-576)))) (|has| |#1| (-374))))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) 256 (-2674 (-2674 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#1| (-374))))) (-2539 (($ $) 84)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 289) (($ (-1197)) 263 (-2674 (|has| |#2| (-1059 (-1197))) (|has| |#1| (-374)))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-1822 ((|#1| $ (-576)) 71)) (-3390 (((-3 $ "failed") $) 60 (-2759 (-2674 (-2759 (|has| |#2| (-146)) (-2674 (|has| $ (-146)) (|has| |#2| (-928)))) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-3154 (((-783)) 32 T CONST)) (-2396 ((|#1| $) 117)) (-1810 ((|#2| $) 254 (-2674 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-2399 (((-112) $ $) 6)) (-2790 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-1505 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4070 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-576)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-4143 (($ $) 270 (-2674 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2020 (($ $ (-1 |#2| |#2|) (-783)) 233 (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) 232 (|has| |#1| (-374))) (($ $) 99 (-2759 (-2674 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) 97 (-2759 (-2674 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) 107 (-2759 (-2674 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1197))) 103 (-2759 (-2674 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-1197) (-783)) 102 (-2759 (-2674 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1197)) (-656 (-783))) 101 (-2759 (-2674 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))))) (-2990 (((-112) $ $) 274 (-2674 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-2962 (((-112) $ $) 272 (-2674 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-2924 (((-112) $ $) 8)) (-2978 (((-112) $ $) 273 (-2674 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-2949 (((-112) $ $) 271 (-2674 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-3056 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374))) (($ |#2| |#2|) 246 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 221 (|has| |#1| (-374))) (($ |#2| $) 220 (|has| |#1| (-374))) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) (((-1250 |#1| |#2|) (-141) (-1070) (-1279 |t#1|)) (T -1250)) -((-3634 (*1 *2 *1) (-12 (-4 *1 (-1250 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1279 *3)) (-5 *2 (-576)))) (-2021 (*1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *4 (-1070)) (-4 *1 (-1250 *4 *3)) (-4 *3 (-1279 *4)))) (-3707 (*1 *2 *1) (-12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1279 *3)))) (-2257 (*1 *1 *1) (-12 (-4 *1 (-1250 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-1279 *2)))) (-2257 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-1250 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1279 *3)))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1279 *3)))) (-2897 (*1 *2 *1) (|partial| -12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1279 *3))))) -(-13 (-1248 |t#1|) (-1059 |t#2|) (-628 |t#2|) (-10 -8 (-15 -2021 ($ (-576) |t#2|)) (-15 -3634 ((-576) $)) (-15 -3707 (|t#2| $)) (-15 -2257 ($ $)) (-15 -2257 ($ (-576) $)) (-15 -2010 (|t#2| $)) (-15 -2897 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-374)) (-6 (-1013 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-576)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-374)) ((-38 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-374)) ((-111 $ $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) -2760 (-12 (|has| |#1| (-374)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -2760 (-12 (|has| |#1| (-374)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-628 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 #2=(-1197)) -12 (|has| |#1| (-374)) (|has| |#2| (-1059 (-1197)))) ((-628 |#1|) |has| |#1| (-174)) ((-628 |#2|) . T) ((-628 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-876)) . T) ((-174) -2760 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-626 (-227)) -12 (|has| |#1| (-374)) (|has| |#2| (-1043))) ((-626 (-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-1043))) ((-626 (-548)) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-548)))) ((-626 (-907 (-390))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-907 (-390))))) ((-626 (-907 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-907 (-576))))) ((-234 $) -2760 (-12 (|has| |#1| (-374)) (|has| |#2| (-237))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-232 |#2|) |has| |#1| (-374)) ((-238) -2760 (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-237) -2760 (-12 (|has| |#1| (-374)) (|has| |#2| (-237))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-272 |#2|) |has| |#1| (-374)) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 |#2| $) -12 (|has| |#1| (-374)) (|has| |#2| (-296 |#2| |#2|))) ((-296 $ $) |has| (-576) (-1133)) ((-300) -2760 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-319 |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) ((-374) |has| |#1| (-374)) ((-349 |#2|) |has| |#1| (-374)) ((-388 |#2|) |has| |#1| (-374)) ((-412 |#2|) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-526 (-1197) |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-526 (-1197) |#2|))) ((-526 |#2| |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) ((-568) -2760 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 |#2|) |has| |#1| (-374)) ((-658 $) . T) ((-660 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 #3=(-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) ((-660 |#1|) . T) ((-660 |#2|) |has| |#1| (-374)) ((-660 $) . T) ((-652 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 |#2|) |has| |#1| (-374)) ((-652 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-651 #3#) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) ((-651 |#2|) |has| |#1| (-374)) ((-729 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 |#2|) |has| |#1| (-374)) ((-729 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-803) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-804) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-806) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-807) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-832) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-860) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-861) -2760 (-12 (|has| |#1| (-374)) (|has| |#2| (-861))) (-12 (|has| |#1| (-374)) (|has| |#2| (-832)))) ((-864) -2760 (-12 (|has| |#1| (-374)) (|has| |#2| (-861))) (-12 (|has| |#1| (-374)) (|has| |#2| (-832)))) ((-911 $ #4=(-1197)) -2760 (-12 (|has| |#1| (-374)) (|has| |#2| (-919 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1197)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) ((-917 (-1197)) -2760 (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1197)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) ((-919 #4#) -2760 (-12 (|has| |#1| (-374)) (|has| |#2| (-919 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1197)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) ((-901 (-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-901 (-390)))) ((-901 (-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-901 (-576)))) ((-899 |#2|) |has| |#1| (-374)) ((-928) -12 (|has| |#1| (-374)) (|has| |#2| (-928))) ((-994 |#1| #0# (-1103)) . T) ((-939) |has| |#1| (-374)) ((-1013 |#2|) |has| |#1| (-374)) ((-1023) |has| |#1| (-38 (-419 (-576)))) ((-1043) -12 (|has| |#1| (-374)) (|has| |#2| (-1043))) ((-1059 (-419 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-1059 (-576)))) ((-1059 (-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-1059 (-576)))) ((-1059 #2#) -12 (|has| |#1| (-374)) (|has| |#2| (-1059 (-1197)))) ((-1059 |#2|) . T) ((-1072 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1072 |#1|) . T) ((-1072 |#2|) |has| |#1| (-374)) ((-1072 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1077 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1077 |#1|) . T) ((-1077 |#2|) |has| |#1| (-374)) ((-1077 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) -12 (|has| |#1| (-374)) (|has| |#2| (-1173))) ((-1223) |has| |#1| (-38 (-419 (-576)))) ((-1226) |has| |#1| (-38 (-419 (-576)))) ((-1238) . T) ((-1242) |has| |#1| (-374)) ((-1248 |#1|) . T) ((-1266 |#1| #0#) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 81)) (-2575 ((|#2| $) NIL (-12 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-1969 (((-656 (-1103)) $) NIL)) (-3055 (((-1197) $) 100)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2757 (($ $) NIL (|has| |#1| (-568)))) (-3788 (((-112) $) NIL (|has| |#1| (-568)))) (-2326 (($ $ (-576)) 109) (($ $ (-576) (-576)) 111)) (-3669 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 51)) (-3707 ((|#2| $) 11)) (-2897 (((-3 |#2| "failed") $) 35)) (-2010 ((|#2| $) 36)) (-4025 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-3901 (($ $) 182 (|has| |#1| (-38 (-419 (-576)))))) (-4367 (((-3 $ "failed") $ $) NIL)) (-3601 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-2487 (($ $) NIL (|has| |#1| (-374)))) (-3921 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1839 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-4016 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4006 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-3877 (($ $) 178 (|has| |#1| (-38 (-419 (-576)))))) (-3308 (((-576) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-3080 (($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 59)) (-4050 (($ $) 210 (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $) 186 (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) 157) (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-3 (-1197) "failed") $) NIL (-12 (|has| |#2| (-1059 (-1197))) (|has| |#1| (-374))))) (-2860 ((|#2| $) 156) (((-576) $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-1197) $) NIL (-12 (|has| |#2| (-1059 (-1197))) (|has| |#1| (-374))))) (-2257 (($ $) 65) (($ (-576) $) 28)) (-3429 (($ $ $) NIL (|has| |#1| (-374)))) (-2114 (($ $) NIL)) (-2204 (((-701 |#2|) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-1561 (((-3 $ "failed") $) 88)) (-2251 (((-419 (-971 |#1|)) $ (-576)) 124 (|has| |#1| (-568))) (((-419 (-971 |#1|)) $ (-576) (-576)) 126 (|has| |#1| (-568)))) (-1836 (($) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-3441 (($ $ $) NIL (|has| |#1| (-374)))) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-4249 (((-112) $) NIL (|has| |#1| (-374)))) (-2087 (((-112) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-1424 (((-112) $) 74)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| |#2| (-901 (-390))) (|has| |#1| (-374)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| |#2| (-901 (-576))) (|has| |#1| (-374))))) (-3917 (((-576) $) 105) (((-576) $ (-576)) 107)) (-4193 (((-112) $) NIL)) (-2171 (($ $) NIL (|has| |#1| (-374)))) (-1570 ((|#2| $) 165 (|has| |#1| (-374)))) (-2121 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2240 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1173)) (|has| |#1| (-374))))) (-1634 (((-112) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-4116 (($ $ (-940)) 148)) (-1378 (($ (-1 |#1| (-576)) $) 144)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2823 (((-112) $) NIL)) (-1945 (($ |#1| (-576)) 20) (($ $ (-1103) (-576)) NIL) (($ $ (-656 (-1103)) (-656 (-576))) NIL)) (-3125 (($ $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-3133 (($ $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-4117 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-374)))) (-3745 (($ $) 176 (|has| |#1| (-38 (-419 (-576)))))) (-3913 (((-701 |#2|) (-1288 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL (|has| |#1| (-374))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-3458 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2021 (($ (-576) |#2|) 10)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) 159 (|has| |#1| (-374)))) (-1491 (($ $) 228 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 233 (-2760 (-12 (|has| |#1| (-15 -1491 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223)))))) (-3540 (($) NIL (-12 (|has| |#2| (-1173)) (|has| |#1| (-374))) CONST)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2393 (($ $) NIL (-12 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-2443 ((|#2| $) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-4100 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-1811 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-1828 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| |#1| (-374)))) (-1749 (($ $ (-576)) 138)) (-3476 (((-3 $ "failed") $ $) 128 (|has| |#1| (-568)))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4104 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-3284 (((-1178 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1197) |#2|) NIL (-12 (|has| |#2| (-526 (-1197) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-1197)) (-656 |#2|)) NIL (-12 (|has| |#2| (-526 (-1197) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374))))) (-1967 (((-783) $) NIL (|has| |#1| (-374)))) (-2797 ((|#1| $ (-576)) 103) (($ $ $) 90 (|has| (-576) (-1133))) (($ $ |#2|) NIL (-12 (|has| |#2| (-296 |#2| |#2|)) (|has| |#1| (-374))))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#1| (-374)))) (-2775 (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-374))) (($ $) 149 (-2760 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2760 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) 153 (-2760 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2760 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2760 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2760 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))))) (-2143 (($ $) NIL (|has| |#1| (-374)))) (-1581 ((|#2| $) 166 (|has| |#1| (-374)))) (-3634 (((-576) $) 12)) (-4061 (($ $) 212 (|has| |#1| (-38 (-419 (-576)))))) (-3930 (($ $) 188 (|has| |#1| (-38 (-419 (-576)))))) (-4037 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) 184 (|has| |#1| (-38 (-419 (-576)))))) (-4014 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-3889 (($ $) 180 (|has| |#1| (-38 (-419 (-576)))))) (-4172 (((-227) $) NIL (-12 (|has| |#2| (-1043)) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| |#2| (-1043)) (|has| |#1| (-374)))) (((-548) $) NIL (-12 (|has| |#2| (-626 (-548))) (|has| |#1| (-374)))) (((-907 (-390)) $) NIL (-12 (|has| |#2| (-626 (-907 (-390)))) (|has| |#1| (-374)))) (((-907 (-576)) $) NIL (-12 (|has| |#2| (-626 (-907 (-576)))) (|has| |#1| (-374))))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928)) (|has| |#1| (-374))))) (-3126 (($ $) 136)) (-3570 (((-876) $) 266) (($ (-576)) 24) (($ |#1|) 22 (|has| |#1| (-174))) (($ |#2|) 21) (($ (-1197)) NIL (-12 (|has| |#2| (-1059 (-1197))) (|has| |#1| (-374)))) (($ (-419 (-576))) 169 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-3177 ((|#1| $ (-576)) 85)) (-4336 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| $ (-146)) (|has| |#2| (-928)) (|has| |#1| (-374))) (-12 (|has| |#2| (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-3996 (((-783)) 155 T CONST)) (-2396 ((|#1| $) 102)) (-4118 ((|#2| $) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-4055 (((-112) $ $) NIL)) (-2791 (($ $) 218 (|has| |#1| (-38 (-419 (-576)))))) (-3961 (($ $) 194 (|has| |#1| (-38 (-419 (-576)))))) (-2672 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4071 (($ $) 214 (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) 190 (|has| |#1| (-38 (-419 (-576)))))) (-2815 (($ $) 222 (|has| |#1| (-38 (-419 (-576)))))) (-3983 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-4166 ((|#1| $ (-576)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3570 (|#1| (-1197))))))) (-4388 (($ $) 224 (|has| |#1| (-38 (-419 (-576)))))) (-3995 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-2803 (($ $) 220 (|has| |#1| (-38 (-419 (-576)))))) (-3974 (($ $) 196 (|has| |#1| (-38 (-419 (-576)))))) (-4083 (($ $) 216 (|has| |#1| (-38 (-419 (-576)))))) (-3951 (($ $) 192 (|has| |#1| (-38 (-419 (-576)))))) (-2122 (($ $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2721 (($) 13 T CONST)) (-2732 (($) 18 T CONST)) (-2020 (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-374))) (($ $) NIL (-2760 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2760 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) NIL (-2760 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2760 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2760 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2760 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))))) (-2992 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-2964 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-2925 (((-112) $ $) 72)) (-2978 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-2950 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-3057 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374))) (($ |#2| |#2|) 164 (|has| |#1| (-374)))) (-3044 (($ $) 227) (($ $ $) 78)) (-3030 (($ $ $) 76)) (** (($ $ (-940)) NIL) (($ $ (-783)) 84) (($ $ (-576)) 160 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 172 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-374))) (($ |#2| $) 161 (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +((-2683 (*1 *2 *1) (-12 (-4 *1 (-1250 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1279 *3)) (-5 *2 (-576)))) (-2021 (*1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *4 (-1070)) (-4 *1 (-1250 *4 *3)) (-4 *3 (-1279 *4)))) (-2131 (*1 *2 *1) (-12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1279 *3)))) (-2926 (*1 *1 *1) (-12 (-4 *1 (-1250 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-1279 *2)))) (-2926 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-1250 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1279 *3)))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1279 *3)))) (-3008 (*1 *2 *1) (|partial| -12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1279 *3))))) +(-13 (-1248 |t#1|) (-1059 |t#2|) (-628 |t#2|) (-10 -8 (-15 -2021 ($ (-576) |t#2|)) (-15 -2683 ((-576) $)) (-15 -2131 (|t#2| $)) (-15 -2926 ($ $)) (-15 -2926 ($ (-576) $)) (-15 -2010 (|t#2| $)) (-15 -3008 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-374)) (-6 (-1013 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-576)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-374)) ((-38 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-374)) ((-111 $ $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) -2759 (-12 (|has| |#1| (-374)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -2759 (-12 (|has| |#1| (-374)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-628 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 #2=(-1197)) -12 (|has| |#1| (-374)) (|has| |#2| (-1059 (-1197)))) ((-628 |#1|) |has| |#1| (-174)) ((-628 |#2|) . T) ((-628 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-876)) . T) ((-174) -2759 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-626 (-227)) -12 (|has| |#1| (-374)) (|has| |#2| (-1043))) ((-626 (-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-1043))) ((-626 (-548)) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-548)))) ((-626 (-907 (-390))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-907 (-390))))) ((-626 (-907 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-907 (-576))))) ((-234 $) -2759 (-12 (|has| |#1| (-374)) (|has| |#2| (-237))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-232 |#2|) |has| |#1| (-374)) ((-238) -2759 (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-237) -2759 (-12 (|has| |#1| (-374)) (|has| |#2| (-237))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-272 |#2|) |has| |#1| (-374)) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 |#2| $) -12 (|has| |#1| (-374)) (|has| |#2| (-296 |#2| |#2|))) ((-296 $ $) |has| (-576) (-1133)) ((-300) -2759 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-319 |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) ((-374) |has| |#1| (-374)) ((-349 |#2|) |has| |#1| (-374)) ((-388 |#2|) |has| |#1| (-374)) ((-412 |#2|) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-526 (-1197) |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-526 (-1197) |#2|))) ((-526 |#2| |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) ((-568) -2759 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 |#2|) |has| |#1| (-374)) ((-658 $) . T) ((-660 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 #3=(-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) ((-660 |#1|) . T) ((-660 |#2|) |has| |#1| (-374)) ((-660 $) . T) ((-652 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 |#2|) |has| |#1| (-374)) ((-652 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-651 #3#) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) ((-651 |#2|) |has| |#1| (-374)) ((-729 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 |#2|) |has| |#1| (-374)) ((-729 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-803) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-804) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-806) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-807) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-832) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-860) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-861) -2759 (-12 (|has| |#1| (-374)) (|has| |#2| (-861))) (-12 (|has| |#1| (-374)) (|has| |#2| (-832)))) ((-864) -2759 (-12 (|has| |#1| (-374)) (|has| |#2| (-861))) (-12 (|has| |#1| (-374)) (|has| |#2| (-832)))) ((-911 $ #4=(-1197)) -2759 (-12 (|has| |#1| (-374)) (|has| |#2| (-919 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1197)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) ((-917 (-1197)) -2759 (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1197)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) ((-919 #4#) -2759 (-12 (|has| |#1| (-374)) (|has| |#2| (-919 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1197)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) ((-901 (-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-901 (-390)))) ((-901 (-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-901 (-576)))) ((-899 |#2|) |has| |#1| (-374)) ((-928) -12 (|has| |#1| (-374)) (|has| |#2| (-928))) ((-994 |#1| #0# (-1103)) . T) ((-939) |has| |#1| (-374)) ((-1013 |#2|) |has| |#1| (-374)) ((-1023) |has| |#1| (-38 (-419 (-576)))) ((-1043) -12 (|has| |#1| (-374)) (|has| |#2| (-1043))) ((-1059 (-419 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-1059 (-576)))) ((-1059 (-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-1059 (-576)))) ((-1059 #2#) -12 (|has| |#1| (-374)) (|has| |#2| (-1059 (-1197)))) ((-1059 |#2|) . T) ((-1072 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1072 |#1|) . T) ((-1072 |#2|) |has| |#1| (-374)) ((-1072 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1077 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1077 |#1|) . T) ((-1077 |#2|) |has| |#1| (-374)) ((-1077 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) -12 (|has| |#1| (-374)) (|has| |#2| (-1173))) ((-1223) |has| |#1| (-38 (-419 (-576)))) ((-1226) |has| |#1| (-38 (-419 (-576)))) ((-1238) . T) ((-1242) |has| |#1| (-374)) ((-1248 |#1|) . T) ((-1266 |#1| #0#) . T)) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 81)) (-3110 ((|#2| $) NIL (-12 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-1969 (((-656 (-1103)) $) NIL)) (-3054 (((-1197) $) 100)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4195 (($ $) NIL (|has| |#1| (-568)))) (-1760 (((-112) $) NIL (|has| |#1| (-568)))) (-2408 (($ $ (-576)) 109) (($ $ (-576) (-576)) 111)) (-3064 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 51)) (-2131 ((|#2| $) 11)) (-3008 (((-3 |#2| "failed") $) 35)) (-2010 ((|#2| $) 36)) (-4024 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) 182 (|has| |#1| (-38 (-419 (-576)))))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3646 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-3444 (($ $) NIL (|has| |#1| (-374)))) (-3760 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1840 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-3330 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4005 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) 178 (|has| |#1| (-38 (-419 (-576)))))) (-3906 (((-576) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-3079 (($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 59)) (-4049 (($ $) 210 (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) 186 (|has| |#1| (-38 (-419 (-576)))))) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) 157) (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-3 (-1197) "failed") $) NIL (-12 (|has| |#2| (-1059 (-1197))) (|has| |#1| (-374))))) (-2859 ((|#2| $) 156) (((-576) $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-1197) $) NIL (-12 (|has| |#2| (-1059 (-1197))) (|has| |#1| (-374))))) (-2926 (($ $) 65) (($ (-576) $) 28)) (-3428 (($ $ $) NIL (|has| |#1| (-374)))) (-2114 (($ $) NIL)) (-3674 (((-701 |#2|) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-3673 (((-3 $ "failed") $) 88)) (-2862 (((-419 (-971 |#1|)) $ (-576)) 124 (|has| |#1| (-568))) (((-419 (-971 |#1|)) $ (-576) (-576)) 126 (|has| |#1| (-568)))) (-1836 (($) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-3440 (($ $ $) NIL (|has| |#1| (-374)))) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3833 (((-112) $) NIL (|has| |#1| (-374)))) (-1866 (((-112) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2116 (((-112) $) 74)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| |#2| (-901 (-390))) (|has| |#1| (-374)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| |#2| (-901 (-576))) (|has| |#1| (-374))))) (-3726 (((-576) $) 105) (((-576) $ (-576)) 107)) (-1351 (((-112) $) NIL)) (-3328 (($ $) NIL (|has| |#1| (-374)))) (-1570 ((|#2| $) 165 (|has| |#1| (-374)))) (-4131 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2734 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1173)) (|has| |#1| (-374))))) (-3137 (((-112) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-1800 (($ $ (-940)) 148)) (-3811 (($ (-1 |#1| (-576)) $) 144)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3538 (((-112) $) NIL)) (-1944 (($ |#1| (-576)) 20) (($ $ (-1103) (-576)) NIL) (($ $ (-656 (-1103)) (-656 (-576))) NIL)) (-3124 (($ $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-1441 (($ $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-4116 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-374)))) (-3744 (($ $) 176 (|has| |#1| (-38 (-419 (-576)))))) (-3676 (((-701 |#2|) (-1288 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL (|has| |#1| (-374))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2021 (($ (-576) |#2|) 10)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) 159 (|has| |#1| (-374)))) (-4160 (($ $) 228 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 233 (-2759 (-12 (|has| |#1| (-15 -4160 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223)))))) (-3539 (($) NIL (-12 (|has| |#2| (-1173)) (|has| |#1| (-374))) CONST)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3497 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1788 (($ $) NIL (-12 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-4236 ((|#2| $) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-1644 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-4296 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-1828 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-1743 (($ $ (-576)) 138)) (-3475 (((-3 $ "failed") $ $) 128 (|has| |#1| (-568)))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4103 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-3282 (((-1178 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1197) |#2|) NIL (-12 (|has| |#2| (-526 (-1197) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-1197)) (-656 |#2|)) NIL (-12 (|has| |#2| (-526 (-1197) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374))))) (-1979 (((-783) $) NIL (|has| |#1| (-374)))) (-2796 ((|#1| $ (-576)) 103) (($ $ $) 90 (|has| (-576) (-1133))) (($ $ |#2|) NIL (-12 (|has| |#2| (-296 |#2| |#2|)) (|has| |#1| (-374))))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#1| (-374)))) (-2774 (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-374))) (($ $) 149 (-2759 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2759 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) 153 (-2759 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2759 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2759 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2759 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))))) (-4325 (($ $) NIL (|has| |#1| (-374)))) (-1581 ((|#2| $) 166 (|has| |#1| (-374)))) (-2683 (((-576) $) 12)) (-4060 (($ $) 212 (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) 188 (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) 184 (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) 180 (|has| |#1| (-38 (-419 (-576)))))) (-4171 (((-227) $) NIL (-12 (|has| |#2| (-1043)) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| |#2| (-1043)) (|has| |#1| (-374)))) (((-548) $) NIL (-12 (|has| |#2| (-626 (-548))) (|has| |#1| (-374)))) (((-907 (-390)) $) NIL (-12 (|has| |#2| (-626 (-907 (-390)))) (|has| |#1| (-374)))) (((-907 (-576)) $) NIL (-12 (|has| |#2| (-626 (-907 (-576)))) (|has| |#1| (-374))))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928)) (|has| |#1| (-374))))) (-2539 (($ $) 136)) (-3569 (((-876) $) 266) (($ (-576)) 24) (($ |#1|) 22 (|has| |#1| (-174))) (($ |#2|) 21) (($ (-1197)) NIL (-12 (|has| |#2| (-1059 (-1197))) (|has| |#1| (-374)))) (($ (-419 (-576))) 169 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-1822 ((|#1| $ (-576)) 85)) (-3390 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| $ (-146)) (|has| |#2| (-928)) (|has| |#1| (-374))) (-12 (|has| |#2| (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-3154 (((-783)) 155 T CONST)) (-2396 ((|#1| $) 102)) (-1810 ((|#2| $) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-2399 (((-112) $ $) NIL)) (-2790 (($ $) 218 (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) 194 (|has| |#1| (-38 (-419 (-576)))))) (-1505 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4070 (($ $) 214 (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) 190 (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) 222 (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-576)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) 224 (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) 220 (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) 196 (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) 216 (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) 192 (|has| |#1| (-38 (-419 (-576)))))) (-4143 (($ $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2721 (($) 13 T CONST)) (-2731 (($) 18 T CONST)) (-2020 (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-374))) (($ $) NIL (-2759 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2759 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) NIL (-2759 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2759 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2759 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2759 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))))) (-2990 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-2962 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-2924 (((-112) $ $) 72)) (-2978 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-2949 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374))) (($ |#2| |#2|) 164 (|has| |#1| (-374)))) (-3043 (($ $) 227) (($ $ $) 78)) (-3029 (($ $ $) 76)) (** (($ $ (-940)) NIL) (($ $ (-783)) 84) (($ $ (-576)) 160 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 172 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-374))) (($ |#2| $) 161 (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) (((-1251 |#1| |#2|) (-1250 |#1| |#2|) (-1070) (-1279 |#1|)) (T -1251)) NIL (-1250 |#1| |#2|) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2575 (((-1280 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-1969 (((-656 (-1103)) $) NIL)) (-3055 (((-1197) $) 10)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2757 (($ $) NIL (-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-3788 (((-112) $) NIL (-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2326 (($ $ (-576)) NIL) (($ $ (-576) (-576)) NIL)) (-3669 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) NIL)) (-3707 (((-1280 |#1| |#2| |#3|) $) NIL)) (-2897 (((-3 (-1280 |#1| |#2| |#3|) "failed") $) NIL)) (-2010 (((-1280 |#1| |#2| |#3|) $) NIL)) (-4025 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3901 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4367 (((-3 $ "failed") $ $) NIL)) (-3601 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-2487 (($ $) NIL (|has| |#1| (-374)))) (-3921 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1839 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-4016 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4006 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3877 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3308 (((-576) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-3080 (($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) NIL)) (-4050 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-1280 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-1197))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374)))) (((-3 (-576) "failed") $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374))))) (-2860 (((-1280 |#1| |#2| |#3|) $) NIL) (((-1197) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-1197))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374)))) (((-576) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374))))) (-2257 (($ $) NIL) (($ (-576) $) NIL)) (-3429 (($ $ $) NIL (|has| |#1| (-374)))) (-2114 (($ $) NIL)) (-2204 (((-701 (-1280 |#1| |#2| |#3|)) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2590 (-701 (-1280 |#1| |#2| |#3|))) (|:| |vec| (-1288 (-1280 |#1| |#2| |#3|)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-1561 (((-3 $ "failed") $) NIL)) (-2251 (((-419 (-971 |#1|)) $ (-576)) NIL (|has| |#1| (-568))) (((-419 (-971 |#1|)) $ (-576) (-576)) NIL (|has| |#1| (-568)))) (-1836 (($) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-3441 (($ $ $) NIL (|has| |#1| (-374)))) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-4249 (((-112) $) NIL (|has| |#1| (-374)))) (-2087 (((-112) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-1424 (((-112) $) NIL)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-901 (-390))) (|has| |#1| (-374)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-901 (-576))) (|has| |#1| (-374))))) (-3917 (((-576) $) NIL) (((-576) $ (-576)) NIL)) (-4193 (((-112) $) NIL)) (-2171 (($ $) NIL (|has| |#1| (-374)))) (-1570 (((-1280 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374)))) (-2121 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2240 (((-3 $ "failed") $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1173)) (|has| |#1| (-374))))) (-1634 (((-112) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-4116 (($ $ (-940)) NIL)) (-1378 (($ (-1 |#1| (-576)) $) NIL)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2823 (((-112) $) NIL)) (-1945 (($ |#1| (-576)) 18) (($ $ (-1103) (-576)) NIL) (($ $ (-656 (-1103)) (-656 (-576))) NIL)) (-3125 (($ $ $) NIL (-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-3133 (($ $ $) NIL (-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-4117 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-374)))) (-3745 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3913 (((-701 (-1280 |#1| |#2| |#3|)) (-1288 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2590 (-701 (-1280 |#1| |#2| |#3|))) (|:| |vec| (-1288 (-1280 |#1| |#2| |#3|)))) (-1288 $) $) NIL (|has| |#1| (-374))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1288 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-3458 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2021 (($ (-576) (-1280 |#1| |#2| |#3|)) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL (|has| |#1| (-374)))) (-1491 (($ $) 27 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) NIL (-2760 (-12 (|has| |#1| (-15 -1491 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 28 (|has| |#1| (-38 (-419 (-576)))))) (-3540 (($) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1173)) (|has| |#1| (-374))) CONST)) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2393 (($ $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-2443 (((-1280 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-4100 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-1811 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-1828 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| |#1| (-374)))) (-1749 (($ $ (-576)) NIL)) (-3476 (((-3 $ "failed") $ $) NIL (-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4104 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3284 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1197) (-1280 |#1| |#2| |#3|)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-526 (-1197) (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1197)) (-656 (-1280 |#1| |#2| |#3|))) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-526 (-1197) (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-304 (-1280 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-319 (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-304 (-1280 |#1| |#2| |#3|))) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-319 (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-319 (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1280 |#1| |#2| |#3|)) (-656 (-1280 |#1| |#2| |#3|))) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-319 (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-1967 (((-783) $) NIL (|has| |#1| (-374)))) (-2797 ((|#1| $ (-576)) NIL) (($ $ $) NIL (|has| (-576) (-1133))) (($ $ (-1280 |#1| |#2| |#3|)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-296 (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#1| (-374)))) (-2775 (($ $ (-1 (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1284 |#2|)) 26) (($ $) 25 (-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) NIL (-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))))) (-2143 (($ $) NIL (|has| |#1| (-374)))) (-1581 (((-1280 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374)))) (-3634 (((-576) $) NIL)) (-4061 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3930 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4037 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4014 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3889 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4172 (((-548) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-626 (-548))) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1043)) (|has| |#1| (-374)))) (((-227) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1043)) (|has| |#1| (-374)))) (((-907 (-390)) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-626 (-907 (-390)))) (|has| |#1| (-374)))) (((-907 (-576)) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-626 (-907 (-576)))) (|has| |#1| (-374))))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-3126 (($ $) NIL)) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1280 |#1| |#2| |#3|)) NIL) (($ (-1284 |#2|)) 24) (($ (-1197)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-1197))) (|has| |#1| (-374)))) (($ $) NIL (-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568)))) (($ (-419 (-576))) NIL (-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374))) (|has| |#1| (-38 (-419 (-576))))))) (-3177 ((|#1| $ (-576)) NIL)) (-4336 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| $ (-146)) (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-3996 (((-783)) NIL T CONST)) (-2396 ((|#1| $) 11)) (-4118 (((-1280 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-4055 (((-112) $ $) NIL)) (-2791 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3961 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2672 (((-112) $ $) NIL (-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4071 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2815 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3983 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4166 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3570 (|#1| (-1197))))))) (-4388 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3995 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2803 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3974 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4083 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3951 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2122 (($ $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2721 (($) 20 T CONST)) (-2732 (($) 15 T CONST)) (-2020 (($ $ (-1 (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1284 |#2|)) NIL) (($ $) NIL (-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) NIL (-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))))) (-2992 (((-112) $ $) NIL (-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-2964 (((-112) $ $) NIL (-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-2925 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-2950 (((-112) $ $) NIL (-2760 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-3057 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374))) (($ (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|)) NIL (|has| |#1| (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) 22)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1280 |#1| |#2| |#3|)) NIL (|has| |#1| (-374))) (($ (-1280 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1252 |#1| |#2| |#3|) (-13 (-1250 |#1| (-1280 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3570 ($ (-1284 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1491 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -1252)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1252 *3 *4 *5)) (-4 *3 (-1070)) (-14 *5 *3))) (-1491 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1252 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) -(-13 (-1250 |#1| (-1280 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3570 ($ (-1284 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1491 ($ $ (-1284 |#2|))) |%noBranch|))) -((-1589 (((-2 (|:| |contp| (-576)) (|:| -2761 (-656 (-2 (|:| |irr| |#1|) (|:| -2567 (-576)))))) |#1| (-112)) 13)) (-4391 (((-430 |#1|) |#1|) 26)) (-1828 (((-430 |#1|) |#1|) 24))) -(((-1253 |#1|) (-10 -7 (-15 -1828 ((-430 |#1|) |#1|)) (-15 -4391 ((-430 |#1|) |#1|)) (-15 -1589 ((-2 (|:| |contp| (-576)) (|:| -2761 (-656 (-2 (|:| |irr| |#1|) (|:| -2567 (-576)))))) |#1| (-112)))) (-1264 (-576))) (T -1253)) -((-1589 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -2761 (-656 (-2 (|:| |irr| *3) (|:| -2567 (-576))))))) (-5 *1 (-1253 *3)) (-4 *3 (-1264 (-576))))) (-4391 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1253 *3)) (-4 *3 (-1264 (-576))))) (-1828 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1253 *3)) (-4 *3 (-1264 (-576)))))) -(-10 -7 (-15 -1828 ((-430 |#1|) |#1|)) (-15 -4391 ((-430 |#1|) |#1|)) (-15 -1589 ((-2 (|:| |contp| (-576)) (|:| -2761 (-656 (-2 (|:| |irr| |#1|) (|:| -2567 (-576)))))) |#1| (-112)))) -((-4117 (((-1178 |#2|) (-1 |#2| |#1|) (-1255 |#1|)) 23 (|has| |#1| (-860))) (((-1255 |#2|) (-1 |#2| |#1|) (-1255 |#1|)) 17))) -(((-1254 |#1| |#2|) (-10 -7 (-15 -4117 ((-1255 |#2|) (-1 |#2| |#1|) (-1255 |#1|))) (IF (|has| |#1| (-860)) (-15 -4117 ((-1178 |#2|) (-1 |#2| |#1|) (-1255 |#1|))) |%noBranch|)) (-1238) (-1238)) (T -1254)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1255 *5)) (-4 *5 (-860)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1178 *6)) (-5 *1 (-1254 *5 *6)))) (-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1255 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1255 *6)) (-5 *1 (-1254 *5 *6))))) -(-10 -7 (-15 -4117 ((-1255 |#2|) (-1 |#2| |#1|) (-1255 |#1|))) (IF (|has| |#1| (-860)) (-15 -4117 ((-1178 |#2|) (-1 |#2| |#1|) (-1255 |#1|))) |%noBranch|)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-3534 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-4117 (((-1178 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-860)))) (-3848 ((|#1| $) 15)) (-3113 ((|#1| $) 12)) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-4220 (((-576) $) 19)) (-2319 ((|#1| $) 18)) (-4230 ((|#1| $) 13)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3831 (((-112) $) 17)) (-1942 (((-1178 |#1|) $) 41 (|has| |#1| (-860))) (((-1178 |#1|) (-656 $)) 40 (|has| |#1| (-860)))) (-4172 (($ |#1|) 26)) (-3570 (($ (-1115 |#1|)) 25) (((-876) $) 37 (|has| |#1| (-1121)))) (-4055 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-1785 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2669 (($ $ (-576)) 14)) (-2925 (((-112) $ $) 30 (|has| |#1| (-1121))))) -(((-1255 |#1|) (-13 (-1114 |#1|) (-10 -8 (-15 -1785 ($ |#1|)) (-15 -3534 ($ |#1|)) (-15 -3570 ($ (-1115 |#1|))) (-15 -3831 ((-112) $)) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1116 |#1| (-1178 |#1|))) |%noBranch|))) (-1238)) (T -1255)) -((-1785 (*1 *1 *2) (-12 (-5 *1 (-1255 *2)) (-4 *2 (-1238)))) (-3534 (*1 *1 *2) (-12 (-5 *1 (-1255 *2)) (-4 *2 (-1238)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-1115 *3)) (-4 *3 (-1238)) (-5 *1 (-1255 *3)))) (-3831 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1255 *3)) (-4 *3 (-1238))))) -(-13 (-1114 |#1|) (-10 -8 (-15 -1785 ($ |#1|)) (-15 -3534 ($ |#1|)) (-15 -3570 ($ (-1115 |#1|))) (-15 -3831 ((-112) $)) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1116 |#1| (-1178 |#1|))) |%noBranch|))) -((-4117 (((-1261 |#3| |#4|) (-1 |#4| |#2|) (-1261 |#1| |#2|)) 15))) -(((-1256 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4117 ((-1261 |#3| |#4|) (-1 |#4| |#2|) (-1261 |#1| |#2|)))) (-1197) (-1070) (-1197) (-1070)) (T -1256)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1261 *5 *6)) (-14 *5 (-1197)) (-4 *6 (-1070)) (-4 *8 (-1070)) (-5 *2 (-1261 *7 *8)) (-5 *1 (-1256 *5 *6 *7 *8)) (-14 *7 (-1197))))) -(-10 -7 (-15 -4117 ((-1261 |#3| |#4|) (-1 |#4| |#2|) (-1261 |#1| |#2|)))) -((-2435 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4173 ((|#1| |#3|) 13)) (-2206 ((|#3| |#3|) 19))) -(((-1257 |#1| |#2| |#3|) (-10 -7 (-15 -4173 (|#1| |#3|)) (-15 -2206 (|#3| |#3|)) (-15 -2435 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-568) (-1013 |#1|) (-1264 |#2|)) (T -1257)) -((-2435 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1257 *4 *5 *3)) (-4 *3 (-1264 *5)))) (-2206 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *4 (-1013 *3)) (-5 *1 (-1257 *3 *4 *2)) (-4 *2 (-1264 *4)))) (-4173 (*1 *2 *3) (-12 (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-1257 *2 *4 *3)) (-4 *3 (-1264 *4))))) -(-10 -7 (-15 -4173 (|#1| |#3|)) (-15 -2206 (|#3| |#3|)) (-15 -2435 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-2710 (((-3 |#2| "failed") |#2| (-783) |#1|) 35)) (-4431 (((-3 |#2| "failed") |#2| (-783)) 36)) (-2691 (((-3 (-2 (|:| -4240 |#2|) (|:| -4250 |#2|)) "failed") |#2|) 50)) (-2505 (((-656 |#2|) |#2|) 52)) (-1792 (((-3 |#2| "failed") |#2| |#2|) 46))) -(((-1258 |#1| |#2|) (-10 -7 (-15 -4431 ((-3 |#2| "failed") |#2| (-783))) (-15 -2710 ((-3 |#2| "failed") |#2| (-783) |#1|)) (-15 -1792 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2691 ((-3 (-2 (|:| -4240 |#2|) (|:| -4250 |#2|)) "failed") |#2|)) (-15 -2505 ((-656 |#2|) |#2|))) (-13 (-568) (-148)) (-1264 |#1|)) (T -1258)) -((-2505 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-656 *3)) (-5 *1 (-1258 *4 *3)) (-4 *3 (-1264 *4)))) (-2691 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| -4240 *3) (|:| -4250 *3))) (-5 *1 (-1258 *4 *3)) (-4 *3 (-1264 *4)))) (-1792 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1258 *3 *2)) (-4 *2 (-1264 *3)))) (-2710 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1258 *4 *2)) (-4 *2 (-1264 *4)))) (-4431 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1258 *4 *2)) (-4 *2 (-1264 *4))))) -(-10 -7 (-15 -4431 ((-3 |#2| "failed") |#2| (-783))) (-15 -2710 ((-3 |#2| "failed") |#2| (-783) |#1|)) (-15 -1792 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2691 ((-3 (-2 (|:| -4240 |#2|) (|:| -4250 |#2|)) "failed") |#2|)) (-15 -2505 ((-656 |#2|) |#2|))) -((-2188 (((-3 (-2 (|:| -2715 |#2|) (|:| -3624 |#2|)) "failed") |#2| |#2|) 30))) -(((-1259 |#1| |#2|) (-10 -7 (-15 -2188 ((-3 (-2 (|:| -2715 |#2|) (|:| -3624 |#2|)) "failed") |#2| |#2|))) (-568) (-1264 |#1|)) (T -1259)) -((-2188 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -2715 *3) (|:| -3624 *3))) (-5 *1 (-1259 *4 *3)) (-4 *3 (-1264 *4))))) -(-10 -7 (-15 -2188 ((-3 (-2 (|:| -2715 |#2|) (|:| -3624 |#2|)) "failed") |#2| |#2|))) -((-2628 ((|#2| |#2| |#2|) 22)) (-1641 ((|#2| |#2| |#2|) 36)) (-2277 ((|#2| |#2| |#2| (-783) (-783)) 44))) -(((-1260 |#1| |#2|) (-10 -7 (-15 -2628 (|#2| |#2| |#2|)) (-15 -1641 (|#2| |#2| |#2|)) (-15 -2277 (|#2| |#2| |#2| (-783) (-783)))) (-1070) (-1264 |#1|)) (T -1260)) -((-2277 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1070)) (-5 *1 (-1260 *4 *2)) (-4 *2 (-1264 *4)))) (-1641 (*1 *2 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-1260 *3 *2)) (-4 *2 (-1264 *3)))) (-2628 (*1 *2 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-1260 *3 *2)) (-4 *2 (-1264 *3))))) -(-10 -7 (-15 -2628 (|#2| |#2| |#2|)) (-15 -1641 (|#2| |#2| |#2|)) (-15 -2277 (|#2| |#2| |#2| (-783) (-783)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-2516 (((-1288 |#2|) $ (-783)) NIL)) (-1969 (((-656 (-1103)) $) NIL)) (-3591 (($ (-1193 |#2|)) NIL)) (-1798 (((-1193 $) $ (-1103)) NIL) (((-1193 |#2|) $) NIL)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2757 (($ $) NIL (|has| |#2| (-568)))) (-3788 (((-112) $) NIL (|has| |#2| (-568)))) (-3543 (((-783) $) NIL) (((-783) $ (-656 (-1103))) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3049 (($ $ $) NIL (|has| |#2| (-568)))) (-3601 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-2487 (($ $) NIL (|has| |#2| (-464)))) (-3921 (((-430 $) $) NIL (|has| |#2| (-464)))) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-4016 (((-112) $ $) NIL (|has| |#2| (-374)))) (-1533 (($ $ (-783)) NIL)) (-2266 (($ $ (-783)) NIL)) (-2772 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-464)))) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-1103) "failed") $) NIL)) (-2860 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-1103) $) NIL)) (-3230 (($ $ $ (-1103)) NIL (|has| |#2| (-174))) ((|#2| $ $) NIL (|has| |#2| (-174)))) (-3429 (($ $ $) NIL (|has| |#2| (-374)))) (-2114 (($ $) NIL)) (-2204 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-3441 (($ $ $) NIL (|has| |#2| (-374)))) (-1898 (($ $ $) NIL)) (-1804 (($ $ $) NIL (|has| |#2| (-568)))) (-2865 (((-2 (|:| -1714 |#2|) (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#2| (-568)))) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL (|has| |#2| (-374)))) (-3767 (($ $) NIL (|has| |#2| (-464))) (($ $ (-1103)) NIL (|has| |#2| (-464)))) (-2103 (((-656 $) $) NIL)) (-4249 (((-112) $) NIL (|has| |#2| (-928)))) (-2431 (($ $ |#2| (-783) $) NIL)) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1103) (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1103) (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-3917 (((-783) $ $) NIL (|has| |#2| (-568)))) (-4193 (((-112) $) NIL)) (-2217 (((-783) $) NIL)) (-2240 (((-3 $ "failed") $) NIL (|has| |#2| (-1173)))) (-1955 (($ (-1193 |#2|) (-1103)) NIL) (($ (-1193 $) (-1103)) NIL)) (-4116 (($ $ (-783)) NIL)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-1608 (((-656 $) $) NIL)) (-2823 (((-112) $) NIL)) (-1945 (($ |#2| (-783)) 18) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-4130 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $ (-1103)) NIL) (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL)) (-3751 (((-783) $) NIL) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-2999 (($ (-1 (-783) (-783)) $) NIL)) (-4117 (($ (-1 |#2| |#2|) $) NIL)) (-1732 (((-1193 |#2|) $) NIL)) (-3721 (((-3 (-1103) "failed") $) NIL)) (-3913 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-2081 (($ $) NIL)) (-2091 ((|#2| $) NIL)) (-3458 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-3699 (((-1179) $) NIL)) (-2015 (((-2 (|:| -2715 $) (|:| -3624 $)) $ (-783)) NIL)) (-1385 (((-3 (-656 $) "failed") $) NIL)) (-1690 (((-3 (-656 $) "failed") $) NIL)) (-2040 (((-3 (-2 (|:| |var| (-1103)) (|:| -3422 (-783))) "failed") $) NIL)) (-1491 (($ $) NIL (|has| |#2| (-38 (-419 (-576)))))) (-3540 (($) NIL (|has| |#2| (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) NIL)) (-2070 ((|#2| $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#2| (-464)))) (-3498 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2598 (($ $ (-783) |#2| $) NIL)) (-4100 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#2| (-928)))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| |#2| (-374)))) (-3476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-3284 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1103) |#2|) NIL) (($ $ (-656 (-1103)) (-656 |#2|)) NIL) (($ $ (-1103) $) NIL) (($ $ (-656 (-1103)) (-656 $)) NIL)) (-1967 (((-783) $) NIL (|has| |#2| (-374)))) (-2797 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#2| (-568))) ((|#2| (-419 $) |#2|) NIL (|has| |#2| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#2| (-568)))) (-4177 (((-3 $ "failed") $ (-783)) NIL)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#2| (-374)))) (-4352 (($ $ (-1103)) NIL (|has| |#2| (-174))) ((|#2| $) NIL (|has| |#2| (-174)))) (-2775 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|) $) NIL) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-3634 (((-783) $) NIL) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-4172 (((-907 (-390)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-1103) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-2457 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-1103)) NIL (|has| |#2| (-464)))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928))))) (-2507 (((-3 $ "failed") $ $) NIL (|has| |#2| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#2| (-568)))) (-3570 (((-876) $) 13) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-1103)) NIL) (($ (-1284 |#1|)) 20) (($ (-419 (-576))) NIL (-2760 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-1618 (((-656 |#2|) $) NIL)) (-3177 ((|#2| $ (-783)) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-4336 (((-3 $ "failed") $) NIL (-2760 (-12 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#2| (-146))))) (-3996 (((-783)) NIL T CONST)) (-2541 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2721 (($) NIL T CONST)) (-2732 (($) 14 T CONST)) (-2020 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1261 |#1| |#2|) (-13 (-1264 |#2|) (-628 (-1284 |#1|)) (-10 -8 (-15 -2598 ($ $ (-783) |#2| $)))) (-1197) (-1070)) (T -1261)) -((-2598 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1261 *4 *3)) (-14 *4 (-1197)) (-4 *3 (-1070))))) -(-13 (-1264 |#2|) (-628 (-1284 |#1|)) (-10 -8 (-15 -2598 ($ $ (-783) |#2| $)))) -((-4117 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1262 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4117 (|#4| (-1 |#3| |#1|) |#2|))) (-1070) (-1264 |#1|) (-1070) (-1264 |#3|)) (T -1262)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-4 *2 (-1264 *6)) (-5 *1 (-1262 *5 *4 *6 *2)) (-4 *4 (-1264 *5))))) -(-10 -7 (-15 -4117 (|#4| (-1 |#3| |#1|) |#2|))) -((-2516 (((-1288 |#2|) $ (-783)) 129)) (-1969 (((-656 (-1103)) $) 16)) (-3591 (($ (-1193 |#2|)) 80)) (-3543 (((-783) $) NIL) (((-783) $ (-656 (-1103))) 21)) (-3601 (((-430 (-1193 $)) (-1193 $)) 204)) (-2487 (($ $) 194)) (-3921 (((-430 $) $) 192)) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 95)) (-1533 (($ $ (-783)) 84)) (-2266 (($ $ (-783)) 86)) (-2772 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-1572 (((-3 |#2| "failed") $) 132) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-1103) "failed") $) NIL)) (-2860 ((|#2| $) 130) (((-419 (-576)) $) NIL) (((-576) $) NIL) (((-1103) $) NIL)) (-1804 (($ $ $) 170)) (-2865 (((-2 (|:| -1714 |#2|) (|:| -2715 $) (|:| -3624 $)) $ $) 172)) (-3917 (((-783) $ $) 189)) (-2240 (((-3 $ "failed") $) 138)) (-1945 (($ |#2| (-783)) NIL) (($ $ (-1103) (-783)) 59) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-3751 (((-783) $) NIL) (((-783) $ (-1103)) 54) (((-656 (-783)) $ (-656 (-1103))) 55)) (-1732 (((-1193 |#2|) $) 72)) (-3721 (((-3 (-1103) "failed") $) 52)) (-2015 (((-2 (|:| -2715 $) (|:| -3624 $)) $ (-783)) 83)) (-1491 (($ $) 219)) (-3540 (($) 134)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 201)) (-4100 (((-430 (-1193 $)) (-1193 $)) 101)) (-1811 (((-430 (-1193 $)) (-1193 $)) 99)) (-1828 (((-430 $) $) 120)) (-3284 (($ $ (-656 (-304 $))) 51) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1103) |#2|) 39) (($ $ (-656 (-1103)) (-656 |#2|)) 36) (($ $ (-1103) $) 32) (($ $ (-656 (-1103)) (-656 $)) 30)) (-1967 (((-783) $) 207)) (-2797 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) 164) ((|#2| (-419 $) |#2|) 206) (((-419 $) $ (-419 $)) 188)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 212)) (-2775 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) 157) (($ $) 155) (($ $ (-783)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|) $) 149) (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-3634 (((-783) $) NIL) (((-783) $ (-1103)) 17) (((-656 (-783)) $ (-656 (-1103))) 23)) (-2457 ((|#2| $) NIL) (($ $ (-1103)) 140)) (-2507 (((-3 $ "failed") $ $) 180) (((-3 (-419 $) "failed") (-419 $) $) 176)) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-1103)) 64) (($ (-419 (-576))) NIL) (($ $) NIL))) -(((-1263 |#1| |#2|) (-10 -8 (-15 -3570 (|#1| |#1|)) (-15 -1531 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|))) (-15 -2775 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2775 (|#1| |#1| (-1197) (-783))) (-15 -2775 (|#1| |#1| (-656 (-1197)))) (-15 -2775 (|#1| |#1| (-1197))) (-15 -3921 ((-430 |#1|) |#1|)) (-15 -2487 (|#1| |#1|)) (-15 -3570 (|#1| (-419 (-576)))) (-15 -3540 (|#1|)) (-15 -2240 ((-3 |#1| "failed") |#1|)) (-15 -2797 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -1967 ((-783) |#1|)) (-15 -3274 ((-2 (|:| -2715 |#1|) (|:| -3624 |#1|)) |#1| |#1|)) (-15 -1491 (|#1| |#1|)) (-15 -2797 (|#2| (-419 |#1|) |#2|)) (-15 -2772 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2865 ((-2 (|:| -1714 |#2|) (|:| -2715 |#1|) (|:| -3624 |#1|)) |#1| |#1|)) (-15 -1804 (|#1| |#1| |#1|)) (-15 -2507 ((-3 (-419 |#1|) "failed") (-419 |#1|) |#1|)) (-15 -2507 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3917 ((-783) |#1| |#1|)) (-15 -2797 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2266 (|#1| |#1| (-783))) (-15 -1533 (|#1| |#1| (-783))) (-15 -2015 ((-2 (|:| -2715 |#1|) (|:| -3624 |#1|)) |#1| (-783))) (-15 -3591 (|#1| (-1193 |#2|))) (-15 -1732 ((-1193 |#2|) |#1|)) (-15 -2516 ((-1288 |#2|) |#1| (-783))) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2775 (|#1| |#1| (-783))) (-15 -2775 (|#1| |#1|)) (-15 -2797 (|#1| |#1| |#1|)) (-15 -2797 (|#2| |#1| |#2|)) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -3601 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -1811 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -4100 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -1963 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -2457 (|#1| |#1| (-1103))) (-15 -1969 ((-656 (-1103)) |#1|)) (-15 -3543 ((-783) |#1| (-656 (-1103)))) (-15 -3543 ((-783) |#1|)) (-15 -1945 (|#1| |#1| (-656 (-1103)) (-656 (-783)))) (-15 -1945 (|#1| |#1| (-1103) (-783))) (-15 -3751 ((-656 (-783)) |#1| (-656 (-1103)))) (-15 -3751 ((-783) |#1| (-1103))) (-15 -3721 ((-3 (-1103) "failed") |#1|)) (-15 -3634 ((-656 (-783)) |#1| (-656 (-1103)))) (-15 -3634 ((-783) |#1| (-1103))) (-15 -3570 (|#1| (-1103))) (-15 -1572 ((-3 (-1103) "failed") |#1|)) (-15 -2860 ((-1103) |#1|)) (-15 -3284 (|#1| |#1| (-656 (-1103)) (-656 |#1|))) (-15 -3284 (|#1| |#1| (-1103) |#1|)) (-15 -3284 (|#1| |#1| (-656 (-1103)) (-656 |#2|))) (-15 -3284 (|#1| |#1| (-1103) |#2|)) (-15 -3284 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3284 (|#1| |#1| |#1| |#1|)) (-15 -3284 (|#1| |#1| (-304 |#1|))) (-15 -3284 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3634 ((-783) |#1|)) (-15 -1945 (|#1| |#2| (-783))) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2860 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2860 ((-419 (-576)) |#1|)) (-15 -2860 (|#2| |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -3570 (|#1| |#2|)) (-15 -3751 ((-783) |#1|)) (-15 -2457 (|#2| |#1|)) (-15 -2775 (|#1| |#1| (-1103))) (-15 -2775 (|#1| |#1| (-656 (-1103)))) (-15 -2775 (|#1| |#1| (-1103) (-783))) (-15 -2775 (|#1| |#1| (-656 (-1103)) (-656 (-783)))) (-15 -3570 (|#1| (-576))) (-15 -3570 ((-876) |#1|))) (-1264 |#2|) (-1070)) (T -1263)) -NIL -(-10 -8 (-15 -3570 (|#1| |#1|)) (-15 -1531 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|))) (-15 -2775 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2775 (|#1| |#1| (-1197) (-783))) (-15 -2775 (|#1| |#1| (-656 (-1197)))) (-15 -2775 (|#1| |#1| (-1197))) (-15 -3921 ((-430 |#1|) |#1|)) (-15 -2487 (|#1| |#1|)) (-15 -3570 (|#1| (-419 (-576)))) (-15 -3540 (|#1|)) (-15 -2240 ((-3 |#1| "failed") |#1|)) (-15 -2797 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -1967 ((-783) |#1|)) (-15 -3274 ((-2 (|:| -2715 |#1|) (|:| -3624 |#1|)) |#1| |#1|)) (-15 -1491 (|#1| |#1|)) (-15 -2797 (|#2| (-419 |#1|) |#2|)) (-15 -2772 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2865 ((-2 (|:| -1714 |#2|) (|:| -2715 |#1|) (|:| -3624 |#1|)) |#1| |#1|)) (-15 -1804 (|#1| |#1| |#1|)) (-15 -2507 ((-3 (-419 |#1|) "failed") (-419 |#1|) |#1|)) (-15 -2507 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3917 ((-783) |#1| |#1|)) (-15 -2797 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2266 (|#1| |#1| (-783))) (-15 -1533 (|#1| |#1| (-783))) (-15 -2015 ((-2 (|:| -2715 |#1|) (|:| -3624 |#1|)) |#1| (-783))) (-15 -3591 (|#1| (-1193 |#2|))) (-15 -1732 ((-1193 |#2|) |#1|)) (-15 -2516 ((-1288 |#2|) |#1| (-783))) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2775 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2775 (|#1| |#1| (-783))) (-15 -2775 (|#1| |#1|)) (-15 -2797 (|#1| |#1| |#1|)) (-15 -2797 (|#2| |#1| |#2|)) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -3601 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -1811 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -4100 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -1963 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -2457 (|#1| |#1| (-1103))) (-15 -1969 ((-656 (-1103)) |#1|)) (-15 -3543 ((-783) |#1| (-656 (-1103)))) (-15 -3543 ((-783) |#1|)) (-15 -1945 (|#1| |#1| (-656 (-1103)) (-656 (-783)))) (-15 -1945 (|#1| |#1| (-1103) (-783))) (-15 -3751 ((-656 (-783)) |#1| (-656 (-1103)))) (-15 -3751 ((-783) |#1| (-1103))) (-15 -3721 ((-3 (-1103) "failed") |#1|)) (-15 -3634 ((-656 (-783)) |#1| (-656 (-1103)))) (-15 -3634 ((-783) |#1| (-1103))) (-15 -3570 (|#1| (-1103))) (-15 -1572 ((-3 (-1103) "failed") |#1|)) (-15 -2860 ((-1103) |#1|)) (-15 -3284 (|#1| |#1| (-656 (-1103)) (-656 |#1|))) (-15 -3284 (|#1| |#1| (-1103) |#1|)) (-15 -3284 (|#1| |#1| (-656 (-1103)) (-656 |#2|))) (-15 -3284 (|#1| |#1| (-1103) |#2|)) (-15 -3284 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3284 (|#1| |#1| |#1| |#1|)) (-15 -3284 (|#1| |#1| (-304 |#1|))) (-15 -3284 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3634 ((-783) |#1|)) (-15 -1945 (|#1| |#2| (-783))) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2860 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2860 ((-419 (-576)) |#1|)) (-15 -2860 (|#2| |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -3570 (|#1| |#2|)) (-15 -3751 ((-783) |#1|)) (-15 -2457 (|#2| |#1|)) (-15 -2775 (|#1| |#1| (-1103))) (-15 -2775 (|#1| |#1| (-656 (-1103)))) (-15 -2775 (|#1| |#1| (-1103) (-783))) (-15 -2775 (|#1| |#1| (-656 (-1103)) (-656 (-783)))) (-15 -3570 (|#1| (-576))) (-15 -3570 ((-876) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2516 (((-1288 |#1|) $ (-783)) 256)) (-1969 (((-656 (-1103)) $) 113)) (-3591 (($ (-1193 |#1|)) 254)) (-1798 (((-1193 $) $ (-1103)) 128) (((-1193 |#1|) $) 127)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-2757 (($ $) 91 (|has| |#1| (-568)))) (-3788 (((-112) $) 93 (|has| |#1| (-568)))) (-3543 (((-783) $) 115) (((-783) $ (-656 (-1103))) 114)) (-4367 (((-3 $ "failed") $ $) 20)) (-3049 (($ $ $) 241 (|has| |#1| (-568)))) (-3601 (((-430 (-1193 $)) (-1193 $)) 103 (|has| |#1| (-928)))) (-2487 (($ $) 101 (|has| |#1| (-464)))) (-3921 (((-430 $) $) 100 (|has| |#1| (-464)))) (-1963 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 106 (|has| |#1| (-928)))) (-4016 (((-112) $ $) 226 (|has| |#1| (-374)))) (-1533 (($ $ (-783)) 249)) (-2266 (($ $ (-783)) 248)) (-2772 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 236 (|has| |#1| (-464)))) (-3886 (($) 18 T CONST)) (-1572 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1059 (-576)))) (((-3 (-1103) "failed") $) 143)) (-2860 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1059 (-576)))) (((-1103) $) 144)) (-3230 (($ $ $ (-1103)) 111 (|has| |#1| (-174))) ((|#1| $ $) 244 (|has| |#1| (-174)))) (-3429 (($ $ $) 230 (|has| |#1| (-374)))) (-2114 (($ $) 161)) (-2204 (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 137) (((-701 |#1|) (-701 $)) 136)) (-1561 (((-3 $ "failed") $) 37)) (-3441 (($ $ $) 229 (|has| |#1| (-374)))) (-1898 (($ $ $) 247)) (-1804 (($ $ $) 238 (|has| |#1| (-568)))) (-2865 (((-2 (|:| -1714 |#1|) (|:| -2715 $) (|:| -3624 $)) $ $) 237 (|has| |#1| (-568)))) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) 224 (|has| |#1| (-374)))) (-3767 (($ $) 183 (|has| |#1| (-464))) (($ $ (-1103)) 108 (|has| |#1| (-464)))) (-2103 (((-656 $) $) 112)) (-4249 (((-112) $) 99 (|has| |#1| (-928)))) (-2431 (($ $ |#1| (-783) $) 179)) (-1840 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 87 (-12 (|has| (-1103) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 86 (-12 (|has| (-1103) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3917 (((-783) $ $) 242 (|has| |#1| (-568)))) (-4193 (((-112) $) 35)) (-2217 (((-783) $) 176)) (-2240 (((-3 $ "failed") $) 222 (|has| |#1| (-1173)))) (-1955 (($ (-1193 |#1|) (-1103)) 120) (($ (-1193 $) (-1103)) 119)) (-4116 (($ $ (-783)) 253)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) 233 (|has| |#1| (-374)))) (-1608 (((-656 $) $) 129)) (-2823 (((-112) $) 159)) (-1945 (($ |#1| (-783)) 160) (($ $ (-1103) (-783)) 122) (($ $ (-656 (-1103)) (-656 (-783))) 121)) (-4130 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $ (-1103)) 123) (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 251)) (-3751 (((-783) $) 177) (((-783) $ (-1103)) 125) (((-656 (-783)) $ (-656 (-1103))) 124)) (-2999 (($ (-1 (-783) (-783)) $) 178)) (-4117 (($ (-1 |#1| |#1|) $) 158)) (-1732 (((-1193 |#1|) $) 255)) (-3721 (((-3 (-1103) "failed") $) 126)) (-3913 (((-701 (-576)) (-1288 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 140 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2590 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 135) (((-701 |#1|) (-1288 $)) 134)) (-2081 (($ $) 156)) (-2091 ((|#1| $) 155)) (-3458 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-3699 (((-1179) $) 10)) (-2015 (((-2 (|:| -2715 $) (|:| -3624 $)) $ (-783)) 250)) (-1385 (((-3 (-656 $) "failed") $) 117)) (-1690 (((-3 (-656 $) "failed") $) 118)) (-2040 (((-3 (-2 (|:| |var| (-1103)) (|:| -3422 (-783))) "failed") $) 116)) (-1491 (($ $) 234 (|has| |#1| (-38 (-419 (-576)))))) (-3540 (($) 221 (|has| |#1| (-1173)) CONST)) (-1450 (((-1141) $) 11)) (-2060 (((-112) $) 173)) (-2070 ((|#1| $) 174)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 98 (|has| |#1| (-464)))) (-3498 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-4100 (((-430 (-1193 $)) (-1193 $)) 105 (|has| |#1| (-928)))) (-1811 (((-430 (-1193 $)) (-1193 $)) 104 (|has| |#1| (-928)))) (-1828 (((-430 $) $) 102 (|has| |#1| (-928)))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 232 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 231 (|has| |#1| (-374)))) (-3476 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) 225 (|has| |#1| (-374)))) (-3284 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ (-1103) |#1|) 148) (($ $ (-656 (-1103)) (-656 |#1|)) 147) (($ $ (-1103) $) 146) (($ $ (-656 (-1103)) (-656 $)) 145)) (-1967 (((-783) $) 227 (|has| |#1| (-374)))) (-2797 ((|#1| $ |#1|) 266) (($ $ $) 265) (((-419 $) (-419 $) (-419 $)) 243 (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) 235 (|has| |#1| (-374))) (((-419 $) $ (-419 $)) 223 (|has| |#1| (-568)))) (-4177 (((-3 $ "failed") $ (-783)) 252)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 228 (|has| |#1| (-374)))) (-4352 (($ $ (-1103)) 110 (|has| |#1| (-174))) ((|#1| $) 245 (|has| |#1| (-174)))) (-2775 (($ $ (-656 (-1103)) (-656 (-783))) 44) (($ $ (-1103) (-783)) 43) (($ $ (-656 (-1103))) 42) (($ $ (-1103)) 40) (($ $) 264) (($ $ (-783)) 262) (($ $ (-1 |#1| |#1|)) 260) (($ $ (-1 |#1| |#1|) (-783)) 259) (($ $ (-1 |#1| |#1|) $) 246) (($ $ (-1197)) 220 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 218 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 217 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 216 (|has| |#1| (-919 (-1197))))) (-3634 (((-783) $) 157) (((-783) $ (-1103)) 133) (((-656 (-783)) $ (-656 (-1103))) 132)) (-4172 (((-907 (-390)) $) 85 (-12 (|has| (-1103) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) 84 (-12 (|has| (-1103) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) 83 (-12 (|has| (-1103) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-2457 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ (-1103)) 109 (|has| |#1| (-464)))) (-2887 (((-3 (-1288 $) "failed") (-701 $)) 107 (-2675 (|has| $ (-146)) (|has| |#1| (-928))))) (-2507 (((-3 $ "failed") $ $) 240 (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) 239 (|has| |#1| (-568)))) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ (-1103)) 142) (($ (-419 (-576))) 81 (-2760 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-1618 (((-656 |#1|) $) 175)) (-3177 ((|#1| $ (-783)) 162) (($ $ (-1103) (-783)) 131) (($ $ (-656 (-1103)) (-656 (-783))) 130)) (-4336 (((-3 $ "failed") $) 82 (-2760 (-2675 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3996 (((-783)) 32 T CONST)) (-2541 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-4055 (((-112) $ $) 6)) (-2672 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2020 (($ $ (-656 (-1103)) (-656 (-783))) 47) (($ $ (-1103) (-783)) 46) (($ $ (-656 (-1103))) 45) (($ $ (-1103)) 41) (($ $) 263) (($ $ (-783)) 261) (($ $ (-1 |#1| |#1|)) 258) (($ $ (-1 |#1| |#1|) (-783)) 257) (($ $ (-1197)) 219 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 215 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 214 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 213 (|has| |#1| (-919 (-1197))))) (-2925 (((-112) $ $) 8)) (-3057 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-3110 (((-1280 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-1969 (((-656 (-1103)) $) NIL)) (-3054 (((-1197) $) 10)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4195 (($ $) NIL (-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-1760 (((-112) $) NIL (-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2408 (($ $ (-576)) NIL) (($ $ (-576) (-576)) NIL)) (-3064 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) NIL)) (-2131 (((-1280 |#1| |#2| |#3|) $) NIL)) (-3008 (((-3 (-1280 |#1| |#2| |#3|) "failed") $) NIL)) (-2010 (((-1280 |#1| |#2| |#3|) $) NIL)) (-4024 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3646 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-3444 (($ $) NIL (|has| |#1| (-374)))) (-3760 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1840 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-3330 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4005 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3906 (((-576) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-3079 (($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) NIL)) (-4049 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-1280 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-1197))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374)))) (((-3 (-576) "failed") $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374))))) (-2859 (((-1280 |#1| |#2| |#3|) $) NIL) (((-1197) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-1197))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374)))) (((-576) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374))))) (-2926 (($ $) NIL) (($ (-576) $) NIL)) (-3428 (($ $ $) NIL (|has| |#1| (-374)))) (-2114 (($ $) NIL)) (-3674 (((-701 (-1280 |#1| |#2| |#3|)) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3232 (-701 (-1280 |#1| |#2| |#3|))) (|:| |vec| (-1288 (-1280 |#1| |#2| |#3|)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-3673 (((-3 $ "failed") $) NIL)) (-2862 (((-419 (-971 |#1|)) $ (-576)) NIL (|has| |#1| (-568))) (((-419 (-971 |#1|)) $ (-576) (-576)) NIL (|has| |#1| (-568)))) (-1836 (($) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-3440 (($ $ $) NIL (|has| |#1| (-374)))) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3833 (((-112) $) NIL (|has| |#1| (-374)))) (-1866 (((-112) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2116 (((-112) $) NIL)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-901 (-390))) (|has| |#1| (-374)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-901 (-576))) (|has| |#1| (-374))))) (-3726 (((-576) $) NIL) (((-576) $ (-576)) NIL)) (-1351 (((-112) $) NIL)) (-3328 (($ $) NIL (|has| |#1| (-374)))) (-1570 (((-1280 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374)))) (-4131 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2734 (((-3 $ "failed") $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1173)) (|has| |#1| (-374))))) (-3137 (((-112) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-1800 (($ $ (-940)) NIL)) (-3811 (($ (-1 |#1| (-576)) $) NIL)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3538 (((-112) $) NIL)) (-1944 (($ |#1| (-576)) 18) (($ $ (-1103) (-576)) NIL) (($ $ (-656 (-1103)) (-656 (-576))) NIL)) (-3124 (($ $ $) NIL (-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-1441 (($ $ $) NIL (-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-374)))) (-3744 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3676 (((-701 (-1280 |#1| |#2| |#3|)) (-1288 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3232 (-701 (-1280 |#1| |#2| |#3|))) (|:| |vec| (-1288 (-1280 |#1| |#2| |#3|)))) (-1288 $) $) NIL (|has| |#1| (-374))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1288 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2021 (($ (-576) (-1280 |#1| |#2| |#3|)) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL (|has| |#1| (-374)))) (-4160 (($ $) 27 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) NIL (-2759 (-12 (|has| |#1| (-15 -4160 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 28 (|has| |#1| (-38 (-419 (-576)))))) (-3539 (($) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1173)) (|has| |#1| (-374))) CONST)) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3497 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1788 (($ $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-4236 (((-1280 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-1644 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-4296 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-1828 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-1743 (($ $ (-576)) NIL)) (-3475 (((-3 $ "failed") $ $) NIL (-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4103 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3282 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1197) (-1280 |#1| |#2| |#3|)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-526 (-1197) (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1197)) (-656 (-1280 |#1| |#2| |#3|))) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-526 (-1197) (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-304 (-1280 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-319 (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-304 (-1280 |#1| |#2| |#3|))) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-319 (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-319 (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1280 |#1| |#2| |#3|)) (-656 (-1280 |#1| |#2| |#3|))) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-319 (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-1979 (((-783) $) NIL (|has| |#1| (-374)))) (-2796 ((|#1| $ (-576)) NIL) (($ $ $) NIL (|has| (-576) (-1133))) (($ $ (-1280 |#1| |#2| |#3|)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-296 (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#1| (-374)))) (-2774 (($ $ (-1 (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1284 |#2|)) 26) (($ $) 25 (-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) NIL (-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))))) (-4325 (($ $) NIL (|has| |#1| (-374)))) (-1581 (((-1280 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374)))) (-2683 (((-576) $) NIL)) (-4060 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4171 (((-548) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-626 (-548))) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1043)) (|has| |#1| (-374)))) (((-227) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1043)) (|has| |#1| (-374)))) (((-907 (-390)) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-626 (-907 (-390)))) (|has| |#1| (-374)))) (((-907 (-576)) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-626 (-907 (-576)))) (|has| |#1| (-374))))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-2539 (($ $) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1280 |#1| |#2| |#3|)) NIL) (($ (-1284 |#2|)) 24) (($ (-1197)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-1197))) (|has| |#1| (-374)))) (($ $) NIL (-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568)))) (($ (-419 (-576))) NIL (-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374))) (|has| |#1| (-38 (-419 (-576))))))) (-1822 ((|#1| $ (-576)) NIL)) (-3390 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| $ (-146)) (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-3154 (((-783)) NIL T CONST)) (-2396 ((|#1| $) 11)) (-1810 (((-1280 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-2399 (((-112) $ $) NIL)) (-2790 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1505 (((-112) $ $) NIL (-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4070 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4143 (($ $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2721 (($) 20 T CONST)) (-2731 (($) 15 T CONST)) (-2020 (($ $ (-1 (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1284 |#2|)) NIL) (($ $) NIL (-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) NIL (-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197))) NIL (-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-1197) (-783)) NIL (-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))))) (-2990 (((-112) $ $) NIL (-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-2962 (((-112) $ $) NIL (-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-2924 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL (-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-2949 (((-112) $ $) NIL (-2759 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374))) (($ (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|)) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 22)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1280 |#1| |#2| |#3|)) NIL (|has| |#1| (-374))) (($ (-1280 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1252 |#1| |#2| |#3|) (-13 (-1250 |#1| (-1280 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3569 ($ (-1284 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4160 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -1252)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1252 *3 *4 *5)) (-4 *3 (-1070)) (-14 *5 *3))) (-4160 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1252 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) +(-13 (-1250 |#1| (-1280 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3569 ($ (-1284 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4160 ($ $ (-1284 |#2|))) |%noBranch|))) +((-2633 (((-2 (|:| |contp| (-576)) (|:| -4213 (-656 (-2 (|:| |irr| |#1|) (|:| -3012 (-576)))))) |#1| (-112)) 13)) (-2652 (((-430 |#1|) |#1|) 26)) (-1828 (((-430 |#1|) |#1|) 24))) +(((-1253 |#1|) (-10 -7 (-15 -1828 ((-430 |#1|) |#1|)) (-15 -2652 ((-430 |#1|) |#1|)) (-15 -2633 ((-2 (|:| |contp| (-576)) (|:| -4213 (-656 (-2 (|:| |irr| |#1|) (|:| -3012 (-576)))))) |#1| (-112)))) (-1264 (-576))) (T -1253)) +((-2633 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -4213 (-656 (-2 (|:| |irr| *3) (|:| -3012 (-576))))))) (-5 *1 (-1253 *3)) (-4 *3 (-1264 (-576))))) (-2652 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1253 *3)) (-4 *3 (-1264 (-576))))) (-1828 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1253 *3)) (-4 *3 (-1264 (-576)))))) +(-10 -7 (-15 -1828 ((-430 |#1|) |#1|)) (-15 -2652 ((-430 |#1|) |#1|)) (-15 -2633 ((-2 (|:| |contp| (-576)) (|:| -4213 (-656 (-2 (|:| |irr| |#1|) (|:| -3012 (-576)))))) |#1| (-112)))) +((-4116 (((-1178 |#2|) (-1 |#2| |#1|) (-1255 |#1|)) 23 (|has| |#1| (-860))) (((-1255 |#2|) (-1 |#2| |#1|) (-1255 |#1|)) 17))) +(((-1254 |#1| |#2|) (-10 -7 (-15 -4116 ((-1255 |#2|) (-1 |#2| |#1|) (-1255 |#1|))) (IF (|has| |#1| (-860)) (-15 -4116 ((-1178 |#2|) (-1 |#2| |#1|) (-1255 |#1|))) |%noBranch|)) (-1238) (-1238)) (T -1254)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1255 *5)) (-4 *5 (-860)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1178 *6)) (-5 *1 (-1254 *5 *6)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1255 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1255 *6)) (-5 *1 (-1254 *5 *6))))) +(-10 -7 (-15 -4116 ((-1255 |#2|) (-1 |#2| |#1|) (-1255 |#1|))) (IF (|has| |#1| (-860)) (-15 -4116 ((-1178 |#2|) (-1 |#2| |#1|) (-1255 |#1|))) |%noBranch|)) +((-3488 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-3533 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-4116 (((-1178 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-860)))) (-4316 ((|#1| $) 15)) (-3112 ((|#1| $) 12)) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-4219 (((-576) $) 19)) (-2326 ((|#1| $) 18)) (-4229 ((|#1| $) 13)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4164 (((-112) $) 17)) (-1942 (((-1178 |#1|) $) 41 (|has| |#1| (-860))) (((-1178 |#1|) (-656 $)) 40 (|has| |#1| (-860)))) (-4171 (($ |#1|) 26)) (-3569 (($ (-1115 |#1|)) 25) (((-876) $) 37 (|has| |#1| (-1121)))) (-2399 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-1785 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2668 (($ $ (-576)) 14)) (-2924 (((-112) $ $) 30 (|has| |#1| (-1121))))) +(((-1255 |#1|) (-13 (-1114 |#1|) (-10 -8 (-15 -1785 ($ |#1|)) (-15 -3533 ($ |#1|)) (-15 -3569 ($ (-1115 |#1|))) (-15 -4164 ((-112) $)) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1116 |#1| (-1178 |#1|))) |%noBranch|))) (-1238)) (T -1255)) +((-1785 (*1 *1 *2) (-12 (-5 *1 (-1255 *2)) (-4 *2 (-1238)))) (-3533 (*1 *1 *2) (-12 (-5 *1 (-1255 *2)) (-4 *2 (-1238)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-1115 *3)) (-4 *3 (-1238)) (-5 *1 (-1255 *3)))) (-4164 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1255 *3)) (-4 *3 (-1238))))) +(-13 (-1114 |#1|) (-10 -8 (-15 -1785 ($ |#1|)) (-15 -3533 ($ |#1|)) (-15 -3569 ($ (-1115 |#1|))) (-15 -4164 ((-112) $)) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1116 |#1| (-1178 |#1|))) |%noBranch|))) +((-4116 (((-1261 |#3| |#4|) (-1 |#4| |#2|) (-1261 |#1| |#2|)) 15))) +(((-1256 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4116 ((-1261 |#3| |#4|) (-1 |#4| |#2|) (-1261 |#1| |#2|)))) (-1197) (-1070) (-1197) (-1070)) (T -1256)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1261 *5 *6)) (-14 *5 (-1197)) (-4 *6 (-1070)) (-4 *8 (-1070)) (-5 *2 (-1261 *7 *8)) (-5 *1 (-1256 *5 *6 *7 *8)) (-14 *7 (-1197))))) +(-10 -7 (-15 -4116 ((-1261 |#3| |#4|) (-1 |#4| |#2|) (-1261 |#1| |#2|)))) +((-4169 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4277 ((|#1| |#3|) 13)) (-3689 ((|#3| |#3|) 19))) +(((-1257 |#1| |#2| |#3|) (-10 -7 (-15 -4277 (|#1| |#3|)) (-15 -3689 (|#3| |#3|)) (-15 -4169 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-568) (-1013 |#1|) (-1264 |#2|)) (T -1257)) +((-4169 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1257 *4 *5 *3)) (-4 *3 (-1264 *5)))) (-3689 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *4 (-1013 *3)) (-5 *1 (-1257 *3 *4 *2)) (-4 *2 (-1264 *4)))) (-4277 (*1 *2 *3) (-12 (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-1257 *2 *4 *3)) (-4 *3 (-1264 *4))))) +(-10 -7 (-15 -4277 (|#1| |#3|)) (-15 -3689 (|#3| |#3|)) (-15 -4169 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-1814 (((-3 |#2| "failed") |#2| (-783) |#1|) 35)) (-1835 (((-3 |#2| "failed") |#2| (-783)) 36)) (-1661 (((-3 (-2 (|:| -4239 |#2|) (|:| -4249 |#2|)) "failed") |#2|) 50)) (-3633 (((-656 |#2|) |#2|) 52)) (-4136 (((-3 |#2| "failed") |#2| |#2|) 46))) +(((-1258 |#1| |#2|) (-10 -7 (-15 -1835 ((-3 |#2| "failed") |#2| (-783))) (-15 -1814 ((-3 |#2| "failed") |#2| (-783) |#1|)) (-15 -4136 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1661 ((-3 (-2 (|:| -4239 |#2|) (|:| -4249 |#2|)) "failed") |#2|)) (-15 -3633 ((-656 |#2|) |#2|))) (-13 (-568) (-148)) (-1264 |#1|)) (T -1258)) +((-3633 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-656 *3)) (-5 *1 (-1258 *4 *3)) (-4 *3 (-1264 *4)))) (-1661 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| -4239 *3) (|:| -4249 *3))) (-5 *1 (-1258 *4 *3)) (-4 *3 (-1264 *4)))) (-4136 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1258 *3 *2)) (-4 *2 (-1264 *3)))) (-1814 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1258 *4 *2)) (-4 *2 (-1264 *4)))) (-1835 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1258 *4 *2)) (-4 *2 (-1264 *4))))) +(-10 -7 (-15 -1835 ((-3 |#2| "failed") |#2| (-783))) (-15 -1814 ((-3 |#2| "failed") |#2| (-783) |#1|)) (-15 -4136 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1661 ((-3 (-2 (|:| -4239 |#2|) (|:| -4249 |#2|)) "failed") |#2|)) (-15 -3633 ((-656 |#2|) |#2|))) +((-3498 (((-3 (-2 (|:| -1855 |#2|) (|:| -3891 |#2|)) "failed") |#2| |#2|) 30))) +(((-1259 |#1| |#2|) (-10 -7 (-15 -3498 ((-3 (-2 (|:| -1855 |#2|) (|:| -3891 |#2|)) "failed") |#2| |#2|))) (-568) (-1264 |#1|)) (T -1259)) +((-3498 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -1855 *3) (|:| -3891 *3))) (-5 *1 (-1259 *4 *3)) (-4 *3 (-1264 *4))))) +(-10 -7 (-15 -3498 ((-3 (-2 (|:| -1855 |#2|) (|:| -3891 |#2|)) "failed") |#2| |#2|))) +((-2309 ((|#2| |#2| |#2|) 22)) (-3205 ((|#2| |#2| |#2|) 36)) (-3163 ((|#2| |#2| |#2| (-783) (-783)) 44))) +(((-1260 |#1| |#2|) (-10 -7 (-15 -2309 (|#2| |#2| |#2|)) (-15 -3205 (|#2| |#2| |#2|)) (-15 -3163 (|#2| |#2| |#2| (-783) (-783)))) (-1070) (-1264 |#1|)) (T -1260)) +((-3163 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1070)) (-5 *1 (-1260 *4 *2)) (-4 *2 (-1264 *4)))) (-3205 (*1 *2 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-1260 *3 *2)) (-4 *2 (-1264 *3)))) (-2309 (*1 *2 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-1260 *3 *2)) (-4 *2 (-1264 *3))))) +(-10 -7 (-15 -2309 (|#2| |#2| |#2|)) (-15 -3205 (|#2| |#2| |#2|)) (-15 -3163 (|#2| |#2| |#2| (-783) (-783)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-3764 (((-1288 |#2|) $ (-783)) NIL)) (-1969 (((-656 (-1103)) $) NIL)) (-3543 (($ (-1193 |#2|)) NIL)) (-1797 (((-1193 $) $ (-1103)) NIL) (((-1193 |#2|) $) NIL)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-4195 (($ $) NIL (|has| |#2| (-568)))) (-1760 (((-112) $) NIL (|has| |#2| (-568)))) (-4329 (((-783) $) NIL) (((-783) $ (-656 (-1103))) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3085 (($ $ $) NIL (|has| |#2| (-568)))) (-3646 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3444 (($ $) NIL (|has| |#2| (-464)))) (-3760 (((-430 $) $) NIL (|has| |#2| (-464)))) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3330 (((-112) $ $) NIL (|has| |#2| (-374)))) (-3350 (($ $ (-783)) NIL)) (-3046 (($ $ (-783)) NIL)) (-4306 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-464)))) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-1103) "failed") $) NIL)) (-2859 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-1103) $) NIL)) (-4334 (($ $ $ (-1103)) NIL (|has| |#2| (-174))) ((|#2| $ $) NIL (|has| |#2| (-174)))) (-3428 (($ $ $) NIL (|has| |#2| (-374)))) (-2114 (($ $) NIL)) (-3674 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-3440 (($ $ $) NIL (|has| |#2| (-374)))) (-3879 (($ $ $) NIL)) (-4235 (($ $ $) NIL (|has| |#2| (-568)))) (-3958 (((-2 (|:| -1715 |#2|) (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#2| (-568)))) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#2| (-374)))) (-1547 (($ $) NIL (|has| |#2| (-464))) (($ $ (-1103)) NIL (|has| |#2| (-464)))) (-2103 (((-656 $) $) NIL)) (-3833 (((-112) $) NIL (|has| |#2| (-928)))) (-4124 (($ $ |#2| (-783) $) NIL)) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1103) (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1103) (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-3726 (((-783) $ $) NIL (|has| |#2| (-568)))) (-1351 (((-112) $) NIL)) (-3799 (((-783) $) NIL)) (-2734 (((-3 $ "failed") $) NIL (|has| |#2| (-1173)))) (-1956 (($ (-1193 |#2|) (-1103)) NIL) (($ (-1193 $) (-1103)) NIL)) (-1800 (($ $ (-783)) NIL)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-2846 (((-656 $) $) NIL)) (-3538 (((-112) $) NIL)) (-1944 (($ |#2| (-783)) 18) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-1915 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $ (-1103)) NIL) (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL)) (-2578 (((-783) $) NIL) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-3878 (($ (-1 (-783) (-783)) $) NIL)) (-4116 (($ (-1 |#2| |#2|) $) NIL)) (-1582 (((-1193 |#2|) $) NIL)) (-2289 (((-3 (-1103) "failed") $) NIL)) (-3676 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-2081 (($ $) NIL)) (-2091 ((|#2| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2046 (((-1179) $) NIL)) (-2436 (((-2 (|:| -1855 $) (|:| -3891 $)) $ (-783)) NIL)) (-3845 (((-3 (-656 $) "failed") $) NIL)) (-2363 (((-3 (-656 $) "failed") $) NIL)) (-1452 (((-3 (-2 (|:| |var| (-1103)) (|:| -2508 (-783))) "failed") $) NIL)) (-4160 (($ $) NIL (|has| |#2| (-38 (-419 (-576)))))) (-3539 (($) NIL (|has| |#2| (-1173)) CONST)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) NIL)) (-2070 ((|#2| $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#2| (-464)))) (-3497 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-3317 (($ $ (-783) |#2| $) NIL)) (-1644 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1828 (((-430 $) $) NIL (|has| |#2| (-928)))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#2| (-374)))) (-3475 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-3282 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1103) |#2|) NIL) (($ $ (-656 (-1103)) (-656 |#2|)) NIL) (($ $ (-1103) $) NIL) (($ $ (-656 (-1103)) (-656 $)) NIL)) (-1979 (((-783) $) NIL (|has| |#2| (-374)))) (-2796 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#2| (-568))) ((|#2| (-419 $) |#2|) NIL (|has| |#2| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#2| (-568)))) (-4320 (((-3 $ "failed") $ (-783)) NIL)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#2| (-374)))) (-2269 (($ $ (-1103)) NIL (|has| |#2| (-174))) ((|#2| $) NIL (|has| |#2| (-174)))) (-2774 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|) $) NIL) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-2683 (((-783) $) NIL) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-4171 (((-907 (-390)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-1103) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-4370 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-1103)) NIL (|has| |#2| (-464)))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928))))) (-3657 (((-3 $ "failed") $ $) NIL (|has| |#2| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#2| (-568)))) (-3569 (((-876) $) 13) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-1103)) NIL) (($ (-1284 |#1|)) 20) (($ (-419 (-576))) NIL (-2759 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-2937 (((-656 |#2|) $) NIL)) (-1822 ((|#2| $ (-783)) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-3390 (((-3 $ "failed") $) NIL (-2759 (-12 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#2| (-146))))) (-3154 (((-783)) NIL T CONST)) (-2717 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2721 (($) NIL T CONST)) (-2731 (($) 14 T CONST)) (-2020 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1261 |#1| |#2|) (-13 (-1264 |#2|) (-628 (-1284 |#1|)) (-10 -8 (-15 -3317 ($ $ (-783) |#2| $)))) (-1197) (-1070)) (T -1261)) +((-3317 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1261 *4 *3)) (-14 *4 (-1197)) (-4 *3 (-1070))))) +(-13 (-1264 |#2|) (-628 (-1284 |#1|)) (-10 -8 (-15 -3317 ($ $ (-783) |#2| $)))) +((-4116 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1262 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4116 (|#4| (-1 |#3| |#1|) |#2|))) (-1070) (-1264 |#1|) (-1070) (-1264 |#3|)) (T -1262)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-4 *2 (-1264 *6)) (-5 *1 (-1262 *5 *4 *6 *2)) (-4 *4 (-1264 *5))))) +(-10 -7 (-15 -4116 (|#4| (-1 |#3| |#1|) |#2|))) +((-3764 (((-1288 |#2|) $ (-783)) 129)) (-1969 (((-656 (-1103)) $) 16)) (-3543 (($ (-1193 |#2|)) 80)) (-4329 (((-783) $) NIL) (((-783) $ (-656 (-1103))) 21)) (-3646 (((-430 (-1193 $)) (-1193 $)) 204)) (-3444 (($ $) 194)) (-3760 (((-430 $) $) 192)) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 95)) (-3350 (($ $ (-783)) 84)) (-3046 (($ $ (-783)) 86)) (-4306 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-1572 (((-3 |#2| "failed") $) 132) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-1103) "failed") $) NIL)) (-2859 ((|#2| $) 130) (((-419 (-576)) $) NIL) (((-576) $) NIL) (((-1103) $) NIL)) (-4235 (($ $ $) 170)) (-3958 (((-2 (|:| -1715 |#2|) (|:| -1855 $) (|:| -3891 $)) $ $) 172)) (-3726 (((-783) $ $) 189)) (-2734 (((-3 $ "failed") $) 138)) (-1944 (($ |#2| (-783)) NIL) (($ $ (-1103) (-783)) 59) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-2578 (((-783) $) NIL) (((-783) $ (-1103)) 54) (((-656 (-783)) $ (-656 (-1103))) 55)) (-1582 (((-1193 |#2|) $) 72)) (-2289 (((-3 (-1103) "failed") $) 52)) (-2436 (((-2 (|:| -1855 $) (|:| -3891 $)) $ (-783)) 83)) (-4160 (($ $) 219)) (-3539 (($) 134)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 201)) (-1644 (((-430 (-1193 $)) (-1193 $)) 101)) (-4296 (((-430 (-1193 $)) (-1193 $)) 99)) (-1828 (((-430 $) $) 120)) (-3282 (($ $ (-656 (-304 $))) 51) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1103) |#2|) 39) (($ $ (-656 (-1103)) (-656 |#2|)) 36) (($ $ (-1103) $) 32) (($ $ (-656 (-1103)) (-656 $)) 30)) (-1979 (((-783) $) 207)) (-2796 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) 164) ((|#2| (-419 $) |#2|) 206) (((-419 $) $ (-419 $)) 188)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 212)) (-2774 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) 157) (($ $) 155) (($ $ (-783)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|) $) 149) (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-2683 (((-783) $) NIL) (((-783) $ (-1103)) 17) (((-656 (-783)) $ (-656 (-1103))) 23)) (-4370 ((|#2| $) NIL) (($ $ (-1103)) 140)) (-3657 (((-3 $ "failed") $ $) 180) (((-3 (-419 $) "failed") (-419 $) $) 176)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-1103)) 64) (($ (-419 (-576))) NIL) (($ $) NIL))) +(((-1263 |#1| |#2|) (-10 -8 (-15 -3569 (|#1| |#1|)) (-15 -3327 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|))) (-15 -2774 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2774 (|#1| |#1| (-1197) (-783))) (-15 -2774 (|#1| |#1| (-656 (-1197)))) (-15 -2774 (|#1| |#1| (-1197))) (-15 -3760 ((-430 |#1|) |#1|)) (-15 -3444 (|#1| |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3539 (|#1|)) (-15 -2734 ((-3 |#1| "failed") |#1|)) (-15 -2796 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -1979 ((-783) |#1|)) (-15 -3536 ((-2 (|:| -1855 |#1|) (|:| -3891 |#1|)) |#1| |#1|)) (-15 -4160 (|#1| |#1|)) (-15 -2796 (|#2| (-419 |#1|) |#2|)) (-15 -4306 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3958 ((-2 (|:| -1715 |#2|) (|:| -1855 |#1|) (|:| -3891 |#1|)) |#1| |#1|)) (-15 -4235 (|#1| |#1| |#1|)) (-15 -3657 ((-3 (-419 |#1|) "failed") (-419 |#1|) |#1|)) (-15 -3657 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3726 ((-783) |#1| |#1|)) (-15 -2796 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3046 (|#1| |#1| (-783))) (-15 -3350 (|#1| |#1| (-783))) (-15 -2436 ((-2 (|:| -1855 |#1|) (|:| -3891 |#1|)) |#1| (-783))) (-15 -3543 (|#1| (-1193 |#2|))) (-15 -1582 ((-1193 |#2|) |#1|)) (-15 -3764 ((-1288 |#2|) |#1| (-783))) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2774 (|#1| |#1| (-783))) (-15 -2774 (|#1| |#1|)) (-15 -2796 (|#1| |#1| |#1|)) (-15 -2796 (|#2| |#1| |#2|)) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -3646 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -4296 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -1644 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -3220 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -4370 (|#1| |#1| (-1103))) (-15 -1969 ((-656 (-1103)) |#1|)) (-15 -4329 ((-783) |#1| (-656 (-1103)))) (-15 -4329 ((-783) |#1|)) (-15 -1944 (|#1| |#1| (-656 (-1103)) (-656 (-783)))) (-15 -1944 (|#1| |#1| (-1103) (-783))) (-15 -2578 ((-656 (-783)) |#1| (-656 (-1103)))) (-15 -2578 ((-783) |#1| (-1103))) (-15 -2289 ((-3 (-1103) "failed") |#1|)) (-15 -2683 ((-656 (-783)) |#1| (-656 (-1103)))) (-15 -2683 ((-783) |#1| (-1103))) (-15 -3569 (|#1| (-1103))) (-15 -1572 ((-3 (-1103) "failed") |#1|)) (-15 -2859 ((-1103) |#1|)) (-15 -3282 (|#1| |#1| (-656 (-1103)) (-656 |#1|))) (-15 -3282 (|#1| |#1| (-1103) |#1|)) (-15 -3282 (|#1| |#1| (-656 (-1103)) (-656 |#2|))) (-15 -3282 (|#1| |#1| (-1103) |#2|)) (-15 -3282 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3282 (|#1| |#1| |#1| |#1|)) (-15 -3282 (|#1| |#1| (-304 |#1|))) (-15 -3282 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2683 ((-783) |#1|)) (-15 -1944 (|#1| |#2| (-783))) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -2578 ((-783) |#1|)) (-15 -4370 (|#2| |#1|)) (-15 -2774 (|#1| |#1| (-1103))) (-15 -2774 (|#1| |#1| (-656 (-1103)))) (-15 -2774 (|#1| |#1| (-1103) (-783))) (-15 -2774 (|#1| |#1| (-656 (-1103)) (-656 (-783)))) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) (-1264 |#2|) (-1070)) (T -1263)) +NIL +(-10 -8 (-15 -3569 (|#1| |#1|)) (-15 -3327 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|))) (-15 -2774 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2774 (|#1| |#1| (-1197) (-783))) (-15 -2774 (|#1| |#1| (-656 (-1197)))) (-15 -2774 (|#1| |#1| (-1197))) (-15 -3760 ((-430 |#1|) |#1|)) (-15 -3444 (|#1| |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3539 (|#1|)) (-15 -2734 ((-3 |#1| "failed") |#1|)) (-15 -2796 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -1979 ((-783) |#1|)) (-15 -3536 ((-2 (|:| -1855 |#1|) (|:| -3891 |#1|)) |#1| |#1|)) (-15 -4160 (|#1| |#1|)) (-15 -2796 (|#2| (-419 |#1|) |#2|)) (-15 -4306 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3958 ((-2 (|:| -1715 |#2|) (|:| -1855 |#1|) (|:| -3891 |#1|)) |#1| |#1|)) (-15 -4235 (|#1| |#1| |#1|)) (-15 -3657 ((-3 (-419 |#1|) "failed") (-419 |#1|) |#1|)) (-15 -3657 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3726 ((-783) |#1| |#1|)) (-15 -2796 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3046 (|#1| |#1| (-783))) (-15 -3350 (|#1| |#1| (-783))) (-15 -2436 ((-2 (|:| -1855 |#1|) (|:| -3891 |#1|)) |#1| (-783))) (-15 -3543 (|#1| (-1193 |#2|))) (-15 -1582 ((-1193 |#2|) |#1|)) (-15 -3764 ((-1288 |#2|) |#1| (-783))) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2774 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2774 (|#1| |#1| (-783))) (-15 -2774 (|#1| |#1|)) (-15 -2796 (|#1| |#1| |#1|)) (-15 -2796 (|#2| |#1| |#2|)) (-15 -1828 ((-430 |#1|) |#1|)) (-15 -3646 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -4296 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -1644 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -3220 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -4370 (|#1| |#1| (-1103))) (-15 -1969 ((-656 (-1103)) |#1|)) (-15 -4329 ((-783) |#1| (-656 (-1103)))) (-15 -4329 ((-783) |#1|)) (-15 -1944 (|#1| |#1| (-656 (-1103)) (-656 (-783)))) (-15 -1944 (|#1| |#1| (-1103) (-783))) (-15 -2578 ((-656 (-783)) |#1| (-656 (-1103)))) (-15 -2578 ((-783) |#1| (-1103))) (-15 -2289 ((-3 (-1103) "failed") |#1|)) (-15 -2683 ((-656 (-783)) |#1| (-656 (-1103)))) (-15 -2683 ((-783) |#1| (-1103))) (-15 -3569 (|#1| (-1103))) (-15 -1572 ((-3 (-1103) "failed") |#1|)) (-15 -2859 ((-1103) |#1|)) (-15 -3282 (|#1| |#1| (-656 (-1103)) (-656 |#1|))) (-15 -3282 (|#1| |#1| (-1103) |#1|)) (-15 -3282 (|#1| |#1| (-656 (-1103)) (-656 |#2|))) (-15 -3282 (|#1| |#1| (-1103) |#2|)) (-15 -3282 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3282 (|#1| |#1| |#1| |#1|)) (-15 -3282 (|#1| |#1| (-304 |#1|))) (-15 -3282 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2683 ((-783) |#1|)) (-15 -1944 (|#1| |#2| (-783))) (-15 -1572 ((-3 (-576) "failed") |#1|)) (-15 -2859 ((-576) |#1|)) (-15 -1572 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2859 ((-419 (-576)) |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -1572 ((-3 |#2| "failed") |#1|)) (-15 -3569 (|#1| |#2|)) (-15 -2578 ((-783) |#1|)) (-15 -4370 (|#2| |#1|)) (-15 -2774 (|#1| |#1| (-1103))) (-15 -2774 (|#1| |#1| (-656 (-1103)))) (-15 -2774 (|#1| |#1| (-1103) (-783))) (-15 -2774 (|#1| |#1| (-656 (-1103)) (-656 (-783)))) (-15 -3569 (|#1| (-576))) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-3764 (((-1288 |#1|) $ (-783)) 256)) (-1969 (((-656 (-1103)) $) 113)) (-3543 (($ (-1193 |#1|)) 254)) (-1797 (((-1193 $) $ (-1103)) 128) (((-1193 |#1|) $) 127)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-4195 (($ $) 91 (|has| |#1| (-568)))) (-1760 (((-112) $) 93 (|has| |#1| (-568)))) (-4329 (((-783) $) 115) (((-783) $ (-656 (-1103))) 114)) (-2428 (((-3 $ "failed") $ $) 20)) (-3085 (($ $ $) 241 (|has| |#1| (-568)))) (-3646 (((-430 (-1193 $)) (-1193 $)) 103 (|has| |#1| (-928)))) (-3444 (($ $) 101 (|has| |#1| (-464)))) (-3760 (((-430 $) $) 100 (|has| |#1| (-464)))) (-3220 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 106 (|has| |#1| (-928)))) (-3330 (((-112) $ $) 226 (|has| |#1| (-374)))) (-3350 (($ $ (-783)) 249)) (-3046 (($ $ (-783)) 248)) (-4306 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 236 (|has| |#1| (-464)))) (-3404 (($) 18 T CONST)) (-1572 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1059 (-576)))) (((-3 (-1103) "failed") $) 143)) (-2859 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1059 (-576)))) (((-1103) $) 144)) (-4334 (($ $ $ (-1103)) 111 (|has| |#1| (-174))) ((|#1| $ $) 244 (|has| |#1| (-174)))) (-3428 (($ $ $) 230 (|has| |#1| (-374)))) (-2114 (($ $) 161)) (-3674 (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 137) (((-701 |#1|) (-701 $)) 136)) (-3673 (((-3 $ "failed") $) 37)) (-3440 (($ $ $) 229 (|has| |#1| (-374)))) (-3879 (($ $ $) 247)) (-4235 (($ $ $) 238 (|has| |#1| (-568)))) (-3958 (((-2 (|:| -1715 |#1|) (|:| -1855 $) (|:| -3891 $)) $ $) 237 (|has| |#1| (-568)))) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) 224 (|has| |#1| (-374)))) (-1547 (($ $) 183 (|has| |#1| (-464))) (($ $ (-1103)) 108 (|has| |#1| (-464)))) (-2103 (((-656 $) $) 112)) (-3833 (((-112) $) 99 (|has| |#1| (-928)))) (-4124 (($ $ |#1| (-783) $) 179)) (-3325 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 87 (-12 (|has| (-1103) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 86 (-12 (|has| (-1103) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3726 (((-783) $ $) 242 (|has| |#1| (-568)))) (-1351 (((-112) $) 35)) (-3799 (((-783) $) 176)) (-2734 (((-3 $ "failed") $) 222 (|has| |#1| (-1173)))) (-1956 (($ (-1193 |#1|) (-1103)) 120) (($ (-1193 $) (-1103)) 119)) (-1800 (($ $ (-783)) 253)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) 233 (|has| |#1| (-374)))) (-2846 (((-656 $) $) 129)) (-3538 (((-112) $) 159)) (-1944 (($ |#1| (-783)) 160) (($ $ (-1103) (-783)) 122) (($ $ (-656 (-1103)) (-656 (-783))) 121)) (-1915 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $ (-1103)) 123) (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 251)) (-2578 (((-783) $) 177) (((-783) $ (-1103)) 125) (((-656 (-783)) $ (-656 (-1103))) 124)) (-3878 (($ (-1 (-783) (-783)) $) 178)) (-4116 (($ (-1 |#1| |#1|) $) 158)) (-1582 (((-1193 |#1|) $) 255)) (-2289 (((-3 (-1103) "failed") $) 126)) (-3676 (((-701 (-576)) (-1288 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 140 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3232 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 135) (((-701 |#1|) (-1288 $)) 134)) (-2081 (($ $) 156)) (-2091 ((|#1| $) 155)) (-3457 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-2046 (((-1179) $) 10)) (-2436 (((-2 (|:| -1855 $) (|:| -3891 $)) $ (-783)) 250)) (-3845 (((-3 (-656 $) "failed") $) 117)) (-2363 (((-3 (-656 $) "failed") $) 118)) (-1452 (((-3 (-2 (|:| |var| (-1103)) (|:| -2508 (-783))) "failed") $) 116)) (-4160 (($ $) 234 (|has| |#1| (-38 (-419 (-576)))))) (-3539 (($) 221 (|has| |#1| (-1173)) CONST)) (-1450 (((-1141) $) 11)) (-2060 (((-112) $) 173)) (-2070 ((|#1| $) 174)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 98 (|has| |#1| (-464)))) (-3497 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-1644 (((-430 (-1193 $)) (-1193 $)) 105 (|has| |#1| (-928)))) (-4296 (((-430 (-1193 $)) (-1193 $)) 104 (|has| |#1| (-928)))) (-1828 (((-430 $) $) 102 (|has| |#1| (-928)))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 232 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 231 (|has| |#1| (-374)))) (-3475 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) 225 (|has| |#1| (-374)))) (-3282 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ (-1103) |#1|) 148) (($ $ (-656 (-1103)) (-656 |#1|)) 147) (($ $ (-1103) $) 146) (($ $ (-656 (-1103)) (-656 $)) 145)) (-1979 (((-783) $) 227 (|has| |#1| (-374)))) (-2796 ((|#1| $ |#1|) 266) (($ $ $) 265) (((-419 $) (-419 $) (-419 $)) 243 (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) 235 (|has| |#1| (-374))) (((-419 $) $ (-419 $)) 223 (|has| |#1| (-568)))) (-4320 (((-3 $ "failed") $ (-783)) 252)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 228 (|has| |#1| (-374)))) (-2269 (($ $ (-1103)) 110 (|has| |#1| (-174))) ((|#1| $) 245 (|has| |#1| (-174)))) (-2774 (($ $ (-656 (-1103)) (-656 (-783))) 44) (($ $ (-1103) (-783)) 43) (($ $ (-656 (-1103))) 42) (($ $ (-1103)) 40) (($ $) 264) (($ $ (-783)) 262) (($ $ (-1 |#1| |#1|)) 260) (($ $ (-1 |#1| |#1|) (-783)) 259) (($ $ (-1 |#1| |#1|) $) 246) (($ $ (-1197)) 220 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 218 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 217 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 216 (|has| |#1| (-919 (-1197))))) (-2683 (((-783) $) 157) (((-783) $ (-1103)) 133) (((-656 (-783)) $ (-656 (-1103))) 132)) (-4171 (((-907 (-390)) $) 85 (-12 (|has| (-1103) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) 84 (-12 (|has| (-1103) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) 83 (-12 (|has| (-1103) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-4370 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ (-1103)) 109 (|has| |#1| (-464)))) (-2889 (((-3 (-1288 $) "failed") (-701 $)) 107 (-2674 (|has| $ (-146)) (|has| |#1| (-928))))) (-3657 (((-3 $ "failed") $ $) 240 (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) 239 (|has| |#1| (-568)))) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ (-1103)) 142) (($ (-419 (-576))) 81 (-2759 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-2937 (((-656 |#1|) $) 175)) (-1822 ((|#1| $ (-783)) 162) (($ $ (-1103) (-783)) 131) (($ $ (-656 (-1103)) (-656 (-783))) 130)) (-3390 (((-3 $ "failed") $) 82 (-2759 (-2674 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-3154 (((-783)) 32 T CONST)) (-2717 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-2399 (((-112) $ $) 6)) (-1505 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2020 (($ $ (-656 (-1103)) (-656 (-783))) 47) (($ $ (-1103) (-783)) 46) (($ $ (-656 (-1103))) 45) (($ $ (-1103)) 41) (($ $) 263) (($ $ (-783)) 261) (($ $ (-1 |#1| |#1|)) 258) (($ $ (-1 |#1| |#1|) (-783)) 257) (($ $ (-1197)) 219 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 215 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 214 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 213 (|has| |#1| (-919 (-1197))))) (-2924 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) (((-1264 |#1|) (-141) (-1070)) (T -1264)) -((-2516 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1264 *4)) (-4 *4 (-1070)) (-5 *2 (-1288 *4)))) (-1732 (*1 *2 *1) (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-5 *2 (-1193 *3)))) (-3591 (*1 *1 *2) (-12 (-5 *2 (-1193 *3)) (-4 *3 (-1070)) (-4 *1 (-1264 *3)))) (-4116 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) (-4177 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) (-4130 (*1 *2 *1 *1) (-12 (-4 *3 (-1070)) (-5 *2 (-2 (|:| -2715 *1) (|:| -3624 *1))) (-4 *1 (-1264 *3)))) (-2015 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1070)) (-5 *2 (-2 (|:| -2715 *1) (|:| -3624 *1))) (-4 *1 (-1264 *4)))) (-1533 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) (-2266 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) (-1898 (*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)))) (-2775 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) (-4352 (*1 *2 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-174)))) (-3230 (*1 *2 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-174)))) (-2797 (*1 *2 *2 *2) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-4 *3 (-568)))) (-3917 (*1 *2 *1 *1) (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-4 *3 (-568)) (-5 *2 (-783)))) (-3049 (*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-568)))) (-2507 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-568)))) (-2507 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-4 *3 (-568)))) (-1804 (*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-568)))) (-2865 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -1714 *3) (|:| -2715 *1) (|:| -3624 *1))) (-4 *1 (-1264 *3)))) (-2772 (*1 *2 *1 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1264 *3)))) (-2797 (*1 *2 *3 *2) (-12 (-5 *3 (-419 *1)) (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-1491 (*1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576))))))) -(-13 (-968 |t#1| (-783) (-1103)) (-296 |t#1| |t#1|) (-296 $ $) (-238) (-232 |t#1|) (-10 -8 (-15 -2516 ((-1288 |t#1|) $ (-783))) (-15 -1732 ((-1193 |t#1|) $)) (-15 -3591 ($ (-1193 |t#1|))) (-15 -4116 ($ $ (-783))) (-15 -4177 ((-3 $ "failed") $ (-783))) (-15 -4130 ((-2 (|:| -2715 $) (|:| -3624 $)) $ $)) (-15 -2015 ((-2 (|:| -2715 $) (|:| -3624 $)) $ (-783))) (-15 -1533 ($ $ (-783))) (-15 -2266 ($ $ (-783))) (-15 -1898 ($ $ $)) (-15 -2775 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1173)) (-6 (-1173)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -4352 (|t#1| $)) (-15 -3230 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-6 (-296 (-419 $) (-419 $))) (-15 -2797 ((-419 $) (-419 $) (-419 $))) (-15 -3917 ((-783) $ $)) (-15 -3049 ($ $ $)) (-15 -2507 ((-3 $ "failed") $ $)) (-15 -2507 ((-3 (-419 $) "failed") (-419 $) $)) (-15 -1804 ($ $ $)) (-15 -2865 ((-2 (|:| -1714 |t#1|) (|:| -2715 $) (|:| -3624 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (-15 -2772 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-6 (-317)) (-6 -4461) (-15 -2797 (|t#1| (-419 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (-15 -1491 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-783)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2760 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 #2=(-1103)) . T) ((-628 |#1|) . T) ((-628 $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-625 (-876)) . T) ((-174) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| (-1103) (-626 (-548))) (|has| |#1| (-626 (-548)))) ((-626 (-907 (-390))) -12 (|has| (-1103) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390))))) ((-626 (-907 (-576))) -12 (|has| (-1103) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576))))) ((-234 $) . T) ((-232 |#1|) . T) ((-238) . T) ((-237) . T) ((-272 |#1|) . T) ((-296 (-419 $) (-419 $)) |has| |#1| (-568)) ((-296 |#1| |#1|) . T) ((-296 $ $) . T) ((-300) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-319 $) . T) ((-336 |#1| #0#) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2760 (|has| |#1| (-928)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-526 #2# |#1|) . T) ((-526 #2# $) . T) ((-526 $ $) . T) ((-568) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 #3=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-651 #3#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-738) . T) ((-911 $ #2#) . T) ((-911 $ #4=(-1197)) -2760 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-917 #2#) . T) ((-917 (-1197)) |has| |#1| (-917 (-1197))) ((-919 #2#) . T) ((-919 #4#) -2760 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-901 (-390)) -12 (|has| (-1103) (-901 (-390))) (|has| |#1| (-901 (-390)))) ((-901 (-576)) -12 (|has| (-1103) (-901 (-576))) (|has| |#1| (-901 (-576)))) ((-968 |#1| #0# #2#) . T) ((-928) |has| |#1| (-928)) ((-939) |has| |#1| (-374)) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 #2#) . T) ((-1059 |#1|) . T) ((-1072 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1077 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2760 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) |has| |#1| (-1173)) ((-1238) . T) ((-1242) |has| |#1| (-928))) -((-1969 (((-656 (-1103)) $) 34)) (-2114 (($ $) 31)) (-1945 (($ |#2| |#3|) NIL) (($ $ (-1103) |#3|) 28) (($ $ (-656 (-1103)) (-656 |#3|)) 27)) (-2081 (($ $) 14)) (-2091 ((|#2| $) 12)) (-3634 ((|#3| $) 10))) -(((-1265 |#1| |#2| |#3|) (-10 -8 (-15 -1969 ((-656 (-1103)) |#1|)) (-15 -1945 (|#1| |#1| (-656 (-1103)) (-656 |#3|))) (-15 -1945 (|#1| |#1| (-1103) |#3|)) (-15 -2114 (|#1| |#1|)) (-15 -1945 (|#1| |#2| |#3|)) (-15 -3634 (|#3| |#1|)) (-15 -2081 (|#1| |#1|)) (-15 -2091 (|#2| |#1|))) (-1266 |#2| |#3|) (-1070) (-804)) (T -1265)) -NIL -(-10 -8 (-15 -1969 ((-656 (-1103)) |#1|)) (-15 -1945 (|#1| |#1| (-656 (-1103)) (-656 |#3|))) (-15 -1945 (|#1| |#1| (-1103) |#3|)) (-15 -2114 (|#1| |#1|)) (-15 -1945 (|#1| |#2| |#3|)) (-15 -3634 (|#3| |#1|)) (-15 -2081 (|#1| |#1|)) (-15 -2091 (|#2| |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-1969 (((-656 (-1103)) $) 86)) (-3055 (((-1197) $) 118)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2757 (($ $) 64 (|has| |#1| (-568)))) (-3788 (((-112) $) 66 (|has| |#1| (-568)))) (-2326 (($ $ |#2|) 113) (($ $ |#2| |#2|) 112)) (-3669 (((-1178 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 119)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-2114 (($ $) 72)) (-1561 (((-3 $ "failed") $) 37)) (-1424 (((-112) $) 85)) (-3917 ((|#2| $) 115) ((|#2| $ |#2|) 114)) (-4193 (((-112) $) 35)) (-4116 (($ $ (-940)) 116)) (-2823 (((-112) $) 74)) (-1945 (($ |#1| |#2|) 73) (($ $ (-1103) |#2|) 88) (($ $ (-656 (-1103)) (-656 |#2|)) 87)) (-4117 (($ (-1 |#1| |#1|) $) 75)) (-2081 (($ $) 77)) (-2091 ((|#1| $) 78)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-1749 (($ $ |#2|) 110)) (-3476 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3284 (((-1178 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2797 ((|#1| $ |#2|) 120) (($ $ $) 96 (|has| |#2| (-1133)))) (-2775 (($ $ (-1197)) 108 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1197))) 106 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1197) (-783)) 105 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 104 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3634 ((|#2| $) 76)) (-3126 (($ $) 84)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3177 ((|#1| $ |#2|) 71)) (-4336 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3996 (((-783)) 32 T CONST)) (-2396 ((|#1| $) 117)) (-4055 (((-112) $ $) 6)) (-2672 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4166 ((|#1| $ |#2|) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3570 (|#1| (-1197))))))) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2020 (($ $ (-1197)) 107 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1197))) 103 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1197) (-783)) 102 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 101 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2925 (((-112) $ $) 8)) (-3057 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +((-3764 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1264 *4)) (-4 *4 (-1070)) (-5 *2 (-1288 *4)))) (-1582 (*1 *2 *1) (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-5 *2 (-1193 *3)))) (-3543 (*1 *1 *2) (-12 (-5 *2 (-1193 *3)) (-4 *3 (-1070)) (-4 *1 (-1264 *3)))) (-1800 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) (-4320 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) (-1915 (*1 *2 *1 *1) (-12 (-4 *3 (-1070)) (-5 *2 (-2 (|:| -1855 *1) (|:| -3891 *1))) (-4 *1 (-1264 *3)))) (-2436 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1070)) (-5 *2 (-2 (|:| -1855 *1) (|:| -3891 *1))) (-4 *1 (-1264 *4)))) (-3350 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) (-3046 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) (-3879 (*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)))) (-2774 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) (-2269 (*1 *2 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-174)))) (-4334 (*1 *2 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-174)))) (-2796 (*1 *2 *2 *2) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-4 *3 (-568)))) (-3726 (*1 *2 *1 *1) (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-4 *3 (-568)) (-5 *2 (-783)))) (-3085 (*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-568)))) (-3657 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-568)))) (-3657 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-4 *3 (-568)))) (-4235 (*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-568)))) (-3958 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -1715 *3) (|:| -1855 *1) (|:| -3891 *1))) (-4 *1 (-1264 *3)))) (-4306 (*1 *2 *1 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1264 *3)))) (-2796 (*1 *2 *3 *2) (-12 (-5 *3 (-419 *1)) (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-4160 (*1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576))))))) +(-13 (-968 |t#1| (-783) (-1103)) (-296 |t#1| |t#1|) (-296 $ $) (-238) (-232 |t#1|) (-10 -8 (-15 -3764 ((-1288 |t#1|) $ (-783))) (-15 -1582 ((-1193 |t#1|) $)) (-15 -3543 ($ (-1193 |t#1|))) (-15 -1800 ($ $ (-783))) (-15 -4320 ((-3 $ "failed") $ (-783))) (-15 -1915 ((-2 (|:| -1855 $) (|:| -3891 $)) $ $)) (-15 -2436 ((-2 (|:| -1855 $) (|:| -3891 $)) $ (-783))) (-15 -3350 ($ $ (-783))) (-15 -3046 ($ $ (-783))) (-15 -3879 ($ $ $)) (-15 -2774 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1173)) (-6 (-1173)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -2269 (|t#1| $)) (-15 -4334 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-6 (-296 (-419 $) (-419 $))) (-15 -2796 ((-419 $) (-419 $) (-419 $))) (-15 -3726 ((-783) $ $)) (-15 -3085 ($ $ $)) (-15 -3657 ((-3 $ "failed") $ $)) (-15 -3657 ((-3 (-419 $) "failed") (-419 $) $)) (-15 -4235 ($ $ $)) (-15 -3958 ((-2 (|:| -1715 |t#1|) (|:| -1855 $) (|:| -3891 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (-15 -4306 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-6 (-317)) (-6 -4460) (-15 -2796 (|t#1| (-419 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (-15 -4160 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-783)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2759 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 #2=(-1103)) . T) ((-628 |#1|) . T) ((-628 $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-625 (-876)) . T) ((-174) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| (-1103) (-626 (-548))) (|has| |#1| (-626 (-548)))) ((-626 (-907 (-390))) -12 (|has| (-1103) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390))))) ((-626 (-907 (-576))) -12 (|has| (-1103) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576))))) ((-234 $) . T) ((-232 |#1|) . T) ((-238) . T) ((-237) . T) ((-272 |#1|) . T) ((-296 (-419 $) (-419 $)) |has| |#1| (-568)) ((-296 |#1| |#1|) . T) ((-296 $ $) . T) ((-300) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-319 $) . T) ((-336 |#1| #0#) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2759 (|has| |#1| (-928)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-526 #2# |#1|) . T) ((-526 #2# $) . T) ((-526 $ $) . T) ((-568) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 #3=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-651 #3#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-738) . T) ((-911 $ #2#) . T) ((-911 $ #4=(-1197)) -2759 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-917 #2#) . T) ((-917 (-1197)) |has| |#1| (-917 (-1197))) ((-919 #2#) . T) ((-919 #4#) -2759 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-901 (-390)) -12 (|has| (-1103) (-901 (-390))) (|has| |#1| (-901 (-390)))) ((-901 (-576)) -12 (|has| (-1103) (-901 (-576))) (|has| |#1| (-901 (-576)))) ((-968 |#1| #0# #2#) . T) ((-928) |has| |#1| (-928)) ((-939) |has| |#1| (-374)) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 #2#) . T) ((-1059 |#1|) . T) ((-1072 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1077 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2759 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) |has| |#1| (-1173)) ((-1238) . T) ((-1242) |has| |#1| (-928))) +((-1969 (((-656 (-1103)) $) 34)) (-2114 (($ $) 31)) (-1944 (($ |#2| |#3|) NIL) (($ $ (-1103) |#3|) 28) (($ $ (-656 (-1103)) (-656 |#3|)) 27)) (-2081 (($ $) 14)) (-2091 ((|#2| $) 12)) (-2683 ((|#3| $) 10))) +(((-1265 |#1| |#2| |#3|) (-10 -8 (-15 -1969 ((-656 (-1103)) |#1|)) (-15 -1944 (|#1| |#1| (-656 (-1103)) (-656 |#3|))) (-15 -1944 (|#1| |#1| (-1103) |#3|)) (-15 -2114 (|#1| |#1|)) (-15 -1944 (|#1| |#2| |#3|)) (-15 -2683 (|#3| |#1|)) (-15 -2081 (|#1| |#1|)) (-15 -2091 (|#2| |#1|))) (-1266 |#2| |#3|) (-1070) (-804)) (T -1265)) +NIL +(-10 -8 (-15 -1969 ((-656 (-1103)) |#1|)) (-15 -1944 (|#1| |#1| (-656 (-1103)) (-656 |#3|))) (-15 -1944 (|#1| |#1| (-1103) |#3|)) (-15 -2114 (|#1| |#1|)) (-15 -1944 (|#1| |#2| |#3|)) (-15 -2683 (|#3| |#1|)) (-15 -2081 (|#1| |#1|)) (-15 -2091 (|#2| |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-1969 (((-656 (-1103)) $) 86)) (-3054 (((-1197) $) 118)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4195 (($ $) 64 (|has| |#1| (-568)))) (-1760 (((-112) $) 66 (|has| |#1| (-568)))) (-2408 (($ $ |#2|) 113) (($ $ |#2| |#2|) 112)) (-3064 (((-1178 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 119)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-2114 (($ $) 72)) (-3673 (((-3 $ "failed") $) 37)) (-2116 (((-112) $) 85)) (-3726 ((|#2| $) 115) ((|#2| $ |#2|) 114)) (-1351 (((-112) $) 35)) (-1800 (($ $ (-940)) 116)) (-3538 (((-112) $) 74)) (-1944 (($ |#1| |#2|) 73) (($ $ (-1103) |#2|) 88) (($ $ (-656 (-1103)) (-656 |#2|)) 87)) (-4116 (($ (-1 |#1| |#1|) $) 75)) (-2081 (($ $) 77)) (-2091 ((|#1| $) 78)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-1743 (($ $ |#2|) 110)) (-3475 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3282 (((-1178 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2796 ((|#1| $ |#2|) 120) (($ $ $) 96 (|has| |#2| (-1133)))) (-2774 (($ $ (-1197)) 108 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1197))) 106 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1197) (-783)) 105 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 104 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2683 ((|#2| $) 76)) (-2539 (($ $) 84)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-1822 ((|#1| $ |#2|) 71)) (-3390 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3154 (((-783)) 32 T CONST)) (-2396 ((|#1| $) 117)) (-2399 (((-112) $ $) 6)) (-1505 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4165 ((|#1| $ |#2|) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2020 (($ $ (-1197)) 107 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1197))) 103 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1197) (-783)) 102 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 101 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2924 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) (((-1266 |#1| |#2|) (-141) (-1070) (-804)) (T -1266)) -((-3669 (*1 *2 *1) (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-5 *2 (-1178 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3055 (*1 *2 *1) (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-5 *2 (-1197)))) (-2396 (*1 *2 *1) (-12 (-4 *1 (-1266 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)))) (-4116 (*1 *1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)))) (-3917 (*1 *2 *1) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-3917 (*1 *2 *1 *2) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-2326 (*1 *1 *1 *2) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-2326 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-4166 (*1 *2 *1 *3) (-12 (-4 *1 (-1266 *2 *3)) (-4 *3 (-804)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3570 (*2 (-1197)))) (-4 *2 (-1070)))) (-1749 (*1 *1 *1 *2) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-3284 (*1 *2 *1 *3) (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1178 *3))))) -(-13 (-994 |t#1| |t#2| (-1103)) (-296 |t#2| |t#1|) (-10 -8 (-15 -3669 ((-1178 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3055 ((-1197) $)) (-15 -2396 (|t#1| $)) (-15 -4116 ($ $ (-940))) (-15 -3917 (|t#2| $)) (-15 -3917 (|t#2| $ |t#2|)) (-15 -2326 ($ $ |t#2|)) (-15 -2326 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3570 (|t#1| (-1197)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4166 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -1749 ($ $ |t#2|)) (IF (|has| |t#2| (-1133)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-238)) (IF (|has| |t#1| (-917 (-1197))) (-6 (-917 (-1197))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3284 ((-1178 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2760 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) -2760 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-238) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-237) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-296 |#2| |#1|) . T) ((-296 $ $) |has| |#2| (-1133)) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-911 $ #1=(-1197)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-917 (-1197)))) ((-917 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-917 (-1197)))) ((-919 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-917 (-1197)))) ((-994 |#1| |#2| (-1103)) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-2487 ((|#2| |#2|) 12)) (-3921 (((-430 |#2|) |#2|) 14)) (-2795 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))) 30))) -(((-1267 |#1| |#2|) (-10 -7 (-15 -3921 ((-430 |#2|) |#2|)) (-15 -2487 (|#2| |#2|)) (-15 -2795 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))))) (-568) (-13 (-1264 |#1|) (-568) (-10 -8 (-15 -3498 ($ $ $))))) (T -1267)) -((-2795 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-576)))) (-4 *4 (-13 (-1264 *3) (-568) (-10 -8 (-15 -3498 ($ $ $))))) (-4 *3 (-568)) (-5 *1 (-1267 *3 *4)))) (-2487 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-1267 *3 *2)) (-4 *2 (-13 (-1264 *3) (-568) (-10 -8 (-15 -3498 ($ $ $))))))) (-3921 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-1267 *4 *3)) (-4 *3 (-13 (-1264 *4) (-568) (-10 -8 (-15 -3498 ($ $ $)))))))) -(-10 -7 (-15 -3921 ((-430 |#2|) |#2|)) (-15 -2487 (|#2| |#2|)) (-15 -2795 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))))) -((-4117 (((-1273 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1273 |#1| |#3| |#5|)) 24))) -(((-1268 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4117 ((-1273 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1273 |#1| |#3| |#5|)))) (-1070) (-1070) (-1197) (-1197) |#1| |#2|) (T -1268)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1273 *5 *7 *9)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-14 *7 (-1197)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1273 *6 *8 *10)) (-5 *1 (-1268 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1197))))) -(-10 -7 (-15 -4117 ((-1273 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1273 |#1| |#3| |#5|)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-1969 (((-656 (-1103)) $) 86)) (-3055 (((-1197) $) 118)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2757 (($ $) 64 (|has| |#1| (-568)))) (-3788 (((-112) $) 66 (|has| |#1| (-568)))) (-2326 (($ $ (-419 (-576))) 113) (($ $ (-419 (-576)) (-419 (-576))) 112)) (-3669 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 119)) (-4025 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3901 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-4367 (((-3 $ "failed") $ $) 20)) (-2487 (($ $) 177 (|has| |#1| (-374)))) (-3921 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1839 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-4016 (((-112) $ $) 168 (|has| |#1| (-374)))) (-4006 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3877 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3080 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 186)) (-4050 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($) 18 T CONST)) (-3429 (($ $ $) 172 (|has| |#1| (-374)))) (-2114 (($ $) 72)) (-1561 (((-3 $ "failed") $) 37)) (-3441 (($ $ $) 171 (|has| |#1| (-374)))) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-4249 (((-112) $) 179 (|has| |#1| (-374)))) (-1424 (((-112) $) 85)) (-1600 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3917 (((-419 (-576)) $) 115) (((-419 (-576)) $ (-419 (-576))) 114)) (-4193 (((-112) $) 35)) (-2121 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-4116 (($ $ (-940)) 116) (($ $ (-419 (-576))) 185)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-2823 (((-112) $) 74)) (-1945 (($ |#1| (-419 (-576))) 73) (($ $ (-1103) (-419 (-576))) 88) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) 87)) (-4117 (($ (-1 |#1| |#1|) $) 75)) (-3745 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) 77)) (-2091 ((|#1| $) 78)) (-3458 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-3699 (((-1179) $) 10)) (-2050 (($ $) 180 (|has| |#1| (-374)))) (-1491 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 183 (-2760 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-978)) (|has| |#1| (-1223)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-15 -1491 (|#1| |#1| (-1197)))) (|has| |#1| (-38 (-419 (-576)))))))) (-1450 (((-1141) $) 11)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 165 (|has| |#1| (-374)))) (-3498 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1828 (((-430 $) $) 176 (|has| |#1| (-374)))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 173 (|has| |#1| (-374)))) (-1749 (($ $ (-419 (-576))) 110)) (-3476 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-4104 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3284 (((-1178 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-1967 (((-783) $) 169 (|has| |#1| (-374)))) (-2797 ((|#1| $ (-419 (-576))) 120) (($ $ $) 96 (|has| (-419 (-576)) (-1133)))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 170 (|has| |#1| (-374)))) (-2775 (($ $ (-1197)) 108 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197))) 106 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1197) (-783)) 105 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 104 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3634 (((-419 (-576)) $) 76)) (-4061 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3930 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-4037 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-4014 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3889 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-3126 (($ $) 84)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-3177 ((|#1| $ (-419 (-576))) 71)) (-4336 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3996 (((-783)) 32 T CONST)) (-2396 ((|#1| $) 117)) (-4055 (((-112) $ $) 6)) (-2791 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3961 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2672 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4071 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-2815 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3983 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4166 ((|#1| $ (-419 (-576))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3570 (|#1| (-1197))))))) (-4388 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3995 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-2803 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3974 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-4083 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3951 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2020 (($ $ (-1197)) 107 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197))) 103 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1197) (-783)) 102 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 101 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2925 (((-112) $ $) 8)) (-3057 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +((-3064 (*1 *2 *1) (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-5 *2 (-1178 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3054 (*1 *2 *1) (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-5 *2 (-1197)))) (-2396 (*1 *2 *1) (-12 (-4 *1 (-1266 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)))) (-1800 (*1 *1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-3726 (*1 *2 *1 *2) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-2408 (*1 *1 *1 *2) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-2408 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-4165 (*1 *2 *1 *3) (-12 (-4 *1 (-1266 *2 *3)) (-4 *3 (-804)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3569 (*2 (-1197)))) (-4 *2 (-1070)))) (-1743 (*1 *1 *1 *2) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-3282 (*1 *2 *1 *3) (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1178 *3))))) +(-13 (-994 |t#1| |t#2| (-1103)) (-296 |t#2| |t#1|) (-10 -8 (-15 -3064 ((-1178 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3054 ((-1197) $)) (-15 -2396 (|t#1| $)) (-15 -1800 ($ $ (-940))) (-15 -3726 (|t#2| $)) (-15 -3726 (|t#2| $ |t#2|)) (-15 -2408 ($ $ |t#2|)) (-15 -2408 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3569 (|t#1| (-1197)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4165 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -1743 ($ $ |t#2|)) (IF (|has| |t#2| (-1133)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-238)) (IF (|has| |t#1| (-917 (-1197))) (-6 (-917 (-1197))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3282 ((-1178 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2759 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) -2759 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-238) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-237) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-296 |#2| |#1|) . T) ((-296 $ $) |has| |#2| (-1133)) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-911 $ #1=(-1197)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-917 (-1197)))) ((-917 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-917 (-1197)))) ((-919 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-917 (-1197)))) ((-994 |#1| |#2| (-1103)) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) +((-3444 ((|#2| |#2|) 12)) (-3760 (((-430 |#2|) |#2|) 14)) (-1378 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))) 30))) +(((-1267 |#1| |#2|) (-10 -7 (-15 -3760 ((-430 |#2|) |#2|)) (-15 -3444 (|#2| |#2|)) (-15 -1378 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))))) (-568) (-13 (-1264 |#1|) (-568) (-10 -8 (-15 -3497 ($ $ $))))) (T -1267)) +((-1378 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-576)))) (-4 *4 (-13 (-1264 *3) (-568) (-10 -8 (-15 -3497 ($ $ $))))) (-4 *3 (-568)) (-5 *1 (-1267 *3 *4)))) (-3444 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-1267 *3 *2)) (-4 *2 (-13 (-1264 *3) (-568) (-10 -8 (-15 -3497 ($ $ $))))))) (-3760 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-1267 *4 *3)) (-4 *3 (-13 (-1264 *4) (-568) (-10 -8 (-15 -3497 ($ $ $)))))))) +(-10 -7 (-15 -3760 ((-430 |#2|) |#2|)) (-15 -3444 (|#2| |#2|)) (-15 -1378 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))))) +((-4116 (((-1273 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1273 |#1| |#3| |#5|)) 24))) +(((-1268 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4116 ((-1273 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1273 |#1| |#3| |#5|)))) (-1070) (-1070) (-1197) (-1197) |#1| |#2|) (T -1268)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1273 *5 *7 *9)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-14 *7 (-1197)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1273 *6 *8 *10)) (-5 *1 (-1268 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1197))))) +(-10 -7 (-15 -4116 ((-1273 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1273 |#1| |#3| |#5|)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-1969 (((-656 (-1103)) $) 86)) (-3054 (((-1197) $) 118)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4195 (($ $) 64 (|has| |#1| (-568)))) (-1760 (((-112) $) 66 (|has| |#1| (-568)))) (-2408 (($ $ (-419 (-576))) 113) (($ $ (-419 (-576)) (-419 (-576))) 112)) (-3064 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 119)) (-4024 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2428 (((-3 $ "failed") $ $) 20)) (-3444 (($ $) 177 (|has| |#1| (-374)))) (-3760 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1840 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3330 (((-112) $ $) 168 (|has| |#1| (-374)))) (-4005 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3079 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 186)) (-4049 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3404 (($) 18 T CONST)) (-3428 (($ $ $) 172 (|has| |#1| (-374)))) (-2114 (($ $) 72)) (-3673 (((-3 $ "failed") $) 37)) (-3440 (($ $ $) 171 (|has| |#1| (-374)))) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-3833 (((-112) $) 179 (|has| |#1| (-374)))) (-2116 (((-112) $) 85)) (-1600 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3726 (((-419 (-576)) $) 115) (((-419 (-576)) $ (-419 (-576))) 114)) (-1351 (((-112) $) 35)) (-4131 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-1800 (($ $ (-940)) 116) (($ $ (-419 (-576))) 185)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-3538 (((-112) $) 74)) (-1944 (($ |#1| (-419 (-576))) 73) (($ $ (-1103) (-419 (-576))) 88) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) 87)) (-4116 (($ (-1 |#1| |#1|) $) 75)) (-3744 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) 77)) (-2091 ((|#1| $) 78)) (-3457 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-2046 (((-1179) $) 10)) (-2050 (($ $) 180 (|has| |#1| (-374)))) (-4160 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 183 (-2759 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-978)) (|has| |#1| (-1223)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-15 -4160 (|#1| |#1| (-1197)))) (|has| |#1| (-38 (-419 (-576)))))))) (-1450 (((-1141) $) 11)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 165 (|has| |#1| (-374)))) (-3497 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1828 (((-430 $) $) 176 (|has| |#1| (-374)))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 173 (|has| |#1| (-374)))) (-1743 (($ $ (-419 (-576))) 110)) (-3475 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-4103 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3282 (((-1178 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-1979 (((-783) $) 169 (|has| |#1| (-374)))) (-2796 ((|#1| $ (-419 (-576))) 120) (($ $ $) 96 (|has| (-419 (-576)) (-1133)))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 170 (|has| |#1| (-374)))) (-2774 (($ $ (-1197)) 108 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197))) 106 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1197) (-783)) 105 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 104 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2683 (((-419 (-576)) $) 76)) (-4060 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-2539 (($ $) 84)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-1822 ((|#1| $ (-419 (-576))) 71)) (-3390 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3154 (((-783)) 32 T CONST)) (-2396 ((|#1| $) 117)) (-2399 (((-112) $ $) 6)) (-2790 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-1505 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4070 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-419 (-576))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2020 (($ $ (-1197)) 107 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197))) 103 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1197) (-783)) 102 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 101 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2924 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) (((-1269 |#1|) (-141) (-1070)) (T -1269)) -((-3080 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))) (-4 *4 (-1070)) (-4 *1 (-1269 *4)))) (-4116 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1269 *3)) (-4 *3 (-1070)))) (-1491 (*1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) (-1491 (*1 *1 *1 *2) (-2760 (-12 (-5 *2 (-1197)) (-4 *1 (-1269 *3)) (-4 *3 (-1070)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-978)) (-4 *3 (-1223)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1197)) (-4 *1 (-1269 *3)) (-4 *3 (-1070)) (-12 (|has| *3 (-15 -1969 ((-656 *2) *3))) (|has| *3 (-15 -1491 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) -(-13 (-1266 |t#1| (-419 (-576))) (-10 -8 (-15 -3080 ($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |t#1|))))) (-15 -4116 ($ $ (-419 (-576)))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -1491 ($ $)) (IF (|has| |t#1| (-15 -1491 (|t#1| |t#1| (-1197)))) (IF (|has| |t#1| (-15 -1969 ((-656 (-1197)) |t#1|))) (-15 -1491 ($ $ (-1197))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1223)) (IF (|has| |t#1| (-978)) (IF (|has| |t#1| (-29 (-576))) (-15 -1491 ($ $ (-1197))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1023)) (-6 (-1223))) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-419 (-576))) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-876)) . T) ((-174) -2760 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-419 (-576)) (-1133)) ((-300) -2760 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -2760 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-911 $ #2=(-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197)))) ((-919 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197)))) ((-994 |#1| #0# (-1103)) . T) ((-939) |has| |#1| (-374)) ((-1023) |has| |#1| (-38 (-419 (-576)))) ((-1072 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1072 |#1|) . T) ((-1072 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1077 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1077 |#1|) . T) ((-1077 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1223) |has| |#1| (-38 (-419 (-576)))) ((-1226) |has| |#1| (-38 (-419 (-576)))) ((-1238) . T) ((-1242) |has| |#1| (-374)) ((-1266 |#1| #0#) . T)) -((-4308 (((-112) $) 12)) (-1572 (((-3 |#3| "failed") $) 17)) (-2860 ((|#3| $) 14))) -(((-1270 |#1| |#2| |#3|) (-10 -8 (-15 -1572 ((-3 |#3| "failed") |#1|)) (-15 -2860 (|#3| |#1|)) (-15 -4308 ((-112) |#1|))) (-1271 |#2| |#3|) (-1070) (-1248 |#2|)) (T -1270)) -NIL -(-10 -8 (-15 -1572 ((-3 |#3| "failed") |#1|)) (-15 -2860 (|#3| |#1|)) (-15 -4308 ((-112) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-1969 (((-656 (-1103)) $) 86)) (-3055 (((-1197) $) 118)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2757 (($ $) 64 (|has| |#1| (-568)))) (-3788 (((-112) $) 66 (|has| |#1| (-568)))) (-2326 (($ $ (-419 (-576))) 113) (($ $ (-419 (-576)) (-419 (-576))) 112)) (-3669 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 119)) (-4025 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3901 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-4367 (((-3 $ "failed") $ $) 20)) (-2487 (($ $) 177 (|has| |#1| (-374)))) (-3921 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1839 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-4016 (((-112) $ $) 168 (|has| |#1| (-374)))) (-4006 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3877 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3080 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 186)) (-4050 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($) 18 T CONST)) (-1572 (((-3 |#2| "failed") $) 197)) (-2860 ((|#2| $) 198)) (-3429 (($ $ $) 172 (|has| |#1| (-374)))) (-2114 (($ $) 72)) (-1561 (((-3 $ "failed") $) 37)) (-1422 (((-419 (-576)) $) 194)) (-3441 (($ $ $) 171 (|has| |#1| (-374)))) (-2031 (($ (-419 (-576)) |#2|) 195)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-4249 (((-112) $) 179 (|has| |#1| (-374)))) (-1424 (((-112) $) 85)) (-1600 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3917 (((-419 (-576)) $) 115) (((-419 (-576)) $ (-419 (-576))) 114)) (-4193 (((-112) $) 35)) (-2121 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-4116 (($ $ (-940)) 116) (($ $ (-419 (-576))) 185)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-2823 (((-112) $) 74)) (-1945 (($ |#1| (-419 (-576))) 73) (($ $ (-1103) (-419 (-576))) 88) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) 87)) (-4117 (($ (-1 |#1| |#1|) $) 75)) (-3745 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) 77)) (-2091 ((|#1| $) 78)) (-3458 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-2264 ((|#2| $) 193)) (-1851 (((-3 |#2| "failed") $) 191)) (-2021 ((|#2| $) 192)) (-3699 (((-1179) $) 10)) (-2050 (($ $) 180 (|has| |#1| (-374)))) (-1491 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 183 (-2760 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-978)) (|has| |#1| (-1223)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-15 -1491 (|#1| |#1| (-1197)))) (|has| |#1| (-38 (-419 (-576)))))))) (-1450 (((-1141) $) 11)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 165 (|has| |#1| (-374)))) (-3498 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1828 (((-430 $) $) 176 (|has| |#1| (-374)))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 173 (|has| |#1| (-374)))) (-1749 (($ $ (-419 (-576))) 110)) (-3476 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-4104 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3284 (((-1178 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-1967 (((-783) $) 169 (|has| |#1| (-374)))) (-2797 ((|#1| $ (-419 (-576))) 120) (($ $ $) 96 (|has| (-419 (-576)) (-1133)))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 170 (|has| |#1| (-374)))) (-2775 (($ $ (-1197)) 108 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197))) 106 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1197) (-783)) 105 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 104 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3634 (((-419 (-576)) $) 76)) (-4061 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3930 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-4037 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-4014 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3889 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-3126 (($ $) 84)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 196) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-3177 ((|#1| $ (-419 (-576))) 71)) (-4336 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3996 (((-783)) 32 T CONST)) (-2396 ((|#1| $) 117)) (-4055 (((-112) $ $) 6)) (-2791 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3961 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2672 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4071 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-2815 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3983 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4166 ((|#1| $ (-419 (-576))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3570 (|#1| (-1197))))))) (-4388 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3995 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-2803 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3974 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-4083 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3951 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2020 (($ $ (-1197)) 107 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197))) 103 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1197) (-783)) 102 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 101 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2925 (((-112) $ $) 8)) (-3057 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +((-3079 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))) (-4 *4 (-1070)) (-4 *1 (-1269 *4)))) (-1800 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1269 *3)) (-4 *3 (-1070)))) (-4160 (*1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) (-4160 (*1 *1 *1 *2) (-2759 (-12 (-5 *2 (-1197)) (-4 *1 (-1269 *3)) (-4 *3 (-1070)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-978)) (-4 *3 (-1223)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1197)) (-4 *1 (-1269 *3)) (-4 *3 (-1070)) (-12 (|has| *3 (-15 -1969 ((-656 *2) *3))) (|has| *3 (-15 -4160 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) +(-13 (-1266 |t#1| (-419 (-576))) (-10 -8 (-15 -3079 ($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |t#1|))))) (-15 -1800 ($ $ (-419 (-576)))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -4160 ($ $)) (IF (|has| |t#1| (-15 -4160 (|t#1| |t#1| (-1197)))) (IF (|has| |t#1| (-15 -1969 ((-656 (-1197)) |t#1|))) (-15 -4160 ($ $ (-1197))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1223)) (IF (|has| |t#1| (-978)) (IF (|has| |t#1| (-29 (-576))) (-15 -4160 ($ $ (-1197))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1023)) (-6 (-1223))) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-419 (-576))) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-876)) . T) ((-174) -2759 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-419 (-576)) (-1133)) ((-300) -2759 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -2759 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-911 $ #2=(-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197)))) ((-919 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197)))) ((-994 |#1| #0# (-1103)) . T) ((-939) |has| |#1| (-374)) ((-1023) |has| |#1| (-38 (-419 (-576)))) ((-1072 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1072 |#1|) . T) ((-1072 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1077 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1077 |#1|) . T) ((-1077 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1223) |has| |#1| (-38 (-419 (-576)))) ((-1226) |has| |#1| (-38 (-419 (-576)))) ((-1238) . T) ((-1242) |has| |#1| (-374)) ((-1266 |#1| #0#) . T)) +((-3135 (((-112) $) 12)) (-1572 (((-3 |#3| "failed") $) 17)) (-2859 ((|#3| $) 14))) +(((-1270 |#1| |#2| |#3|) (-10 -8 (-15 -1572 ((-3 |#3| "failed") |#1|)) (-15 -2859 (|#3| |#1|)) (-15 -3135 ((-112) |#1|))) (-1271 |#2| |#3|) (-1070) (-1248 |#2|)) (T -1270)) +NIL +(-10 -8 (-15 -1572 ((-3 |#3| "failed") |#1|)) (-15 -2859 (|#3| |#1|)) (-15 -3135 ((-112) |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-1969 (((-656 (-1103)) $) 86)) (-3054 (((-1197) $) 118)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4195 (($ $) 64 (|has| |#1| (-568)))) (-1760 (((-112) $) 66 (|has| |#1| (-568)))) (-2408 (($ $ (-419 (-576))) 113) (($ $ (-419 (-576)) (-419 (-576))) 112)) (-3064 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 119)) (-4024 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2428 (((-3 $ "failed") $ $) 20)) (-3444 (($ $) 177 (|has| |#1| (-374)))) (-3760 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1840 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3330 (((-112) $ $) 168 (|has| |#1| (-374)))) (-4005 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3079 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 186)) (-4049 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3404 (($) 18 T CONST)) (-1572 (((-3 |#2| "failed") $) 197)) (-2859 ((|#2| $) 198)) (-3428 (($ $ $) 172 (|has| |#1| (-374)))) (-2114 (($ $) 72)) (-3673 (((-3 $ "failed") $) 37)) (-2093 (((-419 (-576)) $) 194)) (-3440 (($ $ $) 171 (|has| |#1| (-374)))) (-2031 (($ (-419 (-576)) |#2|) 195)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-3833 (((-112) $) 179 (|has| |#1| (-374)))) (-2116 (((-112) $) 85)) (-1600 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3726 (((-419 (-576)) $) 115) (((-419 (-576)) $ (-419 (-576))) 114)) (-1351 (((-112) $) 35)) (-4131 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-1800 (($ $ (-940)) 116) (($ $ (-419 (-576))) 185)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-3538 (((-112) $) 74)) (-1944 (($ |#1| (-419 (-576))) 73) (($ $ (-1103) (-419 (-576))) 88) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) 87)) (-4116 (($ (-1 |#1| |#1|) $) 75)) (-3744 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) 77)) (-2091 ((|#1| $) 78)) (-3457 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-3019 ((|#2| $) 193)) (-3418 (((-3 |#2| "failed") $) 191)) (-2021 ((|#2| $) 192)) (-2046 (((-1179) $) 10)) (-2050 (($ $) 180 (|has| |#1| (-374)))) (-4160 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 183 (-2759 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-978)) (|has| |#1| (-1223)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-15 -4160 (|#1| |#1| (-1197)))) (|has| |#1| (-38 (-419 (-576)))))))) (-1450 (((-1141) $) 11)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 165 (|has| |#1| (-374)))) (-3497 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1828 (((-430 $) $) 176 (|has| |#1| (-374)))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 173 (|has| |#1| (-374)))) (-1743 (($ $ (-419 (-576))) 110)) (-3475 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-4103 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3282 (((-1178 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-1979 (((-783) $) 169 (|has| |#1| (-374)))) (-2796 ((|#1| $ (-419 (-576))) 120) (($ $ $) 96 (|has| (-419 (-576)) (-1133)))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 170 (|has| |#1| (-374)))) (-2774 (($ $ (-1197)) 108 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197))) 106 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1197) (-783)) 105 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 104 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2683 (((-419 (-576)) $) 76)) (-4060 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-2539 (($ $) 84)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 196) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-1822 ((|#1| $ (-419 (-576))) 71)) (-3390 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3154 (((-783)) 32 T CONST)) (-2396 ((|#1| $) 117)) (-2399 (((-112) $ $) 6)) (-2790 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-1505 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4070 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-419 (-576))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2020 (($ $ (-1197)) 107 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197))) 103 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1197) (-783)) 102 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 101 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2924 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) (((-1271 |#1| |#2|) (-141) (-1070) (-1248 |t#1|)) (T -1271)) -((-3634 (*1 *2 *1) (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1248 *3)) (-5 *2 (-419 (-576))))) (-2031 (*1 *1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-4 *4 (-1070)) (-4 *1 (-1271 *4 *3)) (-4 *3 (-1248 *4)))) (-1422 (*1 *2 *1) (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1248 *3)) (-5 *2 (-419 (-576))))) (-2264 (*1 *2 *1) (-12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1248 *3)))) (-2021 (*1 *2 *1) (-12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1248 *3)))) (-1851 (*1 *2 *1) (|partial| -12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1248 *3))))) -(-13 (-1269 |t#1|) (-1059 |t#2|) (-628 |t#2|) (-10 -8 (-15 -2031 ($ (-419 (-576)) |t#2|)) (-15 -1422 ((-419 (-576)) $)) (-15 -2264 (|t#2| $)) (-15 -3634 ((-419 (-576)) $)) (-15 -2021 (|t#2| $)) (-15 -1851 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-419 (-576))) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 |#2|) . T) ((-628 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-876)) . T) ((-174) -2760 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-419 (-576)) (-1133)) ((-300) -2760 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -2760 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-911 $ #2=(-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197)))) ((-919 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197)))) ((-994 |#1| #0# (-1103)) . T) ((-939) |has| |#1| (-374)) ((-1023) |has| |#1| (-38 (-419 (-576)))) ((-1059 |#2|) . T) ((-1072 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1072 |#1|) . T) ((-1072 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1077 #1#) -2760 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1077 |#1|) . T) ((-1077 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1223) |has| |#1| (-38 (-419 (-576)))) ((-1226) |has| |#1| (-38 (-419 (-576)))) ((-1238) . T) ((-1242) |has| |#1| (-374)) ((-1266 |#1| #0#) . T) ((-1269 |#1|) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-1969 (((-656 (-1103)) $) NIL)) (-3055 (((-1197) $) 104)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2757 (($ $) NIL (|has| |#1| (-568)))) (-3788 (((-112) $) NIL (|has| |#1| (-568)))) (-2326 (($ $ (-419 (-576))) 116) (($ $ (-419 (-576)) (-419 (-576))) 118)) (-3669 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 54)) (-4025 (($ $) 192 (|has| |#1| (-38 (-419 (-576)))))) (-3901 (($ $) 168 (|has| |#1| (-38 (-419 (-576)))))) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL (|has| |#1| (-374)))) (-3921 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1839 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4016 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4006 (($ $) 188 (|has| |#1| (-38 (-419 (-576)))))) (-3877 (($ $) 164 (|has| |#1| (-38 (-419 (-576)))))) (-3080 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 65)) (-4050 (($ $) 196 (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $) 172 (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) NIL)) (-2860 ((|#2| $) NIL)) (-3429 (($ $ $) NIL (|has| |#1| (-374)))) (-2114 (($ $) NIL)) (-1561 (((-3 $ "failed") $) 85)) (-1422 (((-419 (-576)) $) 13)) (-3441 (($ $ $) NIL (|has| |#1| (-374)))) (-2031 (($ (-419 (-576)) |#2|) 11)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-4249 (((-112) $) NIL (|has| |#1| (-374)))) (-1424 (((-112) $) 74)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3917 (((-419 (-576)) $) 113) (((-419 (-576)) $ (-419 (-576))) 114)) (-4193 (((-112) $) NIL)) (-2121 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4116 (($ $ (-940)) 130) (($ $ (-419 (-576))) 128)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2823 (((-112) $) NIL)) (-1945 (($ |#1| (-419 (-576))) 33) (($ $ (-1103) (-419 (-576))) NIL) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) NIL)) (-4117 (($ (-1 |#1| |#1|) $) 125)) (-3745 (($ $) 162 (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-3458 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2264 ((|#2| $) 12)) (-1851 (((-3 |#2| "failed") $) 44)) (-2021 ((|#2| $) 45)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) 101 (|has| |#1| (-374)))) (-1491 (($ $) 146 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 151 (-2760 (-12 (|has| |#1| (-15 -1491 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223)))))) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| |#1| (-374)))) (-1749 (($ $ (-419 (-576))) 122)) (-3476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4104 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3284 (((-1178 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-1967 (((-783) $) NIL (|has| |#1| (-374)))) (-2797 ((|#1| $ (-419 (-576))) 108) (($ $ $) 94 (|has| (-419 (-576)) (-1133)))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#1| (-374)))) (-2775 (($ $ (-1197)) 138 (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3634 (((-419 (-576)) $) 16)) (-4061 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-3930 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-4037 (($ $) 194 (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) 170 (|has| |#1| (-38 (-419 (-576)))))) (-4014 (($ $) 190 (|has| |#1| (-38 (-419 (-576)))))) (-3889 (($ $) 166 (|has| |#1| (-38 (-419 (-576)))))) (-3126 (($ $) 120)) (-3570 (((-876) $) NIL) (($ (-576)) 37) (($ |#1|) 27 (|has| |#1| (-174))) (($ |#2|) 34) (($ (-419 (-576))) 139 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-3177 ((|#1| $ (-419 (-576))) 107)) (-4336 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3996 (((-783)) 127 T CONST)) (-2396 ((|#1| $) 106)) (-4055 (((-112) $ $) NIL)) (-2791 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-3961 (($ $) 180 (|has| |#1| (-38 (-419 (-576)))))) (-2672 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4071 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) 176 (|has| |#1| (-38 (-419 (-576)))))) (-2815 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-3983 (($ $) 184 (|has| |#1| (-38 (-419 (-576)))))) (-4166 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3570 (|#1| (-1197))))))) (-4388 (($ $) 210 (|has| |#1| (-38 (-419 (-576)))))) (-3995 (($ $) 186 (|has| |#1| (-38 (-419 (-576)))))) (-2803 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-3974 (($ $) 182 (|has| |#1| (-38 (-419 (-576)))))) (-4083 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-3951 (($ $) 178 (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) 21 T CONST)) (-2732 (($) 17 T CONST)) (-2020 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2925 (((-112) $ $) 72)) (-3057 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 100 (|has| |#1| (-374)))) (-3044 (($ $) 142) (($ $ $) 78)) (-3030 (($ $ $) 76)) (** (($ $ (-940)) NIL) (($ $ (-783)) 82) (($ $ (-576)) 157 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 158 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +((-2683 (*1 *2 *1) (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1248 *3)) (-5 *2 (-419 (-576))))) (-2031 (*1 *1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-4 *4 (-1070)) (-4 *1 (-1271 *4 *3)) (-4 *3 (-1248 *4)))) (-2093 (*1 *2 *1) (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1248 *3)) (-5 *2 (-419 (-576))))) (-3019 (*1 *2 *1) (-12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1248 *3)))) (-2021 (*1 *2 *1) (-12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1248 *3)))) (-3418 (*1 *2 *1) (|partial| -12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1248 *3))))) +(-13 (-1269 |t#1|) (-1059 |t#2|) (-628 |t#2|) (-10 -8 (-15 -2031 ($ (-419 (-576)) |t#2|)) (-15 -2093 ((-419 (-576)) $)) (-15 -3019 (|t#2| $)) (-15 -2683 ((-419 (-576)) $)) (-15 -2021 (|t#2| $)) (-15 -3418 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-419 (-576))) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 |#2|) . T) ((-628 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-876)) . T) ((-174) -2759 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-419 (-576)) (-1133)) ((-300) -2759 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -2759 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-911 $ #2=(-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197)))) ((-919 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197)))) ((-994 |#1| #0# (-1103)) . T) ((-939) |has| |#1| (-374)) ((-1023) |has| |#1| (-38 (-419 (-576)))) ((-1059 |#2|) . T) ((-1072 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1072 |#1|) . T) ((-1072 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1077 #1#) -2759 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1077 |#1|) . T) ((-1077 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1223) |has| |#1| (-38 (-419 (-576)))) ((-1226) |has| |#1| (-38 (-419 (-576)))) ((-1238) . T) ((-1242) |has| |#1| (-374)) ((-1266 |#1| #0#) . T) ((-1269 |#1|) . T)) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-1969 (((-656 (-1103)) $) NIL)) (-3054 (((-1197) $) 104)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4195 (($ $) NIL (|has| |#1| (-568)))) (-1760 (((-112) $) NIL (|has| |#1| (-568)))) (-2408 (($ $ (-419 (-576))) 116) (($ $ (-419 (-576)) (-419 (-576))) 118)) (-3064 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 54)) (-4024 (($ $) 192 (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) 168 (|has| |#1| (-38 (-419 (-576)))))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL (|has| |#1| (-374)))) (-3760 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1840 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3330 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4005 (($ $) 188 (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) 164 (|has| |#1| (-38 (-419 (-576)))))) (-3079 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 65)) (-4049 (($ $) 196 (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) 172 (|has| |#1| (-38 (-419 (-576)))))) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) NIL)) (-2859 ((|#2| $) NIL)) (-3428 (($ $ $) NIL (|has| |#1| (-374)))) (-2114 (($ $) NIL)) (-3673 (((-3 $ "failed") $) 85)) (-2093 (((-419 (-576)) $) 13)) (-3440 (($ $ $) NIL (|has| |#1| (-374)))) (-2031 (($ (-419 (-576)) |#2|) 11)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3833 (((-112) $) NIL (|has| |#1| (-374)))) (-2116 (((-112) $) 74)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3726 (((-419 (-576)) $) 113) (((-419 (-576)) $ (-419 (-576))) 114)) (-1351 (((-112) $) NIL)) (-4131 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1800 (($ $ (-940)) 130) (($ $ (-419 (-576))) 128)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3538 (((-112) $) NIL)) (-1944 (($ |#1| (-419 (-576))) 33) (($ $ (-1103) (-419 (-576))) NIL) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) NIL)) (-4116 (($ (-1 |#1| |#1|) $) 125)) (-3744 (($ $) 162 (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3019 ((|#2| $) 12)) (-3418 (((-3 |#2| "failed") $) 44)) (-2021 ((|#2| $) 45)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) 101 (|has| |#1| (-374)))) (-4160 (($ $) 146 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 151 (-2759 (-12 (|has| |#1| (-15 -4160 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223)))))) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3497 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-1743 (($ $ (-419 (-576))) 122)) (-3475 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4103 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3282 (((-1178 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-1979 (((-783) $) NIL (|has| |#1| (-374)))) (-2796 ((|#1| $ (-419 (-576))) 108) (($ $ $) 94 (|has| (-419 (-576)) (-1133)))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#1| (-374)))) (-2774 (($ $ (-1197)) 138 (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2683 (((-419 (-576)) $) 16)) (-4060 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) 194 (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) 170 (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) 190 (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) 166 (|has| |#1| (-38 (-419 (-576)))))) (-2539 (($ $) 120)) (-3569 (((-876) $) NIL) (($ (-576)) 37) (($ |#1|) 27 (|has| |#1| (-174))) (($ |#2|) 34) (($ (-419 (-576))) 139 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-1822 ((|#1| $ (-419 (-576))) 107)) (-3390 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3154 (((-783)) 127 T CONST)) (-2396 ((|#1| $) 106)) (-2399 (((-112) $ $) NIL)) (-2790 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) 180 (|has| |#1| (-38 (-419 (-576)))))) (-1505 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4070 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) 176 (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) 184 (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) 210 (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) 186 (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) 182 (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) 178 (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) 21 T CONST)) (-2731 (($) 17 T CONST)) (-2020 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2924 (((-112) $ $) 72)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 100 (|has| |#1| (-374)))) (-3043 (($ $) 142) (($ $ $) 78)) (-3029 (($ $ $) 76)) (** (($ $ (-940)) NIL) (($ $ (-783)) 82) (($ $ (-576)) 157 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 158 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) (((-1272 |#1| |#2|) (-1271 |#1| |#2|) (-1070) (-1248 |#1|)) (T -1272)) NIL (-1271 |#1| |#2|) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-1969 (((-656 (-1103)) $) NIL)) (-3055 (((-1197) $) 11)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2757 (($ $) NIL (|has| |#1| (-568)))) (-3788 (((-112) $) NIL (|has| |#1| (-568)))) (-2326 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-3669 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-4025 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3901 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4367 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL (|has| |#1| (-374)))) (-3921 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1839 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4016 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4006 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3877 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3080 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-4050 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-1252 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1280 |#1| |#2| |#3|) "failed") $) 22)) (-2860 (((-1252 |#1| |#2| |#3|) $) NIL) (((-1280 |#1| |#2| |#3|) $) NIL)) (-3429 (($ $ $) NIL (|has| |#1| (-374)))) (-2114 (($ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-1422 (((-419 (-576)) $) 69)) (-3441 (($ $ $) NIL (|has| |#1| (-374)))) (-2031 (($ (-419 (-576)) (-1252 |#1| |#2| |#3|)) NIL)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-4249 (((-112) $) NIL (|has| |#1| (-374)))) (-1424 (((-112) $) NIL)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3917 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-4193 (((-112) $) NIL)) (-2121 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4116 (($ $ (-940)) NIL) (($ $ (-419 (-576))) NIL)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2823 (((-112) $) NIL)) (-1945 (($ |#1| (-419 (-576))) 30) (($ $ (-1103) (-419 (-576))) NIL) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-3745 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-3458 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2264 (((-1252 |#1| |#2| |#3|) $) 72)) (-1851 (((-3 (-1252 |#1| |#2| |#3|) "failed") $) NIL)) (-2021 (((-1252 |#1| |#2| |#3|) $) NIL)) (-3699 (((-1179) $) NIL)) (-2050 (($ $) NIL (|has| |#1| (-374)))) (-1491 (($ $) 39 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) NIL (-2760 (-12 (|has| |#1| (-15 -1491 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 40 (|has| |#1| (-38 (-419 (-576)))))) (-1450 (((-1141) $) NIL)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3498 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2288 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) NIL (|has| |#1| (-374)))) (-1749 (($ $ (-419 (-576))) NIL)) (-3476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2722 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4104 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3284 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-1967 (((-783) $) NIL (|has| |#1| (-374)))) (-2797 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1133)))) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) NIL (|has| |#1| (-374)))) (-2775 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1284 |#2|)) 38)) (-3634 (((-419 (-576)) $) NIL)) (-4061 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3930 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4037 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4014 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3889 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3126 (($ $) NIL)) (-3570 (((-876) $) 107) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1252 |#1| |#2| |#3|)) 16) (($ (-1280 |#1| |#2| |#3|)) 17) (($ (-1284 |#2|)) 36) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-3177 ((|#1| $ (-419 (-576))) NIL)) (-4336 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3996 (((-783)) NIL T CONST)) (-2396 ((|#1| $) 12)) (-4055 (((-112) $ $) NIL)) (-2791 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3961 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2672 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4071 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2815 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3983 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4166 ((|#1| $ (-419 (-576))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3570 (|#1| (-1197))))))) (-4388 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3995 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2803 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3974 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4083 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3951 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) 32 T CONST)) (-2732 (($) 26 T CONST)) (-2020 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1284 |#2|)) NIL)) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) 34)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1273 |#1| |#2| |#3|) (-13 (-1271 |#1| (-1252 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-1059 (-1280 |#1| |#2| |#3|)) (-628 (-1284 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1491 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -1273)) -((-1491 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1273 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) -(-13 (-1271 |#1| (-1252 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-1059 (-1280 |#1| |#2| |#3|)) (-628 (-1284 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1491 ($ $ (-1284 |#2|))) |%noBranch|))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 37)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL)) (-2757 (($ $) NIL)) (-3788 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| (-1273 |#2| |#3| |#4|) (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-1273 |#2| |#3| |#4|) (-1059 (-419 (-576))))) (((-3 (-1273 |#2| |#3| |#4|) "failed") $) 22)) (-2860 (((-576) $) NIL (|has| (-1273 |#2| |#3| |#4|) (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| (-1273 |#2| |#3| |#4|) (-1059 (-419 (-576))))) (((-1273 |#2| |#3| |#4|) $) NIL)) (-2114 (($ $) 41)) (-1561 (((-3 $ "failed") $) 27)) (-3767 (($ $) NIL (|has| (-1273 |#2| |#3| |#4|) (-464)))) (-2431 (($ $ (-1273 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|) $) NIL)) (-4193 (((-112) $) NIL)) (-2217 (((-783) $) 11)) (-2823 (((-112) $) NIL)) (-1945 (($ (-1273 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) 25)) (-3751 (((-329 |#2| |#3| |#4|) $) NIL)) (-2999 (($ (-1 (-329 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) $) NIL)) (-4117 (($ (-1 (-1273 |#2| |#3| |#4|) (-1273 |#2| |#3| |#4|)) $) NIL)) (-2478 (((-3 (-855 |#2|) "failed") $) 90)) (-2081 (($ $) NIL)) (-2091 (((-1273 |#2| |#3| |#4|) $) 20)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) NIL)) (-2070 (((-1273 |#2| |#3| |#4|) $) NIL)) (-3476 (((-3 $ "failed") $ (-1273 |#2| |#3| |#4|)) NIL (|has| (-1273 |#2| |#3| |#4|) (-568))) (((-3 $ "failed") $ $) NIL)) (-2822 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1273 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1179))) "failed") $) 74)) (-3634 (((-329 |#2| |#3| |#4|) $) 17)) (-2457 (((-1273 |#2| |#3| |#4|) $) NIL (|has| (-1273 |#2| |#3| |#4|) (-464)))) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ (-1273 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL (-2760 (|has| (-1273 |#2| |#3| |#4|) (-38 (-419 (-576)))) (|has| (-1273 |#2| |#3| |#4|) (-1059 (-419 (-576))))))) (-1618 (((-656 (-1273 |#2| |#3| |#4|)) $) NIL)) (-3177 (((-1273 |#2| |#3| |#4|) $ (-329 |#2| |#3| |#4|)) NIL)) (-4336 (((-3 $ "failed") $) NIL (|has| (-1273 |#2| |#3| |#4|) (-146)))) (-3996 (((-783)) NIL T CONST)) (-2541 (($ $ $ (-783)) NIL (|has| (-1273 |#2| |#3| |#4|) (-174)))) (-4055 (((-112) $ $) NIL)) (-2672 (((-112) $ $) NIL)) (-2721 (($) NIL T CONST)) (-2732 (($) NIL T CONST)) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ (-1273 |#2| |#3| |#4|)) NIL (|has| (-1273 |#2| |#3| |#4|) (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-1273 |#2| |#3| |#4|)) NIL) (($ (-1273 |#2| |#3| |#4|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-1273 |#2| |#3| |#4|) (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| (-1273 |#2| |#3| |#4|) (-38 (-419 (-576))))))) -(((-1274 |#1| |#2| |#3| |#4|) (-13 (-336 (-1273 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) (-568) (-10 -8 (-15 -2478 ((-3 (-855 |#2|) "failed") $)) (-15 -2822 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1273 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1179))) "failed") $)))) (-13 (-1059 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1223) (-442 |#1|)) (-1197) |#2|) (T -1274)) -((-2478 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) (-5 *2 (-855 *4)) (-5 *1 (-1274 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-442 *3))) (-14 *5 (-1197)) (-14 *6 *4))) (-2822 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1273 *4 *5 *6)) (|:| |%expon| (-329 *4 *5 *6)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))))) (|:| |%type| (-1179)))) (-5 *1 (-1274 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-442 *3))) (-14 *5 (-1197)) (-14 *6 *4)))) -(-13 (-336 (-1273 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) (-568) (-10 -8 (-15 -2478 ((-3 (-855 |#2|) "failed") $)) (-15 -2822 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1273 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1179))) "failed") $)))) -((-3106 ((|#2| $) 34)) (-2898 ((|#2| $) 18)) (-4426 (($ $) 53)) (-2587 (($ $ (-576)) 85)) (-1808 (((-112) $ (-783)) 46)) (-2647 ((|#2| $ |#2|) 82)) (-2297 ((|#2| $ |#2|) 78)) (-3756 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-1894 (($ $ (-656 $)) 81)) (-2883 ((|#2| $) 17)) (-3593 (($ $) NIL) (($ $ (-783)) 59)) (-2387 (((-656 $) $) 31)) (-3295 (((-112) $ $) 69)) (-3870 (((-112) $ (-783)) 45)) (-1330 (((-112) $ (-783)) 43)) (-3443 (((-112) $) 33)) (-3969 ((|#2| $) 25) (($ $ (-783)) 64)) (-2797 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3617 (((-112) $) 23)) (-2934 (($ $) 56)) (-3852 (($ $) 86)) (-2687 (((-783) $) 58)) (-3369 (($ $) 57)) (-1615 (($ $ $) 77) (($ |#2| $) NIL)) (-2902 (((-656 $) $) 32)) (-2925 (((-112) $ $) 67)) (-3503 (((-783) $) 52))) -(((-1275 |#1| |#2|) (-10 -8 (-15 -2925 ((-112) |#1| |#1|)) (-15 -2587 (|#1| |#1| (-576))) (-15 -3756 (|#2| |#1| "last" |#2|)) (-15 -2297 (|#2| |#1| |#2|)) (-15 -3756 (|#1| |#1| "rest" |#1|)) (-15 -3756 (|#2| |#1| "first" |#2|)) (-15 -3852 (|#1| |#1|)) (-15 -2934 (|#1| |#1|)) (-15 -2687 ((-783) |#1|)) (-15 -3369 (|#1| |#1|)) (-15 -2898 (|#2| |#1|)) (-15 -2883 (|#2| |#1|)) (-15 -4426 (|#1| |#1|)) (-15 -3969 (|#1| |#1| (-783))) (-15 -2797 (|#2| |#1| "last")) (-15 -3969 (|#2| |#1|)) (-15 -3593 (|#1| |#1| (-783))) (-15 -2797 (|#1| |#1| "rest")) (-15 -3593 (|#1| |#1|)) (-15 -2797 (|#2| |#1| "first")) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#1|)) (-15 -2647 (|#2| |#1| |#2|)) (-15 -3756 (|#2| |#1| "value" |#2|)) (-15 -1894 (|#1| |#1| (-656 |#1|))) (-15 -3295 ((-112) |#1| |#1|)) (-15 -3617 ((-112) |#1|)) (-15 -2797 (|#2| |#1| "value")) (-15 -3106 (|#2| |#1|)) (-15 -3443 ((-112) |#1|)) (-15 -2387 ((-656 |#1|) |#1|)) (-15 -2902 ((-656 |#1|) |#1|)) (-15 -3503 ((-783) |#1|)) (-15 -1808 ((-112) |#1| (-783))) (-15 -3870 ((-112) |#1| (-783))) (-15 -1330 ((-112) |#1| (-783)))) (-1276 |#2|) (-1238)) (T -1275)) -NIL -(-10 -8 (-15 -2925 ((-112) |#1| |#1|)) (-15 -2587 (|#1| |#1| (-576))) (-15 -3756 (|#2| |#1| "last" |#2|)) (-15 -2297 (|#2| |#1| |#2|)) (-15 -3756 (|#1| |#1| "rest" |#1|)) (-15 -3756 (|#2| |#1| "first" |#2|)) (-15 -3852 (|#1| |#1|)) (-15 -2934 (|#1| |#1|)) (-15 -2687 ((-783) |#1|)) (-15 -3369 (|#1| |#1|)) (-15 -2898 (|#2| |#1|)) (-15 -2883 (|#2| |#1|)) (-15 -4426 (|#1| |#1|)) (-15 -3969 (|#1| |#1| (-783))) (-15 -2797 (|#2| |#1| "last")) (-15 -3969 (|#2| |#1|)) (-15 -3593 (|#1| |#1| (-783))) (-15 -2797 (|#1| |#1| "rest")) (-15 -3593 (|#1| |#1|)) (-15 -2797 (|#2| |#1| "first")) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#1|)) (-15 -2647 (|#2| |#1| |#2|)) (-15 -3756 (|#2| |#1| "value" |#2|)) (-15 -1894 (|#1| |#1| (-656 |#1|))) (-15 -3295 ((-112) |#1| |#1|)) (-15 -3617 ((-112) |#1|)) (-15 -2797 (|#2| |#1| "value")) (-15 -3106 (|#2| |#1|)) (-15 -3443 ((-112) |#1|)) (-15 -2387 ((-656 |#1|) |#1|)) (-15 -2902 ((-656 |#1|) |#1|)) (-15 -3503 ((-783) |#1|)) (-15 -1808 ((-112) |#1| (-783))) (-15 -3870 ((-112) |#1| (-783))) (-15 -1330 ((-112) |#1| (-783)))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3106 ((|#1| $) 49)) (-2898 ((|#1| $) 66)) (-4426 (($ $) 68)) (-2587 (($ $ (-576)) 53 (|has| $ (-6 -4466)))) (-1808 (((-112) $ (-783)) 8)) (-2647 ((|#1| $ |#1|) 40 (|has| $ (-6 -4466)))) (-4364 (($ $ $) 57 (|has| $ (-6 -4466)))) (-2297 ((|#1| $ |#1|) 55 (|has| $ (-6 -4466)))) (-1350 ((|#1| $ |#1|) 59 (|has| $ (-6 -4466)))) (-3756 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4466))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4466))) (($ $ "rest" $) 56 (|has| $ (-6 -4466))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4466)))) (-1894 (($ $ (-656 $)) 42 (|has| $ (-6 -4466)))) (-2883 ((|#1| $) 67)) (-3886 (($) 7 T CONST)) (-3593 (($ $) 74) (($ $ (-783)) 72)) (-3966 (((-656 |#1|) $) 31 (|has| $ (-6 -4465)))) (-2387 (((-656 $) $) 51)) (-3295 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-3870 (((-112) $ (-783)) 9)) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-4323 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 36)) (-1330 (((-112) $ (-783)) 10)) (-2353 (((-656 |#1|) $) 46)) (-3443 (((-112) $) 50)) (-3699 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3969 ((|#1| $) 71) (($ $ (-783)) 69)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3581 ((|#1| $) 77) (($ $ (-783)) 75)) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-2797 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-2789 (((-576) $ $) 45)) (-3617 (((-112) $) 47)) (-2934 (($ $) 63)) (-3852 (($ $) 60 (|has| $ (-6 -4466)))) (-2687 (((-783) $) 64)) (-3369 (($ $) 65)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-1870 (($ $) 13)) (-2974 (($ $ $) 62 (|has| $ (-6 -4466))) (($ $ |#1|) 61 (|has| $ (-6 -4466)))) (-1615 (($ $ $) 79) (($ |#1| $) 78)) (-3570 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2902 (((-656 $) $) 52)) (-2621 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-4055 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2925 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-1969 (((-656 (-1103)) $) NIL)) (-3054 (((-1197) $) 11)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4195 (($ $) NIL (|has| |#1| (-568)))) (-1760 (((-112) $) NIL (|has| |#1| (-568)))) (-2408 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-3064 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-4024 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2428 (((-3 $ "failed") $ $) NIL)) (-3444 (($ $) NIL (|has| |#1| (-374)))) (-3760 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1840 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3330 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4005 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3079 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-4049 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-1252 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1280 |#1| |#2| |#3|) "failed") $) 22)) (-2859 (((-1252 |#1| |#2| |#3|) $) NIL) (((-1280 |#1| |#2| |#3|) $) NIL)) (-3428 (($ $ $) NIL (|has| |#1| (-374)))) (-2114 (($ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-2093 (((-419 (-576)) $) 69)) (-3440 (($ $ $) NIL (|has| |#1| (-374)))) (-2031 (($ (-419 (-576)) (-1252 |#1| |#2| |#3|)) NIL)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3833 (((-112) $) NIL (|has| |#1| (-374)))) (-2116 (((-112) $) NIL)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3726 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-1351 (((-112) $) NIL)) (-4131 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1800 (($ $ (-940)) NIL) (($ $ (-419 (-576))) NIL)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3538 (((-112) $) NIL)) (-1944 (($ |#1| (-419 (-576))) 30) (($ $ (-1103) (-419 (-576))) NIL) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-3744 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-3457 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3019 (((-1252 |#1| |#2| |#3|) $) 72)) (-3418 (((-3 (-1252 |#1| |#2| |#3|) "failed") $) NIL)) (-2021 (((-1252 |#1| |#2| |#3|) $) NIL)) (-2046 (((-1179) $) NIL)) (-2050 (($ $) NIL (|has| |#1| (-374)))) (-4160 (($ $) 39 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) NIL (-2759 (-12 (|has| |#1| (-15 -4160 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 40 (|has| |#1| (-38 (-419 (-576)))))) (-1450 (((-1141) $) NIL)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3497 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1828 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3278 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) NIL (|has| |#1| (-374)))) (-1743 (($ $ (-419 (-576))) NIL)) (-3475 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-1899 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4103 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3282 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-1979 (((-783) $) NIL (|has| |#1| (-374)))) (-2796 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1133)))) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) NIL (|has| |#1| (-374)))) (-2774 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1284 |#2|)) 38)) (-2683 (((-419 (-576)) $) NIL)) (-4060 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2539 (($ $) NIL)) (-3569 (((-876) $) 107) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1252 |#1| |#2| |#3|)) 16) (($ (-1280 |#1| |#2| |#3|)) 17) (($ (-1284 |#2|)) 36) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-1822 ((|#1| $ (-419 (-576))) NIL)) (-3390 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3154 (((-783)) NIL T CONST)) (-2396 ((|#1| $) 12)) (-2399 (((-112) $ $) NIL)) (-2790 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1505 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-419 (-576))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) 32 T CONST)) (-2731 (($) 26 T CONST)) (-2020 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1284 |#2|)) NIL)) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 34)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1273 |#1| |#2| |#3|) (-13 (-1271 |#1| (-1252 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-1059 (-1280 |#1| |#2| |#3|)) (-628 (-1284 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4160 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -1273)) +((-4160 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1273 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) +(-13 (-1271 |#1| (-1252 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-1059 (-1280 |#1| |#2| |#3|)) (-628 (-1284 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4160 ($ $ (-1284 |#2|))) |%noBranch|))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 37)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-4195 (($ $) NIL)) (-1760 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-1572 (((-3 (-576) "failed") $) NIL (|has| (-1273 |#2| |#3| |#4|) (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-1273 |#2| |#3| |#4|) (-1059 (-419 (-576))))) (((-3 (-1273 |#2| |#3| |#4|) "failed") $) 22)) (-2859 (((-576) $) NIL (|has| (-1273 |#2| |#3| |#4|) (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| (-1273 |#2| |#3| |#4|) (-1059 (-419 (-576))))) (((-1273 |#2| |#3| |#4|) $) NIL)) (-2114 (($ $) 41)) (-3673 (((-3 $ "failed") $) 27)) (-1547 (($ $) NIL (|has| (-1273 |#2| |#3| |#4|) (-464)))) (-4124 (($ $ (-1273 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|) $) NIL)) (-1351 (((-112) $) NIL)) (-3799 (((-783) $) 11)) (-3538 (((-112) $) NIL)) (-1944 (($ (-1273 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) 25)) (-2578 (((-329 |#2| |#3| |#4|) $) NIL)) (-3878 (($ (-1 (-329 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) $) NIL)) (-4116 (($ (-1 (-1273 |#2| |#3| |#4|) (-1273 |#2| |#3| |#4|)) $) NIL)) (-3348 (((-3 (-855 |#2|) "failed") $) 90)) (-2081 (($ $) NIL)) (-2091 (((-1273 |#2| |#3| |#4|) $) 20)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2060 (((-112) $) NIL)) (-2070 (((-1273 |#2| |#3| |#4|) $) NIL)) (-3475 (((-3 $ "failed") $ (-1273 |#2| |#3| |#4|)) NIL (|has| (-1273 |#2| |#3| |#4|) (-568))) (((-3 $ "failed") $ $) NIL)) (-3526 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1273 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1179))) "failed") $) 74)) (-2683 (((-329 |#2| |#3| |#4|) $) 17)) (-4370 (((-1273 |#2| |#3| |#4|) $) NIL (|has| (-1273 |#2| |#3| |#4|) (-464)))) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ (-1273 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL (-2759 (|has| (-1273 |#2| |#3| |#4|) (-38 (-419 (-576)))) (|has| (-1273 |#2| |#3| |#4|) (-1059 (-419 (-576))))))) (-2937 (((-656 (-1273 |#2| |#3| |#4|)) $) NIL)) (-1822 (((-1273 |#2| |#3| |#4|) $ (-329 |#2| |#3| |#4|)) NIL)) (-3390 (((-3 $ "failed") $) NIL (|has| (-1273 |#2| |#3| |#4|) (-146)))) (-3154 (((-783)) NIL T CONST)) (-2717 (($ $ $ (-783)) NIL (|has| (-1273 |#2| |#3| |#4|) (-174)))) (-2399 (((-112) $ $) NIL)) (-1505 (((-112) $ $) NIL)) (-2721 (($) NIL T CONST)) (-2731 (($) NIL T CONST)) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ (-1273 |#2| |#3| |#4|)) NIL (|has| (-1273 |#2| |#3| |#4|) (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-1273 |#2| |#3| |#4|)) NIL) (($ (-1273 |#2| |#3| |#4|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-1273 |#2| |#3| |#4|) (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| (-1273 |#2| |#3| |#4|) (-38 (-419 (-576))))))) +(((-1274 |#1| |#2| |#3| |#4|) (-13 (-336 (-1273 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) (-568) (-10 -8 (-15 -3348 ((-3 (-855 |#2|) "failed") $)) (-15 -3526 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1273 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1179))) "failed") $)))) (-13 (-1059 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1223) (-442 |#1|)) (-1197) |#2|) (T -1274)) +((-3348 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) (-5 *2 (-855 *4)) (-5 *1 (-1274 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-442 *3))) (-14 *5 (-1197)) (-14 *6 *4))) (-3526 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1273 *4 *5 *6)) (|:| |%expon| (-329 *4 *5 *6)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))))) (|:| |%type| (-1179)))) (-5 *1 (-1274 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-442 *3))) (-14 *5 (-1197)) (-14 *6 *4)))) +(-13 (-336 (-1273 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) (-568) (-10 -8 (-15 -3348 ((-3 (-855 |#2|) "failed") $)) (-15 -3526 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1273 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1179))) "failed") $)))) +((-3104 ((|#2| $) 34)) (-2898 ((|#2| $) 18)) (-4424 (($ $) 53)) (-3203 (($ $ (-576)) 85)) (-4264 (((-112) $ (-783)) 46)) (-2482 ((|#2| $ |#2|) 82)) (-2089 ((|#2| $ |#2|) 78)) (-3755 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-3829 (($ $ (-656 $)) 81)) (-2882 ((|#2| $) 17)) (-3592 (($ $) NIL) (($ $ (-783)) 59)) (-1736 (((-656 $) $) 31)) (-3768 (((-112) $ $) 69)) (-1368 (((-112) $ (-783)) 45)) (-2883 (((-112) $ (-783)) 43)) (-1508 (((-112) $) 33)) (-3968 ((|#2| $) 25) (($ $ (-783)) 64)) (-2796 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3806 (((-112) $) 23)) (-3262 (($ $) 56)) (-4347 (($ $) 86)) (-1619 (((-783) $) 58)) (-3237 (($ $) 57)) (-1615 (($ $ $) 77) (($ |#2| $) NIL)) (-3059 (((-656 $) $) 32)) (-2924 (((-112) $ $) 67)) (-3502 (((-783) $) 52))) +(((-1275 |#1| |#2|) (-10 -8 (-15 -2924 ((-112) |#1| |#1|)) (-15 -3203 (|#1| |#1| (-576))) (-15 -3755 (|#2| |#1| "last" |#2|)) (-15 -2089 (|#2| |#1| |#2|)) (-15 -3755 (|#1| |#1| "rest" |#1|)) (-15 -3755 (|#2| |#1| "first" |#2|)) (-15 -4347 (|#1| |#1|)) (-15 -3262 (|#1| |#1|)) (-15 -1619 ((-783) |#1|)) (-15 -3237 (|#1| |#1|)) (-15 -2898 (|#2| |#1|)) (-15 -2882 (|#2| |#1|)) (-15 -4424 (|#1| |#1|)) (-15 -3968 (|#1| |#1| (-783))) (-15 -2796 (|#2| |#1| "last")) (-15 -3968 (|#2| |#1|)) (-15 -3592 (|#1| |#1| (-783))) (-15 -2796 (|#1| |#1| "rest")) (-15 -3592 (|#1| |#1|)) (-15 -2796 (|#2| |#1| "first")) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#1|)) (-15 -2482 (|#2| |#1| |#2|)) (-15 -3755 (|#2| |#1| "value" |#2|)) (-15 -3829 (|#1| |#1| (-656 |#1|))) (-15 -3768 ((-112) |#1| |#1|)) (-15 -3806 ((-112) |#1|)) (-15 -2796 (|#2| |#1| "value")) (-15 -3104 (|#2| |#1|)) (-15 -1508 ((-112) |#1|)) (-15 -1736 ((-656 |#1|) |#1|)) (-15 -3059 ((-656 |#1|) |#1|)) (-15 -3502 ((-783) |#1|)) (-15 -4264 ((-112) |#1| (-783))) (-15 -1368 ((-112) |#1| (-783))) (-15 -2883 ((-112) |#1| (-783)))) (-1276 |#2|) (-1238)) (T -1275)) +NIL +(-10 -8 (-15 -2924 ((-112) |#1| |#1|)) (-15 -3203 (|#1| |#1| (-576))) (-15 -3755 (|#2| |#1| "last" |#2|)) (-15 -2089 (|#2| |#1| |#2|)) (-15 -3755 (|#1| |#1| "rest" |#1|)) (-15 -3755 (|#2| |#1| "first" |#2|)) (-15 -4347 (|#1| |#1|)) (-15 -3262 (|#1| |#1|)) (-15 -1619 ((-783) |#1|)) (-15 -3237 (|#1| |#1|)) (-15 -2898 (|#2| |#1|)) (-15 -2882 (|#2| |#1|)) (-15 -4424 (|#1| |#1|)) (-15 -3968 (|#1| |#1| (-783))) (-15 -2796 (|#2| |#1| "last")) (-15 -3968 (|#2| |#1|)) (-15 -3592 (|#1| |#1| (-783))) (-15 -2796 (|#1| |#1| "rest")) (-15 -3592 (|#1| |#1|)) (-15 -2796 (|#2| |#1| "first")) (-15 -1615 (|#1| |#2| |#1|)) (-15 -1615 (|#1| |#1| |#1|)) (-15 -2482 (|#2| |#1| |#2|)) (-15 -3755 (|#2| |#1| "value" |#2|)) (-15 -3829 (|#1| |#1| (-656 |#1|))) (-15 -3768 ((-112) |#1| |#1|)) (-15 -3806 ((-112) |#1|)) (-15 -2796 (|#2| |#1| "value")) (-15 -3104 (|#2| |#1|)) (-15 -1508 ((-112) |#1|)) (-15 -1736 ((-656 |#1|) |#1|)) (-15 -3059 ((-656 |#1|) |#1|)) (-15 -3502 ((-783) |#1|)) (-15 -4264 ((-112) |#1| (-783))) (-15 -1368 ((-112) |#1| (-783))) (-15 -2883 ((-112) |#1| (-783)))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3104 ((|#1| $) 49)) (-2898 ((|#1| $) 66)) (-4424 (($ $) 68)) (-3203 (($ $ (-576)) 53 (|has| $ (-6 -4465)))) (-4264 (((-112) $ (-783)) 8)) (-2482 ((|#1| $ |#1|) 40 (|has| $ (-6 -4465)))) (-2395 (($ $ $) 57 (|has| $ (-6 -4465)))) (-2089 ((|#1| $ |#1|) 55 (|has| $ (-6 -4465)))) (-1336 ((|#1| $ |#1|) 59 (|has| $ (-6 -4465)))) (-3755 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4465))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4465))) (($ $ "rest" $) 56 (|has| $ (-6 -4465))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4465)))) (-3829 (($ $ (-656 $)) 42 (|has| $ (-6 -4465)))) (-2882 ((|#1| $) 67)) (-3404 (($) 7 T CONST)) (-3592 (($ $) 74) (($ $ (-783)) 72)) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-1736 (((-656 $) $) 51)) (-3768 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-1368 (((-112) $ (-783)) 9)) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4326 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36)) (-2883 (((-112) $ (-783)) 10)) (-2353 (((-656 |#1|) $) 46)) (-1508 (((-112) $) 50)) (-2046 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3968 ((|#1| $) 71) (($ $ (-783)) 69)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3580 ((|#1| $) 77) (($ $ (-783)) 75)) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-2796 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-1335 (((-576) $ $) 45)) (-3806 (((-112) $) 47)) (-3262 (($ $) 63)) (-4347 (($ $) 60 (|has| $ (-6 -4465)))) (-1619 (((-783) $) 64)) (-3237 (($ $) 65)) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1870 (($ $) 13)) (-3631 (($ $ $) 62 (|has| $ (-6 -4465))) (($ $ |#1|) 61 (|has| $ (-6 -4465)))) (-1615 (($ $ $) 79) (($ |#1| $) 78)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-3059 (((-656 $) $) 52)) (-2247 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-2399 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2924 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-1276 |#1|) (-141) (-1238)) (T -1276)) -((-1615 (*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-1615 (*1 *1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3581 (*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-2797 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3581 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) (-3593 (*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-2797 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) (-3593 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) (-3969 (*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-2797 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3969 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) (-4426 (*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-2883 (*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3369 (*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-2687 (*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-1238)) (-5 *2 (-783)))) (-2934 (*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-2974 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-2974 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3852 (*1 *1 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-1350 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3756 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4466)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-4364 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3756 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4466)) (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) (-2297 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3756 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4466)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-2587 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (|has| *1 (-6 -4466)) (-4 *1 (-1276 *3)) (-4 *3 (-1238))))) -(-13 (-1031 |t#1|) (-10 -8 (-15 -1615 ($ $ $)) (-15 -1615 ($ |t#1| $)) (-15 -3581 (|t#1| $)) (-15 -2797 (|t#1| $ "first")) (-15 -3581 ($ $ (-783))) (-15 -3593 ($ $)) (-15 -2797 ($ $ "rest")) (-15 -3593 ($ $ (-783))) (-15 -3969 (|t#1| $)) (-15 -2797 (|t#1| $ "last")) (-15 -3969 ($ $ (-783))) (-15 -4426 ($ $)) (-15 -2883 (|t#1| $)) (-15 -2898 (|t#1| $)) (-15 -3369 ($ $)) (-15 -2687 ((-783) $)) (-15 -2934 ($ $)) (IF (|has| $ (-6 -4466)) (PROGN (-15 -2974 ($ $ $)) (-15 -2974 ($ $ |t#1|)) (-15 -3852 ($ $)) (-15 -1350 (|t#1| $ |t#1|)) (-15 -3756 (|t#1| $ "first" |t#1|)) (-15 -4364 ($ $ $)) (-15 -3756 ($ $ "rest" $)) (-15 -2297 (|t#1| $ |t#1|)) (-15 -3756 (|t#1| $ "last" |t#1|)) (-15 -2587 ($ $ (-576)))) |%noBranch|))) -(((-34) . T) ((-102) -2760 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2760 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1031 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-4117 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1277 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4117 (|#4| (-1 |#2| |#1|) |#3|))) (-1070) (-1070) (-1279 |#1|) (-1279 |#2|)) (T -1277)) -((-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-4 *2 (-1279 *6)) (-5 *1 (-1277 *5 *6 *4 *2)) (-4 *4 (-1279 *5))))) -(-10 -7 (-15 -4117 (|#4| (-1 |#2| |#1|) |#3|))) -((-4308 (((-112) $) 17)) (-4025 (($ $) 105)) (-3901 (($ $) 81)) (-4006 (($ $) 101)) (-3877 (($ $) 77)) (-4050 (($ $) 109)) (-3920 (($ $) 85)) (-3745 (($ $) 75)) (-4104 (($ $) 73)) (-4061 (($ $) 111)) (-3930 (($ $) 87)) (-4037 (($ $) 107)) (-3910 (($ $) 83)) (-4014 (($ $) 103)) (-3889 (($ $) 79)) (-3570 (((-876) $) 61) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2791 (($ $) 117)) (-3961 (($ $) 93)) (-4071 (($ $) 113)) (-3938 (($ $) 89)) (-2815 (($ $) 121)) (-3983 (($ $) 97)) (-4388 (($ $) 123)) (-3995 (($ $) 99)) (-2803 (($ $) 119)) (-3974 (($ $) 95)) (-4083 (($ $) 115)) (-3951 (($ $) 91)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-419 (-576))) 71))) -(((-1278 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3901 (|#1| |#1|)) (-15 -3877 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3930 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3889 (|#1| |#1|)) (-15 -3951 (|#1| |#1|)) (-15 -3974 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -3983 (|#1| |#1|)) (-15 -3938 (|#1| |#1|)) (-15 -3961 (|#1| |#1|)) (-15 -4014 (|#1| |#1|)) (-15 -4037 (|#1| |#1|)) (-15 -4061 (|#1| |#1|)) (-15 -4050 (|#1| |#1|)) (-15 -4006 (|#1| |#1|)) (-15 -4025 (|#1| |#1|)) (-15 -4083 (|#1| |#1|)) (-15 -2803 (|#1| |#1|)) (-15 -4388 (|#1| |#1|)) (-15 -2815 (|#1| |#1|)) (-15 -4071 (|#1| |#1|)) (-15 -2791 (|#1| |#1|)) (-15 -3745 (|#1| |#1|)) (-15 -4104 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3570 (|#1| |#2|)) (-15 -3570 (|#1| |#1|)) (-15 -3570 (|#1| (-419 (-576)))) (-15 -3570 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940))) (-15 -4308 ((-112) |#1|)) (-15 -3570 ((-876) |#1|))) (-1279 |#2|) (-1070)) (T -1278)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3901 (|#1| |#1|)) (-15 -3877 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3930 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3889 (|#1| |#1|)) (-15 -3951 (|#1| |#1|)) (-15 -3974 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -3983 (|#1| |#1|)) (-15 -3938 (|#1| |#1|)) (-15 -3961 (|#1| |#1|)) (-15 -4014 (|#1| |#1|)) (-15 -4037 (|#1| |#1|)) (-15 -4061 (|#1| |#1|)) (-15 -4050 (|#1| |#1|)) (-15 -4006 (|#1| |#1|)) (-15 -4025 (|#1| |#1|)) (-15 -4083 (|#1| |#1|)) (-15 -2803 (|#1| |#1|)) (-15 -4388 (|#1| |#1|)) (-15 -2815 (|#1| |#1|)) (-15 -4071 (|#1| |#1|)) (-15 -2791 (|#1| |#1|)) (-15 -3745 (|#1| |#1|)) (-15 -4104 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3570 (|#1| |#2|)) (-15 -3570 (|#1| |#1|)) (-15 -3570 (|#1| (-419 (-576)))) (-15 -3570 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940))) (-15 -4308 ((-112) |#1|)) (-15 -3570 ((-876) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-1969 (((-656 (-1103)) $) 86)) (-3055 (((-1197) $) 118)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2757 (($ $) 64 (|has| |#1| (-568)))) (-3788 (((-112) $) 66 (|has| |#1| (-568)))) (-2326 (($ $ (-783)) 113) (($ $ (-783) (-783)) 112)) (-3669 (((-1178 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 119)) (-4025 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3901 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-4367 (((-3 $ "failed") $ $) 20)) (-1839 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-4006 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3877 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3080 (($ (-1178 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 170) (($ (-1178 |#1|)) 168)) (-4050 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($) 18 T CONST)) (-2114 (($ $) 72)) (-1561 (((-3 $ "failed") $) 37)) (-1344 (($ $) 167)) (-2383 (((-971 |#1|) $ (-783)) 165) (((-971 |#1|) $ (-783) (-783)) 164)) (-1424 (((-112) $) 85)) (-1600 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3917 (((-783) $) 115) (((-783) $ (-783)) 114)) (-4193 (((-112) $) 35)) (-2121 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-4116 (($ $ (-940)) 116)) (-1378 (($ (-1 |#1| (-576)) $) 166)) (-2823 (((-112) $) 74)) (-1945 (($ |#1| (-783)) 73) (($ $ (-1103) (-783)) 88) (($ $ (-656 (-1103)) (-656 (-783))) 87)) (-4117 (($ (-1 |#1| |#1|) $) 75)) (-3745 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) 77)) (-2091 ((|#1| $) 78)) (-3699 (((-1179) $) 10)) (-1491 (($ $) 162 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 161 (-2760 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-978)) (|has| |#1| (-1223)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-15 -1491 (|#1| |#1| (-1197)))) (|has| |#1| (-38 (-419 (-576)))))))) (-1450 (((-1141) $) 11)) (-1749 (($ $ (-783)) 110)) (-3476 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-4104 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3284 (((-1178 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-2797 ((|#1| $ (-783)) 120) (($ $ $) 96 (|has| (-783) (-1133)))) (-2775 (($ $ (-1197)) 108 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1197))) 106 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-1197) (-783)) 105 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 104 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (-3634 (((-783) $) 76)) (-4061 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3930 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-4037 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-4014 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3889 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-3126 (($ $) 84)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-1618 (((-1178 |#1|) $) 169)) (-3177 ((|#1| $ (-783)) 71)) (-4336 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3996 (((-783)) 32 T CONST)) (-2396 ((|#1| $) 117)) (-4055 (((-112) $ $) 6)) (-2791 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3961 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2672 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4071 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-2815 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3983 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4166 ((|#1| $ (-783)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -3570 (|#1| (-1197))))))) (-4388 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3995 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-2803 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3974 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-4083 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3951 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2020 (($ $ (-1197)) 107 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1197))) 103 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-1197) (-783)) 102 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 101 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (-2925 (((-112) $ $) 8)) (-3057 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ |#1|) 163 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +((-1615 (*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-1615 (*1 *1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-2796 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3580 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) (-3592 (*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-2796 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) (-3592 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-2796 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3968 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) (-4424 (*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-2882 (*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3237 (*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-1619 (*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-1238)) (-5 *2 (-783)))) (-3262 (*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3631 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3631 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-4347 (*1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-1336 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3755 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-2395 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3755 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4465)) (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) (-2089 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3755 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3203 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (|has| *1 (-6 -4465)) (-4 *1 (-1276 *3)) (-4 *3 (-1238))))) +(-13 (-1031 |t#1|) (-10 -8 (-15 -1615 ($ $ $)) (-15 -1615 ($ |t#1| $)) (-15 -3580 (|t#1| $)) (-15 -2796 (|t#1| $ "first")) (-15 -3580 ($ $ (-783))) (-15 -3592 ($ $)) (-15 -2796 ($ $ "rest")) (-15 -3592 ($ $ (-783))) (-15 -3968 (|t#1| $)) (-15 -2796 (|t#1| $ "last")) (-15 -3968 ($ $ (-783))) (-15 -4424 ($ $)) (-15 -2882 (|t#1| $)) (-15 -2898 (|t#1| $)) (-15 -3237 ($ $)) (-15 -1619 ((-783) $)) (-15 -3262 ($ $)) (IF (|has| $ (-6 -4465)) (PROGN (-15 -3631 ($ $ $)) (-15 -3631 ($ $ |t#1|)) (-15 -4347 ($ $)) (-15 -1336 (|t#1| $ |t#1|)) (-15 -3755 (|t#1| $ "first" |t#1|)) (-15 -2395 ($ $ $)) (-15 -3755 ($ $ "rest" $)) (-15 -2089 (|t#1| $ |t#1|)) (-15 -3755 (|t#1| $ "last" |t#1|)) (-15 -3203 ($ $ (-576)))) |%noBranch|))) +(((-34) . T) ((-102) -2759 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -2759 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1031 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((-4116 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1277 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4116 (|#4| (-1 |#2| |#1|) |#3|))) (-1070) (-1070) (-1279 |#1|) (-1279 |#2|)) (T -1277)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-4 *2 (-1279 *6)) (-5 *1 (-1277 *5 *6 *4 *2)) (-4 *4 (-1279 *5))))) +(-10 -7 (-15 -4116 (|#4| (-1 |#2| |#1|) |#3|))) +((-3135 (((-112) $) 17)) (-4024 (($ $) 105)) (-3900 (($ $) 81)) (-4005 (($ $) 101)) (-3876 (($ $) 77)) (-4049 (($ $) 109)) (-3919 (($ $) 85)) (-3744 (($ $) 75)) (-4103 (($ $) 73)) (-4060 (($ $) 111)) (-3929 (($ $) 87)) (-4036 (($ $) 107)) (-3909 (($ $) 83)) (-4013 (($ $) 103)) (-3888 (($ $) 79)) (-3569 (((-876) $) 61) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2790 (($ $) 117)) (-3960 (($ $) 93)) (-4070 (($ $) 113)) (-3937 (($ $) 89)) (-2814 (($ $) 121)) (-3982 (($ $) 97)) (-4387 (($ $) 123)) (-3994 (($ $) 99)) (-2802 (($ $) 119)) (-3973 (($ $) 95)) (-4082 (($ $) 115)) (-3950 (($ $) 91)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-419 (-576))) 71))) +(((-1278 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3900 (|#1| |#1|)) (-15 -3876 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -3950 (|#1| |#1|)) (-15 -3973 (|#1| |#1|)) (-15 -3994 (|#1| |#1|)) (-15 -3982 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -4013 (|#1| |#1|)) (-15 -4036 (|#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 -4049 (|#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -4024 (|#1| |#1|)) (-15 -4082 (|#1| |#1|)) (-15 -2802 (|#1| |#1|)) (-15 -4387 (|#1| |#1|)) (-15 -2814 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -2790 (|#1| |#1|)) (-15 -3744 (|#1| |#1|)) (-15 -4103 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3569 (|#1| |#2|)) (-15 -3569 (|#1| |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3569 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940))) (-15 -3135 ((-112) |#1|)) (-15 -3569 ((-876) |#1|))) (-1279 |#2|) (-1070)) (T -1278)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3900 (|#1| |#1|)) (-15 -3876 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -3950 (|#1| |#1|)) (-15 -3973 (|#1| |#1|)) (-15 -3994 (|#1| |#1|)) (-15 -3982 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -4013 (|#1| |#1|)) (-15 -4036 (|#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 -4049 (|#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -4024 (|#1| |#1|)) (-15 -4082 (|#1| |#1|)) (-15 -2802 (|#1| |#1|)) (-15 -4387 (|#1| |#1|)) (-15 -2814 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -2790 (|#1| |#1|)) (-15 -3744 (|#1| |#1|)) (-15 -4103 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3569 (|#1| |#2|)) (-15 -3569 (|#1| |#1|)) (-15 -3569 (|#1| (-419 (-576)))) (-15 -3569 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940))) (-15 -3135 ((-112) |#1|)) (-15 -3569 ((-876) |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-1969 (((-656 (-1103)) $) 86)) (-3054 (((-1197) $) 118)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4195 (($ $) 64 (|has| |#1| (-568)))) (-1760 (((-112) $) 66 (|has| |#1| (-568)))) (-2408 (($ $ (-783)) 113) (($ $ (-783) (-783)) 112)) (-3064 (((-1178 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 119)) (-4024 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2428 (((-3 $ "failed") $ $) 20)) (-1840 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-4005 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3079 (($ (-1178 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 170) (($ (-1178 |#1|)) 168)) (-4049 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3404 (($) 18 T CONST)) (-2114 (($ $) 72)) (-3673 (((-3 $ "failed") $) 37)) (-3136 (($ $) 167)) (-2383 (((-971 |#1|) $ (-783)) 165) (((-971 |#1|) $ (-783) (-783)) 164)) (-2116 (((-112) $) 85)) (-1600 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3726 (((-783) $) 115) (((-783) $ (-783)) 114)) (-1351 (((-112) $) 35)) (-4131 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-1800 (($ $ (-940)) 116)) (-3811 (($ (-1 |#1| (-576)) $) 166)) (-3538 (((-112) $) 74)) (-1944 (($ |#1| (-783)) 73) (($ $ (-1103) (-783)) 88) (($ $ (-656 (-1103)) (-656 (-783))) 87)) (-4116 (($ (-1 |#1| |#1|) $) 75)) (-3744 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) 77)) (-2091 ((|#1| $) 78)) (-2046 (((-1179) $) 10)) (-4160 (($ $) 162 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 161 (-2759 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-978)) (|has| |#1| (-1223)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-15 -4160 (|#1| |#1| (-1197)))) (|has| |#1| (-38 (-419 (-576)))))))) (-1450 (((-1141) $) 11)) (-1743 (($ $ (-783)) 110)) (-3475 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-4103 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3282 (((-1178 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-2796 ((|#1| $ (-783)) 120) (($ $ $) 96 (|has| (-783) (-1133)))) (-2774 (($ $ (-1197)) 108 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1197))) 106 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-1197) (-783)) 105 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 104 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (-2683 (((-783) $) 76)) (-4060 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-2539 (($ $) 84)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2937 (((-1178 |#1|) $) 169)) (-1822 ((|#1| $ (-783)) 71)) (-3390 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3154 (((-783)) 32 T CONST)) (-2396 ((|#1| $) 117)) (-2399 (((-112) $ $) 6)) (-2790 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-1505 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4070 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-783)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2020 (($ $ (-1197)) 107 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1197))) 103 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-1197) (-783)) 102 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 101 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (-2924 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ |#1|) 163 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) (((-1279 |#1|) (-141) (-1070)) (T -1279)) -((-3080 (*1 *1 *2) (-12 (-5 *2 (-1178 (-2 (|:| |k| (-783)) (|:| |c| *3)))) (-4 *3 (-1070)) (-4 *1 (-1279 *3)))) (-1618 (*1 *2 *1) (-12 (-4 *1 (-1279 *3)) (-4 *3 (-1070)) (-5 *2 (-1178 *3)))) (-3080 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-4 *1 (-1279 *3)))) (-1344 (*1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1070)))) (-1378 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1279 *3)) (-4 *3 (-1070)))) (-2383 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1279 *4)) (-4 *4 (-1070)) (-5 *2 (-971 *4)))) (-2383 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1279 *4)) (-4 *4 (-1070)) (-5 *2 (-971 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-1491 (*1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) (-1491 (*1 *1 *1 *2) (-2760 (-12 (-5 *2 (-1197)) (-4 *1 (-1279 *3)) (-4 *3 (-1070)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-978)) (-4 *3 (-1223)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1197)) (-4 *1 (-1279 *3)) (-4 *3 (-1070)) (-12 (|has| *3 (-15 -1969 ((-656 *2) *3))) (|has| *3 (-15 -1491 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) -(-13 (-1266 |t#1| (-783)) (-10 -8 (-15 -3080 ($ (-1178 (-2 (|:| |k| (-783)) (|:| |c| |t#1|))))) (-15 -1618 ((-1178 |t#1|) $)) (-15 -3080 ($ (-1178 |t#1|))) (-15 -1344 ($ $)) (-15 -1378 ($ (-1 |t#1| (-576)) $)) (-15 -2383 ((-971 |t#1|) $ (-783))) (-15 -2383 ((-971 |t#1|) $ (-783) (-783))) (IF (|has| |t#1| (-374)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -1491 ($ $)) (IF (|has| |t#1| (-15 -1491 (|t#1| |t#1| (-1197)))) (IF (|has| |t#1| (-15 -1969 ((-656 (-1197)) |t#1|))) (-15 -1491 ($ $ (-1197))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1223)) (IF (|has| |t#1| (-978)) (IF (|has| |t#1| (-29 (-576))) (-15 -1491 ($ $ (-1197))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1023)) (-6 (-1223))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-783)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2760 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) -2760 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-783) (-1133)) ((-300) |has| |#1| (-568)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) |has| |#1| (-568)) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-911 $ #2=(-1197)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197)))) ((-919 #2#) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197)))) ((-994 |#1| #0# (-1103)) . T) ((-1023) |has| |#1| (-38 (-419 (-576)))) ((-1072 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1077 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2760 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1223) |has| |#1| (-38 (-419 (-576)))) ((-1226) |has| |#1| (-38 (-419 (-576)))) ((-1238) . T) ((-1266 |#1| #0#) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-1969 (((-656 (-1103)) $) NIL)) (-3055 (((-1197) $) 90)) (-3155 (((-1261 |#2| |#1|) $ (-783)) 73)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2757 (($ $) NIL (|has| |#1| (-568)))) (-3788 (((-112) $) 142 (|has| |#1| (-568)))) (-2326 (($ $ (-783)) 127) (($ $ (-783) (-783)) 130)) (-3669 (((-1178 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 43)) (-4025 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3901 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4367 (((-3 $ "failed") $ $) NIL)) (-1839 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4006 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3877 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3080 (($ (-1178 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 52) (($ (-1178 |#1|)) NIL)) (-4050 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($) NIL T CONST)) (-4203 (($ $) 134)) (-2114 (($ $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-1344 (($ $) 140)) (-2383 (((-971 |#1|) $ (-783)) 63) (((-971 |#1|) $ (-783) (-783)) 65)) (-1424 (((-112) $) NIL)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3917 (((-783) $) NIL) (((-783) $ (-783)) NIL)) (-4193 (((-112) $) NIL)) (-2649 (($ $) 117)) (-2121 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2766 (($ (-576) (-576) $) 136)) (-4116 (($ $ (-940)) 139)) (-1378 (($ (-1 |#1| (-576)) $) 111)) (-2823 (((-112) $) NIL)) (-1945 (($ |#1| (-783)) 16) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-4117 (($ (-1 |#1| |#1|) $) 98)) (-3745 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-3699 (((-1179) $) NIL)) (-2381 (($ $) 115)) (-1428 (($ $) 113)) (-1653 (($ (-576) (-576) $) 138)) (-1491 (($ $) 150 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 156 (-2760 (-12 (|has| |#1| (-15 -1491 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 151 (|has| |#1| (-38 (-419 (-576)))))) (-1450 (((-1141) $) NIL)) (-1458 (($ $ (-576) (-576)) 121)) (-1749 (($ $ (-783)) 123)) (-3476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4104 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3302 (($ $) 119)) (-3284 (((-1178 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-2797 ((|#1| $ (-783)) 95) (($ $ $) 132 (|has| (-783) (-1133)))) (-2775 (($ $ (-1197)) 108 (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 102 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1284 |#2|)) 103)) (-3634 (((-783) $) NIL)) (-4061 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3930 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4037 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4014 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3889 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3126 (($ $) 125)) (-3570 (((-876) $) NIL) (($ (-576)) 26) (($ (-419 (-576))) 148 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 25 (|has| |#1| (-174))) (($ (-1261 |#2| |#1|)) 81) (($ (-1284 |#2|)) 22)) (-1618 (((-1178 |#1|) $) NIL)) (-3177 ((|#1| $ (-783)) 94)) (-4336 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3996 (((-783)) NIL T CONST)) (-2396 ((|#1| $) 91)) (-4055 (((-112) $ $) NIL)) (-2791 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3961 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2672 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4071 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2815 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3983 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4166 ((|#1| $ (-783)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -3570 (|#1| (-1197))))))) (-4388 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3995 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2803 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3974 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4083 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3951 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) 18 T CONST)) (-2732 (($) 13 T CONST)) (-2020 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1284 |#2|)) NIL)) (-2925 (((-112) $ $) NIL)) (-3057 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3044 (($ $) NIL) (($ $ $) 107)) (-3030 (($ $ $) 20)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ |#1|) 145 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 106) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1280 |#1| |#2| |#3|) (-13 (-1279 |#1|) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3570 ($ (-1261 |#2| |#1|))) (-15 -3155 ((-1261 |#2| |#1|) $ (-783))) (-15 -3570 ($ (-1284 |#2|))) (-15 -1428 ($ $)) (-15 -2381 ($ $)) (-15 -2649 ($ $)) (-15 -3302 ($ $)) (-15 -1458 ($ $ (-576) (-576))) (-15 -4203 ($ $)) (-15 -2766 ($ (-576) (-576) $)) (-15 -1653 ($ (-576) (-576) $)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1491 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -1280)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-1261 *4 *3)) (-4 *3 (-1070)) (-14 *4 (-1197)) (-14 *5 *3) (-5 *1 (-1280 *3 *4 *5)))) (-3155 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1261 *5 *4)) (-5 *1 (-1280 *4 *5 *6)) (-4 *4 (-1070)) (-14 *5 (-1197)) (-14 *6 *4))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) (-14 *5 *3))) (-1428 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) (-14 *4 *2))) (-2381 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) (-14 *4 *2))) (-2649 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) (-14 *4 *2))) (-3302 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) (-14 *4 *2))) (-1458 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-1197)) (-14 *5 *3))) (-4203 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) (-14 *4 *2))) (-2766 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-1197)) (-14 *5 *3))) (-1653 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-1197)) (-14 *5 *3))) (-1491 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) -(-13 (-1279 |#1|) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3570 ($ (-1261 |#2| |#1|))) (-15 -3155 ((-1261 |#2| |#1|) $ (-783))) (-15 -3570 ($ (-1284 |#2|))) (-15 -1428 ($ $)) (-15 -2381 ($ $)) (-15 -2649 ($ $)) (-15 -3302 ($ $)) (-15 -1458 ($ $ (-576) (-576))) (-15 -4203 ($ $)) (-15 -2766 ($ (-576) (-576) $)) (-15 -1653 ($ (-576) (-576) $)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1491 ($ $ (-1284 |#2|))) |%noBranch|))) -((-1684 (((-1 (-1178 |#1|) (-656 (-1178 |#1|))) (-1 |#2| (-656 |#2|))) 24)) (-3276 (((-1 (-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3056 (((-1 (-1178 |#1|) (-1178 |#1|)) (-1 |#2| |#2|)) 13)) (-2208 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-1515 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-1622 ((|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|)) 60)) (-3714 (((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))) 66)) (-1910 ((|#2| |#2| |#2|) 43))) -(((-1281 |#1| |#2|) (-10 -7 (-15 -3056 ((-1 (-1178 |#1|) (-1178 |#1|)) (-1 |#2| |#2|))) (-15 -3276 ((-1 (-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1684 ((-1 (-1178 |#1|) (-656 (-1178 |#1|))) (-1 |#2| (-656 |#2|)))) (-15 -1910 (|#2| |#2| |#2|)) (-15 -1515 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2208 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1622 (|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|))) (-15 -3714 ((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))))) (-38 (-419 (-576))) (-1279 |#1|)) (T -1281)) -((-3714 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 (-1 *6 (-656 *6)))) (-4 *5 (-38 (-419 (-576)))) (-4 *6 (-1279 *5)) (-5 *2 (-656 *6)) (-5 *1 (-1281 *5 *6)))) (-1622 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-656 *2))) (-5 *4 (-656 *5)) (-4 *5 (-38 (-419 (-576)))) (-4 *2 (-1279 *5)) (-5 *1 (-1281 *5 *2)))) (-2208 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1279 *4)) (-5 *1 (-1281 *4 *2)) (-4 *4 (-38 (-419 (-576)))))) (-1515 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1279 *4)) (-5 *1 (-1281 *4 *2)) (-4 *4 (-38 (-419 (-576)))))) (-1910 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1281 *3 *2)) (-4 *2 (-1279 *3)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-656 *5))) (-4 *5 (-1279 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1178 *4) (-656 (-1178 *4)))) (-5 *1 (-1281 *4 *5)))) (-3276 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1279 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1178 *4) (-1178 *4) (-1178 *4))) (-5 *1 (-1281 *4 *5)))) (-3056 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1279 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1178 *4) (-1178 *4))) (-5 *1 (-1281 *4 *5))))) -(-10 -7 (-15 -3056 ((-1 (-1178 |#1|) (-1178 |#1|)) (-1 |#2| |#2|))) (-15 -3276 ((-1 (-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1684 ((-1 (-1178 |#1|) (-656 (-1178 |#1|))) (-1 |#2| (-656 |#2|)))) (-15 -1910 (|#2| |#2| |#2|)) (-15 -1515 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2208 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1622 (|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|))) (-15 -3714 ((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))))) -((-3380 ((|#2| |#4| (-783)) 31)) (-2818 ((|#4| |#2|) 26)) (-3347 ((|#4| (-419 |#2|)) 49 (|has| |#1| (-568)))) (-4204 (((-1 |#4| (-656 |#4|)) |#3|) 43))) -(((-1282 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2818 (|#4| |#2|)) (-15 -3380 (|#2| |#4| (-783))) (-15 -4204 ((-1 |#4| (-656 |#4|)) |#3|)) (IF (|has| |#1| (-568)) (-15 -3347 (|#4| (-419 |#2|))) |%noBranch|)) (-1070) (-1264 |#1|) (-668 |#2|) (-1279 |#1|)) (T -1282)) -((-3347 (*1 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-568)) (-4 *4 (-1070)) (-4 *2 (-1279 *4)) (-5 *1 (-1282 *4 *5 *6 *2)) (-4 *6 (-668 *5)))) (-4204 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-1264 *4)) (-5 *2 (-1 *6 (-656 *6))) (-5 *1 (-1282 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-1279 *4)))) (-3380 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-1070)) (-4 *2 (-1264 *5)) (-5 *1 (-1282 *5 *2 *6 *3)) (-4 *6 (-668 *2)) (-4 *3 (-1279 *5)))) (-2818 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *3 (-1264 *4)) (-4 *2 (-1279 *4)) (-5 *1 (-1282 *4 *3 *5 *2)) (-4 *5 (-668 *3))))) -(-10 -7 (-15 -2818 (|#4| |#2|)) (-15 -3380 (|#2| |#4| (-783))) (-15 -4204 ((-1 |#4| (-656 |#4|)) |#3|)) (IF (|has| |#1| (-568)) (-15 -3347 (|#4| (-419 |#2|))) |%noBranch|)) +((-3079 (*1 *1 *2) (-12 (-5 *2 (-1178 (-2 (|:| |k| (-783)) (|:| |c| *3)))) (-4 *3 (-1070)) (-4 *1 (-1279 *3)))) (-2937 (*1 *2 *1) (-12 (-4 *1 (-1279 *3)) (-4 *3 (-1070)) (-5 *2 (-1178 *3)))) (-3079 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-4 *1 (-1279 *3)))) (-3136 (*1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1070)))) (-3811 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1279 *3)) (-4 *3 (-1070)))) (-2383 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1279 *4)) (-4 *4 (-1070)) (-5 *2 (-971 *4)))) (-2383 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1279 *4)) (-4 *4 (-1070)) (-5 *2 (-971 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-4160 (*1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) (-4160 (*1 *1 *1 *2) (-2759 (-12 (-5 *2 (-1197)) (-4 *1 (-1279 *3)) (-4 *3 (-1070)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-978)) (-4 *3 (-1223)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1197)) (-4 *1 (-1279 *3)) (-4 *3 (-1070)) (-12 (|has| *3 (-15 -1969 ((-656 *2) *3))) (|has| *3 (-15 -4160 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) +(-13 (-1266 |t#1| (-783)) (-10 -8 (-15 -3079 ($ (-1178 (-2 (|:| |k| (-783)) (|:| |c| |t#1|))))) (-15 -2937 ((-1178 |t#1|) $)) (-15 -3079 ($ (-1178 |t#1|))) (-15 -3136 ($ $)) (-15 -3811 ($ (-1 |t#1| (-576)) $)) (-15 -2383 ((-971 |t#1|) $ (-783))) (-15 -2383 ((-971 |t#1|) $ (-783) (-783))) (IF (|has| |t#1| (-374)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -4160 ($ $)) (IF (|has| |t#1| (-15 -4160 (|t#1| |t#1| (-1197)))) (IF (|has| |t#1| (-15 -1969 ((-656 (-1197)) |t#1|))) (-15 -4160 ($ $ (-1197))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1223)) (IF (|has| |t#1| (-978)) (IF (|has| |t#1| (-29 (-576))) (-15 -4160 ($ $ (-1197))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1023)) (-6 (-1223))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-783)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2759 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) -2759 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-783) (-1133)) ((-300) |has| |#1| (-568)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) |has| |#1| (-568)) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-911 $ #2=(-1197)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197)))) ((-919 #2#) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197)))) ((-994 |#1| #0# (-1103)) . T) ((-1023) |has| |#1| (-38 (-419 (-576)))) ((-1072 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1077 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -2759 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1223) |has| |#1| (-38 (-419 (-576)))) ((-1226) |has| |#1| (-38 (-419 (-576)))) ((-1238) . T) ((-1266 |#1| #0#) . T)) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-1969 (((-656 (-1103)) $) NIL)) (-3054 (((-1197) $) 90)) (-1618 (((-1261 |#2| |#1|) $ (-783)) 73)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4195 (($ $) NIL (|has| |#1| (-568)))) (-1760 (((-112) $) 142 (|has| |#1| (-568)))) (-2408 (($ $ (-783)) 127) (($ $ (-783) (-783)) 130)) (-3064 (((-1178 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 43)) (-4024 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2428 (((-3 $ "failed") $ $) NIL)) (-1840 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4005 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3876 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3079 (($ (-1178 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 52) (($ (-1178 |#1|)) NIL)) (-4049 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3404 (($) NIL T CONST)) (-1439 (($ $) 134)) (-2114 (($ $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-3136 (($ $) 140)) (-2383 (((-971 |#1|) $ (-783)) 63) (((-971 |#1|) $ (-783) (-783)) 65)) (-2116 (((-112) $) NIL)) (-1600 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3726 (((-783) $) NIL) (((-783) $ (-783)) NIL)) (-1351 (((-112) $) NIL)) (-2491 (($ $) 117)) (-4131 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4254 (($ (-576) (-576) $) 136)) (-1800 (($ $ (-940)) 139)) (-3811 (($ (-1 |#1| (-576)) $) 111)) (-3538 (((-112) $) NIL)) (-1944 (($ |#1| (-783)) 16) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-4116 (($ (-1 |#1| |#1|) $) 98)) (-3744 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2081 (($ $) NIL)) (-2091 ((|#1| $) NIL)) (-2046 (((-1179) $) NIL)) (-1686 (($ $) 115)) (-2165 (($ $) 113)) (-2017 (($ (-576) (-576) $) 138)) (-4160 (($ $) 150 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 156 (-2759 (-12 (|has| |#1| (-15 -4160 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1969 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 151 (|has| |#1| (-38 (-419 (-576)))))) (-1450 (((-1141) $) NIL)) (-2468 (($ $ (-576) (-576)) 121)) (-1743 (($ $ (-783)) 123)) (-3475 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4103 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3837 (($ $) 119)) (-3282 (((-1178 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-2796 ((|#1| $ (-783)) 95) (($ $ $) 132 (|has| (-783) (-1133)))) (-2774 (($ $ (-1197)) 108 (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 102 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1284 |#2|)) 103)) (-2683 (((-783) $) NIL)) (-4060 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4036 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4013 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2539 (($ $) 125)) (-3569 (((-876) $) NIL) (($ (-576)) 26) (($ (-419 (-576))) 148 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 25 (|has| |#1| (-174))) (($ (-1261 |#2| |#1|)) 81) (($ (-1284 |#2|)) 22)) (-2937 (((-1178 |#1|) $) NIL)) (-1822 ((|#1| $ (-783)) 94)) (-3390 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3154 (((-783)) NIL T CONST)) (-2396 ((|#1| $) 91)) (-2399 (((-112) $ $) NIL)) (-2790 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3960 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1505 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4070 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2814 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4165 ((|#1| $ (-783)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -3569 (|#1| (-1197))))))) (-4387 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2802 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3973 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4082 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3950 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2721 (($) 18 T CONST)) (-2731 (($) 13 T CONST)) (-2020 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1284 |#2|)) NIL)) (-2924 (((-112) $ $) NIL)) (-3056 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) 107)) (-3029 (($ $ $) 20)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ |#1|) 145 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 106) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1280 |#1| |#2| |#3|) (-13 (-1279 |#1|) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3569 ($ (-1261 |#2| |#1|))) (-15 -1618 ((-1261 |#2| |#1|) $ (-783))) (-15 -3569 ($ (-1284 |#2|))) (-15 -2165 ($ $)) (-15 -1686 ($ $)) (-15 -2491 ($ $)) (-15 -3837 ($ $)) (-15 -2468 ($ $ (-576) (-576))) (-15 -1439 ($ $)) (-15 -4254 ($ (-576) (-576) $)) (-15 -2017 ($ (-576) (-576) $)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4160 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -1280)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-1261 *4 *3)) (-4 *3 (-1070)) (-14 *4 (-1197)) (-14 *5 *3) (-5 *1 (-1280 *3 *4 *5)))) (-1618 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1261 *5 *4)) (-5 *1 (-1280 *4 *5 *6)) (-4 *4 (-1070)) (-14 *5 (-1197)) (-14 *6 *4))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) (-14 *5 *3))) (-2165 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) (-14 *4 *2))) (-1686 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) (-14 *4 *2))) (-2491 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) (-14 *4 *2))) (-3837 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) (-14 *4 *2))) (-2468 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-1197)) (-14 *5 *3))) (-1439 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) (-14 *4 *2))) (-4254 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-1197)) (-14 *5 *3))) (-2017 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-1197)) (-14 *5 *3))) (-4160 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) +(-13 (-1279 |#1|) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -3569 ($ (-1261 |#2| |#1|))) (-15 -1618 ((-1261 |#2| |#1|) $ (-783))) (-15 -3569 ($ (-1284 |#2|))) (-15 -2165 ($ $)) (-15 -1686 ($ $)) (-15 -2491 ($ $)) (-15 -3837 ($ $)) (-15 -2468 ($ $ (-576) (-576))) (-15 -1439 ($ $)) (-15 -4254 ($ (-576) (-576) $)) (-15 -2017 ($ (-576) (-576) $)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4160 ($ $ (-1284 |#2|))) |%noBranch|))) +((-2312 (((-1 (-1178 |#1|) (-656 (-1178 |#1|))) (-1 |#2| (-656 |#2|))) 24)) (-3559 (((-1 (-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3156 (((-1 (-1178 |#1|) (-1178 |#1|)) (-1 |#2| |#2|)) 13)) (-3713 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4393 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2991 ((|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|)) 60)) (-2215 (((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))) 66)) (-2681 ((|#2| |#2| |#2|) 43))) +(((-1281 |#1| |#2|) (-10 -7 (-15 -3156 ((-1 (-1178 |#1|) (-1178 |#1|)) (-1 |#2| |#2|))) (-15 -3559 ((-1 (-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2312 ((-1 (-1178 |#1|) (-656 (-1178 |#1|))) (-1 |#2| (-656 |#2|)))) (-15 -2681 (|#2| |#2| |#2|)) (-15 -4393 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3713 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2991 (|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|))) (-15 -2215 ((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))))) (-38 (-419 (-576))) (-1279 |#1|)) (T -1281)) +((-2215 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 (-1 *6 (-656 *6)))) (-4 *5 (-38 (-419 (-576)))) (-4 *6 (-1279 *5)) (-5 *2 (-656 *6)) (-5 *1 (-1281 *5 *6)))) (-2991 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-656 *2))) (-5 *4 (-656 *5)) (-4 *5 (-38 (-419 (-576)))) (-4 *2 (-1279 *5)) (-5 *1 (-1281 *5 *2)))) (-3713 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1279 *4)) (-5 *1 (-1281 *4 *2)) (-4 *4 (-38 (-419 (-576)))))) (-4393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1279 *4)) (-5 *1 (-1281 *4 *2)) (-4 *4 (-38 (-419 (-576)))))) (-2681 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1281 *3 *2)) (-4 *2 (-1279 *3)))) (-2312 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-656 *5))) (-4 *5 (-1279 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1178 *4) (-656 (-1178 *4)))) (-5 *1 (-1281 *4 *5)))) (-3559 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1279 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1178 *4) (-1178 *4) (-1178 *4))) (-5 *1 (-1281 *4 *5)))) (-3156 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1279 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1178 *4) (-1178 *4))) (-5 *1 (-1281 *4 *5))))) +(-10 -7 (-15 -3156 ((-1 (-1178 |#1|) (-1178 |#1|)) (-1 |#2| |#2|))) (-15 -3559 ((-1 (-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2312 ((-1 (-1178 |#1|) (-656 (-1178 |#1|))) (-1 |#2| (-656 |#2|)))) (-15 -2681 (|#2| |#2| |#2|)) (-15 -4393 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3713 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2991 (|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|))) (-15 -2215 ((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))))) +((-2059 ((|#2| |#4| (-783)) 31)) (-3474 ((|#4| |#2|) 26)) (-3006 ((|#4| (-419 |#2|)) 49 (|has| |#1| (-568)))) (-1449 (((-1 |#4| (-656 |#4|)) |#3|) 43))) +(((-1282 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3474 (|#4| |#2|)) (-15 -2059 (|#2| |#4| (-783))) (-15 -1449 ((-1 |#4| (-656 |#4|)) |#3|)) (IF (|has| |#1| (-568)) (-15 -3006 (|#4| (-419 |#2|))) |%noBranch|)) (-1070) (-1264 |#1|) (-668 |#2|) (-1279 |#1|)) (T -1282)) +((-3006 (*1 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-568)) (-4 *4 (-1070)) (-4 *2 (-1279 *4)) (-5 *1 (-1282 *4 *5 *6 *2)) (-4 *6 (-668 *5)))) (-1449 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-1264 *4)) (-5 *2 (-1 *6 (-656 *6))) (-5 *1 (-1282 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-1279 *4)))) (-2059 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-1070)) (-4 *2 (-1264 *5)) (-5 *1 (-1282 *5 *2 *6 *3)) (-4 *6 (-668 *2)) (-4 *3 (-1279 *5)))) (-3474 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *3 (-1264 *4)) (-4 *2 (-1279 *4)) (-5 *1 (-1282 *4 *3 *5 *2)) (-4 *5 (-668 *3))))) +(-10 -7 (-15 -3474 (|#4| |#2|)) (-15 -2059 (|#2| |#4| (-783))) (-15 -1449 ((-1 |#4| (-656 |#4|)) |#3|)) (IF (|has| |#1| (-568)) (-15 -3006 (|#4| (-419 |#2|))) |%noBranch|)) NIL (((-1283) (-141)) (T -1283)) NIL -(-13 (-10 -7 (-6 -4135))) -((-3489 (((-112) $ $) NIL)) (-3055 (((-1197)) 12)) (-3699 (((-1179) $) 18)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 11) (((-1197) $) 8)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 15))) -(((-1284 |#1|) (-13 (-1121) (-625 (-1197)) (-10 -8 (-15 -3570 ((-1197) $)) (-15 -3055 ((-1197))))) (-1197)) (T -1284)) -((-3570 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1284 *3)) (-14 *3 *2))) (-3055 (*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1284 *3)) (-14 *3 *2)))) -(-13 (-1121) (-625 (-1197)) (-10 -8 (-15 -3570 ((-1197) $)) (-15 -3055 ((-1197))))) -((-3832 (($ (-783)) 19)) (-2355 (((-701 |#2|) $ $) 41)) (-2846 ((|#2| $) 51)) (-2437 ((|#2| $) 50)) (-2118 ((|#2| $ $) 36)) (-3409 (($ $ $) 47)) (-3044 (($ $) 23) (($ $ $) 29)) (-3030 (($ $ $) 15)) (* (($ (-576) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) -(((-1285 |#1| |#2|) (-10 -8 (-15 -2846 (|#2| |#1|)) (-15 -2437 (|#2| |#1|)) (-15 -3409 (|#1| |#1| |#1|)) (-15 -2355 ((-701 |#2|) |#1| |#1|)) (-15 -2118 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3044 (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1|)) (-15 -3832 (|#1| (-783))) (-15 -3030 (|#1| |#1| |#1|))) (-1286 |#2|) (-1238)) (T -1285)) +(-13 (-10 -7 (-6 -4134))) +((-3488 (((-112) $ $) NIL)) (-3054 (((-1197)) 12)) (-2046 (((-1179) $) 18)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 11) (((-1197) $) 8)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 15))) +(((-1284 |#1|) (-13 (-1121) (-625 (-1197)) (-10 -8 (-15 -3569 ((-1197) $)) (-15 -3054 ((-1197))))) (-1197)) (T -1284)) +((-3569 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1284 *3)) (-14 *3 *2))) (-3054 (*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1284 *3)) (-14 *3 *2)))) +(-13 (-1121) (-625 (-1197)) (-10 -8 (-15 -3569 ((-1197) $)) (-15 -3054 ((-1197))))) +((-3831 (($ (-783)) 19)) (-2355 (((-701 |#2|) $ $) 41)) (-3781 ((|#2| $) 51)) (-2435 ((|#2| $) 50)) (-4099 ((|#2| $ $) 36)) (-2365 (($ $ $) 47)) (-3043 (($ $) 23) (($ $ $) 29)) (-3029 (($ $ $) 15)) (* (($ (-576) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) +(((-1285 |#1| |#2|) (-10 -8 (-15 -3781 (|#2| |#1|)) (-15 -2435 (|#2| |#1|)) (-15 -2365 (|#1| |#1| |#1|)) (-15 -2355 ((-701 |#2|) |#1| |#1|)) (-15 -4099 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 -3831 (|#1| (-783))) (-15 -3029 (|#1| |#1| |#1|))) (-1286 |#2|) (-1238)) (T -1285)) NIL -(-10 -8 (-15 -2846 (|#2| |#1|)) (-15 -2437 (|#2| |#1|)) (-15 -3409 (|#1| |#1| |#1|)) (-15 -2355 ((-701 |#2|) |#1| |#1|)) (-15 -2118 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3044 (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1|)) (-15 -3832 (|#1| (-783))) (-15 -3030 (|#1| |#1| |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3832 (($ (-783)) 115 (|has| |#1| (-23)))) (-2047 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4466)))) (-1710 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-4298 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4466))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4466))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-1808 (((-112) $ (-783)) 8)) (-3756 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4466))) ((|#1| $ (-1255 (-576)) |#1|) 60 (|has| $ (-6 -4466)))) (-1974 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4465)))) (-3886 (($) 7 T CONST)) (-3990 (($ $) 93 (|has| $ (-6 -4466)))) (-3836 (($ $) 103)) (-1415 (($ $) 80 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-3946 (($ |#1| $) 79 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4465)))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4465)))) (-4335 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4466)))) (-4274 ((|#1| $ (-576)) 52)) (-3660 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1121)))) (-3966 (((-656 |#1|) $) 31 (|has| $ (-6 -4465)))) (-2355 (((-701 |#1|) $ $) 108 (|has| |#1| (-1070)))) (-4141 (($ (-783) |#1|) 70)) (-3870 (((-112) $ (-783)) 9)) (-2924 (((-576) $) 44 (|has| (-576) (-861)))) (-3125 (($ $ $) 85 (|has| |#1| (-861)))) (-3391 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-2014 (((-656 |#1|) $) 30 (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-2137 (((-576) $) 45 (|has| (-576) (-861)))) (-3133 (($ $ $) 86 (|has| |#1| (-861)))) (-4323 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2846 ((|#1| $) 105 (-12 (|has| |#1| (-1070)) (|has| |#1| (-1023))))) (-1330 (((-112) $ (-783)) 10)) (-2437 ((|#1| $) 106 (-12 (|has| |#1| (-1070)) (|has| |#1| (-1023))))) (-3699 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2176 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-4234 (((-656 (-576)) $) 47)) (-3354 (((-112) (-576) $) 48)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3581 ((|#1| $) 43 (|has| (-576) (-861)))) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4046 (($ $ |#1|) 42 (|has| $ (-6 -4466)))) (-4320 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) 14)) (-3845 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2281 (((-656 |#1|) $) 49)) (-3973 (((-112) $) 11)) (-4225 (($) 12)) (-2797 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1255 (-576))) 71)) (-2118 ((|#1| $ $) 109 (|has| |#1| (-1070)))) (-3466 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-3409 (($ $ $) 107 (|has| |#1| (-1070)))) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4465))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4465))))) (-3025 (($ $ $ (-576)) 94 (|has| $ (-6 -4466)))) (-1870 (($ $) 13)) (-4172 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) 72)) (-1615 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3570 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4465)))) (-2992 (((-112) $ $) 87 (|has| |#1| (-861)))) (-2964 (((-112) $ $) 89 (|has| |#1| (-861)))) (-2925 (((-112) $ $) 19 (|has| |#1| (-102)))) (-2978 (((-112) $ $) 88 (|has| |#1| (-861)))) (-2950 (((-112) $ $) 90 (|has| |#1| (-861)))) (-3044 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3030 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-576) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-738))) (($ $ |#1|) 110 (|has| |#1| (-738)))) (-3503 (((-783) $) 6 (|has| $ (-6 -4465))))) +(-10 -8 (-15 -3781 (|#2| |#1|)) (-15 -2435 (|#2| |#1|)) (-15 -2365 (|#1| |#1| |#1|)) (-15 -2355 ((-701 |#2|) |#1| |#1|)) (-15 -4099 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 -3831 (|#1| (-783))) (-15 -3029 (|#1| |#1| |#1|))) +((-3488 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3831 (($ (-783)) 115 (|has| |#1| (-23)))) (-1512 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4465)))) (-1390 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-3039 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4465))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4465))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-4264 (((-112) $ (-783)) 8)) (-3755 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 60 (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4464)))) (-3404 (($) 7 T CONST)) (-3092 (($ $) 93 (|has| $ (-6 -4465)))) (-3835 (($ $) 103)) (-2034 (($ $) 80 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3945 (($ |#1| $) 79 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) 52)) (-3659 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1121)))) (-3965 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-2355 (((-701 |#1|) $ $) 108 (|has| |#1| (-1070)))) (-4140 (($ (-783) |#1|) 70)) (-1368 (((-112) $ (-783)) 9)) (-3281 (((-576) $) 44 (|has| (-576) (-861)))) (-3124 (($ $ $) 85 (|has| |#1| (-861)))) (-2185 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-2425 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4280 (((-576) $) 45 (|has| (-576) (-861)))) (-1441 (($ $ $) 86 (|has| |#1| (-861)))) (-4326 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3781 ((|#1| $) 105 (-12 (|has| |#1| (-1070)) (|has| |#1| (-1023))))) (-2883 (((-112) $ (-783)) 10)) (-2435 ((|#1| $) 106 (-12 (|has| |#1| (-1070)) (|has| |#1| (-1023))))) (-2046 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2176 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3669 (((-656 (-576)) $) 47)) (-3090 (((-112) (-576) $) 48)) (-1450 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3580 ((|#1| $) 43 (|has| (-576) (-861)))) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2304 (($ $ |#1|) 42 (|has| $ (-6 -4465)))) (-3252 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) 14)) (-4282 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3207 (((-656 |#1|) $) 49)) (-2940 (((-112) $) 11)) (-3579 (($) 12)) (-2796 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1255 (-576))) 71)) (-4099 ((|#1| $ $) 109 (|has| |#1| (-1070)))) (-3465 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-2365 (($ $ $) 107 (|has| |#1| (-1070)))) (-1460 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2840 (($ $ $ (-576)) 94 (|has| $ (-6 -4465)))) (-1870 (($ $) 13)) (-4171 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 72)) (-1615 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3569 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2990 (((-112) $ $) 87 (|has| |#1| (-861)))) (-2962 (((-112) $ $) 89 (|has| |#1| (-861)))) (-2924 (((-112) $ $) 19 (|has| |#1| (-102)))) (-2978 (((-112) $ $) 88 (|has| |#1| (-861)))) (-2949 (((-112) $ $) 90 (|has| |#1| (-861)))) (-3043 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3029 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-576) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-738))) (($ $ |#1|) 110 (|has| |#1| (-738)))) (-3502 (((-783) $) 6 (|has| $ (-6 -4464))))) (((-1286 |#1|) (-141) (-1238)) (T -1286)) -((-3030 (*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-25)))) (-3832 (*1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1286 *3)) (-4 *3 (-23)) (-4 *3 (-1238)))) (-3044 (*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-21)))) (-3044 (*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-1286 *3)) (-4 *3 (-1238)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-738)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-738)))) (-2118 (*1 *2 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1070)))) (-2355 (*1 *2 *1 *1) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-1238)) (-4 *3 (-1070)) (-5 *2 (-701 *3)))) (-3409 (*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1070)))) (-2437 (*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1023)) (-4 *2 (-1070)))) (-2846 (*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1023)) (-4 *2 (-1070))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3030 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3832 ($ (-783))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3044 ($ $)) (-15 -3044 ($ $ $)) (-15 * ($ (-576) $))) |%noBranch|) (IF (|has| |t#1| (-738)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1070)) (PROGN (-15 -2118 (|t#1| $ $)) (-15 -2355 ((-701 |t#1|) $ $)) (-15 -3409 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1023)) (IF (|has| |t#1| (-1070)) (PROGN (-15 -2437 (|t#1| $)) (-15 -2846 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-102) -2760 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-625 (-876)) -2760 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-19 |#1|) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1121) -2760 (|has| |#1| (-1121)) (|has| |#1| (-861))) ((-1238) . T)) -((-1950 (((-1288 |#2|) (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|) 13)) (-3686 ((|#2| (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|) 15)) (-4117 (((-3 (-1288 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1288 |#1|)) 30) (((-1288 |#2|) (-1 |#2| |#1|) (-1288 |#1|)) 18))) -(((-1287 |#1| |#2|) (-10 -7 (-15 -1950 ((-1288 |#2|) (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|)) (-15 -3686 (|#2| (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|)) (-15 -4117 ((-1288 |#2|) (-1 |#2| |#1|) (-1288 |#1|))) (-15 -4117 ((-3 (-1288 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1288 |#1|)))) (-1238) (-1238)) (T -1287)) -((-4117 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1288 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1288 *6)) (-5 *1 (-1287 *5 *6)))) (-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1288 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1288 *6)) (-5 *1 (-1287 *5 *6)))) (-3686 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1288 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-1287 *5 *2)))) (-1950 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1288 *6)) (-4 *6 (-1238)) (-4 *5 (-1238)) (-5 *2 (-1288 *5)) (-5 *1 (-1287 *6 *5))))) -(-10 -7 (-15 -1950 ((-1288 |#2|) (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|)) (-15 -3686 (|#2| (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|)) (-15 -4117 ((-1288 |#2|) (-1 |#2| |#1|) (-1288 |#1|))) (-15 -4117 ((-3 (-1288 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1288 |#1|)))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3832 (($ (-783)) NIL (|has| |#1| (-23)))) (-2762 (($ (-656 |#1|)) 11)) (-2047 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4466)))) (-1710 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-4298 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4466))) (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-861))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-1808 (((-112) $ (-783)) NIL)) (-3756 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4466))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4466)))) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3886 (($) NIL T CONST)) (-3990 (($ $) NIL (|has| $ (-6 -4466)))) (-3836 (($ $) NIL)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3946 (($ |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3686 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4465))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4335 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4466)))) (-4274 ((|#1| $ (-576)) NIL)) (-3660 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-3966 (((-656 |#1|) $) 16 (|has| $ (-6 -4465)))) (-2355 (((-701 |#1|) $ $) NIL (|has| |#1| (-1070)))) (-4141 (($ (-783) |#1|) NIL)) (-3870 (((-112) $ (-783)) NIL)) (-2924 (((-576) $) NIL (|has| (-576) (-861)))) (-3125 (($ $ $) NIL (|has| |#1| (-861)))) (-3391 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2014 (((-656 |#1|) $) NIL (|has| $ (-6 -4465)))) (-1612 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2137 (((-576) $) 12 (|has| (-576) (-861)))) (-3133 (($ $ $) NIL (|has| |#1| (-861)))) (-4323 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2846 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))))) (-1330 (((-112) $ (-783)) NIL)) (-2437 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))))) (-3699 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2176 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-4234 (((-656 (-576)) $) NIL)) (-3354 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3581 ((|#1| $) NIL (|has| (-576) (-861)))) (-1541 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4046 (($ $ |#1|) NIL (|has| $ (-6 -4466)))) (-4320 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3845 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-2281 (((-656 |#1|) $) NIL)) (-3973 (((-112) $) NIL)) (-4225 (($) NIL)) (-2797 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-2118 ((|#1| $ $) NIL (|has| |#1| (-1070)))) (-3466 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-3409 (($ $ $) NIL (|has| |#1| (-1070)))) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-1121))))) (-3025 (($ $ $ (-576)) NIL (|has| $ (-6 -4466)))) (-1870 (($ $) NIL)) (-4172 (((-548) $) 20 (|has| |#1| (-626 (-548))))) (-3582 (($ (-656 |#1|)) 10)) (-1615 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3570 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-4055 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3321 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4465)))) (-2992 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2950 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3044 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3030 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-1288 |#1|) (-13 (-1286 |#1|) (-10 -8 (-15 -2762 ($ (-656 |#1|))))) (-1238)) (T -1288)) -((-2762 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-1288 *3))))) -(-13 (-1286 |#1|) (-10 -8 (-15 -2762 ($ (-656 |#1|))))) -((-3489 (((-112) $ $) NIL)) (-1382 (((-1179) $ (-1179)) 107) (((-1179) $ (-1179) (-1179)) 105) (((-1179) $ (-1179) (-656 (-1179))) 104)) (-3017 (($) 69)) (-3605 (((-1293) $ (-480) (-940)) 54)) (-2328 (((-1293) $ (-940) (-1179)) 89) (((-1293) $ (-940) (-888)) 90)) (-1877 (((-1293) $ (-940) (-390) (-390)) 57)) (-1357 (((-1293) $ (-1179)) 84)) (-2187 (((-1293) $ (-940) (-1179)) 94)) (-2131 (((-1293) $ (-940) (-390) (-390)) 58)) (-3153 (((-1293) $ (-940) (-940)) 55)) (-1361 (((-1293) $) 85)) (-1770 (((-1293) $ (-940) (-1179)) 93)) (-2546 (((-1293) $ (-480) (-940)) 41)) (-1793 (((-1293) $ (-940) (-1179)) 92)) (-4420 (((-656 (-270)) $) 29) (($ $ (-656 (-270))) 30)) (-3396 (((-1293) $ (-783) (-783)) 52)) (-2876 (($ $) 70) (($ (-480) (-656 (-270))) 71)) (-3699 (((-1179) $) NIL)) (-4301 (((-576) $) 48)) (-1450 (((-1141) $) NIL)) (-1906 (((-1288 (-3 (-480) "undefined")) $) 47)) (-4127 (((-1288 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -1793 (-576)) (|:| -3774 (-576)) (|:| |spline| (-576)) (|:| -1542 (-576)) (|:| |axesColor| (-888)) (|:| -2328 (-576)) (|:| |unitsColor| (-888)) (|:| |showing| (-576)))) $) 46)) (-1956 (((-1293) $ (-940) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-888) (-576) (-888) (-576)) 83)) (-3663 (((-656 (-962 (-227))) $) NIL)) (-2499 (((-480) $ (-940)) 43)) (-3212 (((-1293) $ (-783) (-783) (-940) (-940)) 50)) (-1486 (((-1293) $ (-1179)) 95)) (-3774 (((-1293) $ (-940) (-1179)) 91)) (-3570 (((-876) $) 102)) (-1958 (((-1293) $) 96)) (-4055 (((-112) $ $) NIL)) (-1542 (((-1293) $ (-940) (-1179)) 87) (((-1293) $ (-940) (-888)) 88)) (-2925 (((-112) $ $) NIL))) -(((-1289) (-13 (-1121) (-10 -8 (-15 -3663 ((-656 (-962 (-227))) $)) (-15 -3017 ($)) (-15 -2876 ($ $)) (-15 -4420 ((-656 (-270)) $)) (-15 -4420 ($ $ (-656 (-270)))) (-15 -2876 ($ (-480) (-656 (-270)))) (-15 -1956 ((-1293) $ (-940) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-888) (-576) (-888) (-576))) (-15 -4127 ((-1288 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -1793 (-576)) (|:| -3774 (-576)) (|:| |spline| (-576)) (|:| -1542 (-576)) (|:| |axesColor| (-888)) (|:| -2328 (-576)) (|:| |unitsColor| (-888)) (|:| |showing| (-576)))) $)) (-15 -1906 ((-1288 (-3 (-480) "undefined")) $)) (-15 -1357 ((-1293) $ (-1179))) (-15 -2546 ((-1293) $ (-480) (-940))) (-15 -2499 ((-480) $ (-940))) (-15 -1542 ((-1293) $ (-940) (-1179))) (-15 -1542 ((-1293) $ (-940) (-888))) (-15 -2328 ((-1293) $ (-940) (-1179))) (-15 -2328 ((-1293) $ (-940) (-888))) (-15 -1793 ((-1293) $ (-940) (-1179))) (-15 -1770 ((-1293) $ (-940) (-1179))) (-15 -3774 ((-1293) $ (-940) (-1179))) (-15 -1486 ((-1293) $ (-1179))) (-15 -1958 ((-1293) $)) (-15 -3212 ((-1293) $ (-783) (-783) (-940) (-940))) (-15 -2131 ((-1293) $ (-940) (-390) (-390))) (-15 -1877 ((-1293) $ (-940) (-390) (-390))) (-15 -2187 ((-1293) $ (-940) (-1179))) (-15 -3396 ((-1293) $ (-783) (-783))) (-15 -3605 ((-1293) $ (-480) (-940))) (-15 -3153 ((-1293) $ (-940) (-940))) (-15 -1382 ((-1179) $ (-1179))) (-15 -1382 ((-1179) $ (-1179) (-1179))) (-15 -1382 ((-1179) $ (-1179) (-656 (-1179)))) (-15 -1361 ((-1293) $)) (-15 -4301 ((-576) $)) (-15 -3570 ((-876) $))))) (T -1289)) -((-3570 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-1289)))) (-3663 (*1 *2 *1) (-12 (-5 *2 (-656 (-962 (-227)))) (-5 *1 (-1289)))) (-3017 (*1 *1) (-5 *1 (-1289))) (-2876 (*1 *1 *1) (-5 *1 (-1289))) (-4420 (*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1289)))) (-4420 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1289)))) (-2876 (*1 *1 *2 *3) (-12 (-5 *2 (-480)) (-5 *3 (-656 (-270))) (-5 *1 (-1289)))) (-1956 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-940)) (-5 *4 (-227)) (-5 *5 (-576)) (-5 *6 (-888)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-1288 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -1793 (-576)) (|:| -3774 (-576)) (|:| |spline| (-576)) (|:| -1542 (-576)) (|:| |axesColor| (-888)) (|:| -2328 (-576)) (|:| |unitsColor| (-888)) (|:| |showing| (-576))))) (-5 *1 (-1289)))) (-1906 (*1 *2 *1) (-12 (-5 *2 (-1288 (-3 (-480) "undefined"))) (-5 *1 (-1289)))) (-1357 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-2546 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-2499 (*1 *2 *1 *3) (-12 (-5 *3 (-940)) (-5 *2 (-480)) (-5 *1 (-1289)))) (-1542 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-1542 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-888)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-2328 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-2328 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-888)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-1793 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-1770 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-3774 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-1486 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-1958 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1289)))) (-3212 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-783)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-2131 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-940)) (-5 *4 (-390)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-1877 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-940)) (-5 *4 (-390)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-2187 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-3396 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-3605 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-3153 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-1382 (*1 *2 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1289)))) (-1382 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1289)))) (-1382 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1179)) (-5 *1 (-1289)))) (-1361 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1289)))) (-4301 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1289))))) -(-13 (-1121) (-10 -8 (-15 -3663 ((-656 (-962 (-227))) $)) (-15 -3017 ($)) (-15 -2876 ($ $)) (-15 -4420 ((-656 (-270)) $)) (-15 -4420 ($ $ (-656 (-270)))) (-15 -2876 ($ (-480) (-656 (-270)))) (-15 -1956 ((-1293) $ (-940) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-888) (-576) (-888) (-576))) (-15 -4127 ((-1288 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -1793 (-576)) (|:| -3774 (-576)) (|:| |spline| (-576)) (|:| -1542 (-576)) (|:| |axesColor| (-888)) (|:| -2328 (-576)) (|:| |unitsColor| (-888)) (|:| |showing| (-576)))) $)) (-15 -1906 ((-1288 (-3 (-480) "undefined")) $)) (-15 -1357 ((-1293) $ (-1179))) (-15 -2546 ((-1293) $ (-480) (-940))) (-15 -2499 ((-480) $ (-940))) (-15 -1542 ((-1293) $ (-940) (-1179))) (-15 -1542 ((-1293) $ (-940) (-888))) (-15 -2328 ((-1293) $ (-940) (-1179))) (-15 -2328 ((-1293) $ (-940) (-888))) (-15 -1793 ((-1293) $ (-940) (-1179))) (-15 -1770 ((-1293) $ (-940) (-1179))) (-15 -3774 ((-1293) $ (-940) (-1179))) (-15 -1486 ((-1293) $ (-1179))) (-15 -1958 ((-1293) $)) (-15 -3212 ((-1293) $ (-783) (-783) (-940) (-940))) (-15 -2131 ((-1293) $ (-940) (-390) (-390))) (-15 -1877 ((-1293) $ (-940) (-390) (-390))) (-15 -2187 ((-1293) $ (-940) (-1179))) (-15 -3396 ((-1293) $ (-783) (-783))) (-15 -3605 ((-1293) $ (-480) (-940))) (-15 -3153 ((-1293) $ (-940) (-940))) (-15 -1382 ((-1179) $ (-1179))) (-15 -1382 ((-1179) $ (-1179) (-1179))) (-15 -1382 ((-1179) $ (-1179) (-656 (-1179)))) (-15 -1361 ((-1293) $)) (-15 -4301 ((-576) $)) (-15 -3570 ((-876) $)))) -((-3489 (((-112) $ $) NIL)) (-3652 (((-1293) $ (-390)) 169) (((-1293) $ (-390) (-390) (-390)) 170)) (-1382 (((-1179) $ (-1179)) 179) (((-1179) $ (-1179) (-1179)) 177) (((-1179) $ (-1179) (-656 (-1179))) 176)) (-1455 (($) 67)) (-3411 (((-1293) $ (-390) (-390) (-390) (-390) (-390)) 141) (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2131 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $) 139) (((-1293) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2131 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 140) (((-1293) $ (-576) (-576) (-390) (-390) (-390)) 144) (((-1293) $ (-390) (-390)) 145) (((-1293) $ (-390) (-390) (-390)) 152)) (-3776 (((-390)) 122) (((-390) (-390)) 123)) (-3270 (((-390)) 117) (((-390) (-390)) 119)) (-3894 (((-390)) 120) (((-390) (-390)) 121)) (-2000 (((-390)) 126) (((-390) (-390)) 127)) (-1479 (((-390)) 124) (((-390) (-390)) 125)) (-1877 (((-1293) $ (-390) (-390)) 171)) (-1357 (((-1293) $ (-1179)) 153)) (-3732 (((-1154 (-227)) $) 68) (($ $ (-1154 (-227))) 69)) (-4030 (((-1293) $ (-1179)) 187)) (-3722 (((-1293) $ (-1179)) 188)) (-4106 (((-1293) $ (-390) (-390)) 151) (((-1293) $ (-576) (-576)) 168)) (-3153 (((-1293) $ (-940) (-940)) 160)) (-1361 (((-1293) $) 137)) (-3618 (((-1293) $ (-1179)) 186)) (-1709 (((-1293) $ (-1179)) 134)) (-4420 (((-656 (-270)) $) 70) (($ $ (-656 (-270))) 71)) (-3396 (((-1293) $ (-783) (-783)) 159)) (-2684 (((-1293) $ (-783) (-962 (-227))) 193)) (-3401 (($ $) 73) (($ (-1154 (-227)) (-1179)) 74) (($ (-1154 (-227)) (-656 (-270))) 75)) (-1998 (((-1293) $ (-390) (-390) (-390)) 131)) (-3699 (((-1179) $) NIL)) (-4301 (((-576) $) 128)) (-2667 (((-1293) $ (-390)) 174)) (-3622 (((-1293) $ (-390)) 191)) (-1450 (((-1141) $) NIL)) (-3272 (((-1293) $ (-390)) 190)) (-3880 (((-1293) $ (-1179)) 136)) (-3212 (((-1293) $ (-783) (-783) (-940) (-940)) 158)) (-2258 (((-1293) $ (-1179)) 133)) (-1486 (((-1293) $ (-1179)) 135)) (-2700 (((-1293) $ (-158) (-158)) 157)) (-3570 (((-876) $) 166)) (-1958 (((-1293) $) 138)) (-1832 (((-1293) $ (-1179)) 189)) (-4055 (((-112) $ $) NIL)) (-1542 (((-1293) $ (-1179)) 132)) (-2925 (((-112) $ $) NIL))) -(((-1290) (-13 (-1121) (-10 -8 (-15 -3270 ((-390))) (-15 -3270 ((-390) (-390))) (-15 -3894 ((-390))) (-15 -3894 ((-390) (-390))) (-15 -3776 ((-390))) (-15 -3776 ((-390) (-390))) (-15 -1479 ((-390))) (-15 -1479 ((-390) (-390))) (-15 -2000 ((-390))) (-15 -2000 ((-390) (-390))) (-15 -1455 ($)) (-15 -3401 ($ $)) (-15 -3401 ($ (-1154 (-227)) (-1179))) (-15 -3401 ($ (-1154 (-227)) (-656 (-270)))) (-15 -3732 ((-1154 (-227)) $)) (-15 -3732 ($ $ (-1154 (-227)))) (-15 -2684 ((-1293) $ (-783) (-962 (-227)))) (-15 -4420 ((-656 (-270)) $)) (-15 -4420 ($ $ (-656 (-270)))) (-15 -3396 ((-1293) $ (-783) (-783))) (-15 -3153 ((-1293) $ (-940) (-940))) (-15 -1357 ((-1293) $ (-1179))) (-15 -3212 ((-1293) $ (-783) (-783) (-940) (-940))) (-15 -3411 ((-1293) $ (-390) (-390) (-390) (-390) (-390))) (-15 -3411 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2131 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -3411 ((-1293) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2131 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3411 ((-1293) $ (-576) (-576) (-390) (-390) (-390))) (-15 -3411 ((-1293) $ (-390) (-390))) (-15 -3411 ((-1293) $ (-390) (-390) (-390))) (-15 -1486 ((-1293) $ (-1179))) (-15 -1542 ((-1293) $ (-1179))) (-15 -2258 ((-1293) $ (-1179))) (-15 -1709 ((-1293) $ (-1179))) (-15 -3880 ((-1293) $ (-1179))) (-15 -4106 ((-1293) $ (-390) (-390))) (-15 -4106 ((-1293) $ (-576) (-576))) (-15 -3652 ((-1293) $ (-390))) (-15 -3652 ((-1293) $ (-390) (-390) (-390))) (-15 -1877 ((-1293) $ (-390) (-390))) (-15 -3618 ((-1293) $ (-1179))) (-15 -3272 ((-1293) $ (-390))) (-15 -3622 ((-1293) $ (-390))) (-15 -4030 ((-1293) $ (-1179))) (-15 -3722 ((-1293) $ (-1179))) (-15 -1832 ((-1293) $ (-1179))) (-15 -1998 ((-1293) $ (-390) (-390) (-390))) (-15 -2667 ((-1293) $ (-390))) (-15 -1361 ((-1293) $)) (-15 -2700 ((-1293) $ (-158) (-158))) (-15 -1382 ((-1179) $ (-1179))) (-15 -1382 ((-1179) $ (-1179) (-1179))) (-15 -1382 ((-1179) $ (-1179) (-656 (-1179)))) (-15 -1958 ((-1293) $)) (-15 -4301 ((-576) $))))) (T -1290)) -((-3270 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-3270 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-3894 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-3776 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-3776 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-1479 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-1479 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-2000 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-2000 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-1455 (*1 *1) (-5 *1 (-1290))) (-3401 (*1 *1 *1) (-5 *1 (-1290))) (-3401 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 (-227))) (-5 *3 (-1179)) (-5 *1 (-1290)))) (-3401 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 (-227))) (-5 *3 (-656 (-270))) (-5 *1 (-1290)))) (-3732 (*1 *2 *1) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-1290)))) (-3732 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-1290)))) (-2684 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-962 (-227))) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4420 (*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1290)))) (-4420 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1290)))) (-3396 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3153 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1357 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3212 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-783)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3411 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3411 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2131 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-1290)))) (-3411 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2131 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3411 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-576)) (-5 *4 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3411 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3411 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1486 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1542 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2258 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1709 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3880 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4106 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4106 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3652 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3652 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1877 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3618 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3272 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3622 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4030 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3722 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1832 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1998 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2667 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1361 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2700 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1382 (*1 *2 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1290)))) (-1382 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1290)))) (-1382 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1179)) (-5 *1 (-1290)))) (-1958 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4301 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1290))))) -(-13 (-1121) (-10 -8 (-15 -3270 ((-390))) (-15 -3270 ((-390) (-390))) (-15 -3894 ((-390))) (-15 -3894 ((-390) (-390))) (-15 -3776 ((-390))) (-15 -3776 ((-390) (-390))) (-15 -1479 ((-390))) (-15 -1479 ((-390) (-390))) (-15 -2000 ((-390))) (-15 -2000 ((-390) (-390))) (-15 -1455 ($)) (-15 -3401 ($ $)) (-15 -3401 ($ (-1154 (-227)) (-1179))) (-15 -3401 ($ (-1154 (-227)) (-656 (-270)))) (-15 -3732 ((-1154 (-227)) $)) (-15 -3732 ($ $ (-1154 (-227)))) (-15 -2684 ((-1293) $ (-783) (-962 (-227)))) (-15 -4420 ((-656 (-270)) $)) (-15 -4420 ($ $ (-656 (-270)))) (-15 -3396 ((-1293) $ (-783) (-783))) (-15 -3153 ((-1293) $ (-940) (-940))) (-15 -1357 ((-1293) $ (-1179))) (-15 -3212 ((-1293) $ (-783) (-783) (-940) (-940))) (-15 -3411 ((-1293) $ (-390) (-390) (-390) (-390) (-390))) (-15 -3411 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2131 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -3411 ((-1293) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2131 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3411 ((-1293) $ (-576) (-576) (-390) (-390) (-390))) (-15 -3411 ((-1293) $ (-390) (-390))) (-15 -3411 ((-1293) $ (-390) (-390) (-390))) (-15 -1486 ((-1293) $ (-1179))) (-15 -1542 ((-1293) $ (-1179))) (-15 -2258 ((-1293) $ (-1179))) (-15 -1709 ((-1293) $ (-1179))) (-15 -3880 ((-1293) $ (-1179))) (-15 -4106 ((-1293) $ (-390) (-390))) (-15 -4106 ((-1293) $ (-576) (-576))) (-15 -3652 ((-1293) $ (-390))) (-15 -3652 ((-1293) $ (-390) (-390) (-390))) (-15 -1877 ((-1293) $ (-390) (-390))) (-15 -3618 ((-1293) $ (-1179))) (-15 -3272 ((-1293) $ (-390))) (-15 -3622 ((-1293) $ (-390))) (-15 -4030 ((-1293) $ (-1179))) (-15 -3722 ((-1293) $ (-1179))) (-15 -1832 ((-1293) $ (-1179))) (-15 -1998 ((-1293) $ (-390) (-390) (-390))) (-15 -2667 ((-1293) $ (-390))) (-15 -1361 ((-1293) $)) (-15 -2700 ((-1293) $ (-158) (-158))) (-15 -1382 ((-1179) $ (-1179))) (-15 -1382 ((-1179) $ (-1179) (-1179))) (-15 -1382 ((-1179) $ (-1179) (-656 (-1179)))) (-15 -1958 ((-1293) $)) (-15 -4301 ((-576) $)))) -((-2469 (((-656 (-1179)) (-656 (-1179))) 104) (((-656 (-1179))) 96)) (-3205 (((-656 (-1179))) 94)) (-4159 (((-656 (-940)) (-656 (-940))) 69) (((-656 (-940))) 64)) (-3630 (((-656 (-783)) (-656 (-783))) 61) (((-656 (-783))) 55)) (-3530 (((-1293)) 71)) (-1868 (((-940) (-940)) 87) (((-940)) 86)) (-3741 (((-940) (-940)) 85) (((-940)) 84)) (-3942 (((-888) (-888)) 81) (((-888)) 80)) (-1878 (((-227)) 91) (((-227) (-390)) 93)) (-2400 (((-940)) 88) (((-940) (-940)) 89)) (-3822 (((-940) (-940)) 83) (((-940)) 82)) (-3116 (((-888) (-888)) 75) (((-888)) 73)) (-4264 (((-888) (-888)) 77) (((-888)) 76)) (-2303 (((-888) (-888)) 79) (((-888)) 78))) -(((-1291) (-10 -7 (-15 -3116 ((-888))) (-15 -3116 ((-888) (-888))) (-15 -4264 ((-888))) (-15 -4264 ((-888) (-888))) (-15 -2303 ((-888))) (-15 -2303 ((-888) (-888))) (-15 -3942 ((-888))) (-15 -3942 ((-888) (-888))) (-15 -3822 ((-940))) (-15 -3822 ((-940) (-940))) (-15 -3630 ((-656 (-783)))) (-15 -3630 ((-656 (-783)) (-656 (-783)))) (-15 -4159 ((-656 (-940)))) (-15 -4159 ((-656 (-940)) (-656 (-940)))) (-15 -3530 ((-1293))) (-15 -2469 ((-656 (-1179)))) (-15 -2469 ((-656 (-1179)) (-656 (-1179)))) (-15 -3205 ((-656 (-1179)))) (-15 -3741 ((-940))) (-15 -1868 ((-940))) (-15 -3741 ((-940) (-940))) (-15 -1868 ((-940) (-940))) (-15 -2400 ((-940) (-940))) (-15 -2400 ((-940))) (-15 -1878 ((-227) (-390))) (-15 -1878 ((-227))))) (T -1291)) -((-1878 (*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1291)))) (-1878 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-1291)))) (-2400 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-2400 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-1868 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-3741 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-1868 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-3741 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-3205 (*1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1291)))) (-2469 (*1 *2 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1291)))) (-2469 (*1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1291)))) (-3530 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4159 (*1 *2 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1291)))) (-4159 (*1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1291)))) (-3630 (*1 *2 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1291)))) (-3630 (*1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1291)))) (-3822 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-3822 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-3942 (*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-3942 (*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-2303 (*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-2303 (*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-4264 (*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-4264 (*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-3116 (*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-3116 (*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291))))) -(-10 -7 (-15 -3116 ((-888))) (-15 -3116 ((-888) (-888))) (-15 -4264 ((-888))) (-15 -4264 ((-888) (-888))) (-15 -2303 ((-888))) (-15 -2303 ((-888) (-888))) (-15 -3942 ((-888))) (-15 -3942 ((-888) (-888))) (-15 -3822 ((-940))) (-15 -3822 ((-940) (-940))) (-15 -3630 ((-656 (-783)))) (-15 -3630 ((-656 (-783)) (-656 (-783)))) (-15 -4159 ((-656 (-940)))) (-15 -4159 ((-656 (-940)) (-656 (-940)))) (-15 -3530 ((-1293))) (-15 -2469 ((-656 (-1179)))) (-15 -2469 ((-656 (-1179)) (-656 (-1179)))) (-15 -3205 ((-656 (-1179)))) (-15 -3741 ((-940))) (-15 -1868 ((-940))) (-15 -3741 ((-940) (-940))) (-15 -1868 ((-940) (-940))) (-15 -2400 ((-940) (-940))) (-15 -2400 ((-940))) (-15 -1878 ((-227) (-390))) (-15 -1878 ((-227)))) -((-3519 (((-480) (-656 (-656 (-962 (-227)))) (-656 (-270))) 22) (((-480) (-656 (-656 (-962 (-227))))) 21) (((-480) (-656 (-656 (-962 (-227)))) (-888) (-888) (-940) (-656 (-270))) 20)) (-3024 (((-1289) (-656 (-656 (-962 (-227)))) (-656 (-270))) 30) (((-1289) (-656 (-656 (-962 (-227)))) (-888) (-888) (-940) (-656 (-270))) 29)) (-3570 (((-1289) (-480)) 46))) -(((-1292) (-10 -7 (-15 -3519 ((-480) (-656 (-656 (-962 (-227)))) (-888) (-888) (-940) (-656 (-270)))) (-15 -3519 ((-480) (-656 (-656 (-962 (-227)))))) (-15 -3519 ((-480) (-656 (-656 (-962 (-227)))) (-656 (-270)))) (-15 -3024 ((-1289) (-656 (-656 (-962 (-227)))) (-888) (-888) (-940) (-656 (-270)))) (-15 -3024 ((-1289) (-656 (-656 (-962 (-227)))) (-656 (-270)))) (-15 -3570 ((-1289) (-480))))) (T -1292)) -((-3570 (*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1289)) (-5 *1 (-1292)))) (-3024 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-1292)))) (-3024 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-888)) (-5 *5 (-940)) (-5 *6 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-1292)))) (-3519 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1292)))) (-3519 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *2 (-480)) (-5 *1 (-1292)))) (-3519 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-888)) (-5 *5 (-940)) (-5 *6 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1292))))) -(-10 -7 (-15 -3519 ((-480) (-656 (-656 (-962 (-227)))) (-888) (-888) (-940) (-656 (-270)))) (-15 -3519 ((-480) (-656 (-656 (-962 (-227)))))) (-15 -3519 ((-480) (-656 (-656 (-962 (-227)))) (-656 (-270)))) (-15 -3024 ((-1289) (-656 (-656 (-962 (-227)))) (-888) (-888) (-940) (-656 (-270)))) (-15 -3024 ((-1289) (-656 (-656 (-962 (-227)))) (-656 (-270)))) (-15 -3570 ((-1289) (-480)))) -((-2917 (($) 6)) (-3570 (((-876) $) 9))) -(((-1293) (-13 (-625 (-876)) (-10 -8 (-15 -2917 ($))))) (T -1293)) -((-2917 (*1 *1) (-5 *1 (-1293)))) -(-13 (-625 (-876)) (-10 -8 (-15 -2917 ($)))) -((-3057 (($ $ |#2|) 10))) -(((-1294 |#1| |#2|) (-10 -8 (-15 -3057 (|#1| |#1| |#2|))) (-1295 |#2|) (-374)) (T -1294)) -NIL -(-10 -8 (-15 -3057 (|#1| |#1| |#2|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2003 (((-135)) 33)) (-3570 (((-876) $) 12)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2925 (((-112) $ $) 8)) (-3057 (($ $ |#1|) 34)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +((-3029 (*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-25)))) (-3831 (*1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1286 *3)) (-4 *3 (-23)) (-4 *3 (-1238)))) (-3043 (*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-21)))) (-3043 (*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-1286 *3)) (-4 *3 (-1238)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-738)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-738)))) (-4099 (*1 *2 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1070)))) (-2355 (*1 *2 *1 *1) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-1238)) (-4 *3 (-1070)) (-5 *2 (-701 *3)))) (-2365 (*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1070)))) (-2435 (*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1023)) (-4 *2 (-1070)))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1023)) (-4 *2 (-1070))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3029 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3831 ($ (-783))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3043 ($ $)) (-15 -3043 ($ $ $)) (-15 * ($ (-576) $))) |%noBranch|) (IF (|has| |t#1| (-738)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1070)) (PROGN (-15 -4099 (|t#1| $ $)) (-15 -2355 ((-701 |t#1|) $ $)) (-15 -2365 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1023)) (IF (|has| |t#1| (-1070)) (PROGN (-15 -2435 (|t#1| $)) (-15 -3781 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-102) -2759 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-625 (-876)) -2759 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-19 |#1|) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1121) -2759 (|has| |#1| (-1121)) (|has| |#1| (-861))) ((-1238) . T)) +((-3120 (((-1288 |#2|) (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|) 13)) (-3685 ((|#2| (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|) 15)) (-4116 (((-3 (-1288 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1288 |#1|)) 30) (((-1288 |#2|) (-1 |#2| |#1|) (-1288 |#1|)) 18))) +(((-1287 |#1| |#2|) (-10 -7 (-15 -3120 ((-1288 |#2|) (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|)) (-15 -3685 (|#2| (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|)) (-15 -4116 ((-1288 |#2|) (-1 |#2| |#1|) (-1288 |#1|))) (-15 -4116 ((-3 (-1288 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1288 |#1|)))) (-1238) (-1238)) (T -1287)) +((-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1288 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1288 *6)) (-5 *1 (-1287 *5 *6)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1288 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1288 *6)) (-5 *1 (-1287 *5 *6)))) (-3685 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1288 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-1287 *5 *2)))) (-3120 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1288 *6)) (-4 *6 (-1238)) (-4 *5 (-1238)) (-5 *2 (-1288 *5)) (-5 *1 (-1287 *6 *5))))) +(-10 -7 (-15 -3120 ((-1288 |#2|) (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|)) (-15 -3685 (|#2| (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|)) (-15 -4116 ((-1288 |#2|) (-1 |#2| |#1|) (-1288 |#1|))) (-15 -4116 ((-3 (-1288 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1288 |#1|)))) +((-3488 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3831 (($ (-783)) NIL (|has| |#1| (-23)))) (-2761 (($ (-656 |#1|)) 11)) (-1512 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-1390 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-3039 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861))))) (-1795 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-4264 (((-112) $ (-783)) NIL)) (-3755 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465)))) (-1974 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3404 (($) NIL T CONST)) (-3092 (($ $) NIL (|has| $ (-6 -4465)))) (-3835 (($ $) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3945 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3685 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-4332 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-4272 ((|#1| $ (-576)) NIL)) (-3659 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-3965 (((-656 |#1|) $) 16 (|has| $ (-6 -4464)))) (-2355 (((-701 |#1|) $ $) NIL (|has| |#1| (-1070)))) (-4140 (($ (-783) |#1|) NIL)) (-1368 (((-112) $ (-783)) NIL)) (-3281 (((-576) $) NIL (|has| (-576) (-861)))) (-3124 (($ $ $) NIL (|has| |#1| (-861)))) (-2185 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2425 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2885 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4280 (((-576) $) 12 (|has| (-576) (-861)))) (-1441 (($ $ $) NIL (|has| |#1| (-861)))) (-4326 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3781 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))))) (-2883 (((-112) $ (-783)) NIL)) (-2435 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))))) (-2046 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2176 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3669 (((-656 (-576)) $) NIL)) (-3090 (((-112) (-576) $) NIL)) (-1450 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3580 ((|#1| $) NIL (|has| (-576) (-861)))) (-3434 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2304 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-3252 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-2252 (((-112) $ $) NIL)) (-4282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3207 (((-656 |#1|) $) NIL)) (-2940 (((-112) $) NIL)) (-3579 (($) NIL)) (-2796 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-4099 ((|#1| $ $) NIL (|has| |#1| (-1070)))) (-3465 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-2365 (($ $ $) NIL (|has| |#1| (-1070)))) (-1460 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2840 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) 20 (|has| |#1| (-626 (-548))))) (-3581 (($ (-656 |#1|)) 10)) (-1615 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3569 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2399 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2708 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2962 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2924 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2949 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3043 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3029 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1288 |#1|) (-13 (-1286 |#1|) (-10 -8 (-15 -2761 ($ (-656 |#1|))))) (-1238)) (T -1288)) +((-2761 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-1288 *3))))) +(-13 (-1286 |#1|) (-10 -8 (-15 -2761 ($ (-656 |#1|))))) +((-3488 (((-112) $ $) NIL)) (-1382 (((-1179) $ (-1179)) 107) (((-1179) $ (-1179) (-1179)) 105) (((-1179) $ (-1179) (-656 (-1179))) 104)) (-2740 (($) 69)) (-3604 (((-1293) $ (-480) (-940)) 54)) (-2328 (((-1293) $ (-940) (-1179)) 89) (((-1293) $ (-940) (-888)) 90)) (-1878 (((-1293) $ (-940) (-390) (-390)) 57)) (-1357 (((-1293) $ (-1179)) 84)) (-2187 (((-1293) $ (-940) (-1179)) 94)) (-4222 (((-1293) $ (-940) (-390) (-390)) 58)) (-1596 (((-1293) $ (-940) (-940)) 55)) (-1361 (((-1293) $) 85)) (-3920 (((-1293) $ (-940) (-1179)) 93)) (-2781 (((-1293) $ (-480) (-940)) 41)) (-4147 (((-1293) $ (-940) (-1179)) 92)) (-4419 (((-656 (-270)) $) 29) (($ $ (-656 (-270))) 30)) (-2240 (((-1293) $ (-783) (-783)) 52)) (-2778 (($ $) 70) (($ (-480) (-656 (-270))) 71)) (-2046 (((-1179) $) NIL)) (-4300 (((-576) $) 48)) (-1450 (((-1141) $) NIL)) (-2639 (((-1288 (-3 (-480) "undefined")) $) 47)) (-1906 (((-1288 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -4147 (-576)) (|:| -1620 (-576)) (|:| |spline| (-576)) (|:| -3447 (-576)) (|:| |axesColor| (-888)) (|:| -2328 (-576)) (|:| |unitsColor| (-888)) (|:| |showing| (-576)))) $) 46)) (-3167 (((-1293) $ (-940) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-888) (-576) (-888) (-576)) 83)) (-2987 (((-656 (-962 (-227))) $) NIL)) (-3578 (((-480) $ (-940)) 43)) (-4162 (((-1293) $ (-783) (-783) (-940) (-940)) 50)) (-4107 (((-1293) $ (-1179)) 95)) (-1620 (((-1293) $ (-940) (-1179)) 91)) (-3569 (((-876) $) 102)) (-1958 (((-1293) $) 96)) (-2399 (((-112) $ $) NIL)) (-3447 (((-1293) $ (-940) (-1179)) 87) (((-1293) $ (-940) (-888)) 88)) (-2924 (((-112) $ $) NIL))) +(((-1289) (-13 (-1121) (-10 -8 (-15 -2987 ((-656 (-962 (-227))) $)) (-15 -2740 ($)) (-15 -2778 ($ $)) (-15 -4419 ((-656 (-270)) $)) (-15 -4419 ($ $ (-656 (-270)))) (-15 -2778 ($ (-480) (-656 (-270)))) (-15 -3167 ((-1293) $ (-940) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-888) (-576) (-888) (-576))) (-15 -1906 ((-1288 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -4147 (-576)) (|:| -1620 (-576)) (|:| |spline| (-576)) (|:| -3447 (-576)) (|:| |axesColor| (-888)) (|:| -2328 (-576)) (|:| |unitsColor| (-888)) (|:| |showing| (-576)))) $)) (-15 -2639 ((-1288 (-3 (-480) "undefined")) $)) (-15 -1357 ((-1293) $ (-1179))) (-15 -2781 ((-1293) $ (-480) (-940))) (-15 -3578 ((-480) $ (-940))) (-15 -3447 ((-1293) $ (-940) (-1179))) (-15 -3447 ((-1293) $ (-940) (-888))) (-15 -2328 ((-1293) $ (-940) (-1179))) (-15 -2328 ((-1293) $ (-940) (-888))) (-15 -4147 ((-1293) $ (-940) (-1179))) (-15 -3920 ((-1293) $ (-940) (-1179))) (-15 -1620 ((-1293) $ (-940) (-1179))) (-15 -4107 ((-1293) $ (-1179))) (-15 -1958 ((-1293) $)) (-15 -4162 ((-1293) $ (-783) (-783) (-940) (-940))) (-15 -4222 ((-1293) $ (-940) (-390) (-390))) (-15 -1878 ((-1293) $ (-940) (-390) (-390))) (-15 -2187 ((-1293) $ (-940) (-1179))) (-15 -2240 ((-1293) $ (-783) (-783))) (-15 -3604 ((-1293) $ (-480) (-940))) (-15 -1596 ((-1293) $ (-940) (-940))) (-15 -1382 ((-1179) $ (-1179))) (-15 -1382 ((-1179) $ (-1179) (-1179))) (-15 -1382 ((-1179) $ (-1179) (-656 (-1179)))) (-15 -1361 ((-1293) $)) (-15 -4300 ((-576) $)) (-15 -3569 ((-876) $))))) (T -1289)) +((-3569 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-1289)))) (-2987 (*1 *2 *1) (-12 (-5 *2 (-656 (-962 (-227)))) (-5 *1 (-1289)))) (-2740 (*1 *1) (-5 *1 (-1289))) (-2778 (*1 *1 *1) (-5 *1 (-1289))) (-4419 (*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1289)))) (-4419 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1289)))) (-2778 (*1 *1 *2 *3) (-12 (-5 *2 (-480)) (-5 *3 (-656 (-270))) (-5 *1 (-1289)))) (-3167 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-940)) (-5 *4 (-227)) (-5 *5 (-576)) (-5 *6 (-888)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-1906 (*1 *2 *1) (-12 (-5 *2 (-1288 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -4147 (-576)) (|:| -1620 (-576)) (|:| |spline| (-576)) (|:| -3447 (-576)) (|:| |axesColor| (-888)) (|:| -2328 (-576)) (|:| |unitsColor| (-888)) (|:| |showing| (-576))))) (-5 *1 (-1289)))) (-2639 (*1 *2 *1) (-12 (-5 *2 (-1288 (-3 (-480) "undefined"))) (-5 *1 (-1289)))) (-1357 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-2781 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-3578 (*1 *2 *1 *3) (-12 (-5 *3 (-940)) (-5 *2 (-480)) (-5 *1 (-1289)))) (-3447 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-3447 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-888)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-2328 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-2328 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-888)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-4147 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-3920 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-1620 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-4107 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-1958 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1289)))) (-4162 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-783)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-4222 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-940)) (-5 *4 (-390)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-1878 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-940)) (-5 *4 (-390)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-2187 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-2240 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-3604 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-1596 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-1382 (*1 *2 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1289)))) (-1382 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1289)))) (-1382 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1179)) (-5 *1 (-1289)))) (-1361 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1289)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1289))))) +(-13 (-1121) (-10 -8 (-15 -2987 ((-656 (-962 (-227))) $)) (-15 -2740 ($)) (-15 -2778 ($ $)) (-15 -4419 ((-656 (-270)) $)) (-15 -4419 ($ $ (-656 (-270)))) (-15 -2778 ($ (-480) (-656 (-270)))) (-15 -3167 ((-1293) $ (-940) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-888) (-576) (-888) (-576))) (-15 -1906 ((-1288 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -4147 (-576)) (|:| -1620 (-576)) (|:| |spline| (-576)) (|:| -3447 (-576)) (|:| |axesColor| (-888)) (|:| -2328 (-576)) (|:| |unitsColor| (-888)) (|:| |showing| (-576)))) $)) (-15 -2639 ((-1288 (-3 (-480) "undefined")) $)) (-15 -1357 ((-1293) $ (-1179))) (-15 -2781 ((-1293) $ (-480) (-940))) (-15 -3578 ((-480) $ (-940))) (-15 -3447 ((-1293) $ (-940) (-1179))) (-15 -3447 ((-1293) $ (-940) (-888))) (-15 -2328 ((-1293) $ (-940) (-1179))) (-15 -2328 ((-1293) $ (-940) (-888))) (-15 -4147 ((-1293) $ (-940) (-1179))) (-15 -3920 ((-1293) $ (-940) (-1179))) (-15 -1620 ((-1293) $ (-940) (-1179))) (-15 -4107 ((-1293) $ (-1179))) (-15 -1958 ((-1293) $)) (-15 -4162 ((-1293) $ (-783) (-783) (-940) (-940))) (-15 -4222 ((-1293) $ (-940) (-390) (-390))) (-15 -1878 ((-1293) $ (-940) (-390) (-390))) (-15 -2187 ((-1293) $ (-940) (-1179))) (-15 -2240 ((-1293) $ (-783) (-783))) (-15 -3604 ((-1293) $ (-480) (-940))) (-15 -1596 ((-1293) $ (-940) (-940))) (-15 -1382 ((-1179) $ (-1179))) (-15 -1382 ((-1179) $ (-1179) (-1179))) (-15 -1382 ((-1179) $ (-1179) (-656 (-1179)))) (-15 -1361 ((-1293) $)) (-15 -4300 ((-576) $)) (-15 -3569 ((-876) $)))) +((-3488 (((-112) $ $) NIL)) (-2856 (((-1293) $ (-390)) 169) (((-1293) $ (-390) (-390) (-390)) 170)) (-1382 (((-1179) $ (-1179)) 179) (((-1179) $ (-1179) (-1179)) 177) (((-1179) $ (-1179) (-656 (-1179))) 176)) (-2434 (($) 67)) (-2387 (((-1293) $ (-390) (-390) (-390) (-390) (-390)) 141) (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4222 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $) 139) (((-1293) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4222 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 140) (((-1293) $ (-576) (-576) (-390) (-390) (-390)) 144) (((-1293) $ (-390) (-390)) 145) (((-1293) $ (-390) (-390) (-390)) 152)) (-1638 (((-390)) 122) (((-390) (-390)) 123)) (-3485 (((-390)) 117) (((-390) (-390)) 119)) (-3487 (((-390)) 120) (((-390) (-390)) 121)) (-2297 (((-390)) 126) (((-390) (-390)) 127)) (-4044 (((-390)) 124) (((-390) (-390)) 125)) (-1878 (((-1293) $ (-390) (-390)) 171)) (-1357 (((-1293) $ (-1179)) 153)) (-2404 (((-1154 (-227)) $) 68) (($ $ (-1154 (-227))) 69)) (-2175 (((-1293) $ (-1179)) 187)) (-2299 (((-1293) $ (-1179)) 188)) (-1698 (((-1293) $ (-390) (-390)) 151) (((-1293) $ (-576) (-576)) 168)) (-1596 (((-1293) $ (-940) (-940)) 160)) (-1361 (((-1293) $) 137)) (-3819 (((-1293) $ (-1179)) 186)) (-1379 (((-1293) $ (-1179)) 134)) (-4419 (((-656 (-270)) $) 70) (($ $ (-656 (-270))) 71)) (-2240 (((-1293) $ (-783) (-783)) 159)) (-1598 (((-1293) $ (-783) (-962 (-227))) 193)) (-2293 (($ $) 73) (($ (-1154 (-227)) (-1179)) 74) (($ (-1154 (-227)) (-656 (-270))) 75)) (-2277 (((-1293) $ (-390) (-390) (-390)) 131)) (-2046 (((-1179) $) NIL)) (-4300 (((-576) $) 128)) (-2642 (((-1293) $ (-390)) 174)) (-3867 (((-1293) $ (-390)) 191)) (-1450 (((-1141) $) NIL)) (-3512 (((-1293) $ (-390)) 190)) (-1455 (((-1293) $ (-1179)) 136)) (-4162 (((-1293) $ (-783) (-783) (-940) (-940)) 158)) (-2939 (((-1293) $ (-1179)) 133)) (-4107 (((-1293) $ (-1179)) 135)) (-1741 (((-1293) $ (-158) (-158)) 157)) (-3569 (((-876) $) 166)) (-1958 (((-1293) $) 138)) (-3263 (((-1293) $ (-1179)) 189)) (-2399 (((-112) $ $) NIL)) (-3447 (((-1293) $ (-1179)) 132)) (-2924 (((-112) $ $) NIL))) +(((-1290) (-13 (-1121) (-10 -8 (-15 -3485 ((-390))) (-15 -3485 ((-390) (-390))) (-15 -3487 ((-390))) (-15 -3487 ((-390) (-390))) (-15 -1638 ((-390))) (-15 -1638 ((-390) (-390))) (-15 -4044 ((-390))) (-15 -4044 ((-390) (-390))) (-15 -2297 ((-390))) (-15 -2297 ((-390) (-390))) (-15 -2434 ($)) (-15 -2293 ($ $)) (-15 -2293 ($ (-1154 (-227)) (-1179))) (-15 -2293 ($ (-1154 (-227)) (-656 (-270)))) (-15 -2404 ((-1154 (-227)) $)) (-15 -2404 ($ $ (-1154 (-227)))) (-15 -1598 ((-1293) $ (-783) (-962 (-227)))) (-15 -4419 ((-656 (-270)) $)) (-15 -4419 ($ $ (-656 (-270)))) (-15 -2240 ((-1293) $ (-783) (-783))) (-15 -1596 ((-1293) $ (-940) (-940))) (-15 -1357 ((-1293) $ (-1179))) (-15 -4162 ((-1293) $ (-783) (-783) (-940) (-940))) (-15 -2387 ((-1293) $ (-390) (-390) (-390) (-390) (-390))) (-15 -2387 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4222 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -2387 ((-1293) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4222 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2387 ((-1293) $ (-576) (-576) (-390) (-390) (-390))) (-15 -2387 ((-1293) $ (-390) (-390))) (-15 -2387 ((-1293) $ (-390) (-390) (-390))) (-15 -4107 ((-1293) $ (-1179))) (-15 -3447 ((-1293) $ (-1179))) (-15 -2939 ((-1293) $ (-1179))) (-15 -1379 ((-1293) $ (-1179))) (-15 -1455 ((-1293) $ (-1179))) (-15 -1698 ((-1293) $ (-390) (-390))) (-15 -1698 ((-1293) $ (-576) (-576))) (-15 -2856 ((-1293) $ (-390))) (-15 -2856 ((-1293) $ (-390) (-390) (-390))) (-15 -1878 ((-1293) $ (-390) (-390))) (-15 -3819 ((-1293) $ (-1179))) (-15 -3512 ((-1293) $ (-390))) (-15 -3867 ((-1293) $ (-390))) (-15 -2175 ((-1293) $ (-1179))) (-15 -2299 ((-1293) $ (-1179))) (-15 -3263 ((-1293) $ (-1179))) (-15 -2277 ((-1293) $ (-390) (-390) (-390))) (-15 -2642 ((-1293) $ (-390))) (-15 -1361 ((-1293) $)) (-15 -1741 ((-1293) $ (-158) (-158))) (-15 -1382 ((-1179) $ (-1179))) (-15 -1382 ((-1179) $ (-1179) (-1179))) (-15 -1382 ((-1179) $ (-1179) (-656 (-1179)))) (-15 -1958 ((-1293) $)) (-15 -4300 ((-576) $))))) (T -1290)) +((-3485 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-3487 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-1638 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-1638 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-4044 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-4044 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-2297 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-2297 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-2434 (*1 *1) (-5 *1 (-1290))) (-2293 (*1 *1 *1) (-5 *1 (-1290))) (-2293 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 (-227))) (-5 *3 (-1179)) (-5 *1 (-1290)))) (-2293 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 (-227))) (-5 *3 (-656 (-270))) (-5 *1 (-1290)))) (-2404 (*1 *2 *1) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-1290)))) (-2404 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-1290)))) (-1598 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-962 (-227))) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4419 (*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1290)))) (-4419 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1290)))) (-2240 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1596 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1357 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4162 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-783)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2387 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2387 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4222 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-1290)))) (-2387 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4222 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2387 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-576)) (-5 *4 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2387 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2387 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4107 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3447 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2939 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1379 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1455 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1698 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1698 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2856 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2856 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1878 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3819 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3512 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3867 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2175 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3263 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2277 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2642 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1361 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1741 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1382 (*1 *2 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1290)))) (-1382 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1290)))) (-1382 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1179)) (-5 *1 (-1290)))) (-1958 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1290))))) +(-13 (-1121) (-10 -8 (-15 -3485 ((-390))) (-15 -3485 ((-390) (-390))) (-15 -3487 ((-390))) (-15 -3487 ((-390) (-390))) (-15 -1638 ((-390))) (-15 -1638 ((-390) (-390))) (-15 -4044 ((-390))) (-15 -4044 ((-390) (-390))) (-15 -2297 ((-390))) (-15 -2297 ((-390) (-390))) (-15 -2434 ($)) (-15 -2293 ($ $)) (-15 -2293 ($ (-1154 (-227)) (-1179))) (-15 -2293 ($ (-1154 (-227)) (-656 (-270)))) (-15 -2404 ((-1154 (-227)) $)) (-15 -2404 ($ $ (-1154 (-227)))) (-15 -1598 ((-1293) $ (-783) (-962 (-227)))) (-15 -4419 ((-656 (-270)) $)) (-15 -4419 ($ $ (-656 (-270)))) (-15 -2240 ((-1293) $ (-783) (-783))) (-15 -1596 ((-1293) $ (-940) (-940))) (-15 -1357 ((-1293) $ (-1179))) (-15 -4162 ((-1293) $ (-783) (-783) (-940) (-940))) (-15 -2387 ((-1293) $ (-390) (-390) (-390) (-390) (-390))) (-15 -2387 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4222 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -2387 ((-1293) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4222 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2387 ((-1293) $ (-576) (-576) (-390) (-390) (-390))) (-15 -2387 ((-1293) $ (-390) (-390))) (-15 -2387 ((-1293) $ (-390) (-390) (-390))) (-15 -4107 ((-1293) $ (-1179))) (-15 -3447 ((-1293) $ (-1179))) (-15 -2939 ((-1293) $ (-1179))) (-15 -1379 ((-1293) $ (-1179))) (-15 -1455 ((-1293) $ (-1179))) (-15 -1698 ((-1293) $ (-390) (-390))) (-15 -1698 ((-1293) $ (-576) (-576))) (-15 -2856 ((-1293) $ (-390))) (-15 -2856 ((-1293) $ (-390) (-390) (-390))) (-15 -1878 ((-1293) $ (-390) (-390))) (-15 -3819 ((-1293) $ (-1179))) (-15 -3512 ((-1293) $ (-390))) (-15 -3867 ((-1293) $ (-390))) (-15 -2175 ((-1293) $ (-1179))) (-15 -2299 ((-1293) $ (-1179))) (-15 -3263 ((-1293) $ (-1179))) (-15 -2277 ((-1293) $ (-390) (-390) (-390))) (-15 -2642 ((-1293) $ (-390))) (-15 -1361 ((-1293) $)) (-15 -1741 ((-1293) $ (-158) (-158))) (-15 -1382 ((-1179) $ (-1179))) (-15 -1382 ((-1179) $ (-1179) (-1179))) (-15 -1382 ((-1179) $ (-1179) (-656 (-1179)))) (-15 -1958 ((-1293) $)) (-15 -4300 ((-576) $)))) +((-1362 (((-656 (-1179)) (-656 (-1179))) 104) (((-656 (-1179))) 96)) (-4090 (((-656 (-1179))) 94)) (-4170 (((-656 (-940)) (-656 (-940))) 69) (((-656 (-940))) 64)) (-3953 (((-656 (-783)) (-656 (-783))) 61) (((-656 (-783))) 55)) (-4216 (((-1293)) 71)) (-3588 (((-940) (-940)) 87) (((-940)) 86)) (-2492 (((-940) (-940)) 85) (((-940)) 84)) (-3959 (((-888) (-888)) 81) (((-888)) 80)) (-3666 (((-227)) 91) (((-227) (-390)) 93)) (-1851 (((-940)) 88) (((-940) (-940)) 89)) (-4081 (((-940) (-940)) 83) (((-940)) 82)) (-2458 (((-888) (-888)) 75) (((-888)) 73)) (-3988 (((-888) (-888)) 77) (((-888)) 76)) (-2162 (((-888) (-888)) 79) (((-888)) 78))) +(((-1291) (-10 -7 (-15 -2458 ((-888))) (-15 -2458 ((-888) (-888))) (-15 -3988 ((-888))) (-15 -3988 ((-888) (-888))) (-15 -2162 ((-888))) (-15 -2162 ((-888) (-888))) (-15 -3959 ((-888))) (-15 -3959 ((-888) (-888))) (-15 -4081 ((-940))) (-15 -4081 ((-940) (-940))) (-15 -3953 ((-656 (-783)))) (-15 -3953 ((-656 (-783)) (-656 (-783)))) (-15 -4170 ((-656 (-940)))) (-15 -4170 ((-656 (-940)) (-656 (-940)))) (-15 -4216 ((-1293))) (-15 -1362 ((-656 (-1179)))) (-15 -1362 ((-656 (-1179)) (-656 (-1179)))) (-15 -4090 ((-656 (-1179)))) (-15 -2492 ((-940))) (-15 -3588 ((-940))) (-15 -2492 ((-940) (-940))) (-15 -3588 ((-940) (-940))) (-15 -1851 ((-940) (-940))) (-15 -1851 ((-940))) (-15 -3666 ((-227) (-390))) (-15 -3666 ((-227))))) (T -1291)) +((-3666 (*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1291)))) (-3666 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-1291)))) (-1851 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-1851 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-3588 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-2492 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-3588 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-2492 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-4090 (*1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1291)))) (-1362 (*1 *2 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1291)))) (-1362 (*1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1291)))) (-4216 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4170 (*1 *2 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1291)))) (-4170 (*1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1291)))) (-3953 (*1 *2 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1291)))) (-3953 (*1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1291)))) (-4081 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-4081 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-3959 (*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-3959 (*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-2162 (*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-2162 (*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-3988 (*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-3988 (*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-2458 (*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-2458 (*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291))))) +(-10 -7 (-15 -2458 ((-888))) (-15 -2458 ((-888) (-888))) (-15 -3988 ((-888))) (-15 -3988 ((-888) (-888))) (-15 -2162 ((-888))) (-15 -2162 ((-888) (-888))) (-15 -3959 ((-888))) (-15 -3959 ((-888) (-888))) (-15 -4081 ((-940))) (-15 -4081 ((-940) (-940))) (-15 -3953 ((-656 (-783)))) (-15 -3953 ((-656 (-783)) (-656 (-783)))) (-15 -4170 ((-656 (-940)))) (-15 -4170 ((-656 (-940)) (-656 (-940)))) (-15 -4216 ((-1293))) (-15 -1362 ((-656 (-1179)))) (-15 -1362 ((-656 (-1179)) (-656 (-1179)))) (-15 -4090 ((-656 (-1179)))) (-15 -2492 ((-940))) (-15 -3588 ((-940))) (-15 -2492 ((-940) (-940))) (-15 -3588 ((-940) (-940))) (-15 -1851 ((-940) (-940))) (-15 -1851 ((-940))) (-15 -3666 ((-227) (-390))) (-15 -3666 ((-227)))) +((-4114 (((-480) (-656 (-656 (-962 (-227)))) (-656 (-270))) 22) (((-480) (-656 (-656 (-962 (-227))))) 21) (((-480) (-656 (-656 (-962 (-227)))) (-888) (-888) (-940) (-656 (-270))) 20)) (-2828 (((-1289) (-656 (-656 (-962 (-227)))) (-656 (-270))) 30) (((-1289) (-656 (-656 (-962 (-227)))) (-888) (-888) (-940) (-656 (-270))) 29)) (-3569 (((-1289) (-480)) 46))) +(((-1292) (-10 -7 (-15 -4114 ((-480) (-656 (-656 (-962 (-227)))) (-888) (-888) (-940) (-656 (-270)))) (-15 -4114 ((-480) (-656 (-656 (-962 (-227)))))) (-15 -4114 ((-480) (-656 (-656 (-962 (-227)))) (-656 (-270)))) (-15 -2828 ((-1289) (-656 (-656 (-962 (-227)))) (-888) (-888) (-940) (-656 (-270)))) (-15 -2828 ((-1289) (-656 (-656 (-962 (-227)))) (-656 (-270)))) (-15 -3569 ((-1289) (-480))))) (T -1292)) +((-3569 (*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1289)) (-5 *1 (-1292)))) (-2828 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-1292)))) (-2828 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-888)) (-5 *5 (-940)) (-5 *6 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-1292)))) (-4114 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1292)))) (-4114 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *2 (-480)) (-5 *1 (-1292)))) (-4114 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-888)) (-5 *5 (-940)) (-5 *6 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1292))))) +(-10 -7 (-15 -4114 ((-480) (-656 (-656 (-962 (-227)))) (-888) (-888) (-940) (-656 (-270)))) (-15 -4114 ((-480) (-656 (-656 (-962 (-227)))))) (-15 -4114 ((-480) (-656 (-656 (-962 (-227)))) (-656 (-270)))) (-15 -2828 ((-1289) (-656 (-656 (-962 (-227)))) (-888) (-888) (-940) (-656 (-270)))) (-15 -2828 ((-1289) (-656 (-656 (-962 (-227)))) (-656 (-270)))) (-15 -3569 ((-1289) (-480)))) +((-2916 (($) 6)) (-3569 (((-876) $) 9))) +(((-1293) (-13 (-625 (-876)) (-10 -8 (-15 -2916 ($))))) (T -1293)) +((-2916 (*1 *1) (-5 *1 (-1293)))) +(-13 (-625 (-876)) (-10 -8 (-15 -2916 ($)))) +((-3056 (($ $ |#2|) 10))) +(((-1294 |#1| |#2|) (-10 -8 (-15 -3056 (|#1| |#1| |#2|))) (-1295 |#2|) (-374)) (T -1294)) +NIL +(-10 -8 (-15 -3056 (|#1| |#1| |#2|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2319 (((-135)) 33)) (-3569 (((-876) $) 12)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2924 (((-112) $ $) 8)) (-3056 (($ $ |#1|) 34)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) (((-1295 |#1|) (-141) (-374)) (T -1295)) -((-3057 (*1 *1 *1 *2) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-374)))) (-2003 (*1 *2) (-12 (-4 *1 (-1295 *3)) (-4 *3 (-374)) (-5 *2 (-135))))) -(-13 (-729 |t#1|) (-10 -8 (-15 -3057 ($ $ |t#1|)) (-15 -2003 ((-135))))) +((-3056 (*1 *1 *1 *2) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-374)))) (-2319 (*1 *2) (-12 (-4 *1 (-1295 *3)) (-4 *3 (-374)) (-5 *2 (-135))))) +(-13 (-729 |t#1|) (-10 -8 (-15 -3056 ($ $ |t#1|)) (-15 -2319 ((-135))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-4277 (((-656 (-1232 |#1|)) (-1197) (-1232 |#1|)) 83)) (-4324 (((-1178 (-1178 (-971 |#1|))) (-1197) (-1178 (-971 |#1|))) 63)) (-2270 (((-1 (-1178 (-1232 |#1|)) (-1178 (-1232 |#1|))) (-783) (-1232 |#1|) (-1178 (-1232 |#1|))) 74)) (-4161 (((-1 (-1178 (-971 |#1|)) (-1178 (-971 |#1|))) (-783)) 65)) (-2465 (((-1 (-1193 (-971 |#1|)) (-971 |#1|)) (-1197)) 32)) (-2144 (((-1 (-1178 (-971 |#1|)) (-1178 (-971 |#1|))) (-783)) 64))) -(((-1296 |#1|) (-10 -7 (-15 -4161 ((-1 (-1178 (-971 |#1|)) (-1178 (-971 |#1|))) (-783))) (-15 -2144 ((-1 (-1178 (-971 |#1|)) (-1178 (-971 |#1|))) (-783))) (-15 -4324 ((-1178 (-1178 (-971 |#1|))) (-1197) (-1178 (-971 |#1|)))) (-15 -2465 ((-1 (-1193 (-971 |#1|)) (-971 |#1|)) (-1197))) (-15 -4277 ((-656 (-1232 |#1|)) (-1197) (-1232 |#1|))) (-15 -2270 ((-1 (-1178 (-1232 |#1|)) (-1178 (-1232 |#1|))) (-783) (-1232 |#1|) (-1178 (-1232 |#1|))))) (-374)) (T -1296)) -((-2270 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-783)) (-4 *6 (-374)) (-5 *4 (-1232 *6)) (-5 *2 (-1 (-1178 *4) (-1178 *4))) (-5 *1 (-1296 *6)) (-5 *5 (-1178 *4)))) (-4277 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-4 *5 (-374)) (-5 *2 (-656 (-1232 *5))) (-5 *1 (-1296 *5)) (-5 *4 (-1232 *5)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1 (-1193 (-971 *4)) (-971 *4))) (-5 *1 (-1296 *4)) (-4 *4 (-374)))) (-4324 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-4 *5 (-374)) (-5 *2 (-1178 (-1178 (-971 *5)))) (-5 *1 (-1296 *5)) (-5 *4 (-1178 (-971 *5))))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1178 (-971 *4)) (-1178 (-971 *4)))) (-5 *1 (-1296 *4)) (-4 *4 (-374)))) (-4161 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1178 (-971 *4)) (-1178 (-971 *4)))) (-5 *1 (-1296 *4)) (-4 *4 (-374))))) -(-10 -7 (-15 -4161 ((-1 (-1178 (-971 |#1|)) (-1178 (-971 |#1|))) (-783))) (-15 -2144 ((-1 (-1178 (-971 |#1|)) (-1178 (-971 |#1|))) (-783))) (-15 -4324 ((-1178 (-1178 (-971 |#1|))) (-1197) (-1178 (-971 |#1|)))) (-15 -2465 ((-1 (-1193 (-971 |#1|)) (-971 |#1|)) (-1197))) (-15 -4277 ((-656 (-1232 |#1|)) (-1197) (-1232 |#1|))) (-15 -2270 ((-1 (-1178 (-1232 |#1|)) (-1178 (-1232 |#1|))) (-783) (-1232 |#1|) (-1178 (-1232 |#1|))))) -((-1908 (((-2 (|:| -1593 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|) 80)) (-3573 (((-2 (|:| -1593 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) 79))) -(((-1297 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3573 ((-2 (|:| -1593 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -1908 ((-2 (|:| -1593 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|))) (-360) (-1264 |#1|) (-1264 |#2|) (-421 |#2| |#3|)) (T -1297)) -((-1908 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 *3)) (-5 *2 (-2 (|:| -1593 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-1297 *4 *3 *5 *6)) (-4 *6 (-421 *3 *5)))) (-3573 (*1 *2) (-12 (-4 *3 (-360)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| -1593 (-701 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-701 *4)))) (-5 *1 (-1297 *3 *4 *5 *6)) (-4 *6 (-421 *4 *5))))) -(-10 -7 (-15 -3573 ((-2 (|:| -1593 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -1908 ((-2 (|:| -1593 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|))) -((-3489 (((-112) $ $) NIL)) (-1845 (((-1156) $) 11)) (-1517 (((-1156) $) 9)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 17) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-1298) (-13 (-1104) (-10 -8 (-15 -1517 ((-1156) $)) (-15 -1845 ((-1156) $))))) (T -1298)) -((-1517 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1298)))) (-1845 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1298))))) -(-13 (-1104) (-10 -8 (-15 -1517 ((-1156) $)) (-15 -1845 ((-1156) $)))) -((-3489 (((-112) $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3987 (((-1156) $) 9)) (-3570 (((-876) $) 15) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL))) -(((-1299) (-13 (-1104) (-10 -8 (-15 -3987 ((-1156) $))))) (T -1299)) -((-3987 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1299))))) -(-13 (-1104) (-10 -8 (-15 -3987 ((-1156) $)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 58)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-1561 (((-3 $ "failed") $) NIL)) (-4193 (((-112) $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 81) (($ (-576)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-174)))) (-3996 (((-783)) NIL T CONST)) (-3759 (((-1293) (-783)) 16)) (-4055 (((-112) $ $) NIL)) (-2721 (($) 37 T CONST)) (-2732 (($) 84 T CONST)) (-2925 (((-112) $ $) 87)) (-3057 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3044 (($ $) 89) (($ $ $) NIL)) (-3030 (($ $ $) 63)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-1300 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1070) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3057 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3759 ((-1293) (-783))))) (-1070) (-861) (-805) (-968 |#1| |#3| |#2|) (-656 |#2|) (-656 (-783)) (-783)) (T -1300)) -((-3057 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-374)) (-4 *2 (-1070)) (-4 *3 (-861)) (-4 *4 (-805)) (-14 *6 (-656 *3)) (-5 *1 (-1300 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-968 *2 *4 *3)) (-14 *7 (-656 (-783))) (-14 *8 (-783)))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1070)) (-4 *5 (-861)) (-4 *6 (-805)) (-14 *8 (-656 *5)) (-5 *2 (-1293)) (-5 *1 (-1300 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-968 *4 *6 *5)) (-14 *9 (-656 *3)) (-14 *10 *3)))) -(-13 (-1070) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3057 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3759 ((-1293) (-783))))) -((-3489 (((-112) $ $) NIL)) (-1788 (((-656 (-2 (|:| -1958 $) (|:| -3257 (-656 |#4|)))) (-656 |#4|)) NIL)) (-3603 (((-656 $) (-656 |#4|)) 96)) (-1969 (((-656 |#3|) $) NIL)) (-1807 (((-112) $) NIL)) (-4026 (((-112) $) NIL (|has| |#1| (-568)))) (-1613 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1377 ((|#4| |#4| $) NIL)) (-1795 (((-2 (|:| |under| $) (|:| -2443 $) (|:| |upper| $)) $ |#3|) NIL)) (-1808 (((-112) $ (-783)) NIL)) (-1974 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3886 (($) NIL T CONST)) (-3713 (((-112) $) NIL (|has| |#1| (-568)))) (-2813 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3812 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1884 (((-112) $) NIL (|has| |#1| (-568)))) (-3388 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-2311 (((-656 |#4|) (-656 |#4|) $) 28 (|has| |#1| (-568)))) (-4376 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2860 (($ (-656 |#4|)) NIL)) (-3593 (((-3 $ "failed") $) 78)) (-3994 ((|#4| |#4| $) 83)) (-1415 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121))))) (-3946 (($ |#4| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465)))) (-3624 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3439 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2737 ((|#4| |#4| $) NIL)) (-3686 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4465))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4465))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4405 (((-2 (|:| -1958 (-656 |#4|)) (|:| -3257 (-656 |#4|))) $) NIL)) (-3966 (((-656 |#4|) $) NIL (|has| $ (-6 -4465)))) (-3186 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2620 ((|#3| $) 84)) (-3870 (((-112) $ (-783)) NIL)) (-2014 (((-656 |#4|) $) 32 (|has| $ (-6 -4465)))) (-1612 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121))))) (-2069 (((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-656 |#4|)) 38)) (-4323 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4466)))) (-4117 (($ (-1 |#4| |#4|) $) NIL)) (-2234 (((-656 |#3|) $) NIL)) (-2106 (((-112) |#3| $) NIL)) (-1330 (((-112) $ (-783)) NIL)) (-3699 (((-1179) $) NIL)) (-3969 (((-3 |#4| "failed") $) NIL)) (-4275 (((-656 |#4|) $) 54)) (-1603 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3909 ((|#4| |#4| $) 82)) (-1438 (((-112) $ $) 93)) (-2280 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3579 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1522 ((|#4| |#4| $) NIL)) (-1450 (((-1141) $) NIL)) (-3581 (((-3 |#4| "failed") $) 77)) (-1541 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3384 (((-3 $ "failed") $ |#4|) NIL)) (-1749 (($ $ |#4|) NIL)) (-4320 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465)))) (-3284 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-4040 (((-112) $ $) NIL)) (-3973 (((-112) $) 75)) (-4225 (($) 46)) (-3634 (((-783) $) NIL)) (-1460 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#4| (-1121)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465)))) (-1870 (($ $) NIL)) (-4172 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-3582 (($ (-656 |#4|)) NIL)) (-3118 (($ $ |#3|) NIL)) (-2637 (($ $ |#3|) NIL)) (-1584 (($ $) NIL)) (-3317 (($ $ |#3|) NIL)) (-3570 (((-876) $) NIL) (((-656 |#4|) $) 63)) (-3891 (((-783) $) NIL (|has| |#3| (-379)))) (-1362 (((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-656 |#4|)) 45)) (-3881 (((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-656 $) (-656 |#4|)) 74)) (-4055 (((-112) $ $) NIL)) (-3765 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2833 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-3321 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4465)))) (-1583 (((-656 |#3|) $) NIL)) (-3419 (((-112) |#3| $) NIL)) (-2925 (((-112) $ $) NIL)) (-3503 (((-783) $) NIL (|has| $ (-6 -4465))))) -(((-1301 |#1| |#2| |#3| |#4|) (-13 (-1231 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2069 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2069 ((-3 $ "failed") (-656 |#4|))) (-15 -1362 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1362 ((-3 $ "failed") (-656 |#4|))) (-15 -3881 ((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3881 ((-656 $) (-656 |#4|))))) (-568) (-805) (-861) (-1086 |#1| |#2| |#3|)) (T -1301)) -((-2069 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1301 *5 *6 *7 *8)))) (-2069 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1301 *3 *4 *5 *6)))) (-1362 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1301 *5 *6 *7 *8)))) (-1362 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1301 *3 *4 *5 *6)))) (-3881 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-861)) (-5 *2 (-656 (-1301 *6 *7 *8 *9))) (-5 *1 (-1301 *6 *7 *8 *9)))) (-3881 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-1301 *4 *5 *6 *7))) (-5 *1 (-1301 *4 *5 *6 *7))))) -(-13 (-1231 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2069 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2069 ((-3 $ "failed") (-656 |#4|))) (-15 -1362 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1362 ((-3 $ "failed") (-656 |#4|))) (-15 -3881 ((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3881 ((-656 $) (-656 |#4|))))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-4367 (((-3 $ "failed") $ $) 20)) (-3886 (($) 18 T CONST)) (-1561 (((-3 $ "failed") $) 37)) (-4193 (((-112) $) 35)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 45)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) +((-2821 (((-656 (-1232 |#1|)) (-1197) (-1232 |#1|)) 83)) (-3276 (((-1178 (-1178 (-971 |#1|))) (-1197) (-1178 (-971 |#1|))) 63)) (-3091 (((-1 (-1178 (-1232 |#1|)) (-1178 (-1232 |#1|))) (-783) (-1232 |#1|) (-1178 (-1232 |#1|))) 74)) (-4190 (((-1 (-1178 (-971 |#1|)) (-1178 (-971 |#1|))) (-783)) 65)) (-1330 (((-1 (-1193 (-971 |#1|)) (-971 |#1|)) (-1197)) 32)) (-4335 (((-1 (-1178 (-971 |#1|)) (-1178 (-971 |#1|))) (-783)) 64))) +(((-1296 |#1|) (-10 -7 (-15 -4190 ((-1 (-1178 (-971 |#1|)) (-1178 (-971 |#1|))) (-783))) (-15 -4335 ((-1 (-1178 (-971 |#1|)) (-1178 (-971 |#1|))) (-783))) (-15 -3276 ((-1178 (-1178 (-971 |#1|))) (-1197) (-1178 (-971 |#1|)))) (-15 -1330 ((-1 (-1193 (-971 |#1|)) (-971 |#1|)) (-1197))) (-15 -2821 ((-656 (-1232 |#1|)) (-1197) (-1232 |#1|))) (-15 -3091 ((-1 (-1178 (-1232 |#1|)) (-1178 (-1232 |#1|))) (-783) (-1232 |#1|) (-1178 (-1232 |#1|))))) (-374)) (T -1296)) +((-3091 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-783)) (-4 *6 (-374)) (-5 *4 (-1232 *6)) (-5 *2 (-1 (-1178 *4) (-1178 *4))) (-5 *1 (-1296 *6)) (-5 *5 (-1178 *4)))) (-2821 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-4 *5 (-374)) (-5 *2 (-656 (-1232 *5))) (-5 *1 (-1296 *5)) (-5 *4 (-1232 *5)))) (-1330 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1 (-1193 (-971 *4)) (-971 *4))) (-5 *1 (-1296 *4)) (-4 *4 (-374)))) (-3276 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-4 *5 (-374)) (-5 *2 (-1178 (-1178 (-971 *5)))) (-5 *1 (-1296 *5)) (-5 *4 (-1178 (-971 *5))))) (-4335 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1178 (-971 *4)) (-1178 (-971 *4)))) (-5 *1 (-1296 *4)) (-4 *4 (-374)))) (-4190 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1178 (-971 *4)) (-1178 (-971 *4)))) (-5 *1 (-1296 *4)) (-4 *4 (-374))))) +(-10 -7 (-15 -4190 ((-1 (-1178 (-971 |#1|)) (-1178 (-971 |#1|))) (-783))) (-15 -4335 ((-1 (-1178 (-971 |#1|)) (-1178 (-971 |#1|))) (-783))) (-15 -3276 ((-1178 (-1178 (-971 |#1|))) (-1197) (-1178 (-971 |#1|)))) (-15 -1330 ((-1 (-1193 (-971 |#1|)) (-971 |#1|)) (-1197))) (-15 -2821 ((-656 (-1232 |#1|)) (-1197) (-1232 |#1|))) (-15 -3091 ((-1 (-1178 (-1232 |#1|)) (-1178 (-1232 |#1|))) (-783) (-1232 |#1|) (-1178 (-1232 |#1|))))) +((-2659 (((-2 (|:| -2675 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|) 80)) (-3358 (((-2 (|:| -2675 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) 79))) +(((-1297 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3358 ((-2 (|:| -2675 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -2659 ((-2 (|:| -2675 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|))) (-360) (-1264 |#1|) (-1264 |#2|) (-421 |#2| |#3|)) (T -1297)) +((-2659 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 *3)) (-5 *2 (-2 (|:| -2675 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-1297 *4 *3 *5 *6)) (-4 *6 (-421 *3 *5)))) (-3358 (*1 *2) (-12 (-4 *3 (-360)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| -2675 (-701 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-701 *4)))) (-5 *1 (-1297 *3 *4 *5 *6)) (-4 *6 (-421 *4 *5))))) +(-10 -7 (-15 -3358 ((-2 (|:| -2675 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -2659 ((-2 (|:| -2675 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|))) +((-3488 (((-112) $ $) NIL)) (-3377 (((-1156) $) 11)) (-4411 (((-1156) $) 9)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 17) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-1298) (-13 (-1104) (-10 -8 (-15 -4411 ((-1156) $)) (-15 -3377 ((-1156) $))))) (T -1298)) +((-4411 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1298)))) (-3377 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1298))))) +(-13 (-1104) (-10 -8 (-15 -4411 ((-1156) $)) (-15 -3377 ((-1156) $)))) +((-3488 (((-112) $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3986 (((-1156) $) 9)) (-3569 (((-876) $) 15) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) NIL))) +(((-1299) (-13 (-1104) (-10 -8 (-15 -3986 ((-1156) $))))) (T -1299)) +((-3986 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1299))))) +(-13 (-1104) (-10 -8 (-15 -3986 ((-1156) $)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 58)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-3673 (((-3 $ "failed") $) NIL)) (-1351 (((-112) $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 81) (($ (-576)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-174)))) (-3154 (((-783)) NIL T CONST)) (-1479 (((-1293) (-783)) 16)) (-2399 (((-112) $ $) NIL)) (-2721 (($) 37 T CONST)) (-2731 (($) 84 T CONST)) (-2924 (((-112) $ $) 87)) (-3056 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3043 (($ $) 89) (($ $ $) NIL)) (-3029 (($ $ $) 63)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-1300 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1070) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3056 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1479 ((-1293) (-783))))) (-1070) (-861) (-805) (-968 |#1| |#3| |#2|) (-656 |#2|) (-656 (-783)) (-783)) (T -1300)) +((-3056 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-374)) (-4 *2 (-1070)) (-4 *3 (-861)) (-4 *4 (-805)) (-14 *6 (-656 *3)) (-5 *1 (-1300 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-968 *2 *4 *3)) (-14 *7 (-656 (-783))) (-14 *8 (-783)))) (-1479 (*1 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1070)) (-4 *5 (-861)) (-4 *6 (-805)) (-14 *8 (-656 *5)) (-5 *2 (-1293)) (-5 *1 (-1300 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-968 *4 *6 *5)) (-14 *9 (-656 *3)) (-14 *10 *3)))) +(-13 (-1070) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3056 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1479 ((-1293) (-783))))) +((-3488 (((-112) $ $) NIL)) (-4093 (((-656 (-2 (|:| -1958 $) (|:| -3256 (-656 |#4|)))) (-656 |#4|)) NIL)) (-3668 (((-656 $) (-656 |#4|)) 96)) (-1969 (((-656 |#3|) $) NIL)) (-4255 (((-112) $) NIL)) (-2136 (((-112) $) NIL (|has| |#1| (-568)))) (-2899 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3798 ((|#4| |#4| $) NIL)) (-1795 (((-2 (|:| |under| $) (|:| -4236 $) (|:| |upper| $)) $ |#3|) NIL)) (-4264 (((-112) $ (-783)) NIL)) (-1974 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3404 (($) NIL T CONST)) (-2203 (((-112) $) NIL (|has| |#1| (-568)))) (-3438 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1990 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3740 (((-112) $) NIL (|has| |#1| (-568)))) (-2149 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-2239 (((-656 |#4|) (-656 |#4|) $) 28 (|has| |#1| (-568)))) (-2514 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1572 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2859 (($ (-656 |#4|)) NIL)) (-3592 (((-3 $ "failed") $) 78)) (-3142 ((|#4| |#4| $) 83)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-3945 (($ |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3891 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-1483 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4022 ((|#4| |#4| $) NIL)) (-3685 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4464))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1599 (((-2 (|:| -1958 (-656 |#4|)) (|:| -3256 (-656 |#4|))) $) NIL)) (-3965 (((-656 |#4|) $) NIL (|has| $ (-6 -4464)))) (-1918 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2235 ((|#3| $) 84)) (-1368 (((-112) $ (-783)) NIL)) (-2425 (((-656 |#4|) $) 32 (|has| $ (-6 -4464)))) (-2885 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-1711 (((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-656 |#4|)) 38)) (-4326 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4465)))) (-4116 (($ (-1 |#4| |#4|) $) NIL)) (-2666 (((-656 |#3|) $) NIL)) (-4001 (((-112) |#3| $) NIL)) (-2883 (((-112) $ (-783)) NIL)) (-2046 (((-1179) $) NIL)) (-3968 (((-3 |#4| "failed") $) NIL)) (-2795 (((-656 |#4|) $) 54)) (-2785 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3640 ((|#4| |#4| $) 82)) (-2264 (((-112) $ $) 93)) (-3196 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3420 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3235 ((|#4| |#4| $) NIL)) (-1450 (((-1141) $) NIL)) (-3580 (((-3 |#4| "failed") $) 77)) (-3434 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2101 (((-3 $ "failed") $ |#4|) NIL)) (-1743 (($ $ |#4|) NIL)) (-3252 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3282 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-2252 (((-112) $ $) NIL)) (-2940 (((-112) $) 75)) (-3579 (($) 46)) (-2683 (((-783) $) NIL)) (-1460 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-1870 (($ $) NIL)) (-4171 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-3581 (($ (-656 |#4|)) NIL)) (-2479 (($ $ |#3|) NIL)) (-2394 (($ $ |#3|) NIL)) (-2582 (($ $) NIL)) (-2665 (($ $ |#3|) NIL)) (-3569 (((-876) $) NIL) (((-656 |#4|) $) 63)) (-3451 (((-783) $) NIL (|has| |#3| (-379)))) (-1427 (((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-656 |#4|)) 45)) (-1465 (((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-656 $) (-656 |#4|)) 74)) (-2399 (((-112) $ $) NIL)) (-1530 (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -1419 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3653 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-2708 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-2572 (((-656 |#3|) $) NIL)) (-2476 (((-112) |#3| $) NIL)) (-2924 (((-112) $ $) NIL)) (-3502 (((-783) $) NIL (|has| $ (-6 -4464))))) +(((-1301 |#1| |#2| |#3| |#4|) (-13 (-1231 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1711 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1711 ((-3 $ "failed") (-656 |#4|))) (-15 -1427 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1427 ((-3 $ "failed") (-656 |#4|))) (-15 -1465 ((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1465 ((-656 $) (-656 |#4|))))) (-568) (-805) (-861) (-1086 |#1| |#2| |#3|)) (T -1301)) +((-1711 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1301 *5 *6 *7 *8)))) (-1711 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1301 *3 *4 *5 *6)))) (-1427 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1301 *5 *6 *7 *8)))) (-1427 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1301 *3 *4 *5 *6)))) (-1465 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-861)) (-5 *2 (-656 (-1301 *6 *7 *8 *9))) (-5 *1 (-1301 *6 *7 *8 *9)))) (-1465 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-1301 *4 *5 *6 *7))) (-5 *1 (-1301 *4 *5 *6 *7))))) +(-13 (-1231 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1711 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1711 ((-3 $ "failed") (-656 |#4|))) (-15 -1427 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1427 ((-3 $ "failed") (-656 |#4|))) (-15 -1465 ((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1465 ((-656 $) (-656 |#4|))))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2428 (((-3 $ "failed") $ $) 20)) (-3404 (($) 18 T CONST)) (-3673 (((-3 $ "failed") $) 37)) (-1351 (((-112) $) 35)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 45)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) (((-1302 |#1|) (-141) (-1070)) (T -1302)) NIL (-13 (-1070) (-111 |t#1| |t#1|) (-628 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-3489 (((-112) $ $) 67)) (-4308 (((-112) $) NIL)) (-3447 (((-656 |#1|) $) 52)) (-1996 (($ $ (-783)) 46)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3967 (($ $ (-783)) 24 (|has| |#2| (-174))) (($ $ $) 25 (|has| |#2| (-174)))) (-3886 (($) NIL T CONST)) (-4442 (($ $ $) 70) (($ $ (-831 |#1|)) 56) (($ $ |#1|) 60)) (-1572 (((-3 (-831 |#1|) "failed") $) NIL)) (-2860 (((-831 |#1|) $) NIL)) (-2114 (($ $) 39)) (-1561 (((-3 $ "failed") $) NIL)) (-3820 (((-112) $) NIL)) (-1812 (($ $) NIL)) (-4193 (((-112) $) NIL)) (-2217 (((-783) $) NIL)) (-1608 (((-656 $) $) NIL)) (-2823 (((-112) $) NIL)) (-3685 (($ (-831 |#1|) |#2|) 38)) (-1372 (($ $) 40)) (-2880 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 12)) (-1417 (((-831 |#1|) $) NIL)) (-1643 (((-831 |#1|) $) 41)) (-4117 (($ (-1 |#2| |#2|) $) NIL)) (-2054 (($ $ $) 69) (($ $ (-831 |#1|)) 58) (($ $ |#1|) 62)) (-2644 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2081 (((-831 |#1|) $) 35)) (-2091 ((|#2| $) 37)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3634 (((-783) $) 43)) (-3535 (((-112) $) 47)) (-1480 ((|#2| $) NIL)) (-3570 (((-876) $) NIL) (($ (-831 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-576)) NIL)) (-1618 (((-656 |#2|) $) NIL)) (-3177 ((|#2| $ (-831 |#1|)) NIL)) (-1714 ((|#2| $ $) 76) ((|#2| $ (-831 |#1|)) NIL)) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-2721 (($) 13 T CONST)) (-2732 (($) 19 T CONST)) (-3071 (((-656 (-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2925 (((-112) $ $) 44)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) 28)) (** (($ $ (-783)) NIL) (($ $ (-940)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-831 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) +((-3488 (((-112) $ $) 67)) (-3135 (((-112) $) NIL)) (-3446 (((-656 |#1|) $) 52)) (-2256 (($ $ (-783)) 46)) (-2428 (((-3 $ "failed") $ $) NIL)) (-2875 (($ $ (-783)) 24 (|has| |#2| (-174))) (($ $ $) 25 (|has| |#2| (-174)))) (-3404 (($) NIL T CONST)) (-1932 (($ $ $) 70) (($ $ (-831 |#1|)) 56) (($ $ |#1|) 60)) (-1572 (((-3 (-831 |#1|) "failed") $) NIL)) (-2859 (((-831 |#1|) $) NIL)) (-2114 (($ $) 39)) (-3673 (((-3 $ "failed") $) NIL)) (-4059 (((-112) $) NIL)) (-4307 (($ $) NIL)) (-1351 (((-112) $) NIL)) (-3799 (((-783) $) NIL)) (-2846 (((-656 $) $) NIL)) (-3538 (((-112) $) NIL)) (-3684 (($ (-831 |#1|) |#2|) 38)) (-3187 (($ $) 40)) (-2826 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 12)) (-2052 (((-831 |#1|) $) NIL)) (-1953 (((-831 |#1|) $) 41)) (-4116 (($ (-1 |#2| |#2|) $) NIL)) (-1566 (($ $ $) 69) (($ $ (-831 |#1|)) 58) (($ $ |#1|) 62)) (-2448 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2081 (((-831 |#1|) $) 35)) (-2091 ((|#2| $) 37)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-2683 (((-783) $) 43)) (-4257 (((-112) $) 47)) (-1480 ((|#2| $) NIL)) (-3569 (((-876) $) NIL) (($ (-831 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-576)) NIL)) (-2937 (((-656 |#2|) $) NIL)) (-1822 ((|#2| $ (-831 |#1|)) NIL)) (-1715 ((|#2| $ $) 76) ((|#2| $ (-831 |#1|)) NIL)) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-2721 (($) 13 T CONST)) (-2731 (($) 19 T CONST)) (-2012 (((-656 (-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2924 (((-112) $ $) 44)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 28)) (** (($ $ (-783)) NIL) (($ $ (-940)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-831 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) (((-1303 |#1| |#2|) (-13 (-393 |#2| (-831 |#1|)) (-1309 |#1| |#2|)) (-861) (-1070)) (T -1303)) NIL (-13 (-393 |#2| (-831 |#1|)) (-1309 |#1| |#2|)) -((-3745 ((|#3| |#3| (-783)) 28)) (-4104 ((|#3| |#3| (-783)) 34)) (-2333 ((|#3| |#3| |#3| (-783)) 35))) -(((-1304 |#1| |#2| |#3|) (-10 -7 (-15 -4104 (|#3| |#3| (-783))) (-15 -3745 (|#3| |#3| (-783))) (-15 -2333 (|#3| |#3| |#3| (-783)))) (-13 (-1070) (-729 (-419 (-576)))) (-861) (-1309 |#2| |#1|)) (T -1304)) -((-2333 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1070) (-729 (-419 (-576))))) (-4 *5 (-861)) (-5 *1 (-1304 *4 *5 *2)) (-4 *2 (-1309 *5 *4)))) (-3745 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1070) (-729 (-419 (-576))))) (-4 *5 (-861)) (-5 *1 (-1304 *4 *5 *2)) (-4 *2 (-1309 *5 *4)))) (-4104 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1070) (-729 (-419 (-576))))) (-4 *5 (-861)) (-5 *1 (-1304 *4 *5 *2)) (-4 *2 (-1309 *5 *4))))) -(-10 -7 (-15 -4104 (|#3| |#3| (-783))) (-15 -3745 (|#3| |#3| (-783))) (-15 -2333 (|#3| |#3| |#3| (-783)))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-3447 (((-656 |#1|) $) 47)) (-4367 (((-3 $ "failed") $ $) 20)) (-3967 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-783)) 49 (|has| |#2| (-174)))) (-3886 (($) 18 T CONST)) (-4442 (($ $ |#1|) 61) (($ $ (-831 |#1|)) 60) (($ $ $) 59)) (-1572 (((-3 (-831 |#1|) "failed") $) 71)) (-2860 (((-831 |#1|) $) 72)) (-1561 (((-3 $ "failed") $) 37)) (-3820 (((-112) $) 52)) (-1812 (($ $) 51)) (-4193 (((-112) $) 35)) (-2823 (((-112) $) 57)) (-3685 (($ (-831 |#1|) |#2|) 58)) (-1372 (($ $) 56)) (-2880 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 67)) (-1417 (((-831 |#1|) $) 68)) (-4117 (($ (-1 |#2| |#2|) $) 48)) (-2054 (($ $ |#1|) 64) (($ $ (-831 |#1|)) 63) (($ $ $) 62)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3535 (((-112) $) 54)) (-1480 ((|#2| $) 53)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ |#2|) 75) (($ (-831 |#1|)) 70) (($ |#1|) 55)) (-1714 ((|#2| $ (-831 |#1|)) 66) ((|#2| $ $) 65)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +((-3744 ((|#3| |#3| (-783)) 28)) (-4103 ((|#3| |#3| (-783)) 34)) (-2454 ((|#3| |#3| |#3| (-783)) 35))) +(((-1304 |#1| |#2| |#3|) (-10 -7 (-15 -4103 (|#3| |#3| (-783))) (-15 -3744 (|#3| |#3| (-783))) (-15 -2454 (|#3| |#3| |#3| (-783)))) (-13 (-1070) (-729 (-419 (-576)))) (-861) (-1309 |#2| |#1|)) (T -1304)) +((-2454 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1070) (-729 (-419 (-576))))) (-4 *5 (-861)) (-5 *1 (-1304 *4 *5 *2)) (-4 *2 (-1309 *5 *4)))) (-3744 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1070) (-729 (-419 (-576))))) (-4 *5 (-861)) (-5 *1 (-1304 *4 *5 *2)) (-4 *2 (-1309 *5 *4)))) (-4103 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1070) (-729 (-419 (-576))))) (-4 *5 (-861)) (-5 *1 (-1304 *4 *5 *2)) (-4 *2 (-1309 *5 *4))))) +(-10 -7 (-15 -4103 (|#3| |#3| (-783))) (-15 -3744 (|#3| |#3| (-783))) (-15 -2454 (|#3| |#3| |#3| (-783)))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-3446 (((-656 |#1|) $) 47)) (-2428 (((-3 $ "failed") $ $) 20)) (-2875 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-783)) 49 (|has| |#2| (-174)))) (-3404 (($) 18 T CONST)) (-1932 (($ $ |#1|) 61) (($ $ (-831 |#1|)) 60) (($ $ $) 59)) (-1572 (((-3 (-831 |#1|) "failed") $) 71)) (-2859 (((-831 |#1|) $) 72)) (-3673 (((-3 $ "failed") $) 37)) (-4059 (((-112) $) 52)) (-4307 (($ $) 51)) (-1351 (((-112) $) 35)) (-3538 (((-112) $) 57)) (-3684 (($ (-831 |#1|) |#2|) 58)) (-3187 (($ $) 56)) (-2826 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 67)) (-2052 (((-831 |#1|) $) 68)) (-4116 (($ (-1 |#2| |#2|) $) 48)) (-1566 (($ $ |#1|) 64) (($ $ (-831 |#1|)) 63) (($ $ $) 62)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-4257 (((-112) $) 54)) (-1480 ((|#2| $) 53)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#2|) 75) (($ (-831 |#1|)) 70) (($ |#1|) 55)) (-1715 ((|#2| $ (-831 |#1|)) 66) ((|#2| $ $) 65)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) (((-1305 |#1| |#2|) (-141) (-861) (-1070)) (T -1305)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1305 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1070)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-1417 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-831 *3)))) (-2880 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-2 (|:| |k| (-831 *3)) (|:| |c| *4))))) (-1714 (*1 *2 *1 *3) (-12 (-5 *3 (-831 *4)) (-4 *1 (-1305 *4 *2)) (-4 *4 (-861)) (-4 *2 (-1070)))) (-1714 (*1 *2 *1 *1) (-12 (-4 *1 (-1305 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1070)))) (-2054 (*1 *1 *1 *2) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-2054 (*1 *1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)))) (-2054 (*1 *1 *1 *1) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-4442 (*1 *1 *1 *2) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-4442 (*1 *1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)))) (-4442 (*1 *1 *1 *1) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-3685 (*1 *1 *2 *3) (-12 (-5 *2 (-831 *4)) (-4 *4 (-861)) (-4 *1 (-1305 *4 *3)) (-4 *3 (-1070)))) (-2823 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-112)))) (-1372 (*1 *1 *1) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-3570 (*1 *1 *2) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-3535 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-112)))) (-1480 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1070)))) (-3820 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-112)))) (-1812 (*1 *1 *1) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-3967 (*1 *1 *1 *1) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)) (-4 *3 (-174)))) (-3967 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-4 *4 (-174)))) (-4117 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-656 *3))))) -(-13 (-1070) (-1302 |t#2|) (-1059 (-831 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -1417 ((-831 |t#1|) $)) (-15 -2880 ((-2 (|:| |k| (-831 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1714 (|t#2| $ (-831 |t#1|))) (-15 -1714 (|t#2| $ $)) (-15 -2054 ($ $ |t#1|)) (-15 -2054 ($ $ (-831 |t#1|))) (-15 -2054 ($ $ $)) (-15 -4442 ($ $ |t#1|)) (-15 -4442 ($ $ (-831 |t#1|))) (-15 -4442 ($ $ $)) (-15 -3685 ($ (-831 |t#1|) |t#2|)) (-15 -2823 ((-112) $)) (-15 -1372 ($ $)) (-15 -3570 ($ |t#1|)) (-15 -3535 ((-112) $)) (-15 -1480 (|t#2| $)) (-15 -3820 ((-112) $)) (-15 -1812 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -3967 ($ $ $)) (-15 -3967 ($ $ (-783)))) |%noBranch|) (-15 -4117 ($ (-1 |t#2| |t#2|) $)) (-15 -3447 ((-656 |t#1|) $)) (IF (|has| |t#2| (-6 -4458)) (-6 -4458) |%noBranch|))) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1305 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1070)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-2052 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-831 *3)))) (-2826 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-2 (|:| |k| (-831 *3)) (|:| |c| *4))))) (-1715 (*1 *2 *1 *3) (-12 (-5 *3 (-831 *4)) (-4 *1 (-1305 *4 *2)) (-4 *4 (-861)) (-4 *2 (-1070)))) (-1715 (*1 *2 *1 *1) (-12 (-4 *1 (-1305 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1070)))) (-1566 (*1 *1 *1 *2) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-1566 (*1 *1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)))) (-1566 (*1 *1 *1 *1) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-1932 (*1 *1 *1 *2) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-1932 (*1 *1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)))) (-1932 (*1 *1 *1 *1) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-3684 (*1 *1 *2 *3) (-12 (-5 *2 (-831 *4)) (-4 *4 (-861)) (-4 *1 (-1305 *4 *3)) (-4 *3 (-1070)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-112)))) (-3187 (*1 *1 *1) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-3569 (*1 *1 *2) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-4257 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-112)))) (-1480 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1070)))) (-4059 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-112)))) (-4307 (*1 *1 *1) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-2875 (*1 *1 *1 *1) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)) (-4 *3 (-174)))) (-2875 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-4 *4 (-174)))) (-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)))) (-3446 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-656 *3))))) +(-13 (-1070) (-1302 |t#2|) (-1059 (-831 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2052 ((-831 |t#1|) $)) (-15 -2826 ((-2 (|:| |k| (-831 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1715 (|t#2| $ (-831 |t#1|))) (-15 -1715 (|t#2| $ $)) (-15 -1566 ($ $ |t#1|)) (-15 -1566 ($ $ (-831 |t#1|))) (-15 -1566 ($ $ $)) (-15 -1932 ($ $ |t#1|)) (-15 -1932 ($ $ (-831 |t#1|))) (-15 -1932 ($ $ $)) (-15 -3684 ($ (-831 |t#1|) |t#2|)) (-15 -3538 ((-112) $)) (-15 -3187 ($ $)) (-15 -3569 ($ |t#1|)) (-15 -4257 ((-112) $)) (-15 -1480 (|t#2| $)) (-15 -4059 ((-112) $)) (-15 -4307 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -2875 ($ $ $)) (-15 -2875 ($ $ (-783)))) |%noBranch|) (-15 -4116 ($ (-1 |t#2| |t#2|) $)) (-15 -3446 ((-656 |t#1|) $)) (IF (|has| |t#2| (-6 -4457)) (-6 -4457) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 #0=(-831 |#1|)) . T) ((-628 |#2|) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) |has| |#2| (-174)) ((-729 |#2|) |has| |#2| (-174)) ((-738) . T) ((-1059 #0#) . T) ((-1072 |#2|) . T) ((-1077 |#2|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1302 |#2|) . T)) -((-2441 (((-112) $) 15)) (-3419 (((-112) $) 14)) (-3051 (($ $) 19) (($ $ (-783)) 21))) -(((-1306 |#1| |#2|) (-10 -8 (-15 -3051 (|#1| |#1| (-783))) (-15 -3051 (|#1| |#1|)) (-15 -2441 ((-112) |#1|)) (-15 -3419 ((-112) |#1|))) (-1307 |#2|) (-374)) (T -1306)) +((-4217 (((-112) $) 15)) (-2476 (((-112) $) 14)) (-3108 (($ $) 19) (($ $ (-783)) 21))) +(((-1306 |#1| |#2|) (-10 -8 (-15 -3108 (|#1| |#1| (-783))) (-15 -3108 (|#1| |#1|)) (-15 -4217 ((-112) |#1|)) (-15 -2476 ((-112) |#1|))) (-1307 |#2|) (-374)) (T -1306)) NIL -(-10 -8 (-15 -3051 (|#1| |#1| (-783))) (-15 -3051 (|#1| |#1|)) (-15 -2441 ((-112) |#1|)) (-15 -3419 ((-112) |#1|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-2246 (((-2 (|:| -2778 $) (|:| -4452 $) (|:| |associate| $)) $) 47)) (-2757 (($ $) 46)) (-3788 (((-112) $) 44)) (-2441 (((-112) $) 104)) (-2664 (((-783)) 100)) (-4367 (((-3 $ "failed") $ $) 20)) (-2487 (($ $) 81)) (-3921 (((-430 $) $) 80)) (-4016 (((-112) $ $) 65)) (-3886 (($) 18 T CONST)) (-1572 (((-3 |#1| "failed") $) 111)) (-2860 ((|#1| $) 112)) (-3429 (($ $ $) 61)) (-1561 (((-3 $ "failed") $) 37)) (-3441 (($ $ $) 62)) (-2174 (((-2 (|:| -1714 (-656 $)) (|:| -4129 $)) (-656 $)) 57)) (-2910 (($ $ (-783)) 97 (-2760 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) 96 (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4249 (((-112) $) 79)) (-3917 (((-845 (-940)) $) 94 (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4193 (((-112) $) 35)) (-3872 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3458 (($ $ $) 52) (($ (-656 $)) 51)) (-3699 (((-1179) $) 10)) (-2050 (($ $) 78)) (-2844 (((-112) $) 103)) (-1450 (((-1141) $) 11)) (-1531 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3498 (($ $ $) 54) (($ (-656 $)) 53)) (-1828 (((-430 $) $) 82)) (-2301 (((-845 (-940))) 101)) (-2288 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4129 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3476 (((-3 $ "failed") $ $) 48)) (-2722 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1967 (((-783) $) 64)) (-3274 (((-2 (|:| -2715 $) (|:| -3624 $)) $ $) 63)) (-3793 (((-3 (-783) "failed") $ $) 95 (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2003 (((-135)) 109)) (-3634 (((-845 (-940)) $) 102)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 110)) (-4336 (((-3 $ "failed") $) 93 (-2760 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2672 (((-112) $ $) 45)) (-3419 (((-112) $) 105)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-3051 (($ $) 99 (|has| |#1| (-379))) (($ $ (-783)) 98 (|has| |#1| (-379)))) (-2925 (((-112) $ $) 8)) (-3057 (($ $ $) 73) (($ $ |#1|) 108)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +(-10 -8 (-15 -3108 (|#1| |#1| (-783))) (-15 -3108 (|#1| |#1|)) (-15 -4217 ((-112) |#1|)) (-15 -2476 ((-112) |#1|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-2798 (((-2 (|:| -4346 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-4195 (($ $) 46)) (-1760 (((-112) $) 44)) (-4217 (((-112) $) 104)) (-2611 (((-783)) 100)) (-2428 (((-3 $ "failed") $ $) 20)) (-3444 (($ $) 81)) (-3760 (((-430 $) $) 80)) (-3330 (((-112) $ $) 65)) (-3404 (($) 18 T CONST)) (-1572 (((-3 |#1| "failed") $) 111)) (-2859 ((|#1| $) 112)) (-3428 (($ $ $) 61)) (-3673 (((-3 $ "failed") $) 37)) (-3440 (($ $ $) 62)) (-3363 (((-2 (|:| -1715 (-656 $)) (|:| -4128 $)) (-656 $)) 57)) (-3153 (($ $ (-783)) 97 (-2759 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) 96 (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3833 (((-112) $) 79)) (-3726 (((-845 (-940)) $) 94 (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1351 (((-112) $) 35)) (-1387 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3457 (($ $ $) 52) (($ (-656 $)) 51)) (-2046 (((-1179) $) 10)) (-2050 (($ $) 78)) (-3759 (((-112) $) 103)) (-1450 (((-1141) $) 11)) (-3327 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3497 (($ $ $) 54) (($ (-656 $)) 53)) (-1828 (((-430 $) $) 82)) (-2135 (((-845 (-940))) 101)) (-3278 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4128 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3475 (((-3 $ "failed") $ $) 48)) (-1899 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1979 (((-783) $) 64)) (-3536 (((-2 (|:| -1855 $) (|:| -3891 $)) $ $) 63)) (-1813 (((-3 (-783) "failed") $ $) 95 (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2319 (((-135)) 109)) (-2683 (((-845 (-940)) $) 102)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 110)) (-3390 (((-3 $ "failed") $) 93 (-2759 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-1505 (((-112) $ $) 45)) (-2476 (((-112) $) 105)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-3108 (($ $) 99 (|has| |#1| (-379))) (($ $ (-783)) 98 (|has| |#1| (-379)))) (-2924 (((-112) $ $) 8)) (-3056 (($ $ $) 73) (($ $ |#1|) 108)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) (((-1307 |#1|) (-141) (-374)) (T -1307)) -((-3419 (*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-2441 (*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-2844 (*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-3634 (*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-940))))) (-2301 (*1 *2) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-940))))) (-2664 (*1 *2) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-783)))) (-3051 (*1 *1 *1) (-12 (-4 *1 (-1307 *2)) (-4 *2 (-374)) (-4 *2 (-379)))) (-3051 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-4 *3 (-379))))) -(-13 (-374) (-1059 |t#1|) (-1295 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-414)) |%noBranch|) (-15 -3419 ((-112) $)) (-15 -2441 ((-112) $)) (-15 -2844 ((-112) $)) (-15 -3634 ((-845 (-940)) $)) (-15 -2301 ((-845 (-940)))) (-15 -2664 ((-783))) (IF (|has| |t#1| (-379)) (PROGN (-6 (-414)) (-15 -3051 ($ $)) (-15 -3051 ($ $ (-783)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2760 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-414) -2760 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-939) . T) ((-1059 |#1|) . T) ((-1072 #0#) . T) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 |#1|) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T) ((-1295 |#1|) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-3447 (((-656 |#1|) $) 98)) (-1996 (($ $ (-783)) 102)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3967 (($ $ $) NIL (|has| |#2| (-174))) (($ $ (-783)) NIL (|has| |#2| (-174)))) (-3886 (($) NIL T CONST)) (-4442 (($ $ |#1|) NIL) (($ $ (-831 |#1|)) NIL) (($ $ $) NIL)) (-1572 (((-3 (-831 |#1|) "failed") $) NIL) (((-3 (-908 |#1|) "failed") $) NIL)) (-2860 (((-831 |#1|) $) NIL) (((-908 |#1|) $) NIL)) (-2114 (($ $) 101)) (-1561 (((-3 $ "failed") $) NIL)) (-3820 (((-112) $) 90)) (-1812 (($ $) 93)) (-1940 (($ $ $ (-783)) 103)) (-4193 (((-112) $) NIL)) (-2217 (((-783) $) NIL)) (-1608 (((-656 $) $) NIL)) (-2823 (((-112) $) NIL)) (-3685 (($ (-831 |#1|) |#2|) NIL) (($ (-908 |#1|) |#2|) 29)) (-1372 (($ $) 119)) (-2880 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1417 (((-831 |#1|) $) NIL)) (-1643 (((-831 |#1|) $) NIL)) (-4117 (($ (-1 |#2| |#2|) $) NIL)) (-2054 (($ $ |#1|) NIL) (($ $ (-831 |#1|)) NIL) (($ $ $) NIL)) (-3745 (($ $ (-783)) 112 (|has| |#2| (-729 (-419 (-576)))))) (-2644 (((-2 (|:| |k| (-908 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2081 (((-908 |#1|) $) 83)) (-2091 ((|#2| $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-4104 (($ $ (-783)) 109 (|has| |#2| (-729 (-419 (-576)))))) (-3634 (((-783) $) 99)) (-3535 (((-112) $) 84)) (-1480 ((|#2| $) 88)) (-3570 (((-876) $) 69) (($ (-576)) NIL) (($ |#2|) 60) (($ (-831 |#1|)) NIL) (($ |#1|) 71) (($ (-908 |#1|)) NIL) (($ (-676 |#1| |#2|)) 48) (((-1303 |#1| |#2|) $) 76) (((-1312 |#1| |#2|) $) 81)) (-1618 (((-656 |#2|) $) NIL)) (-3177 ((|#2| $ (-908 |#1|)) NIL)) (-1714 ((|#2| $ (-831 |#1|)) NIL) ((|#2| $ $) NIL)) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-2721 (($) 21 T CONST)) (-2732 (($) 28 T CONST)) (-3071 (((-656 (-2 (|:| |k| (-908 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3824 (((-3 (-676 |#1| |#2|) "failed") $) 118)) (-2925 (((-112) $ $) 77)) (-3044 (($ $) 111) (($ $ $) 110)) (-3030 (($ $ $) 20)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-908 |#1|)) NIL))) -(((-1308 |#1| |#2|) (-13 (-1309 |#1| |#2|) (-393 |#2| (-908 |#1|)) (-10 -8 (-15 -3570 ($ (-676 |#1| |#2|))) (-15 -3570 ((-1303 |#1| |#2|) $)) (-15 -3570 ((-1312 |#1| |#2|) $)) (-15 -3824 ((-3 (-676 |#1| |#2|) "failed") $)) (-15 -1940 ($ $ $ (-783))) (IF (|has| |#2| (-729 (-419 (-576)))) (PROGN (-15 -4104 ($ $ (-783))) (-15 -3745 ($ $ (-783)))) |%noBranch|))) (-861) (-174)) (T -1308)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *1 (-1308 *3 *4)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-1312 *3 *4)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-3824 (*1 *2 *1) (|partial| -12 (-5 *2 (-676 *3 *4)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-1940 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-4104 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1308 *3 *4)) (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-861)) (-4 *4 (-174)))) (-3745 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1308 *3 *4)) (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-861)) (-4 *4 (-174))))) -(-13 (-1309 |#1| |#2|) (-393 |#2| (-908 |#1|)) (-10 -8 (-15 -3570 ($ (-676 |#1| |#2|))) (-15 -3570 ((-1303 |#1| |#2|) $)) (-15 -3570 ((-1312 |#1| |#2|) $)) (-15 -3824 ((-3 (-676 |#1| |#2|) "failed") $)) (-15 -1940 ($ $ $ (-783))) (IF (|has| |#2| (-729 (-419 (-576)))) (PROGN (-15 -4104 ($ $ (-783))) (-15 -3745 ($ $ (-783)))) |%noBranch|))) -((-3489 (((-112) $ $) 7)) (-4308 (((-112) $) 17)) (-3447 (((-656 |#1|) $) 47)) (-1996 (($ $ (-783)) 80)) (-4367 (((-3 $ "failed") $ $) 20)) (-3967 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-783)) 49 (|has| |#2| (-174)))) (-3886 (($) 18 T CONST)) (-4442 (($ $ |#1|) 61) (($ $ (-831 |#1|)) 60) (($ $ $) 59)) (-1572 (((-3 (-831 |#1|) "failed") $) 71)) (-2860 (((-831 |#1|) $) 72)) (-1561 (((-3 $ "failed") $) 37)) (-3820 (((-112) $) 52)) (-1812 (($ $) 51)) (-4193 (((-112) $) 35)) (-2823 (((-112) $) 57)) (-3685 (($ (-831 |#1|) |#2|) 58)) (-1372 (($ $) 56)) (-2880 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 67)) (-1417 (((-831 |#1|) $) 68)) (-1643 (((-831 |#1|) $) 82)) (-4117 (($ (-1 |#2| |#2|) $) 48)) (-2054 (($ $ |#1|) 64) (($ $ (-831 |#1|)) 63) (($ $ $) 62)) (-3699 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-3634 (((-783) $) 81)) (-3535 (((-112) $) 54)) (-1480 ((|#2| $) 53)) (-3570 (((-876) $) 12) (($ (-576)) 33) (($ |#2|) 75) (($ (-831 |#1|)) 70) (($ |#1|) 55)) (-1714 ((|#2| $ (-831 |#1|)) 66) ((|#2| $ $) 65)) (-3996 (((-783)) 32 T CONST)) (-4055 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2732 (($) 34 T CONST)) (-2925 (((-112) $ $) 8)) (-3044 (($ $) 23) (($ $ $) 22)) (-3030 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +((-2476 (*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-3759 (*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-2683 (*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-940))))) (-2135 (*1 *2) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-940))))) (-2611 (*1 *2) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-783)))) (-3108 (*1 *1 *1) (-12 (-4 *1 (-1307 *2)) (-4 *2 (-374)) (-4 *2 (-379)))) (-3108 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-4 *3 (-379))))) +(-13 (-374) (-1059 |t#1|) (-1295 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-414)) |%noBranch|) (-15 -2476 ((-112) $)) (-15 -4217 ((-112) $)) (-15 -3759 ((-112) $)) (-15 -2683 ((-845 (-940)) $)) (-15 -2135 ((-845 (-940)))) (-15 -2611 ((-783))) (IF (|has| |t#1| (-379)) (PROGN (-6 (-414)) (-15 -3108 ($ $)) (-15 -3108 ($ $ (-783)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2759 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-414) -2759 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-939) . T) ((-1059 |#1|) . T) ((-1072 #0#) . T) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 |#1|) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T) ((-1295 |#1|) . T)) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-3446 (((-656 |#1|) $) 98)) (-2256 (($ $ (-783)) 102)) (-2428 (((-3 $ "failed") $ $) NIL)) (-2875 (($ $ $) NIL (|has| |#2| (-174))) (($ $ (-783)) NIL (|has| |#2| (-174)))) (-3404 (($) NIL T CONST)) (-1932 (($ $ |#1|) NIL) (($ $ (-831 |#1|)) NIL) (($ $ $) NIL)) (-1572 (((-3 (-831 |#1|) "failed") $) NIL) (((-3 (-908 |#1|) "failed") $) NIL)) (-2859 (((-831 |#1|) $) NIL) (((-908 |#1|) $) NIL)) (-2114 (($ $) 101)) (-3673 (((-3 $ "failed") $) NIL)) (-4059 (((-112) $) 90)) (-4307 (($ $) 93)) (-3023 (($ $ $ (-783)) 103)) (-1351 (((-112) $) NIL)) (-3799 (((-783) $) NIL)) (-2846 (((-656 $) $) NIL)) (-3538 (((-112) $) NIL)) (-3684 (($ (-831 |#1|) |#2|) NIL) (($ (-908 |#1|) |#2|) 29)) (-3187 (($ $) 119)) (-2826 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2052 (((-831 |#1|) $) NIL)) (-1953 (((-831 |#1|) $) NIL)) (-4116 (($ (-1 |#2| |#2|) $) NIL)) (-1566 (($ $ |#1|) NIL) (($ $ (-831 |#1|)) NIL) (($ $ $) NIL)) (-3744 (($ $ (-783)) 112 (|has| |#2| (-729 (-419 (-576)))))) (-2448 (((-2 (|:| |k| (-908 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2081 (((-908 |#1|) $) 83)) (-2091 ((|#2| $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-4103 (($ $ (-783)) 109 (|has| |#2| (-729 (-419 (-576)))))) (-2683 (((-783) $) 99)) (-4257 (((-112) $) 84)) (-1480 ((|#2| $) 88)) (-3569 (((-876) $) 69) (($ (-576)) NIL) (($ |#2|) 60) (($ (-831 |#1|)) NIL) (($ |#1|) 71) (($ (-908 |#1|)) NIL) (($ (-676 |#1| |#2|)) 48) (((-1303 |#1| |#2|) $) 76) (((-1312 |#1| |#2|) $) 81)) (-2937 (((-656 |#2|) $) NIL)) (-1822 ((|#2| $ (-908 |#1|)) NIL)) (-1715 ((|#2| $ (-831 |#1|)) NIL) ((|#2| $ $) NIL)) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-2721 (($) 21 T CONST)) (-2731 (($) 28 T CONST)) (-2012 (((-656 (-2 (|:| |k| (-908 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4101 (((-3 (-676 |#1| |#2|) "failed") $) 118)) (-2924 (((-112) $ $) 77)) (-3043 (($ $) 111) (($ $ $) 110)) (-3029 (($ $ $) 20)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-908 |#1|)) NIL))) +(((-1308 |#1| |#2|) (-13 (-1309 |#1| |#2|) (-393 |#2| (-908 |#1|)) (-10 -8 (-15 -3569 ($ (-676 |#1| |#2|))) (-15 -3569 ((-1303 |#1| |#2|) $)) (-15 -3569 ((-1312 |#1| |#2|) $)) (-15 -4101 ((-3 (-676 |#1| |#2|) "failed") $)) (-15 -3023 ($ $ $ (-783))) (IF (|has| |#2| (-729 (-419 (-576)))) (PROGN (-15 -4103 ($ $ (-783))) (-15 -3744 ($ $ (-783)))) |%noBranch|))) (-861) (-174)) (T -1308)) +((-3569 (*1 *1 *2) (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *1 (-1308 *3 *4)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-1312 *3 *4)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-4101 (*1 *2 *1) (|partial| -12 (-5 *2 (-676 *3 *4)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-3023 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-4103 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1308 *3 *4)) (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-861)) (-4 *4 (-174)))) (-3744 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1308 *3 *4)) (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-861)) (-4 *4 (-174))))) +(-13 (-1309 |#1| |#2|) (-393 |#2| (-908 |#1|)) (-10 -8 (-15 -3569 ($ (-676 |#1| |#2|))) (-15 -3569 ((-1303 |#1| |#2|) $)) (-15 -3569 ((-1312 |#1| |#2|) $)) (-15 -4101 ((-3 (-676 |#1| |#2|) "failed") $)) (-15 -3023 ($ $ $ (-783))) (IF (|has| |#2| (-729 (-419 (-576)))) (PROGN (-15 -4103 ($ $ (-783))) (-15 -3744 ($ $ (-783)))) |%noBranch|))) +((-3488 (((-112) $ $) 7)) (-3135 (((-112) $) 17)) (-3446 (((-656 |#1|) $) 47)) (-2256 (($ $ (-783)) 80)) (-2428 (((-3 $ "failed") $ $) 20)) (-2875 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-783)) 49 (|has| |#2| (-174)))) (-3404 (($) 18 T CONST)) (-1932 (($ $ |#1|) 61) (($ $ (-831 |#1|)) 60) (($ $ $) 59)) (-1572 (((-3 (-831 |#1|) "failed") $) 71)) (-2859 (((-831 |#1|) $) 72)) (-3673 (((-3 $ "failed") $) 37)) (-4059 (((-112) $) 52)) (-4307 (($ $) 51)) (-1351 (((-112) $) 35)) (-3538 (((-112) $) 57)) (-3684 (($ (-831 |#1|) |#2|) 58)) (-3187 (($ $) 56)) (-2826 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 67)) (-2052 (((-831 |#1|) $) 68)) (-1953 (((-831 |#1|) $) 82)) (-4116 (($ (-1 |#2| |#2|) $) 48)) (-1566 (($ $ |#1|) 64) (($ $ (-831 |#1|)) 63) (($ $ $) 62)) (-2046 (((-1179) $) 10)) (-1450 (((-1141) $) 11)) (-2683 (((-783) $) 81)) (-4257 (((-112) $) 54)) (-1480 ((|#2| $) 53)) (-3569 (((-876) $) 12) (($ (-576)) 33) (($ |#2|) 75) (($ (-831 |#1|)) 70) (($ |#1|) 55)) (-1715 ((|#2| $ (-831 |#1|)) 66) ((|#2| $ $) 65)) (-3154 (((-783)) 32 T CONST)) (-2399 (((-112) $ $) 6)) (-2721 (($) 19 T CONST)) (-2731 (($) 34 T CONST)) (-2924 (((-112) $ $) 8)) (-3043 (($ $) 23) (($ $ $) 22)) (-3029 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) (((-1309 |#1| |#2|) (-141) (-861) (-1070)) (T -1309)) -((-1643 (*1 *2 *1) (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-831 *3)))) (-3634 (*1 *2 *1) (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-783)))) (-1996 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070))))) -(-13 (-1305 |t#1| |t#2|) (-10 -8 (-15 -1643 ((-831 |t#1|) $)) (-15 -3634 ((-783) $)) (-15 -1996 ($ $ (-783))))) +((-1953 (*1 *2 *1) (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-831 *3)))) (-2683 (*1 *2 *1) (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-783)))) (-2256 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070))))) +(-13 (-1305 |t#1| |t#2|) (-10 -8 (-15 -1953 ((-831 |t#1|) $)) (-15 -2683 ((-783) $)) (-15 -2256 ($ $ (-783))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 #0=(-831 |#1|)) . T) ((-628 |#2|) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) |has| |#2| (-174)) ((-729 |#2|) |has| |#2| (-174)) ((-738) . T) ((-1059 #0#) . T) ((-1072 |#2|) . T) ((-1077 |#2|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1302 |#2|) . T) ((-1305 |#1| |#2|) . T)) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-3447 (((-656 (-1197)) $) NIL)) (-4293 (($ (-1303 (-1197) |#1|)) NIL)) (-1996 (($ $ (-783)) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3967 (($ $ $) NIL (|has| |#1| (-174))) (($ $ (-783)) NIL (|has| |#1| (-174)))) (-3886 (($) NIL T CONST)) (-4442 (($ $ (-1197)) NIL) (($ $ (-831 (-1197))) NIL) (($ $ $) NIL)) (-1572 (((-3 (-831 (-1197)) "failed") $) NIL)) (-2860 (((-831 (-1197)) $) NIL)) (-1561 (((-3 $ "failed") $) NIL)) (-3820 (((-112) $) NIL)) (-1812 (($ $) NIL)) (-4193 (((-112) $) NIL)) (-2823 (((-112) $) NIL)) (-3685 (($ (-831 (-1197)) |#1|) NIL)) (-1372 (($ $) NIL)) (-2880 (((-2 (|:| |k| (-831 (-1197))) (|:| |c| |#1|)) $) NIL)) (-1417 (((-831 (-1197)) $) NIL)) (-1643 (((-831 (-1197)) $) NIL)) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-2054 (($ $ (-1197)) NIL) (($ $ (-831 (-1197))) NIL) (($ $ $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1942 (((-1303 (-1197) |#1|) $) NIL)) (-3634 (((-783) $) NIL)) (-3535 (((-112) $) NIL)) (-1480 ((|#1| $) NIL)) (-3570 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-831 (-1197))) NIL) (($ (-1197)) NIL)) (-1714 ((|#1| $ (-831 (-1197))) NIL) ((|#1| $ $) NIL)) (-3996 (((-783)) NIL T CONST)) (-4055 (((-112) $ $) NIL)) (-2721 (($) NIL T CONST)) (-2157 (((-656 (-2 (|:| |k| (-1197)) (|:| |c| $))) $) NIL)) (-2732 (($) NIL T CONST)) (-2925 (((-112) $ $) NIL)) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1197) $) NIL))) -(((-1310 |#1|) (-13 (-1309 (-1197) |#1|) (-10 -8 (-15 -1942 ((-1303 (-1197) |#1|) $)) (-15 -4293 ($ (-1303 (-1197) |#1|))) (-15 -2157 ((-656 (-2 (|:| |k| (-1197)) (|:| |c| $))) $)))) (-1070)) (T -1310)) -((-1942 (*1 *2 *1) (-12 (-5 *2 (-1303 (-1197) *3)) (-5 *1 (-1310 *3)) (-4 *3 (-1070)))) (-4293 (*1 *1 *2) (-12 (-5 *2 (-1303 (-1197) *3)) (-4 *3 (-1070)) (-5 *1 (-1310 *3)))) (-2157 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-1197)) (|:| |c| (-1310 *3))))) (-5 *1 (-1310 *3)) (-4 *3 (-1070))))) -(-13 (-1309 (-1197) |#1|) (-10 -8 (-15 -1942 ((-1303 (-1197) |#1|) $)) (-15 -4293 ($ (-1303 (-1197) |#1|))) (-15 -2157 ((-656 (-2 (|:| |k| (-1197)) (|:| |c| $))) $)))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) NIL)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3886 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) NIL)) (-2860 ((|#2| $) NIL)) (-2114 (($ $) NIL)) (-1561 (((-3 $ "failed") $) 42)) (-3820 (((-112) $) 35)) (-1812 (($ $) 37)) (-4193 (((-112) $) NIL)) (-2217 (((-783) $) NIL)) (-1608 (((-656 $) $) NIL)) (-2823 (((-112) $) NIL)) (-3685 (($ |#2| |#1|) NIL)) (-1417 ((|#2| $) 24)) (-1643 ((|#2| $) 22)) (-4117 (($ (-1 |#1| |#1|) $) NIL)) (-2644 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2081 ((|#2| $) NIL)) (-2091 ((|#1| $) NIL)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3535 (((-112) $) 32)) (-1480 ((|#1| $) 33)) (-3570 (((-876) $) 65) (($ (-576)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-1618 (((-656 |#1|) $) NIL)) (-3177 ((|#1| $ |#2|) NIL)) (-1714 ((|#1| $ |#2|) 28)) (-3996 (((-783)) 14 T CONST)) (-4055 (((-112) $ $) NIL)) (-2721 (($) 29 T CONST)) (-2732 (($) 11 T CONST)) (-3071 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2925 (((-112) $ $) 30)) (-3057 (($ $ |#1|) 67 (|has| |#1| (-374)))) (-3044 (($ $) NIL) (($ $ $) NIL)) (-3030 (($ $ $) 50)) (** (($ $ (-940)) NIL) (($ $ (-783)) 52)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3503 (((-783) $) 16))) -(((-1311 |#1| |#2|) (-13 (-1070) (-1302 |#1|) (-393 |#1| |#2|) (-628 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3503 ((-783) $)) (-15 -1643 (|#2| $)) (-15 -1417 (|#2| $)) (-15 -2114 ($ $)) (-15 -1714 (|#1| $ |#2|)) (-15 -3535 ((-112) $)) (-15 -1480 (|#1| $)) (-15 -3820 ((-112) $)) (-15 -1812 ($ $)) (-15 -4117 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-374)) (-15 -3057 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4458)) (-6 -4458) |%noBranch|) (IF (|has| |#1| (-6 -4462)) (-6 -4462) |%noBranch|) (IF (|has| |#1| (-6 -4463)) (-6 -4463) |%noBranch|))) (-1070) (-858)) (T -1311)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-858)))) (-2114 (*1 *1 *1) (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-858)))) (-4117 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-1311 *3 *4)) (-4 *4 (-858)))) (-3503 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-858)))) (-1643 (*1 *2 *1) (-12 (-4 *2 (-858)) (-5 *1 (-1311 *3 *2)) (-4 *3 (-1070)))) (-1417 (*1 *2 *1) (-12 (-4 *2 (-858)) (-5 *1 (-1311 *3 *2)) (-4 *3 (-1070)))) (-1714 (*1 *2 *1 *3) (-12 (-4 *2 (-1070)) (-5 *1 (-1311 *2 *3)) (-4 *3 (-858)))) (-3535 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-858)))) (-1480 (*1 *2 *1) (-12 (-4 *2 (-1070)) (-5 *1 (-1311 *2 *3)) (-4 *3 (-858)))) (-3820 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-858)))) (-1812 (*1 *1 *1) (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-858)))) (-3057 (*1 *1 *1 *2) (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-374)) (-4 *2 (-1070)) (-4 *3 (-858))))) -(-13 (-1070) (-1302 |#1|) (-393 |#1| |#2|) (-628 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3503 ((-783) $)) (-15 -1643 (|#2| $)) (-15 -1417 (|#2| $)) (-15 -2114 ($ $)) (-15 -1714 (|#1| $ |#2|)) (-15 -3535 ((-112) $)) (-15 -1480 (|#1| $)) (-15 -3820 ((-112) $)) (-15 -1812 ($ $)) (-15 -4117 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-374)) (-15 -3057 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4458)) (-6 -4458) |%noBranch|) (IF (|has| |#1| (-6 -4462)) (-6 -4462) |%noBranch|) (IF (|has| |#1| (-6 -4463)) (-6 -4463) |%noBranch|))) -((-3489 (((-112) $ $) 27)) (-4308 (((-112) $) NIL)) (-3447 (((-656 |#1|) $) 132)) (-4293 (($ (-1303 |#1| |#2|)) 50)) (-1996 (($ $ (-783)) 38)) (-4367 (((-3 $ "failed") $ $) NIL)) (-3967 (($ $ $) 54 (|has| |#2| (-174))) (($ $ (-783)) 52 (|has| |#2| (-174)))) (-3886 (($) NIL T CONST)) (-4442 (($ $ |#1|) 114) (($ $ (-831 |#1|)) 115) (($ $ $) 26)) (-1572 (((-3 (-831 |#1|) "failed") $) NIL)) (-2860 (((-831 |#1|) $) NIL)) (-1561 (((-3 $ "failed") $) 122)) (-3820 (((-112) $) 117)) (-1812 (($ $) 118)) (-4193 (((-112) $) NIL)) (-2823 (((-112) $) NIL)) (-3685 (($ (-831 |#1|) |#2|) 20)) (-1372 (($ $) NIL)) (-2880 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1417 (((-831 |#1|) $) 123)) (-1643 (((-831 |#1|) $) 126)) (-4117 (($ (-1 |#2| |#2|) $) 131)) (-2054 (($ $ |#1|) 112) (($ $ (-831 |#1|)) 113) (($ $ $) 62)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1942 (((-1303 |#1| |#2|) $) 94)) (-3634 (((-783) $) 129)) (-3535 (((-112) $) 81)) (-1480 ((|#2| $) 32)) (-3570 (((-876) $) 73) (($ (-576)) 87) (($ |#2|) 85) (($ (-831 |#1|)) 18) (($ |#1|) 84)) (-1714 ((|#2| $ (-831 |#1|)) 116) ((|#2| $ $) 28)) (-3996 (((-783)) 120 T CONST)) (-4055 (((-112) $ $) NIL)) (-2721 (($) 15 T CONST)) (-2157 (((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-2732 (($) 33 T CONST)) (-2925 (((-112) $ $) 14)) (-3044 (($ $) 98) (($ $ $) 101)) (-3030 (($ $ $) 61)) (** (($ $ (-940)) NIL) (($ $ (-783)) 55)) (* (($ (-940) $) NIL) (($ (-783) $) 53) (($ (-576) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) -(((-1312 |#1| |#2|) (-13 (-1309 |#1| |#2|) (-10 -8 (-15 -1942 ((-1303 |#1| |#2|) $)) (-15 -4293 ($ (-1303 |#1| |#2|))) (-15 -2157 ((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-861) (-1070)) (T -1312)) -((-1942 (*1 *2 *1) (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)))) (-4293 (*1 *1 *2) (-12 (-5 *2 (-1303 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *1 (-1312 *3 *4)))) (-2157 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| *3) (|:| |c| (-1312 *3 *4))))) (-5 *1 (-1312 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070))))) -(-13 (-1309 |#1| |#2|) (-10 -8 (-15 -1942 ((-1303 |#1| |#2|) $)) (-15 -4293 ($ (-1303 |#1| |#2|))) (-15 -2157 ((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-3489 (((-112) $ $) NIL)) (-2421 (($ (-656 (-940))) 10)) (-1675 (((-992) $) 12)) (-3699 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3570 (((-876) $) 25) (($ (-992)) 14) (((-992) $) 13)) (-4055 (((-112) $ $) NIL)) (-2925 (((-112) $ $) 17))) -(((-1313) (-13 (-1121) (-502 (-992)) (-10 -8 (-15 -2421 ($ (-656 (-940)))) (-15 -1675 ((-992) $))))) (T -1313)) -((-2421 (*1 *1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1313)))) (-1675 (*1 *2 *1) (-12 (-5 *2 (-992)) (-5 *1 (-1313))))) -(-13 (-1121) (-502 (-992)) (-10 -8 (-15 -2421 ($ (-656 (-940)))) (-15 -1675 ((-992) $)))) -((-2495 (((-656 (-1178 |#1|)) (-1 (-656 (-1178 |#1|)) (-656 (-1178 |#1|))) (-576)) 16) (((-1178 |#1|) (-1 (-1178 |#1|) (-1178 |#1|))) 13))) -(((-1314 |#1|) (-10 -7 (-15 -2495 ((-1178 |#1|) (-1 (-1178 |#1|) (-1178 |#1|)))) (-15 -2495 ((-656 (-1178 |#1|)) (-1 (-656 (-1178 |#1|)) (-656 (-1178 |#1|))) (-576)))) (-1238)) (T -1314)) -((-2495 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-656 (-1178 *5)) (-656 (-1178 *5)))) (-5 *4 (-576)) (-5 *2 (-656 (-1178 *5))) (-5 *1 (-1314 *5)) (-4 *5 (-1238)))) (-2495 (*1 *2 *3) (-12 (-5 *3 (-1 (-1178 *4) (-1178 *4))) (-5 *2 (-1178 *4)) (-5 *1 (-1314 *4)) (-4 *4 (-1238))))) -(-10 -7 (-15 -2495 ((-1178 |#1|) (-1 (-1178 |#1|) (-1178 |#1|)))) (-15 -2495 ((-656 (-1178 |#1|)) (-1 (-656 (-1178 |#1|)) (-656 (-1178 |#1|))) (-576)))) -((-4219 (((-656 (-2 (|:| -3119 (-1193 |#1|)) (|:| -4152 (-656 (-971 |#1|))))) (-656 (-971 |#1|))) 174) (((-656 (-2 (|:| -3119 (-1193 |#1|)) (|:| -4152 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112)) 173) (((-656 (-2 (|:| -3119 (-1193 |#1|)) (|:| -4152 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112)) 172) (((-656 (-2 (|:| -3119 (-1193 |#1|)) (|:| -4152 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112) (-112)) 171) (((-656 (-2 (|:| -3119 (-1193 |#1|)) (|:| -4152 (-656 (-971 |#1|))))) (-1067 |#1| |#2|)) 156)) (-2401 (((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|))) 85) (((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)) (-112)) 84) (((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)) (-112) (-112)) 83)) (-3921 (((-656 (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-792 |#1| (-878 |#3|)))) (-1067 |#1| |#2|)) 73)) (-3645 (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|))) 140) (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112)) 139) (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112)) 138) (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112) (-112)) 137) (((-656 (-656 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|)) 132)) (-3515 (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|))) 145) (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112)) 144) (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112)) 143) (((-656 (-656 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|)) 142)) (-4172 (((-656 (-792 |#1| (-878 |#3|))) (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-792 |#1| (-878 |#3|)))) 111) (((-1193 (-1045 (-419 |#1|))) (-1193 |#1|)) 102) (((-971 (-1045 (-419 |#1|))) (-792 |#1| (-878 |#3|))) 109) (((-971 (-1045 (-419 |#1|))) (-971 |#1|)) 107) (((-792 |#1| (-878 |#3|)) (-792 |#1| (-878 |#2|))) 33))) -(((-1315 |#1| |#2| |#3|) (-10 -7 (-15 -2401 ((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)) (-112) (-112))) (-15 -2401 ((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)) (-112))) (-15 -2401 ((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)))) (-15 -4219 ((-656 (-2 (|:| -3119 (-1193 |#1|)) (|:| -4152 (-656 (-971 |#1|))))) (-1067 |#1| |#2|))) (-15 -4219 ((-656 (-2 (|:| -3119 (-1193 |#1|)) (|:| -4152 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112) (-112))) (-15 -4219 ((-656 (-2 (|:| -3119 (-1193 |#1|)) (|:| -4152 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112))) (-15 -4219 ((-656 (-2 (|:| -3119 (-1193 |#1|)) (|:| -4152 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112))) (-15 -4219 ((-656 (-2 (|:| -3119 (-1193 |#1|)) (|:| -4152 (-656 (-971 |#1|))))) (-656 (-971 |#1|)))) (-15 -3645 ((-656 (-656 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|))) (-15 -3645 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112) (-112))) (-15 -3645 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112))) (-15 -3645 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112))) (-15 -3645 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)))) (-15 -3515 ((-656 (-656 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|))) (-15 -3515 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112))) (-15 -3515 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112))) (-15 -3515 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)))) (-15 -3921 ((-656 (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-792 |#1| (-878 |#3|)))) (-1067 |#1| |#2|))) (-15 -4172 ((-792 |#1| (-878 |#3|)) (-792 |#1| (-878 |#2|)))) (-15 -4172 ((-971 (-1045 (-419 |#1|))) (-971 |#1|))) (-15 -4172 ((-971 (-1045 (-419 |#1|))) (-792 |#1| (-878 |#3|)))) (-15 -4172 ((-1193 (-1045 (-419 |#1|))) (-1193 |#1|))) (-15 -4172 ((-656 (-792 |#1| (-878 |#3|))) (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-792 |#1| (-878 |#3|)))))) (-13 (-860) (-317) (-148) (-1043)) (-656 (-1197)) (-656 (-1197))) (T -1315)) -((-4172 (*1 *2 *3) (-12 (-5 *3 (-1167 *4 (-543 (-878 *6)) (-878 *6) (-792 *4 (-878 *6)))) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-792 *4 (-878 *6)))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))))) (-4172 (*1 *2 *3) (-12 (-5 *3 (-1193 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-1193 (-1045 (-419 *4)))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) (-4172 (*1 *2 *3) (-12 (-5 *3 (-792 *4 (-878 *6))) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *6 (-656 (-1197))) (-5 *2 (-971 (-1045 (-419 *4)))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))))) (-4172 (*1 *2 *3) (-12 (-5 *3 (-971 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-971 (-1045 (-419 *4)))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) (-4172 (*1 *2 *3) (-12 (-5 *3 (-792 *4 (-878 *5))) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *5 (-656 (-1197))) (-5 *2 (-792 *4 (-878 *6))) (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) (-3921 (*1 *2 *3) (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *5 (-656 (-1197))) (-5 *2 (-656 (-1167 *4 (-543 (-878 *6)) (-878 *6) (-792 *4 (-878 *6))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) (-3515 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-3515 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *5 (-656 (-1197))) (-5 *2 (-656 (-656 (-1045 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) (-3645 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-3645 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-3645 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *5 (-656 (-1197))) (-5 *2 (-656 (-656 (-1045 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) (-4219 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-2 (|:| -3119 (-1193 *4)) (|:| -4152 (-656 (-971 *4)))))) (-5 *1 (-1315 *4 *5 *6)) (-5 *3 (-656 (-971 *4))) (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) (-4219 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-2 (|:| -3119 (-1193 *5)) (|:| -4152 (-656 (-971 *5)))))) (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-656 (-971 *5))) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-4219 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-2 (|:| -3119 (-1193 *5)) (|:| -4152 (-656 (-971 *5)))))) (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-656 (-971 *5))) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-4219 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-2 (|:| -3119 (-1193 *5)) (|:| -4152 (-656 (-971 *5)))))) (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-656 (-971 *5))) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-4219 (*1 *2 *3) (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *5 (-656 (-1197))) (-5 *2 (-656 (-2 (|:| -3119 (-1193 *4)) (|:| -4152 (-656 (-971 *4)))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) (-2401 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-1067 *4 *5))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) (-2401 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-2401 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197)))))) -(-10 -7 (-15 -2401 ((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)) (-112) (-112))) (-15 -2401 ((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)) (-112))) (-15 -2401 ((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)))) (-15 -4219 ((-656 (-2 (|:| -3119 (-1193 |#1|)) (|:| -4152 (-656 (-971 |#1|))))) (-1067 |#1| |#2|))) (-15 -4219 ((-656 (-2 (|:| -3119 (-1193 |#1|)) (|:| -4152 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112) (-112))) (-15 -4219 ((-656 (-2 (|:| -3119 (-1193 |#1|)) (|:| -4152 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112))) (-15 -4219 ((-656 (-2 (|:| -3119 (-1193 |#1|)) (|:| -4152 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112))) (-15 -4219 ((-656 (-2 (|:| -3119 (-1193 |#1|)) (|:| -4152 (-656 (-971 |#1|))))) (-656 (-971 |#1|)))) (-15 -3645 ((-656 (-656 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|))) (-15 -3645 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112) (-112))) (-15 -3645 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112))) (-15 -3645 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112))) (-15 -3645 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)))) (-15 -3515 ((-656 (-656 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|))) (-15 -3515 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112))) (-15 -3515 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112))) (-15 -3515 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)))) (-15 -3921 ((-656 (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-792 |#1| (-878 |#3|)))) (-1067 |#1| |#2|))) (-15 -4172 ((-792 |#1| (-878 |#3|)) (-792 |#1| (-878 |#2|)))) (-15 -4172 ((-971 (-1045 (-419 |#1|))) (-971 |#1|))) (-15 -4172 ((-971 (-1045 (-419 |#1|))) (-792 |#1| (-878 |#3|)))) (-15 -4172 ((-1193 (-1045 (-419 |#1|))) (-1193 |#1|))) (-15 -4172 ((-656 (-792 |#1| (-878 |#3|))) (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-792 |#1| (-878 |#3|)))))) -((-1742 (((-3 (-1288 (-419 (-576))) "failed") (-1288 |#1|) |#1|) 21)) (-1563 (((-112) (-1288 |#1|)) 12)) (-3635 (((-3 (-1288 (-576)) "failed") (-1288 |#1|)) 16))) -(((-1316 |#1|) (-10 -7 (-15 -1563 ((-112) (-1288 |#1|))) (-15 -3635 ((-3 (-1288 (-576)) "failed") (-1288 |#1|))) (-15 -1742 ((-3 (-1288 (-419 (-576))) "failed") (-1288 |#1|) |#1|))) (-13 (-1070) (-651 (-576)))) (T -1316)) -((-1742 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 (-576)))) (-5 *2 (-1288 (-419 (-576)))) (-5 *1 (-1316 *4)))) (-3635 (*1 *2 *3) (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 (-576)))) (-5 *2 (-1288 (-576))) (-5 *1 (-1316 *4)))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-1316 *4))))) -(-10 -7 (-15 -1563 ((-112) (-1288 |#1|))) (-15 -3635 ((-3 (-1288 (-576)) "failed") (-1288 |#1|))) (-15 -1742 ((-3 (-1288 (-419 (-576))) "failed") (-1288 |#1|) |#1|))) -((-3489 (((-112) $ $) NIL)) (-4308 (((-112) $) 11)) (-4367 (((-3 $ "failed") $ $) NIL)) (-2098 (((-783)) 8)) (-3886 (($) NIL T CONST)) (-1561 (((-3 $ "failed") $) 58)) (-1836 (($) 49)) (-4193 (((-112) $) 57)) (-2240 (((-3 $ "failed") $) 40)) (-4401 (((-940) $) 15)) (-3699 (((-1179) $) NIL)) (-3540 (($) 32 T CONST)) (-3224 (($ (-940)) 50)) (-1450 (((-1141) $) NIL)) (-4172 (((-576) $) 13)) (-3570 (((-876) $) 27) (($ (-576)) 24)) (-3996 (((-783)) 9 T CONST)) (-4055 (((-112) $ $) 60)) (-2721 (($) 29 T CONST)) (-2732 (($) 31 T CONST)) (-2925 (((-112) $ $) 38)) (-3044 (($ $) 52) (($ $ $) 47)) (-3030 (($ $ $) 35)) (** (($ $ (-940)) NIL) (($ $ (-783)) 54)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 44) (($ $ $) 43))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-3446 (((-656 (-1197)) $) NIL)) (-3002 (($ (-1303 (-1197) |#1|)) NIL)) (-2256 (($ $ (-783)) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-2875 (($ $ $) NIL (|has| |#1| (-174))) (($ $ (-783)) NIL (|has| |#1| (-174)))) (-3404 (($) NIL T CONST)) (-1932 (($ $ (-1197)) NIL) (($ $ (-831 (-1197))) NIL) (($ $ $) NIL)) (-1572 (((-3 (-831 (-1197)) "failed") $) NIL)) (-2859 (((-831 (-1197)) $) NIL)) (-3673 (((-3 $ "failed") $) NIL)) (-4059 (((-112) $) NIL)) (-4307 (($ $) NIL)) (-1351 (((-112) $) NIL)) (-3538 (((-112) $) NIL)) (-3684 (($ (-831 (-1197)) |#1|) NIL)) (-3187 (($ $) NIL)) (-2826 (((-2 (|:| |k| (-831 (-1197))) (|:| |c| |#1|)) $) NIL)) (-2052 (((-831 (-1197)) $) NIL)) (-1953 (((-831 (-1197)) $) NIL)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-1566 (($ $ (-1197)) NIL) (($ $ (-831 (-1197))) NIL) (($ $ $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1942 (((-1303 (-1197) |#1|) $) NIL)) (-2683 (((-783) $) NIL)) (-4257 (((-112) $) NIL)) (-1480 ((|#1| $) NIL)) (-3569 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-831 (-1197))) NIL) (($ (-1197)) NIL)) (-1715 ((|#1| $ (-831 (-1197))) NIL) ((|#1| $ $) NIL)) (-3154 (((-783)) NIL T CONST)) (-2399 (((-112) $ $) NIL)) (-2721 (($) NIL T CONST)) (-1323 (((-656 (-2 (|:| |k| (-1197)) (|:| |c| $))) $) NIL)) (-2731 (($) NIL T CONST)) (-2924 (((-112) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1197) $) NIL))) +(((-1310 |#1|) (-13 (-1309 (-1197) |#1|) (-10 -8 (-15 -1942 ((-1303 (-1197) |#1|) $)) (-15 -3002 ($ (-1303 (-1197) |#1|))) (-15 -1323 ((-656 (-2 (|:| |k| (-1197)) (|:| |c| $))) $)))) (-1070)) (T -1310)) +((-1942 (*1 *2 *1) (-12 (-5 *2 (-1303 (-1197) *3)) (-5 *1 (-1310 *3)) (-4 *3 (-1070)))) (-3002 (*1 *1 *2) (-12 (-5 *2 (-1303 (-1197) *3)) (-4 *3 (-1070)) (-5 *1 (-1310 *3)))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-1197)) (|:| |c| (-1310 *3))))) (-5 *1 (-1310 *3)) (-4 *3 (-1070))))) +(-13 (-1309 (-1197) |#1|) (-10 -8 (-15 -1942 ((-1303 (-1197) |#1|) $)) (-15 -3002 ($ (-1303 (-1197) |#1|))) (-15 -1323 ((-656 (-2 (|:| |k| (-1197)) (|:| |c| $))) $)))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-3404 (($) NIL T CONST)) (-1572 (((-3 |#2| "failed") $) NIL)) (-2859 ((|#2| $) NIL)) (-2114 (($ $) NIL)) (-3673 (((-3 $ "failed") $) 42)) (-4059 (((-112) $) 35)) (-4307 (($ $) 37)) (-1351 (((-112) $) NIL)) (-3799 (((-783) $) NIL)) (-2846 (((-656 $) $) NIL)) (-3538 (((-112) $) NIL)) (-3684 (($ |#2| |#1|) NIL)) (-2052 ((|#2| $) 24)) (-1953 ((|#2| $) 22)) (-4116 (($ (-1 |#1| |#1|) $) NIL)) (-2448 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2081 ((|#2| $) NIL)) (-2091 ((|#1| $) NIL)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-4257 (((-112) $) 32)) (-1480 ((|#1| $) 33)) (-3569 (((-876) $) 65) (($ (-576)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-2937 (((-656 |#1|) $) NIL)) (-1822 ((|#1| $ |#2|) NIL)) (-1715 ((|#1| $ |#2|) 28)) (-3154 (((-783)) 14 T CONST)) (-2399 (((-112) $ $) NIL)) (-2721 (($) 29 T CONST)) (-2731 (($) 11 T CONST)) (-2012 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2924 (((-112) $ $) 30)) (-3056 (($ $ |#1|) 67 (|has| |#1| (-374)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-3029 (($ $ $) 50)) (** (($ $ (-940)) NIL) (($ $ (-783)) 52)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3502 (((-783) $) 16))) +(((-1311 |#1| |#2|) (-13 (-1070) (-1302 |#1|) (-393 |#1| |#2|) (-628 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3502 ((-783) $)) (-15 -1953 (|#2| $)) (-15 -2052 (|#2| $)) (-15 -2114 ($ $)) (-15 -1715 (|#1| $ |#2|)) (-15 -4257 ((-112) $)) (-15 -1480 (|#1| $)) (-15 -4059 ((-112) $)) (-15 -4307 ($ $)) (-15 -4116 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-374)) (-15 -3056 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4457)) (-6 -4457) |%noBranch|) (IF (|has| |#1| (-6 -4461)) (-6 -4461) |%noBranch|) (IF (|has| |#1| (-6 -4462)) (-6 -4462) |%noBranch|))) (-1070) (-858)) (T -1311)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-858)))) (-2114 (*1 *1 *1) (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-858)))) (-4116 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-1311 *3 *4)) (-4 *4 (-858)))) (-3502 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-858)))) (-1953 (*1 *2 *1) (-12 (-4 *2 (-858)) (-5 *1 (-1311 *3 *2)) (-4 *3 (-1070)))) (-2052 (*1 *2 *1) (-12 (-4 *2 (-858)) (-5 *1 (-1311 *3 *2)) (-4 *3 (-1070)))) (-1715 (*1 *2 *1 *3) (-12 (-4 *2 (-1070)) (-5 *1 (-1311 *2 *3)) (-4 *3 (-858)))) (-4257 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-858)))) (-1480 (*1 *2 *1) (-12 (-4 *2 (-1070)) (-5 *1 (-1311 *2 *3)) (-4 *3 (-858)))) (-4059 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-858)))) (-4307 (*1 *1 *1) (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-858)))) (-3056 (*1 *1 *1 *2) (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-374)) (-4 *2 (-1070)) (-4 *3 (-858))))) +(-13 (-1070) (-1302 |#1|) (-393 |#1| |#2|) (-628 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3502 ((-783) $)) (-15 -1953 (|#2| $)) (-15 -2052 (|#2| $)) (-15 -2114 ($ $)) (-15 -1715 (|#1| $ |#2|)) (-15 -4257 ((-112) $)) (-15 -1480 (|#1| $)) (-15 -4059 ((-112) $)) (-15 -4307 ($ $)) (-15 -4116 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-374)) (-15 -3056 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4457)) (-6 -4457) |%noBranch|) (IF (|has| |#1| (-6 -4461)) (-6 -4461) |%noBranch|) (IF (|has| |#1| (-6 -4462)) (-6 -4462) |%noBranch|))) +((-3488 (((-112) $ $) 27)) (-3135 (((-112) $) NIL)) (-3446 (((-656 |#1|) $) 132)) (-3002 (($ (-1303 |#1| |#2|)) 50)) (-2256 (($ $ (-783)) 38)) (-2428 (((-3 $ "failed") $ $) NIL)) (-2875 (($ $ $) 54 (|has| |#2| (-174))) (($ $ (-783)) 52 (|has| |#2| (-174)))) (-3404 (($) NIL T CONST)) (-1932 (($ $ |#1|) 114) (($ $ (-831 |#1|)) 115) (($ $ $) 26)) (-1572 (((-3 (-831 |#1|) "failed") $) NIL)) (-2859 (((-831 |#1|) $) NIL)) (-3673 (((-3 $ "failed") $) 122)) (-4059 (((-112) $) 117)) (-4307 (($ $) 118)) (-1351 (((-112) $) NIL)) (-3538 (((-112) $) NIL)) (-3684 (($ (-831 |#1|) |#2|) 20)) (-3187 (($ $) NIL)) (-2826 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2052 (((-831 |#1|) $) 123)) (-1953 (((-831 |#1|) $) 126)) (-4116 (($ (-1 |#2| |#2|) $) 131)) (-1566 (($ $ |#1|) 112) (($ $ (-831 |#1|)) 113) (($ $ $) 62)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-1942 (((-1303 |#1| |#2|) $) 94)) (-2683 (((-783) $) 129)) (-4257 (((-112) $) 81)) (-1480 ((|#2| $) 32)) (-3569 (((-876) $) 73) (($ (-576)) 87) (($ |#2|) 85) (($ (-831 |#1|)) 18) (($ |#1|) 84)) (-1715 ((|#2| $ (-831 |#1|)) 116) ((|#2| $ $) 28)) (-3154 (((-783)) 120 T CONST)) (-2399 (((-112) $ $) NIL)) (-2721 (($) 15 T CONST)) (-1323 (((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-2731 (($) 33 T CONST)) (-2924 (((-112) $ $) 14)) (-3043 (($ $) 98) (($ $ $) 101)) (-3029 (($ $ $) 61)) (** (($ $ (-940)) NIL) (($ $ (-783)) 55)) (* (($ (-940) $) NIL) (($ (-783) $) 53) (($ (-576) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) +(((-1312 |#1| |#2|) (-13 (-1309 |#1| |#2|) (-10 -8 (-15 -1942 ((-1303 |#1| |#2|) $)) (-15 -3002 ($ (-1303 |#1| |#2|))) (-15 -1323 ((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-861) (-1070)) (T -1312)) +((-1942 (*1 *2 *1) (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)))) (-3002 (*1 *1 *2) (-12 (-5 *2 (-1303 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *1 (-1312 *3 *4)))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| *3) (|:| |c| (-1312 *3 *4))))) (-5 *1 (-1312 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070))))) +(-13 (-1309 |#1| |#2|) (-10 -8 (-15 -1942 ((-1303 |#1| |#2|) $)) (-15 -3002 ($ (-1303 |#1| |#2|))) (-15 -1323 ((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-3488 (((-112) $ $) NIL)) (-4028 (($ (-656 (-940))) 10)) (-2217 (((-992) $) 12)) (-2046 (((-1179) $) NIL)) (-1450 (((-1141) $) NIL)) (-3569 (((-876) $) 25) (($ (-992)) 14) (((-992) $) 13)) (-2399 (((-112) $ $) NIL)) (-2924 (((-112) $ $) 17))) +(((-1313) (-13 (-1121) (-502 (-992)) (-10 -8 (-15 -4028 ($ (-656 (-940)))) (-15 -2217 ((-992) $))))) (T -1313)) +((-4028 (*1 *1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1313)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-992)) (-5 *1 (-1313))))) +(-13 (-1121) (-502 (-992)) (-10 -8 (-15 -4028 ($ (-656 (-940)))) (-15 -2217 ((-992) $)))) +((-2494 (((-656 (-1178 |#1|)) (-1 (-656 (-1178 |#1|)) (-656 (-1178 |#1|))) (-576)) 16) (((-1178 |#1|) (-1 (-1178 |#1|) (-1178 |#1|))) 13))) +(((-1314 |#1|) (-10 -7 (-15 -2494 ((-1178 |#1|) (-1 (-1178 |#1|) (-1178 |#1|)))) (-15 -2494 ((-656 (-1178 |#1|)) (-1 (-656 (-1178 |#1|)) (-656 (-1178 |#1|))) (-576)))) (-1238)) (T -1314)) +((-2494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-656 (-1178 *5)) (-656 (-1178 *5)))) (-5 *4 (-576)) (-5 *2 (-656 (-1178 *5))) (-5 *1 (-1314 *5)) (-4 *5 (-1238)))) (-2494 (*1 *2 *3) (-12 (-5 *3 (-1 (-1178 *4) (-1178 *4))) (-5 *2 (-1178 *4)) (-5 *1 (-1314 *4)) (-4 *4 (-1238))))) +(-10 -7 (-15 -2494 ((-1178 |#1|) (-1 (-1178 |#1|) (-1178 |#1|)))) (-15 -2494 ((-656 (-1178 |#1|)) (-1 (-656 (-1178 |#1|)) (-656 (-1178 |#1|))) (-576)))) +((-3521 (((-656 (-2 (|:| -2490 (-1193 |#1|)) (|:| -4096 (-656 (-971 |#1|))))) (-656 (-971 |#1|))) 174) (((-656 (-2 (|:| -2490 (-1193 |#1|)) (|:| -4096 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112)) 173) (((-656 (-2 (|:| -2490 (-1193 |#1|)) (|:| -4096 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112)) 172) (((-656 (-2 (|:| -2490 (-1193 |#1|)) (|:| -4096 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112) (-112)) 171) (((-656 (-2 (|:| -2490 (-1193 |#1|)) (|:| -4096 (-656 (-971 |#1|))))) (-1067 |#1| |#2|)) 156)) (-1861 (((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|))) 85) (((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)) (-112)) 84) (((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)) (-112) (-112)) 83)) (-3760 (((-656 (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-792 |#1| (-878 |#3|)))) (-1067 |#1| |#2|)) 73)) (-2782 (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|))) 140) (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112)) 139) (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112)) 138) (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112) (-112)) 137) (((-656 (-656 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|)) 132)) (-4095 (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|))) 145) (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112)) 144) (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112)) 143) (((-656 (-656 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|)) 142)) (-4171 (((-656 (-792 |#1| (-878 |#3|))) (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-792 |#1| (-878 |#3|)))) 111) (((-1193 (-1045 (-419 |#1|))) (-1193 |#1|)) 102) (((-971 (-1045 (-419 |#1|))) (-792 |#1| (-878 |#3|))) 109) (((-971 (-1045 (-419 |#1|))) (-971 |#1|)) 107) (((-792 |#1| (-878 |#3|)) (-792 |#1| (-878 |#2|))) 33))) +(((-1315 |#1| |#2| |#3|) (-10 -7 (-15 -1861 ((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)) (-112) (-112))) (-15 -1861 ((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)) (-112))) (-15 -1861 ((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)))) (-15 -3521 ((-656 (-2 (|:| -2490 (-1193 |#1|)) (|:| -4096 (-656 (-971 |#1|))))) (-1067 |#1| |#2|))) (-15 -3521 ((-656 (-2 (|:| -2490 (-1193 |#1|)) (|:| -4096 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112) (-112))) (-15 -3521 ((-656 (-2 (|:| -2490 (-1193 |#1|)) (|:| -4096 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112))) (-15 -3521 ((-656 (-2 (|:| -2490 (-1193 |#1|)) (|:| -4096 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112))) (-15 -3521 ((-656 (-2 (|:| -2490 (-1193 |#1|)) (|:| -4096 (-656 (-971 |#1|))))) (-656 (-971 |#1|)))) (-15 -2782 ((-656 (-656 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|))) (-15 -2782 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112) (-112))) (-15 -2782 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112))) (-15 -2782 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112))) (-15 -2782 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)))) (-15 -4095 ((-656 (-656 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|))) (-15 -4095 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112))) (-15 -4095 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112))) (-15 -4095 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)))) (-15 -3760 ((-656 (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-792 |#1| (-878 |#3|)))) (-1067 |#1| |#2|))) (-15 -4171 ((-792 |#1| (-878 |#3|)) (-792 |#1| (-878 |#2|)))) (-15 -4171 ((-971 (-1045 (-419 |#1|))) (-971 |#1|))) (-15 -4171 ((-971 (-1045 (-419 |#1|))) (-792 |#1| (-878 |#3|)))) (-15 -4171 ((-1193 (-1045 (-419 |#1|))) (-1193 |#1|))) (-15 -4171 ((-656 (-792 |#1| (-878 |#3|))) (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-792 |#1| (-878 |#3|)))))) (-13 (-860) (-317) (-148) (-1043)) (-656 (-1197)) (-656 (-1197))) (T -1315)) +((-4171 (*1 *2 *3) (-12 (-5 *3 (-1167 *4 (-543 (-878 *6)) (-878 *6) (-792 *4 (-878 *6)))) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-792 *4 (-878 *6)))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))))) (-4171 (*1 *2 *3) (-12 (-5 *3 (-1193 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-1193 (-1045 (-419 *4)))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) (-4171 (*1 *2 *3) (-12 (-5 *3 (-792 *4 (-878 *6))) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *6 (-656 (-1197))) (-5 *2 (-971 (-1045 (-419 *4)))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))))) (-4171 (*1 *2 *3) (-12 (-5 *3 (-971 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-971 (-1045 (-419 *4)))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) (-4171 (*1 *2 *3) (-12 (-5 *3 (-792 *4 (-878 *5))) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *5 (-656 (-1197))) (-5 *2 (-792 *4 (-878 *6))) (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) (-3760 (*1 *2 *3) (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *5 (-656 (-1197))) (-5 *2 (-656 (-1167 *4 (-543 (-878 *6)) (-878 *6) (-792 *4 (-878 *6))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) (-4095 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) (-4095 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-4095 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-4095 (*1 *2 *3) (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *5 (-656 (-1197))) (-5 *2 (-656 (-656 (-1045 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-2782 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-2782 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *5 (-656 (-1197))) (-5 *2 (-656 (-656 (-1045 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) (-3521 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-2 (|:| -2490 (-1193 *4)) (|:| -4096 (-656 (-971 *4)))))) (-5 *1 (-1315 *4 *5 *6)) (-5 *3 (-656 (-971 *4))) (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) (-3521 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-2 (|:| -2490 (-1193 *5)) (|:| -4096 (-656 (-971 *5)))))) (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-656 (-971 *5))) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-3521 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-2 (|:| -2490 (-1193 *5)) (|:| -4096 (-656 (-971 *5)))))) (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-656 (-971 *5))) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-3521 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-2 (|:| -2490 (-1193 *5)) (|:| -4096 (-656 (-971 *5)))))) (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-656 (-971 *5))) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-3521 (*1 *2 *3) (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *5 (-656 (-1197))) (-5 *2 (-656 (-2 (|:| -2490 (-1193 *4)) (|:| -4096 (-656 (-971 *4)))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) (-1861 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-1067 *4 *5))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) (-1861 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-1861 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197)))))) +(-10 -7 (-15 -1861 ((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)) (-112) (-112))) (-15 -1861 ((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)) (-112))) (-15 -1861 ((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)))) (-15 -3521 ((-656 (-2 (|:| -2490 (-1193 |#1|)) (|:| -4096 (-656 (-971 |#1|))))) (-1067 |#1| |#2|))) (-15 -3521 ((-656 (-2 (|:| -2490 (-1193 |#1|)) (|:| -4096 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112) (-112))) (-15 -3521 ((-656 (-2 (|:| -2490 (-1193 |#1|)) (|:| -4096 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112))) (-15 -3521 ((-656 (-2 (|:| -2490 (-1193 |#1|)) (|:| -4096 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112))) (-15 -3521 ((-656 (-2 (|:| -2490 (-1193 |#1|)) (|:| -4096 (-656 (-971 |#1|))))) (-656 (-971 |#1|)))) (-15 -2782 ((-656 (-656 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|))) (-15 -2782 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112) (-112))) (-15 -2782 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112))) (-15 -2782 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112))) (-15 -2782 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)))) (-15 -4095 ((-656 (-656 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|))) (-15 -4095 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112))) (-15 -4095 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112))) (-15 -4095 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)))) (-15 -3760 ((-656 (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-792 |#1| (-878 |#3|)))) (-1067 |#1| |#2|))) (-15 -4171 ((-792 |#1| (-878 |#3|)) (-792 |#1| (-878 |#2|)))) (-15 -4171 ((-971 (-1045 (-419 |#1|))) (-971 |#1|))) (-15 -4171 ((-971 (-1045 (-419 |#1|))) (-792 |#1| (-878 |#3|)))) (-15 -4171 ((-1193 (-1045 (-419 |#1|))) (-1193 |#1|))) (-15 -4171 ((-656 (-792 |#1| (-878 |#3|))) (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-792 |#1| (-878 |#3|)))))) +((-1684 (((-3 (-1288 (-419 (-576))) "failed") (-1288 |#1|) |#1|) 21)) (-3699 (((-112) (-1288 |#1|)) 12)) (-2692 (((-3 (-1288 (-576)) "failed") (-1288 |#1|)) 16))) +(((-1316 |#1|) (-10 -7 (-15 -3699 ((-112) (-1288 |#1|))) (-15 -2692 ((-3 (-1288 (-576)) "failed") (-1288 |#1|))) (-15 -1684 ((-3 (-1288 (-419 (-576))) "failed") (-1288 |#1|) |#1|))) (-13 (-1070) (-651 (-576)))) (T -1316)) +((-1684 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 (-576)))) (-5 *2 (-1288 (-419 (-576)))) (-5 *1 (-1316 *4)))) (-2692 (*1 *2 *3) (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 (-576)))) (-5 *2 (-1288 (-576))) (-5 *1 (-1316 *4)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-1316 *4))))) +(-10 -7 (-15 -3699 ((-112) (-1288 |#1|))) (-15 -2692 ((-3 (-1288 (-576)) "failed") (-1288 |#1|))) (-15 -1684 ((-3 (-1288 (-419 (-576))) "failed") (-1288 |#1|) |#1|))) +((-3488 (((-112) $ $) NIL)) (-3135 (((-112) $) 11)) (-2428 (((-3 $ "failed") $ $) NIL)) (-2098 (((-783)) 8)) (-3404 (($) NIL T CONST)) (-3673 (((-3 $ "failed") $) 58)) (-1836 (($) 49)) (-1351 (((-112) $) 57)) (-2734 (((-3 $ "failed") $) 40)) (-1558 (((-940) $) 15)) (-2046 (((-1179) $) NIL)) (-3539 (($) 32 T CONST)) (-3223 (($ (-940)) 50)) (-1450 (((-1141) $) NIL)) (-4171 (((-576) $) 13)) (-3569 (((-876) $) 27) (($ (-576)) 24)) (-3154 (((-783)) 9 T CONST)) (-2399 (((-112) $ $) 60)) (-2721 (($) 29 T CONST)) (-2731 (($) 31 T CONST)) (-2924 (((-112) $ $) 38)) (-3043 (($ $) 52) (($ $ $) 47)) (-3029 (($ $ $) 35)) (** (($ $ (-940)) NIL) (($ $ (-783)) 54)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 44) (($ $ $) 43))) (((-1317 |#1|) (-13 (-174) (-379) (-626 (-576)) (-1173)) (-940)) (T -1317)) NIL (-13 (-174) (-379) (-626 (-576)) (-1173)) @@ -5441,4 +5441,4 @@ NIL NIL NIL NIL -((-3 3262846 3262851 3262856 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3262831 3262836 3262841 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3262816 3262821 3262826 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3262801 3262806 3262811 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1317 3261944 3262676 3262753 "ZMOD" 3262758 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1316 3260998 3261162 3261385 "ZLINDEP" 3261776 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1315 3250298 3252066 3254038 "ZDSOLVE" 3259128 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1314 3249544 3249685 3249874 "YSTREAM" 3250144 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1313 3248972 3249218 3249331 "YDIAGRAM" 3249453 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1312 3246746 3248273 3248477 "XRPOLY" 3248815 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1311 3243299 3244617 3245192 "XPR" 3246218 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1310 3241020 3242630 3242834 "XPOLY" 3243130 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1309 3238659 3240027 3240082 "XPOLYC" 3240370 NIL XPOLYC (NIL T T) -9 NIL 3240483 NIL) (-1308 3235035 3237176 3237564 "XPBWPOLY" 3238317 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1307 3230716 3233011 3233053 "XF" 3233674 NIL XF (NIL T) -9 NIL 3234074 NIL) (-1306 3230337 3230425 3230594 "XF-" 3230599 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1305 3225519 3226808 3226863 "XFALG" 3229035 NIL XFALG (NIL T T) -9 NIL 3229824 NIL) (-1304 3224652 3224756 3224961 "XEXPPKG" 3225411 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1303 3222761 3224502 3224598 "XDPOLY" 3224603 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1302 3221554 3222154 3222197 "XALG" 3222202 NIL XALG (NIL T) -9 NIL 3222313 NIL) (-1301 3214996 3219531 3220025 "WUTSET" 3221146 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1300 3213252 3214048 3214371 "WP" 3214807 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1299 3212854 3213074 3213144 "WHILEAST" 3213204 T WHILEAST (NIL) -8 NIL NIL NIL) (-1298 3212326 3212571 3212665 "WHEREAST" 3212782 T WHEREAST (NIL) -8 NIL NIL NIL) (-1297 3211212 3211410 3211705 "WFFINTBS" 3212123 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1296 3209116 3209543 3210005 "WEIER" 3210784 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1295 3208148 3208598 3208640 "VSPACE" 3208776 NIL VSPACE (NIL T) -9 NIL 3208850 NIL) (-1294 3207986 3208013 3208104 "VSPACE-" 3208109 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1293 3207795 3207837 3207905 "VOID" 3207940 T VOID (NIL) -8 NIL NIL NIL) (-1292 3205931 3206290 3206696 "VIEW" 3207411 T VIEW (NIL) -7 NIL NIL NIL) (-1291 3202355 3202994 3203731 "VIEWDEF" 3205216 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1290 3191659 3193903 3196076 "VIEW3D" 3200204 T VIEW3D (NIL) -8 NIL NIL NIL) (-1289 3183910 3185570 3187149 "VIEW2D" 3190102 T VIEW2D (NIL) -8 NIL NIL NIL) (-1288 3179266 3183680 3183772 "VECTOR" 3183853 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1287 3177843 3178102 3178420 "VECTOR2" 3178996 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1286 3171241 3175547 3175590 "VECTCAT" 3176585 NIL VECTCAT (NIL T) -9 NIL 3177172 NIL) (-1285 3170255 3170509 3170899 "VECTCAT-" 3170904 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1284 3169709 3169906 3170026 "VARIABLE" 3170170 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1283 3169642 3169647 3169677 "UTYPE" 3169682 T UTYPE (NIL) -9 NIL NIL NIL) (-1282 3168472 3168626 3168888 "UTSODETL" 3169468 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1281 3165912 3166372 3166896 "UTSODE" 3168013 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1280 3157860 3163673 3164153 "UTS" 3165490 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1279 3148424 3153794 3153837 "UTSCAT" 3154949 NIL UTSCAT (NIL T) -9 NIL 3155707 NIL) (-1278 3145772 3146494 3147483 "UTSCAT-" 3147488 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1277 3145399 3145442 3145575 "UTS2" 3145723 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1276 3139600 3142209 3142252 "URAGG" 3144322 NIL URAGG (NIL T) -9 NIL 3145045 NIL) (-1275 3136539 3137402 3138525 "URAGG-" 3138530 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1274 3132248 3135174 3135639 "UPXSSING" 3136203 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1273 3124424 3131630 3131894 "UPXS" 3132042 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1272 3117497 3124328 3124400 "UPXSCONS" 3124405 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1271 3106904 3113700 3113762 "UPXSCCA" 3114336 NIL UPXSCCA (NIL T T) -9 NIL 3114569 NIL) (-1270 3106542 3106627 3106801 "UPXSCCA-" 3106806 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1269 3095801 3102370 3102413 "UPXSCAT" 3103061 NIL UPXSCAT (NIL T) -9 NIL 3103670 NIL) (-1268 3095231 3095310 3095489 "UPXS2" 3095716 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1267 3093885 3094138 3094489 "UPSQFREE" 3094974 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1266 3087093 3090153 3090208 "UPSCAT" 3091288 NIL UPSCAT (NIL T T) -9 NIL 3092053 NIL) (-1265 3086297 3086504 3086831 "UPSCAT-" 3086836 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1264 3071379 3079424 3079467 "UPOLYC" 3081568 NIL UPOLYC (NIL T) -9 NIL 3082789 NIL) (-1263 3062707 3065133 3068280 "UPOLYC-" 3068285 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1262 3062334 3062377 3062510 "UPOLYC2" 3062658 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1261 3053869 3062017 3062146 "UP" 3062253 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1260 3053208 3053315 3053479 "UPMP" 3053758 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1259 3052761 3052842 3052981 "UPDIVP" 3053121 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1258 3051329 3051578 3051894 "UPDECOMP" 3052510 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1257 3050560 3050672 3050858 "UPCDEN" 3051213 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1256 3050079 3050148 3050297 "UP2" 3050485 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1255 3048546 3049283 3049560 "UNISEG" 3049837 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1254 3047761 3047888 3048093 "UNISEG2" 3048389 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1253 3046821 3047001 3047227 "UNIFACT" 3047577 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1252 3029573 3046133 3046375 "ULS" 3046637 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1251 3017203 3029477 3029549 "ULSCONS" 3029554 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1250 2997924 3010284 3010346 "ULSCCAT" 3010984 NIL ULSCCAT (NIL T T) -9 NIL 3011273 NIL) (-1249 2996974 2997219 2997607 "ULSCCAT-" 2997612 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1248 2986038 2992521 2992564 "ULSCAT" 2993427 NIL ULSCAT (NIL T) -9 NIL 2994158 NIL) (-1247 2985468 2985547 2985726 "ULS2" 2985953 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1246 2984587 2985097 2985204 "UINT8" 2985315 T UINT8 (NIL) -8 NIL NIL 2985400) (-1245 2983705 2984215 2984322 "UINT64" 2984433 T UINT64 (NIL) -8 NIL NIL 2984518) (-1244 2982823 2983333 2983440 "UINT32" 2983551 T UINT32 (NIL) -8 NIL NIL 2983636) (-1243 2981941 2982451 2982558 "UINT16" 2982669 T UINT16 (NIL) -8 NIL NIL 2982754) (-1242 2980230 2981187 2981217 "UFD" 2981429 T UFD (NIL) -9 NIL 2981543 NIL) (-1241 2980024 2980070 2980165 "UFD-" 2980170 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1240 2979106 2979289 2979505 "UDVO" 2979830 T UDVO (NIL) -7 NIL NIL NIL) (-1239 2976922 2977331 2977802 "UDPO" 2978670 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1238 2976855 2976860 2976890 "TYPE" 2976895 T TYPE (NIL) -9 NIL NIL NIL) (-1237 2976615 2976810 2976841 "TYPEAST" 2976846 T TYPEAST (NIL) -8 NIL NIL NIL) (-1236 2975586 2975788 2976028 "TWOFACT" 2976409 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1235 2974609 2974995 2975230 "TUPLE" 2975386 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1234 2972300 2972819 2973358 "TUBETOOL" 2974092 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1233 2971149 2971354 2971595 "TUBE" 2972093 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1232 2965878 2970121 2970404 "TS" 2970901 NIL TS (NIL T) -8 NIL NIL NIL) (-1231 2954518 2958637 2958734 "TSETCAT" 2964003 NIL TSETCAT (NIL T T T T) -9 NIL 2965534 NIL) (-1230 2949250 2950850 2952741 "TSETCAT-" 2952746 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1229 2943889 2944736 2945665 "TRMANIP" 2948386 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1228 2943330 2943393 2943556 "TRIMAT" 2943821 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1227 2941196 2941433 2941790 "TRIGMNIP" 2943079 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1226 2940716 2940829 2940859 "TRIGCAT" 2941072 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1225 2940385 2940464 2940605 "TRIGCAT-" 2940610 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1224 2937233 2939243 2939524 "TREE" 2940139 NIL TREE (NIL T) -8 NIL NIL NIL) (-1223 2936507 2937035 2937065 "TRANFUN" 2937100 T TRANFUN (NIL) -9 NIL 2937166 NIL) (-1222 2935786 2935977 2936257 "TRANFUN-" 2936262 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1221 2935590 2935622 2935683 "TOPSP" 2935747 T TOPSP (NIL) -7 NIL NIL NIL) (-1220 2934938 2935053 2935207 "TOOLSIGN" 2935471 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1219 2933572 2934115 2934354 "TEXTFILE" 2934721 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1218 2931484 2932025 2932454 "TEX" 2933165 T TEX (NIL) -8 NIL NIL NIL) (-1217 2931265 2931296 2931368 "TEX1" 2931447 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1216 2930913 2930976 2931066 "TEMUTL" 2931197 T TEMUTL (NIL) -7 NIL NIL NIL) (-1215 2929067 2929347 2929672 "TBCMPPK" 2930636 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1214 2920776 2927153 2927209 "TBAGG" 2927609 NIL TBAGG (NIL T T) -9 NIL 2927820 NIL) (-1213 2915846 2917334 2919088 "TBAGG-" 2919093 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1212 2915230 2915337 2915482 "TANEXP" 2915735 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1211 2914741 2915005 2915095 "TALGOP" 2915175 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1210 2908137 2914598 2914691 "TABLE" 2914696 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1209 2907549 2907648 2907786 "TABLEAU" 2908034 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1208 2902157 2903377 2904625 "TABLBUMP" 2906335 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1207 2901379 2901526 2901707 "SYSTEM" 2901998 T SYSTEM (NIL) -8 NIL NIL NIL) (-1206 2897838 2898537 2899320 "SYSSOLP" 2900630 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1205 2897636 2897793 2897824 "SYSPTR" 2897829 T SYSPTR (NIL) -8 NIL NIL NIL) (-1204 2896672 2897177 2897296 "SYSNNI" 2897482 NIL SYSNNI (NIL NIL) -8 NIL NIL 2897567) (-1203 2895971 2896430 2896509 "SYSINT" 2896569 NIL SYSINT (NIL NIL) -8 NIL NIL 2896614) (-1202 2892303 2893249 2893959 "SYNTAX" 2895283 T SYNTAX (NIL) -8 NIL NIL NIL) (-1201 2889461 2890063 2890695 "SYMTAB" 2891693 T SYMTAB (NIL) -8 NIL NIL NIL) (-1200 2884710 2885612 2886595 "SYMS" 2888500 T SYMS (NIL) -8 NIL NIL NIL) (-1199 2881945 2884168 2884398 "SYMPOLY" 2884515 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1198 2881462 2881537 2881660 "SYMFUNC" 2881857 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1197 2877482 2878774 2879587 "SYMBOL" 2880671 T SYMBOL (NIL) -8 NIL NIL NIL) (-1196 2871021 2872710 2874430 "SWITCH" 2875784 T SWITCH (NIL) -8 NIL NIL NIL) (-1195 2864365 2869977 2870271 "SUTS" 2870785 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1194 2856541 2863747 2864011 "SUPXS" 2864159 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1193 2848024 2856159 2856285 "SUP" 2856450 NIL SUP (NIL T) -8 NIL NIL NIL) (-1192 2847183 2847310 2847527 "SUPFRACF" 2847892 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1191 2846804 2846863 2846976 "SUP2" 2847118 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1190 2845252 2845526 2845882 "SUMRF" 2846503 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1189 2844587 2844653 2844845 "SUMFS" 2845173 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1188 2827374 2843899 2844141 "SULS" 2844403 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1187 2826976 2827196 2827266 "SUCHTAST" 2827326 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1186 2826271 2826501 2826641 "SUCH" 2826884 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1185 2820138 2821177 2822136 "SUBSPACE" 2825359 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1184 2819568 2819658 2819822 "SUBRESP" 2820026 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1183 2812936 2814233 2815544 "STTF" 2818304 NIL STTF (NIL T) -7 NIL NIL NIL) (-1182 2807109 2808229 2809376 "STTFNC" 2811836 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1181 2798422 2800291 2802085 "STTAYLOR" 2805350 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1180 2791558 2798286 2798369 "STRTBL" 2798374 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1179 2786519 2791267 2791366 "STRING" 2791481 T STRING (NIL) -8 NIL NIL NIL) (-1178 2779275 2784138 2784749 "STREAM" 2785943 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1177 2778785 2778862 2779006 "STREAM3" 2779192 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1176 2777767 2777950 2778185 "STREAM2" 2778598 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1175 2777455 2777507 2777600 "STREAM1" 2777709 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1174 2776471 2776652 2776883 "STINPROD" 2777271 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1173 2776009 2776219 2776249 "STEP" 2776329 T STEP (NIL) -9 NIL 2776407 NIL) (-1172 2775196 2775498 2775646 "STEPAST" 2775883 T STEPAST (NIL) -8 NIL NIL NIL) (-1171 2768634 2775095 2775172 "STBL" 2775177 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1170 2763704 2767797 2767840 "STAGG" 2767993 NIL STAGG (NIL T) -9 NIL 2768082 NIL) (-1169 2761406 2762008 2762880 "STAGG-" 2762885 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1168 2759556 2761176 2761268 "STACK" 2761349 NIL STACK (NIL T) -8 NIL NIL NIL) (-1167 2752251 2757697 2758153 "SREGSET" 2759186 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1166 2744676 2746045 2747558 "SRDCMPK" 2750857 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1165 2737513 2742035 2742065 "SRAGG" 2743368 T SRAGG (NIL) -9 NIL 2743976 NIL) (-1164 2736530 2736785 2737164 "SRAGG-" 2737169 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1163 2730714 2735477 2735898 "SQMATRIX" 2736156 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1162 2724402 2727432 2728159 "SPLTREE" 2730059 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1161 2720365 2721058 2721704 "SPLNODE" 2723828 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1160 2719412 2719645 2719675 "SPFCAT" 2720119 T SPFCAT (NIL) -9 NIL NIL NIL) (-1159 2718149 2718359 2718623 "SPECOUT" 2719170 T SPECOUT (NIL) -7 NIL NIL NIL) (-1158 2709245 2711117 2711147 "SPADXPT" 2715823 T SPADXPT (NIL) -9 NIL 2717987 NIL) (-1157 2709006 2709046 2709115 "SPADPRSR" 2709198 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1156 2707055 2708961 2708992 "SPADAST" 2708997 T SPADAST (NIL) -8 NIL NIL NIL) (-1155 2698986 2700759 2700802 "SPACEC" 2705175 NIL SPACEC (NIL T) -9 NIL 2706991 NIL) (-1154 2697116 2698918 2698967 "SPACE3" 2698972 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1153 2695868 2696039 2696330 "SORTPAK" 2696921 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1152 2693960 2694263 2694675 "SOLVETRA" 2695532 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1151 2693010 2693232 2693493 "SOLVESER" 2693733 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1150 2688314 2689202 2690197 "SOLVERAD" 2692062 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1149 2684129 2684738 2685467 "SOLVEFOR" 2687681 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1148 2678399 2683478 2683575 "SNTSCAT" 2683580 NIL SNTSCAT (NIL T T T T) -9 NIL 2683650 NIL) (-1147 2672505 2676722 2677113 "SMTS" 2678089 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1146 2666914 2672393 2672470 "SMP" 2672475 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1145 2665073 2665374 2665772 "SMITH" 2666611 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1144 2657177 2661652 2661755 "SMATCAT" 2663106 NIL SMATCAT (NIL NIL T T T) -9 NIL 2663656 NIL) (-1143 2654117 2654940 2656118 "SMATCAT-" 2656123 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1142 2651758 2653325 2653368 "SKAGG" 2653629 NIL SKAGG (NIL T) -9 NIL 2653764 NIL) (-1141 2647948 2651231 2651415 "SINT" 2651567 T SINT (NIL) -8 NIL NIL 2651729) (-1140 2647720 2647758 2647824 "SIMPAN" 2647904 T SIMPAN (NIL) -7 NIL NIL NIL) (-1139 2646999 2647255 2647395 "SIG" 2647602 T SIG (NIL) -8 NIL NIL NIL) (-1138 2645837 2646058 2646333 "SIGNRF" 2646758 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1137 2644670 2644821 2645105 "SIGNEF" 2645666 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1136 2643976 2644253 2644377 "SIGAST" 2644568 T SIGAST (NIL) -8 NIL NIL NIL) (-1135 2641666 2642120 2642626 "SHP" 2643517 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1134 2635495 2641567 2641643 "SHDP" 2641648 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1133 2635054 2635246 2635276 "SGROUP" 2635369 T SGROUP (NIL) -9 NIL 2635431 NIL) (-1132 2634912 2634938 2635011 "SGROUP-" 2635016 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1131 2631703 2632401 2633124 "SGCF" 2634211 T SGCF (NIL) -7 NIL NIL NIL) (-1130 2626071 2631150 2631247 "SFRTCAT" 2631252 NIL SFRTCAT (NIL T T T T) -9 NIL 2631291 NIL) (-1129 2619492 2620510 2621646 "SFRGCD" 2625054 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1128 2612618 2613691 2614877 "SFQCMPK" 2618425 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1127 2612238 2612327 2612438 "SFORT" 2612559 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1126 2611356 2612078 2612199 "SEXOF" 2612204 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1125 2610463 2611237 2611305 "SEX" 2611310 T SEX (NIL) -8 NIL NIL NIL) (-1124 2606244 2606959 2607054 "SEXCAT" 2609676 NIL SEXCAT (NIL T T T T T) -9 NIL 2610236 NIL) (-1123 2603397 2606178 2606226 "SET" 2606231 NIL SET (NIL T) -8 NIL NIL NIL) (-1122 2601621 2602110 2602415 "SETMN" 2603138 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1121 2601187 2601339 2601369 "SETCAT" 2601486 T SETCAT (NIL) -9 NIL 2601571 NIL) (-1120 2600967 2601019 2601118 "SETCAT-" 2601123 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1119 2597328 2599428 2599471 "SETAGG" 2600341 NIL SETAGG (NIL T) -9 NIL 2600681 NIL) (-1118 2596786 2596902 2597139 "SETAGG-" 2597144 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1117 2596229 2596482 2596583 "SEQAST" 2596707 T SEQAST (NIL) -8 NIL NIL NIL) (-1116 2595428 2595722 2595783 "SEGXCAT" 2596069 NIL SEGXCAT (NIL T T) -9 NIL 2596189 NIL) (-1115 2594434 2595094 2595276 "SEG" 2595281 NIL SEG (NIL T) -8 NIL NIL NIL) (-1114 2593413 2593627 2593670 "SEGCAT" 2594192 NIL SEGCAT (NIL T) -9 NIL 2594413 NIL) (-1113 2592345 2592776 2592984 "SEGBIND" 2593240 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1112 2591966 2592025 2592138 "SEGBIND2" 2592280 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1111 2591539 2591767 2591844 "SEGAST" 2591911 T SEGAST (NIL) -8 NIL NIL NIL) (-1110 2590758 2590884 2591088 "SEG2" 2591383 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1109 2590129 2590693 2590740 "SDVAR" 2590745 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1108 2582380 2589899 2590029 "SDPOL" 2590034 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1107 2580973 2581239 2581558 "SCPKG" 2582095 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1106 2580137 2580309 2580501 "SCOPE" 2580803 T SCOPE (NIL) -8 NIL NIL NIL) (-1105 2579357 2579491 2579670 "SCACHE" 2579992 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1104 2578989 2579175 2579205 "SASTCAT" 2579210 T SASTCAT (NIL) -9 NIL 2579223 NIL) (-1103 2578476 2578824 2578900 "SAOS" 2578935 T SAOS (NIL) -8 NIL NIL NIL) (-1102 2578041 2578076 2578249 "SAERFFC" 2578435 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1101 2571704 2577938 2578018 "SAE" 2578023 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1100 2571297 2571332 2571491 "SAEFACT" 2571663 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1099 2569618 2569932 2570333 "RURPK" 2570963 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1098 2568255 2568561 2568866 "RULESET" 2569452 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1097 2565478 2566008 2566466 "RULE" 2567936 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1096 2565090 2565272 2565355 "RULECOLD" 2565430 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1095 2564880 2564908 2564979 "RTVALUE" 2565041 T RTVALUE (NIL) -8 NIL NIL NIL) (-1094 2564351 2564597 2564691 "RSTRCAST" 2564808 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1093 2559199 2559994 2560914 "RSETGCD" 2563550 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1092 2548429 2553508 2553605 "RSETCAT" 2557724 NIL RSETCAT (NIL T T T T) -9 NIL 2558821 NIL) (-1091 2546356 2546895 2547719 "RSETCAT-" 2547724 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1090 2538742 2540118 2541638 "RSDCMPK" 2544955 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1089 2536707 2537174 2537248 "RRCC" 2538334 NIL RRCC (NIL T T) -9 NIL 2538678 NIL) (-1088 2536058 2536232 2536511 "RRCC-" 2536516 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1087 2535501 2535754 2535855 "RPTAST" 2535979 T RPTAST (NIL) -8 NIL NIL NIL) (-1086 2508977 2518613 2518680 "RPOLCAT" 2529346 NIL RPOLCAT (NIL T T T) -9 NIL 2532506 NIL) (-1085 2500475 2502815 2505937 "RPOLCAT-" 2505942 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1084 2491412 2498686 2499168 "ROUTINE" 2500015 T ROUTINE (NIL) -8 NIL NIL NIL) (-1083 2488073 2491038 2491178 "ROMAN" 2491294 T ROMAN (NIL) -8 NIL NIL NIL) (-1082 2486317 2486933 2487193 "ROIRC" 2487878 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1081 2482521 2484806 2484836 "RNS" 2485140 T RNS (NIL) -9 NIL 2485414 NIL) (-1080 2481030 2481413 2481947 "RNS-" 2482022 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1079 2480419 2480827 2480857 "RNG" 2480862 T RNG (NIL) -9 NIL 2480883 NIL) (-1078 2479422 2479784 2479986 "RNGBIND" 2480270 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1077 2478807 2479195 2479238 "RMODULE" 2479243 NIL RMODULE (NIL T) -9 NIL 2479270 NIL) (-1076 2477643 2477737 2478073 "RMCAT2" 2478708 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1075 2474493 2476989 2477286 "RMATRIX" 2477405 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1074 2467320 2469580 2469695 "RMATCAT" 2473054 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2474036 NIL) (-1073 2466695 2466842 2467149 "RMATCAT-" 2467154 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1072 2466310 2466482 2466525 "RLINSET" 2466587 NIL RLINSET (NIL T) -9 NIL 2466631 NIL) (-1071 2465877 2465952 2466080 "RINTERP" 2466229 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1070 2464921 2465475 2465505 "RING" 2465561 T RING (NIL) -9 NIL 2465653 NIL) (-1069 2464713 2464757 2464854 "RING-" 2464859 NIL RING- (NIL T) -8 NIL NIL NIL) (-1068 2463554 2463791 2464049 "RIDIST" 2464477 T RIDIST (NIL) -7 NIL NIL NIL) (-1067 2454843 2463022 2463228 "RGCHAIN" 2463402 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1066 2454179 2454585 2454626 "RGBCSPC" 2454684 NIL RGBCSPC (NIL T) -9 NIL 2454736 NIL) (-1065 2453323 2453704 2453745 "RGBCMDL" 2453977 NIL RGBCMDL (NIL T) -9 NIL 2454091 NIL) (-1064 2450317 2450931 2451601 "RF" 2452687 NIL RF (NIL T) -7 NIL NIL NIL) (-1063 2449963 2450026 2450129 "RFFACTOR" 2450248 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1062 2449688 2449723 2449820 "RFFACT" 2449922 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1061 2447805 2448169 2448551 "RFDIST" 2449328 T RFDIST (NIL) -7 NIL NIL NIL) (-1060 2447258 2447350 2447513 "RETSOL" 2447707 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1059 2446894 2446974 2447017 "RETRACT" 2447150 NIL RETRACT (NIL T) -9 NIL 2447237 NIL) (-1058 2446743 2446768 2446855 "RETRACT-" 2446860 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1057 2446345 2446565 2446635 "RETAST" 2446695 T RETAST (NIL) -8 NIL NIL NIL) (-1056 2439089 2445998 2446125 "RESULT" 2446240 T RESULT (NIL) -8 NIL NIL NIL) (-1055 2437680 2438358 2438557 "RESRING" 2438992 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1054 2437316 2437365 2437463 "RESLATC" 2437617 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1053 2437021 2437056 2437163 "REPSQ" 2437275 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1052 2434443 2435023 2435625 "REP" 2436441 T REP (NIL) -7 NIL NIL NIL) (-1051 2434140 2434175 2434286 "REPDB" 2434402 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1050 2428040 2429429 2430652 "REP2" 2432952 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1049 2424417 2425098 2425906 "REP1" 2427267 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1048 2417113 2422558 2423014 "REGSET" 2424047 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1047 2415878 2416261 2416511 "REF" 2416898 NIL REF (NIL T) -8 NIL NIL NIL) (-1046 2415255 2415358 2415525 "REDORDER" 2415762 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1045 2411223 2414468 2414695 "RECLOS" 2415083 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1044 2410275 2410456 2410671 "REALSOLV" 2411030 T REALSOLV (NIL) -7 NIL NIL NIL) (-1043 2410121 2410162 2410192 "REAL" 2410197 T REAL (NIL) -9 NIL 2410232 NIL) (-1042 2406604 2407406 2408290 "REAL0Q" 2409286 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1041 2402205 2403193 2404254 "REAL0" 2405585 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1040 2401676 2401922 2402016 "RDUCEAST" 2402133 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1039 2401081 2401153 2401360 "RDIV" 2401598 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1038 2400149 2400323 2400536 "RDIST" 2400903 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1037 2398746 2399033 2399405 "RDETRS" 2399857 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1036 2396558 2397012 2397550 "RDETR" 2398288 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1035 2395183 2395461 2395858 "RDEEFS" 2396274 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1034 2393692 2393998 2394423 "RDEEF" 2394871 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1033 2387725 2390646 2390676 "RCFIELD" 2391971 T RCFIELD (NIL) -9 NIL 2392702 NIL) (-1032 2385789 2386293 2386989 "RCFIELD-" 2387064 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1031 2382033 2383862 2383905 "RCAGG" 2384989 NIL RCAGG (NIL T) -9 NIL 2385454 NIL) (-1030 2381661 2381755 2381918 "RCAGG-" 2381923 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1029 2380996 2381108 2381273 "RATRET" 2381545 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1028 2380549 2380616 2380737 "RATFACT" 2380924 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1027 2379857 2379977 2380129 "RANDSRC" 2380419 T RANDSRC (NIL) -7 NIL NIL NIL) (-1026 2379591 2379635 2379708 "RADUTIL" 2379806 T RADUTIL (NIL) -7 NIL NIL NIL) (-1025 2372419 2378422 2378733 "RADIX" 2379314 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1024 2362879 2372261 2372391 "RADFF" 2372396 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1023 2362526 2362601 2362631 "RADCAT" 2362791 T RADCAT (NIL) -9 NIL NIL NIL) (-1022 2362308 2362356 2362456 "RADCAT-" 2362461 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1021 2360409 2362078 2362170 "QUEUE" 2362251 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1020 2356670 2360342 2360390 "QUAT" 2360395 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1019 2356301 2356344 2356475 "QUATCT2" 2356621 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1018 2349099 2352724 2352766 "QUATCAT" 2353557 NIL QUATCAT (NIL T) -9 NIL 2354323 NIL) (-1017 2345238 2346275 2347665 "QUATCAT-" 2347761 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1016 2342678 2344286 2344329 "QUAGG" 2344710 NIL QUAGG (NIL T) -9 NIL 2344885 NIL) (-1015 2342280 2342500 2342570 "QQUTAST" 2342630 T QQUTAST (NIL) -8 NIL NIL NIL) (-1014 2341293 2341793 2341958 "QFORM" 2342161 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1013 2331625 2337140 2337182 "QFCAT" 2337850 NIL QFCAT (NIL T) -9 NIL 2338851 NIL) (-1012 2327192 2328393 2329987 "QFCAT-" 2330083 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1011 2326823 2326866 2326997 "QFCAT2" 2327143 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1010 2326278 2326388 2326520 "QEQUAT" 2326713 T QEQUAT (NIL) -8 NIL NIL NIL) (-1009 2319404 2320477 2321663 "QCMPACK" 2325211 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1008 2316942 2317390 2317820 "QALGSET" 2319059 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1007 2316177 2316353 2316589 "QALGSET2" 2316760 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1006 2314862 2315086 2315405 "PWFFINTB" 2315950 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1005 2313037 2313205 2313561 "PUSHVAR" 2314676 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-1004 2308926 2309980 2310023 "PTRANFN" 2311934 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-1003 2307317 2307608 2307932 "PTPACK" 2308637 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-1002 2306946 2307003 2307114 "PTFUNC2" 2307254 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-1001 2301341 2305735 2305778 "PTCAT" 2306078 NIL PTCAT (NIL T) -9 NIL 2306231 NIL) (-1000 2300996 2301031 2301157 "PSQFR" 2301300 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-999 2299591 2299889 2300223 "PSEUDLIN" 2300694 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-998 2286354 2288725 2291049 "PSETPK" 2297351 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-997 2279372 2282112 2282208 "PSETCAT" 2285229 NIL PSETCAT (NIL T T T T) -9 NIL 2286043 NIL) (-996 2277208 2277842 2278663 "PSETCAT-" 2278668 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-995 2276557 2276722 2276750 "PSCURVE" 2277018 T PSCURVE (NIL) -9 NIL 2277185 NIL) (-994 2272541 2274057 2274122 "PSCAT" 2274966 NIL PSCAT (NIL T T T) -9 NIL 2275206 NIL) (-993 2271604 2271820 2272220 "PSCAT-" 2272225 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-992 2269963 2270673 2270936 "PRTITION" 2271361 T PRTITION (NIL) -8 NIL NIL NIL) (-991 2269438 2269684 2269776 "PRTDAST" 2269891 T PRTDAST (NIL) -8 NIL NIL NIL) (-990 2258528 2260742 2262930 "PRS" 2267300 NIL PRS (NIL T T) -7 NIL NIL NIL) (-989 2256314 2257850 2257890 "PRQAGG" 2258073 NIL PRQAGG (NIL T) -9 NIL 2258175 NIL) (-988 2255650 2255955 2255983 "PROPLOG" 2256122 T PROPLOG (NIL) -9 NIL 2256237 NIL) (-987 2255254 2255311 2255434 "PROPFUN2" 2255573 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-986 2254569 2254690 2254862 "PROPFUN1" 2255115 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-985 2252750 2253316 2253613 "PROPFRML" 2254305 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-984 2252219 2252326 2252454 "PROPERTY" 2252642 T PROPERTY (NIL) -8 NIL NIL NIL) (-983 2246277 2250385 2251205 "PRODUCT" 2251445 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-982 2243555 2245735 2245969 "PR" 2246088 NIL PR (NIL T T) -8 NIL NIL NIL) (-981 2243351 2243383 2243442 "PRINT" 2243516 T PRINT (NIL) -7 NIL NIL NIL) (-980 2242691 2242808 2242960 "PRIMES" 2243231 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-979 2240756 2241157 2241623 "PRIMELT" 2242270 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-978 2240485 2240534 2240562 "PRIMCAT" 2240686 T PRIMCAT (NIL) -9 NIL NIL NIL) (-977 2236603 2240423 2240468 "PRIMARR" 2240473 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-976 2235610 2235788 2236016 "PRIMARR2" 2236421 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-975 2235253 2235309 2235420 "PREASSOC" 2235548 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-974 2234728 2234861 2234889 "PPCURVE" 2235094 T PPCURVE (NIL) -9 NIL 2235230 NIL) (-973 2234323 2234523 2234606 "PORTNUM" 2234665 T PORTNUM (NIL) -8 NIL NIL NIL) (-972 2231682 2232081 2232673 "POLYROOT" 2233904 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-971 2225588 2231286 2231446 "POLY" 2231555 NIL POLY (NIL T) -8 NIL NIL NIL) (-970 2224971 2225029 2225263 "POLYLIFT" 2225524 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-969 2221246 2221695 2222324 "POLYCATQ" 2224516 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-968 2207588 2212993 2213058 "POLYCAT" 2216572 NIL POLYCAT (NIL T T T) -9 NIL 2218450 NIL) (-967 2201037 2202899 2205283 "POLYCAT-" 2205288 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-966 2200624 2200692 2200812 "POLY2UP" 2200963 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-965 2200256 2200313 2200422 "POLY2" 2200561 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-964 2198941 2199180 2199456 "POLUTIL" 2200030 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-963 2197296 2197573 2197904 "POLTOPOL" 2198663 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-962 2192762 2197230 2197277 "POINT" 2197282 NIL POINT (NIL T) -8 NIL NIL NIL) (-961 2190949 2191306 2191681 "PNTHEORY" 2192407 T PNTHEORY (NIL) -7 NIL NIL NIL) (-960 2189407 2189704 2190103 "PMTOOLS" 2190647 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-959 2189000 2189078 2189195 "PMSYM" 2189323 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-958 2188508 2188577 2188752 "PMQFCAT" 2188925 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-957 2187863 2187973 2188129 "PMPRED" 2188385 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-956 2187256 2187342 2187504 "PMPREDFS" 2187764 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-955 2185920 2186128 2186506 "PMPLCAT" 2187018 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-954 2185452 2185531 2185683 "PMLSAGG" 2185835 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-953 2184925 2185001 2185183 "PMKERNEL" 2185370 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-952 2184542 2184617 2184730 "PMINS" 2184844 NIL PMINS (NIL T) -7 NIL NIL NIL) (-951 2183984 2184053 2184262 "PMFS" 2184467 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-950 2183212 2183330 2183535 "PMDOWN" 2183861 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-949 2182379 2182537 2182718 "PMASS" 2183051 T PMASS (NIL) -7 NIL NIL NIL) (-948 2181652 2181762 2181925 "PMASSFS" 2182266 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-947 2181307 2181375 2181469 "PLOTTOOL" 2181578 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-946 2175914 2177118 2178266 "PLOT" 2180179 T PLOT (NIL) -8 NIL NIL NIL) (-945 2171718 2172762 2173683 "PLOT3D" 2175013 T PLOT3D (NIL) -8 NIL NIL NIL) (-944 2170630 2170807 2171042 "PLOT1" 2171522 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-943 2146021 2150696 2155547 "PLEQN" 2165896 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-942 2145339 2145461 2145641 "PINTERP" 2145886 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-941 2145032 2145079 2145182 "PINTERPA" 2145286 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-940 2144248 2144796 2144883 "PI" 2144923 T PI (NIL) -8 NIL NIL 2144990) (-939 2142531 2143506 2143534 "PID" 2143716 T PID (NIL) -9 NIL 2143850 NIL) (-938 2142282 2142319 2142394 "PICOERCE" 2142488 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-937 2141602 2141741 2141917 "PGROEB" 2142138 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-936 2137189 2138003 2138908 "PGE" 2140717 T PGE (NIL) -7 NIL NIL NIL) (-935 2135312 2135559 2135925 "PGCD" 2136906 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-934 2134650 2134753 2134914 "PFRPAC" 2135196 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-933 2131290 2133198 2133551 "PFR" 2134329 NIL PFR (NIL T) -8 NIL NIL NIL) (-932 2129679 2129923 2130248 "PFOTOOLS" 2131037 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-931 2128212 2128451 2128802 "PFOQ" 2129436 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-930 2126713 2126925 2127281 "PFO" 2127996 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-929 2123266 2126602 2126671 "PF" 2126676 NIL PF (NIL NIL) -8 NIL NIL NIL) (-928 2120586 2121857 2121885 "PFECAT" 2122470 T PFECAT (NIL) -9 NIL 2122854 NIL) (-927 2120031 2120185 2120399 "PFECAT-" 2120404 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-926 2118634 2118886 2119187 "PFBRU" 2119780 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-925 2116500 2116852 2117284 "PFBR" 2118285 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-924 2112546 2114012 2114659 "PERM" 2115886 NIL PERM (NIL T) -8 NIL NIL NIL) (-923 2107780 2108753 2109623 "PERMGRP" 2111709 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-922 2105844 2106804 2106845 "PERMCAT" 2107245 NIL PERMCAT (NIL T) -9 NIL 2107543 NIL) (-921 2105497 2105538 2105662 "PERMAN" 2105797 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-920 2102988 2105162 2105284 "PENDTREE" 2105408 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-919 2101917 2102132 2102173 "PDSPC" 2102706 NIL PDSPC (NIL T) -9 NIL 2102951 NIL) (-918 2101020 2101238 2101600 "PDSPC-" 2101605 NIL PDSPC- (NIL T T) -8 NIL NIL NIL) (-917 2099902 2100670 2100711 "PDRING" 2100716 NIL PDRING (NIL T) -9 NIL 2100744 NIL) (-916 2098789 2099407 2099461 "PDMOD" 2099466 NIL PDMOD (NIL T T) -9 NIL 2099570 NIL) (-915 2096004 2096782 2097450 "PDEPROB" 2098141 T PDEPROB (NIL) -8 NIL NIL NIL) (-914 2093549 2094053 2094608 "PDEPACK" 2095469 T PDEPACK (NIL) -7 NIL NIL NIL) (-913 2092461 2092651 2092902 "PDECOMP" 2093348 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-912 2090026 2090869 2090897 "PDECAT" 2091684 T PDECAT (NIL) -9 NIL 2092397 NIL) (-911 2089655 2089710 2089764 "PDDOM" 2089929 NIL PDDOM (NIL T T) -9 NIL 2090009 NIL) (-910 2089474 2089504 2089611 "PDDOM-" 2089616 NIL PDDOM- (NIL T T T) -8 NIL NIL NIL) (-909 2089225 2089258 2089348 "PCOMP" 2089435 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-908 2087403 2088026 2088323 "PBWLB" 2088954 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-907 2079876 2081476 2082814 "PATTERN" 2086086 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-906 2079508 2079565 2079674 "PATTERN2" 2079813 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-905 2077265 2077653 2078110 "PATTERN1" 2079097 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-904 2074633 2075214 2075695 "PATRES" 2076830 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-903 2074197 2074264 2074396 "PATRES2" 2074560 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-902 2072080 2072485 2072892 "PATMATCH" 2073864 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-901 2071576 2071785 2071826 "PATMAB" 2071933 NIL PATMAB (NIL T) -9 NIL 2072016 NIL) (-900 2070094 2070430 2070688 "PATLRES" 2071381 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-899 2069640 2069763 2069804 "PATAB" 2069809 NIL PATAB (NIL T) -9 NIL 2069981 NIL) (-898 2067822 2068217 2068640 "PARTPERM" 2069237 T PARTPERM (NIL) -7 NIL NIL NIL) (-897 2067443 2067506 2067608 "PARSURF" 2067753 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-896 2067075 2067132 2067241 "PARSU2" 2067380 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-895 2066839 2066879 2066946 "PARSER" 2067028 T PARSER (NIL) -7 NIL NIL NIL) (-894 2066460 2066523 2066625 "PARSCURV" 2066770 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-893 2066092 2066149 2066258 "PARSC2" 2066397 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-892 2065731 2065789 2065886 "PARPCURV" 2066028 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-891 2065363 2065420 2065529 "PARPC2" 2065668 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-890 2064424 2064736 2064918 "PARAMAST" 2065201 T PARAMAST (NIL) -8 NIL NIL NIL) (-889 2063944 2064030 2064149 "PAN2EXPR" 2064325 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-888 2062721 2063065 2063293 "PALETTE" 2063736 T PALETTE (NIL) -8 NIL NIL NIL) (-887 2061114 2061726 2062086 "PAIR" 2062407 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-886 2054706 2060371 2060566 "PADICRC" 2060968 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-885 2047622 2054050 2054235 "PADICRAT" 2054553 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-884 2045937 2047559 2047604 "PADIC" 2047609 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-883 2043033 2044597 2044637 "PADICCT" 2045218 NIL PADICCT (NIL NIL) -9 NIL 2045500 NIL) (-882 2041990 2042190 2042458 "PADEPAC" 2042820 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-881 2041202 2041335 2041541 "PADE" 2041852 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-880 2039589 2040410 2040690 "OWP" 2041006 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-879 2039082 2039295 2039392 "OVERSET" 2039512 T OVERSET (NIL) -8 NIL NIL NIL) (-878 2038128 2038687 2038859 "OVAR" 2038950 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-877 2037392 2037513 2037674 "OUT" 2037987 T OUT (NIL) -7 NIL NIL NIL) (-876 2026264 2028501 2030701 "OUTFORM" 2035212 T OUTFORM (NIL) -8 NIL NIL NIL) (-875 2025600 2025861 2025988 "OUTBFILE" 2026157 T OUTBFILE (NIL) -8 NIL NIL NIL) (-874 2024907 2025072 2025100 "OUTBCON" 2025418 T OUTBCON (NIL) -9 NIL 2025584 NIL) (-873 2024508 2024620 2024777 "OUTBCON-" 2024782 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-872 2023888 2024237 2024326 "OSI" 2024439 T OSI (NIL) -8 NIL NIL NIL) (-871 2023391 2023729 2023757 "OSGROUP" 2023762 T OSGROUP (NIL) -9 NIL 2023784 NIL) (-870 2022136 2022363 2022648 "ORTHPOL" 2023138 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-869 2019687 2021971 2022092 "OREUP" 2022097 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-868 2017090 2019378 2019505 "ORESUP" 2019629 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-867 2014618 2015118 2015679 "OREPCTO" 2016579 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-866 2008290 2010491 2010532 "OREPCAT" 2012880 NIL OREPCAT (NIL T) -9 NIL 2013984 NIL) (-865 2005437 2006219 2007277 "OREPCAT-" 2007282 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-864 2004684 2004907 2004935 "ORDTYPE" 2005244 T ORDTYPE (NIL) -9 NIL 2005407 NIL) (-863 2004027 2004201 2004456 "ORDTYPE-" 2004461 NIL ORDTYPE- (NIL T) -8 NIL NIL NIL) (-862 2003641 2003910 2003996 "ORDSTRCT" 2004001 NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-861 2003211 2003509 2003537 "ORDSET" 2003542 T ORDSET (NIL) -9 NIL 2003564 NIL) (-860 2001749 2002540 2002568 "ORDRING" 2002770 T ORDRING (NIL) -9 NIL 2002895 NIL) (-859 2001394 2001488 2001632 "ORDRING-" 2001637 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-858 2000747 2001210 2001238 "ORDMON" 2001243 T ORDMON (NIL) -9 NIL 2001264 NIL) (-857 1999909 2000056 2000251 "ORDFUNS" 2000596 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-856 1999220 1999639 1999667 "ORDFIN" 1999732 T ORDFIN (NIL) -9 NIL 1999806 NIL) (-855 1995779 1997806 1998215 "ORDCOMP" 1998844 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-854 1995045 1995172 1995358 "ORDCOMP2" 1995639 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-853 1991626 1992536 1993350 "OPTPROB" 1994251 T OPTPROB (NIL) -8 NIL NIL NIL) (-852 1988428 1989067 1989771 "OPTPACK" 1990942 T OPTPACK (NIL) -7 NIL NIL NIL) (-851 1986101 1986867 1986895 "OPTCAT" 1987714 T OPTCAT (NIL) -9 NIL 1988364 NIL) (-850 1985485 1985778 1985883 "OPSIG" 1986016 T OPSIG (NIL) -8 NIL NIL NIL) (-849 1985253 1985292 1985358 "OPQUERY" 1985439 T OPQUERY (NIL) -7 NIL NIL NIL) (-848 1982384 1983564 1984068 "OP" 1984782 NIL OP (NIL T) -8 NIL NIL NIL) (-847 1981744 1981970 1982011 "OPERCAT" 1982223 NIL OPERCAT (NIL T) -9 NIL 1982320 NIL) (-846 1981499 1981555 1981672 "OPERCAT-" 1981677 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-845 1978312 1980296 1980665 "ONECOMP" 1981163 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-844 1977617 1977732 1977906 "ONECOMP2" 1978184 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-843 1977036 1977142 1977272 "OMSERVER" 1977507 T OMSERVER (NIL) -7 NIL NIL NIL) (-842 1973898 1976476 1976516 "OMSAGG" 1976577 NIL OMSAGG (NIL T) -9 NIL 1976641 NIL) (-841 1972521 1972784 1973066 "OMPKG" 1973636 T OMPKG (NIL) -7 NIL NIL NIL) (-840 1971951 1972054 1972082 "OM" 1972381 T OM (NIL) -9 NIL NIL NIL) (-839 1970498 1971500 1971669 "OMLO" 1971832 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-838 1969458 1969605 1969825 "OMEXPR" 1970324 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-837 1968749 1969004 1969140 "OMERR" 1969342 T OMERR (NIL) -8 NIL NIL NIL) (-836 1967900 1968170 1968330 "OMERRK" 1968609 T OMERRK (NIL) -8 NIL NIL NIL) (-835 1967351 1967577 1967685 "OMENC" 1967812 T OMENC (NIL) -8 NIL NIL NIL) (-834 1961246 1962431 1963602 "OMDEV" 1966200 T OMDEV (NIL) -8 NIL NIL NIL) (-833 1960315 1960486 1960680 "OMCONN" 1961072 T OMCONN (NIL) -8 NIL NIL NIL) (-832 1958809 1959785 1959813 "OINTDOM" 1959818 T OINTDOM (NIL) -9 NIL 1959839 NIL) (-831 1956147 1957497 1957834 "OFMONOID" 1958504 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-830 1955519 1956084 1956129 "ODVAR" 1956134 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-829 1952942 1955264 1955419 "ODR" 1955424 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-828 1945247 1952718 1952844 "ODPOL" 1952849 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-827 1939046 1945119 1945224 "ODP" 1945229 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-826 1937812 1938027 1938302 "ODETOOLS" 1938820 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-825 1934779 1935437 1936153 "ODESYS" 1937145 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-824 1929661 1930569 1931594 "ODERTRIC" 1933854 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-823 1929087 1929169 1929363 "ODERED" 1929573 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-822 1925975 1926523 1927200 "ODERAT" 1928510 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-821 1922934 1923399 1923996 "ODEPRRIC" 1925504 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-820 1920877 1921473 1921959 "ODEPROB" 1922468 T ODEPROB (NIL) -8 NIL NIL NIL) (-819 1917397 1917882 1918529 "ODEPRIM" 1920356 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-818 1916646 1916748 1917008 "ODEPAL" 1917289 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-817 1912808 1913599 1914463 "ODEPACK" 1915802 T ODEPACK (NIL) -7 NIL NIL NIL) (-816 1911869 1911976 1912198 "ODEINT" 1912697 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-815 1905970 1907395 1908842 "ODEIFTBL" 1910442 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-814 1901368 1902154 1903106 "ODEEF" 1905129 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-813 1900717 1900806 1901029 "ODECONST" 1901273 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-812 1898828 1899489 1899517 "ODECAT" 1900122 T ODECAT (NIL) -9 NIL 1900653 NIL) (-811 1895683 1898533 1898655 "OCT" 1898738 NIL OCT (NIL T) -8 NIL NIL NIL) (-810 1895321 1895364 1895491 "OCTCT2" 1895634 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-809 1889928 1892364 1892404 "OC" 1893501 NIL OC (NIL T) -9 NIL 1894359 NIL) (-808 1887155 1887903 1888893 "OC-" 1888987 NIL OC- (NIL T T) -8 NIL NIL NIL) (-807 1886480 1886948 1886976 "OCAMON" 1886981 T OCAMON (NIL) -9 NIL 1887002 NIL) (-806 1885984 1886325 1886353 "OASGP" 1886358 T OASGP (NIL) -9 NIL 1886378 NIL) (-805 1885218 1885707 1885735 "OAMONS" 1885775 T OAMONS (NIL) -9 NIL 1885818 NIL) (-804 1884605 1885038 1885066 "OAMON" 1885071 T OAMON (NIL) -9 NIL 1885091 NIL) (-803 1883836 1884354 1884382 "OAGROUP" 1884387 T OAGROUP (NIL) -9 NIL 1884407 NIL) (-802 1883526 1883576 1883664 "NUMTUBE" 1883780 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-801 1877099 1878617 1880153 "NUMQUAD" 1882010 T NUMQUAD (NIL) -7 NIL NIL NIL) (-800 1872855 1873843 1874868 "NUMODE" 1876094 T NUMODE (NIL) -7 NIL NIL NIL) (-799 1870196 1871076 1871104 "NUMINT" 1872027 T NUMINT (NIL) -9 NIL 1872791 NIL) (-798 1869144 1869341 1869559 "NUMFMT" 1869998 T NUMFMT (NIL) -7 NIL NIL NIL) (-797 1855503 1858448 1860980 "NUMERIC" 1866651 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-796 1849873 1854952 1855047 "NTSCAT" 1855052 NIL NTSCAT (NIL T T T T) -9 NIL 1855091 NIL) (-795 1849067 1849232 1849425 "NTPOLFN" 1849712 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-794 1836868 1845892 1846704 "NSUP" 1848288 NIL NSUP (NIL T) -8 NIL NIL NIL) (-793 1836500 1836557 1836666 "NSUP2" 1836805 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-792 1826450 1836274 1836407 "NSMP" 1836412 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-791 1824882 1825183 1825540 "NREP" 1826138 NIL NREP (NIL T) -7 NIL NIL NIL) (-790 1823473 1823725 1824083 "NPCOEF" 1824625 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-789 1822539 1822654 1822870 "NORMRETR" 1823354 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-788 1820580 1820870 1821279 "NORMPK" 1822247 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-787 1820265 1820293 1820417 "NORMMA" 1820546 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-786 1820065 1820222 1820251 "NONE" 1820256 T NONE (NIL) -8 NIL NIL NIL) (-785 1819854 1819883 1819952 "NONE1" 1820029 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-784 1819351 1819413 1819592 "NODE1" 1819786 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-783 1817632 1818483 1818738 "NNI" 1819085 T NNI (NIL) -8 NIL NIL 1819320) (-782 1816052 1816365 1816729 "NLINSOL" 1817300 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-781 1812293 1813288 1814187 "NIPROB" 1815173 T NIPROB (NIL) -8 NIL NIL NIL) (-780 1811050 1811284 1811586 "NFINTBAS" 1812055 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-779 1810224 1810700 1810741 "NETCLT" 1810913 NIL NETCLT (NIL T) -9 NIL 1810995 NIL) (-778 1808932 1809163 1809444 "NCODIV" 1809992 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-777 1808694 1808731 1808806 "NCNTFRAC" 1808889 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-776 1806874 1807238 1807658 "NCEP" 1808319 NIL NCEP (NIL T) -7 NIL NIL NIL) (-775 1805711 1806484 1806512 "NASRING" 1806622 T NASRING (NIL) -9 NIL 1806702 NIL) (-774 1805506 1805550 1805644 "NASRING-" 1805649 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-773 1804599 1805124 1805152 "NARNG" 1805269 T NARNG (NIL) -9 NIL 1805360 NIL) (-772 1804291 1804358 1804492 "NARNG-" 1804497 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-771 1803170 1803377 1803612 "NAGSP" 1804076 T NAGSP (NIL) -7 NIL NIL NIL) (-770 1794442 1796126 1797799 "NAGS" 1801517 T NAGS (NIL) -7 NIL NIL NIL) (-769 1792990 1793298 1793629 "NAGF07" 1794131 T NAGF07 (NIL) -7 NIL NIL NIL) (-768 1787528 1788819 1790126 "NAGF04" 1791703 T NAGF04 (NIL) -7 NIL NIL NIL) (-767 1780496 1782110 1783743 "NAGF02" 1785915 T NAGF02 (NIL) -7 NIL NIL NIL) (-766 1775720 1776820 1777937 "NAGF01" 1779399 T NAGF01 (NIL) -7 NIL NIL NIL) (-765 1769348 1770914 1772499 "NAGE04" 1774155 T NAGE04 (NIL) -7 NIL NIL NIL) (-764 1760517 1762638 1764768 "NAGE02" 1767238 T NAGE02 (NIL) -7 NIL NIL NIL) (-763 1756470 1757417 1758381 "NAGE01" 1759573 T NAGE01 (NIL) -7 NIL NIL NIL) (-762 1754265 1754799 1755357 "NAGD03" 1755932 T NAGD03 (NIL) -7 NIL NIL NIL) (-761 1746015 1747943 1749897 "NAGD02" 1752331 T NAGD02 (NIL) -7 NIL NIL NIL) (-760 1739826 1741251 1742691 "NAGD01" 1744595 T NAGD01 (NIL) -7 NIL NIL NIL) (-759 1736035 1736857 1737694 "NAGC06" 1739009 T NAGC06 (NIL) -7 NIL NIL NIL) (-758 1734500 1734832 1735188 "NAGC05" 1735699 T NAGC05 (NIL) -7 NIL NIL NIL) (-757 1733876 1733995 1734139 "NAGC02" 1734376 T NAGC02 (NIL) -7 NIL NIL NIL) (-756 1732821 1733404 1733444 "NAALG" 1733523 NIL NAALG (NIL T) -9 NIL 1733584 NIL) (-755 1732656 1732685 1732775 "NAALG-" 1732780 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-754 1726606 1727714 1728901 "MULTSQFR" 1731552 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-753 1725925 1726000 1726184 "MULTFACT" 1726518 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-752 1718596 1722510 1722563 "MTSCAT" 1723633 NIL MTSCAT (NIL T T) -9 NIL 1724148 NIL) (-751 1718308 1718362 1718454 "MTHING" 1718536 NIL MTHING (NIL T) -7 NIL NIL NIL) (-750 1718100 1718133 1718193 "MSYSCMD" 1718268 T MSYSCMD (NIL) -7 NIL NIL NIL) (-749 1714182 1716855 1717175 "MSET" 1717813 NIL MSET (NIL T) -8 NIL NIL NIL) (-748 1711251 1713743 1713784 "MSETAGG" 1713789 NIL MSETAGG (NIL T) -9 NIL 1713823 NIL) (-747 1707093 1708630 1709375 "MRING" 1710551 NIL MRING (NIL T T) -8 NIL NIL NIL) (-746 1706659 1706726 1706857 "MRF2" 1707020 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-745 1706277 1706312 1706456 "MRATFAC" 1706618 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-744 1703889 1704184 1704615 "MPRFF" 1705982 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-743 1697910 1703743 1703840 "MPOLY" 1703845 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-742 1697400 1697435 1697643 "MPCPF" 1697869 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-741 1696914 1696957 1697141 "MPC3" 1697351 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-740 1696109 1696190 1696411 "MPC2" 1696829 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-739 1694410 1694747 1695137 "MONOTOOL" 1695769 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-738 1693621 1693938 1693966 "MONOID" 1694185 T MONOID (NIL) -9 NIL 1694332 NIL) (-737 1693167 1693286 1693467 "MONOID-" 1693472 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-736 1682757 1688987 1689046 "MONOGEN" 1689720 NIL MONOGEN (NIL T T) -9 NIL 1690176 NIL) (-735 1679975 1680710 1681710 "MONOGEN-" 1681829 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-734 1678794 1679240 1679268 "MONADWU" 1679660 T MONADWU (NIL) -9 NIL 1679898 NIL) (-733 1678166 1678325 1678573 "MONADWU-" 1678578 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-732 1677511 1677755 1677783 "MONAD" 1677990 T MONAD (NIL) -9 NIL 1678102 NIL) (-731 1677196 1677274 1677406 "MONAD-" 1677411 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-730 1675485 1676109 1676388 "MOEBIUS" 1676949 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-729 1674749 1675153 1675193 "MODULE" 1675198 NIL MODULE (NIL T) -9 NIL 1675237 NIL) (-728 1674317 1674413 1674603 "MODULE-" 1674608 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-727 1671997 1672681 1673008 "MODRING" 1674141 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-726 1668941 1670102 1670623 "MODOP" 1671526 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-725 1667529 1668008 1668285 "MODMONOM" 1668804 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-724 1657297 1665820 1666234 "MODMON" 1667166 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-723 1654453 1656141 1656417 "MODFIELD" 1657172 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-722 1653430 1653734 1653924 "MMLFORM" 1654283 T MMLFORM (NIL) -8 NIL NIL NIL) (-721 1652956 1652999 1653178 "MMAP" 1653381 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-720 1651021 1651788 1651829 "MLO" 1652252 NIL MLO (NIL T) -9 NIL 1652494 NIL) (-719 1648387 1648903 1649505 "MLIFT" 1650502 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-718 1647778 1647862 1648016 "MKUCFUNC" 1648298 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-717 1647377 1647447 1647570 "MKRECORD" 1647701 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-716 1646424 1646586 1646814 "MKFUNC" 1647188 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-715 1645812 1645916 1646072 "MKFLCFN" 1646307 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-714 1645089 1645191 1645376 "MKBCFUNC" 1645705 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-713 1641678 1644643 1644779 "MINT" 1644973 T MINT (NIL) -8 NIL NIL NIL) (-712 1640490 1640733 1641010 "MHROWRED" 1641433 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-711 1635870 1639025 1639430 "MFLOAT" 1640105 T MFLOAT (NIL) -8 NIL NIL NIL) (-710 1635227 1635303 1635474 "MFINFACT" 1635782 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-709 1631542 1632390 1633274 "MESH" 1634363 T MESH (NIL) -7 NIL NIL NIL) (-708 1629932 1630244 1630597 "MDDFACT" 1631229 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-707 1626702 1629063 1629104 "MDAGG" 1629359 NIL MDAGG (NIL T) -9 NIL 1629502 NIL) (-706 1615396 1625995 1626202 "MCMPLX" 1626515 T MCMPLX (NIL) -8 NIL NIL NIL) (-705 1614533 1614679 1614880 "MCDEN" 1615245 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-704 1612423 1612693 1613073 "MCALCFN" 1614263 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-703 1611348 1611588 1611821 "MAYBE" 1612229 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-702 1608960 1609483 1610045 "MATSTOR" 1610819 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-701 1604872 1608332 1608580 "MATRIX" 1608745 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-700 1600638 1601345 1602081 "MATLIN" 1604229 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-699 1590464 1593695 1593772 "MATCAT" 1598804 NIL MATCAT (NIL T T T) -9 NIL 1600276 NIL) (-698 1586657 1587727 1589140 "MATCAT-" 1589145 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-697 1585251 1585404 1585737 "MATCAT2" 1586492 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-696 1583363 1583687 1584071 "MAPPKG3" 1584926 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-695 1582344 1582517 1582739 "MAPPKG2" 1583187 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-694 1580843 1581127 1581454 "MAPPKG1" 1582050 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-693 1579922 1580249 1580426 "MAPPAST" 1580686 T MAPPAST (NIL) -8 NIL NIL NIL) (-692 1579533 1579591 1579714 "MAPHACK3" 1579858 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-691 1579125 1579186 1579300 "MAPHACK2" 1579465 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-690 1578563 1578666 1578808 "MAPHACK1" 1579016 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-689 1576642 1577263 1577567 "MAGMA" 1578291 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-688 1576121 1576366 1576457 "MACROAST" 1576571 T MACROAST (NIL) -8 NIL NIL NIL) (-687 1572542 1574360 1574821 "M3D" 1575693 NIL M3D (NIL T) -8 NIL NIL NIL) (-686 1566592 1570853 1570894 "LZSTAGG" 1571676 NIL LZSTAGG (NIL T) -9 NIL 1571971 NIL) (-685 1562550 1563723 1565180 "LZSTAGG-" 1565185 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-684 1559637 1560441 1560928 "LWORD" 1562095 NIL LWORD (NIL T) -8 NIL NIL NIL) (-683 1559213 1559441 1559516 "LSTAST" 1559582 T LSTAST (NIL) -8 NIL NIL NIL) (-682 1552103 1558984 1559118 "LSQM" 1559123 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-681 1551327 1551466 1551694 "LSPP" 1551958 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-680 1549139 1549440 1549896 "LSMP" 1551016 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-679 1545918 1546592 1547322 "LSMP1" 1548441 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-678 1539720 1545008 1545049 "LSAGG" 1545111 NIL LSAGG (NIL T) -9 NIL 1545189 NIL) (-677 1536415 1537339 1538552 "LSAGG-" 1538557 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-676 1534014 1535559 1535808 "LPOLY" 1536210 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-675 1533596 1533681 1533804 "LPEFRAC" 1533923 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-674 1531917 1532690 1532943 "LO" 1533428 NIL LO (NIL T T T) -8 NIL NIL NIL) (-673 1531529 1531667 1531695 "LOGIC" 1531806 T LOGIC (NIL) -9 NIL 1531887 NIL) (-672 1531391 1531414 1531485 "LOGIC-" 1531490 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-671 1530584 1530724 1530917 "LODOOPS" 1531247 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-670 1528007 1530500 1530566 "LODO" 1530571 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-669 1526545 1526780 1527133 "LODOF" 1527754 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-668 1522749 1525180 1525221 "LODOCAT" 1525659 NIL LODOCAT (NIL T) -9 NIL 1525870 NIL) (-667 1522482 1522540 1522667 "LODOCAT-" 1522672 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-666 1519802 1522323 1522441 "LODO2" 1522446 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-665 1517237 1519739 1519784 "LODO1" 1519789 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-664 1516118 1516283 1516588 "LODEEF" 1517060 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-663 1511396 1514284 1514325 "LNAGG" 1515187 NIL LNAGG (NIL T) -9 NIL 1515622 NIL) (-662 1510543 1510757 1511099 "LNAGG-" 1511104 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-661 1506679 1507468 1508107 "LMOPS" 1509958 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-660 1506068 1506456 1506497 "LMODULE" 1506502 NIL LMODULE (NIL T) -9 NIL 1506528 NIL) (-659 1503269 1505713 1505836 "LMDICT" 1505978 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-658 1502887 1503059 1503100 "LLINSET" 1503161 NIL LLINSET (NIL T) -9 NIL 1503205 NIL) (-657 1502586 1502795 1502855 "LITERAL" 1502860 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-656 1495752 1501520 1501824 "LIST" 1502315 NIL LIST (NIL T) -8 NIL NIL NIL) (-655 1495277 1495351 1495490 "LIST3" 1495672 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-654 1494284 1494462 1494690 "LIST2" 1495095 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-653 1492418 1492730 1493129 "LIST2MAP" 1493931 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-652 1492049 1492237 1492278 "LINSET" 1492283 NIL LINSET (NIL T) -9 NIL 1492317 NIL) (-651 1490462 1491076 1491117 "LINEXP" 1491607 NIL LINEXP (NIL T) -9 NIL 1491880 NIL) (-650 1489039 1489299 1489610 "LINDEP" 1490214 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-649 1485806 1486525 1487302 "LIMITRF" 1488294 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-648 1484109 1484405 1484814 "LIMITPS" 1485501 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-647 1478537 1483620 1483848 "LIE" 1483930 NIL LIE (NIL T T) -8 NIL NIL NIL) (-646 1477471 1477940 1477980 "LIECAT" 1478120 NIL LIECAT (NIL T) -9 NIL 1478271 NIL) (-645 1477312 1477339 1477427 "LIECAT-" 1477432 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-644 1469905 1476852 1477008 "LIB" 1477176 T LIB (NIL) -8 NIL NIL NIL) (-643 1465540 1466423 1467358 "LGROBP" 1469022 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-642 1463538 1463812 1464162 "LF" 1465261 NIL LF (NIL T T) -7 NIL NIL NIL) (-641 1462378 1463070 1463098 "LFCAT" 1463305 T LFCAT (NIL) -9 NIL 1463444 NIL) (-640 1459280 1459910 1460598 "LEXTRIPK" 1461742 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-639 1456024 1456850 1457353 "LEXP" 1458860 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-638 1455500 1455745 1455837 "LETAST" 1455952 T LETAST (NIL) -8 NIL NIL NIL) (-637 1453898 1454211 1454612 "LEADCDET" 1455182 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-636 1453088 1453162 1453391 "LAZM3PK" 1453819 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-635 1448005 1451165 1451703 "LAUPOL" 1452600 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-634 1447584 1447628 1447789 "LAPLACE" 1447955 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-633 1445523 1446685 1446936 "LA" 1447417 NIL LA (NIL T T T) -8 NIL NIL NIL) (-632 1444503 1445087 1445128 "LALG" 1445190 NIL LALG (NIL T) -9 NIL 1445249 NIL) (-631 1444217 1444276 1444412 "LALG-" 1444417 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-630 1444052 1444076 1444117 "KVTFROM" 1444179 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-629 1442975 1443419 1443604 "KTVLOGIC" 1443887 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-628 1442810 1442834 1442875 "KRCFROM" 1442937 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-627 1441714 1441901 1442200 "KOVACIC" 1442610 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-626 1441549 1441573 1441614 "KONVERT" 1441676 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-625 1441384 1441408 1441449 "KOERCE" 1441511 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-624 1439215 1439977 1440354 "KERNEL" 1441040 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-623 1438711 1438792 1438924 "KERNEL2" 1439129 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-622 1432422 1437188 1437242 "KDAGG" 1437619 NIL KDAGG (NIL T T) -9 NIL 1437825 NIL) (-621 1431951 1432075 1432280 "KDAGG-" 1432285 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-620 1425099 1431612 1431767 "KAFILE" 1431829 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-619 1419527 1424610 1424838 "JORDAN" 1424920 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-618 1418906 1419176 1419297 "JOINAST" 1419426 T JOINAST (NIL) -8 NIL NIL NIL) (-617 1418752 1418811 1418866 "JAVACODE" 1418871 T JAVACODE (NIL) -8 NIL NIL NIL) (-616 1414979 1416929 1416983 "IXAGG" 1417912 NIL IXAGG (NIL T T) -9 NIL 1418371 NIL) (-615 1413898 1414204 1414623 "IXAGG-" 1414628 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-614 1409431 1413820 1413879 "IVECTOR" 1413884 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-613 1408197 1408434 1408700 "ITUPLE" 1409198 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-612 1406699 1406876 1407171 "ITRIGMNP" 1408019 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-611 1405444 1405648 1405931 "ITFUN3" 1406475 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-610 1405076 1405133 1405242 "ITFUN2" 1405381 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-609 1404235 1404556 1404730 "ITFORM" 1404922 T ITFORM (NIL) -8 NIL NIL NIL) (-608 1402196 1403255 1403533 "ITAYLOR" 1403990 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-607 1391141 1396333 1397496 "ISUPS" 1401066 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-606 1390245 1390385 1390621 "ISUMP" 1390988 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-605 1385623 1390190 1390231 "ISTRING" 1390236 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-604 1385099 1385344 1385436 "ISAST" 1385551 T ISAST (NIL) -8 NIL NIL NIL) (-603 1384308 1384390 1384606 "IRURPK" 1385013 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-602 1383244 1383445 1383685 "IRSN" 1384088 T IRSN (NIL) -7 NIL NIL NIL) (-601 1381315 1381670 1382099 "IRRF2F" 1382882 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-600 1381062 1381100 1381176 "IRREDFFX" 1381271 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-599 1379677 1379936 1380235 "IROOT" 1380795 NIL IROOT (NIL T) -7 NIL NIL NIL) (-598 1376281 1377361 1378053 "IR" 1379017 NIL IR (NIL T) -8 NIL NIL NIL) (-597 1375486 1375774 1375925 "IRFORM" 1376150 T IRFORM (NIL) -8 NIL NIL NIL) (-596 1373099 1373594 1374160 "IR2" 1374964 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-595 1372199 1372312 1372526 "IR2F" 1372982 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-594 1371990 1372024 1372084 "IPRNTPK" 1372159 T IPRNTPK (NIL) -7 NIL NIL NIL) (-593 1368571 1371879 1371948 "IPF" 1371953 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-592 1366898 1368496 1368553 "IPADIC" 1368558 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-591 1366210 1366458 1366588 "IP4ADDR" 1366788 T IP4ADDR (NIL) -8 NIL NIL NIL) (-590 1365584 1365839 1365971 "IOMODE" 1366098 T IOMODE (NIL) -8 NIL NIL NIL) (-589 1364657 1365181 1365308 "IOBFILE" 1365477 T IOBFILE (NIL) -8 NIL NIL NIL) (-588 1364145 1364561 1364589 "IOBCON" 1364594 T IOBCON (NIL) -9 NIL 1364615 NIL) (-587 1363656 1363714 1363897 "INVLAPLA" 1364081 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-586 1353304 1355658 1358044 "INTTR" 1361320 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-585 1349639 1350381 1351246 "INTTOOLS" 1352489 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-584 1349225 1349316 1349433 "INTSLPE" 1349542 T INTSLPE (NIL) -7 NIL NIL NIL) (-583 1347178 1349148 1349207 "INTRVL" 1349212 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-582 1344780 1345292 1345867 "INTRF" 1346663 NIL INTRF (NIL T) -7 NIL NIL NIL) (-581 1344191 1344288 1344430 "INTRET" 1344678 NIL INTRET (NIL T) -7 NIL NIL NIL) (-580 1342188 1342577 1343047 "INTRAT" 1343799 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-579 1339451 1340034 1340653 "INTPM" 1341673 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-578 1336196 1336795 1337533 "INTPAF" 1338837 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-577 1331375 1332337 1333388 "INTPACK" 1335165 T INTPACK (NIL) -7 NIL NIL NIL) (-576 1328187 1331172 1331281 "INT" 1331286 T INT (NIL) -8 NIL NIL NIL) (-575 1327439 1327591 1327799 "INTHERTR" 1328029 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-574 1326878 1326958 1327146 "INTHERAL" 1327353 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-573 1324724 1325167 1325624 "INTHEORY" 1326441 T INTHEORY (NIL) -7 NIL NIL NIL) (-572 1316130 1317751 1319523 "INTG0" 1323076 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-571 1296703 1301493 1306303 "INTFTBL" 1311340 T INTFTBL (NIL) -8 NIL NIL NIL) (-570 1295952 1296090 1296263 "INTFACT" 1296562 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-569 1293379 1293825 1294382 "INTEF" 1295506 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-568 1291732 1292471 1292499 "INTDOM" 1292800 T INTDOM (NIL) -9 NIL 1293007 NIL) (-567 1291101 1291275 1291517 "INTDOM-" 1291522 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-566 1287461 1289390 1289444 "INTCAT" 1290243 NIL INTCAT (NIL T) -9 NIL 1290564 NIL) (-565 1286933 1287036 1287164 "INTBIT" 1287353 T INTBIT (NIL) -7 NIL NIL NIL) (-564 1285632 1285786 1286093 "INTALG" 1286778 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-563 1285115 1285205 1285362 "INTAF" 1285536 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-562 1278464 1284925 1285065 "INTABL" 1285070 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-561 1277797 1278263 1278328 "INT8" 1278362 T INT8 (NIL) -8 NIL NIL 1278407) (-560 1277129 1277595 1277660 "INT64" 1277694 T INT64 (NIL) -8 NIL NIL 1277739) (-559 1276461 1276927 1276992 "INT32" 1277026 T INT32 (NIL) -8 NIL NIL 1277071) (-558 1275793 1276259 1276324 "INT16" 1276358 T INT16 (NIL) -8 NIL NIL 1276403) (-557 1270488 1273341 1273369 "INS" 1274303 T INS (NIL) -9 NIL 1274968 NIL) (-556 1267728 1268499 1269473 "INS-" 1269546 NIL INS- (NIL T) -8 NIL NIL NIL) (-555 1266503 1266730 1267028 "INPSIGN" 1267481 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-554 1265621 1265738 1265935 "INPRODPF" 1266383 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-553 1264515 1264632 1264869 "INPRODFF" 1265501 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-552 1263515 1263667 1263927 "INNMFACT" 1264351 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-551 1262712 1262809 1262997 "INMODGCD" 1263414 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-550 1261220 1261465 1261789 "INFSP" 1262457 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-549 1260404 1260521 1260704 "INFPROD0" 1261100 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-548 1257259 1258469 1258984 "INFORM" 1259897 T INFORM (NIL) -8 NIL NIL NIL) (-547 1256869 1256929 1257027 "INFORM1" 1257194 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-546 1256392 1256481 1256595 "INFINITY" 1256775 T INFINITY (NIL) -7 NIL NIL NIL) (-545 1255568 1256112 1256213 "INETCLTS" 1256311 T INETCLTS (NIL) -8 NIL NIL NIL) (-544 1254184 1254434 1254755 "INEP" 1255316 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-543 1253389 1254081 1254146 "INDE" 1254151 NIL INDE (NIL T) -8 NIL NIL NIL) (-542 1252953 1253021 1253138 "INCRMAPS" 1253316 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-541 1251771 1252222 1252428 "INBFILE" 1252767 T INBFILE (NIL) -8 NIL NIL NIL) (-540 1247070 1248007 1248951 "INBFF" 1250859 NIL INBFF (NIL T) -7 NIL NIL NIL) (-539 1245978 1246247 1246275 "INBCON" 1246788 T INBCON (NIL) -9 NIL 1247054 NIL) (-538 1245230 1245453 1245729 "INBCON-" 1245734 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-537 1244709 1244954 1245045 "INAST" 1245159 T INAST (NIL) -8 NIL NIL NIL) (-536 1244136 1244388 1244494 "IMPTAST" 1244623 T IMPTAST (NIL) -8 NIL NIL NIL) (-535 1240537 1243980 1244084 "IMATRIX" 1244089 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-534 1239245 1239368 1239684 "IMATQF" 1240393 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-533 1237465 1237692 1238029 "IMATLIN" 1239001 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-532 1232046 1237389 1237447 "ILIST" 1237452 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-531 1229954 1231906 1232019 "IIARRAY2" 1232024 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-530 1225352 1229865 1229929 "IFF" 1229934 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-529 1224699 1224969 1225085 "IFAST" 1225256 T IFAST (NIL) -8 NIL NIL NIL) (-528 1219697 1223991 1224179 "IFARRAY" 1224556 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-527 1218877 1219601 1219674 "IFAMON" 1219679 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-526 1218461 1218526 1218580 "IEVALAB" 1218787 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-525 1218136 1218204 1218364 "IEVALAB-" 1218369 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-524 1217472 1217837 1217955 "IDPO" 1218063 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-523 1216680 1217361 1217436 "IDPOAMS" 1217441 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-522 1215945 1216569 1216644 "IDPOAM" 1216649 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-521 1214802 1215119 1215172 "IDPC" 1215690 NIL IDPC (NIL T T) -9 NIL 1215881 NIL) (-520 1213990 1214495 1214617 "IDPAM" 1214723 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-519 1213324 1213882 1213955 "IDPAG" 1213960 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-518 1212969 1213160 1213235 "IDENT" 1213269 T IDENT (NIL) -8 NIL NIL NIL) (-517 1209224 1210072 1210967 "IDECOMP" 1212126 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-516 1202061 1203147 1204194 "IDEAL" 1208260 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-515 1201221 1201333 1201533 "ICDEN" 1201945 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-514 1200292 1200701 1200848 "ICARD" 1201094 T ICARD (NIL) -8 NIL NIL NIL) (-513 1198352 1198665 1199070 "IBPTOOLS" 1199969 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-512 1193959 1197972 1198085 "IBITS" 1198271 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-511 1190682 1191258 1191953 "IBATOOL" 1193376 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-510 1188461 1188923 1189456 "IBACHIN" 1190217 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-509 1186293 1188307 1188410 "IARRAY2" 1188415 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-508 1182402 1186219 1186276 "IARRAY1" 1186281 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-507 1176262 1180814 1181295 "IAN" 1181941 T IAN (NIL) -8 NIL NIL NIL) (-506 1175773 1175830 1176003 "IALGFACT" 1176199 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-505 1175301 1175414 1175442 "HYPCAT" 1175649 T HYPCAT (NIL) -9 NIL NIL NIL) (-504 1174839 1174956 1175142 "HYPCAT-" 1175147 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-503 1174434 1174634 1174717 "HOSTNAME" 1174776 T HOSTNAME (NIL) -8 NIL NIL NIL) (-502 1174279 1174316 1174357 "HOMOTOP" 1174362 NIL HOMOTOP (NIL T) -9 NIL 1174395 NIL) (-501 1170836 1172211 1172252 "HOAGG" 1173233 NIL HOAGG (NIL T) -9 NIL 1173962 NIL) (-500 1169430 1169829 1170355 "HOAGG-" 1170360 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-499 1163146 1169023 1169173 "HEXADEC" 1169300 T HEXADEC (NIL) -8 NIL NIL NIL) (-498 1161894 1162116 1162379 "HEUGCD" 1162923 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-497 1160970 1161731 1161861 "HELLFDIV" 1161866 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-496 1159152 1160747 1160835 "HEAP" 1160914 NIL HEAP (NIL T) -8 NIL NIL NIL) (-495 1158415 1158704 1158838 "HEADAST" 1159038 T HEADAST (NIL) -8 NIL NIL NIL) (-494 1152258 1158330 1158392 "HDP" 1158397 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-493 1145970 1151893 1152045 "HDMP" 1152159 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-492 1145294 1145434 1145598 "HB" 1145826 T HB (NIL) -7 NIL NIL NIL) (-491 1138686 1145140 1145244 "HASHTBL" 1145249 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-490 1138162 1138407 1138499 "HASAST" 1138614 T HASAST (NIL) -8 NIL NIL NIL) (-489 1135940 1137784 1137966 "HACKPI" 1138000 T HACKPI (NIL) -8 NIL NIL NIL) (-488 1131608 1135793 1135906 "GTSET" 1135911 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-487 1125029 1131486 1131584 "GSTBL" 1131589 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-486 1117416 1124194 1124450 "GSERIES" 1124829 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-485 1116543 1116960 1116988 "GROUP" 1117191 T GROUP (NIL) -9 NIL 1117325 NIL) (-484 1115909 1116068 1116319 "GROUP-" 1116324 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-483 1114276 1114597 1114984 "GROEBSOL" 1115586 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-482 1113176 1113464 1113515 "GRMOD" 1114044 NIL GRMOD (NIL T T) -9 NIL 1114212 NIL) (-481 1112944 1112980 1113108 "GRMOD-" 1113113 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-480 1108234 1109298 1110298 "GRIMAGE" 1111964 T GRIMAGE (NIL) -8 NIL NIL NIL) (-479 1106700 1106961 1107285 "GRDEF" 1107930 T GRDEF (NIL) -7 NIL NIL NIL) (-478 1106144 1106260 1106401 "GRAY" 1106579 T GRAY (NIL) -7 NIL NIL NIL) (-477 1105317 1105723 1105774 "GRALG" 1105927 NIL GRALG (NIL T T) -9 NIL 1106020 NIL) (-476 1104978 1105051 1105214 "GRALG-" 1105219 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-475 1101755 1104563 1104741 "GPOLSET" 1104885 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-474 1101109 1101166 1101424 "GOSPER" 1101692 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-473 1096841 1097547 1098073 "GMODPOL" 1100808 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-472 1095846 1096030 1096268 "GHENSEL" 1096653 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-471 1090002 1090845 1091865 "GENUPS" 1094930 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-470 1089699 1089750 1089839 "GENUFACT" 1089945 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-469 1089111 1089188 1089353 "GENPGCD" 1089617 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-468 1088585 1088620 1088833 "GENMFACT" 1089070 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-467 1087151 1087408 1087715 "GENEEZ" 1088328 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-466 1081023 1086762 1086924 "GDMP" 1087074 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-465 1070366 1074794 1075900 "GCNAALG" 1080006 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-464 1068679 1069541 1069569 "GCDDOM" 1069824 T GCDDOM (NIL) -9 NIL 1069981 NIL) (-463 1068149 1068276 1068491 "GCDDOM-" 1068496 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-462 1066821 1067006 1067310 "GB" 1067928 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-461 1055437 1057767 1060159 "GBINTERN" 1064512 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-460 1053274 1053566 1053987 "GBF" 1055112 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-459 1052055 1052220 1052487 "GBEUCLID" 1053090 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-458 1051404 1051529 1051678 "GAUSSFAC" 1051926 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-457 1049771 1050073 1050387 "GALUTIL" 1051123 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-456 1048079 1048353 1048677 "GALPOLYU" 1049498 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-455 1045444 1045734 1046141 "GALFACTU" 1047776 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-454 1037250 1038749 1040357 "GALFACT" 1043876 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-453 1034638 1035296 1035324 "FVFUN" 1036480 T FVFUN (NIL) -9 NIL 1037200 NIL) (-452 1033904 1034086 1034114 "FVC" 1034405 T FVC (NIL) -9 NIL 1034588 NIL) (-451 1033547 1033729 1033797 "FUNDESC" 1033856 T FUNDESC (NIL) -8 NIL NIL NIL) (-450 1033162 1033344 1033425 "FUNCTION" 1033499 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-449 1030906 1031484 1031950 "FT" 1032716 T FT (NIL) -8 NIL NIL NIL) (-448 1029697 1030207 1030410 "FTEM" 1030723 T FTEM (NIL) -8 NIL NIL NIL) (-447 1027988 1028277 1028674 "FSUPFACT" 1029388 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-446 1026385 1026674 1027006 "FST" 1027676 T FST (NIL) -8 NIL NIL NIL) (-445 1025584 1025690 1025878 "FSRED" 1026267 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-444 1024283 1024539 1024886 "FSPRMELT" 1025299 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-443 1021589 1022027 1022513 "FSPECF" 1023846 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-442 1002654 1011363 1011404 "FS" 1015288 NIL FS (NIL T) -9 NIL 1017577 NIL) (-441 991297 994290 998347 "FS-" 998647 NIL FS- (NIL T T) -8 NIL NIL NIL) (-440 990825 990879 991049 "FSINT" 991238 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-439 989117 989818 990121 "FSERIES" 990604 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-438 988159 988275 988499 "FSCINT" 988997 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-437 984367 987103 987144 "FSAGG" 987514 NIL FSAGG (NIL T) -9 NIL 987773 NIL) (-436 982129 982730 983526 "FSAGG-" 983621 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-435 981171 981314 981541 "FSAGG2" 981982 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-434 978849 979129 979677 "FS2UPS" 980889 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-433 978483 978526 978655 "FS2" 978800 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-432 977361 977532 977834 "FS2EXPXP" 978308 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-431 976787 976902 977054 "FRUTIL" 977241 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-430 968200 972282 973640 "FR" 975461 NIL FR (NIL T) -8 NIL NIL NIL) (-429 963214 965889 965929 "FRNAALG" 967249 NIL FRNAALG (NIL T) -9 NIL 967847 NIL) (-428 958887 959963 961238 "FRNAALG-" 961988 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-427 958525 958568 958695 "FRNAAF2" 958838 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-426 956900 957374 957670 "FRMOD" 958337 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-425 954643 955275 955593 "FRIDEAL" 956691 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-424 953834 953921 954212 "FRIDEAL2" 954550 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-423 952967 953381 953422 "FRETRCT" 953427 NIL FRETRCT (NIL T) -9 NIL 953603 NIL) (-422 952079 952310 952661 "FRETRCT-" 952666 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-421 949153 950363 950422 "FRAMALG" 951304 NIL FRAMALG (NIL T T) -9 NIL 951596 NIL) (-420 947287 947742 948372 "FRAMALG-" 948595 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-419 940930 946760 947037 "FRAC" 947042 NIL FRAC (NIL T) -8 NIL NIL NIL) (-418 940566 940623 940730 "FRAC2" 940867 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-417 940202 940259 940366 "FR2" 940503 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-416 934687 937581 937609 "FPS" 938728 T FPS (NIL) -9 NIL 939285 NIL) (-415 934136 934245 934409 "FPS-" 934555 NIL FPS- (NIL T) -8 NIL NIL NIL) (-414 931424 933093 933121 "FPC" 933346 T FPC (NIL) -9 NIL 933488 NIL) (-413 931217 931257 931354 "FPC-" 931359 NIL FPC- (NIL T) -8 NIL NIL NIL) (-412 930007 930705 930746 "FPATMAB" 930751 NIL FPATMAB (NIL T) -9 NIL 930903 NIL) (-411 928246 928749 929096 "FPARFRAC" 929723 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-410 923640 924138 924820 "FORTRAN" 927678 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-409 921356 921856 922395 "FORT" 923121 T FORT (NIL) -7 NIL NIL NIL) (-408 919032 919594 919622 "FORTFN" 920682 T FORTFN (NIL) -9 NIL 921306 NIL) (-407 918796 918846 918874 "FORTCAT" 918933 T FORTCAT (NIL) -9 NIL 918995 NIL) (-406 916902 917412 917802 "FORMULA" 918426 T FORMULA (NIL) -8 NIL NIL NIL) (-405 916690 916720 916789 "FORMULA1" 916866 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-404 916213 916265 916438 "FORDER" 916632 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-403 915309 915473 915666 "FOP" 916040 T FOP (NIL) -7 NIL NIL NIL) (-402 913890 914589 914763 "FNLA" 915191 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-401 912605 913020 913048 "FNCAT" 913508 T FNCAT (NIL) -9 NIL 913768 NIL) (-400 912144 912564 912592 "FNAME" 912597 T FNAME (NIL) -8 NIL NIL NIL) (-399 910680 911643 911671 "FMTC" 911676 T FMTC (NIL) -9 NIL 911712 NIL) (-398 909426 910616 910662 "FMONOID" 910667 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-397 906213 907381 907422 "FMONCAT" 908639 NIL FMONCAT (NIL T) -9 NIL 909244 NIL) (-396 905363 905955 906104 "FM" 906109 NIL FM (NIL T T) -8 NIL NIL NIL) (-395 902787 903433 903461 "FMFUN" 904605 T FMFUN (NIL) -9 NIL 905313 NIL) (-394 902056 902237 902265 "FMC" 902555 T FMC (NIL) -9 NIL 902737 NIL) (-393 899121 899981 900035 "FMCAT" 901230 NIL FMCAT (NIL T T) -9 NIL 901725 NIL) (-392 897987 898887 898987 "FM1" 899066 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-391 895761 896177 896671 "FLOATRP" 897538 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-390 889339 893490 894111 "FLOAT" 895160 T FLOAT (NIL) -8 NIL NIL NIL) (-389 886777 887277 887855 "FLOATCP" 888806 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-388 885425 886369 886410 "FLINEXP" 886415 NIL FLINEXP (NIL T) -9 NIL 886508 NIL) (-387 884579 884814 885142 "FLINEXP-" 885147 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-386 883655 883799 884023 "FLASORT" 884431 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-385 880757 881625 881677 "FLALG" 882904 NIL FLALG (NIL T T) -9 NIL 883371 NIL) (-384 874417 878166 878207 "FLAGG" 879469 NIL FLAGG (NIL T) -9 NIL 880121 NIL) (-383 873143 873482 873972 "FLAGG-" 873977 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-382 872185 872328 872555 "FLAGG2" 872996 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-381 869022 870030 870089 "FINRALG" 871217 NIL FINRALG (NIL T T) -9 NIL 871725 NIL) (-380 868182 868411 868750 "FINRALG-" 868755 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-379 867548 867787 867815 "FINITE" 868011 T FINITE (NIL) -9 NIL 868118 NIL) (-378 859891 862078 862118 "FINAALG" 865785 NIL FINAALG (NIL T) -9 NIL 867238 NIL) (-377 855223 856273 857417 "FINAALG-" 858796 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-376 854591 854978 855081 "FILE" 855153 NIL FILE (NIL T) -8 NIL NIL NIL) (-375 853235 853573 853627 "FILECAT" 854311 NIL FILECAT (NIL T T) -9 NIL 854527 NIL) (-374 850937 852465 852493 "FIELD" 852533 T FIELD (NIL) -9 NIL 852613 NIL) (-373 849557 849942 850453 "FIELD-" 850458 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-372 847407 848192 848539 "FGROUP" 849243 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-371 846497 846661 846881 "FGLMICPK" 847239 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-370 842329 846422 846479 "FFX" 846484 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-369 841930 841991 842126 "FFSLPE" 842262 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-368 837920 838702 839498 "FFPOLY" 841166 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-367 837424 837460 837669 "FFPOLY2" 837878 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-366 833270 837343 837406 "FFP" 837411 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-365 828668 833181 833245 "FF" 833250 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-364 823794 828011 828201 "FFNBX" 828522 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-363 818722 822929 823187 "FFNBP" 823648 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-362 813355 818006 818217 "FFNB" 818555 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-361 812187 812385 812700 "FFINTBAS" 813152 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-360 808213 810434 810462 "FFIELDC" 811082 T FFIELDC (NIL) -9 NIL 811458 NIL) (-359 806875 807246 807743 "FFIELDC-" 807748 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-358 806444 806490 806614 "FFHOM" 806817 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-357 804139 804626 805143 "FFF" 805959 NIL FFF (NIL T) -7 NIL NIL NIL) (-356 799757 803881 803982 "FFCGX" 804082 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-355 795379 799489 799596 "FFCGP" 799700 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-354 790562 795106 795214 "FFCG" 795315 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-353 770091 780294 780380 "FFCAT" 785545 NIL FFCAT (NIL T T T) -9 NIL 786996 NIL) (-352 765288 766336 767650 "FFCAT-" 768880 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-351 764699 764742 764977 "FFCAT2" 765239 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-350 754022 757671 758891 "FEXPR" 763551 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-349 752984 753419 753460 "FEVALAB" 753544 NIL FEVALAB (NIL T) -9 NIL 753805 NIL) (-348 752143 752353 752691 "FEVALAB-" 752696 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-347 750709 751526 751729 "FDIV" 752042 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-346 747715 748456 748571 "FDIVCAT" 750139 NIL FDIVCAT (NIL T T T T) -9 NIL 750576 NIL) (-345 747477 747504 747674 "FDIVCAT-" 747679 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-344 746697 746784 747061 "FDIV2" 747384 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-343 745671 745992 746194 "FCTRDATA" 746515 T FCTRDATA (NIL) -8 NIL NIL NIL) (-342 744357 744616 744905 "FCPAK1" 745402 T FCPAK1 (NIL) -7 NIL NIL NIL) (-341 743456 743857 743998 "FCOMP" 744248 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-340 727161 730606 734144 "FC" 739938 T FC (NIL) -8 NIL NIL NIL) (-339 719454 723482 723522 "FAXF" 725324 NIL FAXF (NIL T) -9 NIL 726016 NIL) (-338 716731 717388 718213 "FAXF-" 718678 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-337 711786 716107 716283 "FARRAY" 716588 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-336 706666 708733 708786 "FAMR" 709809 NIL FAMR (NIL T T) -9 NIL 710269 NIL) (-335 705556 705858 706293 "FAMR-" 706298 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-334 704725 705478 705531 "FAMONOID" 705536 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-333 702497 703207 703260 "FAMONC" 704201 NIL FAMONC (NIL T T) -9 NIL 704587 NIL) (-332 701161 702251 702388 "FAGROUP" 702393 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-331 698956 699275 699678 "FACUTIL" 700842 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-330 698055 698240 698462 "FACTFUNC" 698766 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-329 690477 697358 697557 "EXPUPXS" 697911 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-328 687960 688500 689086 "EXPRTUBE" 689911 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-327 684231 684823 685553 "EXPRODE" 687299 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-326 669715 682880 683309 "EXPR" 683835 NIL EXPR (NIL T) -8 NIL NIL NIL) (-325 664269 664856 665662 "EXPR2UPS" 669013 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-324 663901 663958 664067 "EXPR2" 664206 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-323 654898 663052 663343 "EXPEXPAN" 663737 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-322 654698 654855 654884 "EXIT" 654889 T EXIT (NIL) -8 NIL NIL NIL) (-321 654178 654422 654513 "EXITAST" 654627 T EXITAST (NIL) -8 NIL NIL NIL) (-320 653805 653867 653980 "EVALCYC" 654110 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-319 653346 653464 653505 "EVALAB" 653675 NIL EVALAB (NIL T) -9 NIL 653779 NIL) (-318 652827 652949 653170 "EVALAB-" 653175 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-317 650181 651483 651511 "EUCDOM" 652066 T EUCDOM (NIL) -9 NIL 652416 NIL) (-316 648586 649028 649618 "EUCDOM-" 649623 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-315 636125 638884 641634 "ESTOOLS" 645856 T ESTOOLS (NIL) -7 NIL NIL NIL) (-314 635757 635814 635923 "ESTOOLS2" 636062 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-313 635508 635550 635630 "ESTOOLS1" 635709 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-312 629531 631139 631167 "ES" 633935 T ES (NIL) -9 NIL 635345 NIL) (-311 624478 625765 627582 "ES-" 627746 NIL ES- (NIL T) -8 NIL NIL NIL) (-310 620852 621613 622393 "ESCONT" 623718 T ESCONT (NIL) -7 NIL NIL NIL) (-309 620597 620629 620711 "ESCONT1" 620814 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-308 620272 620322 620422 "ES2" 620541 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-307 619902 619960 620069 "ES1" 620208 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-306 619118 619247 619423 "ERROR" 619746 T ERROR (NIL) -7 NIL NIL NIL) (-305 612516 618977 619068 "EQTBL" 619073 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-304 605019 607830 609279 "EQ" 611100 NIL -2037 (NIL T) -8 NIL NIL NIL) (-303 604651 604708 604817 "EQ2" 604956 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-302 599942 600989 602082 "EP" 603590 NIL EP (NIL T) -7 NIL NIL NIL) (-301 598542 598833 599139 "ENV" 599656 T ENV (NIL) -8 NIL NIL NIL) (-300 597622 598176 598204 "ENTIRER" 598209 T ENTIRER (NIL) -9 NIL 598255 NIL) (-299 594316 595804 596165 "EMR" 597430 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-298 593446 593631 593685 "ELTAGG" 594065 NIL ELTAGG (NIL T T) -9 NIL 594276 NIL) (-297 593165 593227 593368 "ELTAGG-" 593373 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-296 592929 592958 593012 "ELTAB" 593096 NIL ELTAB (NIL T T) -9 NIL 593148 NIL) (-295 592055 592201 592400 "ELFUTS" 592780 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-294 591797 591853 591881 "ELEMFUN" 591986 T ELEMFUN (NIL) -9 NIL NIL NIL) (-293 591667 591688 591756 "ELEMFUN-" 591761 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-292 586456 589709 589750 "ELAGG" 590690 NIL ELAGG (NIL T) -9 NIL 591153 NIL) (-291 584741 585175 585838 "ELAGG-" 585843 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-290 584053 584190 584346 "ELABOR" 584605 T ELABOR (NIL) -8 NIL NIL NIL) (-289 582714 582993 583287 "ELABEXPR" 583779 T ELABEXPR (NIL) -8 NIL NIL NIL) (-288 575548 577351 578180 "EFUPXS" 581989 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-287 568996 570797 571608 "EFULS" 574823 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-286 566481 566839 567311 "EFSTRUC" 568628 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-285 556272 557838 559386 "EF" 564996 NIL EF (NIL T T) -7 NIL NIL NIL) (-284 555346 555757 555906 "EAB" 556143 T EAB (NIL) -8 NIL NIL NIL) (-283 554528 555305 555333 "E04UCFA" 555338 T E04UCFA (NIL) -8 NIL NIL NIL) (-282 553710 554487 554515 "E04NAFA" 554520 T E04NAFA (NIL) -8 NIL NIL NIL) (-281 552892 553669 553697 "E04MBFA" 553702 T E04MBFA (NIL) -8 NIL NIL NIL) (-280 552074 552851 552879 "E04JAFA" 552884 T E04JAFA (NIL) -8 NIL NIL NIL) (-279 551258 552033 552061 "E04GCFA" 552066 T E04GCFA (NIL) -8 NIL NIL NIL) (-278 550442 551217 551245 "E04FDFA" 551250 T E04FDFA (NIL) -8 NIL NIL NIL) (-277 549624 550401 550429 "E04DGFA" 550434 T E04DGFA (NIL) -8 NIL NIL NIL) (-276 543797 545149 546513 "E04AGNT" 548280 T E04AGNT (NIL) -7 NIL NIL NIL) (-275 542555 543098 543138 "DVARCAT" 543479 NIL DVARCAT (NIL T) -9 NIL 543642 NIL) (-274 541759 541971 542285 "DVARCAT-" 542290 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-273 534620 541558 541687 "DSMP" 541692 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-272 533043 533762 533803 "DSEXT" 534166 NIL DSEXT (NIL T) -9 NIL 534460 NIL) (-271 531328 531756 532422 "DSEXT-" 532427 NIL DSEXT- (NIL T T) -8 NIL NIL NIL) (-270 526109 527273 528341 "DROPT" 530280 T DROPT (NIL) -8 NIL NIL NIL) (-269 525774 525833 525931 "DROPT1" 526044 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-268 520889 522015 523152 "DROPT0" 524657 T DROPT0 (NIL) -7 NIL NIL NIL) (-267 519234 519559 519945 "DRAWPT" 520523 T DRAWPT (NIL) -7 NIL NIL NIL) (-266 513821 514744 515823 "DRAW" 518208 NIL DRAW (NIL T) -7 NIL NIL NIL) (-265 513454 513507 513625 "DRAWHACK" 513762 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-264 512185 512454 512745 "DRAWCX" 513183 T DRAWCX (NIL) -7 NIL NIL NIL) (-263 511700 511769 511920 "DRAWCURV" 512111 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-262 502168 504130 506245 "DRAWCFUN" 509605 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-261 498907 500833 500874 "DQAGG" 501503 NIL DQAGG (NIL T) -9 NIL 501777 NIL) (-260 486372 493118 493201 "DPOLCAT" 495053 NIL DPOLCAT (NIL T T T T) -9 NIL 495598 NIL) (-259 481209 482557 484515 "DPOLCAT-" 484520 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-258 474556 481070 481168 "DPMO" 481173 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-257 467806 474336 474503 "DPMM" 474508 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-256 467376 467590 467679 "DOMTMPLT" 467737 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-255 466809 467178 467258 "DOMCTOR" 467316 T DOMCTOR (NIL) -8 NIL NIL NIL) (-254 466021 466289 466440 "DOMAIN" 466678 T DOMAIN (NIL) -8 NIL NIL NIL) (-253 459733 465656 465808 "DMP" 465922 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-252 457678 458800 458841 "DMEXT" 458846 NIL DMEXT (NIL T) -9 NIL 459022 NIL) (-251 457278 457334 457478 "DLP" 457616 NIL DLP (NIL T) -7 NIL NIL NIL) (-250 451103 456605 456795 "DLIST" 457120 NIL DLIST (NIL T) -8 NIL NIL NIL) (-249 447875 449928 449969 "DLAGG" 450519 NIL DLAGG (NIL T) -9 NIL 450749 NIL) (-248 446537 447201 447229 "DIVRING" 447321 T DIVRING (NIL) -9 NIL 447404 NIL) (-247 445774 445964 446264 "DIVRING-" 446269 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-246 443876 444233 444639 "DISPLAY" 445388 T DISPLAY (NIL) -7 NIL NIL NIL) (-245 437739 443790 443853 "DIRPROD" 443858 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-244 436587 436790 437055 "DIRPROD2" 437532 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-243 425262 431298 431351 "DIRPCAT" 431609 NIL DIRPCAT (NIL NIL T) -9 NIL 432484 NIL) (-242 422588 423230 424111 "DIRPCAT-" 424448 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-241 421875 422035 422221 "DIOSP" 422422 T DIOSP (NIL) -7 NIL NIL NIL) (-240 418505 420759 420800 "DIOPS" 421234 NIL DIOPS (NIL T) -9 NIL 421463 NIL) (-239 418054 418168 418359 "DIOPS-" 418364 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-238 417105 417733 417761 "DIFRING" 417766 T DIFRING (NIL) -9 NIL 417788 NIL) (-237 416777 416851 416879 "DIFFSPC" 416998 T DIFFSPC (NIL) -9 NIL 417073 NIL) (-236 416422 416500 416652 "DIFFSPC-" 416657 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-235 415478 415956 415997 "DIFFMOD" 416002 NIL DIFFMOD (NIL T) -9 NIL 416100 NIL) (-234 415186 415231 415272 "DIFFDOM" 415393 NIL DIFFDOM (NIL T) -9 NIL 415461 NIL) (-233 415039 415063 415147 "DIFFDOM-" 415152 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-232 412971 414243 414284 "DIFEXT" 414289 NIL DIFEXT (NIL T) -9 NIL 414442 NIL) (-231 410221 412475 412516 "DIAGG" 412521 NIL DIAGG (NIL T) -9 NIL 412541 NIL) (-230 409605 409762 410014 "DIAGG-" 410019 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-229 404977 408564 408841 "DHMATRIX" 409374 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-228 400589 401498 402508 "DFSFUN" 403987 T DFSFUN (NIL) -7 NIL NIL NIL) (-227 395667 399520 399832 "DFLOAT" 400297 T DFLOAT (NIL) -8 NIL NIL NIL) (-226 393930 394211 394600 "DFINTTLS" 395375 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-225 390959 391951 392351 "DERHAM" 393596 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-224 388763 390734 390823 "DEQUEUE" 390903 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-223 388017 388150 388333 "DEGRED" 388625 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-222 384447 385192 386038 "DEFINTRF" 387245 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-221 382002 382471 383063 "DEFINTEF" 383966 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-220 381352 381622 381737 "DEFAST" 381907 T DEFAST (NIL) -8 NIL NIL NIL) (-219 375068 380945 381095 "DECIMAL" 381222 T DECIMAL (NIL) -8 NIL NIL NIL) (-218 372580 373038 373544 "DDFACT" 374612 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-217 372176 372219 372370 "DBLRESP" 372531 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-216 370044 370406 370767 "DBASE" 371942 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 369286 369524 369670 "DATAARY" 369943 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 368392 369245 369273 "D03FAFA" 369278 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 367499 368351 368379 "D03EEFA" 368384 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 365449 365915 366404 "D03AGNT" 367030 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 364738 365408 365436 "D02EJFA" 365441 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 364027 364697 364725 "D02CJFA" 364730 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 363316 363986 364014 "D02BHFA" 364019 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 362605 363275 363303 "D02BBFA" 363308 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 355802 357391 358997 "D02AGNT" 361019 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 353570 354093 354639 "D01WGTS" 355276 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 352637 353529 353557 "D01TRNS" 353562 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 351705 352596 352624 "D01GBFA" 352629 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 350773 351664 351692 "D01FCFA" 351697 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 349841 350732 350760 "D01ASFA" 350765 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 348909 349800 349828 "D01AQFA" 349833 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 347977 348868 348896 "D01APFA" 348901 T D01APFA (NIL) -8 NIL NIL NIL) (-199 347045 347936 347964 "D01ANFA" 347969 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 346113 347004 347032 "D01AMFA" 347037 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 345181 346072 346100 "D01ALFA" 346105 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 344249 345140 345168 "D01AKFA" 345173 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 343317 344208 344236 "D01AJFA" 344241 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 336612 338165 339726 "D01AGNT" 341776 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 335949 336077 336229 "CYCLOTOM" 336480 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 332682 333397 334124 "CYCLES" 335242 T CYCLES (NIL) -7 NIL NIL NIL) (-191 331994 332128 332299 "CVMP" 332543 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 329835 330093 330462 "CTRIGMNP" 331722 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 329271 329629 329702 "CTOR" 329782 T CTOR (NIL) -8 NIL NIL NIL) (-188 328780 329002 329103 "CTORKIND" 329190 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 328057 328373 328401 "CTORCAT" 328583 T CTORCAT (NIL) -9 NIL 328696 NIL) (-186 327655 327766 327925 "CTORCAT-" 327930 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 327117 327329 327437 "CTORCALL" 327579 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 326491 326590 326743 "CSTTOOLS" 327014 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 322290 322947 323705 "CRFP" 325803 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 321765 322011 322103 "CRCEAST" 322218 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 320812 320997 321225 "CRAPACK" 321569 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 320196 320297 320501 "CPMATCH" 320688 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 319921 319949 320055 "CPIMA" 320162 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 316269 316941 317660 "COORDSYS" 319256 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 315681 315802 315944 "CONTOUR" 316147 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 311572 313684 314176 "CONTFRAC" 315221 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 311452 311473 311501 "CONDUIT" 311538 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 310526 311080 311108 "COMRING" 311113 T COMRING (NIL) -9 NIL 311165 NIL) (-173 309580 309884 310068 "COMPPROP" 310362 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 309241 309276 309404 "COMPLPAT" 309539 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 298544 309050 309159 "COMPLEX" 309164 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 298180 298237 298344 "COMPLEX2" 298481 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 297519 297640 297800 "COMPILER" 298040 T COMPILER (NIL) -8 NIL NIL NIL) (-168 297237 297272 297370 "COMPFACT" 297478 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 279516 290941 290981 "COMPCAT" 291985 NIL COMPCAT (NIL T) -9 NIL 293333 NIL) (-166 269028 271955 275582 "COMPCAT-" 275938 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 268757 268785 268888 "COMMUPC" 268994 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 268551 268585 268644 "COMMONOP" 268718 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 268107 268302 268389 "COMM" 268484 T COMM (NIL) -8 NIL NIL NIL) (-162 267683 267911 267986 "COMMAAST" 268052 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 266932 267126 267154 "COMBOPC" 267492 T COMBOPC (NIL) -9 NIL 267667 NIL) (-160 265828 266038 266280 "COMBINAT" 266722 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 262285 262859 263486 "COMBF" 265250 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 261043 261401 261636 "COLOR" 262070 T COLOR (NIL) -8 NIL NIL NIL) (-157 260519 260764 260856 "COLONAST" 260971 T COLONAST (NIL) -8 NIL NIL NIL) (-156 260159 260206 260331 "CMPLXRT" 260466 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 259607 259859 259958 "CLLCTAST" 260080 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 255109 256137 257217 "CLIP" 258547 T CLIP (NIL) -7 NIL NIL NIL) (-153 253450 254210 254450 "CLIF" 254936 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 249600 251568 251609 "CLAGG" 252538 NIL CLAGG (NIL T) -9 NIL 253074 NIL) (-151 248022 248479 249062 "CLAGG-" 249067 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 247566 247651 247791 "CINTSLPE" 247931 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 245067 245538 246086 "CHVAR" 247094 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 244227 244781 244809 "CHARZ" 244814 T CHARZ (NIL) -9 NIL 244829 NIL) (-147 243981 244021 244099 "CHARPOL" 244181 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 243025 243612 243640 "CHARNZ" 243687 T CHARNZ (NIL) -9 NIL 243743 NIL) (-145 240931 241679 242032 "CHAR" 242692 T CHAR (NIL) -8 NIL NIL NIL) (-144 240657 240718 240746 "CFCAT" 240857 T CFCAT (NIL) -9 NIL NIL NIL) (-143 239898 240009 240192 "CDEN" 240541 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 235863 239051 239331 "CCLASS" 239638 T CCLASS (NIL) -8 NIL NIL NIL) (-141 235114 235271 235448 "CATEGORY" 235706 T -10 (NIL) -8 NIL NIL NIL) (-140 234687 235033 235081 "CATCTOR" 235086 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 234138 234390 234488 "CATAST" 234609 T CATAST (NIL) -8 NIL NIL NIL) (-138 233614 233859 233951 "CASEAST" 234066 T CASEAST (NIL) -8 NIL NIL NIL) (-137 228752 229771 230515 "CARTEN" 232926 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 227860 228008 228229 "CARTEN2" 228599 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 226176 227010 227267 "CARD" 227623 T CARD (NIL) -8 NIL NIL NIL) (-134 225752 225980 226055 "CAPSLAST" 226121 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 225242 225450 225478 "CACHSET" 225610 T CACHSET (NIL) -9 NIL 225688 NIL) (-132 224698 225020 225048 "CABMON" 225098 T CABMON (NIL) -9 NIL 225154 NIL) (-131 224171 224402 224512 "BYTEORD" 224608 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 223148 223700 223842 "BYTE" 224005 T BYTE (NIL) -8 NIL NIL 224127) (-129 218501 222653 222825 "BYTEBUF" 222996 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 216013 218193 218300 "BTREE" 218427 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 213465 215661 215783 "BTOURN" 215923 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 210810 212907 212948 "BTCAT" 213016 NIL BTCAT (NIL T) -9 NIL 213093 NIL) (-125 210477 210557 210706 "BTCAT-" 210711 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 205842 209723 209751 "BTAGG" 209865 T BTAGG (NIL) -9 NIL 209975 NIL) (-123 205332 205457 205663 "BTAGG-" 205668 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 202330 204610 204825 "BSTREE" 205149 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 201468 201594 201778 "BRILL" 202186 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 198095 200166 200207 "BRAGG" 200856 NIL BRAGG (NIL T) -9 NIL 201114 NIL) (-119 196624 197030 197585 "BRAGG-" 197590 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 189540 195968 196153 "BPADICRT" 196471 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 187855 189477 189522 "BPADIC" 189527 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 187553 187583 187697 "BOUNDZRO" 187819 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 182781 183979 184891 "BOP" 186661 T BOP (NIL) -8 NIL NIL NIL) (-114 180562 180966 181441 "BOP1" 182339 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 180263 180324 180352 "BOOLE" 180463 T BOOLE (NIL) -9 NIL 180545 NIL) (-112 179088 179837 179986 "BOOLEAN" 180134 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 178353 178757 178811 "BMODULE" 178816 NIL BMODULE (NIL T T) -9 NIL 178881 NIL) (-110 174154 178151 178224 "BITS" 178300 T BITS (NIL) -8 NIL NIL NIL) (-109 173575 173694 173834 "BINDING" 174034 T BINDING (NIL) -8 NIL NIL NIL) (-108 167294 173170 173319 "BINARY" 173446 T BINARY (NIL) -8 NIL NIL NIL) (-107 165049 166521 166562 "BGAGG" 166822 NIL BGAGG (NIL T) -9 NIL 166959 NIL) (-106 164880 164912 165003 "BGAGG-" 165008 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 163951 164264 164469 "BFUNCT" 164695 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 162641 162819 163107 "BEZOUT" 163775 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 159113 161493 161823 "BBTREE" 162344 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 158714 158792 158820 "BASTYPE" 158997 T BASTYPE (NIL) -9 NIL 159096 NIL) (-101 158390 158471 158606 "BASTYPE-" 158611 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 157824 157900 158052 "BALFACT" 158301 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 156680 157239 157425 "AUTOMOR" 157669 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 156406 156411 156437 "ATTREG" 156442 T ATTREG (NIL) -9 NIL NIL NIL) (-97 154658 155103 155455 "ATTRBUT" 156072 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 154266 154486 154552 "ATTRAST" 154610 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 153802 153915 153941 "ATRIG" 154142 T ATRIG (NIL) -9 NIL NIL NIL) (-94 153611 153652 153739 "ATRIG-" 153744 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 153242 153428 153454 "ASTCAT" 153459 T ASTCAT (NIL) -9 NIL 153489 NIL) (-92 152969 153028 153147 "ASTCAT-" 153152 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 151121 152745 152833 "ASTACK" 152912 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 149626 149923 150288 "ASSOCEQ" 150803 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 148658 149285 149409 "ASP9" 149533 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 148421 148606 148645 "ASP8" 148650 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 147289 148026 148168 "ASP80" 148310 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 146187 146924 147056 "ASP7" 147188 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 145141 145864 145982 "ASP78" 146100 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 144110 144821 144938 "ASP77" 145055 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 143022 143748 143879 "ASP74" 144010 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 141922 142657 142789 "ASP73" 142921 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 141026 141748 141848 "ASP6" 141853 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 139973 140703 140821 "ASP55" 140939 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 138922 139647 139766 "ASP50" 139885 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 138010 138623 138733 "ASP4" 138843 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 137098 137711 137821 "ASP49" 137931 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 135882 136637 136805 "ASP42" 136987 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 134659 135415 135585 "ASP41" 135769 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 133609 134336 134454 "ASP35" 134572 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 133374 133557 133596 "ASP34" 133601 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 133111 133178 133254 "ASP33" 133329 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 132005 132746 132878 "ASP31" 133010 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 131770 131953 131992 "ASP30" 131997 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 131505 131574 131650 "ASP29" 131725 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 131270 131453 131492 "ASP28" 131497 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 131035 131218 131257 "ASP27" 131262 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 130119 130733 130844 "ASP24" 130955 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 129196 129921 130033 "ASP20" 130038 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 128284 128897 129007 "ASP1" 129117 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 127227 127958 128077 "ASP19" 128196 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 126964 127031 127107 "ASP12" 127182 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 125816 126563 126707 "ASP10" 126851 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 123670 125660 125751 "ARRAY2" 125756 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 119438 123318 123432 "ARRAY1" 123587 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 118470 118643 118864 "ARRAY12" 119261 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 112757 114672 114747 "ARR2CAT" 117377 NIL ARR2CAT (NIL T T T) -9 NIL 118135 NIL) (-56 110191 110935 111889 "ARR2CAT-" 111894 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 109508 109818 109943 "ARITY" 110084 T ARITY (NIL) -8 NIL NIL NIL) (-54 108284 108436 108735 "APPRULE" 109344 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 107935 107983 108102 "APPLYORE" 108230 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 107289 107528 107648 "ANY" 107833 T ANY (NIL) -8 NIL NIL NIL) (-51 106567 106690 106847 "ANY1" 107163 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 104097 105004 105331 "ANTISYM" 106291 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 103589 103804 103900 "ANON" 104019 T ANON (NIL) -8 NIL NIL NIL) (-48 97589 102128 102582 "AN" 103153 T AN (NIL) -8 NIL NIL NIL) (-47 93473 94861 94912 "AMR" 95660 NIL AMR (NIL T T) -9 NIL 96260 NIL) (-46 92585 92806 93169 "AMR-" 93174 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 77030 92502 92563 "ALIST" 92568 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 73835 76624 76793 "ALGSC" 76948 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 70391 70945 71552 "ALGPKG" 73275 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 69668 69769 69953 "ALGMFACT" 70277 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 65703 66282 66876 "ALGMANIP" 69252 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55914 65329 65479 "ALGFF" 65636 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 55110 55241 55420 "ALGFACT" 55772 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 54037 54637 54675 "ALGEBRA" 54680 NIL ALGEBRA (NIL T) -9 NIL 54721 NIL) (-37 53755 53814 53946 "ALGEBRA-" 53951 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 35692 51592 51644 "ALAGG" 51780 NIL ALAGG (NIL T T) -9 NIL 51941 NIL) (-35 35228 35341 35367 "AHYP" 35568 T AHYP (NIL) -9 NIL NIL NIL) (-34 34159 34407 34433 "AGG" 34932 T AGG (NIL) -9 NIL 35211 NIL) (-33 33593 33755 33969 "AGG-" 33974 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 31399 31822 32227 "AF" 33235 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30879 31124 31214 "ADDAST" 31327 T ADDAST (NIL) -8 NIL NIL NIL) (-30 30147 30406 30562 "ACPLOT" 30741 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18770 27079 27117 "ACFS" 27724 NIL ACFS (NIL T) -9 NIL 27963 NIL) (-28 16797 17287 18049 "ACFS-" 18054 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12901 14830 14856 "ACF" 15735 T ACF (NIL) -9 NIL 16148 NIL) (-26 11605 11939 12432 "ACF-" 12437 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11163 11358 11384 "ABELSG" 11476 T ABELSG (NIL) -9 NIL 11541 NIL) (-24 11030 11055 11121 "ABELSG-" 11126 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10359 10646 10672 "ABELMON" 10842 T ABELMON (NIL) -9 NIL 10954 NIL) (-22 10023 10107 10245 "ABELMON-" 10250 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9357 9729 9755 "ABELGRP" 9827 T ABELGRP (NIL) -9 NIL 9902 NIL) (-20 8820 8949 9165 "ABELGRP-" 9170 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8082 8121 "A1AGG" 8126 NIL A1AGG (NIL T) -9 NIL 8166 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file +((-3 3262593 3262598 3262603 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3262578 3262583 3262588 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3262563 3262568 3262573 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3262548 3262553 3262558 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1317 3261691 3262423 3262500 "ZMOD" 3262505 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1316 3260745 3260909 3261132 "ZLINDEP" 3261523 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1315 3250045 3251813 3253785 "ZDSOLVE" 3258875 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1314 3249291 3249432 3249621 "YSTREAM" 3249891 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1313 3248719 3248965 3249078 "YDIAGRAM" 3249200 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1312 3246493 3248020 3248224 "XRPOLY" 3248562 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1311 3243046 3244364 3244939 "XPR" 3245965 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1310 3240767 3242377 3242581 "XPOLY" 3242877 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1309 3238406 3239774 3239829 "XPOLYC" 3240117 NIL XPOLYC (NIL T T) -9 NIL 3240230 NIL) (-1308 3234782 3236923 3237311 "XPBWPOLY" 3238064 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1307 3230463 3232758 3232800 "XF" 3233421 NIL XF (NIL T) -9 NIL 3233821 NIL) (-1306 3230084 3230172 3230341 "XF-" 3230346 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1305 3225266 3226555 3226610 "XFALG" 3228782 NIL XFALG (NIL T T) -9 NIL 3229571 NIL) (-1304 3224399 3224503 3224708 "XEXPPKG" 3225158 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1303 3222508 3224249 3224345 "XDPOLY" 3224350 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1302 3221301 3221901 3221944 "XALG" 3221949 NIL XALG (NIL T) -9 NIL 3222060 NIL) (-1301 3214743 3219278 3219772 "WUTSET" 3220893 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1300 3212999 3213795 3214118 "WP" 3214554 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1299 3212601 3212821 3212891 "WHILEAST" 3212951 T WHILEAST (NIL) -8 NIL NIL NIL) (-1298 3212073 3212318 3212412 "WHEREAST" 3212529 T WHEREAST (NIL) -8 NIL NIL NIL) (-1297 3210959 3211157 3211452 "WFFINTBS" 3211870 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1296 3208863 3209290 3209752 "WEIER" 3210531 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1295 3207895 3208345 3208387 "VSPACE" 3208523 NIL VSPACE (NIL T) -9 NIL 3208597 NIL) (-1294 3207733 3207760 3207851 "VSPACE-" 3207856 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1293 3207542 3207584 3207652 "VOID" 3207687 T VOID (NIL) -8 NIL NIL NIL) (-1292 3205678 3206037 3206443 "VIEW" 3207158 T VIEW (NIL) -7 NIL NIL NIL) (-1291 3202102 3202741 3203478 "VIEWDEF" 3204963 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1290 3191406 3193650 3195823 "VIEW3D" 3199951 T VIEW3D (NIL) -8 NIL NIL NIL) (-1289 3183657 3185317 3186896 "VIEW2D" 3189849 T VIEW2D (NIL) -8 NIL NIL NIL) (-1288 3179013 3183427 3183519 "VECTOR" 3183600 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1287 3177590 3177849 3178167 "VECTOR2" 3178743 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1286 3170988 3175294 3175337 "VECTCAT" 3176332 NIL VECTCAT (NIL T) -9 NIL 3176919 NIL) (-1285 3170002 3170256 3170646 "VECTCAT-" 3170651 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1284 3169456 3169653 3169773 "VARIABLE" 3169917 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1283 3169389 3169394 3169424 "UTYPE" 3169429 T UTYPE (NIL) -9 NIL NIL NIL) (-1282 3168219 3168373 3168635 "UTSODETL" 3169215 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1281 3165659 3166119 3166643 "UTSODE" 3167760 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1280 3157607 3163420 3163900 "UTS" 3165237 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1279 3148171 3153541 3153584 "UTSCAT" 3154696 NIL UTSCAT (NIL T) -9 NIL 3155454 NIL) (-1278 3145519 3146241 3147230 "UTSCAT-" 3147235 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1277 3145146 3145189 3145322 "UTS2" 3145470 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1276 3139347 3141956 3141999 "URAGG" 3144069 NIL URAGG (NIL T) -9 NIL 3144792 NIL) (-1275 3136286 3137149 3138272 "URAGG-" 3138277 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1274 3131995 3134921 3135386 "UPXSSING" 3135950 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1273 3124171 3131377 3131641 "UPXS" 3131789 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1272 3117244 3124075 3124147 "UPXSCONS" 3124152 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1271 3106651 3113447 3113509 "UPXSCCA" 3114083 NIL UPXSCCA (NIL T T) -9 NIL 3114316 NIL) (-1270 3106289 3106374 3106548 "UPXSCCA-" 3106553 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1269 3095548 3102117 3102160 "UPXSCAT" 3102808 NIL UPXSCAT (NIL T) -9 NIL 3103417 NIL) (-1268 3094978 3095057 3095236 "UPXS2" 3095463 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1267 3093632 3093885 3094236 "UPSQFREE" 3094721 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1266 3086840 3089900 3089955 "UPSCAT" 3091035 NIL UPSCAT (NIL T T) -9 NIL 3091800 NIL) (-1265 3086044 3086251 3086578 "UPSCAT-" 3086583 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1264 3071126 3079171 3079214 "UPOLYC" 3081315 NIL UPOLYC (NIL T) -9 NIL 3082536 NIL) (-1263 3062454 3064880 3068027 "UPOLYC-" 3068032 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1262 3062081 3062124 3062257 "UPOLYC2" 3062405 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1261 3053616 3061764 3061893 "UP" 3062000 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1260 3052955 3053062 3053226 "UPMP" 3053505 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1259 3052508 3052589 3052728 "UPDIVP" 3052868 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1258 3051076 3051325 3051641 "UPDECOMP" 3052257 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1257 3050307 3050419 3050605 "UPCDEN" 3050960 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1256 3049826 3049895 3050044 "UP2" 3050232 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1255 3048293 3049030 3049307 "UNISEG" 3049584 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1254 3047508 3047635 3047840 "UNISEG2" 3048136 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1253 3046568 3046748 3046974 "UNIFACT" 3047324 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1252 3029320 3045880 3046122 "ULS" 3046384 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1251 3016950 3029224 3029296 "ULSCONS" 3029301 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1250 2997671 3010031 3010093 "ULSCCAT" 3010731 NIL ULSCCAT (NIL T T) -9 NIL 3011020 NIL) (-1249 2996721 2996966 2997354 "ULSCCAT-" 2997359 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1248 2985785 2992268 2992311 "ULSCAT" 2993174 NIL ULSCAT (NIL T) -9 NIL 2993905 NIL) (-1247 2985215 2985294 2985473 "ULS2" 2985700 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1246 2984334 2984844 2984951 "UINT8" 2985062 T UINT8 (NIL) -8 NIL NIL 2985147) (-1245 2983452 2983962 2984069 "UINT64" 2984180 T UINT64 (NIL) -8 NIL NIL 2984265) (-1244 2982570 2983080 2983187 "UINT32" 2983298 T UINT32 (NIL) -8 NIL NIL 2983383) (-1243 2981688 2982198 2982305 "UINT16" 2982416 T UINT16 (NIL) -8 NIL NIL 2982501) (-1242 2979977 2980934 2980964 "UFD" 2981176 T UFD (NIL) -9 NIL 2981290 NIL) (-1241 2979771 2979817 2979912 "UFD-" 2979917 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1240 2978853 2979036 2979252 "UDVO" 2979577 T UDVO (NIL) -7 NIL NIL NIL) (-1239 2976669 2977078 2977549 "UDPO" 2978417 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1238 2976602 2976607 2976637 "TYPE" 2976642 T TYPE (NIL) -9 NIL NIL NIL) (-1237 2976362 2976557 2976588 "TYPEAST" 2976593 T TYPEAST (NIL) -8 NIL NIL NIL) (-1236 2975333 2975535 2975775 "TWOFACT" 2976156 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1235 2974356 2974742 2974977 "TUPLE" 2975133 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1234 2972047 2972566 2973105 "TUBETOOL" 2973839 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1233 2970896 2971101 2971342 "TUBE" 2971840 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1232 2965625 2969868 2970151 "TS" 2970648 NIL TS (NIL T) -8 NIL NIL NIL) (-1231 2954265 2958384 2958481 "TSETCAT" 2963750 NIL TSETCAT (NIL T T T T) -9 NIL 2965281 NIL) (-1230 2948997 2950597 2952488 "TSETCAT-" 2952493 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1229 2943636 2944483 2945412 "TRMANIP" 2948133 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1228 2943077 2943140 2943303 "TRIMAT" 2943568 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1227 2940943 2941180 2941537 "TRIGMNIP" 2942826 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1226 2940463 2940576 2940606 "TRIGCAT" 2940819 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1225 2940132 2940211 2940352 "TRIGCAT-" 2940357 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1224 2936980 2938990 2939271 "TREE" 2939886 NIL TREE (NIL T) -8 NIL NIL NIL) (-1223 2936254 2936782 2936812 "TRANFUN" 2936847 T TRANFUN (NIL) -9 NIL 2936913 NIL) (-1222 2935533 2935724 2936004 "TRANFUN-" 2936009 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1221 2935337 2935369 2935430 "TOPSP" 2935494 T TOPSP (NIL) -7 NIL NIL NIL) (-1220 2934685 2934800 2934954 "TOOLSIGN" 2935218 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1219 2933319 2933862 2934101 "TEXTFILE" 2934468 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1218 2931231 2931772 2932201 "TEX" 2932912 T TEX (NIL) -8 NIL NIL NIL) (-1217 2931012 2931043 2931115 "TEX1" 2931194 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1216 2930660 2930723 2930813 "TEMUTL" 2930944 T TEMUTL (NIL) -7 NIL NIL NIL) (-1215 2928814 2929094 2929419 "TBCMPPK" 2930383 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1214 2920523 2926900 2926956 "TBAGG" 2927356 NIL TBAGG (NIL T T) -9 NIL 2927567 NIL) (-1213 2915593 2917081 2918835 "TBAGG-" 2918840 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1212 2914977 2915084 2915229 "TANEXP" 2915482 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1211 2914488 2914752 2914842 "TALGOP" 2914922 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1210 2907884 2914345 2914438 "TABLE" 2914443 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1209 2907296 2907395 2907533 "TABLEAU" 2907781 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1208 2901904 2903124 2904372 "TABLBUMP" 2906082 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1207 2901126 2901273 2901454 "SYSTEM" 2901745 T SYSTEM (NIL) -8 NIL NIL NIL) (-1206 2897585 2898284 2899067 "SYSSOLP" 2900377 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1205 2897383 2897540 2897571 "SYSPTR" 2897576 T SYSPTR (NIL) -8 NIL NIL NIL) (-1204 2896419 2896924 2897043 "SYSNNI" 2897229 NIL SYSNNI (NIL NIL) -8 NIL NIL 2897314) (-1203 2895718 2896177 2896256 "SYSINT" 2896316 NIL SYSINT (NIL NIL) -8 NIL NIL 2896361) (-1202 2892050 2892996 2893706 "SYNTAX" 2895030 T SYNTAX (NIL) -8 NIL NIL NIL) (-1201 2889208 2889810 2890442 "SYMTAB" 2891440 T SYMTAB (NIL) -8 NIL NIL NIL) (-1200 2884457 2885359 2886342 "SYMS" 2888247 T SYMS (NIL) -8 NIL NIL NIL) (-1199 2881692 2883915 2884145 "SYMPOLY" 2884262 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1198 2881209 2881284 2881407 "SYMFUNC" 2881604 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1197 2877229 2878521 2879334 "SYMBOL" 2880418 T SYMBOL (NIL) -8 NIL NIL NIL) (-1196 2870768 2872457 2874177 "SWITCH" 2875531 T SWITCH (NIL) -8 NIL NIL NIL) (-1195 2864112 2869724 2870018 "SUTS" 2870532 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1194 2856288 2863494 2863758 "SUPXS" 2863906 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1193 2847771 2855906 2856032 "SUP" 2856197 NIL SUP (NIL T) -8 NIL NIL NIL) (-1192 2846930 2847057 2847274 "SUPFRACF" 2847639 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1191 2846551 2846610 2846723 "SUP2" 2846865 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1190 2844999 2845273 2845629 "SUMRF" 2846250 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1189 2844334 2844400 2844592 "SUMFS" 2844920 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1188 2827121 2843646 2843888 "SULS" 2844150 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1187 2826723 2826943 2827013 "SUCHTAST" 2827073 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1186 2826018 2826248 2826388 "SUCH" 2826631 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1185 2819885 2820924 2821883 "SUBSPACE" 2825106 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1184 2819315 2819405 2819569 "SUBRESP" 2819773 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1183 2812683 2813980 2815291 "STTF" 2818051 NIL STTF (NIL T) -7 NIL NIL NIL) (-1182 2806856 2807976 2809123 "STTFNC" 2811583 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1181 2798169 2800038 2801832 "STTAYLOR" 2805097 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1180 2791305 2798033 2798116 "STRTBL" 2798121 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1179 2786266 2791014 2791113 "STRING" 2791228 T STRING (NIL) -8 NIL NIL NIL) (-1178 2779022 2783885 2784496 "STREAM" 2785690 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1177 2778532 2778609 2778753 "STREAM3" 2778939 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1176 2777514 2777697 2777932 "STREAM2" 2778345 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1175 2777202 2777254 2777347 "STREAM1" 2777456 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1174 2776218 2776399 2776630 "STINPROD" 2777018 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1173 2775756 2775966 2775996 "STEP" 2776076 T STEP (NIL) -9 NIL 2776154 NIL) (-1172 2774943 2775245 2775393 "STEPAST" 2775630 T STEPAST (NIL) -8 NIL NIL NIL) (-1171 2768381 2774842 2774919 "STBL" 2774924 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1170 2763451 2767544 2767587 "STAGG" 2767740 NIL STAGG (NIL T) -9 NIL 2767829 NIL) (-1169 2761153 2761755 2762627 "STAGG-" 2762632 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1168 2759303 2760923 2761015 "STACK" 2761096 NIL STACK (NIL T) -8 NIL NIL NIL) (-1167 2751998 2757444 2757900 "SREGSET" 2758933 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1166 2744423 2745792 2747305 "SRDCMPK" 2750604 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1165 2737260 2741782 2741812 "SRAGG" 2743115 T SRAGG (NIL) -9 NIL 2743723 NIL) (-1164 2736277 2736532 2736911 "SRAGG-" 2736916 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1163 2730461 2735224 2735645 "SQMATRIX" 2735903 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1162 2724149 2727179 2727906 "SPLTREE" 2729806 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1161 2720112 2720805 2721451 "SPLNODE" 2723575 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1160 2719159 2719392 2719422 "SPFCAT" 2719866 T SPFCAT (NIL) -9 NIL NIL NIL) (-1159 2717896 2718106 2718370 "SPECOUT" 2718917 T SPECOUT (NIL) -7 NIL NIL NIL) (-1158 2708992 2710864 2710894 "SPADXPT" 2715570 T SPADXPT (NIL) -9 NIL 2717734 NIL) (-1157 2708753 2708793 2708862 "SPADPRSR" 2708945 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1156 2706802 2708708 2708739 "SPADAST" 2708744 T SPADAST (NIL) -8 NIL NIL NIL) (-1155 2698733 2700506 2700549 "SPACEC" 2704922 NIL SPACEC (NIL T) -9 NIL 2706738 NIL) (-1154 2696863 2698665 2698714 "SPACE3" 2698719 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1153 2695615 2695786 2696077 "SORTPAK" 2696668 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1152 2693707 2694010 2694422 "SOLVETRA" 2695279 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1151 2692757 2692979 2693240 "SOLVESER" 2693480 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1150 2688061 2688949 2689944 "SOLVERAD" 2691809 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1149 2683876 2684485 2685214 "SOLVEFOR" 2687428 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1148 2678146 2683225 2683322 "SNTSCAT" 2683327 NIL SNTSCAT (NIL T T T T) -9 NIL 2683397 NIL) (-1147 2672252 2676469 2676860 "SMTS" 2677836 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1146 2666661 2672140 2672217 "SMP" 2672222 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1145 2664820 2665121 2665519 "SMITH" 2666358 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1144 2656924 2661399 2661502 "SMATCAT" 2662853 NIL SMATCAT (NIL NIL T T T) -9 NIL 2663403 NIL) (-1143 2653864 2654687 2655865 "SMATCAT-" 2655870 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1142 2651505 2653072 2653115 "SKAGG" 2653376 NIL SKAGG (NIL T) -9 NIL 2653511 NIL) (-1141 2647695 2650978 2651162 "SINT" 2651314 T SINT (NIL) -8 NIL NIL 2651476) (-1140 2647467 2647505 2647571 "SIMPAN" 2647651 T SIMPAN (NIL) -7 NIL NIL NIL) (-1139 2646746 2647002 2647142 "SIG" 2647349 T SIG (NIL) -8 NIL NIL NIL) (-1138 2645584 2645805 2646080 "SIGNRF" 2646505 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1137 2644417 2644568 2644852 "SIGNEF" 2645413 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1136 2643723 2644000 2644124 "SIGAST" 2644315 T SIGAST (NIL) -8 NIL NIL NIL) (-1135 2641413 2641867 2642373 "SHP" 2643264 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1134 2635242 2641314 2641390 "SHDP" 2641395 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1133 2634801 2634993 2635023 "SGROUP" 2635116 T SGROUP (NIL) -9 NIL 2635178 NIL) (-1132 2634659 2634685 2634758 "SGROUP-" 2634763 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1131 2631450 2632148 2632871 "SGCF" 2633958 T SGCF (NIL) -7 NIL NIL NIL) (-1130 2625818 2630897 2630994 "SFRTCAT" 2630999 NIL SFRTCAT (NIL T T T T) -9 NIL 2631038 NIL) (-1129 2619239 2620257 2621393 "SFRGCD" 2624801 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1128 2612365 2613438 2614624 "SFQCMPK" 2618172 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1127 2611985 2612074 2612185 "SFORT" 2612306 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1126 2611103 2611825 2611946 "SEXOF" 2611951 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1125 2610210 2610984 2611052 "SEX" 2611057 T SEX (NIL) -8 NIL NIL NIL) (-1124 2605991 2606706 2606801 "SEXCAT" 2609423 NIL SEXCAT (NIL T T T T T) -9 NIL 2609983 NIL) (-1123 2603144 2605925 2605973 "SET" 2605978 NIL SET (NIL T) -8 NIL NIL NIL) (-1122 2601368 2601857 2602162 "SETMN" 2602885 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1121 2600934 2601086 2601116 "SETCAT" 2601233 T SETCAT (NIL) -9 NIL 2601318 NIL) (-1120 2600714 2600766 2600865 "SETCAT-" 2600870 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1119 2597075 2599175 2599218 "SETAGG" 2600088 NIL SETAGG (NIL T) -9 NIL 2600428 NIL) (-1118 2596533 2596649 2596886 "SETAGG-" 2596891 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1117 2595976 2596229 2596330 "SEQAST" 2596454 T SEQAST (NIL) -8 NIL NIL NIL) (-1116 2595175 2595469 2595530 "SEGXCAT" 2595816 NIL SEGXCAT (NIL T T) -9 NIL 2595936 NIL) (-1115 2594181 2594841 2595023 "SEG" 2595028 NIL SEG (NIL T) -8 NIL NIL NIL) (-1114 2593160 2593374 2593417 "SEGCAT" 2593939 NIL SEGCAT (NIL T) -9 NIL 2594160 NIL) (-1113 2592092 2592523 2592731 "SEGBIND" 2592987 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1112 2591713 2591772 2591885 "SEGBIND2" 2592027 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1111 2591286 2591514 2591591 "SEGAST" 2591658 T SEGAST (NIL) -8 NIL NIL NIL) (-1110 2590505 2590631 2590835 "SEG2" 2591130 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1109 2589876 2590440 2590487 "SDVAR" 2590492 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1108 2582127 2589646 2589776 "SDPOL" 2589781 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1107 2580720 2580986 2581305 "SCPKG" 2581842 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1106 2579884 2580056 2580248 "SCOPE" 2580550 T SCOPE (NIL) -8 NIL NIL NIL) (-1105 2579104 2579238 2579417 "SCACHE" 2579739 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1104 2578736 2578922 2578952 "SASTCAT" 2578957 T SASTCAT (NIL) -9 NIL 2578970 NIL) (-1103 2578223 2578571 2578647 "SAOS" 2578682 T SAOS (NIL) -8 NIL NIL NIL) (-1102 2577788 2577823 2577996 "SAERFFC" 2578182 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1101 2571451 2577685 2577765 "SAE" 2577770 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1100 2571044 2571079 2571238 "SAEFACT" 2571410 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1099 2569365 2569679 2570080 "RURPK" 2570710 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1098 2568002 2568308 2568613 "RULESET" 2569199 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1097 2565225 2565755 2566213 "RULE" 2567683 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1096 2564837 2565019 2565102 "RULECOLD" 2565177 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1095 2564627 2564655 2564726 "RTVALUE" 2564788 T RTVALUE (NIL) -8 NIL NIL NIL) (-1094 2564098 2564344 2564438 "RSTRCAST" 2564555 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1093 2558946 2559741 2560661 "RSETGCD" 2563297 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1092 2548176 2553255 2553352 "RSETCAT" 2557471 NIL RSETCAT (NIL T T T T) -9 NIL 2558568 NIL) (-1091 2546103 2546642 2547466 "RSETCAT-" 2547471 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1090 2538489 2539865 2541385 "RSDCMPK" 2544702 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1089 2536454 2536921 2536995 "RRCC" 2538081 NIL RRCC (NIL T T) -9 NIL 2538425 NIL) (-1088 2535805 2535979 2536258 "RRCC-" 2536263 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1087 2535248 2535501 2535602 "RPTAST" 2535726 T RPTAST (NIL) -8 NIL NIL NIL) (-1086 2508724 2518360 2518427 "RPOLCAT" 2529093 NIL RPOLCAT (NIL T T T) -9 NIL 2532253 NIL) (-1085 2500222 2502562 2505684 "RPOLCAT-" 2505689 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1084 2491159 2498433 2498915 "ROUTINE" 2499762 T ROUTINE (NIL) -8 NIL NIL NIL) (-1083 2487820 2490785 2490925 "ROMAN" 2491041 T ROMAN (NIL) -8 NIL NIL NIL) (-1082 2486064 2486680 2486940 "ROIRC" 2487625 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1081 2482268 2484553 2484583 "RNS" 2484887 T RNS (NIL) -9 NIL 2485161 NIL) (-1080 2480777 2481160 2481694 "RNS-" 2481769 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1079 2480166 2480574 2480604 "RNG" 2480609 T RNG (NIL) -9 NIL 2480630 NIL) (-1078 2479169 2479531 2479733 "RNGBIND" 2480017 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1077 2478554 2478942 2478985 "RMODULE" 2478990 NIL RMODULE (NIL T) -9 NIL 2479017 NIL) (-1076 2477390 2477484 2477820 "RMCAT2" 2478455 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1075 2474240 2476736 2477033 "RMATRIX" 2477152 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1074 2467067 2469327 2469442 "RMATCAT" 2472801 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2473783 NIL) (-1073 2466442 2466589 2466896 "RMATCAT-" 2466901 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1072 2466057 2466229 2466272 "RLINSET" 2466334 NIL RLINSET (NIL T) -9 NIL 2466378 NIL) (-1071 2465624 2465699 2465827 "RINTERP" 2465976 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1070 2464668 2465222 2465252 "RING" 2465308 T RING (NIL) -9 NIL 2465400 NIL) (-1069 2464460 2464504 2464601 "RING-" 2464606 NIL RING- (NIL T) -8 NIL NIL NIL) (-1068 2463301 2463538 2463796 "RIDIST" 2464224 T RIDIST (NIL) -7 NIL NIL NIL) (-1067 2454590 2462769 2462975 "RGCHAIN" 2463149 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1066 2453926 2454332 2454373 "RGBCSPC" 2454431 NIL RGBCSPC (NIL T) -9 NIL 2454483 NIL) (-1065 2453070 2453451 2453492 "RGBCMDL" 2453724 NIL RGBCMDL (NIL T) -9 NIL 2453838 NIL) (-1064 2450064 2450678 2451348 "RF" 2452434 NIL RF (NIL T) -7 NIL NIL NIL) (-1063 2449710 2449773 2449876 "RFFACTOR" 2449995 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1062 2449435 2449470 2449567 "RFFACT" 2449669 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1061 2447552 2447916 2448298 "RFDIST" 2449075 T RFDIST (NIL) -7 NIL NIL NIL) (-1060 2447005 2447097 2447260 "RETSOL" 2447454 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1059 2446641 2446721 2446764 "RETRACT" 2446897 NIL RETRACT (NIL T) -9 NIL 2446984 NIL) (-1058 2446490 2446515 2446602 "RETRACT-" 2446607 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1057 2446092 2446312 2446382 "RETAST" 2446442 T RETAST (NIL) -8 NIL NIL NIL) (-1056 2438836 2445745 2445872 "RESULT" 2445987 T RESULT (NIL) -8 NIL NIL NIL) (-1055 2437427 2438105 2438304 "RESRING" 2438739 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1054 2437063 2437112 2437210 "RESLATC" 2437364 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1053 2436768 2436803 2436910 "REPSQ" 2437022 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1052 2434190 2434770 2435372 "REP" 2436188 T REP (NIL) -7 NIL NIL NIL) (-1051 2433887 2433922 2434033 "REPDB" 2434149 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1050 2427787 2429176 2430399 "REP2" 2432699 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1049 2424164 2424845 2425653 "REP1" 2427014 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1048 2416860 2422305 2422761 "REGSET" 2423794 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1047 2415625 2416008 2416258 "REF" 2416645 NIL REF (NIL T) -8 NIL NIL NIL) (-1046 2415002 2415105 2415272 "REDORDER" 2415509 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1045 2410970 2414215 2414442 "RECLOS" 2414830 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1044 2410022 2410203 2410418 "REALSOLV" 2410777 T REALSOLV (NIL) -7 NIL NIL NIL) (-1043 2409868 2409909 2409939 "REAL" 2409944 T REAL (NIL) -9 NIL 2409979 NIL) (-1042 2406351 2407153 2408037 "REAL0Q" 2409033 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1041 2401952 2402940 2404001 "REAL0" 2405332 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1040 2401423 2401669 2401763 "RDUCEAST" 2401880 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1039 2400828 2400900 2401107 "RDIV" 2401345 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1038 2399896 2400070 2400283 "RDIST" 2400650 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1037 2398493 2398780 2399152 "RDETRS" 2399604 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1036 2396305 2396759 2397297 "RDETR" 2398035 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1035 2394930 2395208 2395605 "RDEEFS" 2396021 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1034 2393439 2393745 2394170 "RDEEF" 2394618 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1033 2387472 2390393 2390423 "RCFIELD" 2391718 T RCFIELD (NIL) -9 NIL 2392449 NIL) (-1032 2385536 2386040 2386736 "RCFIELD-" 2386811 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1031 2381780 2383609 2383652 "RCAGG" 2384736 NIL RCAGG (NIL T) -9 NIL 2385201 NIL) (-1030 2381408 2381502 2381665 "RCAGG-" 2381670 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1029 2380743 2380855 2381020 "RATRET" 2381292 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1028 2380296 2380363 2380484 "RATFACT" 2380671 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1027 2379604 2379724 2379876 "RANDSRC" 2380166 T RANDSRC (NIL) -7 NIL NIL NIL) (-1026 2379338 2379382 2379455 "RADUTIL" 2379553 T RADUTIL (NIL) -7 NIL NIL NIL) (-1025 2372166 2378169 2378480 "RADIX" 2379061 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1024 2362626 2372008 2372138 "RADFF" 2372143 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1023 2362273 2362348 2362378 "RADCAT" 2362538 T RADCAT (NIL) -9 NIL NIL NIL) (-1022 2362055 2362103 2362203 "RADCAT-" 2362208 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1021 2360156 2361825 2361917 "QUEUE" 2361998 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1020 2356417 2360089 2360137 "QUAT" 2360142 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1019 2356048 2356091 2356222 "QUATCT2" 2356368 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1018 2348846 2352471 2352513 "QUATCAT" 2353304 NIL QUATCAT (NIL T) -9 NIL 2354070 NIL) (-1017 2344985 2346022 2347412 "QUATCAT-" 2347508 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1016 2342425 2344033 2344076 "QUAGG" 2344457 NIL QUAGG (NIL T) -9 NIL 2344632 NIL) (-1015 2342027 2342247 2342317 "QQUTAST" 2342377 T QQUTAST (NIL) -8 NIL NIL NIL) (-1014 2341040 2341540 2341705 "QFORM" 2341908 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1013 2331372 2336887 2336929 "QFCAT" 2337597 NIL QFCAT (NIL T) -9 NIL 2338598 NIL) (-1012 2326939 2328140 2329734 "QFCAT-" 2329830 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1011 2326570 2326613 2326744 "QFCAT2" 2326890 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1010 2326025 2326135 2326267 "QEQUAT" 2326460 T QEQUAT (NIL) -8 NIL NIL NIL) (-1009 2319151 2320224 2321410 "QCMPACK" 2324958 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1008 2316689 2317137 2317567 "QALGSET" 2318806 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1007 2315924 2316100 2316336 "QALGSET2" 2316507 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1006 2314609 2314833 2315152 "PWFFINTB" 2315697 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1005 2312784 2312952 2313308 "PUSHVAR" 2314423 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-1004 2308673 2309727 2309770 "PTRANFN" 2311681 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-1003 2307064 2307355 2307679 "PTPACK" 2308384 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-1002 2306693 2306750 2306861 "PTFUNC2" 2307001 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-1001 2301088 2305482 2305525 "PTCAT" 2305825 NIL PTCAT (NIL T) -9 NIL 2305978 NIL) (-1000 2300743 2300778 2300904 "PSQFR" 2301047 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-999 2299338 2299636 2299970 "PSEUDLIN" 2300441 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-998 2286101 2288472 2290796 "PSETPK" 2297098 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-997 2279119 2281859 2281955 "PSETCAT" 2284976 NIL PSETCAT (NIL T T T T) -9 NIL 2285790 NIL) (-996 2276955 2277589 2278410 "PSETCAT-" 2278415 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-995 2276304 2276469 2276497 "PSCURVE" 2276765 T PSCURVE (NIL) -9 NIL 2276932 NIL) (-994 2272288 2273804 2273869 "PSCAT" 2274713 NIL PSCAT (NIL T T T) -9 NIL 2274953 NIL) (-993 2271351 2271567 2271967 "PSCAT-" 2271972 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-992 2269710 2270420 2270683 "PRTITION" 2271108 T PRTITION (NIL) -8 NIL NIL NIL) (-991 2269185 2269431 2269523 "PRTDAST" 2269638 T PRTDAST (NIL) -8 NIL NIL NIL) (-990 2258275 2260489 2262677 "PRS" 2267047 NIL PRS (NIL T T) -7 NIL NIL NIL) (-989 2256061 2257597 2257637 "PRQAGG" 2257820 NIL PRQAGG (NIL T) -9 NIL 2257922 NIL) (-988 2255397 2255702 2255730 "PROPLOG" 2255869 T PROPLOG (NIL) -9 NIL 2255984 NIL) (-987 2255001 2255058 2255181 "PROPFUN2" 2255320 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-986 2254316 2254437 2254609 "PROPFUN1" 2254862 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-985 2252497 2253063 2253360 "PROPFRML" 2254052 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-984 2251966 2252073 2252201 "PROPERTY" 2252389 T PROPERTY (NIL) -8 NIL NIL NIL) (-983 2246024 2250132 2250952 "PRODUCT" 2251192 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-982 2243302 2245482 2245716 "PR" 2245835 NIL PR (NIL T T) -8 NIL NIL NIL) (-981 2243098 2243130 2243189 "PRINT" 2243263 T PRINT (NIL) -7 NIL NIL NIL) (-980 2242438 2242555 2242707 "PRIMES" 2242978 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-979 2240503 2240904 2241370 "PRIMELT" 2242017 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-978 2240232 2240281 2240309 "PRIMCAT" 2240433 T PRIMCAT (NIL) -9 NIL NIL NIL) (-977 2236350 2240170 2240215 "PRIMARR" 2240220 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-976 2235357 2235535 2235763 "PRIMARR2" 2236168 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-975 2235000 2235056 2235167 "PREASSOC" 2235295 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-974 2234475 2234608 2234636 "PPCURVE" 2234841 T PPCURVE (NIL) -9 NIL 2234977 NIL) (-973 2234070 2234270 2234353 "PORTNUM" 2234412 T PORTNUM (NIL) -8 NIL NIL NIL) (-972 2231429 2231828 2232420 "POLYROOT" 2233651 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-971 2225335 2231033 2231193 "POLY" 2231302 NIL POLY (NIL T) -8 NIL NIL NIL) (-970 2224718 2224776 2225010 "POLYLIFT" 2225271 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-969 2220993 2221442 2222071 "POLYCATQ" 2224263 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-968 2207335 2212740 2212805 "POLYCAT" 2216319 NIL POLYCAT (NIL T T T) -9 NIL 2218197 NIL) (-967 2200784 2202646 2205030 "POLYCAT-" 2205035 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-966 2200371 2200439 2200559 "POLY2UP" 2200710 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-965 2200003 2200060 2200169 "POLY2" 2200308 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-964 2198688 2198927 2199203 "POLUTIL" 2199777 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-963 2197043 2197320 2197651 "POLTOPOL" 2198410 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-962 2192509 2196977 2197024 "POINT" 2197029 NIL POINT (NIL T) -8 NIL NIL NIL) (-961 2190696 2191053 2191428 "PNTHEORY" 2192154 T PNTHEORY (NIL) -7 NIL NIL NIL) (-960 2189154 2189451 2189850 "PMTOOLS" 2190394 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-959 2188747 2188825 2188942 "PMSYM" 2189070 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-958 2188255 2188324 2188499 "PMQFCAT" 2188672 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-957 2187610 2187720 2187876 "PMPRED" 2188132 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-956 2187003 2187089 2187251 "PMPREDFS" 2187511 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-955 2185667 2185875 2186253 "PMPLCAT" 2186765 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-954 2185199 2185278 2185430 "PMLSAGG" 2185582 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-953 2184672 2184748 2184930 "PMKERNEL" 2185117 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-952 2184289 2184364 2184477 "PMINS" 2184591 NIL PMINS (NIL T) -7 NIL NIL NIL) (-951 2183731 2183800 2184009 "PMFS" 2184214 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-950 2182959 2183077 2183282 "PMDOWN" 2183608 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-949 2182126 2182284 2182465 "PMASS" 2182798 T PMASS (NIL) -7 NIL NIL NIL) (-948 2181399 2181509 2181672 "PMASSFS" 2182013 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-947 2181054 2181122 2181216 "PLOTTOOL" 2181325 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-946 2175661 2176865 2178013 "PLOT" 2179926 T PLOT (NIL) -8 NIL NIL NIL) (-945 2171465 2172509 2173430 "PLOT3D" 2174760 T PLOT3D (NIL) -8 NIL NIL NIL) (-944 2170377 2170554 2170789 "PLOT1" 2171269 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-943 2145768 2150443 2155294 "PLEQN" 2165643 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-942 2145086 2145208 2145388 "PINTERP" 2145633 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-941 2144779 2144826 2144929 "PINTERPA" 2145033 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-940 2143995 2144543 2144630 "PI" 2144670 T PI (NIL) -8 NIL NIL 2144737) (-939 2142278 2143253 2143281 "PID" 2143463 T PID (NIL) -9 NIL 2143597 NIL) (-938 2142029 2142066 2142141 "PICOERCE" 2142235 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-937 2141349 2141488 2141664 "PGROEB" 2141885 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-936 2136936 2137750 2138655 "PGE" 2140464 T PGE (NIL) -7 NIL NIL NIL) (-935 2135059 2135306 2135672 "PGCD" 2136653 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-934 2134397 2134500 2134661 "PFRPAC" 2134943 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-933 2131037 2132945 2133298 "PFR" 2134076 NIL PFR (NIL T) -8 NIL NIL NIL) (-932 2129426 2129670 2129995 "PFOTOOLS" 2130784 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-931 2127959 2128198 2128549 "PFOQ" 2129183 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-930 2126460 2126672 2127028 "PFO" 2127743 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-929 2123013 2126349 2126418 "PF" 2126423 NIL PF (NIL NIL) -8 NIL NIL NIL) (-928 2120333 2121604 2121632 "PFECAT" 2122217 T PFECAT (NIL) -9 NIL 2122601 NIL) (-927 2119778 2119932 2120146 "PFECAT-" 2120151 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-926 2118381 2118633 2118934 "PFBRU" 2119527 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-925 2116247 2116599 2117031 "PFBR" 2118032 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-924 2112293 2113759 2114406 "PERM" 2115633 NIL PERM (NIL T) -8 NIL NIL NIL) (-923 2107527 2108500 2109370 "PERMGRP" 2111456 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-922 2105591 2106551 2106592 "PERMCAT" 2106992 NIL PERMCAT (NIL T) -9 NIL 2107290 NIL) (-921 2105244 2105285 2105409 "PERMAN" 2105544 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-920 2102735 2104909 2105031 "PENDTREE" 2105155 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-919 2101664 2101879 2101920 "PDSPC" 2102453 NIL PDSPC (NIL T) -9 NIL 2102698 NIL) (-918 2100767 2100985 2101347 "PDSPC-" 2101352 NIL PDSPC- (NIL T T) -8 NIL NIL NIL) (-917 2099649 2100417 2100458 "PDRING" 2100463 NIL PDRING (NIL T) -9 NIL 2100491 NIL) (-916 2098536 2099154 2099208 "PDMOD" 2099213 NIL PDMOD (NIL T T) -9 NIL 2099317 NIL) (-915 2095751 2096529 2097197 "PDEPROB" 2097888 T PDEPROB (NIL) -8 NIL NIL NIL) (-914 2093296 2093800 2094355 "PDEPACK" 2095216 T PDEPACK (NIL) -7 NIL NIL NIL) (-913 2092208 2092398 2092649 "PDECOMP" 2093095 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-912 2089773 2090616 2090644 "PDECAT" 2091431 T PDECAT (NIL) -9 NIL 2092144 NIL) (-911 2089402 2089457 2089511 "PDDOM" 2089676 NIL PDDOM (NIL T T) -9 NIL 2089756 NIL) (-910 2089221 2089251 2089358 "PDDOM-" 2089363 NIL PDDOM- (NIL T T T) -8 NIL NIL NIL) (-909 2088972 2089005 2089095 "PCOMP" 2089182 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-908 2087150 2087773 2088070 "PBWLB" 2088701 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-907 2079623 2081223 2082561 "PATTERN" 2085833 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-906 2079255 2079312 2079421 "PATTERN2" 2079560 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-905 2077012 2077400 2077857 "PATTERN1" 2078844 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-904 2074380 2074961 2075442 "PATRES" 2076577 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-903 2073944 2074011 2074143 "PATRES2" 2074307 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-902 2071827 2072232 2072639 "PATMATCH" 2073611 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-901 2071323 2071532 2071573 "PATMAB" 2071680 NIL PATMAB (NIL T) -9 NIL 2071763 NIL) (-900 2069841 2070177 2070435 "PATLRES" 2071128 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-899 2069387 2069510 2069551 "PATAB" 2069556 NIL PATAB (NIL T) -9 NIL 2069728 NIL) (-898 2067569 2067964 2068387 "PARTPERM" 2068984 T PARTPERM (NIL) -7 NIL NIL NIL) (-897 2067190 2067253 2067355 "PARSURF" 2067500 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-896 2066822 2066879 2066988 "PARSU2" 2067127 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-895 2066586 2066626 2066693 "PARSER" 2066775 T PARSER (NIL) -7 NIL NIL NIL) (-894 2066207 2066270 2066372 "PARSCURV" 2066517 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-893 2065839 2065896 2066005 "PARSC2" 2066144 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-892 2065478 2065536 2065633 "PARPCURV" 2065775 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-891 2065110 2065167 2065276 "PARPC2" 2065415 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-890 2064171 2064483 2064665 "PARAMAST" 2064948 T PARAMAST (NIL) -8 NIL NIL NIL) (-889 2063691 2063777 2063896 "PAN2EXPR" 2064072 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-888 2062468 2062812 2063040 "PALETTE" 2063483 T PALETTE (NIL) -8 NIL NIL NIL) (-887 2060861 2061473 2061833 "PAIR" 2062154 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-886 2054453 2060118 2060313 "PADICRC" 2060715 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-885 2047369 2053797 2053982 "PADICRAT" 2054300 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-884 2045684 2047306 2047351 "PADIC" 2047356 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-883 2042780 2044344 2044384 "PADICCT" 2044965 NIL PADICCT (NIL NIL) -9 NIL 2045247 NIL) (-882 2041737 2041937 2042205 "PADEPAC" 2042567 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-881 2040949 2041082 2041288 "PADE" 2041599 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-880 2039336 2040157 2040437 "OWP" 2040753 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-879 2038829 2039042 2039139 "OVERSET" 2039259 T OVERSET (NIL) -8 NIL NIL NIL) (-878 2037875 2038434 2038606 "OVAR" 2038697 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-877 2037139 2037260 2037421 "OUT" 2037734 T OUT (NIL) -7 NIL NIL NIL) (-876 2026011 2028248 2030448 "OUTFORM" 2034959 T OUTFORM (NIL) -8 NIL NIL NIL) (-875 2025347 2025608 2025735 "OUTBFILE" 2025904 T OUTBFILE (NIL) -8 NIL NIL NIL) (-874 2024654 2024819 2024847 "OUTBCON" 2025165 T OUTBCON (NIL) -9 NIL 2025331 NIL) (-873 2024255 2024367 2024524 "OUTBCON-" 2024529 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-872 2023635 2023984 2024073 "OSI" 2024186 T OSI (NIL) -8 NIL NIL NIL) (-871 2023138 2023476 2023504 "OSGROUP" 2023509 T OSGROUP (NIL) -9 NIL 2023531 NIL) (-870 2021883 2022110 2022395 "ORTHPOL" 2022885 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-869 2019434 2021718 2021839 "OREUP" 2021844 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-868 2016837 2019125 2019252 "ORESUP" 2019376 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-867 2014365 2014865 2015426 "OREPCTO" 2016326 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-866 2008037 2010238 2010279 "OREPCAT" 2012627 NIL OREPCAT (NIL T) -9 NIL 2013731 NIL) (-865 2005184 2005966 2007024 "OREPCAT-" 2007029 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-864 2004431 2004654 2004682 "ORDTYPE" 2004991 T ORDTYPE (NIL) -9 NIL 2005154 NIL) (-863 2003774 2003948 2004203 "ORDTYPE-" 2004208 NIL ORDTYPE- (NIL T) -8 NIL NIL NIL) (-862 2003387 2003657 2003743 "ORDSTRCT" 2003748 NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-861 2002957 2003255 2003283 "ORDSET" 2003288 T ORDSET (NIL) -9 NIL 2003310 NIL) (-860 2001495 2002286 2002314 "ORDRING" 2002516 T ORDRING (NIL) -9 NIL 2002641 NIL) (-859 2001140 2001234 2001378 "ORDRING-" 2001383 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-858 2000493 2000956 2000984 "ORDMON" 2000989 T ORDMON (NIL) -9 NIL 2001010 NIL) (-857 1999655 1999802 1999997 "ORDFUNS" 2000342 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-856 1998966 1999385 1999413 "ORDFIN" 1999478 T ORDFIN (NIL) -9 NIL 1999552 NIL) (-855 1995525 1997552 1997961 "ORDCOMP" 1998590 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-854 1994791 1994918 1995104 "ORDCOMP2" 1995385 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-853 1991372 1992282 1993096 "OPTPROB" 1993997 T OPTPROB (NIL) -8 NIL NIL NIL) (-852 1988174 1988813 1989517 "OPTPACK" 1990688 T OPTPACK (NIL) -7 NIL NIL NIL) (-851 1985847 1986613 1986641 "OPTCAT" 1987460 T OPTCAT (NIL) -9 NIL 1988110 NIL) (-850 1985231 1985524 1985629 "OPSIG" 1985762 T OPSIG (NIL) -8 NIL NIL NIL) (-849 1984999 1985038 1985104 "OPQUERY" 1985185 T OPQUERY (NIL) -7 NIL NIL NIL) (-848 1982130 1983310 1983814 "OP" 1984528 NIL OP (NIL T) -8 NIL NIL NIL) (-847 1981490 1981716 1981757 "OPERCAT" 1981969 NIL OPERCAT (NIL T) -9 NIL 1982066 NIL) (-846 1981245 1981301 1981418 "OPERCAT-" 1981423 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-845 1978058 1980042 1980411 "ONECOMP" 1980909 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-844 1977363 1977478 1977652 "ONECOMP2" 1977930 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-843 1976782 1976888 1977018 "OMSERVER" 1977253 T OMSERVER (NIL) -7 NIL NIL NIL) (-842 1973644 1976222 1976262 "OMSAGG" 1976323 NIL OMSAGG (NIL T) -9 NIL 1976387 NIL) (-841 1972267 1972530 1972812 "OMPKG" 1973382 T OMPKG (NIL) -7 NIL NIL NIL) (-840 1971697 1971800 1971828 "OM" 1972127 T OM (NIL) -9 NIL NIL NIL) (-839 1970244 1971246 1971415 "OMLO" 1971578 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-838 1969204 1969351 1969571 "OMEXPR" 1970070 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-837 1968495 1968750 1968886 "OMERR" 1969088 T OMERR (NIL) -8 NIL NIL NIL) (-836 1967646 1967916 1968076 "OMERRK" 1968355 T OMERRK (NIL) -8 NIL NIL NIL) (-835 1967097 1967323 1967431 "OMENC" 1967558 T OMENC (NIL) -8 NIL NIL NIL) (-834 1960992 1962177 1963348 "OMDEV" 1965946 T OMDEV (NIL) -8 NIL NIL NIL) (-833 1960061 1960232 1960426 "OMCONN" 1960818 T OMCONN (NIL) -8 NIL NIL NIL) (-832 1958555 1959531 1959559 "OINTDOM" 1959564 T OINTDOM (NIL) -9 NIL 1959585 NIL) (-831 1955893 1957243 1957580 "OFMONOID" 1958250 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-830 1955265 1955830 1955875 "ODVAR" 1955880 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-829 1952688 1955010 1955165 "ODR" 1955170 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-828 1944993 1952464 1952590 "ODPOL" 1952595 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-827 1938792 1944865 1944970 "ODP" 1944975 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-826 1937558 1937773 1938048 "ODETOOLS" 1938566 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-825 1934525 1935183 1935899 "ODESYS" 1936891 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-824 1929407 1930315 1931340 "ODERTRIC" 1933600 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-823 1928833 1928915 1929109 "ODERED" 1929319 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-822 1925721 1926269 1926946 "ODERAT" 1928256 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-821 1922680 1923145 1923742 "ODEPRRIC" 1925250 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-820 1920623 1921219 1921705 "ODEPROB" 1922214 T ODEPROB (NIL) -8 NIL NIL NIL) (-819 1917143 1917628 1918275 "ODEPRIM" 1920102 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-818 1916392 1916494 1916754 "ODEPAL" 1917035 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-817 1912554 1913345 1914209 "ODEPACK" 1915548 T ODEPACK (NIL) -7 NIL NIL NIL) (-816 1911615 1911722 1911944 "ODEINT" 1912443 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-815 1905716 1907141 1908588 "ODEIFTBL" 1910188 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-814 1901114 1901900 1902852 "ODEEF" 1904875 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-813 1900463 1900552 1900775 "ODECONST" 1901019 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-812 1898574 1899235 1899263 "ODECAT" 1899868 T ODECAT (NIL) -9 NIL 1900399 NIL) (-811 1895429 1898279 1898401 "OCT" 1898484 NIL OCT (NIL T) -8 NIL NIL NIL) (-810 1895067 1895110 1895237 "OCTCT2" 1895380 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-809 1889674 1892110 1892150 "OC" 1893247 NIL OC (NIL T) -9 NIL 1894105 NIL) (-808 1886901 1887649 1888639 "OC-" 1888733 NIL OC- (NIL T T) -8 NIL NIL NIL) (-807 1886226 1886694 1886722 "OCAMON" 1886727 T OCAMON (NIL) -9 NIL 1886748 NIL) (-806 1885730 1886071 1886099 "OASGP" 1886104 T OASGP (NIL) -9 NIL 1886124 NIL) (-805 1884964 1885453 1885481 "OAMONS" 1885521 T OAMONS (NIL) -9 NIL 1885564 NIL) (-804 1884351 1884784 1884812 "OAMON" 1884817 T OAMON (NIL) -9 NIL 1884837 NIL) (-803 1883582 1884100 1884128 "OAGROUP" 1884133 T OAGROUP (NIL) -9 NIL 1884153 NIL) (-802 1883272 1883322 1883410 "NUMTUBE" 1883526 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-801 1876845 1878363 1879899 "NUMQUAD" 1881756 T NUMQUAD (NIL) -7 NIL NIL NIL) (-800 1872601 1873589 1874614 "NUMODE" 1875840 T NUMODE (NIL) -7 NIL NIL NIL) (-799 1869942 1870822 1870850 "NUMINT" 1871773 T NUMINT (NIL) -9 NIL 1872537 NIL) (-798 1868890 1869087 1869305 "NUMFMT" 1869744 T NUMFMT (NIL) -7 NIL NIL NIL) (-797 1855249 1858194 1860726 "NUMERIC" 1866397 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-796 1849619 1854698 1854793 "NTSCAT" 1854798 NIL NTSCAT (NIL T T T T) -9 NIL 1854837 NIL) (-795 1848813 1848978 1849171 "NTPOLFN" 1849458 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-794 1836614 1845638 1846450 "NSUP" 1848034 NIL NSUP (NIL T) -8 NIL NIL NIL) (-793 1836246 1836303 1836412 "NSUP2" 1836551 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-792 1826196 1836020 1836153 "NSMP" 1836158 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-791 1824628 1824929 1825286 "NREP" 1825884 NIL NREP (NIL T) -7 NIL NIL NIL) (-790 1823219 1823471 1823829 "NPCOEF" 1824371 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-789 1822285 1822400 1822616 "NORMRETR" 1823100 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-788 1820326 1820616 1821025 "NORMPK" 1821993 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-787 1820011 1820039 1820163 "NORMMA" 1820292 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-786 1819811 1819968 1819997 "NONE" 1820002 T NONE (NIL) -8 NIL NIL NIL) (-785 1819600 1819629 1819698 "NONE1" 1819775 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-784 1819097 1819159 1819338 "NODE1" 1819532 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-783 1817378 1818229 1818484 "NNI" 1818831 T NNI (NIL) -8 NIL NIL 1819066) (-782 1815798 1816111 1816475 "NLINSOL" 1817046 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-781 1812039 1813034 1813933 "NIPROB" 1814919 T NIPROB (NIL) -8 NIL NIL NIL) (-780 1810796 1811030 1811332 "NFINTBAS" 1811801 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-779 1809970 1810446 1810487 "NETCLT" 1810659 NIL NETCLT (NIL T) -9 NIL 1810741 NIL) (-778 1808678 1808909 1809190 "NCODIV" 1809738 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-777 1808440 1808477 1808552 "NCNTFRAC" 1808635 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-776 1806620 1806984 1807404 "NCEP" 1808065 NIL NCEP (NIL T) -7 NIL NIL NIL) (-775 1805457 1806230 1806258 "NASRING" 1806368 T NASRING (NIL) -9 NIL 1806448 NIL) (-774 1805252 1805296 1805390 "NASRING-" 1805395 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-773 1804345 1804870 1804898 "NARNG" 1805015 T NARNG (NIL) -9 NIL 1805106 NIL) (-772 1804037 1804104 1804238 "NARNG-" 1804243 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-771 1802916 1803123 1803358 "NAGSP" 1803822 T NAGSP (NIL) -7 NIL NIL NIL) (-770 1794188 1795872 1797545 "NAGS" 1801263 T NAGS (NIL) -7 NIL NIL NIL) (-769 1792736 1793044 1793375 "NAGF07" 1793877 T NAGF07 (NIL) -7 NIL NIL NIL) (-768 1787274 1788565 1789872 "NAGF04" 1791449 T NAGF04 (NIL) -7 NIL NIL NIL) (-767 1780242 1781856 1783489 "NAGF02" 1785661 T NAGF02 (NIL) -7 NIL NIL NIL) (-766 1775466 1776566 1777683 "NAGF01" 1779145 T NAGF01 (NIL) -7 NIL NIL NIL) (-765 1769094 1770660 1772245 "NAGE04" 1773901 T NAGE04 (NIL) -7 NIL NIL NIL) (-764 1760263 1762384 1764514 "NAGE02" 1766984 T NAGE02 (NIL) -7 NIL NIL NIL) (-763 1756216 1757163 1758127 "NAGE01" 1759319 T NAGE01 (NIL) -7 NIL NIL NIL) (-762 1754011 1754545 1755103 "NAGD03" 1755678 T NAGD03 (NIL) -7 NIL NIL NIL) (-761 1745761 1747689 1749643 "NAGD02" 1752077 T NAGD02 (NIL) -7 NIL NIL NIL) (-760 1739572 1740997 1742437 "NAGD01" 1744341 T NAGD01 (NIL) -7 NIL NIL NIL) (-759 1735781 1736603 1737440 "NAGC06" 1738755 T NAGC06 (NIL) -7 NIL NIL NIL) (-758 1734246 1734578 1734934 "NAGC05" 1735445 T NAGC05 (NIL) -7 NIL NIL NIL) (-757 1733622 1733741 1733885 "NAGC02" 1734122 T NAGC02 (NIL) -7 NIL NIL NIL) (-756 1732567 1733150 1733190 "NAALG" 1733269 NIL NAALG (NIL T) -9 NIL 1733330 NIL) (-755 1732402 1732431 1732521 "NAALG-" 1732526 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-754 1726352 1727460 1728647 "MULTSQFR" 1731298 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-753 1725671 1725746 1725930 "MULTFACT" 1726264 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-752 1718342 1722256 1722309 "MTSCAT" 1723379 NIL MTSCAT (NIL T T) -9 NIL 1723894 NIL) (-751 1718054 1718108 1718200 "MTHING" 1718282 NIL MTHING (NIL T) -7 NIL NIL NIL) (-750 1717846 1717879 1717939 "MSYSCMD" 1718014 T MSYSCMD (NIL) -7 NIL NIL NIL) (-749 1713928 1716601 1716921 "MSET" 1717559 NIL MSET (NIL T) -8 NIL NIL NIL) (-748 1710997 1713489 1713530 "MSETAGG" 1713535 NIL MSETAGG (NIL T) -9 NIL 1713569 NIL) (-747 1706839 1708376 1709121 "MRING" 1710297 NIL MRING (NIL T T) -8 NIL NIL NIL) (-746 1706405 1706472 1706603 "MRF2" 1706766 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-745 1706023 1706058 1706202 "MRATFAC" 1706364 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-744 1703635 1703930 1704361 "MPRFF" 1705728 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-743 1697656 1703489 1703586 "MPOLY" 1703591 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-742 1697146 1697181 1697389 "MPCPF" 1697615 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-741 1696660 1696703 1696887 "MPC3" 1697097 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-740 1695855 1695936 1696157 "MPC2" 1696575 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-739 1694156 1694493 1694883 "MONOTOOL" 1695515 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-738 1693367 1693684 1693712 "MONOID" 1693931 T MONOID (NIL) -9 NIL 1694078 NIL) (-737 1692913 1693032 1693213 "MONOID-" 1693218 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-736 1682503 1688733 1688792 "MONOGEN" 1689466 NIL MONOGEN (NIL T T) -9 NIL 1689922 NIL) (-735 1679721 1680456 1681456 "MONOGEN-" 1681575 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-734 1678540 1678986 1679014 "MONADWU" 1679406 T MONADWU (NIL) -9 NIL 1679644 NIL) (-733 1677912 1678071 1678319 "MONADWU-" 1678324 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-732 1677257 1677501 1677529 "MONAD" 1677736 T MONAD (NIL) -9 NIL 1677848 NIL) (-731 1676942 1677020 1677152 "MONAD-" 1677157 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-730 1675231 1675855 1676134 "MOEBIUS" 1676695 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-729 1674495 1674899 1674939 "MODULE" 1674944 NIL MODULE (NIL T) -9 NIL 1674983 NIL) (-728 1674063 1674159 1674349 "MODULE-" 1674354 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-727 1671743 1672427 1672754 "MODRING" 1673887 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-726 1668687 1669848 1670369 "MODOP" 1671272 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-725 1667275 1667754 1668031 "MODMONOM" 1668550 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-724 1657043 1665566 1665980 "MODMON" 1666912 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-723 1654199 1655887 1656163 "MODFIELD" 1656918 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-722 1653176 1653480 1653670 "MMLFORM" 1654029 T MMLFORM (NIL) -8 NIL NIL NIL) (-721 1652702 1652745 1652924 "MMAP" 1653127 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-720 1650767 1651534 1651575 "MLO" 1651998 NIL MLO (NIL T) -9 NIL 1652240 NIL) (-719 1648133 1648649 1649251 "MLIFT" 1650248 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-718 1647524 1647608 1647762 "MKUCFUNC" 1648044 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-717 1647123 1647193 1647316 "MKRECORD" 1647447 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-716 1646170 1646332 1646560 "MKFUNC" 1646934 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-715 1645558 1645662 1645818 "MKFLCFN" 1646053 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-714 1644835 1644937 1645122 "MKBCFUNC" 1645451 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-713 1641424 1644389 1644525 "MINT" 1644719 T MINT (NIL) -8 NIL NIL NIL) (-712 1640236 1640479 1640756 "MHROWRED" 1641179 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-711 1635616 1638771 1639176 "MFLOAT" 1639851 T MFLOAT (NIL) -8 NIL NIL NIL) (-710 1634973 1635049 1635220 "MFINFACT" 1635528 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-709 1631288 1632136 1633020 "MESH" 1634109 T MESH (NIL) -7 NIL NIL NIL) (-708 1629678 1629990 1630343 "MDDFACT" 1630975 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-707 1626448 1628809 1628850 "MDAGG" 1629105 NIL MDAGG (NIL T) -9 NIL 1629248 NIL) (-706 1615142 1625741 1625948 "MCMPLX" 1626261 T MCMPLX (NIL) -8 NIL NIL NIL) (-705 1614279 1614425 1614626 "MCDEN" 1614991 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-704 1612169 1612439 1612819 "MCALCFN" 1614009 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-703 1611094 1611334 1611567 "MAYBE" 1611975 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-702 1608706 1609229 1609791 "MATSTOR" 1610565 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-701 1604618 1608078 1608326 "MATRIX" 1608491 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-700 1600384 1601091 1601827 "MATLIN" 1603975 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-699 1590210 1593441 1593518 "MATCAT" 1598550 NIL MATCAT (NIL T T T) -9 NIL 1600022 NIL) (-698 1586403 1587473 1588886 "MATCAT-" 1588891 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-697 1584997 1585150 1585483 "MATCAT2" 1586238 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-696 1583109 1583433 1583817 "MAPPKG3" 1584672 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-695 1582090 1582263 1582485 "MAPPKG2" 1582933 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-694 1580589 1580873 1581200 "MAPPKG1" 1581796 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-693 1579668 1579995 1580172 "MAPPAST" 1580432 T MAPPAST (NIL) -8 NIL NIL NIL) (-692 1579279 1579337 1579460 "MAPHACK3" 1579604 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-691 1578871 1578932 1579046 "MAPHACK2" 1579211 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-690 1578309 1578412 1578554 "MAPHACK1" 1578762 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-689 1576388 1577009 1577313 "MAGMA" 1578037 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-688 1575867 1576112 1576203 "MACROAST" 1576317 T MACROAST (NIL) -8 NIL NIL NIL) (-687 1572288 1574106 1574567 "M3D" 1575439 NIL M3D (NIL T) -8 NIL NIL NIL) (-686 1566338 1570599 1570640 "LZSTAGG" 1571422 NIL LZSTAGG (NIL T) -9 NIL 1571717 NIL) (-685 1562296 1563469 1564926 "LZSTAGG-" 1564931 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-684 1559383 1560187 1560674 "LWORD" 1561841 NIL LWORD (NIL T) -8 NIL NIL NIL) (-683 1558959 1559187 1559262 "LSTAST" 1559328 T LSTAST (NIL) -8 NIL NIL NIL) (-682 1551849 1558730 1558864 "LSQM" 1558869 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-681 1551073 1551212 1551440 "LSPP" 1551704 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-680 1548885 1549186 1549642 "LSMP" 1550762 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-679 1545664 1546338 1547068 "LSMP1" 1548187 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-678 1539466 1544754 1544795 "LSAGG" 1544857 NIL LSAGG (NIL T) -9 NIL 1544935 NIL) (-677 1536161 1537085 1538298 "LSAGG-" 1538303 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-676 1533760 1535305 1535554 "LPOLY" 1535956 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-675 1533342 1533427 1533550 "LPEFRAC" 1533669 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-674 1531663 1532436 1532689 "LO" 1533174 NIL LO (NIL T T T) -8 NIL NIL NIL) (-673 1531275 1531413 1531441 "LOGIC" 1531552 T LOGIC (NIL) -9 NIL 1531633 NIL) (-672 1531137 1531160 1531231 "LOGIC-" 1531236 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-671 1530330 1530470 1530663 "LODOOPS" 1530993 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-670 1527753 1530246 1530312 "LODO" 1530317 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-669 1526291 1526526 1526879 "LODOF" 1527500 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-668 1522495 1524926 1524967 "LODOCAT" 1525405 NIL LODOCAT (NIL T) -9 NIL 1525616 NIL) (-667 1522228 1522286 1522413 "LODOCAT-" 1522418 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-666 1519548 1522069 1522187 "LODO2" 1522192 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-665 1516983 1519485 1519530 "LODO1" 1519535 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-664 1515864 1516029 1516334 "LODEEF" 1516806 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-663 1511142 1514030 1514071 "LNAGG" 1514933 NIL LNAGG (NIL T) -9 NIL 1515368 NIL) (-662 1510289 1510503 1510845 "LNAGG-" 1510850 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-661 1506425 1507214 1507853 "LMOPS" 1509704 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-660 1505814 1506202 1506243 "LMODULE" 1506248 NIL LMODULE (NIL T) -9 NIL 1506274 NIL) (-659 1503015 1505459 1505582 "LMDICT" 1505724 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-658 1502633 1502805 1502846 "LLINSET" 1502907 NIL LLINSET (NIL T) -9 NIL 1502951 NIL) (-657 1502332 1502541 1502601 "LITERAL" 1502606 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-656 1495498 1501266 1501570 "LIST" 1502061 NIL LIST (NIL T) -8 NIL NIL NIL) (-655 1495023 1495097 1495236 "LIST3" 1495418 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-654 1494030 1494208 1494436 "LIST2" 1494841 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-653 1492164 1492476 1492875 "LIST2MAP" 1493677 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-652 1491795 1491983 1492024 "LINSET" 1492029 NIL LINSET (NIL T) -9 NIL 1492063 NIL) (-651 1490208 1490822 1490863 "LINEXP" 1491353 NIL LINEXP (NIL T) -9 NIL 1491626 NIL) (-650 1488785 1489045 1489356 "LINDEP" 1489960 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-649 1485552 1486271 1487048 "LIMITRF" 1488040 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-648 1483855 1484151 1484560 "LIMITPS" 1485247 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-647 1478283 1483366 1483594 "LIE" 1483676 NIL LIE (NIL T T) -8 NIL NIL NIL) (-646 1477217 1477686 1477726 "LIECAT" 1477866 NIL LIECAT (NIL T) -9 NIL 1478017 NIL) (-645 1477058 1477085 1477173 "LIECAT-" 1477178 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-644 1469651 1476598 1476754 "LIB" 1476922 T LIB (NIL) -8 NIL NIL NIL) (-643 1465286 1466169 1467104 "LGROBP" 1468768 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-642 1463284 1463558 1463908 "LF" 1465007 NIL LF (NIL T T) -7 NIL NIL NIL) (-641 1462124 1462816 1462844 "LFCAT" 1463051 T LFCAT (NIL) -9 NIL 1463190 NIL) (-640 1459026 1459656 1460344 "LEXTRIPK" 1461488 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-639 1455770 1456596 1457099 "LEXP" 1458606 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-638 1455246 1455491 1455583 "LETAST" 1455698 T LETAST (NIL) -8 NIL NIL NIL) (-637 1453644 1453957 1454358 "LEADCDET" 1454928 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-636 1452834 1452908 1453137 "LAZM3PK" 1453565 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-635 1447751 1450911 1451449 "LAUPOL" 1452346 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-634 1447330 1447374 1447535 "LAPLACE" 1447701 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-633 1445269 1446431 1446682 "LA" 1447163 NIL LA (NIL T T T) -8 NIL NIL NIL) (-632 1444249 1444833 1444874 "LALG" 1444936 NIL LALG (NIL T) -9 NIL 1444995 NIL) (-631 1443963 1444022 1444158 "LALG-" 1444163 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-630 1443798 1443822 1443863 "KVTFROM" 1443925 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-629 1442721 1443165 1443350 "KTVLOGIC" 1443633 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-628 1442556 1442580 1442621 "KRCFROM" 1442683 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-627 1441460 1441647 1441946 "KOVACIC" 1442356 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-626 1441295 1441319 1441360 "KONVERT" 1441422 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-625 1441130 1441154 1441195 "KOERCE" 1441257 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-624 1438961 1439723 1440100 "KERNEL" 1440786 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-623 1438457 1438538 1438670 "KERNEL2" 1438875 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-622 1432168 1436934 1436988 "KDAGG" 1437365 NIL KDAGG (NIL T T) -9 NIL 1437571 NIL) (-621 1431697 1431821 1432026 "KDAGG-" 1432031 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-620 1424845 1431358 1431513 "KAFILE" 1431575 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-619 1419273 1424356 1424584 "JORDAN" 1424666 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-618 1418652 1418922 1419043 "JOINAST" 1419172 T JOINAST (NIL) -8 NIL NIL NIL) (-617 1418498 1418557 1418612 "JAVACODE" 1418617 T JAVACODE (NIL) -8 NIL NIL NIL) (-616 1414725 1416675 1416729 "IXAGG" 1417658 NIL IXAGG (NIL T T) -9 NIL 1418117 NIL) (-615 1413644 1413950 1414369 "IXAGG-" 1414374 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-614 1409177 1413566 1413625 "IVECTOR" 1413630 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-613 1407943 1408180 1408446 "ITUPLE" 1408944 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-612 1406445 1406622 1406917 "ITRIGMNP" 1407765 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-611 1405190 1405394 1405677 "ITFUN3" 1406221 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-610 1404822 1404879 1404988 "ITFUN2" 1405127 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-609 1403981 1404302 1404476 "ITFORM" 1404668 T ITFORM (NIL) -8 NIL NIL NIL) (-608 1401942 1403001 1403279 "ITAYLOR" 1403736 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-607 1390887 1396079 1397242 "ISUPS" 1400812 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-606 1389991 1390131 1390367 "ISUMP" 1390734 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-605 1385369 1389936 1389977 "ISTRING" 1389982 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-604 1384845 1385090 1385182 "ISAST" 1385297 T ISAST (NIL) -8 NIL NIL NIL) (-603 1384054 1384136 1384352 "IRURPK" 1384759 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-602 1382990 1383191 1383431 "IRSN" 1383834 T IRSN (NIL) -7 NIL NIL NIL) (-601 1381061 1381416 1381845 "IRRF2F" 1382628 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-600 1380808 1380846 1380922 "IRREDFFX" 1381017 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-599 1379423 1379682 1379981 "IROOT" 1380541 NIL IROOT (NIL T) -7 NIL NIL NIL) (-598 1376027 1377107 1377799 "IR" 1378763 NIL IR (NIL T) -8 NIL NIL NIL) (-597 1375232 1375520 1375671 "IRFORM" 1375896 T IRFORM (NIL) -8 NIL NIL NIL) (-596 1372845 1373340 1373906 "IR2" 1374710 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-595 1371945 1372058 1372272 "IR2F" 1372728 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-594 1371736 1371770 1371830 "IPRNTPK" 1371905 T IPRNTPK (NIL) -7 NIL NIL NIL) (-593 1368317 1371625 1371694 "IPF" 1371699 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-592 1366644 1368242 1368299 "IPADIC" 1368304 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-591 1365956 1366204 1366334 "IP4ADDR" 1366534 T IP4ADDR (NIL) -8 NIL NIL NIL) (-590 1365330 1365585 1365717 "IOMODE" 1365844 T IOMODE (NIL) -8 NIL NIL NIL) (-589 1364403 1364927 1365054 "IOBFILE" 1365223 T IOBFILE (NIL) -8 NIL NIL NIL) (-588 1363891 1364307 1364335 "IOBCON" 1364340 T IOBCON (NIL) -9 NIL 1364361 NIL) (-587 1363402 1363460 1363643 "INVLAPLA" 1363827 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-586 1353050 1355404 1357790 "INTTR" 1361066 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-585 1349385 1350127 1350992 "INTTOOLS" 1352235 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-584 1348971 1349062 1349179 "INTSLPE" 1349288 T INTSLPE (NIL) -7 NIL NIL NIL) (-583 1346924 1348894 1348953 "INTRVL" 1348958 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-582 1344526 1345038 1345613 "INTRF" 1346409 NIL INTRF (NIL T) -7 NIL NIL NIL) (-581 1343937 1344034 1344176 "INTRET" 1344424 NIL INTRET (NIL T) -7 NIL NIL NIL) (-580 1341934 1342323 1342793 "INTRAT" 1343545 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-579 1339197 1339780 1340399 "INTPM" 1341419 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-578 1335942 1336541 1337279 "INTPAF" 1338583 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-577 1331121 1332083 1333134 "INTPACK" 1334911 T INTPACK (NIL) -7 NIL NIL NIL) (-576 1327933 1330918 1331027 "INT" 1331032 T INT (NIL) -8 NIL NIL NIL) (-575 1327185 1327337 1327545 "INTHERTR" 1327775 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-574 1326624 1326704 1326892 "INTHERAL" 1327099 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-573 1324470 1324913 1325370 "INTHEORY" 1326187 T INTHEORY (NIL) -7 NIL NIL NIL) (-572 1315876 1317497 1319269 "INTG0" 1322822 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-571 1296449 1301239 1306049 "INTFTBL" 1311086 T INTFTBL (NIL) -8 NIL NIL NIL) (-570 1295698 1295836 1296009 "INTFACT" 1296308 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-569 1293125 1293571 1294128 "INTEF" 1295252 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-568 1291478 1292217 1292245 "INTDOM" 1292546 T INTDOM (NIL) -9 NIL 1292753 NIL) (-567 1290847 1291021 1291263 "INTDOM-" 1291268 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-566 1287207 1289136 1289190 "INTCAT" 1289989 NIL INTCAT (NIL T) -9 NIL 1290310 NIL) (-565 1286679 1286782 1286910 "INTBIT" 1287099 T INTBIT (NIL) -7 NIL NIL NIL) (-564 1285378 1285532 1285839 "INTALG" 1286524 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-563 1284861 1284951 1285108 "INTAF" 1285282 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-562 1278210 1284671 1284811 "INTABL" 1284816 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-561 1277543 1278009 1278074 "INT8" 1278108 T INT8 (NIL) -8 NIL NIL 1278153) (-560 1276875 1277341 1277406 "INT64" 1277440 T INT64 (NIL) -8 NIL NIL 1277485) (-559 1276207 1276673 1276738 "INT32" 1276772 T INT32 (NIL) -8 NIL NIL 1276817) (-558 1275539 1276005 1276070 "INT16" 1276104 T INT16 (NIL) -8 NIL NIL 1276149) (-557 1270234 1273087 1273115 "INS" 1274049 T INS (NIL) -9 NIL 1274714 NIL) (-556 1267474 1268245 1269219 "INS-" 1269292 NIL INS- (NIL T) -8 NIL NIL NIL) (-555 1266249 1266476 1266774 "INPSIGN" 1267227 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-554 1265367 1265484 1265681 "INPRODPF" 1266129 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-553 1264261 1264378 1264615 "INPRODFF" 1265247 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-552 1263261 1263413 1263673 "INNMFACT" 1264097 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-551 1262458 1262555 1262743 "INMODGCD" 1263160 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-550 1260966 1261211 1261535 "INFSP" 1262203 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-549 1260150 1260267 1260450 "INFPROD0" 1260846 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-548 1257005 1258215 1258730 "INFORM" 1259643 T INFORM (NIL) -8 NIL NIL NIL) (-547 1256615 1256675 1256773 "INFORM1" 1256940 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-546 1256138 1256227 1256341 "INFINITY" 1256521 T INFINITY (NIL) -7 NIL NIL NIL) (-545 1255314 1255858 1255959 "INETCLTS" 1256057 T INETCLTS (NIL) -8 NIL NIL NIL) (-544 1253930 1254180 1254501 "INEP" 1255062 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-543 1253135 1253827 1253892 "INDE" 1253897 NIL INDE (NIL T) -8 NIL NIL NIL) (-542 1252699 1252767 1252884 "INCRMAPS" 1253062 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-541 1251517 1251968 1252174 "INBFILE" 1252513 T INBFILE (NIL) -8 NIL NIL NIL) (-540 1246816 1247753 1248697 "INBFF" 1250605 NIL INBFF (NIL T) -7 NIL NIL NIL) (-539 1245724 1245993 1246021 "INBCON" 1246534 T INBCON (NIL) -9 NIL 1246800 NIL) (-538 1244976 1245199 1245475 "INBCON-" 1245480 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-537 1244455 1244700 1244791 "INAST" 1244905 T INAST (NIL) -8 NIL NIL NIL) (-536 1243882 1244134 1244240 "IMPTAST" 1244369 T IMPTAST (NIL) -8 NIL NIL NIL) (-535 1240283 1243726 1243830 "IMATRIX" 1243835 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-534 1238991 1239114 1239430 "IMATQF" 1240139 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-533 1237211 1237438 1237775 "IMATLIN" 1238747 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-532 1231792 1237135 1237193 "ILIST" 1237198 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-531 1229700 1231652 1231765 "IIARRAY2" 1231770 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-530 1225098 1229611 1229675 "IFF" 1229680 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-529 1224445 1224715 1224831 "IFAST" 1225002 T IFAST (NIL) -8 NIL NIL NIL) (-528 1219443 1223737 1223925 "IFARRAY" 1224302 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-527 1218623 1219347 1219420 "IFAMON" 1219425 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-526 1218207 1218272 1218326 "IEVALAB" 1218533 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-525 1217882 1217950 1218110 "IEVALAB-" 1218115 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-524 1217472 1217796 1217859 "IDPO" 1217864 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-523 1216680 1217361 1217436 "IDPOAMS" 1217441 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-522 1215945 1216569 1216644 "IDPOAM" 1216649 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-521 1214802 1215119 1215172 "IDPC" 1215690 NIL IDPC (NIL T T) -9 NIL 1215881 NIL) (-520 1214230 1214694 1214767 "IDPAM" 1214772 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-519 1213324 1213923 1214045 "IDPAG" 1214151 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-518 1212969 1213160 1213235 "IDENT" 1213269 T IDENT (NIL) -8 NIL NIL NIL) (-517 1209224 1210072 1210967 "IDECOMP" 1212126 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-516 1202061 1203147 1204194 "IDEAL" 1208260 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-515 1201221 1201333 1201533 "ICDEN" 1201945 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-514 1200292 1200701 1200848 "ICARD" 1201094 T ICARD (NIL) -8 NIL NIL NIL) (-513 1198352 1198665 1199070 "IBPTOOLS" 1199969 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-512 1193959 1197972 1198085 "IBITS" 1198271 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-511 1190682 1191258 1191953 "IBATOOL" 1193376 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-510 1188461 1188923 1189456 "IBACHIN" 1190217 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-509 1186293 1188307 1188410 "IARRAY2" 1188415 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-508 1182402 1186219 1186276 "IARRAY1" 1186281 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-507 1176262 1180814 1181295 "IAN" 1181941 T IAN (NIL) -8 NIL NIL NIL) (-506 1175773 1175830 1176003 "IALGFACT" 1176199 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-505 1175301 1175414 1175442 "HYPCAT" 1175649 T HYPCAT (NIL) -9 NIL NIL NIL) (-504 1174839 1174956 1175142 "HYPCAT-" 1175147 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-503 1174434 1174634 1174717 "HOSTNAME" 1174776 T HOSTNAME (NIL) -8 NIL NIL NIL) (-502 1174279 1174316 1174357 "HOMOTOP" 1174362 NIL HOMOTOP (NIL T) -9 NIL 1174395 NIL) (-501 1170836 1172211 1172252 "HOAGG" 1173233 NIL HOAGG (NIL T) -9 NIL 1173962 NIL) (-500 1169430 1169829 1170355 "HOAGG-" 1170360 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-499 1163146 1169023 1169173 "HEXADEC" 1169300 T HEXADEC (NIL) -8 NIL NIL NIL) (-498 1161894 1162116 1162379 "HEUGCD" 1162923 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-497 1160970 1161731 1161861 "HELLFDIV" 1161866 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-496 1159152 1160747 1160835 "HEAP" 1160914 NIL HEAP (NIL T) -8 NIL NIL NIL) (-495 1158415 1158704 1158838 "HEADAST" 1159038 T HEADAST (NIL) -8 NIL NIL NIL) (-494 1152258 1158330 1158392 "HDP" 1158397 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-493 1145970 1151893 1152045 "HDMP" 1152159 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-492 1145294 1145434 1145598 "HB" 1145826 T HB (NIL) -7 NIL NIL NIL) (-491 1138686 1145140 1145244 "HASHTBL" 1145249 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-490 1138162 1138407 1138499 "HASAST" 1138614 T HASAST (NIL) -8 NIL NIL NIL) (-489 1135940 1137784 1137966 "HACKPI" 1138000 T HACKPI (NIL) -8 NIL NIL NIL) (-488 1131608 1135793 1135906 "GTSET" 1135911 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-487 1125029 1131486 1131584 "GSTBL" 1131589 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-486 1117416 1124194 1124450 "GSERIES" 1124829 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-485 1116543 1116960 1116988 "GROUP" 1117191 T GROUP (NIL) -9 NIL 1117325 NIL) (-484 1115909 1116068 1116319 "GROUP-" 1116324 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-483 1114276 1114597 1114984 "GROEBSOL" 1115586 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-482 1113176 1113464 1113515 "GRMOD" 1114044 NIL GRMOD (NIL T T) -9 NIL 1114212 NIL) (-481 1112944 1112980 1113108 "GRMOD-" 1113113 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-480 1108234 1109298 1110298 "GRIMAGE" 1111964 T GRIMAGE (NIL) -8 NIL NIL NIL) (-479 1106700 1106961 1107285 "GRDEF" 1107930 T GRDEF (NIL) -7 NIL NIL NIL) (-478 1106144 1106260 1106401 "GRAY" 1106579 T GRAY (NIL) -7 NIL NIL NIL) (-477 1105317 1105723 1105774 "GRALG" 1105927 NIL GRALG (NIL T T) -9 NIL 1106020 NIL) (-476 1104978 1105051 1105214 "GRALG-" 1105219 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-475 1101755 1104563 1104741 "GPOLSET" 1104885 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-474 1101109 1101166 1101424 "GOSPER" 1101692 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-473 1096841 1097547 1098073 "GMODPOL" 1100808 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-472 1095846 1096030 1096268 "GHENSEL" 1096653 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-471 1090002 1090845 1091865 "GENUPS" 1094930 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-470 1089699 1089750 1089839 "GENUFACT" 1089945 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-469 1089111 1089188 1089353 "GENPGCD" 1089617 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-468 1088585 1088620 1088833 "GENMFACT" 1089070 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-467 1087151 1087408 1087715 "GENEEZ" 1088328 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-466 1081023 1086762 1086924 "GDMP" 1087074 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-465 1070366 1074794 1075900 "GCNAALG" 1080006 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-464 1068679 1069541 1069569 "GCDDOM" 1069824 T GCDDOM (NIL) -9 NIL 1069981 NIL) (-463 1068149 1068276 1068491 "GCDDOM-" 1068496 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-462 1066821 1067006 1067310 "GB" 1067928 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-461 1055437 1057767 1060159 "GBINTERN" 1064512 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-460 1053274 1053566 1053987 "GBF" 1055112 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-459 1052055 1052220 1052487 "GBEUCLID" 1053090 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-458 1051404 1051529 1051678 "GAUSSFAC" 1051926 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-457 1049771 1050073 1050387 "GALUTIL" 1051123 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-456 1048079 1048353 1048677 "GALPOLYU" 1049498 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-455 1045444 1045734 1046141 "GALFACTU" 1047776 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-454 1037250 1038749 1040357 "GALFACT" 1043876 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-453 1034638 1035296 1035324 "FVFUN" 1036480 T FVFUN (NIL) -9 NIL 1037200 NIL) (-452 1033904 1034086 1034114 "FVC" 1034405 T FVC (NIL) -9 NIL 1034588 NIL) (-451 1033547 1033729 1033797 "FUNDESC" 1033856 T FUNDESC (NIL) -8 NIL NIL NIL) (-450 1033162 1033344 1033425 "FUNCTION" 1033499 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-449 1030906 1031484 1031950 "FT" 1032716 T FT (NIL) -8 NIL NIL NIL) (-448 1029697 1030207 1030410 "FTEM" 1030723 T FTEM (NIL) -8 NIL NIL NIL) (-447 1027988 1028277 1028674 "FSUPFACT" 1029388 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-446 1026385 1026674 1027006 "FST" 1027676 T FST (NIL) -8 NIL NIL NIL) (-445 1025584 1025690 1025878 "FSRED" 1026267 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-444 1024283 1024539 1024886 "FSPRMELT" 1025299 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-443 1021589 1022027 1022513 "FSPECF" 1023846 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-442 1002654 1011363 1011404 "FS" 1015288 NIL FS (NIL T) -9 NIL 1017577 NIL) (-441 991297 994290 998347 "FS-" 998647 NIL FS- (NIL T T) -8 NIL NIL NIL) (-440 990825 990879 991049 "FSINT" 991238 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-439 989117 989818 990121 "FSERIES" 990604 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-438 988159 988275 988499 "FSCINT" 988997 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-437 984367 987103 987144 "FSAGG" 987514 NIL FSAGG (NIL T) -9 NIL 987773 NIL) (-436 982129 982730 983526 "FSAGG-" 983621 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-435 981171 981314 981541 "FSAGG2" 981982 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-434 978849 979129 979677 "FS2UPS" 980889 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-433 978483 978526 978655 "FS2" 978800 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-432 977361 977532 977834 "FS2EXPXP" 978308 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-431 976787 976902 977054 "FRUTIL" 977241 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-430 968200 972282 973640 "FR" 975461 NIL FR (NIL T) -8 NIL NIL NIL) (-429 963214 965889 965929 "FRNAALG" 967249 NIL FRNAALG (NIL T) -9 NIL 967847 NIL) (-428 958887 959963 961238 "FRNAALG-" 961988 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-427 958525 958568 958695 "FRNAAF2" 958838 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-426 956900 957374 957670 "FRMOD" 958337 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-425 954643 955275 955593 "FRIDEAL" 956691 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-424 953834 953921 954212 "FRIDEAL2" 954550 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-423 952967 953381 953422 "FRETRCT" 953427 NIL FRETRCT (NIL T) -9 NIL 953603 NIL) (-422 952079 952310 952661 "FRETRCT-" 952666 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-421 949153 950363 950422 "FRAMALG" 951304 NIL FRAMALG (NIL T T) -9 NIL 951596 NIL) (-420 947287 947742 948372 "FRAMALG-" 948595 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-419 940930 946760 947037 "FRAC" 947042 NIL FRAC (NIL T) -8 NIL NIL NIL) (-418 940566 940623 940730 "FRAC2" 940867 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-417 940202 940259 940366 "FR2" 940503 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-416 934687 937581 937609 "FPS" 938728 T FPS (NIL) -9 NIL 939285 NIL) (-415 934136 934245 934409 "FPS-" 934555 NIL FPS- (NIL T) -8 NIL NIL NIL) (-414 931424 933093 933121 "FPC" 933346 T FPC (NIL) -9 NIL 933488 NIL) (-413 931217 931257 931354 "FPC-" 931359 NIL FPC- (NIL T) -8 NIL NIL NIL) (-412 930007 930705 930746 "FPATMAB" 930751 NIL FPATMAB (NIL T) -9 NIL 930903 NIL) (-411 928246 928749 929096 "FPARFRAC" 929723 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-410 923640 924138 924820 "FORTRAN" 927678 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-409 921356 921856 922395 "FORT" 923121 T FORT (NIL) -7 NIL NIL NIL) (-408 919032 919594 919622 "FORTFN" 920682 T FORTFN (NIL) -9 NIL 921306 NIL) (-407 918796 918846 918874 "FORTCAT" 918933 T FORTCAT (NIL) -9 NIL 918995 NIL) (-406 916902 917412 917802 "FORMULA" 918426 T FORMULA (NIL) -8 NIL NIL NIL) (-405 916690 916720 916789 "FORMULA1" 916866 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-404 916213 916265 916438 "FORDER" 916632 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-403 915309 915473 915666 "FOP" 916040 T FOP (NIL) -7 NIL NIL NIL) (-402 913890 914589 914763 "FNLA" 915191 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-401 912605 913020 913048 "FNCAT" 913508 T FNCAT (NIL) -9 NIL 913768 NIL) (-400 912144 912564 912592 "FNAME" 912597 T FNAME (NIL) -8 NIL NIL NIL) (-399 910680 911643 911671 "FMTC" 911676 T FMTC (NIL) -9 NIL 911712 NIL) (-398 909426 910616 910662 "FMONOID" 910667 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-397 906213 907381 907422 "FMONCAT" 908639 NIL FMONCAT (NIL T) -9 NIL 909244 NIL) (-396 905363 905955 906104 "FM" 906109 NIL FM (NIL T T) -8 NIL NIL NIL) (-395 902787 903433 903461 "FMFUN" 904605 T FMFUN (NIL) -9 NIL 905313 NIL) (-394 902056 902237 902265 "FMC" 902555 T FMC (NIL) -9 NIL 902737 NIL) (-393 899121 899981 900035 "FMCAT" 901230 NIL FMCAT (NIL T T) -9 NIL 901725 NIL) (-392 897987 898887 898987 "FM1" 899066 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-391 895761 896177 896671 "FLOATRP" 897538 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-390 889339 893490 894111 "FLOAT" 895160 T FLOAT (NIL) -8 NIL NIL NIL) (-389 886777 887277 887855 "FLOATCP" 888806 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-388 885425 886369 886410 "FLINEXP" 886415 NIL FLINEXP (NIL T) -9 NIL 886508 NIL) (-387 884579 884814 885142 "FLINEXP-" 885147 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-386 883655 883799 884023 "FLASORT" 884431 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-385 880757 881625 881677 "FLALG" 882904 NIL FLALG (NIL T T) -9 NIL 883371 NIL) (-384 874417 878166 878207 "FLAGG" 879469 NIL FLAGG (NIL T) -9 NIL 880121 NIL) (-383 873143 873482 873972 "FLAGG-" 873977 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-382 872185 872328 872555 "FLAGG2" 872996 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-381 869022 870030 870089 "FINRALG" 871217 NIL FINRALG (NIL T T) -9 NIL 871725 NIL) (-380 868182 868411 868750 "FINRALG-" 868755 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-379 867548 867787 867815 "FINITE" 868011 T FINITE (NIL) -9 NIL 868118 NIL) (-378 859891 862078 862118 "FINAALG" 865785 NIL FINAALG (NIL T) -9 NIL 867238 NIL) (-377 855223 856273 857417 "FINAALG-" 858796 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-376 854591 854978 855081 "FILE" 855153 NIL FILE (NIL T) -8 NIL NIL NIL) (-375 853235 853573 853627 "FILECAT" 854311 NIL FILECAT (NIL T T) -9 NIL 854527 NIL) (-374 850937 852465 852493 "FIELD" 852533 T FIELD (NIL) -9 NIL 852613 NIL) (-373 849557 849942 850453 "FIELD-" 850458 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-372 847407 848192 848539 "FGROUP" 849243 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-371 846497 846661 846881 "FGLMICPK" 847239 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-370 842329 846422 846479 "FFX" 846484 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-369 841930 841991 842126 "FFSLPE" 842262 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-368 837920 838702 839498 "FFPOLY" 841166 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-367 837424 837460 837669 "FFPOLY2" 837878 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-366 833270 837343 837406 "FFP" 837411 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-365 828668 833181 833245 "FF" 833250 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-364 823794 828011 828201 "FFNBX" 828522 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-363 818722 822929 823187 "FFNBP" 823648 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-362 813355 818006 818217 "FFNB" 818555 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-361 812187 812385 812700 "FFINTBAS" 813152 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-360 808213 810434 810462 "FFIELDC" 811082 T FFIELDC (NIL) -9 NIL 811458 NIL) (-359 806875 807246 807743 "FFIELDC-" 807748 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-358 806444 806490 806614 "FFHOM" 806817 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-357 804139 804626 805143 "FFF" 805959 NIL FFF (NIL T) -7 NIL NIL NIL) (-356 799757 803881 803982 "FFCGX" 804082 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-355 795379 799489 799596 "FFCGP" 799700 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-354 790562 795106 795214 "FFCG" 795315 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-353 770091 780294 780380 "FFCAT" 785545 NIL FFCAT (NIL T T T) -9 NIL 786996 NIL) (-352 765288 766336 767650 "FFCAT-" 768880 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-351 764699 764742 764977 "FFCAT2" 765239 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-350 754022 757671 758891 "FEXPR" 763551 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-349 752984 753419 753460 "FEVALAB" 753544 NIL FEVALAB (NIL T) -9 NIL 753805 NIL) (-348 752143 752353 752691 "FEVALAB-" 752696 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-347 750709 751526 751729 "FDIV" 752042 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-346 747715 748456 748571 "FDIVCAT" 750139 NIL FDIVCAT (NIL T T T T) -9 NIL 750576 NIL) (-345 747477 747504 747674 "FDIVCAT-" 747679 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-344 746697 746784 747061 "FDIV2" 747384 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-343 745671 745992 746194 "FCTRDATA" 746515 T FCTRDATA (NIL) -8 NIL NIL NIL) (-342 744357 744616 744905 "FCPAK1" 745402 T FCPAK1 (NIL) -7 NIL NIL NIL) (-341 743456 743857 743998 "FCOMP" 744248 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-340 727161 730606 734144 "FC" 739938 T FC (NIL) -8 NIL NIL NIL) (-339 719454 723482 723522 "FAXF" 725324 NIL FAXF (NIL T) -9 NIL 726016 NIL) (-338 716731 717388 718213 "FAXF-" 718678 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-337 711786 716107 716283 "FARRAY" 716588 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-336 706666 708733 708786 "FAMR" 709809 NIL FAMR (NIL T T) -9 NIL 710269 NIL) (-335 705556 705858 706293 "FAMR-" 706298 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-334 704725 705478 705531 "FAMONOID" 705536 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-333 702497 703207 703260 "FAMONC" 704201 NIL FAMONC (NIL T T) -9 NIL 704587 NIL) (-332 701161 702251 702388 "FAGROUP" 702393 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-331 698956 699275 699678 "FACUTIL" 700842 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-330 698055 698240 698462 "FACTFUNC" 698766 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-329 690477 697358 697557 "EXPUPXS" 697911 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-328 687960 688500 689086 "EXPRTUBE" 689911 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-327 684231 684823 685553 "EXPRODE" 687299 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-326 669715 682880 683309 "EXPR" 683835 NIL EXPR (NIL T) -8 NIL NIL NIL) (-325 664269 664856 665662 "EXPR2UPS" 669013 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-324 663901 663958 664067 "EXPR2" 664206 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-323 654898 663052 663343 "EXPEXPAN" 663737 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-322 654698 654855 654884 "EXIT" 654889 T EXIT (NIL) -8 NIL NIL NIL) (-321 654178 654422 654513 "EXITAST" 654627 T EXITAST (NIL) -8 NIL NIL NIL) (-320 653805 653867 653980 "EVALCYC" 654110 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-319 653346 653464 653505 "EVALAB" 653675 NIL EVALAB (NIL T) -9 NIL 653779 NIL) (-318 652827 652949 653170 "EVALAB-" 653175 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-317 650181 651483 651511 "EUCDOM" 652066 T EUCDOM (NIL) -9 NIL 652416 NIL) (-316 648586 649028 649618 "EUCDOM-" 649623 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-315 636125 638884 641634 "ESTOOLS" 645856 T ESTOOLS (NIL) -7 NIL NIL NIL) (-314 635757 635814 635923 "ESTOOLS2" 636062 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-313 635508 635550 635630 "ESTOOLS1" 635709 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-312 629531 631139 631167 "ES" 633935 T ES (NIL) -9 NIL 635345 NIL) (-311 624478 625765 627582 "ES-" 627746 NIL ES- (NIL T) -8 NIL NIL NIL) (-310 620852 621613 622393 "ESCONT" 623718 T ESCONT (NIL) -7 NIL NIL NIL) (-309 620597 620629 620711 "ESCONT1" 620814 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-308 620272 620322 620422 "ES2" 620541 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-307 619902 619960 620069 "ES1" 620208 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-306 619118 619247 619423 "ERROR" 619746 T ERROR (NIL) -7 NIL NIL NIL) (-305 612516 618977 619068 "EQTBL" 619073 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-304 605019 607830 609279 "EQ" 611100 NIL -2037 (NIL T) -8 NIL NIL NIL) (-303 604651 604708 604817 "EQ2" 604956 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-302 599942 600989 602082 "EP" 603590 NIL EP (NIL T) -7 NIL NIL NIL) (-301 598542 598833 599139 "ENV" 599656 T ENV (NIL) -8 NIL NIL NIL) (-300 597622 598176 598204 "ENTIRER" 598209 T ENTIRER (NIL) -9 NIL 598255 NIL) (-299 594316 595804 596165 "EMR" 597430 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-298 593446 593631 593685 "ELTAGG" 594065 NIL ELTAGG (NIL T T) -9 NIL 594276 NIL) (-297 593165 593227 593368 "ELTAGG-" 593373 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-296 592929 592958 593012 "ELTAB" 593096 NIL ELTAB (NIL T T) -9 NIL 593148 NIL) (-295 592055 592201 592400 "ELFUTS" 592780 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-294 591797 591853 591881 "ELEMFUN" 591986 T ELEMFUN (NIL) -9 NIL NIL NIL) (-293 591667 591688 591756 "ELEMFUN-" 591761 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-292 586456 589709 589750 "ELAGG" 590690 NIL ELAGG (NIL T) -9 NIL 591153 NIL) (-291 584741 585175 585838 "ELAGG-" 585843 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-290 584053 584190 584346 "ELABOR" 584605 T ELABOR (NIL) -8 NIL NIL NIL) (-289 582714 582993 583287 "ELABEXPR" 583779 T ELABEXPR (NIL) -8 NIL NIL NIL) (-288 575548 577351 578180 "EFUPXS" 581989 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-287 568996 570797 571608 "EFULS" 574823 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-286 566481 566839 567311 "EFSTRUC" 568628 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-285 556272 557838 559386 "EF" 564996 NIL EF (NIL T T) -7 NIL NIL NIL) (-284 555346 555757 555906 "EAB" 556143 T EAB (NIL) -8 NIL NIL NIL) (-283 554528 555305 555333 "E04UCFA" 555338 T E04UCFA (NIL) -8 NIL NIL NIL) (-282 553710 554487 554515 "E04NAFA" 554520 T E04NAFA (NIL) -8 NIL NIL NIL) (-281 552892 553669 553697 "E04MBFA" 553702 T E04MBFA (NIL) -8 NIL NIL NIL) (-280 552074 552851 552879 "E04JAFA" 552884 T E04JAFA (NIL) -8 NIL NIL NIL) (-279 551258 552033 552061 "E04GCFA" 552066 T E04GCFA (NIL) -8 NIL NIL NIL) (-278 550442 551217 551245 "E04FDFA" 551250 T E04FDFA (NIL) -8 NIL NIL NIL) (-277 549624 550401 550429 "E04DGFA" 550434 T E04DGFA (NIL) -8 NIL NIL NIL) (-276 543797 545149 546513 "E04AGNT" 548280 T E04AGNT (NIL) -7 NIL NIL NIL) (-275 542555 543098 543138 "DVARCAT" 543479 NIL DVARCAT (NIL T) -9 NIL 543642 NIL) (-274 541759 541971 542285 "DVARCAT-" 542290 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-273 534620 541558 541687 "DSMP" 541692 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-272 533043 533762 533803 "DSEXT" 534166 NIL DSEXT (NIL T) -9 NIL 534460 NIL) (-271 531328 531756 532422 "DSEXT-" 532427 NIL DSEXT- (NIL T T) -8 NIL NIL NIL) (-270 526109 527273 528341 "DROPT" 530280 T DROPT (NIL) -8 NIL NIL NIL) (-269 525774 525833 525931 "DROPT1" 526044 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-268 520889 522015 523152 "DROPT0" 524657 T DROPT0 (NIL) -7 NIL NIL NIL) (-267 519234 519559 519945 "DRAWPT" 520523 T DRAWPT (NIL) -7 NIL NIL NIL) (-266 513821 514744 515823 "DRAW" 518208 NIL DRAW (NIL T) -7 NIL NIL NIL) (-265 513454 513507 513625 "DRAWHACK" 513762 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-264 512185 512454 512745 "DRAWCX" 513183 T DRAWCX (NIL) -7 NIL NIL NIL) (-263 511700 511769 511920 "DRAWCURV" 512111 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-262 502168 504130 506245 "DRAWCFUN" 509605 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-261 498907 500833 500874 "DQAGG" 501503 NIL DQAGG (NIL T) -9 NIL 501777 NIL) (-260 486372 493118 493201 "DPOLCAT" 495053 NIL DPOLCAT (NIL T T T T) -9 NIL 495598 NIL) (-259 481209 482557 484515 "DPOLCAT-" 484520 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-258 474556 481070 481168 "DPMO" 481173 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-257 467806 474336 474503 "DPMM" 474508 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-256 467376 467590 467679 "DOMTMPLT" 467737 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-255 466809 467178 467258 "DOMCTOR" 467316 T DOMCTOR (NIL) -8 NIL NIL NIL) (-254 466021 466289 466440 "DOMAIN" 466678 T DOMAIN (NIL) -8 NIL NIL NIL) (-253 459733 465656 465808 "DMP" 465922 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-252 457678 458800 458841 "DMEXT" 458846 NIL DMEXT (NIL T) -9 NIL 459022 NIL) (-251 457278 457334 457478 "DLP" 457616 NIL DLP (NIL T) -7 NIL NIL NIL) (-250 451103 456605 456795 "DLIST" 457120 NIL DLIST (NIL T) -8 NIL NIL NIL) (-249 447875 449928 449969 "DLAGG" 450519 NIL DLAGG (NIL T) -9 NIL 450749 NIL) (-248 446537 447201 447229 "DIVRING" 447321 T DIVRING (NIL) -9 NIL 447404 NIL) (-247 445774 445964 446264 "DIVRING-" 446269 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-246 443876 444233 444639 "DISPLAY" 445388 T DISPLAY (NIL) -7 NIL NIL NIL) (-245 437739 443790 443853 "DIRPROD" 443858 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-244 436587 436790 437055 "DIRPROD2" 437532 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-243 425262 431298 431351 "DIRPCAT" 431609 NIL DIRPCAT (NIL NIL T) -9 NIL 432484 NIL) (-242 422588 423230 424111 "DIRPCAT-" 424448 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-241 421875 422035 422221 "DIOSP" 422422 T DIOSP (NIL) -7 NIL NIL NIL) (-240 418505 420759 420800 "DIOPS" 421234 NIL DIOPS (NIL T) -9 NIL 421463 NIL) (-239 418054 418168 418359 "DIOPS-" 418364 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-238 417105 417733 417761 "DIFRING" 417766 T DIFRING (NIL) -9 NIL 417788 NIL) (-237 416777 416851 416879 "DIFFSPC" 416998 T DIFFSPC (NIL) -9 NIL 417073 NIL) (-236 416422 416500 416652 "DIFFSPC-" 416657 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-235 415478 415956 415997 "DIFFMOD" 416002 NIL DIFFMOD (NIL T) -9 NIL 416100 NIL) (-234 415186 415231 415272 "DIFFDOM" 415393 NIL DIFFDOM (NIL T) -9 NIL 415461 NIL) (-233 415039 415063 415147 "DIFFDOM-" 415152 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-232 412971 414243 414284 "DIFEXT" 414289 NIL DIFEXT (NIL T) -9 NIL 414442 NIL) (-231 410221 412475 412516 "DIAGG" 412521 NIL DIAGG (NIL T) -9 NIL 412541 NIL) (-230 409605 409762 410014 "DIAGG-" 410019 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-229 404977 408564 408841 "DHMATRIX" 409374 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-228 400589 401498 402508 "DFSFUN" 403987 T DFSFUN (NIL) -7 NIL NIL NIL) (-227 395667 399520 399832 "DFLOAT" 400297 T DFLOAT (NIL) -8 NIL NIL NIL) (-226 393930 394211 394600 "DFINTTLS" 395375 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-225 390959 391951 392351 "DERHAM" 393596 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-224 388763 390734 390823 "DEQUEUE" 390903 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-223 388017 388150 388333 "DEGRED" 388625 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-222 384447 385192 386038 "DEFINTRF" 387245 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-221 382002 382471 383063 "DEFINTEF" 383966 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-220 381352 381622 381737 "DEFAST" 381907 T DEFAST (NIL) -8 NIL NIL NIL) (-219 375068 380945 381095 "DECIMAL" 381222 T DECIMAL (NIL) -8 NIL NIL NIL) (-218 372580 373038 373544 "DDFACT" 374612 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-217 372176 372219 372370 "DBLRESP" 372531 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-216 370044 370406 370767 "DBASE" 371942 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 369286 369524 369670 "DATAARY" 369943 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 368392 369245 369273 "D03FAFA" 369278 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 367499 368351 368379 "D03EEFA" 368384 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 365449 365915 366404 "D03AGNT" 367030 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 364738 365408 365436 "D02EJFA" 365441 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 364027 364697 364725 "D02CJFA" 364730 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 363316 363986 364014 "D02BHFA" 364019 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 362605 363275 363303 "D02BBFA" 363308 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 355802 357391 358997 "D02AGNT" 361019 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 353570 354093 354639 "D01WGTS" 355276 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 352637 353529 353557 "D01TRNS" 353562 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 351705 352596 352624 "D01GBFA" 352629 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 350773 351664 351692 "D01FCFA" 351697 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 349841 350732 350760 "D01ASFA" 350765 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 348909 349800 349828 "D01AQFA" 349833 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 347977 348868 348896 "D01APFA" 348901 T D01APFA (NIL) -8 NIL NIL NIL) (-199 347045 347936 347964 "D01ANFA" 347969 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 346113 347004 347032 "D01AMFA" 347037 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 345181 346072 346100 "D01ALFA" 346105 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 344249 345140 345168 "D01AKFA" 345173 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 343317 344208 344236 "D01AJFA" 344241 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 336612 338165 339726 "D01AGNT" 341776 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 335949 336077 336229 "CYCLOTOM" 336480 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 332682 333397 334124 "CYCLES" 335242 T CYCLES (NIL) -7 NIL NIL NIL) (-191 331994 332128 332299 "CVMP" 332543 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 329835 330093 330462 "CTRIGMNP" 331722 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 329271 329629 329702 "CTOR" 329782 T CTOR (NIL) -8 NIL NIL NIL) (-188 328780 329002 329103 "CTORKIND" 329190 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 328057 328373 328401 "CTORCAT" 328583 T CTORCAT (NIL) -9 NIL 328696 NIL) (-186 327655 327766 327925 "CTORCAT-" 327930 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 327117 327329 327437 "CTORCALL" 327579 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 326491 326590 326743 "CSTTOOLS" 327014 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 322290 322947 323705 "CRFP" 325803 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 321765 322011 322103 "CRCEAST" 322218 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 320812 320997 321225 "CRAPACK" 321569 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 320196 320297 320501 "CPMATCH" 320688 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 319921 319949 320055 "CPIMA" 320162 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 316269 316941 317660 "COORDSYS" 319256 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 315681 315802 315944 "CONTOUR" 316147 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 311572 313684 314176 "CONTFRAC" 315221 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 311452 311473 311501 "CONDUIT" 311538 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 310526 311080 311108 "COMRING" 311113 T COMRING (NIL) -9 NIL 311165 NIL) (-173 309580 309884 310068 "COMPPROP" 310362 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 309241 309276 309404 "COMPLPAT" 309539 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 298544 309050 309159 "COMPLEX" 309164 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 298180 298237 298344 "COMPLEX2" 298481 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 297519 297640 297800 "COMPILER" 298040 T COMPILER (NIL) -8 NIL NIL NIL) (-168 297237 297272 297370 "COMPFACT" 297478 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 279516 290941 290981 "COMPCAT" 291985 NIL COMPCAT (NIL T) -9 NIL 293333 NIL) (-166 269028 271955 275582 "COMPCAT-" 275938 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 268757 268785 268888 "COMMUPC" 268994 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 268551 268585 268644 "COMMONOP" 268718 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 268107 268302 268389 "COMM" 268484 T COMM (NIL) -8 NIL NIL NIL) (-162 267683 267911 267986 "COMMAAST" 268052 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 266932 267126 267154 "COMBOPC" 267492 T COMBOPC (NIL) -9 NIL 267667 NIL) (-160 265828 266038 266280 "COMBINAT" 266722 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 262285 262859 263486 "COMBF" 265250 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 261043 261401 261636 "COLOR" 262070 T COLOR (NIL) -8 NIL NIL NIL) (-157 260519 260764 260856 "COLONAST" 260971 T COLONAST (NIL) -8 NIL NIL NIL) (-156 260159 260206 260331 "CMPLXRT" 260466 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 259607 259859 259958 "CLLCTAST" 260080 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 255109 256137 257217 "CLIP" 258547 T CLIP (NIL) -7 NIL NIL NIL) (-153 253450 254210 254450 "CLIF" 254936 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 249600 251568 251609 "CLAGG" 252538 NIL CLAGG (NIL T) -9 NIL 253074 NIL) (-151 248022 248479 249062 "CLAGG-" 249067 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 247566 247651 247791 "CINTSLPE" 247931 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 245067 245538 246086 "CHVAR" 247094 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 244227 244781 244809 "CHARZ" 244814 T CHARZ (NIL) -9 NIL 244829 NIL) (-147 243981 244021 244099 "CHARPOL" 244181 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 243025 243612 243640 "CHARNZ" 243687 T CHARNZ (NIL) -9 NIL 243743 NIL) (-145 240931 241679 242032 "CHAR" 242692 T CHAR (NIL) -8 NIL NIL NIL) (-144 240657 240718 240746 "CFCAT" 240857 T CFCAT (NIL) -9 NIL NIL NIL) (-143 239898 240009 240192 "CDEN" 240541 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 235863 239051 239331 "CCLASS" 239638 T CCLASS (NIL) -8 NIL NIL NIL) (-141 235114 235271 235448 "CATEGORY" 235706 T -10 (NIL) -8 NIL NIL NIL) (-140 234687 235033 235081 "CATCTOR" 235086 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 234138 234390 234488 "CATAST" 234609 T CATAST (NIL) -8 NIL NIL NIL) (-138 233614 233859 233951 "CASEAST" 234066 T CASEAST (NIL) -8 NIL NIL NIL) (-137 228752 229771 230515 "CARTEN" 232926 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 227860 228008 228229 "CARTEN2" 228599 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 226176 227010 227267 "CARD" 227623 T CARD (NIL) -8 NIL NIL NIL) (-134 225752 225980 226055 "CAPSLAST" 226121 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 225242 225450 225478 "CACHSET" 225610 T CACHSET (NIL) -9 NIL 225688 NIL) (-132 224698 225020 225048 "CABMON" 225098 T CABMON (NIL) -9 NIL 225154 NIL) (-131 224171 224402 224512 "BYTEORD" 224608 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 223148 223700 223842 "BYTE" 224005 T BYTE (NIL) -8 NIL NIL 224127) (-129 218501 222653 222825 "BYTEBUF" 222996 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 216013 218193 218300 "BTREE" 218427 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 213465 215661 215783 "BTOURN" 215923 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 210810 212907 212948 "BTCAT" 213016 NIL BTCAT (NIL T) -9 NIL 213093 NIL) (-125 210477 210557 210706 "BTCAT-" 210711 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 205842 209723 209751 "BTAGG" 209865 T BTAGG (NIL) -9 NIL 209975 NIL) (-123 205332 205457 205663 "BTAGG-" 205668 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 202330 204610 204825 "BSTREE" 205149 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 201468 201594 201778 "BRILL" 202186 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 198095 200166 200207 "BRAGG" 200856 NIL BRAGG (NIL T) -9 NIL 201114 NIL) (-119 196624 197030 197585 "BRAGG-" 197590 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 189540 195968 196153 "BPADICRT" 196471 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 187855 189477 189522 "BPADIC" 189527 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 187553 187583 187697 "BOUNDZRO" 187819 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 182781 183979 184891 "BOP" 186661 T BOP (NIL) -8 NIL NIL NIL) (-114 180562 180966 181441 "BOP1" 182339 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 180263 180324 180352 "BOOLE" 180463 T BOOLE (NIL) -9 NIL 180545 NIL) (-112 179088 179837 179986 "BOOLEAN" 180134 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 178353 178757 178811 "BMODULE" 178816 NIL BMODULE (NIL T T) -9 NIL 178881 NIL) (-110 174154 178151 178224 "BITS" 178300 T BITS (NIL) -8 NIL NIL NIL) (-109 173575 173694 173834 "BINDING" 174034 T BINDING (NIL) -8 NIL NIL NIL) (-108 167294 173170 173319 "BINARY" 173446 T BINARY (NIL) -8 NIL NIL NIL) (-107 165049 166521 166562 "BGAGG" 166822 NIL BGAGG (NIL T) -9 NIL 166959 NIL) (-106 164880 164912 165003 "BGAGG-" 165008 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 163951 164264 164469 "BFUNCT" 164695 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 162641 162819 163107 "BEZOUT" 163775 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 159113 161493 161823 "BBTREE" 162344 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 158714 158792 158820 "BASTYPE" 158997 T BASTYPE (NIL) -9 NIL 159096 NIL) (-101 158390 158471 158606 "BASTYPE-" 158611 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 157824 157900 158052 "BALFACT" 158301 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 156680 157239 157425 "AUTOMOR" 157669 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 156406 156411 156437 "ATTREG" 156442 T ATTREG (NIL) -9 NIL NIL NIL) (-97 154658 155103 155455 "ATTRBUT" 156072 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 154266 154486 154552 "ATTRAST" 154610 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 153802 153915 153941 "ATRIG" 154142 T ATRIG (NIL) -9 NIL NIL NIL) (-94 153611 153652 153739 "ATRIG-" 153744 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 153242 153428 153454 "ASTCAT" 153459 T ASTCAT (NIL) -9 NIL 153489 NIL) (-92 152969 153028 153147 "ASTCAT-" 153152 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 151121 152745 152833 "ASTACK" 152912 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 149626 149923 150288 "ASSOCEQ" 150803 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 148658 149285 149409 "ASP9" 149533 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 148421 148606 148645 "ASP8" 148650 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 147289 148026 148168 "ASP80" 148310 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 146187 146924 147056 "ASP7" 147188 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 145141 145864 145982 "ASP78" 146100 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 144110 144821 144938 "ASP77" 145055 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 143022 143748 143879 "ASP74" 144010 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 141922 142657 142789 "ASP73" 142921 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 141026 141748 141848 "ASP6" 141853 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 139973 140703 140821 "ASP55" 140939 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 138922 139647 139766 "ASP50" 139885 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 138010 138623 138733 "ASP4" 138843 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 137098 137711 137821 "ASP49" 137931 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 135882 136637 136805 "ASP42" 136987 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 134659 135415 135585 "ASP41" 135769 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 133609 134336 134454 "ASP35" 134572 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 133374 133557 133596 "ASP34" 133601 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 133111 133178 133254 "ASP33" 133329 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 132005 132746 132878 "ASP31" 133010 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 131770 131953 131992 "ASP30" 131997 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 131505 131574 131650 "ASP29" 131725 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 131270 131453 131492 "ASP28" 131497 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 131035 131218 131257 "ASP27" 131262 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 130119 130733 130844 "ASP24" 130955 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 129196 129921 130033 "ASP20" 130038 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 128284 128897 129007 "ASP1" 129117 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 127227 127958 128077 "ASP19" 128196 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 126964 127031 127107 "ASP12" 127182 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 125816 126563 126707 "ASP10" 126851 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 123670 125660 125751 "ARRAY2" 125756 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 119438 123318 123432 "ARRAY1" 123587 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 118470 118643 118864 "ARRAY12" 119261 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 112757 114672 114747 "ARR2CAT" 117377 NIL ARR2CAT (NIL T T T) -9 NIL 118135 NIL) (-56 110191 110935 111889 "ARR2CAT-" 111894 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 109508 109818 109943 "ARITY" 110084 T ARITY (NIL) -8 NIL NIL NIL) (-54 108284 108436 108735 "APPRULE" 109344 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 107935 107983 108102 "APPLYORE" 108230 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 107289 107528 107648 "ANY" 107833 T ANY (NIL) -8 NIL NIL NIL) (-51 106567 106690 106847 "ANY1" 107163 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 104097 105004 105331 "ANTISYM" 106291 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 103589 103804 103900 "ANON" 104019 T ANON (NIL) -8 NIL NIL NIL) (-48 97589 102128 102582 "AN" 103153 T AN (NIL) -8 NIL NIL NIL) (-47 93473 94861 94912 "AMR" 95660 NIL AMR (NIL T T) -9 NIL 96260 NIL) (-46 92585 92806 93169 "AMR-" 93174 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 77030 92502 92563 "ALIST" 92568 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 73835 76624 76793 "ALGSC" 76948 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 70391 70945 71552 "ALGPKG" 73275 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 69668 69769 69953 "ALGMFACT" 70277 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 65703 66282 66876 "ALGMANIP" 69252 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55914 65329 65479 "ALGFF" 65636 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 55110 55241 55420 "ALGFACT" 55772 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 54037 54637 54675 "ALGEBRA" 54680 NIL ALGEBRA (NIL T) -9 NIL 54721 NIL) (-37 53755 53814 53946 "ALGEBRA-" 53951 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 35692 51592 51644 "ALAGG" 51780 NIL ALAGG (NIL T T) -9 NIL 51941 NIL) (-35 35228 35341 35367 "AHYP" 35568 T AHYP (NIL) -9 NIL NIL NIL) (-34 34159 34407 34433 "AGG" 34932 T AGG (NIL) -9 NIL 35211 NIL) (-33 33593 33755 33969 "AGG-" 33974 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 31399 31822 32227 "AF" 33235 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30879 31124 31214 "ADDAST" 31327 T ADDAST (NIL) -8 NIL NIL NIL) (-30 30147 30406 30562 "ACPLOT" 30741 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18770 27079 27117 "ACFS" 27724 NIL ACFS (NIL T) -9 NIL 27963 NIL) (-28 16797 17287 18049 "ACFS-" 18054 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12901 14830 14856 "ACF" 15735 T ACF (NIL) -9 NIL 16148 NIL) (-26 11605 11939 12432 "ACF-" 12437 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11163 11358 11384 "ABELSG" 11476 T ABELSG (NIL) -9 NIL 11541 NIL) (-24 11030 11055 11121 "ABELSG-" 11126 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10359 10646 10672 "ABELMON" 10842 T ABELMON (NIL) -9 NIL 10954 NIL) (-22 10023 10107 10245 "ABELMON-" 10250 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9357 9729 9755 "ABELGRP" 9827 T ABELGRP (NIL) -9 NIL 9902 NIL) (-20 8820 8949 9165 "ABELGRP-" 9170 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8082 8121 "A1AGG" 8126 NIL A1AGG (NIL T) -9 NIL 8166 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index a86473ab..b0c434fc 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,36 +1,18 @@ -(731751 . 3486833883) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) - (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) - (-5 *2 (-1056)) (-5 *1 (-765))))) -(((*1 *1 *1) (-5 *1 (-1084)))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1312 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-174)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-831 *3)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-1070)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) +(731644 . 3486841617) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-764))))) +(((*1 *1 *1) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1121))))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) (((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 @@ -48,7 +30,7 @@ (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -2951 + (|:| -3417 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") @@ -56,289 +38,245 @@ "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-571))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) - (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-968 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-968 *3 *4 *5))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1121)))) + ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1121))))) (((*1 *2 *2 *3) (-12 (-5 *1 (-691 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1197)) (-5 *2 (-548)) (-5 *1 (-547 *4)) - (-4 *4 (-1238))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1238)) - (-4 *5 (-384 *4)) (-4 *3 (-384 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3230 *4))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1070)) (-14 *3 (-656 (-1197))))) - ((*1 *1 *1) - (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1070) (-861))) - (-14 *3 (-656 (-1197)))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) - (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) +(((*1 *1 *1) (-5 *1 (-1084)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -2451 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-374)) (-4 *7 (-1264 *6)) + (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) + (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) +(((*1 *2 *1) + (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) - (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 (-783)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) + (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-5 *2 + (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-801)) (-5 *5 (-576))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-432 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1223) (-442 *3))) + (-14 *4 (-1197)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-4 *2 (-13 (-27) (-1223) (-442 *3) (-10 -8 (-15 -3569 ($ *4))))) + (-4 *4 (-860)) + (-4 *5 + (-13 (-1266 *2 *4) (-374) (-1223) + (-10 -8 (-15 -2774 ($ $)) (-15 -4160 ($ $))))) + (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1004 *5)) + (-14 *7 (-1197))))) +(((*1 *2 *3) + (-12 (-4 *4 (-805)) + (-4 *5 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $))))) (-4 *6 (-568)) + (-5 *2 (-2 (|:| -2386 (-971 *6)) (|:| -2302 (-971 *6)))) + (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-968 (-419 (-971 *6)) *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1264 *5)) + (-5 *2 (-656 *3)) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1264 *6)) + (-14 *7 (-940))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-701 (-171 (-419 (-576))))) + (-5 *2 + (-656 + (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-576)) + (|:| |outvect| (-656 (-701 (-171 *4))))))) + (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) - (-5 *1 (-1258 *4 *2)) (-4 *2 (-1264 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-1209 *3))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-624 *3)) (-5 *5 (-1193 *3)) - (-4 *3 (-13 (-442 *6) (-27) (-1223))) - (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1193 *3))) - (-4 *3 (-13 (-442 *6) (-27) (-1223))) - (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121))))) + (-12 (-4 *4 (-1121)) (-4 *2 (-917 *4)) (-5 *1 (-704 *4 *2 *5 *3)) + (-4 *5 (-384 *2)) (-4 *3 (-13 (-384 *4) (-10 -7 (-6 -4464))))))) (((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-52))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-656 + (-656 + (-3 (|:| -2628 (-1197)) + (|:| -3178 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576)))))))))) + (-5 *1 (-1201))))) +(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1172))))) (((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) ((*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) ((*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1033)) (-5 *2 (-876))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-4 *8 (-968 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) - (-4 *7 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) - (|:| |wcond| (-656 (-971 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) - (|:| -1593 (-656 (-1288 (-419 (-971 *5)))))))))) - (-5 *1 (-943 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-5 *4 (-656 (-1197))) (-4 *8 (-968 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) - (-4 *7 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) - (|:| |wcond| (-656 (-971 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) - (|:| -1593 (-656 (-1288 (-419 (-971 *5)))))))))) - (-5 *1 (-943 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 *7)) (-4 *7 (-968 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) - (-4 *6 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) - (|:| |wcond| (-656 (-971 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) - (|:| -1593 (-656 (-1288 (-419 (-971 *4)))))))))) - (-5 *1 (-943 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *9)) (-5 *5 (-940)) (-4 *9 (-968 *6 *8 *7)) - (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1197)))) - (-4 *8 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) - (|:| |wcond| (-656 (-971 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-971 *6)))) - (|:| -1593 (-656 (-1288 (-419 (-971 *6)))))))))) - (-5 *1 (-943 *6 *7 *8 *9)) (-5 *4 (-656 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1197))) (-5 *5 (-940)) - (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *8 (-1086 *5 *6 *7)) (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) - (|:| |wcond| (-656 (-971 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-971 *6)))) - (|:| -1593 (-656 (-1288 (-419 (-971 *6)))))))))) - (-5 *1 (-943 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-5 *4 (-940)) (-4 *8 (-968 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) - (-4 *7 (-805)) + (-2 (|:| |val| (-656 *8)) + (|:| |towers| (-656 (-1048 *5 *6 *7 *8))))) + (-5 *1 (-1048 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *8 (-1086 *5 *6 *7)) (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) - (|:| |wcond| (-656 (-971 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) - (|:| -1593 (-656 (-1288 (-419 (-971 *5)))))))))) - (-5 *1 (-943 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 *9)) (-5 *5 (-1179)) - (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-576)) - (-5 *1 (-943 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1197))) (-5 *5 (-1179)) - (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-576)) - (-5 *1 (-943 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-5 *4 (-1179)) (-4 *8 (-968 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) - (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 *10)) (-5 *5 (-940)) - (-5 *6 (-1179)) (-4 *10 (-968 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) - (-4 *8 (-13 (-861) (-626 (-1197)))) (-4 *9 (-805)) (-5 *2 (-576)) - (-5 *1 (-943 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 (-1197))) (-5 *5 (-940)) - (-5 *6 (-1179)) (-4 *10 (-968 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) - (-4 *8 (-13 (-861) (-626 (-1197)))) (-4 *9 (-805)) (-5 *2 (-576)) - (-5 *1 (-943 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *9)) (-5 *4 (-940)) (-5 *5 (-1179)) - (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-576)) - (-5 *1 (-943 *6 *7 *8 *9))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-492))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) - (-4 *3 (-1264 *4))))) + (-2 (|:| |val| (-656 *8)) + (|:| |towers| (-656 (-1167 *5 *6 *7 *8))))) + (-5 *1 (-1167 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3497 *3))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) + (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) + (-5 *5 (-1115 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1154 (-227))) + (-5 *1 (-709)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-227))) + (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-709)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1154 (-227))) (-5 *3 (-1 (-962 (-227)) (-227) (-227))) + (-5 *4 (-1115 (-227))) (-5 *5 (-656 (-270))) (-5 *1 (-709))))) +(((*1 *2 *1) + (-12 (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) + (-5 *2 (-1288 *6)) (-5 *1 (-347 *3 *4 *5 *6)) + (-4 *6 (-353 *3 *4 *5))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1289)))) ((*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1289)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1290)))) ((*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1290))))) -(((*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1238)) (-5 *2 (-112))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-340))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) - (-5 *2 (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1288 *5))))) - (-5 *1 (-999 *5)) (-5 *3 (-701 *5)) (-5 *4 (-1288 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-998 *3 *4 *5 *6))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-940)) - (-5 *2 (-1288 (-656 (-2 (|:| -3106 *4) (|:| -3224 (-1141)))))) - (-5 *1 (-357 *4)) (-4 *4 (-360))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) +(((*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218))))) +(((*1 *1 *1) (-4 *1 (-883 *2)))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-783)) (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) + (-4 *2 (-1264 *3))))) (((*1 *2 *2 *2) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202))))) +(((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1298))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) + (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) + (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-1123 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1121)) (-5 *2 (-1123 (-656 *4))) (-5 *1 (-923 *4)) + (-5 *3 (-656 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1121)) (-5 *2 (-1123 (-1123 *4))) (-5 *1 (-923 *4)) + (-5 *3 (-1123 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1123 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) +(((*1 *1 *2 *3 *4) (-12 - (-5 *2 + (-5 *3 (-656 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-805)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-861)) - (-5 *1 (-461 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) - (-5 *2 (-1056)) (-5 *1 (-768))))) -(((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) - (-5 *2 (-2 (|:| -1958 (-656 *6)) (|:| -3257 (-656 *6))))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) -(((*1 *1) (-5 *1 (-609)))) -(((*1 *2 *3) - (-12 (-4 *4 (-861)) (-5 *2 (-1209 (-656 *4))) (-5 *1 (-1208 *4)) - (-5 *3 (-656 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-940)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-940)) - (-5 *1 (-540 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) - (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) + (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 *2)) + (|:| |logand| (-1193 *2))))) + (-5 *4 (-656 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-374)) (-5 *1 (-598 *2))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-419 (-971 *6)) (-1186 (-1197) (-971 *6)))) + (-5 *5 (-783)) (-4 *6 (-464)) (-5 *2 (-656 (-701 (-419 (-971 *6))))) + (-5 *1 (-302 *6)) (-5 *4 (-701 (-419 (-971 *6)))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) - (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) - (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) + (-12 + (-5 *3 + (-2 (|:| |eigval| (-3 (-419 (-971 *5)) (-1186 (-1197) (-971 *5)))) + (|:| |eigmult| (-783)) (|:| |eigvec| (-656 *4)))) + (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-971 *5))))) + (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-971 *5))))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 *1)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1070)) (-5 *1 (-701 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 *4)) (-4 *4 (-1070)) (-4 *1 (-1144 *3 *4 *5 *6)) + (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) + (-4 *3 (-13 (-442 *6) (-27) (-1223))) + (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1121))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1242)) (-5 *1 (-149 *2 *4 *3)) + (-4 *3 (-1264 (-419 *4)))))) +(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1061))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) + (-5 *2 (-1056)) (-5 *1 (-764))))) (((*1 *2 *3) - (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) - (-5 *2 (-493 *4 *5)) (-5 *1 (-643 *4 *5))))) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-551 *4 *2 *5 *6)) + (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783)))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-887 (-1202) (-783)))) (-5 *1 (-343))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1197)) + (-4 *5 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) + (-5 *2 (-2 (|:| -2451 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3)) + (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) - (-14 *6 (-656 (-1197))) - (-5 *2 - (-656 (-1167 *5 (-543 (-878 *6)) (-878 *6) (-792 *5 (-878 *6))))) - (-5 *1 (-640 *5 *6))))) -(((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) - (-4 *4 (-174))))) + (-12 (-5 *3 (-656 (-701 *5))) (-4 *5 (-317)) (-4 *5 (-1070)) + (-5 *2 (-1288 (-1288 *5))) (-5 *1 (-1050 *5)) (-5 *4 (-1288 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) + ((*1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *3) + (-12 (-5 *2 (-1178 (-576))) (-5 *1 (-1181 *4)) (-4 *4 (-1070)) + (-5 *3 (-576))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3988 *9)))) + (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3987 *9)))) (-5 *4 (-783)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-1293)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3988 *9)))) + (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3987 *9)))) (-5 *4 (-783)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-1293)) (-5 *1 (-1166 *5 *6 *7 *8 *9))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-442 *4) (-1023) (-1223))) - (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1023) (-1223))) - (-5 *1 (-612 *4 *5 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-343)) (-5 *1 (-255))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-767))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1279 *4)) (-5 *1 (-1281 *4 *2)) + (-4 *4 (-38 (-419 (-576))))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4334 *4))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) - (-4 *3 (-1264 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1264 (-576))))) + (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) + (-5 *2 (-1293)) (-5 *1 (-1200)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1264 (-576))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) - (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1264 (-576))))) - ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-1028 *3)) - (-4 *3 (-1264 (-419 (-576)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-1253 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861))))) -(((*1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576))))) - ((*1 *2 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576)))))) + (-12 (-5 *3 (-1197)) + (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-5 *2 (-1293)) + (-5 *1 (-1200)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1197)) + (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-5 *2 (-1293)) + (-5 *1 (-1200))))) +(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) +(((*1 *1 *2) + (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-4 *1 (-385 *3 *4)) + (-4 *4 (-174))))) +(((*1 *1) (-5 *1 (-131)))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) @@ -355,100 +293,152 @@ ((*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-171 (-227)))) - (-5 *2 (-1056)) (-5 *1 (-767))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1) (-4 *1 (-1160)))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-945))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) + (-5 *2 (-1056)) (-5 *1 (-762))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1179)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) + (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-764))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-759))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1197))) - (-4 *5 (-464)) (-5 *2 (-656 (-253 *4 *5))) (-5 *1 (-643 *4 *5))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-576)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-805)) (-4 *4 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-861)) - (-5 *1 (-461 *5 *6 *7 *4))))) + (-12 (-5 *3 (-783)) (-5 *2 (-1178 (-992))) (-5 *1 (-992))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1056)) (-5 *3 (-1197)) (-5 *1 (-194))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-576))) (-5 *4 (-576)) (-5 *2 (-52)) + (-5 *1 (-1026))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1238))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-876) (-876) (-876))) (-5 *4 (-576)) (-5 *2 (-876)) + (-5 *1 (-661 *5 *6 *7)) (-4 *5 (-1121)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-876)) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-1070)) + (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-876)))) + ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876)))) + ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-876)))) + ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-876)) (-5 *1 (-1193 *3)) (-4 *3 (-1070))))) +(((*1 *2) + (-12 (-5 *2 (-1288 (-1122 *3 *4))) (-5 *1 (-1122 *3 *4)) + (-14 *3 (-940)) (-14 *4 (-940))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1288 *5)) (-5 *3 (-783)) (-5 *4 (-1141)) (-4 *5 (-360)) + (-5 *1 (-540 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25)))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-23))))) -(((*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-656 *6)) (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) - (-4 *3 (-568))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3230 *4))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) + (-12 (-4 *1 (-360)) (-5 *3 (-576)) (-5 *2 (-1210 (-940) (-783)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)) + (-4 *2 (-464)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 *4)) (-4 *4 (-1264 (-576))) (-5 *2 (-656 (-576))) + (-5 *1 (-498 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-464)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861)) (-4 *3 (-464))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1193 (-971 *4))) (-5 *1 (-428 *3 *4)) + (-4 *3 (-429 *4)))) + ((*1 *2) + (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) + (-5 *2 (-1193 (-971 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070))))) +(((*1 *2) + (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-354 *3 *4)) (-14 *3 (-940)) + (-14 *4 (-940)))) + ((*1 *2) + (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-355 *3 *4)) (-4 *3 (-360)) + (-14 *4 (-1193 *3)))) + ((*1 *2) + (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-356 *3 *4)) (-4 *3 (-360)) + (-14 *4 (-940))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25)))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-507))))) -(((*1 *2 *3 *3 *4) + (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1223) (-1023)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-701 *4)) (-5 *3 (-940)) (|has| *4 (-6 (-4466 "*"))) + (-4 *4 (-1070)) (-5 *1 (-1049 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-940)) + (|has| *4 (-6 (-4466 "*"))) (-4 *4 (-1070)) (-5 *1 (-1049 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-805)) (-4 *2 (-968 *4 *5 *6)) (-5 *1 (-461 *4 *5 *6 *2)) + (-4 *4 (-464)) (-4 *6 (-861))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-1121))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1264 *6)) + (-4 *6 (-13 (-374) (-148) (-1059 *4))) (-5 *4 (-576)) + (-5 *2 + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) + (|:| -4026 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-1036 *6 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) + (-5 *1 (-342))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 + (-5 *3 + (-2 (|:| |det| *12) (|:| |rows| (-656 (-576))) + (|:| |cols| (-656 (-576))))) + (-5 *4 (-701 *12)) (-5 *5 (-656 (-419 (-971 *9)))) + (-5 *6 (-656 (-656 *12))) (-5 *7 (-783)) (-5 *8 (-576)) + (-4 *9 (-13 (-317) (-148))) (-4 *12 (-968 *9 *11 *10)) + (-4 *10 (-13 (-861) (-626 (-1197)))) (-4 *11 (-805)) + (-5 *2 + (-2 (|:| |eqzro| (-656 *12)) (|:| |neqzro| (-656 *12)) + (|:| |wcond| (-656 (-971 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1288 (-419 (-971 *9)))) + (|:| -2675 (-656 (-1288 (-419 (-971 *9))))))))) + (-5 *1 (-943 *9 *10 *11 *12))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) + (-5 *2 (-1056)) (-5 *1 (-757))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1070)) (-4 *4 (-1264 *3)) (-5 *1 (-165 *3 *4 *2)) + (-4 *2 (-1264 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))) + (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3987 *4)))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-576)) (-4 *5 (-860)) (-4 *5 (-374)) - (-5 *2 (-783)) (-5 *1 (-964 *5 *6)) (-4 *6 (-1264 *5))))) -(((*1 *2 *1) - (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) - (-14 *6 - (-1 (-112) (-2 (|:| -3224 *5) (|:| -3422 *2)) - (-2 (|:| -3224 *5) (|:| -3422 *2)))) - (-4 *2 (-243 (-3503 *3) (-783))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-861)) (-4 *7 (-968 *4 *2 (-878 *3)))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-749 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1121)))) - ((*1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1121))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-132)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-576)) (-5 *1 (-1178 *3)) (-4 *3 (-1238)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4466)) (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1086 *4 *5 *6)) - (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *1 (-998 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)) - (-4 *6 (-1121)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-696 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-91 *3))))) (((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *1 *1) - (-12 (-4 *2 (-317)) (-4 *3 (-1013 *2)) (-4 *4 (-1264 *3)) - (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1059 *3)))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027))))) -(((*1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-379)) (-4 *2 (-1121))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-1234))))) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1288 (-656 (-576)))) (-5 *1 (-492)))) ((*1 *1 *2 *3) @@ -456,30 +446,12 @@ ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *2 (-1121)) (-4 *3 (-1121)) - (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121))))) -(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *2 *4)) (-4 *4 (-1264 *2)) - (-4 *2 (-174)))) - ((*1 *2) - (-12 (-4 *4 (-1264 *2)) (-4 *2 (-174)) (-5 *1 (-420 *3 *2 *4)) - (-4 *3 (-421 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-421 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-174)))) - ((*1 *2) - (-12 (-4 *3 (-1264 *2)) (-5 *2 (-576)) (-5 *1 (-780 *3 *4)) - (-4 *4 (-421 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861)) (-4 *3 (-174)))) - ((*1 *2 *3) - (-12 (-4 *2 (-568)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-174))))) -(((*1 *1 *1) - (-12 (-4 *2 (-360)) (-4 *2 (-1070)) (-5 *1 (-724 *2 *3)) - (-4 *3 (-1264 *2))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-656 (-2 (|:| -1828 (-1193 *6)) (|:| -2508 (-576))))) + (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) + (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1201))))) (((*1 *2 *1) (-12 (-5 *2 @@ -488,7 +460,7 @@ (-2 (|:| |var| (-1197)) (|:| |arrayIndex| (-656 (-971 (-576)))) (|:| |rand| - (-2 (|:| |ints2Floats?| (-112)) (|:| -3004 (-876)))))) + (-2 (|:| |ints2Floats?| (-112)) (|:| -3003 (-876)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1197)) (|:| |rand| (-876)) (|:| |ints2Floats?| (-112)))) @@ -496,351 +468,326 @@ (-2 (|:| |switch| (-1196)) (|:| |thenClause| (-340)) (|:| |elseClause| (-340)))) (|:| |returnBranch| - (-2 (|:| -3973 (-112)) - (|:| -3106 - (-2 (|:| |ints2Floats?| (-112)) (|:| -3004 (-876)))))) + (-2 (|:| -2940 (-112)) + (|:| -3104 + (-2 (|:| |ints2Floats?| (-112)) (|:| -3003 (-876)))))) (|:| |blockBranch| (-656 (-340))) (|:| |commentBranch| (-656 (-1179))) (|:| |callBranch| (-1179)) (|:| |forBranch| - (-2 (|:| -2951 (-1113 (-971 (-576)))) - (|:| |span| (-971 (-576))) (|:| -2641 (-340)))) + (-2 (|:| -3417 (-1113 (-971 (-576)))) + (|:| |span| (-971 (-576))) (|:| -2640 (-340)))) (|:| |labelBranch| (-1141)) - (|:| |loopBranch| (-2 (|:| |switch| (-1196)) (|:| -2641 (-340)))) + (|:| |loopBranch| (-2 (|:| |switch| (-1196)) (|:| -2640 (-340)))) (|:| |commonBranch| - (-2 (|:| -2629 (-1197)) (|:| |contents| (-656 (-1197))))) + (-2 (|:| -2628 (-1197)) (|:| |contents| (-656 (-1197))))) (|:| |printBranch| (-656 (-876))))) (-5 *1 (-340))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1193 *6)) (-5 *3 (-576)) (-4 *6 (-317)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-576)))) (-4 *3 (-568)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) - (-15 -1581 ((-1146 *3 (-624 $)) $)) - (-15 -3570 ($ (-1146 *3 (-624 $)))))))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-656 (-115)))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-270)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568))))) +(((*1 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -4334 *3) (|:| |coef2| (-794 *3)))) + (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070))))) (((*1 *2 *3) - (-12 - (-5 *2 - (-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))))) - (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))))) - (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))) - (-5 *4 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))))) - (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))) (-5 *4 (-419 (-576))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-419 (-576))) - (-5 *2 (-656 (-2 (|:| -4240 *5) (|:| -4250 *5)))) (-5 *1 (-1041 *3)) - (-4 *3 (-1264 (-576))) (-5 *4 (-2 (|:| -4240 *5) (|:| -4250 *5))))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))))) - (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-419 (-576)))))) - ((*1 *2 *3 *4) - (-12 + (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-317) (-148))) + (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 - (-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))))) - (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-419 (-576)))) - (-5 *4 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-419 (-576))) - (-5 *2 (-656 (-2 (|:| -4240 *4) (|:| -4250 *4)))) (-5 *1 (-1042 *3)) - (-4 *3 (-1264 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-419 (-576))) - (-5 *2 (-656 (-2 (|:| -4240 *5) (|:| -4250 *5)))) (-5 *1 (-1042 *3)) - (-4 *3 (-1264 *5)) (-5 *4 (-2 (|:| -4240 *5) (|:| -4250 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-940)) (-5 *1 (-1122 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) + (-656 + (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) + (|:| |wcond| (-656 (-971 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) + (|:| -2675 (-656 (-1288 (-419 (-971 *4)))))))))) + (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5))))) (((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-656 (-1202))) (-5 *1 (-1157))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-767))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 (-656 *6))) (-4 *6 (-968 *3 *5 *4)) - (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-861) (-626 (-1197)))) - (-4 *5 (-805)) (-5 *1 (-943 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-112))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) + (-12 (-4 *3 (-1242)) (-4 *5 (-1264 *3)) (-4 *6 (-1264 (-419 *5))) + (-5 *2 (-112)) (-5 *1 (-352 *4 *3 *5 *6)) (-4 *4 (-353 *3 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) -(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-360))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-928))))) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1068))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) + ((*1 *1 *1) (|partial| -4 *1 (-734)))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1197)) + (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-816 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1223) (-978)))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) + (-5 *2 (-1056)) (-5 *1 (-759))))) +(((*1 *2 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1178 (-971 *4)) (-1178 (-971 *4)))) + (-5 *1 (-1296 *4)) (-4 *4 (-374))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861)) (-4 *3 (-174)))) + ((*1 *2 *3 *3) + (-12 (-4 *2 (-568)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-568)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-174))))) +(((*1 *2 *3) + (-12 (-5 *3 (-971 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) (((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1238)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4466)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1238))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1123 *4)) (-4 *4 (-1121)) (-5 *2 (-1 *4)) - (-5 *1 (-1038 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1061)) (-5 *3 (-390)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1115 (-576))) (-5 *2 (-1 (-576))) (-5 *1 (-1068))))) -(((*1 *1) (-5 *1 (-131)))) -(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-548))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1070)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1264 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) - (-5 *1 (-1009 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) - (-5 *1 (-1128 *3 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4352 *4))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) - ((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) - ((*1 *2 *2) (-12 (-5 *2 (-940)) (|has| *1 (-6 -4456)) (-4 *1 (-416)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940)))) - ((*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-1178 (-576)))))) -(((*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1197)) (-4 *5 (-374)) (-5 *2 (-1178 (-1178 (-971 *5)))) - (-5 *1 (-1296 *5)) (-5 *4 (-1178 (-971 *5)))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)) (-4 *2 (-861)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-783)))) + ((*1 *2 *1) + (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *2 (-783))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-656 (-1197))) (-4 *2 (-174)) + (-4 *3 (-243 (-3502 *4) (-783))) + (-14 *6 + (-1 (-112) (-2 (|:| -3223 *5) (|:| -2508 *3)) + (-2 (|:| -3223 *5) (|:| -2508 *3)))) + (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-861)) + (-4 *7 (-968 *2 *3 (-878 *4)))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-656 *11)) (-5 *5 (-656 (-1193 *9))) + (-5 *6 (-656 *9)) (-5 *7 (-656 *12)) (-5 *8 (-656 (-783))) + (-4 *11 (-861)) (-4 *9 (-317)) (-4 *12 (-968 *9 *10 *11)) + (-4 *10 (-805)) (-5 *2 (-656 (-1193 *12))) + (-5 *1 (-719 *10 *11 *9 *12)) (-5 *3 (-1193 *12))))) (((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4466)) (-4 *1 (-501 *3)) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4465)) (-4 *1 (-501 *3)) (-4 *3 (-1238))))) +(((*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121)) (-4 *2 (-568)))) + ((*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1121)) + (-5 *2 (-2 (|:| -1715 (-576)) (|:| |var| (-624 *1)))) + (-4 *1 (-442 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) + (-5 *2 + (-2 (|:| -3099 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) + (-5 *2 + (-2 (|:| |poly| *6) (|:| -3014 (-419 *6)) + (|:| |special| (-419 *6)))) + (-5 *1 (-739 *5 *6)) (-5 *3 (-419 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-913 *3 *4)) + (-4 *3 (-1264 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-783)) (-4 *5 (-374)) + (-5 *2 (-2 (|:| -4239 *3) (|:| -4249 *3))) (-5 *1 (-913 *3 *5)) + (-4 *3 (-1264 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) + (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) + (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) + (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1166 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) + (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1166 *5 *6 *7 *8 *9))))) +(((*1 *1 *1 *1) (-5 *1 (-163))) + ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-163))))) (((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-401))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) - ((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4465)) (-4 *1 (-501 *4)) - (-4 *4 (-1238)) (-5 *2 (-112))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-253 *3 *4)) - (-14 *3 (-656 (-1197))) (-4 *4 (-1070)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-14 *3 (-656 (-1197))) - (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1070)) - (-4 *5 (-243 (-3503 *3) (-783))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-493 *3 *4)) - (-14 *3 (-656 (-1197))) (-4 *4 (-1070))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) + (|partial| -12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1193 (-576))) (-5 *2 (-576)) (-5 *1 (-961))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) + (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) + (-5 *1 (-178 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238))))) (((*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-1115 (-227)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-5 *4 (-783)) (-4 *8 (-968 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) - (-4 *7 (-805)) - (-5 *2 - (-656 - (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) - (|:| |cols| (-656 (-576)))))) - (-5 *1 (-943 *5 *6 *7 *8))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-656 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-805)) (-4 *3 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) - (-5 *1 (-461 *4 *5 *6 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1178 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1178 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-310)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1178 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1179)) (-5 *1 (-194)))) - ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1179)) (-5 *1 (-310)))) - ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1179)) (-5 *1 (-315))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218))))) + (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1193 (-1193 *4)))) + (-5 *1 (-1236 *4)) (-5 *3 (-1193 (-1193 *4)))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1082 (-1045 *3) (-1193 (-1045 *3)))) + (-5 *1 (-1045 *3)) (-4 *3 (-13 (-860) (-374) (-1043)))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-576)) (-5 *5 (-1179)) (-5 *6 (-701 (-227))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1963)))) + (-5 *2 (-1056)) (-5 *1 (-758))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1070)) (-5 *2 (-1288 *3)) (-5 *1 (-724 *3 *4)) + (-4 *4 (-1264 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3))))) (((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) - (-5 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) + (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1264 (-419 *2))) + (-4 *2 (-1264 *4)) (-5 *1 (-352 *3 *4 *2 *5)) + (-4 *3 (-353 *4 *2 *5)))) ((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) - (-5 *1 (-1129 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-971 *6))) (-5 *4 (-656 (-1197))) - (-4 *6 (-13 (-568) (-1059 *5))) (-4 *5 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-971 *6)))))) (-5 *1 (-1060 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1242)) + (-4 *4 (-1264 (-419 *2))) (-4 *2 (-1264 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-858))))) +(((*1 *2 *3) + (-12 (-4 *4 (-374)) (-4 *4 (-568)) (-4 *5 (-1264 *4)) + (-5 *2 (-2 (|:| -2144 (-635 *4 *5)) (|:| -2090 (-419 *5)))) + (-5 *1 (-635 *4 *5)) (-5 *3 (-419 *5)))) ((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) - (-4 *3 (-1264 *4)) (-5 *2 (-112))))) + (-12 (-5 *2 (-656 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) + (-14 *3 (-940)) (-4 *4 (-1070)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-464)) (-4 *3 (-1070)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1264 *3))))) (((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1115 (-227))))) ((*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-1115 (-227)))))) -(((*1 *2 *3) - (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) - (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-835)))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-626 (-907 (-576)))) - (-4 *5 (-901 (-576))) - (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) - (-4 *3 (-13 (-27) (-1223) (-442 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1197)) (-5 *4 (-855 *2)) (-4 *2 (-1160)) - (-4 *2 (-13 (-27) (-1223) (-442 *5))) - (-4 *5 (-626 (-907 (-576)))) (-4 *5 (-901 (-576))) - (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) - (-5 *1 (-579 *5 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-861)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1208 *4)) - (-5 *3 (-656 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) + (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) + (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) + (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) + (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1166 *5 *6 *7 *8 *9))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1161 *3 *2)) (-4 *3 (-13 (-1121) (-34))) + (-4 *2 (-13 (-1121) (-34)))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-376 *2)) (-4 *2 (-1121)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-1219))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) + (-5 *2 + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) + (|:| |c2| (-419 *5)) (|:| |deg| (-783)))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1264 (-419 *5)))))) (((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-480)))) ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1289)))) ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1290))))) -(((*1 *1 *1) (-4 *1 (-1081)))) -(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4466)) (-4 *1 (-384 *2)) (-4 *2 (-1238)) - (-4 *2 (-861)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4466)) - (-4 *1 (-384 *3)) (-4 *3 (-1238))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-874)) (-5 *2 (-703 (-130))) (-5 *3 (-130))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) + (-5 *1 (-767))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-112)) (-5 *1 (-310))))) + (-12 (-5 *2 (-430 (-1193 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1193 *1)) + (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1121)))) + ((*1 *2 *3) + (-12 (-4 *1 (-928)) (-5 *2 (-430 (-1193 *1))) (-5 *3 (-1193 *1))))) (((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1172))))) (((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1115 (-227))))) ((*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-1115 (-227)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1303 (-1197) *3)) (-4 *3 (-1070)) (-5 *1 (-1310 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1303 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) - (-5 *1 (-1312 *3 *4))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-861))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-419 (-576)))) - (-5 *2 (-2 (|:| -4006 (-1178 *4)) (|:| -4014 (-1178 *4)))) - (-5 *1 (-1183 *4)) (-5 *3 (-1178 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-683)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1122 *3 *4)) (-14 *3 (-940)) - (-14 *4 (-940))))) +(((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-834))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-5 *2 + (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-801)) (-5 *5 (-576))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1197)) + (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-5 *1 (-1200))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-576)) (-4 *2 (-442 *3)) (-5 *1 (-32 *3 *2)) + (-4 *3 (-1059 *4)) (-4 *3 (-568))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-861)) (-4 *5 (-805)) + (-4 *6 (-568)) (-4 *7 (-968 *6 *5 *3)) + (-5 *1 (-474 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-1059 (-419 (-576))) (-374) + (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) + (-15 -1581 (*7 $)))))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1279 *3))))) (((*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1070)) (-4 *3 (-861)) (-4 *4 (-275 *3)) (-4 *5 (-805))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1047 (-855 (-576)))) (-5 *1 (-607 *3)) (-4 *3 (-1070))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *1) (-5 *1 (-1084)))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-701 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-174)) (-4 *2 (-1264 *4)) (-5 *1 (-179 *4 *2 *3)) - (-4 *3 (-736 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-419 (-971 *5)))) (-5 *4 (-1197)) - (-5 *2 (-971 *5)) (-5 *1 (-302 *5)) (-4 *5 (-464)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-971 *4)))) (-5 *2 (-971 *4)) - (-5 *1 (-302 *4)) (-4 *4 (-464)))) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) + (-14 *4 (-656 (-1197))))) ((*1 *2 *1) - (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1264 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 (-171 (-419 (-576))))) - (-5 *2 (-971 (-171 (-419 (-576))))) (-5 *1 (-776 *4)) - (-4 *4 (-13 (-374) (-860))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *4 (-1197)) - (-5 *2 (-971 (-171 (-419 (-576))))) (-5 *1 (-776 *5)) - (-4 *5 (-13 (-374) (-860))))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-971 (-419 (-576)))) - (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *4 (-1197)) - (-5 *2 (-971 (-419 (-576)))) (-5 *1 (-791 *5)) - (-4 *5 (-13 (-374) (-860)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) + (-14 *4 (-656 (-1197)))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1197)) + (-4 *4 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-634 *4 *2)) (-4 *2 (-13 (-1223) (-978) (-29 *4)))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4464)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1121)) + (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *6)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) + (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1121)) + (-4 *2 (-861))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) (((*1 *2 *1 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-215 *4 *2)) (-14 *4 (-940)) (-4 *2 (-1121))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-940)) (-4 *5 (-861)) - (-5 *2 (-59 (-656 (-684 *5)))) (-5 *1 (-684 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1197)) (-4 *5 (-374)) (-5 *2 (-656 (-1232 *5))) - (-5 *1 (-1296 *5)) (-5 *4 (-1232 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-333 *2 *4)) (-4 *4 (-132)) - (-4 *2 (-1121)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1121)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *2)) (-4 *2 (-1121)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-1121)) (-5 *1 (-661 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-143 *2 *4 *3)) + (-4 *3 (-384 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-515 *2 *4 *5 *3)) + (-4 *5 (-384 *2)) (-4 *3 (-384 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-701 *4)) (-4 *4 (-1013 *2)) (-4 *2 (-568)) + (-5 *1 (-705 *2 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-1257 *2 *4 *3)) + (-4 *3 (-1264 *4))))) +(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1207))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-1219))))) (((*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-1238)))) @@ -852,83 +799,297 @@ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1070))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) - (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) - (-4 *2 (-699 *3 *5 *6))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1288 (-576))) (-5 *3 (-576)) (-5 *1 (-1131)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1288 (-576))) (-5 *3 (-656 (-576))) (-5 *4 (-576)) - (-5 *1 (-1131))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1121) (-34))) (-4 *6 (-13 (-1121) (-34))) - (-5 *2 (-112)) (-5 *1 (-1161 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) +(((*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-860)) (-5 *1 (-313 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-1288 *5))) (-5 *4 (-576)) (-5 *2 (-1288 *5)) + (-5 *1 (-1050 *5)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1070))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) +(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) (-5 *1 (-390))) + ((*1 *1) (-5 *1 (-390)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1070)) (-4 *2 (-699 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1264 *4)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1139)) (-5 *1 (-1136))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-576)))) + (-12 (-5 *3 (-1199 (-419 (-576)))) (-5 *2 (-419 (-576))) + (-5 *1 (-192))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-419 (-971 (-576))))) + (-5 *2 (-656 (-656 (-304 (-971 *4))))) (-5 *1 (-391 *4)) + (-4 *4 (-13 (-860) (-374))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-304 (-419 (-971 (-576)))))) + (-5 *2 (-656 (-656 (-304 (-971 *4))))) (-5 *1 (-391 *4)) + (-4 *4 (-13 (-860) (-374))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-971 (-576)))) (-5 *2 (-656 (-304 (-971 *4)))) + (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-304 (-419 (-971 (-576))))) + (-5 *2 (-656 (-304 (-971 *4)))) (-5 *1 (-391 *4)) + (-4 *4 (-13 (-860) (-374))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1197)) + (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-4 *4 (-13 (-29 *6) (-1223) (-978))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2675 (-656 *4)))) + (-5 *1 (-664 *6 *4 *3)) (-4 *3 (-668 *4)))) + ((*1 *2 *3 *2 *4 *2 *5) + (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-656 *2)) + (-4 *2 (-13 (-29 *6) (-1223) (-978))) + (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *1 (-664 *6 *2 *3)) (-4 *3 (-668 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1288 *5) "failed")) + (|:| -2675 (-656 (-1288 *5))))) + (-5 *1 (-679 *5)) (-5 *4 (-1288 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1288 *5) "failed")) + (|:| -2675 (-656 (-1288 *5))))) + (-5 *1 (-679 *5)) (-5 *4 (-1288 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) + (-5 *2 + (-656 + (-2 (|:| |particular| (-3 (-1288 *5) "failed")) + (|:| -2675 (-656 (-1288 *5)))))) + (-5 *1 (-679 *5)) (-5 *4 (-656 (-1288 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) + (-5 *2 + (-656 + (-2 (|:| |particular| (-3 (-1288 *5) "failed")) + (|:| -2675 (-656 (-1288 *5)))))) + (-5 *1 (-679 *5)) (-5 *4 (-656 (-1288 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4465)))) + (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4465)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2675 (-656 *4)))) + (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4465)))) + (-4 *7 (-13 (-384 *5) (-10 -7 (-6 -4465)))) + (-5 *2 + (-656 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2675 (-656 *7))))) + (-5 *1 (-680 *5 *6 *7 *3)) (-5 *4 (-656 *7)) + (-4 *3 (-699 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-656 (-1197))) (-4 *5 (-568)) + (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-782 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-568)) + (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-782 *4)))) + ((*1 *2 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1197)) + (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *1 (-784 *5 *2)) (-4 *2 (-13 (-29 *5) (-1223) (-978))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-701 *7)) (-5 *5 (-1197)) + (-4 *7 (-13 (-29 *6) (-1223) (-978))) + (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *2 + (-2 (|:| |particular| (-1288 *7)) (|:| -2675 (-656 (-1288 *7))))) + (-5 *1 (-814 *6 *7)) (-5 *4 (-1288 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-701 *6)) (-5 *4 (-1197)) + (-4 *6 (-13 (-29 *5) (-1223) (-978))) + (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *2 (-656 (-1288 *6))) (-5 *1 (-814 *5 *6)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) + (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) + (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *2 + (-2 (|:| |particular| (-1288 *7)) (|:| -2675 (-656 (-1288 *7))))) + (-5 *1 (-814 *6 *7)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) + (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) + (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *2 + (-2 (|:| |particular| (-1288 *7)) (|:| -2675 (-656 (-1288 *7))))) + (-5 *1 (-814 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-1197)) + (-4 *7 (-13 (-29 *6) (-1223) (-978))) + (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *2 + (-3 (-2 (|:| |particular| *7) (|:| -2675 (-656 *7))) *7 "failed")) + (-5 *1 (-814 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-115)) (-5 *5 (-1197)) + (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *2 + (-3 (-2 (|:| |particular| *3) (|:| -2675 (-656 *3))) *3 "failed")) + (-5 *1 (-814 *6 *3)) (-4 *3 (-13 (-29 *6) (-1223) (-978))))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-304 *2)) (-5 *4 (-115)) (-5 *5 (-656 *2)) + (-4 *2 (-13 (-29 *6) (-1223) (-978))) (-5 *1 (-814 *6 *2)) + (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))))) + ((*1 *2 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-304 *2)) (-5 *5 (-656 *2)) + (-4 *2 (-13 (-29 *6) (-1223) (-978))) + (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *1 (-814 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1056)) (-5 *1 (-817)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-820)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-817)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1288 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) + (-5 *2 (-1056)) (-5 *1 (-817)))) + ((*1 *2 *3 *4 *4 *5 *4) + (-12 (-5 *3 (-1288 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) + (-5 *2 (-1056)) (-5 *1 (-817)))) + ((*1 *2 *3 *4 *4 *5 *6 *4) + (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-656 (-390))) + (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1056)) (-5 *1 (-817)))) + ((*1 *2 *3 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1288 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) + (-5 *2 (-1056)) (-5 *1 (-817)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4) + (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-656 (-390))) + (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1056)) (-5 *1 (-817)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) + (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-656 (-390))) + (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1056)) (-5 *1 (-817)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 + (-5 *5 + (-1 + (-3 (-2 (|:| |particular| *6) (|:| -2675 (-656 *6))) "failed") + *7 *6)) + (-4 *6 (-374)) (-4 *7 (-668 *6)) + (-5 *2 (-2 (|:| |particular| (-1288 *6)) (|:| -2675 (-701 *6)))) + (-5 *1 (-825 *6 *7)) (-5 *3 (-701 *6)) (-5 *4 (-1288 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1056)) (-5 *1 (-914)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-915)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-914)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) + (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1179)) + (-5 *8 (-227)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) + (-5 *2 (-1056)) (-5 *1 (-914)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) + (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1179)) + (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1056)) + (-5 *1 (-914)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-971 (-419 (-576)))) (-5 *2 (-656 (-390))) + (-5 *1 (-1044)) (-5 *4 (-390)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-971 (-576))) (-5 *2 (-656 (-390))) (-5 *1 (-1044)) + (-5 *4 (-390)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1152 *4)) + (-5 *3 (-326 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1152 *4)) + (-5 *3 (-304 (-326 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1197)) + (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1152 *5)) + (-5 *3 (-304 (-326 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1197)) + (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1152 *5)) + (-5 *3 (-326 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-1197))) + (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1152 *5)) + (-5 *3 (-656 (-304 (-326 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) + (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) + (-5 *1 (-1206 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-1197))) (-4 *5 (-568)) + (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-1206 *5)) + (-5 *3 (-656 (-304 (-419 (-971 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-419 (-971 *4)))) (-4 *4 (-568)) + (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-1206 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) + (-5 *1 (-1206 *4)) (-5 *3 (-656 (-304 (-419 (-971 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1197)) (-4 *5 (-568)) + (-5 *2 (-656 (-304 (-419 (-971 *5))))) (-5 *1 (-1206 *5)) + (-5 *3 (-419 (-971 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1197)) (-4 *5 (-568)) + (-5 *2 (-656 (-304 (-419 (-971 *5))))) (-5 *1 (-1206 *5)) + (-5 *3 (-304 (-419 (-971 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-971 *4))))) + (-5 *1 (-1206 *4)) (-5 *3 (-419 (-971 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-971 *4))))) + (-5 *1 (-1206 *4)) (-5 *3 (-304 (-419 (-971 *4))))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-249 *2)) (-4 *2 (-1238))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1179)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) + (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1056)) (-5 *1 (-760))))) + (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1070)) + (-4 *4 (-858))))) (((*1 *2 *3) - (-12 (-5 *3 (-971 *5)) (-4 *5 (-1070)) (-5 *2 (-493 *4 *5)) - (-5 *1 (-963 *4 *5)) (-14 *4 (-656 (-1197)))))) -(((*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291))))) -(((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) - ((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1288 *4)) (-5 *1 (-540 *4)) - (-4 *4 (-360))))) -(((*1 *1) (-5 *1 (-1106)))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-129)) (-5 *2 (-783))))) -(((*1 *1 *1 *1) (-5 *1 (-876))) ((*1 *1 *1) (-5 *1 (-876))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1193 (-576))) (-5 *3 (-576)) (-4 *1 (-883 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-374)) (-5 *2 (-2 (|:| -2715 *3) (|:| -3624 *3))) - (-5 *1 (-778 *3 *4)) (-4 *3 (-720 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *3 (-1070)) - (-5 *2 (-2 (|:| -2715 *1) (|:| -3624 *1))) (-4 *1 (-866 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1070)) - (-5 *2 (-2 (|:| -2715 *3) (|:| -3624 *3))) (-5 *1 (-867 *5 *3)) - (-4 *3 (-866 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *2 (-1056)) (-5 *1 (-769))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) - (-5 *1 (-1093 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) - (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 (-783))) (-5 *1 (-990 *4 *3)) - (-4 *3 (-1264 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-703 *3)) (-5 *1 (-985 *3)) (-4 *3 (-1121))))) + (-12 (-4 *1 (-812)) + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-1056))))) +(((*1 *2 *1) + (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-1070)) + (-5 *1 (-1181 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-576)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) + (-14 *4 (-1197)) (-14 *5 *3)))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) + ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1200))))) (((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1070)) - (-5 *1 (-702 *4))))) + (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *2 (-656 (-227))) + (-5 *1 (-480))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) (((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1238)))) ((*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-861)))) ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) @@ -937,45 +1098,35 @@ ((*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-171 (-576))) (-5 *2 (-112)) (-5 *1 (-458)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) - (-253 *4 (-419 (-576))))) - (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-112)) - (-5 *1 (-517 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-980 *3)) (-4 *3 (-557)))) - ((*1 *2 *1) (-12 (-4 *1 (-1242)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1119 *3)) (-4 *3 (-1121)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-971 *4))) (-5 *3 (-656 (-1197))) (-4 *4 (-464)) - (-5 *1 (-937 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-464)) + (-12 (-5 *3 (-701 (-419 (-971 (-576))))) (-5 *2 (-656 - (-2 (|:| |eigval| (-3 (-419 (-971 *4)) (-1186 (-1197) (-971 *4)))) - (|:| |eigmult| (-783)) - (|:| |eigvec| (-656 (-701 (-419 (-971 *4)))))))) - (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-971 *4))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1219))))) + (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) + (|:| |radvect| (-656 (-701 (-326 (-576)))))))) + (-5 *1 (-1052))))) +(((*1 *1) (-5 *1 (-1106)))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-1179)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1056)) + (-5 *1 (-762))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1131)) (-5 *3 (-576))))) (((*1 *2 *3) - (-12 (-5 *3 (-1197)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *4 *5 *6 *7)) - (-4 *4 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238)) - (-4 *7 (-1238))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1193 *1)) (-4 *1 (-1033))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-656 - (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 *3)) - (|:| |logand| (-1193 *3))))) - (-5 *1 (-598 *3)) (-4 *3 (-374))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-763))))) + (-12 (-5 *3 (-656 (-2 (|:| -1828 *4) (|:| -2683 (-576))))) + (-4 *4 (-1264 (-576))) (-5 *2 (-749 (-783))) (-5 *1 (-454 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-430 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-1070)) + (-5 *2 (-749 (-783))) (-5 *1 (-456 *4 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-701 *4)) (-4 *4 (-1070)) (-5 *1 (-1163 *3 *4)) + (-14 *3 (-783))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) (((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1238)))) ((*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-861)))) ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) @@ -984,309 +1135,283 @@ ((*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-176 *6)) - (-5 *1 (-881 *5 *4 *6)) (-4 *4 (-1279 *5)) (-4 *6 (-1264 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-52)) (-5 *1 (-841))))) -(((*1 *2 *3) - (-12 (-5 *2 (-430 (-1193 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) -(((*1 *1) (-5 *1 (-609)))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *3 (-568))))) -(((*1 *2 *1) - (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) - (-5 *2 (-656 *3))))) (((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-576))) (-4 *3 (-1070)) (-5 *1 (-99 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-99 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-99 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238))))) -(((*1 *2 *2) - (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) - (-5 *1 (-178 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-946))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-783)) (-4 *5 (-174)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-783)) (-4 *5 (-174)))) - ((*1 *2 *2 *3) - (-12 - (-5 *2 - (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) - (-253 *4 (-419 (-576))))) - (-5 *3 (-656 (-878 *4))) (-14 *4 (-656 (-1197))) (-14 *5 (-783)) - (-5 *1 (-517 *4 *5))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-301))) - ((*1 *1) (-5 *1 (-876))) - ((*1 *1) - (-12 (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-805)) - (-5 *1 (-1008 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1106))) - ((*1 *1) - (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) - (-4 *3 (-13 (-1121) (-34))))) - ((*1 *1) (-5 *1 (-1200))) ((*1 *1) (-5 *1 (-1201)))) -(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-571))))) -(((*1 *2 *3) - (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-374)) - (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) - (|has| *2 (-6 (-4467 "*"))) (-4 *2 (-1070)))) - ((*1 *2 *3) - (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) - (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4467 "*"))) (-4 *2 (-1070))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -3106 *4) (|:| -3314 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-1228 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1238)) (-5 *2 (-576))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) - (-14 *5 (-656 (-1197))) - (-5 *2 - (-656 (-2 (|:| -3119 (-1193 *4)) (|:| -4152 (-656 (-971 *4)))))) - (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) - (-5 *2 - (-656 (-2 (|:| -3119 (-1193 *5)) (|:| -4152 (-656 (-971 *5)))))) - (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-656 (-971 *5))) - (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) + (-12 (-4 *2 (-13 (-442 *3) (-1023))) (-5 *1 (-285 *3 *2)) + (-4 *3 (-568))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) + (-4 *3 (-1086 *6 *7 *8)) (-5 *2 - (-656 (-2 (|:| -3119 (-1193 *5)) (|:| -4152 (-656 (-971 *5)))))) - (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-656 (-971 *5))) - (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) + (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) (-5 *2 - (-656 (-2 (|:| -3119 (-1193 *5)) (|:| -4152 (-656 (-971 *5)))))) - (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-656 (-971 *5))) - (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-860) (-317) (-148) (-1043))) + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) + (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) + (-4 *3 (-1086 *6 *7 *8)) (-5 *2 - (-656 (-2 (|:| -3119 (-1193 *4)) (|:| -4152 (-656 (-971 *4)))))) - (-5 *1 (-1315 *4 *5 *6)) (-5 *3 (-656 (-971 *4))) - (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1082 (-1045 *4) (-1193 (-1045 *4)))) (-5 *3 (-876)) - (-5 *1 (-1045 *4)) (-4 *4 (-13 (-860) (-374) (-1043)))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-940)) (-5 *1 (-454 *2)) - (-4 *2 (-1264 (-576))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-940)) (-5 *4 (-783)) (-5 *1 (-454 *2)) - (-4 *2 (-1264 (-576))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-940)) (-5 *4 (-656 (-783))) (-5 *1 (-454 *2)) - (-4 *2 (-1264 (-576))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-940)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) - (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-940)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) - (-5 *6 (-112)) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) + (-5 *1 (-1166 *6 *7 *8 *3 *4)) (-4 *4 (-1130 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-940)) (-5 *4 (-430 *2)) (-4 *2 (-1264 *5)) - (-5 *1 (-456 *5 *2)) (-4 *5 (-1070))))) -(((*1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *3 (-861)) (-5 *1 (-684 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) + (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) + ((*1 *1 *1) (-4 *1 (-1081)))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-568))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-656 (-576))) (-5 *3 (-701 (-576))) (-5 *1 (-1131))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) - (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) - (-4 *1 (-1086 *3 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-419 (-971 (-576))))) (-5 *4 (-656 (-1197))) - (-5 *2 (-656 (-656 *5))) (-5 *1 (-391 *5)) - (-4 *5 (-13 (-860) (-374))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-971 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-391 *4)) - (-4 *4 (-13 (-860) (-374)))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) - (-4 *4 (-1121))))) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1179) (-786))) (-5 *1 (-115))))) +(((*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-576)) (-5 *1 (-498 *4)) + (-4 *4 (-1264 *2))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-624 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1197))) + (-4 *2 (-13 (-442 *5) (-27) (-1223))) + (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1121))))) +(((*1 *2 *3) + (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-419 (-576)))) + (-5 *1 (-315))))) +(((*1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-419 (-576))) (-5 *1 (-315))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-656 (-1288 *4))) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) + ((*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-940)) (-5 *4 (-390)) (-5 *2 (-1293)) (-5 *1 (-1289))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576)))) + ((*1 *2 *2) + (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) + (-5 *1 (-1145 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-759))))) +(((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1238)) (-5 *2 (-576))))) +(((*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) - (-5 *2 (-656 (-1288 *3)))))) -(((*1 *2) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-105))))) -(((*1 *2 *2) (-12 (-5 *2 (-985 *3)) (-4 *3 (-1121)) (-5 *1 (-986 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-148)) (-4 *2 (-317)) (-4 *2 (-464)) (-4 *3 (-861)) - (-4 *4 (-805)) (-5 *1 (-1008 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-576))) (-5 *1 (-1140)))) + (-5 *2 (-1193 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1291))))) +(((*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-833))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) + (-4 *5 (-1264 *4)) + (-5 *2 (-2 (|:| -2451 (-419 *5)) (|:| |coeff| (-419 *5)))) + (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4103 (-576))))) + (-5 *1 (-372 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1) + (-12 (-4 *1 (-397 *3)) (-4 *3 (-1121)) + (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4103 (-783))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 (-2 (|:| -1828 *3) (|:| -2508 (-576))))) + (-5 *1 (-430 *3)) (-4 *3 (-568))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) + (-4 *2 (-1279 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1243)))))) + (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1264 *3)) + (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1279 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) + (-4 *2 (-1279 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-13 (-568) (-148))) + (-5 *1 (-1174 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-304 (-419 (-971 *5)))) (-5 *4 (-1197)) + (-4 *5 (-13 (-317) (-148))) + (-5 *2 (-1186 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) + (-5 *1 (-1150 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) + (-4 *5 (-13 (-317) (-148))) + (-5 *2 (-1186 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) + (-5 *1 (-1150 *5))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) + (-5 *2 (-1056)) (-5 *1 (-764))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) + (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) + (-5 *1 (-800))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1070)) (-5 *1 (-724 *3 *4)) + (-4 *4 (-1264 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1070)) (-5 *2 (-1288 *3)) (-5 *1 (-724 *3 *4)) + (-4 *4 (-1264 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1070)) (-4 *5 (-1264 *4)) (-5 *2 (-1 *6 (-656 *6))) - (-5 *1 (-1282 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-1279 *4))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-576)) (-5 *1 (-206))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1238)) + (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *6 *7 *2)) (-4 *6 (-1070)) + (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1056)) + (-5 *1 (-768))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1070)) + (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-940)) (-4 *5 (-1070)) + (-4 *2 (-13 (-416) (-1059 *5) (-374) (-1223) (-294))) + (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1264 *5))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-687 (-227))) + (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-762))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1123 (-1123 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-2 (|:| |deg| (-783)) (|:| -3425 *5)))) + (-4 *5 (-1264 *4)) (-4 *4 (-360)) (-5 *2 (-656 *5)) + (-5 *1 (-218 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-2 (|:| -1828 *5) (|:| -2683 (-576))))) + (-5 *4 (-576)) (-4 *5 (-1264 *4)) (-5 *2 (-656 *5)) + (-5 *1 (-708 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) - (-14 *4 *2)))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-962 *5)) (-5 *3 (-783)) (-4 *5 (-1070)) - (-5 *1 (-1185 *4 *5)) (-14 *4 (-940))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-656 (-1193 *13))) (-5 *3 (-1193 *13)) - (-5 *4 (-656 *12)) (-5 *5 (-656 *10)) (-5 *6 (-656 *13)) - (-5 *7 (-656 (-656 (-2 (|:| -2743 (-783)) (|:| |pcoef| *13))))) - (-5 *8 (-656 (-783))) (-5 *9 (-1288 (-656 (-1193 *10)))) - (-4 *12 (-861)) (-4 *10 (-317)) (-4 *13 (-968 *10 *11 *12)) - (-4 *11 (-805)) (-5 *1 (-719 *11 *12 *10 *13))))) -(((*1 *1) (-5 *1 (-142)))) + (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) + (-4 *2 (-699 *3 *4 *5))))) (((*1 *1) (-12 (-4 *3 (-1121)) (-5 *1 (-900 *2 *3 *4)) (-4 *2 (-1121)) (-4 *4 (-678 *3)))) ((*1 *1) (-12 (-5 *1 (-904 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) +(((*1 *1 *1) (-4 *1 (-568)))) +(((*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) +(((*1 *2 *1) + (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1264 *2))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))))) - (-5 *2 (-656 (-227))) (-5 *1 (-315))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-656 *2) *2 *2 *2)) (-4 *2 (-1121)) - (-5 *1 (-103 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1121)) (-5 *1 (-103 *2))))) + (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) + (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) - (-4 *5 (-1264 *4)) - (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -4027 *5)))) - (-5 *1 (-821 *4 *5 *3 *6)) (-4 *3 (-668 *5)) - (-4 *6 (-668 (-419 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) - ((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-734)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-738)) (-5 *2 (-112))))) + (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1178 (-971 *4)) (-1178 (-971 *4)))) + (-5 *1 (-1296 *4)) (-4 *4 (-374))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 - (-2 (|:| |solns| (-656 *5)) - (|:| |maps| (-656 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1149 *3 *5)) (-4 *3 (-1264 *5))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *7)) (-4 *7 (-861)) + (-4 *8 (-968 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-5 *2 - (-2 (|:| -3106 *4) (|:| -3314 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *1 *1) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1121))))) -(((*1 *2 *3) - (-12 (-4 *4 (-805)) - (-4 *5 (-13 (-861) (-10 -8 (-15 -4172 ((-1197) $))))) (-4 *6 (-568)) - (-5 *2 (-2 (|:| -2324 (-971 *6)) (|:| -2317 (-971 *6)))) - (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-968 (-419 (-971 *6)) *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) - (-5 *2 (-1288 *6)) (-5 *1 (-347 *3 *4 *5 *6)) - (-4 *6 (-353 *3 *4 *5))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) - (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) - (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1056)) (-5 *1 (-764))))) -(((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) - (-5 *2 (-1293)) (-5 *1 (-1200)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1197)) - (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) (-5 *2 (-1293)) - (-5 *1 (-1200)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1197)) - (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) (-5 *2 (-1293)) - (-5 *1 (-1200))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) + (-2 (|:| |particular| (-3 (-1288 (-419 *8)) "failed")) + (|:| -2675 (-656 (-1288 (-419 *8)))))) + (-5 *1 (-681 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-783)) (-4 *5 (-1070)) (-5 *2 (-576)) + (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1264 *5)) + (-4 *6 (-13 (-416) (-1059 *5) (-374) (-1223) (-294))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) + (-4 *3 (-1264 *4)) + (-4 *5 (-13 (-416) (-1059 *4) (-374) (-1223) (-294)))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) + (-4 *3 (-1086 *6 *7 *8)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) + (-5 *1 (-1129 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3987 *9)))) + (-5 *5 (-112)) (-4 *8 (-1086 *6 *7 *4)) (-4 *9 (-1092 *6 *7 *4 *8)) + (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-861)) + (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -3987 *9)))) + (-5 *1 (-1129 *6 *7 *4 *8 *9))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1261 *4 *5)) (-5 *3 (-656 *5)) (-14 *4 (-1197)) + (-4 *5 (-374)) (-5 *1 (-942 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *5)) (-4 *5 (-374)) (-5 *2 (-1193 *5)) + (-5 *1 (-942 *4 *5)) (-14 *4 (-1197)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-656 *6)) (-5 *4 (-783)) (-4 *6 (-374)) + (-5 *2 (-419 (-971 *6))) (-5 *1 (-1071 *5 *6)) (-14 *5 (-1197))))) +(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) +(((*1 *1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1070)) + (-4 *3 (-1121))))) +(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390)))) + ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-390))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) (((*1 *2 *3) - (-12 (-4 *1 (-360)) (-5 *3 (-576)) (-5 *2 (-1210 (-940) (-783)))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) - (-4 *4 (-1121))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 (-2 (|:| -1828 (-1193 *6)) (|:| -3422 (-576))))) - (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) - (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070))))) + (-12 (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) + (-4 *3 (-1264 *4)) + (-4 *5 (-13 (-416) (-1059 *4) (-374) (-1223) (-294)))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-1242)) (-4 *5 (-1264 *3)) (-4 *6 (-1264 (-419 *5))) - (-5 *2 (-112)) (-5 *1 (-352 *4 *3 *5 *6)) (-4 *4 (-353 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3))))) + (-12 (-4 *4 (-464)) (-4 *4 (-568)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2356 *4))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-598 *3) *3 (-1197))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1197))) + (-4 *3 (-294)) (-4 *3 (-641)) (-4 *3 (-1059 *4)) (-4 *3 (-442 *7)) + (-5 *4 (-1197)) (-4 *7 (-626 (-907 (-576)))) (-4 *7 (-464)) + (-4 *7 (-901 (-576))) (-4 *7 (-1121)) (-5 *2 (-598 *3)) + (-5 *1 (-585 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284))))) (((*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-5 *2 (-1288 *3)) (-5 *1 (-724 *3 *4)) - (-4 *4 (-1264 *3))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-874)) (-5 *2 (-703 (-130))) (-5 *3 (-130))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-861)) (-4 *5 (-805)) - (-4 *6 (-568)) (-4 *7 (-968 *6 *5 *3)) - (-5 *1 (-474 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-1059 (-419 (-576))) (-374) - (-10 -8 (-15 -3570 ($ *7)) (-15 -1570 (*7 $)) - (-15 -1581 (*7 $)))))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-2 (|:| |totdeg| (-783)) (|:| -3896 *4))) (-5 *5 (-783)) + (-4 *4 (-968 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) + (-5 *2 + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-461 *6 *7 *8 *4))))) +(((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-158))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) (((*1 *2 *3) - (-12 (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-143 *2 *4 *3)) - (-4 *3 (-384 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-515 *2 *4 *5 *3)) - (-4 *5 (-384 *2)) (-4 *3 (-384 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 *4)) (-4 *4 (-1013 *2)) (-4 *2 (-568)) - (-5 *1 (-705 *2 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-1257 *2 *4 *3)) - (-4 *3 (-1264 *4))))) + (-12 (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) + (-4 *3 (-1264 *4)) + (-4 *5 (-13 (-416) (-1059 *4) (-374) (-1223) (-294)))))) (((*1 *2 *3) (-12 (-4 *5 (-13 (-626 *2) (-174))) (-5 *2 (-907 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1121)) (-4 *3 (-167 *5)))) @@ -1319,7 +1444,7 @@ (-12 (-5 *2 (-971 *3)) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *5 (-626 (-1197))) (-4 *4 (-805)) (-4 *5 (-861)))) ((*1 *1 *2) - (-2760 + (-2759 (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-2663 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1197)))) @@ -1332,12 +1457,12 @@ (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)))) ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3988 *8))) + (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3987 *8))) (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1179)) (-5 *1 (-1090 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3988 *8))) + (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3987 *8))) (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1130 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1179)) (-5 *1 (-1166 *4 *5 *6 *7 *8)))) @@ -1369,21 +1494,43 @@ (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-792 *4 (-878 *6)))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197)))))) -(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) (-5 *1 (-390))) - ((*1 *1) (-5 *1 (-390)))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) +(((*1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1291)))) + ((*1 *2 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1291))))) (((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-971 (-576))))) - (-5 *2 - (-656 - (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) - (|:| |radvect| (-656 (-701 (-326 (-576)))))))) - (-5 *1 (-1052))))) + (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) + (-4 *3 (-384 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-384 *4)) (-4 *3 (-384 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-701 *5)) (-4 *5 (-1013 *4)) (-4 *4 (-568)) + (-5 *2 (-2 (|:| |num| (-701 *4)) (|:| |den| *4))) + (-5 *1 (-705 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) + (-4 *6 (-1264 *5)) + (-5 *2 (-2 (|:| -4026 *7) (|:| |rh| (-656 (-419 *6))))) + (-5 *1 (-819 *5 *6 *7 *3)) (-5 *4 (-656 (-419 *6))) + (-4 *7 (-668 *6)) (-4 *3 (-668 (-419 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1257 *4 *5 *3)) + (-4 *3 (-1264 *5))))) (((*1 *1) (-5 *1 (-340)))) -(((*1 *2) - (-12 (-4 *2 (-13 (-442 *3) (-1023))) (-5 *1 (-285 *3 *2)) - (-4 *3 (-568))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1193 *1)) (-5 *4 (-1197)) (-4 *1 (-27)) + (-5 *2 (-656 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1193 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-971 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *2 (-656 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3))))) (((*1 *2 *1 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-576)))) @@ -1400,32 +1547,202 @@ (-4 *3 (-1264 *2)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1266 *2 *3)) (-4 *3 (-804)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3570 (*2 (-1197)))) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3569 (*2 (-1197)))) (-4 *2 (-1070))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1255 *3)) (-4 *3 (-1238))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-145))) (-5 *1 (-142)))) + ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-142))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-783)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-783)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1290))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-576)) (-5 *1 (-498 *4)) - (-4 *4 (-1264 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) - (-5 *2 (-1193 *3))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1056)) (-5 *1 (-764))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-687 (-227))) - (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-762))))) -(((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1178 (-971 *4)) (-1178 (-971 *4)))) - (-5 *1 (-1296 *4)) (-4 *4 (-374))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) - (-4 *3 (-1264 *4)) - (-4 *5 (-13 (-416) (-1059 *4) (-374) (-1223) (-294)))))) -(((*1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1291))))) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-783)) + (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1113 (-855 *3))) (-4 *3 (-13 (-1223) (-978) (-29 *5))) + (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) + (-5 *2 + (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-221 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1113 (-855 *3))) (-5 *5 (-1179)) + (-4 *3 (-13 (-1223) (-978) (-29 *6))) + (-4 *6 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) + (-5 *2 + (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-221 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1113 (-855 (-326 *5)))) + (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) + (-5 *2 + (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-419 (-971 *6))) (-5 *4 (-1113 (-855 (-326 *6)))) + (-5 *5 (-1179)) + (-4 *6 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) + (-5 *2 + (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1113 (-855 (-419 (-971 *5))))) (-5 *3 (-419 (-971 *5))) + (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) + (-5 *2 + (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1113 (-855 (-419 (-971 *6))))) (-5 *5 (-1179)) + (-5 *3 (-419 (-971 *6))) + (-4 *6 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) + (-5 *2 + (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1197)) + (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) + (-5 *2 (-3 *3 (-656 *3))) (-5 *1 (-440 *5 *3)) + (-4 *3 (-13 (-1223) (-978) (-29 *5))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-486 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) + (-5 *5 (-390)) (-5 *6 (-1084)) (-5 *2 (-1056)) (-5 *1 (-577)))) + ((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1056)) (-5 *1 (-577)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) + (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) + (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) + (-5 *2 (-1056)) (-5 *1 (-577)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) + (-5 *2 (-1056)) (-5 *1 (-577)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) + (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) + (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) + (-5 *5 (-390)) (-5 *6 (-1084)) (-5 *2 (-1056)) (-5 *1 (-577)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) + (-5 *5 (-1179)) (-5 *2 (-1056)) (-5 *1 (-577)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) + (-5 *5 (-1197)) (-5 *2 (-1056)) (-5 *1 (-577)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) (-4 *5 (-1264 *4)) + (-5 *2 (-598 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-148)) + (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *2 (-3 (-326 *5) (-656 (-326 *5)))) (-5 *1 (-601 *5)))) + ((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-752 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-861)) + (-4 *3 (-38 (-419 (-576)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1197)) (-5 *1 (-971 *3)) (-4 *3 (-38 (-419 (-576)))) + (-4 *3 (-1070)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-4 *2 (-861)) + (-5 *1 (-1147 *3 *2 *4)) (-4 *4 (-968 *3 (-543 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) + (-5 *1 (-1181 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1188 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1194 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1195 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *1 (-1232 *3)) (-4 *3 (-38 (-419 (-576)))) + (-4 *3 (-1070)))) + ((*1 *1 *1 *2) + (-2759 + (-12 (-5 *2 (-1197)) (-4 *1 (-1248 *3)) (-4 *3 (-1070)) + (-12 (-4 *3 (-29 (-576))) (-4 *3 (-978)) (-4 *3 (-1223)) + (-4 *3 (-38 (-419 (-576)))))) + (-12 (-5 *2 (-1197)) (-4 *1 (-1248 *3)) (-4 *3 (-1070)) + (-12 (|has| *3 (-15 -1969 ((-656 *2) *3))) + (|has| *3 (-15 -4160 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1252 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3))) + ((*1 *1 *1) + (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) + ((*1 *1 *1 *2) + (-2759 + (-12 (-5 *2 (-1197)) (-4 *1 (-1269 *3)) (-4 *3 (-1070)) + (-12 (-4 *3 (-29 (-576))) (-4 *3 (-978)) (-4 *3 (-1223)) + (-4 *3 (-38 (-419 (-576)))))) + (-12 (-5 *2 (-1197)) (-4 *1 (-1269 *3)) (-4 *3 (-1070)) + (-12 (|has| *3 (-15 -1969 ((-656 *2) *3))) + (|has| *3 (-15 -4160 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1273 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-2759 + (-12 (-5 *2 (-1197)) (-4 *1 (-1279 *3)) (-4 *3 (-1070)) + (-12 (-4 *3 (-29 (-576))) (-4 *3 (-978)) (-4 *3 (-1223)) + (-4 *3 (-38 (-419 (-576)))))) + (-12 (-5 *2 (-1197)) (-4 *1 (-1279 *3)) (-4 *3 (-1070)) + (-12 (|has| *3 (-15 -1969 ((-656 *2) *3))) + (|has| *3 (-15 -4160 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1280 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) (((*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-120 *2)) (-4 *2 (-1238))))) +(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-97))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1070))))) +(((*1 *2 *1) + (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-541)))) + ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-541))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-446)) + (-5 *2 + (-656 + (-3 (|:| -2628 (-1197)) + (|:| -3178 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576))))))))) + (-5 *1 (-1201))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) + (-5 *2 (-430 (-1193 (-419 (-576))))) (-5 *1 (-447 *4 *5 *3)) + (-4 *3 (-1264 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-876))))) (((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-5 *2 (-112)) (-5 *1 (-904 *4 *5)) (-4 *5 (-1121)))) @@ -1435,92 +1752,53 @@ ((*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-4 *6 (-1238)) (-5 *2 (-112)) (-5 *1 (-905 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *4 (-1121))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-701 (-576))) (-5 *3 (-656 (-576))) (-5 *1 (-1131))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *4)) (-5 *3 (-940)) (-4 *4 (-1070)) - (-5 *1 (-1049 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-940)) (-4 *4 (-1070)) - (-5 *1 (-1049 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-962 (-227)) (-962 (-227)))) (-5 *1 (-270)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-339 *4)) (-4 *4 (-374)) - (-5 *2 (-701 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1288 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-1288 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1264 *4)) (-5 *2 (-1288 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-421 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) - (-5 *2 (-1288 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-429 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1288 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-701 *5))) (-5 *3 (-701 *5)) (-4 *5 (-374)) - (-5 *2 (-1288 *5)) (-5 *1 (-1107 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) - (-5 *1 (-342))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) + (-12 (-5 *3 (-1288 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) + (-4 *1 (-736 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1264 *5)) + (-5 *2 (-701 *5))))) (((*1 *2 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-548))) (-5 *1 (-548))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-496 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-635 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -4249 *4) (|:| |sol?| (-112))) + (-576) *4)) + (-4 *4 (-374)) (-4 *5 (-1264 *4)) (-5 *1 (-586 *4 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1081)))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) + (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-1081)))) + ((*1 *1 *1) (-4 *1 (-860))) + ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)) (-4 *2 (-1081)))) + ((*1 *1 *1) (-4 *1 (-1081))) ((*1 *1 *1) (-4 *1 (-1160)))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) - (|:| |explanations| (-656 (-1179))))) - (-5 *2 (-1056)) (-5 *1 (-315)))) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-1288 (-701 *4))))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1288 (-701 *4))) (-5 *1 (-428 *3 *4)) + (-4 *3 (-429 *4)))) + ((*1 *2) + (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1288 (-701 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-1197))) (-4 *5 (-374)) + (-5 *2 (-1288 (-701 (-419 (-971 *5))))) (-5 *1 (-1107 *5)) + (-5 *4 (-701 (-419 (-971 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-1197))) (-4 *5 (-374)) + (-5 *2 (-1288 (-701 (-971 *5)))) (-5 *1 (-1107 *5)) + (-5 *4 (-701 (-971 *5))))) ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) - (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) - (-5 *2 (-1056)) (-5 *1 (-315))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1240)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1240))))) -(((*1 *2 *1) - (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) - (-5 *2 (-425 *4 (-419 *4) *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1288 *6)) (-4 *6 (-13 (-421 *4 *5) (-1059 *4))) - (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-4 *3 (-317)) - (-5 *1 (-425 *3 *4 *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-374)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-457 *3)) (-4 *3 (-1070))))) -(((*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-189))) (-5 *1 (-189))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *7 (-1264 *5)) (-4 *4 (-736 *5 *7)) - (-5 *2 (-2 (|:| -2590 (-701 *6)) (|:| |vec| (-1288 *5)))) - (-5 *1 (-823 *5 *6 *7 *4 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 *4))))) + (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) + (-5 *2 (-1288 (-701 *4))) (-5 *1 (-1107 *4))))) +(((*1 *1) (-5 *1 (-158)))) (((*1 *1 *2 *2 *3) (-12 (-5 *2 (-783)) (-4 *3 (-1238)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) @@ -1538,44 +1816,45 @@ ((*1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) ((*1 *1 *1) (-5 *1 (-1197))) ((*1 *1) (-5 *1 (-1197))) ((*1 *1) (-5 *1 (-1218)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3498 (-794 *3)) (|:| |coef1| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-2 (|:| -3498 *1) (|:| |coef1| *1))) - (-4 *1 (-1086 *3 *4 *5))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-597)) (-5 *3 (-609)) (-5 *4 (-301)) (-5 *1 (-290))))) -(((*1 *1) (-5 *1 (-145))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-270))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1070)) - (-5 *1 (-726 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-848 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) - (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-112))))) -(((*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-537))))) (((*1 *2 *3) - (-12 (-5 *3 (-1179)) - (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-112)) - (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1223) (-29 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1288 (-1288 (-576)))) (-5 *1 (-478))))) + (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-1224 *3))) (-5 *1 (-1224 *3)) (-4 *3 (-1121))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-374)) + (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-5 *1 (-462 *4 *5 *6 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-374)) + (-5 *2 + (-2 (|:| R (-701 *6)) (|:| A (-701 *6)) (|:| |Ainv| (-701 *6)))) + (-5 *1 (-999 *6)) (-5 *3 (-701 *6))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1258 *3 *2)) + (-4 *2 (-1264 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1223) (-1023)))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) - (-5 *2 (-2 (|:| -2715 *1) (|:| -3624 *1))) (-4 *1 (-968 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1070)) (-5 *2 (-2 (|:| -2715 *1) (|:| -3624 *1))) - (-4 *1 (-1264 *3))))) + (-12 (-4 *4 (-1238)) (-5 *2 (-783)) (-5 *1 (-184 *4 *3)) + (-4 *3 (-686 *4))))) +(((*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1238))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-656 (-419 *6))) (-5 *3 (-419 *6)) + (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-580 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-597)) (-5 *1 (-290))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-430 *5)) (-4 *5 (-568)) + (-5 *2 + (-2 (|:| -2508 (-783)) (|:| -1715 *5) (|:| |radicand| (-656 *5)))) + (-5 *1 (-330 *5)) (-5 *4 (-783)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-576))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) (((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) (-14 *4 (-656 (-1197))))) @@ -1592,51 +1871,42 @@ (-4 *5 (-174)))) ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-736 *2 *3)) (-4 *3 (-1264 *2))))) (((*1 *1 *2) - (-12 (-5 *2 (-656 (-2 (|:| -4301 *3) (|:| -4440 *4)))) + (-12 (-5 *2 (-656 (-2 (|:| -4300 *3) (|:| -4439 *4)))) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *1 (-1214 *3 *4)))) ((*1 *1) (-12 (-4 *1 (-1214 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *4 (-1121))))) (((*1 *2 *1) - (-12 + (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-783))) (-5 *3 (-173)) (-5 *1 (-1185 *4 *5)) + (-14 *4 (-940)) (-4 *5 (-1070))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-576)) (-5 *4 (-430 *2)) (-4 *2 (-968 *7 *5 *6)) + (-5 *1 (-754 *5 *6 *7 *2)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-317))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-998 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *2 - (-1288 - (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -1793 (-576)) - (|:| -3774 (-576)) (|:| |spline| (-576)) (|:| -1542 (-576)) - (|:| |axesColor| (-888)) (|:| -2328 (-576)) - (|:| |unitsColor| (-888)) (|:| |showing| (-576))))) - (-5 *1 (-1289))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876))))) + (-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) + (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576)))) + (-5 *1 (-315))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) (((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) -(((*1 *2 *3) - (-12 (-5 *3 (-971 *4)) (-4 *4 (-13 (-317) (-148))) - (-4 *2 (-968 *4 *6 *5)) (-5 *1 (-943 *4 *5 *6 *2)) - (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-386 *4 *2)) - (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4466))))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4466)) (-4 *1 (-120 *2)) (-4 *2 (-1238))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946))))) -(((*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-374)) (-4 *1 (-339 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1264 *4)) (-4 *4 (-1242)) - (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1264 (-419 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1288 *1)) (-4 *4 (-174)) - (-4 *1 (-378 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1288 *1)) (-4 *4 (-174)) - (-4 *1 (-381 *4 *5)) (-4 *5 (-1264 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) - (-4 *4 (-1264 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) - ((*1 *1 *1) (-4 *1 (-1081)))) +(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223)))))) (((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)))) @@ -1743,9 +2013,9 @@ (-4 *6 (-374)) (-5 *2 (-598 *6)) (-5 *1 (-596 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -1698 *5) (|:| |coeff| *5)) "failed")) + (-5 *4 (-3 (-2 (|:| -2451 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-374)) (-4 *6 (-374)) - (-5 *2 (-2 (|:| -1698 *6) (|:| |coeff| *6))) + (-5 *2 (-2 (|:| -2451 *6) (|:| |coeff| *6))) (-5 *1 (-596 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) @@ -1864,7 +2134,7 @@ (-4 *8 (-1070)) (-4 *6 (-805)) (-4 *2 (-13 (-1121) - (-10 -8 (-15 -3030 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) + (-10 -8 (-15 -3029 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) (-5 *1 (-970 *6 *7 *8 *5 *2)) (-4 *5 (-968 *8 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-977 *5)) (-4 *5 (-1238)) @@ -1880,8 +2150,8 @@ (-4 *2 (-968 (-971 *4) *5 *6)) (-4 *5 (-805)) (-4 *6 (-13 (-861) - (-10 -8 (-15 -4172 ((-1197) $)) - (-15 -3055 ((-3 $ "failed") (-1197)))))) + (-10 -8 (-15 -4171 ((-1197) $)) + (-15 -3054 ((-3 $ "failed") (-1197)))))) (-5 *1 (-1005 *4 *5 *6 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-568)) (-4 *6 (-568)) @@ -1968,38 +2238,66 @@ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-1311 *3 *4)) (-4 *4 (-858))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-940)) (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) - (-4 *4 (-804)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1269 *3)) (-4 *3 (-1070))))) -(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-764))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1056))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1193 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) - (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-701 (-576))) (-5 *3 (-656 (-576))) (-5 *1 (-1131))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-888)) + (-5 *5 (-940)) (-5 *6 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1292)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *2 (-480)) + (-5 *1 (-1292)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-971 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) - (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860)))))) -(((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-656 *3)) (|:| |image| (-656 *3)))) - (-5 *1 (-924 *3)) (-4 *3 (-1121))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *1) (-5 *1 (-590)))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1290)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1027))))) + (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-656 (-270))) + (-5 *2 (-480)) (-5 *1 (-1292))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *2 (-1056)) (-5 *1 (-764))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-701 (-227))) (-5 *6 (-112)) (-5 *7 (-701 (-576))) + (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) + (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-765))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *3)) + (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-568)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-656 *7) (-656 *7))) (-5 *2 (-656 *7)) + (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) + (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1288 (-1288 (-576)))) (-5 *3 (-940)) (-5 *1 (-478))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) + (|:| |expense| (-390)) (|:| |accuracy| (-390)) + (|:| |intermediateResults| (-390)))) + (-5 *2 (-1056)) (-5 *1 (-315))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-701 *4)) (-5 *3 (-940)) (-4 *4 (-1070)) + (-5 *1 (-1049 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-940)) (-4 *4 (-1070)) + (-5 *1 (-1049 *4))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) + (-4 *2 (-1264 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1264 *3))))) +(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) (((*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) (-14 *4 (-656 (-1197))))) @@ -2032,104 +2330,130 @@ ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1308 *3 *4)) (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-861)) (-4 *4 (-174))))) -(((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-876))) (-5 *2 (-1293)) (-5 *1 (-1159))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))) (((*1 *2 *3) + (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-568)) + (-5 *2 (-876)) (-5 *1 (-32 *4 *5))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1303 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) + (-5 *1 (-676 *3 *4)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-676 *3 *4)) (-5 *1 (-1308 *3 *4)) + (-4 *3 (-861)) (-4 *4 (-174))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1238)) (-4 *2 (-1070)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-876)))) + ((*1 *1 *1) (-5 *1 (-876))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-962 (-227))) (-5 *2 (-227)) (-5 *1 (-1234)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1070))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-841))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-962 (-227)) (-962 (-227)))) (-5 *1 (-270)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-339 *4)) (-4 *4 (-374)) + (-5 *2 (-701 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1288 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-701 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-1288 *4)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)) - (-5 *1 (-420 *3 *4 *5)) (-4 *3 (-421 *4 *5)))) - ((*1 *2) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1264 *4)) (-5 *2 (-1288 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-421 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) - (-5 *2 (-701 *3))))) -(((*1 *2 *3) - (-12 (-4 *1 (-928)) (-5 *2 (-430 (-1193 *1))) (-5 *3 (-1193 *1))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) + (-5 *2 (-1288 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-429 *4)) (-4 *4 (-174)) + (-5 *2 (-701 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1288 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-701 *5))) (-5 *3 (-701 *5)) (-4 *5 (-374)) + (-5 *2 (-1288 *5)) (-5 *1 (-1107 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-946)) - (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) - (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) - (-5 *1 (-154)))) + (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) + (-14 *5 (-656 (-1197))) (-5 *2 (-656 (-656 (-1045 (-419 *4))))) + (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-946)) (-5 *4 (-419 (-576))) - (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) - (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) - (-5 *1 (-154)))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) - (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) - (-5 *1 (-154)) (-5 *3 (-656 (-962 (-227)))))) + (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) + (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) + (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) - (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) - (-5 *1 (-154)) (-5 *3 (-656 (-656 (-962 (-227))))))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) + (-12 (-5 *3 (-656 (-971 *4))) + (-4 *4 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 (-656 (-656 (-1045 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) + (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197)))))) +(((*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) - (-253 *4 (-419 (-576))))) - (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-112)) - (-5 *1 (-517 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) + (-5 *2 (-656 (-2 (|:| -1958 *1) (|:| -3256 (-656 *7))))) + (-5 *3 (-656 *7)) (-4 *1 (-1231 *4 *5 *6 *7))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-430 *4) *4)) (-4 *4 (-568)) (-5 *2 (-430 *4)) + (-5 *1 (-431 *4)))) + ((*1 *1 *1) (-5 *1 (-945))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) + ((*1 *1 *1) (-5 *1 (-946))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) + (-5 *4 (-419 (-576))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) + (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) + (-5 *4 (-419 (-576))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) + (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-419 (-576)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) + (-4 *3 (-1264 *2))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) - (-5 *1 (-1009 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) - (-5 *1 (-1128 *3 *4 *5 *6 *7))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1238)) - (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *6 *2 *7)) (-4 *6 (-1070)) - (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) -(((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) - (-5 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) + (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070)))) ((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) - (-5 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-112)) - (-5 *1 (-368 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-212))))) + (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070))))) +(((*1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1291))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) + (-5 *2 (-1056)) (-5 *1 (-759))))) +(((*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-771))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) + (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) + (-5 *1 (-342))))) (((*1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1070)) - (-5 *1 (-331 *4 *5 *2 *6)) (-4 *6 (-968 *2 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3988 *4)))) - (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-442 *3) (-1023))) (-5 *1 (-285 *3 *2)) - (-4 *3 (-568))))) + (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-390)) (-5 *1 (-1084))))) +(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-992))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-783)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1 *2) + (-12 (-4 *2 (-1070)) (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) @@ -2146,44 +2470,53 @@ ((*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-97))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1215 *4 *5)) - (-4 *4 (-1121)) (-4 *5 (-1121))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-576)) (-4 *6 (-374)) (-4 *6 (-379)) - (-4 *6 (-1070)) (-5 *2 (-656 (-656 (-701 *6)))) (-5 *1 (-1050 *6)) - (-5 *3 (-656 (-701 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-374)) (-4 *4 (-379)) (-4 *4 (-1070)) - (-5 *2 (-656 (-656 (-701 *4)))) (-5 *1 (-1050 *4)) - (-5 *3 (-656 (-701 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1070)) - (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) - (-5 *3 (-656 (-701 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-940)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1070)) - (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) - (-5 *3 (-656 (-701 *5)))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *3 (-568))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529))))) -(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1061))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) +(((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) + ((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-940)) (-5 *1 (-1053 *2)) + (-4 *2 (-13 (-1121) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-656 (-1193 *11))) (-5 *3 (-1193 *11)) + (-5 *4 (-656 *10)) (-5 *5 (-656 *8)) (-5 *6 (-656 (-783))) + (-5 *7 (-1288 (-656 (-1193 *8)))) (-4 *10 (-861)) + (-4 *8 (-317)) (-4 *11 (-968 *8 *9 *10)) (-4 *9 (-805)) + (-5 *1 (-719 *9 *10 *8 *11))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1288 *4)) (-5 *3 (-701 *4)) (-4 *4 (-374)) + (-5 *1 (-679 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-374)) + (-4 *5 (-13 (-384 *4) (-10 -7 (-6 -4465)))) + (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4465)))) + (-5 *1 (-680 *4 *5 *2 *3)) (-4 *3 (-699 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-656 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-374)) + (-5 *1 (-826 *2 *3)) (-4 *3 (-668 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-430 *4)) (-4 *4 (-568))))) + (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) + (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-656 (-1261 *5 *4))) + (-5 *1 (-1135 *4 *5)) (-5 *3 (-1261 *5 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-763))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-576)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-317)) + (-4 *9 (-968 *8 *6 *7)) + (-5 *2 (-2 (|:| -3896 (-1193 *9)) (|:| |polval| (-1193 *8)))) + (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1193 *9)) (-5 *4 (-1193 *8))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1197)) + (-4 *4 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-587 *4 *2)) + (-4 *2 (-13 (-1223) (-978) (-1160) (-29 *4)))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) @@ -2200,27 +2533,35 @@ ((*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) - (-4 *3 (-13 (-1121) (-34)))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-115)) (-4 *4 (-1070)) (-5 *1 (-726 *4 *2)) - (-4 *2 (-660 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-848 *2)) (-4 *2 (-1070))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-464))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-304 *3))) (-5 *1 (-304 *3)) (-4 *3 (-568)) - (-4 *3 (-1238))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) + (-5 *2 (-1056)) (-5 *1 (-766))))) (((*1 *2 *3) - (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) (-5 *3 (-576))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-995))))) -(((*1 *1 *1 *1) (-4 *1 (-773)))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1141)) (-4 *4 (-360)) - (-5 *1 (-540 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-492))))) + (-12 (-5 *3 (-1197)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *4 *5 *6)) + (-4 *4 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) + (-5 *2 (-656 (-656 (-656 (-783)))))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-1153 *4 *2)) + (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4464) (-6 -4465)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-861)) (-4 *3 (-1238)) (-5 *1 (-1153 *3 *2)) + (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4464) (-6 -4465))))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) + (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) + (-4 *2 (-699 *3 *4 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-419 (-576))) (-4 *1 (-566 *3)) + (-4 *3 (-13 (-416) (-1223))))) + ((*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223)))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) @@ -2237,66 +2578,53 @@ ((*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -3848 (-656 *3)) (|:| -2319 (-656 *3)))) - (-5 *1 (-1239 *3)) (-4 *3 (-1121))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1056)) - (-5 *1 (-766))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1070)) + (-4 *4 (-858))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1288 (-711))) (-5 *1 (-315))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) - ((*1 *1 *1) (-4 *1 (-1165)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-4 *5 (-1264 *4)) (-5 *2 (-656 (-665 (-419 *5)))) + (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5)))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) - (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) - (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1059 (-576)))) - (-5 *2 (-2 (|:| -3917 (-783)) (|:| -3341 *8))) - (-5 *1 (-930 *4 *5 *6 *7 *8)))) + (-12 (-5 *3 (-971 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) - (-4 *4 (-1264 (-419 (-576)))) (-4 *5 (-1264 (-419 *4))) - (-4 *6 (-353 (-419 (-576)) *4 *5)) - (-5 *2 (-2 (|:| -3917 (-783)) (|:| -3341 *6))) - (-5 *1 (-931 *4 *5 *6))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-2 (|:| -1593 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-4 *3 (-13 (-317) (-10 -8 (-15 -3921 ((-430 $) $))))) - (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) + (-12 (-5 *3 (-971 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) + ((*1 *2 *3) (-12 (-5 *3 (-971 *1)) (-4 *1 (-1033)) (-5 *2 (-656 *1)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1193 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1193 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1193 *1)) (-4 *1 (-1033)) (-5 *2 (-656 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1264 *4)) (-5 *2 (-656 *1)) + (-4 *1 (-1089 *4 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-985 *2)) (-4 *2 (-1121))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-907 *6))) + (-5 *5 (-1 (-904 *6 *8) *8 (-907 *6) (-904 *6 *8))) (-4 *6 (-1121)) + (-4 *8 (-13 (-1070) (-626 (-907 *6)) (-1059 *7))) + (-5 *2 (-904 *6 *8)) (-4 *7 (-1070)) (-5 *1 (-960 *6 *7 *8))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1178 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2951 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1056)) (-5 *1 (-315))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *5 *6)) (-4 *6 (-626 (-1197))) + (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) + (-5 *2 (-1186 (-656 (-971 *4)) (-656 (-304 (-971 *4))))) + (-5 *1 (-516 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-783) *2)) (-5 *4 (-783)) (-4 *2 (-1121)) + (-5 *1 (-690 *2)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1 *3 (-783) *3)) (-4 *3 (-1121)) (-5 *1 (-694 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) + (-5 *1 (-178 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-940)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) @@ -2313,24 +2641,29 @@ ((*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *3)) - (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1962)))) - (-5 *2 (-1056)) (-5 *1 (-760))))) -(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1238)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4466)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1121)) - (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1121)) (-5 *2 (-55))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) + (-4 *3 (-1121))))) +(((*1 *2 *3) + (-12 (-5 *3 (-971 *5)) (-4 *5 (-1070)) (-5 *2 (-253 *4 *5)) + (-5 *1 (-963 *4 *5)) (-14 *4 (-656 (-1197)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) + (-5 *2 (-656 *3)) (-5 *1 (-998 *4 *5 *6 *3)) + (-4 *3 (-1086 *4 *5 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -4249 *6) (|:| |sol?| (-112))) (-576) + *6)) + (-4 *6 (-374)) (-4 *7 (-1264 *6)) + (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) + (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) + ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-429 *4))))) (((*1 *2 *3) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390))))) ((*1 *2 *3 *4) @@ -2379,20 +2712,21 @@ (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1070)) (-4 *2 (-699 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1264 *4)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-374)) (-4 *6 (-1264 (-419 *2))) - (-4 *2 (-1264 *5)) (-5 *1 (-217 *5 *2 *6 *3)) - (-4 *3 (-353 *5 *2 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-171 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) - (-5 *1 (-770))))) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) (((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-783)) (-4 *2 (-1121)) (-5 *1 (-690 *2))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) ((*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) @@ -2408,52 +2742,51 @@ (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3))))) (((*1 *2) (-12 (-5 *2 (-656 *3)) (-5 *1 (-1105 *3)) (-4 *3 (-133))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1121) (-34))) - (-5 *2 (-112)) (-5 *1 (-1161 *4 *5)) (-4 *4 (-13 (-1121) (-34)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-656 (-971 *4))))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-656 (-971 *4))) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) - (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-656 (-971 *3))))) - ((*1 *2) - (-12 (-5 *2 (-656 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1288 (-465 *4 *5 *6 *7))) (-5 *2 (-656 (-971 *4))) - (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *4 (-174)) - (-14 *5 (-940)) (-14 *6 (-656 (-1197))) (-14 *7 (-1288 (-701 *4)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1125)) (-5 *1 (-289))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-145))))) -(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1070))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) - (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) - (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) - (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) - (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1166 *5 *6 *7 *8 *9))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1288 *4)) (-5 *3 (-783)) (-4 *4 (-360)) + (-5 *1 (-540 *4))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-464))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-656 *3)) + (-4 *3 (-13 (-27) (-1223) (-442 *6))) + (-4 *6 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-569 *6 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-238)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) - (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) - (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-275 *2)) (-4 *2 (-861))))) + (-12 (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) + (-5 *2 (-1288 *6)) (-5 *1 (-347 *3 *4 *5 *6)) + (-4 *6 (-353 *3 *4 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1139)) (-5 *1 (-1136))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1313))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-568))))) (((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1095)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-656 + (-2 (|:| -3733 (-783)) + (|:| |eqns| + (-656 + (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) + (|:| |cols| (-656 (-576)))))) + (|:| |fgb| (-656 *7))))) + (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) + (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-783)) + (-5 *1 (-943 *4 *5 *6 *7))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) @@ -2474,29 +2807,46 @@ (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3))))) (((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-52))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) -(((*1 *1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1121)) (-4 *2 (-379))))) -(((*1 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-374) (-148))) - (-5 *2 (-656 (-2 (|:| -3422 (-783)) (|:| -2396 *4) (|:| |num| *4)))) - (-5 *1 (-411 *3 *4)) (-4 *4 (-1264 *3))))) -(((*1 *2) - (-12 - (-5 *2 (-2 (|:| -2319 (-656 (-1197))) (|:| -3848 (-656 (-1197))))) - (-5 *1 (-1240))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1156)) (-5 *2 (-703 (-290))) (-5 *1 (-169))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-372 (-115))) (-4 *2 (-1070)) (-5 *1 (-726 *2 *4)) + (-4 *4 (-660 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-372 (-115))) (-5 *1 (-848 *2)) (-4 *2 (-1070))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) + (-5 *1 (-760))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) + (-5 *2 (-1056)) (-5 *1 (-761)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) + (-5 *8 (-400)) (-5 *2 (-1056)) (-5 *1 (-761))))) (((*1 *2 *1) - (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-1123 *3)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-576)))) ((*1 *2 *1) - (-12 (-5 *2 (-1123 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-756 *3)) (-4 *3 (-174))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-317)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1264 *4)) (-5 *1 (-821 *4 *2 *3 *5)) - (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) - (-4 *5 (-668 (-419 *2)))))) + (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) + (-4 *4 (-1070))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1086 *5 *6 *7)) + (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) + (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) + (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-962 (-227))) (-5 *2 (-1293)) (-5 *1 (-480))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) @@ -2516,28 +2866,29 @@ ((*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-5 *2 (-1179))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-1193 *3)) (-5 *1 (-41 *4 *3)) - (-4 *3 - (-13 (-374) (-312) - (-10 -8 (-15 -1570 ((-1146 *4 (-624 $)) $)) - (-15 -1581 ((-1146 *4 (-624 $)) $)) - (-15 -3570 ($ (-1146 *4 (-624 $)))))))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1070)) (-4 *7 (-1070)) - (-4 *6 (-1264 *5)) (-5 *2 (-1193 (-1193 *7))) - (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1264 *6))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1070))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1193 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) - (-5 *1 (-32 *4 *2))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) + (-4 *2 (-1264 *4))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1056)) (-5 *1 (-760))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-1121))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) + (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) @@ -2557,61 +2908,44 @@ ((*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *2 (-1121)) (-4 *3 (-1121)) + (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1197)) (-5 *1 (-598 *2)) (-4 *2 (-1059 *3)) + (-4 *2 (-374)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)) + (-4 *2 (-13 (-442 *4) (-1023) (-1223))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1113 *2)) (-4 *2 (-13 (-442 *4) (-1023) (-1223))) + (-4 *4 (-568)) (-5 *1 (-642 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-978)) (-5 *2 (-1197)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-978))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876))))) -(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-771))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1121)) (-4 *2 (-917 *5)) (-5 *1 (-704 *5 *2 *3 *4)) - (-4 *3 (-384 *2)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4465))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1193 *3)) (-5 *1 (-933 *3)) (-4 *3 (-317))))) -(((*1 *1 *1 *1) (-5 *1 (-227))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061)))) - ((*1 *1 *1 *1) (-4 *1 (-1160)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-568)) - (-5 *2 (-2 (|:| -2590 (-701 *5)) (|:| |vec| (-1288 (-656 (-940)))))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-940)) (-4 *3 (-668 *5))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-166 *3 *4)) - (-4 *3 (-167 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1238)) (-5 *2 (-783)) - (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-1121)) (-5 *2 (-783)) (-5 *1 (-441 *3 *4)) - (-4 *3 (-442 *4)))) - ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-556 *3)) (-4 *3 (-557)))) - ((*1 *2) (-12 (-4 *1 (-775)) (-5 *2 (-783)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-808 *3 *4)) - (-4 *3 (-809 *4)))) - ((*1 *2) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-1012 *3 *4)) - (-4 *3 (-1013 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-1017 *3 *4)) - (-4 *3 (-1018 *4)))) - ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1032 *3)) (-4 *3 (-1033)))) - ((*1 *2) (-12 (-4 *1 (-1070)) (-5 *2 (-783)))) - ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1080 *3)) (-4 *3 (-1081))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-997 *4 *5 *3 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) + (-4 *3 (-861)) (-4 *6 (-1086 *4 *5 *3)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1179)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-270))))) +(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) +(((*1 *2 *3) + (-12 (-5 *3 (-971 *5)) (-4 *5 (-1070)) (-5 *2 (-493 *4 *5)) + (-5 *1 (-963 *4 *5)) (-14 *4 (-656 (-1197)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-419 (-576)))) + (-5 *2 (-2 (|:| -3876 (-1178 *4)) (|:| -3888 (-1178 *4)))) + (-5 *1 (-1183 *4)) (-5 *3 (-1178 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *3 (-656 (-270))) + (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-270)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-480)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-480))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) @@ -2628,44 +2962,41 @@ ((*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-1238))))) -(((*1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1121))))) -(((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4466)) (-4 *1 (-384 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1193 *2)) (-4 *2 (-968 (-419 (-971 *6)) *5 *4)) - (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) - (-4 *4 (-13 (-861) (-10 -8 (-15 -4172 ((-1197) $))))) - (-4 *6 (-568))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-656 (-1 *4 (-656 *4)))) (-4 *4 (-1121)) + (-5 *1 (-114 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1121)) + (-5 *1 (-114 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-1 *4 (-656 *4)))) + (-5 *1 (-114 *4)) (-4 *4 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-875))))) +(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1068))))) +(((*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) + ((*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291))))) (((*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312))))) (((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-1121) (-34))) (-5 *1 (-1161 *3 *2)) (-4 *3 (-13 (-1121) (-34))))) ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1299))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -3106 *4) (|:| -3314 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-464))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) + ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-518)) (-5 *3 (-656 (-890))) (-5 *1 (-495))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) @@ -2682,40 +3013,38 @@ ((*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1121)))) - ((*1 *1 *1) (-5 *1 (-644)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) (-4 *4 (-464)) (-4 *4 (-1121)) - (-5 *1 (-585 *4 *2)) (-4 *2 (-294)) (-4 *2 (-442 *4))))) -(((*1 *2) - (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) - (-4 *4 (-1121))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-656 *6) "failed") (-576) *6 *6)) (-4 *6 (-374)) + (-4 *7 (-1264 *6)) + (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) + (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-888)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) + (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1070)) (-4 *3 (-861)) + (-4 *4 (-275 *3)) (-4 *5 (-805))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) + (-4 *5 (-13 (-374) (-148) (-1059 (-576)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) + (|:| -2739 *6))) + (-5 *1 (-1036 *5 *6)) (-5 *3 (-419 *6))))) (((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-5 *2 (-2 (|:| -4301 *3) (|:| -4440 *4)))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-805)) - (-4 *3 (-13 (-861) (-10 -8 (-15 -4172 ((-1197) $))))) (-4 *5 (-568)) - (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-968 (-419 (-971 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1070)) (-4 *5 (-805)) - (-4 *3 - (-13 (-861) - (-10 -8 (-15 -4172 ((-1197) $)) - (-15 -3055 ((-3 $ "failed") (-1197)))))) - (-5 *1 (-1005 *4 *5 *3 *2)) (-4 *2 (-968 (-971 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *6)) - (-4 *6 - (-13 (-861) - (-10 -8 (-15 -4172 ((-1197) $)) - (-15 -3055 ((-3 $ "failed") (-1197)))))) - (-4 *4 (-1070)) (-4 *5 (-805)) (-5 *1 (-1005 *4 *5 *6 *2)) - (-4 *2 (-968 (-971 *4) *5 *6))))) + (-5 *2 (-2 (|:| -4300 *3) (|:| -4439 *4)))))) +(((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) + ((*1 *2 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1288 *4)) (-5 *1 (-540 *4)) + (-4 *4 (-360))))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-1059 (-48))) + (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) + (-5 *2 (-430 (-1193 (-48)))) (-5 *1 (-447 *4 *5 *3)) + (-4 *3 (-1264 *5))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) @@ -2732,30 +3061,14 @@ ((*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *2 (-112)) - (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) - (-4 *4 (-13 (-1121) (-34)))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-4 *1 (-107 *3))))) +(((*1 *1) (-5 *1 (-55)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1193 *7)) (-4 *5 (-1070)) - (-4 *7 (-1070)) (-4 *2 (-1264 *5)) (-5 *1 (-513 *5 *2 *6 *7)) - (-4 *6 (-1264 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1070)) (-4 *7 (-1070)) - (-4 *4 (-1264 *5)) (-5 *2 (-1193 *7)) (-5 *1 (-513 *5 *4 *6 *7)) - (-4 *6 (-1264 *4))))) + (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-1288 *5)) (-4 *5 (-317)) + (-4 *5 (-1070)) (-5 *2 (-701 *5)) (-5 *1 (-1050 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-624 *5)) (-4 *5 (-442 *4)) (-4 *4 (-1059 (-576))) - (-4 *4 (-568)) (-5 *2 (-1193 *5)) (-5 *1 (-32 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-624 *1)) (-4 *1 (-1070)) (-4 *1 (-312)) - (-5 *2 (-1193 *1))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) + (-12 (-5 *3 (-783)) (-5 *2 (-701 (-971 *4))) (-5 *1 (-1049 *4)) + (-4 *4 (-1070))))) (((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1117)))) ((*1 *2 *1) @@ -2764,40 +3077,23 @@ ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) ((*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *2 - (-3 (|:| |%expansion| (-323 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) - (-5 *1 (-432 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) - (-14 *6 (-1197)) (-14 *7 *3)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-1070)) (-4 *4 (-174)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)) - (-4 *3 (-174))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-769))))) +(((*1 *1) (-5 *1 (-1106)))) (((*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-656 *3)))) ((*1 *2 *1) - (-12 (|has| *1 (-6 -4465)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) + (-12 (|has| *1 (-6 -4464)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) (-5 *2 (-656 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-992))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -3106 *4) (|:| -3314 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-798))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-448))))) (((*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1279 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-962 (-227)) (-227) (-227))) - (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-59 *3)) (-4 *3 (-1238)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-59 *3))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-227))) ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) @@ -2818,40 +3114,39 @@ ((*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-174)) (-4 *2 (-1070)) (-5 *1 (-726 *2 *3)) - (-4 *3 (-660 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-174)) (-4 *2 (-1070)) (-5 *1 (-726 *2 *3)) - (-4 *3 (-660 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1070)))) - ((*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1070))))) -(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-135))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-656 (-112))) (-5 *7 (-701 (-227))) - (-5 *8 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *5 (-112)) - (-5 *2 (-1056)) (-5 *1 (-766))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) - (-5 *2 (-1056)) (-5 *1 (-761))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) + ((*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) + (-5 *2 (-2 (|:| -1715 *4) (|:| -1855 *3) (|:| -3891 *3))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *2 (-2 (|:| -1855 *1) (|:| -3891 *1))) (-4 *1 (-1086 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1070)) + (-5 *2 (-2 (|:| -1715 *3) (|:| -1855 *1) (|:| -3891 *1))) + (-4 *1 (-1264 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-4 *5 (-1264 *4)) (-5 *2 (-1293)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1264 (-419 *5))) (-14 *7 *6)))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) + (-12 (-5 *3 (-656 (-656 (-962 (-227))))) + (-5 *2 (-656 (-1115 (-227)))) (-5 *1 (-947))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) + (-4 *1 (-1092 *4 *5 *6 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-129)) (-5 *2 (-783))))) +(((*1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1291)))) + ((*1 *2 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1291))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-656 *5) *6)) + (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) + (-5 *2 (-656 (-2 (|:| -1480 *5) (|:| -4026 *3)))) + (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) + (-4 *7 (-668 (-419 *6)))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-783)) (-4 *4 (-317)) (-4 *6 (-1264 *4)) + (-5 *2 (-1288 (-656 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-656 *6))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) @@ -2871,24 +3166,11 @@ ((*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1121)) (-5 *1 (-983 *2 *3)) (-4 *3 (-1121))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-905 *4 *3)) - (-4 *3 (-1238)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1197)) (-5 *1 (-598 *2)) (-4 *2 (-1059 *3)) - (-4 *2 (-374)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)) - (-4 *2 (-13 (-442 *4) (-1023) (-1223))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1113 *2)) (-4 *2 (-13 (-442 *4) (-1023) (-1223))) - (-4 *4 (-568)) (-5 *1 (-642 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-978)) (-5 *2 (-1197)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-978))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-624 *4)) (-4 *4 (-1121)) (-4 *2 (-1121)) + (-5 *1 (-623 *2 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-771))))) (((*1 *2 *1) (-12 (-5 *2 @@ -2902,10 +3184,10 @@ (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-340))))) (((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4465)) (-4 *1 (-152 *2)) (-4 *2 (-1238)) + (-12 (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) (-4 *2 (-1238)) (-4 *2 (-1121)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4465)) (-4 *1 (-152 *3)) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *3)) (-4 *3 (-1238)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1238)))) @@ -2917,27 +3199,46 @@ ((*1 *1 *2 *1) (-12 (-5 *2 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-656 (-1 *4 (-656 *4)))) (-4 *4 (-1121)) +(((*1 *1 *2) + (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1059 *4)) (-4 *3 (-317)) + (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-4 *6 (-421 *4 *5)) + (-14 *7 (-1288 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1288 *6)) (-4 *6 (-421 *4 *5)) (-4 *4 (-1013 *3)) + (-4 *5 (-1264 *4)) (-4 *3 (-317)) (-5 *1 (-426 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *1 *1 *1) (-5 *1 (-876))) ((*1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1193 (-576))) (-5 *3 (-576)) (-4 *1 (-883 *4))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-783)) + (-4 *3 (-13 (-738) (-379) (-10 -7 (-15 ** (*3 *3 (-576)))))) + (-5 *1 (-251 *3))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-656 *2)) (-5 *1 (-114 *2)) + (-4 *2 (-1121)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-656 *4))) (-4 *4 (-1121)) (-5 *1 (-114 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1121)) (-5 *1 (-114 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-1 *4 (-656 *4)))) - (-5 *1 (-114 *4)) (-4 *4 (-1121))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-888)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-4 *1 (-107 *3))))) -(((*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291))))) -(((*1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *1 *1) (-5 *1 (-112)))) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-656 *4))) + (-5 *1 (-114 *4)) (-4 *4 (-1121)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1070)) + (-5 *1 (-726 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-848 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) - (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) + (-12 (-5 *3 (-1193 *7)) (-4 *7 (-968 *6 *4 *5)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1070)) (-5 *2 (-1193 *6)) + (-5 *1 (-331 *4 *5 *6 *7))))) +(((*1 *1 *1) (-5 *1 (-112)))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) @@ -2957,28 +3258,31 @@ ((*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) + (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-600 *4)) + (-4 *4 (-360))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 - (-2 (|:| -3106 *4) (|:| -3314 *4) (|:| |totalpts| (-576)) + (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *2 *1) - (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) -(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-783))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1121))))) +(((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) - (-5 *2 (-390)) (-5 *1 (-276)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-315))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-940)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-270))))) -(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-815))))) + (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) @@ -2996,66 +3300,46 @@ (-5 *1 (-1183 *3)))) ((*1 *1 *1) (-4 *1 (-1226)))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-998 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4467 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) - (-4 *2 (-1070)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1264 *2)) - (-4 *4 (-699 *2 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1288 (-656 (-2 (|:| -3106 *4) (|:| -3224 (-1141)))))) - (-4 *4 (-360)) (-5 *2 (-783)) (-5 *1 (-357 *4)))) - ((*1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-362 *3 *4)) (-14 *3 (-940)) - (-14 *4 (-940)))) - ((*1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) - (-14 *4 - (-3 (-1193 *3) - (-1288 (-656 (-2 (|:| -3106 *3) (|:| -3224 (-1141))))))))) - ((*1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) - (-14 *4 (-940))))) -(((*1 *1 *1) (-5 *1 (-876)))) -(((*1 *1 *2) - (-12 (-5 *2 (-701 *5)) (-4 *5 (-1070)) (-5 *1 (-1075 *3 *4 *5)) - (-14 *3 (-783)) (-14 *4 (-783))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) - (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-968 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) - (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-430 (-1193 *7))) - (-5 *1 (-754 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-464)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-430 *1)) (-4 *1 (-968 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-464)) (-5 *2 (-430 *3)) - (-5 *1 (-1000 *4 *5 *6 *3)) (-4 *3 (-968 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-464)) - (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-430 (-1193 (-419 *7)))) - (-5 *1 (-1192 *4 *5 *6 *7)) (-5 *3 (-1193 (-419 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1242)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-1267 *4 *3)) - (-4 *3 (-13 (-1264 *4) (-568) (-10 -8 (-15 -3498 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) - (-14 *5 (-656 (-1197))) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) + (-4 *6 (-805)) (-4 *7 (-968 *4 *6 *5)) (-5 *2 - (-656 (-1167 *4 (-543 (-878 *6)) (-878 *6) (-792 *4 (-878 *6))))) - (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197)))))) + (-2 (|:| |sysok| (-112)) (|:| |z0| (-656 *7)) (|:| |n0| (-656 *7)))) + (-5 *1 (-943 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-5 *2 + (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-801)) (-5 *5 (-576))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) + (-5 *2 (-1056)) (-5 *1 (-768))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-132)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-372 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3)) (-4 *3 (-1121)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-661 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-374)) (-5 *2 (-2 (|:| -1855 *3) (|:| -3891 *3))) + (-5 *1 (-778 *3 *4)) (-4 *3 (-720 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-374)) (-4 *3 (-1070)) + (-5 *2 (-2 (|:| -1855 *1) (|:| -3891 *1))) (-4 *1 (-866 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1070)) + (-5 *2 (-2 (|:| -1855 *3) (|:| -3891 *3))) (-5 *1 (-867 *5 *3)) + (-4 *3 (-866 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1131))))) +(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-403))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) @@ -3073,77 +3357,34 @@ (-5 *1 (-1183 *3)))) ((*1 *1 *1) (-4 *1 (-1226)))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-940))) (-5 *2 (-923 (-576))) (-5 *1 (-936))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-558)))))) + (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1145 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) - (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) - (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-861)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-940)))) - ((*1 *2 *3) - (-12 (-5 *3 (-347 *4 *5 *6 *7)) (-4 *4 (-13 (-379) (-374))) - (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-4 *7 (-353 *4 *5 *6)) - (-5 *2 (-783)) (-5 *1 (-404 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-845 (-940))))) - ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) - ((*1 *2 *1) - (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) - (-4 *4 (-1264 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-752 *4 *3)) (-4 *4 (-1070)) - (-4 *3 (-861)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-752 *4 *3)) (-4 *4 (-1070)) (-4 *3 (-861)) - (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) - (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) - (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1059 (-576)))) - (-5 *2 (-783)) (-5 *1 (-930 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) - (-4 *4 (-1264 (-419 (-576)))) (-4 *5 (-1264 (-419 *4))) - (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-783)) - (-5 *1 (-931 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-347 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-374)) - (-4 *7 (-1264 *6)) (-4 *4 (-1264 (-419 *7))) (-4 *8 (-353 *6 *7 *4)) - (-4 *9 (-13 (-379) (-374))) (-5 *2 (-783)) - (-5 *1 (-1039 *6 *7 *4 *8 *9)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-4 *3 (-568)) - (-5 *2 (-783)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-227)) (-5 *2 (-1056)) (-5 *1 (-764))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-1197)) (-5 *1 (-276))))) + (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1963)))) + (-5 *2 (-1056)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-3 (-419 (-971 *5)) (-1186 (-1197) (-971 *5)))) + (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-971 *5))))) + (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-971 *5))))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-576)) (-5 *2 (-656 (-2 (|:| -1828 *3) (|:| -2683 *4)))) + (-5 *1 (-708 *3)) (-4 *3 (-1264 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-759))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1023) (-1223))) - (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-442 *4) (-1023) (-1223)))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1070)) - (-5 *2 (-2 (|:| -2590 (-701 *4)) (|:| |vec| (-1288 *4)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1070)) - (-5 *2 (-701 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1070)) (-4 *2 (-699 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1264 *4)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) + (-12 (-5 *3 (-656 (-2 (|:| -1828 (-1193 *6)) (|:| -2508 (-576))))) + (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-576)) + (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) @@ -3160,38 +3401,64 @@ (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) ((*1 *1 *1) (-4 *1 (-1226)))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-940)) (-4 *5 (-317)) (-4 *3 (-1264 *5)) - (-5 *2 (-2 (|:| |plist| (-656 *3)) (|:| |modulo| *5))) - (-5 *1 (-472 *5 *3)) (-5 *4 (-656 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1070)) - (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1047 (-855 (-576)))) - (-5 *3 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *4)))) (-4 *4 (-1070)) - (-5 *1 (-607 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) - (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-783))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-419 (-576)))) - (-5 *2 - (-656 - (-2 (|:| |outval| *4) (|:| |outmult| (-576)) - (|:| |outvect| (-656 (-701 *4)))))) - (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860)))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-374)) + (-5 *2 (-2 (|:| -3014 (-430 *3)) (|:| |special| (-430 *3)))) + (-5 *1 (-739 *5 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-576)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) + (-4 *3 (-1264 *4)) (-5 *2 (-576)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-568) (-1059 *2) (-651 *2) (-464))) + (-5 *2 (-576)) (-5 *1 (-1137 *4 *3)) + (-4 *3 (-13 (-27) (-1223) (-442 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-855 *3)) + (-4 *3 (-13 (-27) (-1223) (-442 *6))) + (-4 *6 (-13 (-568) (-1059 *2) (-651 *2) (-464))) (-5 *2 (-576)) + (-5 *1 (-1137 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-1179)) + (-4 *6 (-13 (-568) (-1059 *2) (-651 *2) (-464))) (-5 *2 (-576)) + (-5 *1 (-1137 *6 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-464)) (-5 *2 (-576)) + (-5 *1 (-1138 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-855 (-419 (-971 *6)))) + (-5 *3 (-419 (-971 *6))) (-4 *6 (-464)) (-5 *2 (-576)) + (-5 *1 (-1138 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-419 (-971 *6))) (-5 *4 (-1197)) + (-5 *5 (-1179)) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1138 *6)))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1220 *3)) (-4 *3 (-1070))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-429 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4)))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) + (-5 *2 (-1056)) (-5 *1 (-769))))) +(((*1 *1 *1) (-5 *1 (-227))) + ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1) (-4 *1 (-1160))) ((*1 *1 *1 *1) (-4 *1 (-1160)))) +(((*1 *1 *2) + (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1070) (-861))) + (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1197)))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) @@ -3211,20 +3478,36 @@ (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) ((*1 *1 *1) (-4 *1 (-1226)))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-576)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1240))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1121))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-419 (-971 (-171 (-576)))))) + (-5 *2 (-656 (-656 (-304 (-971 (-171 *4)))))) (-5 *1 (-389 *4)) + (-4 *4 (-13 (-374) (-860))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-304 (-419 (-971 (-171 (-576))))))) + (-5 *2 (-656 (-656 (-304 (-971 (-171 *4)))))) (-5 *1 (-389 *4)) + (-4 *4 (-13 (-374) (-860))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-971 (-171 (-576))))) + (-5 *2 (-656 (-304 (-971 (-171 *4))))) (-5 *1 (-389 *4)) + (-4 *4 (-13 (-374) (-860))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-304 (-419 (-971 (-171 (-576)))))) + (-5 *2 (-656 (-304 (-971 (-171 *4))))) (-5 *1 (-389 *4)) + (-4 *4 (-13 (-374) (-860)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -3987 *7)))) + (-4 *6 (-1086 *3 *4 *5)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1009 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -3987 *7)))) + (-4 *6 (-1086 *3 *4 *5)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1128 *3 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-1193 *4)) + (-5 *1 (-540 *4))))) +(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1061))))) (((*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) @@ -3233,18 +3516,26 @@ ((*1 *1 *1) (-5 *1 (-876))) ((*1 *2 *3) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-1070))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290))))) -(((*1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *5 (-379)) - (-5 *2 (-783))))) -(((*1 *2 *1) - (-12 (-4 *2 (-720 *3)) (-5 *1 (-839 *2 *3)) (-4 *3 (-1070))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) + (-5 *1 (-1093 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) + (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-997 *4 *5 *6 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) + (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-568)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *3 (-129)) (-5 *2 (-783))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1197)) (-5 *6 (-656 (-624 *3))) + (-5 *5 (-624 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *7))) + (-4 *7 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) + (-5 *2 (-2 (|:| -2451 *3) (|:| |coeff| *3))) + (-5 *1 (-569 *7 *3))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) @@ -3265,69 +3556,43 @@ (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) ((*1 *1 *1) (-4 *1 (-1226)))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1131))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1121)) (-4 *6 (-901 *5)) (-5 *2 (-900 *5 *6 (-656 *6))) - (-5 *1 (-902 *5 *6 *4)) (-5 *3 (-656 *6)) (-4 *4 (-626 (-907 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1121)) (-5 *2 (-656 (-304 *3))) (-5 *1 (-902 *5 *3 *4)) - (-4 *3 (-1059 (-1197))) (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1121)) (-5 *2 (-656 (-304 (-971 *3)))) - (-5 *1 (-902 *5 *3 *4)) (-4 *3 (-1070)) - (-2663 (-4 *3 (-1059 (-1197)))) (-4 *3 (-901 *5)) - (-4 *4 (-626 (-907 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1121)) (-5 *2 (-904 *5 *3)) (-5 *1 (-902 *5 *3 *4)) - (-2663 (-4 *3 (-1059 (-1197)))) (-2663 (-4 *3 (-1070))) - (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5)))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) - ((*1 *1) (-5 *1 (-130))) - ((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) - (-4 *4 (-174)))) - ((*1 *1) (-5 *1 (-558))) ((*1 *1) (-5 *1 (-559))) - ((*1 *1) (-5 *1 (-560))) ((*1 *1) (-5 *1 (-561))) - ((*1 *1) (-4 *1 (-738))) ((*1 *1) (-5 *1 (-1197))) - ((*1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-940)))) - ((*1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-940)))) - ((*1 *1) (-5 *1 (-1243))) ((*1 *1) (-5 *1 (-1244))) - ((*1 *1) (-5 *1 (-1245))) ((*1 *1) (-5 *1 (-1246)))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) -(((*1 *2) - (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) - (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-783))))) -(((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-876))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) + (-5 *2 (-390)) (-5 *1 (-276)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-315))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))) + (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) + ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-656 (-419 *7))) + (-4 *7 (-1264 *6)) (-5 *3 (-419 *7)) (-4 *6 (-374)) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-586 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-656 (-783))) (-5 *1 (-990 *4 *3)) + (-4 *3 (-1264 *4))))) (((*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) ((*1 *1 *1) (-5 *1 (-1141)))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-1301 *4 *5 *6 *7))) - (-5 *1 (-1301 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 *9)) (-5 *4 (-1 (-112) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-568)) - (-4 *7 (-805)) (-4 *8 (-861)) (-5 *2 (-656 (-1301 *6 *7 *8 *9))) - (-5 *1 (-1301 *6 *7 *8 *9))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) - (-5 *1 (-754 *5 *4 *6 *3)) (-4 *3 (-968 *6 *5 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-317)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-459 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) - (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *1 (-459 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) - (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *1 (-459 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) + (-4 *4 (-804))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-656 (-326 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) + (-5 *1 (-212))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) @@ -3348,697 +3613,596 @@ (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) ((*1 *1 *1) (-4 *1 (-1226)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1223) (-442 (-171 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3)))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *1 *1) - (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-962 *4)) (-4 *4 (-1070)) (-5 *1 (-1185 *3 *4)) - (-14 *3 (-940))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-317))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1239 *3)) (-4 *3 (-861)) - (-4 *3 (-1121))))) +(((*1 *2 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1193 *4)) (-5 *1 (-540 *4)) + (-4 *4 (-360))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-940)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-270))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-805)) + (-4 *3 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $))))) (-4 *5 (-568)) + (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-968 (-419 (-971 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1070)) (-4 *5 (-805)) + (-4 *3 + (-13 (-861) + (-10 -8 (-15 -4171 ((-1197) $)) + (-15 -3054 ((-3 $ "failed") (-1197)))))) + (-5 *1 (-1005 *4 *5 *3 *2)) (-4 *2 (-968 (-971 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-656 *6)) + (-4 *6 + (-13 (-861) + (-10 -8 (-15 -4171 ((-1197) $)) + (-15 -3054 ((-3 $ "failed") (-1197)))))) + (-4 *4 (-1070)) (-4 *5 (-805)) (-5 *1 (-1005 *4 *5 *6 *2)) + (-4 *2 (-968 (-971 *4) *5 *6))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) + (-4 *5 (-1264 *4)) (-5 *2 (-656 (-419 *5))) (-5 *1 (-1037 *4 *5)) + (-5 *3 (-419 *5))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-962 (-227))) (-5 *4 (-888)) (-5 *5 (-940)) + (-5 *2 (-1293)) (-5 *1 (-480)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-962 (-227))) (-5 *2 (-1293)) (-5 *1 (-480)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-656 (-962 (-227)))) (-5 *4 (-888)) (-5 *5 (-940)) + (-5 *2 (-1293)) (-5 *1 (-480))))) +(((*1 *2 *1) (-12 (-5 *2 (-703 *3)) (-5 *1 (-985 *3)) (-4 *3 (-1121))))) (((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) ((*1 *1 *1 *1) (-5 *1 (-1141)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-464)) (-4 *4 (-861)) - (-4 *5 (-805)) (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1059 (-576))) (-4 *3 (-568)) (-5 *1 (-32 *3 *2)) - (-4 *2 (-442 *3)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1193 *4)) (-5 *1 (-166 *3 *4)) - (-4 *3 (-167 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1070)) (-4 *1 (-312)))) - ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1193 *3)))) - ((*1 *2) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1264 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-13 (-860) (-374))) - (-4 *2 (-1264 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-961)) (-5 *3 (-576))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-764))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-1197)) + (-4 *2 (-13 (-27) (-1223) (-442 *5))) + (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-286 *5 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-207))))) (((*1 *1 *1) (-4 *1 (-641))) ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023) (-1223)))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-815))))) (((*1 *1) (-5 *1 (-629)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -1698 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-374)) (-4 *7 (-1264 *6)) - (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1172))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-783)) (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) - (-4 *2 (-1264 *3))))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) - (-4 *3 (-13 (-442 *6) (-27) (-1223))) - (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1121))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) - ((*1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1264 *4)) (-4 *4 (-1242)) + (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1264 (-419 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) (((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) ((*1 *1 *1 *1) (-5 *1 (-1141)))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2) - (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-354 *3 *4)) (-14 *3 (-940)) - (-14 *4 (-940)))) - ((*1 *2) - (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-355 *3 *4)) (-4 *3 (-360)) - (-14 *4 (-1193 *3)))) - ((*1 *2) - (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-356 *3 *4)) (-4 *3 (-360)) - (-14 *4 (-940))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1070)) (-4 *4 (-1264 *3)) (-5 *1 (-165 *3 *4 *2)) - (-4 *2 (-1264 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4466)) (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-763))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-887 (-940) (-940)))) (-5 *1 (-992))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1963)))) + (-5 *2 (-1056)) (-5 *1 (-760))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-224 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-4 *1 (-261 *3)))) + ((*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-998 *4 *5 *6 *7))))) (((*1 *1 *1) (-4 *1 (-641))) ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023) (-1223)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1160)))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) + (-14 *4 (-656 (-1197))))) + ((*1 *2 *3) + (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1238)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) + (-14 *4 (-656 (-1197))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-861))))) (((*1 *2 *3) - (-12 (-5 *3 (-1197)) - (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-816 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1223) (-978)))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-656 *11)) (-5 *5 (-656 (-1193 *9))) - (-5 *6 (-656 *9)) (-5 *7 (-656 *12)) (-5 *8 (-656 (-783))) - (-4 *11 (-861)) (-4 *9 (-317)) (-4 *12 (-968 *9 *10 *11)) - (-4 *10 (-805)) (-5 *2 (-656 (-1193 *12))) - (-5 *1 (-719 *10 *11 *9 *12)) (-5 *3 (-1193 *12))))) -(((*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) - (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) - (|:| |c2| (-419 *5)) (|:| |deg| (-783)))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1264 (-419 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-834))))) + (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-429 *4))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1133)) (-4 *3 (-1121)) (-5 *2 (-656 *1)) + (-4 *1 (-442 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) + (-4 *3 (-1121)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *2 (-656 *1)) (-4 *1 (-968 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) + (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-656 *3)) + (-5 *1 (-969 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-374) + (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) + (-15 -1581 (*7 $)))))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1070)) + (-5 *1 (-702 *4))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4465)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1121)) - (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4466)) (-4 *1 (-249 *2)) (-4 *2 (-1238))))) + (-12 (-4 *4 (-13 (-860) (-374))) (-5 *2 (-112)) (-5 *1 (-1082 *4 *3)) + (-4 *3 (-1264 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2))))) +(((*1 *1) (-5 *1 (-1103)))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-12 (-4 *3 (-626 (-907 *3))) (-4 *3 (-901 *3)) (-4 *3 (-464)) + (-5 *1 (-1229 *3 *2)) (-4 *2 (-626 (-907 *3))) (-4 *2 (-901 *3)) (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| -1828 *4) (|:| -3634 (-576))))) - (-4 *4 (-1264 (-576))) (-5 *2 (-749 (-783))) (-5 *1 (-454 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-430 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-1070)) - (-5 *2 (-749 (-783))) (-5 *1 (-456 *4 *5))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-656 (-576))) (-5 *3 (-701 (-576))) (-5 *1 (-1131))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) - (-4 *5 (-1264 *4)) - (-5 *2 (-2 (|:| -1698 (-419 *5)) (|:| |coeff| (-419 *5)))) - (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5))))) + (-12 (|has| *2 (-6 (-4466 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) + (-4 *2 (-1070)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1264 *2)) + (-4 *4 (-699 *2 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) + (-14 *4 *2)))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-576)) (-5 *1 (-206))))) + (-12 (-5 *3 (-1179)) (-5 *2 (-656 (-1202))) (-5 *1 (-895))))) (((*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1238)))) ((*1 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1261 *4 *5)) (-5 *3 (-656 *5)) (-14 *4 (-1197)) - (-4 *5 (-374)) (-5 *1 (-942 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *5)) (-4 *5 (-374)) (-5 *2 (-1193 *5)) - (-5 *1 (-942 *4 *5)) (-14 *4 (-1197)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-783)) (-4 *6 (-374)) - (-5 *2 (-419 (-971 *6))) (-5 *1 (-1071 *5 *6)) (-14 *5 (-1197))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-783)) (|:| -3307 *4))) (-5 *5 (-783)) - (-4 *4 (-968 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-461 *6 *7 *8 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *3) (-12 (-5 *3 (-171 (-576))) (-5 *2 (-112)) (-5 *1 (-458)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) + (-253 *4 (-419 (-576))))) + (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-112)) + (-5 *1 (-517 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-980 *3)) (-4 *3 (-557)))) + ((*1 *2 *1) (-12 (-4 *1 (-1242)) (-5 *2 (-112))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1238)) (-5 *1 (-184 *3 *2)) + (-4 *2 (-686 *3))))) (((*1 *1 *2 *2) (-12 (-5 *2 (-783)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1286 *3)) (-4 *3 (-23)) (-4 *3 (-1238))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1255 *3)) (-4 *3 (-1238))))) (((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-635 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -4250 *4) (|:| |sol?| (-112))) - (-576) *4)) - (-4 *4 (-374)) (-4 *5 (-1264 *4)) (-5 *1 (-586 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-597)) (-5 *1 (-290))))) + (-12 (-5 *2 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *3)))) + (-5 *1 (-607 *3)) (-4 *3 (-1070))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-656 *1)) (|has| *1 (-6 -4465)) (-4 *1 (-1031 *3)) + (-4 *3 (-1238))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *1 *1) (-4 *1 (-641))) ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023) (-1223)))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-998 *3 *4 *5 *6))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *3)) - (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-656 *7) (-656 *7))) (-5 *2 (-656 *7)) - (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *7))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1303 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) - (-5 *1 (-676 *3 *4)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-676 *3 *4)) (-5 *1 (-1308 *3 *4)) - (-4 *3 (-861)) (-4 *4 (-174))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-430 *4) *4)) (-4 *4 (-568)) (-5 *2 (-430 *4)) - (-5 *1 (-431 *4)))) - ((*1 *1 *1) (-5 *1 (-945))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) - ((*1 *1 *1) (-5 *1 (-946))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) - (-5 *4 (-419 (-576))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) - (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) - (-5 *4 (-419 (-576))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) - (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-419 (-576)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) - (-4 *3 (-1264 *2))))) -(((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) - (-5 *2 (-1056)) (-5 *1 (-766))))) + (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) + (-4 *2 (-1279 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1264 *3)) + (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1279 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) + (-4 *2 (-1279 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-13 (-568) (-148))) + (-5 *1 (-1174 *3))))) +(((*1 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) + (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) + ((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) + (-14 *4 (-656 (-1197))) (-4 *5 (-399))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-701 *6)) (-5 *5 (-1 (-430 (-1193 *6)) (-1193 *6))) + (-4 *6 (-374)) + (-5 *2 + (-656 + (-2 (|:| |outval| *7) (|:| |outmult| (-576)) + (|:| |outvect| (-656 (-701 *7)))))) + (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-374)) (-4 *4 (-13 (-374) (-860)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1119 *3)) (-4 *3 (-1121)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-940))) (-5 *4 (-924 (-576))) + (-5 *2 (-701 (-576))) (-5 *1 (-602)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-940))) (-5 *2 (-656 (-701 (-576)))) + (-5 *1 (-602)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-940))) (-5 *4 (-656 (-924 (-576)))) + (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-1216))))) +(((*1 *1) (-5 *1 (-518)))) (((*1 *2 *1) - (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1070)) - (-4 *4 (-858))))) -(((*1 *2 *3) - (-12 (-5 *3 (-971 *5)) (-4 *5 (-1070)) (-5 *2 (-253 *4 *5)) - (-5 *1 (-963 *4 *5)) (-14 *4 (-656 (-1197)))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1156)) (-5 *2 (-703 (-290))) (-5 *1 (-169))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1201))))) + (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) (((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) - ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) - ((*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-419 *6)) (-4 *5 (-1242)) (-4 *6 (-1264 *5)) - (-5 *2 (-2 (|:| -3422 (-783)) (|:| -1714 *3) (|:| |radicand| *6))) - (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-783)) (-4 *7 (-1264 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-220)))) - ((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) - ((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-688)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1179)) (-5 *1 (-97)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1179)) (-5 *1 (-97))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-576))) (-4 *3 (-1070)) (-5 *1 (-607 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1248 *3)) (-4 *3 (-1070)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1279 *3)) (-4 *3 (-1070))))) +(((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *1) (-12 (-4 *4 (-1121)) (-5 *2 (-904 *3 *5)) (-5 *1 (-900 *3 *4 *5)) (-4 *3 (-1121)) (-4 *5 (-678 *4))))) (((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-130))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-340))))) -(((*1 *1) (-5 *1 (-609)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-656 (-971 *4))) (-5 *3 (-656 (-1197))) (-4 *4 (-464)) + (-5 *1 (-937 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1121))))) +(((*1 *1 *1) + (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1070) (-861))) + (-14 *3 (-656 (-1197)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-626 (-907 (-576)))) + (-4 *5 (-901 (-576))) + (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) + (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-860))) - (-5 *2 (-2 (|:| |start| *3) (|:| -2761 (-430 *3)))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4)))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1239 *3)) (-4 *3 (-1121))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-656 (-1197))) - (-4 *2 (-13 (-442 (-171 *5)) (-1023) (-1223))) (-4 *5 (-568)) - (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-442 *5) (-1023) (-1223)))))) -(((*1 *2 *3) (-12 (-5 *3 (-971 (-227))) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1083)))) - ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1083))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 (-962 *4))) (-4 *1 (-1155 *4)) (-4 *4 (-1070)) - (-5 *2 (-783))))) + (-12 (-5 *3 (-1288 (-656 (-2 (|:| -3104 *4) (|:| -3223 (-1141)))))) + (-4 *4 (-360)) (-5 *2 (-783)) (-5 *1 (-357 *4)))) + ((*1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-362 *3 *4)) (-14 *3 (-940)) + (-14 *4 (-940)))) + ((*1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) + (-14 *4 + (-3 (-1193 *3) + (-1288 (-656 (-2 (|:| -3104 *3) (|:| -3223 (-1141))))))))) + ((*1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) + (-14 *4 (-940))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1178 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) + (-5 *2 (-1056)) (-5 *1 (-766))))) +(((*1 *2 *1) + (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) + (-5 *2 (-783)))) + ((*1 *2 *1) + (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) + (-5 *2 (-783)))) + ((*1 *2 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) + (-4 *4 (-738))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-791 *4)) - (-4 *4 (-13 (-374) (-860)))))) + (-12 (-5 *3 (-701 *5)) (-5 *4 (-1288 *5)) (-4 *5 (-374)) + (-5 *2 (-112)) (-5 *1 (-679 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4465)))) + (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-5 *2 (-112)) + (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) - (-4 *5 (-1264 *4)) (-5 *2 (-656 (-2 (|:| -2396 *5) (|:| -2337 *5)))) - (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-668 *5)) - (-4 *6 (-668 (-419 *5))))) + (-12 (-4 *4 (-464)) + (-5 *2 + (-656 + (-2 (|:| |eigval| (-3 (-419 (-971 *4)) (-1186 (-1197) (-971 *4)))) + (|:| |eigmult| (-783)) + (|:| |eigvec| (-656 (-701 (-419 (-971 *4)))))))) + (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-971 *4))))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1200)))) + ((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1059 (-576)))) (-4 *3 (-568)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) + (-15 -1581 ((-1146 *3 (-624 $)) $)) + (-15 -3569 ($ (-1146 *3 (-624 $)))))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-594))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) + (-5 *1 (-1150 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-13 (-317) (-148))) + (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) - (-4 *4 (-1264 *5)) (-5 *2 (-656 (-2 (|:| -2396 *4) (|:| -2337 *4)))) - (-5 *1 (-819 *5 *4 *3 *6)) (-4 *3 (-668 *4)) - (-4 *6 (-668 (-419 *4))))) + (-12 (-5 *3 (-304 (-419 (-971 *5)))) (-5 *4 (-1197)) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) + (-5 *1 (-1150 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) - (-4 *5 (-1264 *4)) (-5 *2 (-656 (-2 (|:| -2396 *5) (|:| -2337 *5)))) - (-5 *1 (-819 *4 *5 *6 *3)) (-4 *6 (-668 *5)) - (-4 *3 (-668 (-419 *5))))) + (-12 (-5 *3 (-304 (-419 (-971 *4)))) (-4 *4 (-13 (-317) (-148))) + (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) - (-4 *4 (-1264 *5)) (-5 *2 (-656 (-2 (|:| -2396 *4) (|:| -2337 *4)))) - (-5 *1 (-819 *5 *4 *6 *3)) (-4 *6 (-668 *4)) - (-4 *3 (-668 (-419 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1223) (-1023)))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-112)) (-5 *1 (-841))))) -(((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-783)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-783))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-1193 *3)) - (-4 *3 (-13 (-442 *7) (-27) (-1223))) - (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1121)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) - (-5 *6 (-419 (-1193 *3))) (-4 *3 (-13 (-442 *7) (-27) (-1223))) - (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1121))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-773)))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) + (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) + (-5 *1 (-1150 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-419 (-971 *4)))) (-4 *4 (-13 (-317) (-148))) + (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1150 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-304 (-419 (-971 *5))))) (-5 *4 (-656 (-1197))) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) + (-5 *1 (-1150 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-304 (-419 (-971 *4))))) + (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) + (-5 *1 (-1150 *4))))) +(((*1 *1 *1) (-5 *1 (-876)))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1197))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) + (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) + (-4 *1 (-1092 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3988 *1)))) + (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-430 *2)) (-4 *2 (-317)) (-5 *1 (-933 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-934 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-430 (-971 *6))) (-5 *5 (-1197)) (-5 *3 (-971 *6)) - (-4 *6 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-934 *6))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-1178 (-227))) (-5 *1 (-194)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1197))) - (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-310)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *4 (-656 (-1197))) - (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-310))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) - (-5 *4 (-326 (-171 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) - (-5 *4 (-326 (-390))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) - (-5 *4 (-326 (-576))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-171 (-390))))) - (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-576)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-171 (-390))))) - (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-576)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-171 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-390))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-576))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) - (-5 *4 (-326 (-706))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) - (-5 *4 (-326 (-711))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) - (-5 *4 (-326 (-713))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-706)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-711)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-713)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-706)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-711)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-713)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-706))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-711))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-713))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-706))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-711))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-713))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-706))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-711))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-713))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1179)) (-5 *1 (-340)))) - ((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-624 *3)) - (-4 *3 (-13 (-442 *5) (-27) (-1223))) - (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-2 (|:| -1698 *3) (|:| |coeff| *3))) - (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1121))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) - (-5 *1 (-760))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) +(((*1 *2 *1) + (-12 (-5 *2 (-1123 *3)) (-5 *1 (-924 *3)) (-4 *3 (-379)) + (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1219))))) +(((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| -1828 *4) (|:| -3634 (-576))))) - (-4 *4 (-1264 (-576))) (-5 *2 (-783)) (-5 *1 (-454 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1160)))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-998 *4 *5 *6 *7))))) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) - ((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-636 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *2 (-1130 *3 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-340)))) - ((*1 *1) (-5 *1 (-340)))) -(((*1 *1) (-5 *1 (-145)))) -(((*1 *1 *1) - (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)) - (-4 *2 (-464)))) - ((*1 *1 *1) - (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1242)) (-4 *3 (-1264 *2)) - (-4 *4 (-1264 (-419 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-464)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861)) (-4 *3 (-464)))) - ((*1 *1 *1) - (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-464)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-1184 *3 *2)) - (-4 *2 (-1264 *3))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) - (-4 *9 (-861)) (-4 *3 (-1086 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))))) - (-5 *1 (-1090 *7 *8 *9 *3 *4)) (-4 *4 (-1092 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *3 (-1086 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))))) - (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))))) - (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) - (-4 *9 (-861)) (-4 *3 (-1086 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))))) - (-5 *1 (-1166 *7 *8 *9 *3 *4)) (-4 *4 (-1130 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *3 (-1086 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))))) - (-5 *1 (-1166 *6 *7 *8 *3 *4)) (-4 *4 (-1130 *6 *7 *8 *3)))) + (-12 (-5 *3 (-656 (-624 *5))) (-4 *4 (-1121)) (-5 *2 (-624 *5)) + (-5 *1 (-585 *4 *5)) (-4 *5 (-442 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-834))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) + (-4 *7 (-1264 (-419 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -3754 *3))) + (-5 *1 (-574 *5 *6 *7 *3)) (-4 *3 (-353 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))))) - (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) - (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) - (-4 *8 (-861)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1419 (-656 *9)))) - (-5 *3 (-656 *9)) (-4 *1 (-1231 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1086 *5 *6 *7)) - (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -1419 (-656 *8)))) - (-5 *3 (-656 *8)) (-4 *1 (-1231 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1056)) (-5 *1 (-763))))) + (-2 (|:| |answer| (-419 *6)) (|:| -3754 (-419 *6)) + (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) + (-5 *1 (-575 *5 *6)) (-5 *3 (-419 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1023)) + (-4 *2 (-1070))))) +(((*1 *1 *2) + (-12 (-5 *2 (-701 *5)) (-4 *5 (-1070)) (-5 *1 (-1075 *3 *4 *5)) + (-14 *3 (-783)) (-14 *4 (-783))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) + (-4 *3 (-13 (-1121) (-34)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-1086 *4 *5 *6)) (-4 *4 (-568)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *2))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-148) (-27) (-1059 (-576)) (-1059 (-419 (-576))))) + (-4 *5 (-1264 *4)) (-5 *2 (-1193 (-419 *5))) (-5 *1 (-627 *4 *5)) + (-5 *3 (-419 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) + (-4 *5 (-13 (-148) (-27) (-1059 (-576)) (-1059 (-419 (-576))))) + (-5 *2 (-1193 (-419 *6))) (-5 *1 (-627 *5 *6)) (-5 *3 (-419 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 *4) (-1023) (-1223))) - (-5 *1 (-612 *4 *2 *3)) - (-4 *3 (-13 (-442 (-171 *4)) (-1023) (-1223)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-115))))) + (-12 (-5 *3 (-1197)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *4 *5 *6 *7)) + (-4 *4 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238)) + (-4 *7 (-1238))))) +(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-940)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-270))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-998 *3 *4 *5 *6))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1288 *5)) (-4 *5 (-13 (-1070) (-651 *4))) - (-4 *4 (-568)) (-5 *2 (-1288 *4)) (-5 *1 (-650 *4 *5))))) + (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) + (-4 *4 (-360))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-940))) (-5 *2 (-1199 (-419 (-576)))) + (-5 *1 (-192))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-4 *2 (-1121)) + (-5 *1 (-904 *4 *2))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) + (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1193 *1)) (-4 *1 (-1033))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-4 *1 (-1264 *4)) (-4 *4 (-1070)) + (-5 *2 (-1288 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-880 *4 *5 *6 *7)) - (-4 *4 (-1070)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 *3)) - (-14 *7 *3))) + (-12 (-5 *3 (-1197)) (-4 *5 (-1242)) (-4 *6 (-1264 *5)) + (-4 *7 (-1264 (-419 *6))) (-5 *2 (-656 (-971 *5))) + (-5 *1 (-352 *4 *5 *6 *7)) (-4 *4 (-353 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-1070)) (-4 *5 (-861)) (-4 *6 (-805)) - (-14 *8 (-656 *5)) (-5 *2 (-1293)) - (-5 *1 (-1300 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-968 *4 *6 *5)) - (-14 *9 (-656 *3)) (-14 *10 *3)))) -(((*1 *2 *1) - (-12 (-4 *2 (-968 *3 *5 *4)) (-5 *1 (-1008 *3 *4 *5 *2)) - (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805))))) -(((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-971 (-576))))) - (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1052))))) + (-12 (-5 *3 (-1197)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1242)) + (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-4 *4 (-374)) + (-5 *2 (-656 (-971 *4)))))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-759))))) +(((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) + ((*1 *2 *3) + (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) + (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-968 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) + (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-430 (-1193 *7))) + (-5 *1 (-754 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-464)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *2 (-430 *1)) (-4 *1 (-968 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-464)) (-5 *2 (-430 *3)) + (-5 *1 (-1000 *4 *5 *6 *3)) (-4 *3 (-968 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-464)) + (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-430 (-1193 (-419 *7)))) + (-5 *1 (-1192 *4 *5 *6 *7)) (-5 *3 (-1193 (-419 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1242)))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-1267 *4 *3)) + (-4 *3 (-13 (-1264 *4) (-568) (-10 -8 (-15 -3497 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) + (-14 *5 (-656 (-1197))) + (-5 *2 + (-656 (-1167 *4 (-543 (-878 *6)) (-878 *6) (-792 *4 (-878 *6))))) + (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1115 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1154 (-227))) + (-5 *1 (-709))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) + (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) (((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1238)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4466)) (-4 *1 (-120 *3)) + (-12 (-5 *2 "right") (|has| *1 (-6 -4465)) (-4 *1 (-120 *3)) (-4 *3 (-1238)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4466)) (-4 *1 (-120 *3)) + (-12 (-5 *2 "left") (|has| *1 (-6 -4465)) (-4 *1 (-120 *3)) (-4 *3 (-1238)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4466)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1238)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1197)) (-5 *1 (-644)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1255 (-576))) (|has| *1 (-6 -4466)) (-4 *1 (-663 *2)) + (-12 (-5 *3 (-1255 (-576))) (|has| *1 (-6 -4465)) (-4 *1 (-663 *2)) (-4 *2 (-1238)))) ((*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4466)) (-4 *1 (-1031 *2)) + (-12 (-5 *3 "value") (|has| *1 (-6 -4465)) (-4 *1 (-1031 *2)) (-4 *2 (-1238)))) ((*1 *2 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1214 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4466)) (-4 *1 (-1276 *2)) + (-12 (-5 *3 "last") (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4466)) (-4 *1 (-1276 *3)) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4465)) (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4466)) (-4 *1 (-1276 *2)) + (-12 (-5 *3 "first") (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)) - (-4 *6 (-1121)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-759))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-1242)) - (-4 *6 (-1264 (-419 *5))) +(((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-353 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1219))))) -(((*1 *2 *1) (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) - ((*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-783))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) - (-4 *3 (-861)) (-5 *2 (-783))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-177))) (-5 *1 (-1106))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1115 (-227))) (-5 *6 (-576)) (-5 *2 (-1233 (-945))) - (-5 *1 (-328)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1115 (-227))) (-5 *6 (-576)) (-5 *7 (-1179)) - (-5 *2 (-1233 (-945))) (-5 *1 (-328)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1115 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) - (-5 *2 (-1233 (-945))) (-5 *1 (-328)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1115 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *8 (-1179)) - (-5 *2 (-1233 (-945))) (-5 *1 (-328))))) + (-656 + (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 *3)) + (|:| |logand| (-1193 *3))))) + (-5 *1 (-598 *3)) (-4 *3 (-374))))) (((*1 *2 *3) - (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) - (-5 *2 (-971 *5)) (-5 *1 (-963 *4 *5))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-576)) (-5 *1 (-390))))) + (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) + ((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-786)) (-5 *1 (-115)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-786)) (-5 *1 (-115))))) (((*1 *2 *3) - (-12 (-5 *3 (-1179)) (-5 *2 (-216 (-514))) (-5 *1 (-849))))) + (-12 (-5 *3 (-656 (-940))) (-5 *2 (-923 (-576))) (-5 *1 (-936))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) + (-4 *3 (-1086 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) + (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) + (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) @@ -4051,7 +4215,7 @@ ((*1 *1 *1) (-4 *1 (-294))) ((*1 *2 *3) (-12 (-5 *3 (-430 *4)) (-4 *4 (-568)) - (-5 *2 (-656 (-2 (|:| -1714 (-783)) (|:| |logand| *4)))) + (-5 *2 (-656 (-2 (|:| -1715 (-783)) (|:| |logand| *4)))) (-5 *1 (-330 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) @@ -4071,28 +4235,43 @@ ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1308 *3 *4)) (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-861)) (-4 *4 (-174))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-763))))) +(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) + (-5 *2 (-1056)) (-5 *1 (-769))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1197)) (-5 *1 (-624 *3)) (-4 *3 (-1121))))) + (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) + (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) - (-5 *1 (-1208 *4)) (-4 *4 (-861))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-922 *3))))) -(((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-112)) (-5 *1 (-907 *4)) - (-4 *4 (-1121))))) -(((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-656 (-656 (-962 (-227))))))) - ((*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-656 (-656 (-962 (-227)))))))) + (-12 (-4 *2 (-374)) (-4 *2 (-860)) (-5 *1 (-964 *2 *3)) + (-4 *3 (-1264 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3497 *3))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-558)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) - (-5 *2 (-430 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-831 *3)) (-4 *3 (-861)) (-5 *1 (-684 *3))))) -(((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) - (-4 *4 (-174))))) + (-12 (-5 *3 (-940)) + (-5 *2 + (-3 (-1193 *4) + (-1288 (-656 (-2 (|:| -3104 *4) (|:| -3223 (-1141))))))) + (-5 *1 (-357 *4)) (-4 *4 (-360))))) +(((*1 *2 *3) + (-12 (-5 *3 (-946)) + (-5 *2 + (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) + (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) + (-5 *1 (-154)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-946)) (-5 *4 (-419 (-576))) + (-5 *2 + (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) + (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) + (-5 *1 (-154))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) (((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 *2) (-4 *5 (-174)))) @@ -4110,8 +4289,8 @@ (-12 (-5 *3 (-701 *5)) (-5 *4 (-1288 *5)) (-4 *5 (-374)) (-5 *2 (-783)) (-5 *1 (-679 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4466)))) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4466)))) (-5 *2 (-783)) + (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4465)))) + (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-5 *2 (-783)) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) @@ -4124,177 +4303,222 @@ (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-783))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1179)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) - (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-764))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-1185 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-1290)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-1290))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-270))) (-5 *4 (-1197)) (-5 *2 (-112)) - (-5 *1 (-270))))) -(((*1 *1) (-5 *1 (-835)))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-548))))) -(((*1 *1) (-5 *1 (-1084)))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-176 *6)) + (-5 *1 (-881 *5 *4 *6)) (-4 *4 (-1279 *5)) (-4 *6 (-1264 *5))))) +(((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-713)))) + ((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-713))))) (((*1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *2 (-1293)) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-940)) (-4 *5 (-861)) - (-5 *2 (-656 (-684 *5))) (-5 *1 (-684 *5))))) -(((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1264 (-171 *2))))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1264 (-171 *2)))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-924 *4)) (-4 *4 (-1121)) (-5 *2 (-656 (-783))) - (-5 *1 (-923 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-568))))) +(((*1 *1 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317))))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1197)) (-5 *1 (-687 *3)) (-4 *3 (-1121))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-548))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861)))) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) + (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) + (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-861)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-940)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-805)) (-4 *5 (-1070)) (-4 *6 (-968 *5 *4 *2)) - (-4 *2 (-861)) (-5 *1 (-969 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -3570 ($ *6)) (-15 -1570 (*6 $)) - (-15 -1581 (*6 $))))))) + (-12 (-5 *3 (-347 *4 *5 *6 *7)) (-4 *4 (-13 (-379) (-374))) + (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-4 *7 (-353 *4 *5 *6)) + (-5 *2 (-783)) (-5 *1 (-404 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-845 (-940))))) + ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) + ((*1 *2 *1) + (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) + (-4 *4 (-1264 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-752 *4 *3)) (-4 *4 (-1070)) + (-4 *3 (-861)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-752 *4 *3)) (-4 *4 (-1070)) (-4 *3 (-861)) + (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) - (-5 *2 (-1197)) (-5 *1 (-1064 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-576)) (-5 *1 (-246))))) + (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) + (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) + (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1059 (-576)))) + (-5 *2 (-783)) (-5 *1 (-930 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) + (-4 *4 (-1264 (-419 (-576)))) (-4 *5 (-1264 (-419 *4))) + (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-783)) + (-5 *1 (-931 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-347 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-374)) + (-4 *7 (-1264 *6)) (-4 *4 (-1264 (-419 *7))) (-4 *8 (-353 *6 *7 *4)) + (-4 *9 (-13 (-379) (-374))) (-5 *2 (-783)) + (-5 *1 (-1039 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-4 *3 (-568)) + (-5 *2 (-783)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-940)) (-5 *4 (-430 *6)) (-4 *6 (-1264 *5)) + (-4 *5 (-1070)) (-5 *2 (-656 *6)) (-5 *1 (-456 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3987 *8))) + (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1009 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3987 *8))) + (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1128 *4 *5 *6 *7 *8))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-374)) (-4 *3 (-1070)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4128 *1))) + (-4 *1 (-866 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-52)) (-5 *1 (-841))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) + (-5 *2 (-1193 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) + (-5 *2 (-1193 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-1255 (-576)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-419 (-576))) - (-5 *1 (-445 *4 *3)) (-4 *3 (-442 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-624 *3)) (-4 *3 (-442 *5)) - (-4 *5 (-13 (-568) (-1059 (-576)))) (-5 *2 (-1193 (-419 (-576)))) - (-5 *1 (-445 *5 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 (-1 *6 (-656 *6)))) - (-4 *5 (-38 (-419 (-576)))) (-4 *6 (-1279 *5)) (-5 *2 (-656 *6)) - (-5 *1 (-1281 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1178 *3))) (-5 *1 (-1178 *3)) (-4 *3 (-1238))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-227))) - (-5 *2 (-1056)) (-5 *1 (-767))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-1238)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) - (-14 *4 (-576))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1264 *3)) (-5 *1 (-411 *3 *2)) - (-4 *3 (-13 (-374) (-148)))))) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2269 *4))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499))))) +(((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-1121)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) + (-5 *6 (-227)) (-5 *2 (-1056)) (-5 *1 (-764))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1279 *4)) (-5 *1 (-1281 *4 *2)) + (-4 *4 (-38 (-419 (-576))))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) + ((*1 *1 *1 *1) (-5 *1 (-876)))) (((*1 *2 *1) - (-12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1279 *3))))) + (-12 (-5 *2 (-173)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) + (-4 *4 (-1070))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-834))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) - (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770))))) + (-12 (-5 *2 (-430 (-1193 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-568))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-568))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7))))) (((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *3 (-1070)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4129 *1))) - (-4 *1 (-866 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-1130 *5 *6 *7 *8)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-603 *5 *6 *7 *8 *3))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-760))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) + (-5 *1 (-760))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-1197)) (-5 *1 (-276))))) (((*1 *2 *3) - (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1197)) - (-5 *2 (-576)) (-5 *1 (-1135 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1121)) (-5 *2 (-1179))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1068))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1197)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-656 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -2451 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1223) (-27) (-442 *8))) + (-4 *8 (-13 (-464) (-148) (-1059 *3) (-651 *3))) (-5 *3 (-576)) + (-5 *2 (-656 *4)) (-5 *1 (-1035 *8 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 (-576)))) + (-5 *2 (-112)) (-5 *1 (-1316 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) + (-5 *1 (-178 *3))))) (((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1207))))) +(((*1 *1) (-5 *1 (-609)))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-759))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1193 *5)) (-4 *5 (-374)) (-5 *2 (-656 *6)) + (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860)))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-568)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-568))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-624 *5))) (-5 *3 (-1197)) (-4 *5 (-442 *4)) - (-4 *4 (-1121)) (-5 *1 (-585 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) - (-14 *5 (-1197)) (-5 *2 (-576)) (-5 *1 (-1135 *4 *5))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *2))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-968 *4 *6 *5)) (-4 *4 (-464)) + (-4 *5 (-861)) (-4 *6 (-805)) (-5 *1 (-1008 *4 *5 *6 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1023) (-1223))) + (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-442 *4) (-1023) (-1223)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-4 *4 (-1013 *3)) (-5 *1 (-143 *3 *4 *2)) + (-4 *2 (-384 *4)))) ((*1 *2 *3) - (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) + (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) (-4 *2 (-384 *4)) + (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-384 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-701 *5)) (-4 *5 (-1013 *4)) (-4 *4 (-568)) + (-5 *2 (-701 *4)) (-5 *1 (-705 *4 *5)))) ((*1 *2 *2) - (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1070)) (-5 *1 (-1049 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) -(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1197)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-656 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -1698 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1223) (-27) (-442 *8))) - (-4 *8 (-13 (-464) (-148) (-1059 *3) (-651 *3))) (-5 *3 (-576)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -4250 *4) (|:| |sol?| (-112)))) - (-5 *1 (-1034 *8 *4))))) + (-12 (-4 *3 (-568)) (-4 *4 (-1013 *3)) (-5 *1 (-1257 *3 *4 *2)) + (-4 *2 (-1264 *4))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1223))) + (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *2 (-598 *3)) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1121))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) - ((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) + (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-1121))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) (((*1 *1 *1) (-5 *1 (-48))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-58 *5 *2)))) ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1121)) (|has| *1 (-6 -4465)) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1121)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) (-4 *2 (-1238)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4465)) (-4 *1 (-152 *2)) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) (-4 *2 (-1238)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4465)) (-4 *1 (-152 *2)) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) (-4 *2 (-1238)))) ((*1 *2 *3) (-12 (-4 *4 (-1070)) - (-5 *2 (-2 (|:| -3307 (-1193 *4)) (|:| |deg| (-940)))) + (-5 *2 (-2 (|:| -3896 (-1193 *4)) (|:| |deg| (-940)))) (-5 *1 (-223 *4 *5)) (-5 *3 (-1193 *4)) (-4 *5 (-568)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783)) @@ -4369,46 +4593,80 @@ ((*1 *1 *2 *3) (-12 (-5 *2 (-831 *4)) (-4 *4 (-861)) (-4 *1 (-1305 *4 *3)) (-4 *3 (-1070))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1070)) - (-5 *2 (-2 (|:| -2715 *1) (|:| -3624 *1))) (-4 *1 (-866 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1070)) - (-5 *2 (-2 (|:| -2715 *3) (|:| -3624 *3))) (-5 *1 (-867 *5 *3)) - (-4 *3 (-866 *5))))) -(((*1 *1 *1) (-5 *1 (-1084)))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) + (-4 *4 (-805)) (-4 *5 (-861)) (-4 *3 (-568))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-783)) (-4 *5 (-568)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-763))))) (((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) ((*1 *1 *1) (-4 *1 (-312))) ((*1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) + ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1068)) + (-5 *3 (-576))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-783)) (-5 *4 (-1288 *2)) (-4 *5 (-317)) + (-4 *6 (-1013 *5)) (-4 *2 (-13 (-421 *6 *7) (-1059 *6))) + (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1264 *6))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-904 *4 *3)) + (-4 *3 (-1121))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1070)) + (-5 *2 (-2 (|:| -3232 (-701 *4)) (|:| |vec| (-1288 *4)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1070)) + (-5 *2 (-701 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1178 (-1178 *4))) (-5 *2 (-1178 *4)) (-5 *1 (-1181 *4)) - (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1070))))) -(((*1 *1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) -(((*1 *2 *3) - (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-317)) - (-5 *2 (-419 (-430 (-971 *4)))) (-5 *1 (-1063 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) - (-4 *6 (-805)) (-5 *2 (-656 (-656 (-576)))) - (-5 *1 (-943 *4 *5 *6 *7)) (-5 *3 (-576)) (-4 *7 (-968 *4 *6 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-924 *3)) (-4 *3 (-1121))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2 *3) - (-12 (-4 *4 (-861)) (-5 *2 (-656 (-656 (-656 *4)))) - (-5 *1 (-1208 *4)) (-5 *3 (-656 (-656 *4)))))) + (|partial| -12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-798))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1264 *5)) - (-5 *1 (-819 *5 *2 *3 *6)) - (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) - (-4 *3 (-668 *2)) (-4 *6 (-668 *4)))) + (-12 (-5 *3 (-701 *1)) (-5 *4 (-1288 *1)) (-4 *1 (-651 *5)) + (-4 *5 (-1070)) + (-5 *2 (-2 (|:| -3232 (-701 *5)) (|:| |vec| (-1288 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-701 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1070)) + (-5 *2 (-701 *4))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-940)) (-4 *3 (-374)) + (-14 *4 (-1014 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1264 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) + ((*1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) + ((*1 *1 *1) (|partial| -4 *1 (-734))) + ((*1 *1 *1) (|partial| -4 *1 (-738))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-419 *2))) (-4 *2 (-1264 *5)) - (-5 *1 (-819 *5 *2 *3 *6)) - (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) - (-4 *6 (-668 (-419 *2)))))) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-13 (-860) (-374))) + (-4 *2 (-1264 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-695 *4 *3)) (-4 *4 (-1121)) + (-4 *3 (-1121))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-624 *6)) (-4 *6 (-13 (-442 *5) (-27) (-1223))) (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) @@ -4428,311 +4686,9 @@ (-12 (-4 *2 (-968 *3 *4 *5)) (-5 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-14 *6 (-656 *2))))) (((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-250 *3))))) -(((*1 *2) - (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) - (-5 *2 (-656 (-656 *4))) (-5 *1 (-352 *3 *4 *5 *6)) - (-4 *3 (-353 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-4 *3 (-379)) (-5 *2 (-656 (-656 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-132)) - (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4104 *4)))))) - ((*1 *2 *1) - (-12 (-4 *1 (-521 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-861)) - (-5 *2 (-656 (-887 *4 *3))))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| -1714 *3) (|:| -3685 *4)))) - (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-738)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) - (-5 *2 (-1178 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1056)) (-5 *1 (-760))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-783)) (-5 *1 (-228)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-171 (-227))) (-5 *3 (-783)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1160)))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1179)) (|:| -2629 (-1179)))) - (-5 *1 (-834))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) - (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-962 (-227)))) (-5 *1 (-1289))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-923 *4)) - (-4 *4 (-1121)))) - ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) - (-5 *1 (-760))))) -(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-783)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-384 *3)) (-4 *3 (-1238)) - (-4 *3 (-1121)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-384 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) - (-5 *2 (-576)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-384 *4)) (-4 *4 (-1238)) - (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-541)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-576)) (-5 *3 (-142)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-576))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) - (-5 *2 - (-2 (|:| |mval| (-701 *4)) (|:| |invmval| (-701 *4)) - (|:| |genIdeal| (-516 *4 *5 *6 *7)))) - (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) -(((*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-343))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-656 *3)) (-5 *1 (-980 *3)) (-4 *3 (-557))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-310)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-315))))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-861)) (-5 *4 (-656 *6)) - (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-656 *4)))) - (-5 *1 (-1208 *6)) (-5 *5 (-656 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-290))))) -(((*1 *1) (-5 *1 (-480)))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1141)) (-5 *2 (-1293)) (-5 *1 (-843))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *3 (-656 (-888))) - (-5 *1 (-480))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-656 (-1197))) - (-5 *2 (-656 (-656 (-390)))) (-5 *1 (-1044)) (-5 *5 (-390)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) - (-14 *5 (-656 (-1197))) (-5 *2 (-656 (-656 (-1045 (-419 *4))))) - (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1043))) - (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) - (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1043))) - (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) - (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1043))) - (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) - (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-971 *4))) - (-4 *4 (-13 (-860) (-317) (-148) (-1043))) - (-5 *2 (-656 (-656 (-1045 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) - (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1059 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924 *3)) (-4 *3 (-1121))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-783)) (-5 *1 (-1122 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) - ((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) (((*1 *2 *1) - (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-656 (-173))))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) - (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) - (-4 *7 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *5 *6 *7 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-855 (-390))) (-5 *2 (-855 (-227))) (-5 *1 (-315))))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1070)) - (-5 *1 (-867 *5 *2)) (-4 *2 (-866 *5))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 (-576)))) - (-5 *2 (-1288 (-576))) (-5 *1 (-1316 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) - ((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) - (-14 *4 (-656 (-1197))))) - ((*1 *2 *1) - (-12 (-5 *2 (-576)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) - (-14 *4 (-656 (-1197))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) - (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-284)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1193 *8)) (-5 *4 (-656 *6)) (-4 *6 (-861)) - (-4 *8 (-968 *7 *5 *6)) (-4 *5 (-805)) (-4 *7 (-1070)) - (-5 *2 (-656 (-783))) (-5 *1 (-331 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-940)))) - ((*1 *2 *1) - (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) - (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) - (-4 *4 (-1264 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-783))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) - (-4 *3 (-861)) (-5 *2 (-783)))) - ((*1 *2 *1) - (-12 (-4 *1 (-994 *3 *2 *4)) (-4 *3 (-1070)) (-4 *4 (-861)) - (-4 *2 (-804)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-783)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1250 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1279 *3)) - (-5 *2 (-576)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1248 *3)) - (-5 *2 (-419 (-576))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-940))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) - (-5 *2 (-783))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1264 *6)) - (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)))) - (-4 *8 (-1264 (-419 *7))) (-5 *2 (-598 *3)) - (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) -(((*1 *1) (-5 *1 (-835)))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-448))))) -(((*1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1291))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1193 *7)) (-4 *7 (-968 *6 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1070)) (-5 *2 (-1193 *6)) - (-5 *1 (-331 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -3106 *4) (|:| -3314 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-403))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-759))))) -(((*1 *1 *1) (-5 *1 (-227))) - ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1) (-4 *1 (-1160))) ((*1 *1 *1 *1) (-4 *1 (-1160)))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-997 *4 *5 *6 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-656 (-326 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) - (-5 *1 (-212))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1962)))) - (-5 *2 (-1056)) (-5 *1 (-760))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *3)))) - (-5 *1 (-607 *3)) (-4 *3 (-1070))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1121))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-576)))) (-4 *3 (-568)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) - (-15 -1581 ((-1146 *3 (-624 $)) $)) - (-15 -3570 ($ (-1146 *3 (-624 $)))))))))) -(((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1197)) (-4 *5 (-1242)) (-4 *6 (-1264 *5)) - (-4 *7 (-1264 (-419 *6))) (-5 *2 (-656 (-971 *5))) - (-5 *1 (-352 *4 *5 *6 *7)) (-4 *4 (-353 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1197)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1242)) - (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-4 *4 (-374)) - (-5 *2 (-656 (-971 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) - ((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *2 (-1056)) (-5 *1 (-769))))) -(((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-713)))) - ((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-713))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-759))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-763))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-480)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-687 *2)) (-4 *2 (-1070)) (-4 *2 (-1121))))) + (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) + (-5 *2 (-656 *3))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 *10)) @@ -4776,12 +4732,186 @@ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1231 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-5 *2 (-876)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) + (-14 *4 (-783)) (-4 *5 (-174))))) +(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-1291)))) + ((*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1291))))) +(((*1 *1) (-5 *1 (-449)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1070)) (-4 *2 (-699 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1264 *4)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1238)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) + (-4 *2 (-13 (-861) (-21)))))) +(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-783)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-384 *3)) (-4 *3 (-1238)) + (-4 *3 (-1121)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-384 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) + (-5 *2 (-576)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-384 *4)) (-4 *4 (-1238)) + (-5 *2 (-576)))) + ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-541)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-576)) (-5 *3 (-142)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-576))))) +(((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)) + (-4 *3 (-568)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-568))))) (((*1 *1 *1 *1) (-4 *1 (-988)))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-449)) (-5 *1 (-1201))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-656 *4)) (-4 *4 (-1121)) (-4 *4 (-1238)) (-5 *2 (-112)) + (-5 *1 (-1178 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-112) *7 (-656 *7))) (-4 *1 (-1231 *4 *5 *6 *7)) + (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-516 *3 *4 *5 *6))) (-4 *3 (-374)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) + (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) + (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) + (-4 *1 (-1092 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) + (-4 *1 (-1092 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-1121)) + (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) + (-4 *1 (-397 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568))))) +(((*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-290))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 (-576))) (-4 *3 (-1070)) (-5 *1 (-99 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-99 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-99 *3))))) (((*1 *2 *3) (-12 (-5 *2 (-430 (-1193 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1193 *1)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1121)))) ((*1 *2 *3) (-12 (-4 *1 (-928)) (-5 *2 (-430 (-1193 *1))) (-5 *3 (-1193 *1))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-576)) (-5 *1 (-246)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-576)) (-5 *1 (-246))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3987 *4)))) + (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1163 *4 *2)) (-14 *4 (-940)) + (-4 *2 (-13 (-1070) (-10 -7 (-6 (-4466 "*"))))) + (-5 *1 (-921 *4 *2))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-783)) (-5 *1 (-1122 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-390)) (-5 *1 (-207))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) + (-5 *2 (-656 (-1197))) (-5 *1 (-1097 *3 *4 *5)) + (-4 *5 (-13 (-442 *4) (-901 *3) (-626 (-907 *3))))))) +(((*1 *2) + (-12 (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) + (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-971 (-171 *4))) (-4 *4 (-174)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-971 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-174)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-419 (-971 (-171 *4)))) (-4 *4 (-568)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-419 (-971 (-171 *5)))) (-5 *4 (-940)) + (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) + (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) + (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) + (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-861)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-568)) + (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) + (-5 *1 (-797 *5))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1070)) + (-5 *1 (-867 *5 *2)) (-4 *2 (-866 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-656 *3)) + (-5 *1 (-1258 *4 *3)) (-4 *3 (-1264 *4))))) (((*1 *2 *1) (-12 (-5 *2 @@ -4793,10 +4923,120 @@ (-12 (-5 *4 (-783)) (-4 *3 (-360)) (-4 *5 (-1264 *3)) (-5 *2 (-656 (-1193 *3))) (-5 *1 (-510 *3 *5 *6)) (-4 *6 (-1264 *5))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-249 *2)) (-4 *2 (-1238)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) + (-4 *3 (-1264 *4)) (-5 *1 (-821 *4 *3 *2 *5)) (-4 *2 (-668 *3)) + (-4 *5 (-668 (-419 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-419 *5)) + (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) + (-5 *1 (-821 *4 *5 *2 *6)) (-4 *2 (-668 *5)) (-4 *6 (-668 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *4)) (-4 *4 (-1121)) (-5 *2 (-1293)) + (-5 *1 (-1239 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *4)) (-4 *4 (-1121)) (-5 *2 (-1293)) + (-5 *1 (-1239 *4))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-940)) (-4 *5 (-317)) (-4 *3 (-1264 *5)) + (-5 *2 (-2 (|:| |plist| (-656 *3)) (|:| |modulo| *5))) + (-5 *1 (-472 *5 *3)) (-5 *4 (-656 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) + ((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876))))) +(((*1 *2 *2) + (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) + (-5 *1 (-178 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-888)))) + ((*1 *2 *3) + (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) (((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-340))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1200)) (-5 *3 (-1197))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-701 *2)) (-5 *4 (-783)) + (-4 *2 (-13 (-317) (-10 -8 (-15 -3760 ((-430 $) $))))) + (-4 *5 (-1264 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1070)) + (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) + (-14 *4 (-1197)) (-14 *5 *3)))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-1233 *3)) + (-4 *3 (-995))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) + (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) (((*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) + (-5 *1 (-449))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1059 (-576)))) (-4 *3 (-568)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) + (-15 -1581 ((-1146 *3 (-624 $)) $)) + (-15 -3569 ($ (-1146 *3 (-624 $)))))))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1056)) + (-5 *1 (-758))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-624 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1197))) (-5 *5 (-1193 *2)) + (-4 *2 (-13 (-442 *6) (-27) (-1223))) + (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1121)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-624 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1197))) + (-5 *5 (-419 (-1193 *2))) (-4 *2 (-13 (-442 *6) (-27) (-1223))) + (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1121))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-835)) (-5 *1 (-834))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-480)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-946))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *2 *3 *1) + (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-687 *2)) (-4 *2 (-1070)) (-4 *2 (-1121))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1115 (-855 (-390)))) (-5 *2 (-1115 (-855 (-227)))) + (-5 *1 (-315))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1178 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2))))) (((*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) @@ -4805,14 +5045,47 @@ (-5 *1 (-159 *4 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-161)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1197))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1047 (-855 (-576)))) + (-5 *3 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *4)))) (-4 *4 (-1070)) + (-5 *1 (-607 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) + (-14 *4 (-783)) (-4 *5 (-174))))) +(((*1 *2 *3) + (-12 (|has| *6 (-6 -4465)) (-4 *4 (-374)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-533 *4 *5 *6 *3)) + (-4 *3 (-699 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (|has| *9 (-6 -4465)) (-4 *4 (-568)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4)) (-4 *7 (-1013 *4)) (-4 *8 (-384 *7)) + (-4 *9 (-384 *7)) (-5 *2 (-656 *6)) + (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-699 *4 *5 *6)) + (-4 *10 (-699 *7 *8 *9)))) + ((*1 *2 *1) + (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-656 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-700 *4 *5 *6 *3)) + (-4 *3 (-699 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) + (-5 *2 (-656 *7))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-656 (-1197))) (-4 *2 (-174)) + (-4 *4 (-243 (-3502 *5) (-783))) + (-14 *6 + (-1 (-112) (-2 (|:| -3223 *3) (|:| -2508 *4)) + (-2 (|:| -3223 *3) (|:| -2508 *4)))) + (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-861)) + (-4 *7 (-968 *2 *4 (-878 *5)))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *7)) (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) - (-4 *6 (-805)) (-5 *1 (-943 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1288 (-656 (-2 (|:| -3106 *4) (|:| -3224 (-1141)))))) - (-4 *4 (-360)) (-5 *2 (-1293)) (-5 *1 (-540 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-480))))) + (|partial| -12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) + ((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -3515 *3) (|:| -2508 (-783)))) (-5 *1 (-599 *3)) + (-4 *3 (-557))))) (((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) ((*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) ((*1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-861)))) @@ -4822,60 +5095,64 @@ ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) ((*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1070)) (-5 *2 (-112)) (-5 *1 (-456 *4 *3)) - (-4 *3 (-1264 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1193 *3)) (-4 *3 (-1070)) (-4 *1 (-1264 *3))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-783)) (-4 *5 (-174)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-783)) (-4 *5 (-174)))) + ((*1 *2 *2 *3) + (-12 + (-5 *2 + (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) + (-253 *4 (-419 (-576))))) + (-5 *3 (-656 (-878 *4))) (-14 *4 (-656 (-1197))) (-14 *5 (-783)) + (-5 *1 (-517 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-701 *7)) (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *6 *5)) + (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) + (-4 *6 (-805)) (-5 *1 (-943 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-4 *6 (-568)) (-4 *2 (-968 *3 *5 *4)) + (-5 *1 (-744 *5 *4 *6 *2)) (-5 *3 (-419 (-971 *6))) (-4 *5 (-805)) + (-4 *4 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $)))))))) +(((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) + ((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) + (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-998 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1086 *4 *5 *6)) + (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) + (-5 *1 (-998 *4 *5 *6 *7))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) + (-4 *4 (-13 (-1121) (-34)))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-940)) (-5 *2 (-1193 *3)) (-5 *1 (-1212 *3)) + (-4 *3 (-374))))) (((*1 *2) - (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -1593 (-656 *1)))) - (-4 *1 (-378 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-465 *3 *4 *5 *6)) - (|:| -1593 (-656 (-465 *3 *4 *5 *6))))) - (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3230 *3) (|:| |coef1| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070))))) -(((*1 *1 *1) (-4 *1 (-641))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023) (-1223)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) - (-5 *2 (-493 *4 *5)) (-5 *1 (-963 *4 *5))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-924 *3))) (-4 *3 (-1121)) (-5 *1 (-923 *3))))) (((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-4 *1 (-152 *3)))) ((*1 *1 *2) (-12 - (-5 *2 (-656 (-2 (|:| -3422 (-783)) (|:| -2396 *4) (|:| |num| *4)))) + (-5 *2 (-656 (-2 (|:| -2508 (-783)) (|:| -2396 *4) (|:| |num| *4)))) (-4 *4 (-1264 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) + (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-112)) (-5 *1 (-449)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) + (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-5 *3 (-656 (-1197))) (-5 *4 (-112)) (-5 *1 (-449)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 (-887 *3 *4))) (-4 *3 (-23)) (-4 *4 (-861)) - (-5 *1 (-520 *3 *4)))) + (-12 (-5 *2 (-656 (-887 *3 *4))) (-4 *3 (-21)) (-4 *4 (-861)) + (-5 *1 (-519 *3 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1238)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)))) @@ -4894,24 +5171,24 @@ ((*1 *1 *2 *3) (-12 (-5 *1 (-725 *2 *3 *4)) (-4 *2 (-861)) (-4 *3 (-1121)) (-14 *4 - (-1 (-112) (-2 (|:| -3224 *2) (|:| -3422 *3)) - (-2 (|:| -3224 *2) (|:| -3422 *3)))))) + (-1 (-112) (-2 (|:| -3223 *2) (|:| -2508 *3)) + (-2 (|:| -3223 *2) (|:| -2508 *3)))))) ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1139)) (-5 *1 (-850)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1238)) (-4 *3 (-1238)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 (-2 (|:| -4301 (-1197)) (|:| -4440 *4)))) + (-12 (-5 *2 (-656 (-2 (|:| -4300 (-1197)) (|:| -4439 *4)))) (-4 *4 (-1121)) (-5 *1 (-904 *3 *4)) (-4 *3 (-1121)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-656 *5)) (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-656 (-1161 *3 *5))) (-5 *1 (-1161 *3 *5)) (-4 *3 (-13 (-1121) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| |val| *4) (|:| -3988 *5)))) + (-12 (-5 *3 (-656 (-2 (|:| |val| *4) (|:| -3987 *5)))) (-4 *4 (-13 (-1121) (-34))) (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-656 (-1161 *4 *5))) (-5 *1 (-1161 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3988 *4))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3987 *4))) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1161 *3 *4)))) ((*1 *1 *2 *3) @@ -4948,128 +5225,116 @@ ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) ((*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-301))) + ((*1 *1) (-5 *1 (-876))) + ((*1 *1) + (-12 (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-805)) + (-5 *1 (-1008 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1106))) + ((*1 *1) + (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) + (-4 *3 (-13 (-1121) (-34))))) + ((*1 *1) (-5 *1 (-1200))) ((*1 *1) (-5 *1 (-1201)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-940)) (-5 *2 (-480)) (-5 *1 (-1289))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1288 (-656 (-2 (|:| -3104 *4) (|:| -3223 (-1141)))))) + (-4 *4 (-360)) (-5 *2 (-1293)) (-5 *1 (-540 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-962 *4)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) + (-4 *4 (-1070))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) (((*1 *2 *3) - (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-841)) (-5 *3 (-1179))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-130)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197))))) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) + (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) (((*1 *2) + (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) + (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) + ((*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) (((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6))))) -(((*1 *2) - (-12 (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) - (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -3921 ((-430 $) $))))) - (-4 *4 (-1264 *3)) - (-5 *2 - (-2 (|:| -1593 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1264 (-576))) - (-5 *2 - (-2 (|:| -1593 (-701 (-576))) (|:| |basisDen| (-576)) - (|:| |basisInv| (-701 (-576))))) - (-5 *1 (-780 *3 *4)) (-4 *4 (-421 (-576) *3)))) - ((*1 *2) - (-12 (-4 *3 (-360)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 *4)) - (-5 *2 - (-2 (|:| -1593 (-701 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-701 *4)))) - (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-736 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-360)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 *4)) - (-5 *2 - (-2 (|:| -1593 (-701 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-701 *4)))) - (-5 *1 (-1297 *3 *4 *5 *6)) (-4 *6 (-421 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) - ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) + (-12 (-4 *1 (-912)) + (-5 *3 + (-2 (|:| |pde| (-656 (-326 (-227)))) + (|:| |constraints| + (-656 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-783)) (|:| |boundaryType| (-576)) + (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) + (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) + (|:| |tol| (-227)))) + (-5 *2 (-1056))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1193 *7)) + (-4 *5 (-1070)) (-4 *7 (-1070)) (-4 *2 (-1264 *5)) + (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1264 *2))))) (((*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-374)) (-14 *6 (-1288 (-701 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))))) ((*1 *1 *2) (-12 (-5 *2 (-1146 (-576) (-624 (-48)))) (-5 *1 (-48)))) ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1238)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-350 (-3582 'JINT 'X 'ELAM) (-3582) (-711)))) + (-12 (-5 *2 (-1288 (-350 (-3581 'JINT 'X 'ELAM) (-3581) (-711)))) (-5 *1 (-61 *3)) (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-350 (-3582) (-3582 'XC) (-711)))) + (-12 (-5 *2 (-1288 (-350 (-3581) (-3581 'XC) (-711)))) (-5 *1 (-63 *3)) (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-3582 'X) (-3582) (-711))) (-5 *1 (-64 *3)) + (-12 (-5 *2 (-350 (-3581 'X) (-3581) (-711))) (-5 *1 (-64 *3)) (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-3582) (-3582 'XC) (-711))) (-5 *1 (-66 *3)) + (-12 (-5 *2 (-350 (-3581) (-3581 'XC) (-711))) (-5 *1 (-66 *3)) (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-350 (-3582 'X) (-3582 '-2495) (-711)))) + (-12 (-5 *2 (-1288 (-350 (-3581 'X) (-3581 '-2494) (-711)))) (-5 *1 (-71 *3)) (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-350 (-3582) (-3582 'X) (-711)))) + (-12 (-5 *2 (-1288 (-350 (-3581) (-3581 'X) (-711)))) (-5 *1 (-74 *3)) (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-350 (-3582 'X 'EPS) (-3582 '-2495) (-711)))) + (-12 (-5 *2 (-1288 (-350 (-3581 'X 'EPS) (-3581 '-2494) (-711)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1197)) (-14 *4 (-1197)) (-14 *5 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-350 (-3582 'EPS) (-3582 'YA 'YB) (-711)))) + (-12 (-5 *2 (-1288 (-350 (-3581 'EPS) (-3581 'YA 'YB) (-711)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1197)) (-14 *4 (-1197)) (-14 *5 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-3582) (-3582 'X) (-711))) (-5 *1 (-77 *3)) + (-12 (-5 *2 (-350 (-3581) (-3581 'X) (-711))) (-5 *1 (-77 *3)) (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-3582) (-3582 'X) (-711))) (-5 *1 (-78 *3)) + (-12 (-5 *2 (-350 (-3581) (-3581 'X) (-711))) (-5 *1 (-78 *3)) (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-350 (-3582) (-3582 'XC) (-711)))) + (-12 (-5 *2 (-1288 (-350 (-3581) (-3581 'XC) (-711)))) (-5 *1 (-79 *3)) (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-350 (-3582) (-3582 'X) (-711)))) + (-12 (-5 *2 (-1288 (-350 (-3581) (-3581 'X) (-711)))) (-5 *1 (-80 *3)) (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-350 (-3582 'X '-2495) (-3582) (-711)))) + (-12 (-5 *2 (-1288 (-350 (-3581 'X '-2494) (-3581) (-711)))) (-5 *1 (-82 *3)) (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-701 (-350 (-3582 'X '-2495) (-3582) (-711)))) + (-12 (-5 *2 (-701 (-350 (-3581 'X '-2494) (-3581) (-711)))) (-5 *1 (-83 *3)) (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-701 (-350 (-3582 'X) (-3582) (-711)))) (-5 *1 (-84 *3)) + (-12 (-5 *2 (-701 (-350 (-3581 'X) (-3581) (-711)))) (-5 *1 (-84 *3)) (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-350 (-3582 'X) (-3582) (-711)))) + (-12 (-5 *2 (-1288 (-350 (-3581 'X) (-3581) (-711)))) (-5 *1 (-85 *3)) (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-350 (-3582 'X) (-3582 '-2495) (-711)))) + (-12 (-5 *2 (-1288 (-350 (-3581 'X) (-3581 '-2494) (-711)))) (-5 *1 (-86 *3)) (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-701 (-350 (-3582 'XL 'XR 'ELAM) (-3582) (-711)))) + (-12 (-5 *2 (-701 (-350 (-3581 'XL 'XR 'ELAM) (-3581) (-711)))) (-5 *1 (-87 *3)) (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-3582 'X) (-3582 '-2495) (-711))) (-5 *1 (-89 *3)) + (-12 (-5 *2 (-350 (-3581 'X) (-3581 '-2494) (-711))) (-5 *1 (-89 *3)) (-14 *3 (-1197)))) ((*1 *1 *2) (-12 (-5 *2 (-656 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) @@ -5120,85 +5385,85 @@ ((*1 *1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) + (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) (-4 *1 (-394)))) ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-394)))) ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-394)))) ((*1 *1 *2) (-12 (-5 *2 (-701 (-711))) (-4 *1 (-394)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) + (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) (-4 *1 (-395)))) ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-395)))) ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-395)))) ((*1 *2 *3) (-12 (-5 *2 (-406)) (-5 *1 (-405 *3)) (-4 *3 (-1121)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) + (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) (-4 *1 (-408)))) ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-408)))) ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-408)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-171 (-390))))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) + (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) + (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-576)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) + (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) ((*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) + (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) ((*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) + (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) ((*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) + (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-706)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) + (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-711)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) + (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-713)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) + (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) ((*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) + (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) ((*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) + (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) ((*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) + (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) + (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) + (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) ((*1 *1 *2) (-12 (-5 *2 (-340)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2916 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) ((*1 *1 *2) (-12 (-5 *2 (-341 *4)) (-4 *4 (-13 (-861) (-21))) @@ -5225,14 +5490,14 @@ ((*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-449)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) + (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) (-4 *1 (-452)))) ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-452)))) ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-452)))) ((*1 *1 *2) (-12 (-5 *2 (-1288 (-711))) (-4 *1 (-452)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4349 (-656 (-340))))) + (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -4350 (-656 (-340))))) (-4 *1 (-453)))) ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-453)))) ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-453)))) @@ -5301,7 +5566,7 @@ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 (-2 (|:| -1714 *3) (|:| -3685 *4)))) + (-12 (-5 *2 (-656 (-2 (|:| -1715 *3) (|:| -3684 *4)))) (-4 *3 (-1070)) (-4 *4 (-738)) (-5 *1 (-747 *3 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-775)))) ((*1 *1 *2) @@ -5310,25 +5575,25 @@ (-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) - (|:| -2951 (-656 (-1115 (-855 (-227))))) + (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-781)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) - (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) + (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-781)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-781)))) ((*1 *2 *3) (-12 (-5 *2 (-786)) (-5 *1 (-785 *3)) (-4 *3 (-1238)))) @@ -5346,23 +5611,23 @@ (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) + (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) - (|:| -3540 (-656 (-227))))))) + (|:| -3539 (-656 (-227))))))) (-5 *1 (-853)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) + (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) (-5 *1 (-853)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) + (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *1 (-853)))) @@ -5472,75 +5737,125 @@ ((*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1070)) (-5 *1 (-867 *2 *3)) (-4 *3 (-866 *2))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-764))))) -(((*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-340))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-571))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) - (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6))))) + (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1264 *5)) + (-5 *1 (-739 *5 *2)) (-4 *5 (-374))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-480))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-549 *4 *2)) + (-4 *2 (-1279 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) + (-4 *5 (-1264 *4)) (-4 *6 (-736 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) + (-4 *2 (-1279 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) + (-5 *1 (-554 *4 *2)) (-4 *2 (-1279 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) + (-5 *1 (-1174 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) (((*1 *1 *1 *1) (-4 *1 (-673)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-518)) (-5 *2 (-703 (-786))) (-5 *1 (-115)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1179)) (-5 *2 (-786)) (-5 *1 (-115)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1125)) (-5 *1 (-984))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1197)) (-5 *5 (-1115 (-227))) (-5 *2 (-946)) + (-5 *1 (-944 *3)) (-4 *3 (-626 (-548))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1197)) (-5 *5 (-1115 (-227))) (-5 *2 (-946)) + (-5 *1 (-944 *3)) (-4 *3 (-626 (-548))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) + (-5 *1 (-945)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) + (-5 *1 (-945)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) + (-5 *1 (-946)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) + (-5 *1 (-946)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1115 (-227))) + (-5 *1 (-946)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1115 (-227))) + (-5 *1 (-946)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) + (-5 *1 (-946)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) + (-5 *1 (-946))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) - (-4 *5 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-569 *5 *3)) - (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-874)) (-5 *2 (-703 (-561))) (-5 *3 (-561))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-576)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-805)) (-4 *4 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-861)) - (-5 *1 (-461 *5 *6 *7 *4))))) -(((*1 *1 *1) (-4 *1 (-1165)))) -(((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *3) - (-12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1264 *5)) - (-5 *2 (-656 *3)) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1264 *6)) - (-14 *7 (-940))))) -(((*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121))))) -(((*1 *1 *2 *3 *4) - (-12 - (-5 *3 + (-12 (-5 *3 (-701 (-419 (-576)))) + (-5 *2 (-656 - (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 *2)) - (|:| |logand| (-1193 *2))))) - (-5 *4 (-656 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-374)) (-5 *1 (-598 *2))))) -(((*1 *1 *1 *1) (-4 *1 (-673)))) + (-2 (|:| |outval| *4) (|:| |outmult| (-576)) + (|:| |outvect| (-656 (-701 *4)))))) + (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860)))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-551 *4 *2 *5 *6)) - (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-4 *1 (-385 *3 *4)) - (-4 *4 (-174))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1193 (-971 *4))) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) - (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) - (-5 *2 (-1193 (-971 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1279 *4)) + (-4 *4 (-38 (-419 (-576)))) + (-5 *2 (-1 (-1178 *4) (-1178 *4) (-1178 *4))) (-5 *1 (-1281 *4 *5))))) +(((*1 *1) (-5 *1 (-449)))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *3) + (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-374)) + (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) + (|has| *2 (-6 (-4466 "*"))) (-4 *2 (-1070)))) + ((*1 *2 *3) + (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) + (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4466 "*"))) (-4 *2 (-1070))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1070)) (-5 *2 (-112)) (-5 *1 (-456 *4 *3)) + (-4 *3 (-1264 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-940)) (-5 *1 (-798))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) +(((*1 *1 *1 *1) (-4 *1 (-673)))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-576)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) - (-5 *1 (-342))))) + (-12 (-5 *4 (-112)) (-4 *5 (-360)) + (-5 *2 + (-2 (|:| |cont| *5) + (|:| -4213 (-656 (-2 (|:| |irr| *3) (|:| -3012 (-576))))))) + (-5 *1 (-218 *5 *3)) (-4 *3 (-1264 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1178 (-1178 *4))) (-5 *2 (-1178 *4)) (-5 *1 (-1181 *4)) + (-4 *4 (-1070))))) +(((*1 *2 *3 *1) + (-12 + (-5 *2 + (-2 (|:| |cycle?| (-112)) (|:| -4002 (-783)) (|:| |period| (-783)))) + (-5 *1 (-1178 *4)) (-4 *4 (-1238)) (-5 *3 (-783))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) + ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-5 *2 + (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-801)) (-5 *5 (-576))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) @@ -5550,183 +5865,196 @@ (-4 *8 (-1070)) (-4 *2 (-968 *9 *7 *5)) (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) (-4 *4 (-968 *8 *6 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-656 (-115)))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1068))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-783)))) - ((*1 *2 *1) - (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-783))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1193 *3)) (-4 *3 (-1070)) (-4 *1 (-1264 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) + (-5 *2 (-1056)) (-5 *1 (-768))))) (((*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) ((*1 *1) (-4 *1 (-1173)))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) - (-5 *1 (-767))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1279 *3))))) -(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1199 (-419 (-576)))) (-5 *2 (-419 (-576))) - (-5 *1 (-192))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) +(((*1 *2 *1) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) + (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) + (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1070)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1070)) - (-4 *4 (-858))))) + (-12 (-4 *3 (-568)) (-5 *2 (-112)) (-5 *1 (-635 *3 *4)) + (-4 *4 (-1264 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) + (-4 *4 (-738)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) + (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -1855 *1) (|:| -3891 *1))) (-4 *1 (-317)))) + ((*1 *2 *1 *1) + (|partial| -12 (-4 *3 (-1121)) + (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -1855 (-783)) (|:| -3891 (-783)))) + (-5 *1 (-783)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -1855 *3) (|:| -3891 *3))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-701 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) + (-4 *3 (-429 *4)))) + ((*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-624 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))) + (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-286 *4 *2))))) (((*1 *2 *1) (-12 (-4 *2 (-1114 *3)) (-5 *1 (-1078 *2 *3)) (-4 *3 (-1238)))) ((*1 *2 *1) (-12 (-5 *2 (-1115 *3)) (-5 *1 (-1113 *3)) (-4 *3 (-1238)))) ((*1 *1 *2 *2) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238)))) ((*1 *1 *2) (-12 (-5 *1 (-1255 *2)) (-4 *2 (-1238))))) -(((*1 *1) (-5 *1 (-1106)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *3 (-1086 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))))) - (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))))) - (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *3 (-1086 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))))) - (-5 *1 (-1166 *6 *7 *8 *3 *4)) (-4 *4 (-1130 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))))) - (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) + (-5 *1 (-1228 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-419 (-576)))) - (-5 *1 (-315))))) -(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1291))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) - (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) - (-5 *1 (-800))))) + (-12 (-5 *3 (-576)) (-4 *4 (-1264 (-419 *3))) (-5 *2 (-940)) + (-5 *1 (-932 *4 *5)) (-4 *5 (-1264 (-419 *4)))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2675 (-656 *1)))) + (-4 *1 (-378 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-465 *3 *4 *5 *6)) + (|:| -2675 (-656 (-465 *3 *4 *5 *6))))) + (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1201))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1020 *3)) (-4 *3 (-174)) (-5 *1 (-811 *3))))) (((*1 *2 *1) (-12 (-5 *2 (-656 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174))))) (((*1 *2 *1) - (-12 (-5 *2 (-1123 (-1123 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-1070)) (-5 *2 (-576)) - (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1264 *5)) - (-4 *6 (-13 (-416) (-1059 *5) (-374) (-1223) (-294))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) - (-4 *3 (-1264 *4)) - (-4 *5 (-13 (-416) (-1059 *4) (-374) (-1223) (-294)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2006 *4))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4466)) (-4 *1 (-120 *2)) (-4 *2 (-1238))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-496 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-1224 *3))) (-5 *1 (-1224 *3)) (-4 *3 (-1121))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-888)) - (-5 *5 (-940)) (-5 *6 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1292)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *2 (-480)) - (-5 *1 (-1292)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-656 (-270))) - (-5 *2 (-480)) (-5 *1 (-1292))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) - (-4 *2 (-1264 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1264 *3))))) -(((*1 *1 *1) (-4 *1 (-673)))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940)))) ((*1 *1) (-4 *1 (-557))) - ((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-711)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) + (|partial| -12 (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1273 *4 *5 *6)) + (|:| |%expon| (-329 *4 *5 *6)) + (|:| |%expTerms| + (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))))) + (|:| |%type| (-1179)))) + (-5 *1 (-1274 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-442 *3))) + (-14 *5 (-1197)) (-14 *6 *4)))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1240))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) + (-4 *2 + (-13 (-414) + (-10 -7 (-15 -3569 (*2 *4)) (-15 -1558 ((-940) *2)) + (-15 -2675 ((-1288 *2) (-940))) (-15 -3108 (*2 *2))))) + (-5 *1 (-367 *2 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *2 (-1288 (-326 (-390)))) + (-5 *1 (-315))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-374)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) - (-14 *5 (-656 (-1197))) (-5 *2 (-656 (-656 (-1045 (-419 *4))))) + (-14 *5 (-656 (-1197))) + (-5 *2 + (-656 (-2 (|:| -2490 (-1193 *4)) (|:| -4096 (-656 (-971 *4)))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 + (-656 (-2 (|:| -2490 (-1193 *5)) (|:| -4096 (-656 (-971 *5)))))) + (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-656 (-971 *5))) + (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1043))) - (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 + (-656 (-2 (|:| -2490 (-1193 *5)) (|:| -4096 (-656 (-971 *5)))))) + (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-656 (-971 *5))) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1043))) - (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 + (-656 (-2 (|:| -2490 (-1193 *5)) (|:| -4096 (-656 (-971 *5)))))) + (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-656 (-971 *5))) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-971 *4))) - (-4 *4 (-13 (-860) (-317) (-148) (-1043))) - (-5 *2 (-656 (-656 (-1045 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) + (-12 (-4 *4 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 + (-656 (-2 (|:| -2490 (-1193 *4)) (|:| -4096 (-656 (-971 *4)))))) + (-5 *1 (-1315 *4 *5 *6)) (-5 *3 (-656 (-971 *4))) (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197)))))) -(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-992))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1185 3 *3)) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) + ((*1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -4334 *3) (|:| |coef1| (-794 *3)))) + (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202))))) +(((*1 *2 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) +(((*1 *1 *1) (-4 *1 (-673)))) +(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940)))) ((*1 *1) (-4 *1 (-557))) + ((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-711)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-276))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) (((*1 *1) (-4 *1 (-988)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-576)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-317)) - (-4 *9 (-968 *8 *6 *7)) - (-5 *2 (-2 (|:| -3307 (-1193 *9)) (|:| |polval| (-1193 *8)))) - (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1193 *9)) (-5 *4 (-1193 *8))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) - (-4 *2 (-699 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) - (-5 *1 (-178 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) - (-4 *4 (-1070))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3988 *4)))) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-419 (-576)))) - (-5 *2 (-2 (|:| -3877 (-1178 *4)) (|:| -3889 (-1178 *4)))) - (-5 *1 (-1183 *4)) (-5 *3 (-1178 *4))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) + (|:| |expense| (-390)) (|:| |accuracy| (-390)) + (|:| |intermediateResults| (-390)))) + (-5 *1 (-815))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1178 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317))))) +(((*1 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-518)) (-5 *3 (-656 (-890))) (-5 *1 (-495))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-34)) (-5 *2 (-783)))) + (-12 (-5 *2 (-1082 (-1045 *4) (-1193 (-1045 *4)))) (-5 *3 (-876)) + (-5 *1 (-1045 *4)) (-4 *4 (-13 (-860) (-374) (-1043)))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) +(((*1 *1 *1) (-4 *1 (-641))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023) (-1223)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1178 (-576))) (-5 *1 (-1181 *4)) (-4 *4 (-1070)) + (-5 *3 (-576))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-249 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-34)) (-5 *2 (-783)))) ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-256)))) ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-992)))) ((*1 *2 *1) @@ -5738,24 +6066,18 @@ (((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 - (-2 (|:| -1793 (-783)) (|:| |curves| (-783)) + (-2 (|:| -4147 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1197))))) - (-5 *6 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1125)) - (-5 *1 (-409)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1197))))) - (-5 *6 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1125)) - (-5 *1 (-409)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-656 (-1197))) (-5 *5 (-1200)) (-5 *3 (-1197)) - (-5 *2 (-1125)) (-5 *1 (-409))))) -(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-246))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-5 *2 (-656 *1)) (-4 *1 (-1155 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-568)) + (-5 *2 (-2 (|:| -1855 *3) (|:| -3891 *3))) (-5 *1 (-1259 *4 *3)) + (-4 *3 (-1264 *4))))) (((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) ((*1 *1 *1 *1) (-4 *1 (-464))) ((*1 *2 *3) @@ -5784,74 +6106,86 @@ ((*1 *2 *2 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *1 *1 *1) (-4 *1 (-312))) ((*1 *1 *1) (-4 *1 (-312)))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) - (-5 *2 (-1056)) (-5 *1 (-768))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-990 *4 *2)) - (-4 *2 (-1264 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-1212 *2)) (-4 *2 (-374))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1070)) - (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -1714 *3) (|:| |gap| (-783)) (|:| -2715 (-794 *3)) - (|:| -3624 (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-1070)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1193 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) + (-4 *7 (-861)) (-4 *8 (-317)) (-4 *9 (-968 *8 *6 *7)) (-4 *6 (-805)) (-5 *2 - (-2 (|:| -1714 *1) (|:| |gap| (-783)) (|:| -2715 *1) - (|:| -3624 *1))) - (-4 *1 (-1086 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) + (-2 (|:| |upol| (-1193 *8)) (|:| |Lval| (-656 *8)) + (|:| |Lfact| + (-656 (-2 (|:| -1828 (-1193 *8)) (|:| -2508 (-576))))) + (|:| |ctpol| *8))) + (-5 *1 (-754 *6 *7 *8 *9))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-940)) (-5 *1 (-454 *2)) + (-4 *2 (-1264 (-576))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-940)) (-5 *4 (-783)) (-5 *1 (-454 *2)) + (-4 *2 (-1264 (-576))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-940)) (-5 *4 (-656 (-783))) (-5 *1 (-454 *2)) + (-4 *2 (-1264 (-576))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-940)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) + (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-940)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) + (-5 *6 (-112)) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-940)) (-5 *4 (-430 *2)) (-4 *2 (-1264 *5)) + (-5 *1 (-456 *5 *2)) (-4 *5 (-1070))))) +(((*1 *2 *3) + (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) + (-5 *2 (-493 *4 *5)) (-5 *1 (-963 *4 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1197)) (-5 *2 - (-2 (|:| -1714 *1) (|:| |gap| (-783)) (|:| -2715 *1) - (|:| -3624 *1))) - (-4 *1 (-1086 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722))))) + (-2 (|:| |zeros| (-1178 (-227))) (|:| |ones| (-1178 (-227))) + (|:| |singularities| (-1178 (-227))))) + (-5 *1 (-105))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) ((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-171 (-227))) (-5 *6 (-1179)) - (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) + ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) + (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-998 *3 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) + ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-656 (-1193 *4))) (-5 *3 (-1193 *4)) + (-4 *4 (-928)) (-5 *1 (-675 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) -(((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238))))) + (|partial| -12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) + (-5 *2 (-112)) (-5 *1 (-1008 *3 *4 *5 *6)) + (-4 *6 (-968 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) + (-4 *4 (-13 (-1121) (-34)))))) (((*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *2 (-1056)) (-5 *1 (-766))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| -1698 (-419 *6)) (|:| |coeff| (-419 *6)))) - (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6))))) (((*1 *1 *2 *3) (-12 (-5 *2 (-1125)) (-5 *3 (-786)) (-5 *1 (-52))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3230 *4))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *2 *3 *4) +(((*1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *3 (-861)) (-5 *1 (-684 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-568))))) +(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-276))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1193 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 *8)) - (-4 *7 (-861)) (-4 *8 (-1070)) (-4 *9 (-968 *8 *6 *7)) - (-4 *6 (-805)) (-5 *2 (-1193 *8)) (-5 *1 (-331 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *2 (-1056)) (-5 *1 (-764))))) (((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) ((*1 *1 *1 *2) @@ -5873,24 +6207,27 @@ (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-568)))) ((*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-337 *3)) (-4 *3 (-1238)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) (-14 *4 *2)))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-656 (-656 (-227)))) (-5 *4 (-227)) - (-5 *2 (-656 (-962 *4))) (-5 *1 (-1234)) (-5 *3 (-962 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) - (-5 *2 (-971 *5)) (-5 *1 (-963 *4 *5))))) + (-12 (-4 *4 (-1070)) (-4 *3 (-1264 *4)) (-4 *2 (-1279 *4)) + (-5 *1 (-1282 *4 *3 *5 *2)) (-4 *5 (-668 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *2 *1) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) + ((*1 *2 *1) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946))))) (((*1 *2 *1) - (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) - (-5 *2 (-1193 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) -(((*1 *2 *1) (-12 (-5 *2 (-992)) (-5 *1 (-924 *3)) (-4 *3 (-1121))))) + (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1121))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) + (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) + (-4 *2 (-699 *3 *5 *6))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-1255 (-576))) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1238))))) @@ -5898,77 +6235,79 @@ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-831 *3)) (|:| |rm| (-831 *3)))) (-5 *1 (-831 *3)) (-4 *3 (-861)))) ((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1223) (-1023)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) - (-4 *4 (-1070))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-518)) (-5 *2 (-656 (-984))) (-5 *1 (-301))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *6)))) + (-5 *4 (-1047 (-855 (-576)))) (-5 *5 (-1197)) (-5 *7 (-419 (-576))) + (-4 *6 (-1070)) (-5 *2 (-876)) (-5 *1 (-607 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-112)) (-5 *1 (-115))))) (((*1 *2 *1) - (-12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *2 (-656 *6)) - (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4))))) -(((*1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-876)))))) -(((*1 *2) - (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) + (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) - (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-656 *3)) - (-5 *1 (-603 *5 *6 *7 *8 *3)) (-4 *3 (-1130 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) - (-5 *2 - (-656 (-2 (|:| -3119 (-1193 *5)) (|:| -4152 (-656 (-971 *5)))))) - (-5 *1 (-1099 *5 *6)) (-5 *3 (-656 (-971 *5))) - (-14 *6 (-656 (-1197))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) - (-5 *2 - (-656 (-2 (|:| -3119 (-1193 *4)) (|:| -4152 (-656 (-971 *4)))))) - (-5 *1 (-1099 *4 *5)) (-5 *3 (-656 (-971 *4))) - (-14 *5 (-656 (-1197))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) - (-5 *2 - (-656 (-2 (|:| -3119 (-1193 *5)) (|:| -4152 (-656 (-971 *5)))))) - (-5 *1 (-1099 *5 *6)) (-5 *3 (-656 (-971 *5))) - (-14 *6 (-656 (-1197)))))) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861))))) (((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) ((*1 *1 *1 *1) (-4 *1 (-464)))) -(((*1 *1) (-5 *1 (-609)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| -3106 *4) (|:| -1920 (-576))))) - (-4 *4 (-1121)) (-5 *2 (-1 *4)) (-5 *1 (-1038 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) - (-4 *2 (-668 *4))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) - (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-765))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1056)) - (-5 *1 (-761))))) -(((*1 *2 *2) (-12 (-5 *2 (-1178 (-656 (-940)))) (-5 *1 (-898))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-656 (-171 *4))) (-5 *1 (-156 *3 *4)) - (-4 *3 (-1264 (-171 (-576)))) (-4 *4 (-13 (-374) (-860))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48))))) + ((*1 *2 *3 *1) + (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) + (-5 *1 (-122 *3)) (-4 *3 (-861)))) + ((*1 *2 *2) + (-12 (-5 *2 (-598 *4)) (-4 *4 (-13 (-29 *3) (-1223))) + (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-595 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-598 (-419 (-971 *3)))) + (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-601 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-892 *2)) (-4 *2 (-1238)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-894 *2)) (-4 *2 (-1238)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-897 *2)) (-4 *2 (-1238))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-374)) + (-5 *2 (-2 (|:| -3014 *3) (|:| |special| *3))) (-5 *1 (-739 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1288 *5)) (-4 *5 (-374)) (-4 *5 (-1070)) + (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) + (-5 *3 (-656 (-701 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1288 (-1288 *5))) (-4 *5 (-374)) (-4 *5 (-1070)) + (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) + (-5 *3 (-656 (-701 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-656 *1)) (-4 *1 (-1165)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-656 *1)) (-4 *1 (-1165))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-995))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1) (-4 *1 (-1160)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *5 (-379)) + (-5 *2 (-783))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) + (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-940)) (-5 *4 (-888)) (-5 *2 (-1293)) (-5 *1 (-1289)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-656 (-1197))) (-5 *1 (-212)) (-5 *3 (-1197)))) @@ -6000,67 +6339,79 @@ (-12 (-5 *2 (-449)) (-5 *3 (-1197)) (-5 *1 (-1201)))) ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1197))) (-5 *1 (-1201))))) -(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-548))) (-5 *1 (-548))))) -(((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) - (-4 *4 (-1070))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-360)) (-4 *6 (-1264 *5)) - (-5 *2 - (-656 - (-2 (|:| -1593 (-701 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-701 *6))))) - (-5 *1 (-510 *5 *6 *7)) - (-5 *3 - (-2 (|:| -1593 (-701 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-701 *6)))) - (-4 *7 (-1264 *6))))) +(((*1 *1 *1) + (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-464)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *3 (-1086 *4 *5 *6)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *1)))) + (-4 *1 (-1092 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1242))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-1267 *3 *2)) + (-4 *2 (-13 (-1264 *3) (-568) (-10 -8 (-15 -3497 ($ $ $)))))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) + (-4 *2 (-174))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-4 *4 (-1121)) + (-5 *1 (-585 *4 *2)) (-4 *2 (-442 *4))))) (((*1 *1 *1 *1) (-4 *1 (-317))) ((*1 *1 *1 *1) (-5 *1 (-783))) ((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-656 (-227))) (-5 *1 (-206))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-112)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1231 *5 *6 *7 *3)) - (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1216))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) - (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770))))) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) + (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *2 (-720 *3)) (-5 *1 (-839 *2 *3)) (-4 *3 (-1070))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-227)) (-5 *5 (-576)) (-5 *2 (-1233 *3)) + (-5 *1 (-802 *3)) (-4 *3 (-995)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-112)) + (-5 *1 (-1233 *2)) (-4 *2 (-995))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) + (-4 *2 (-1238))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) (((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) - (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-968 *6 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-337 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-528 *3 *4)) - (-14 *4 (-576))))) -(((*1 *1) (-5 *1 (-835)))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-768))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-874)) (-5 *2 (-703 (-1246))) (-5 *3 (-1246))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2))))) + (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-841)) (-5 *3 (-1179))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1223) (-1023)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) (-4 *4 (-626 *2)) + (-5 *2 (-390)) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) + (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) + (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) + (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) + (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) + (-4 *5 (-861)) (-4 *5 (-626 *2)) (-5 *2 (-390)) + (-5 *1 (-797 *5))))) (((*1 *1 *1 *1) (-4 *1 (-317))) ((*1 *1 *1 *1) (-5 *1 (-783))) ((*1 *1 *1 *1) (-5 *1 (-876)))) (((*1 *1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-312)) (-4 *2 (-1238)))) @@ -6068,156 +6419,109 @@ (-12 (-5 *2 (-656 (-624 *1))) (-5 *3 (-656 *1)) (-4 *1 (-312)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *1))) (-4 *1 (-312)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-304 *1)) (-4 *1 (-312))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-1264 (-171 *3)))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1131))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-876))) ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *1) (-5 *1 (-876)))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-227)) - (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-962 *4)))) - (|:| |xValues| (-1115 *4)) (|:| |yValues| (-1115 *4)))) - (-5 *1 (-154)) (-5 *3 (-656 (-656 (-962 *4))))))) -(((*1 *1 *1) (-4 *1 (-175))) - ((*1 *1 *1) - (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) + (|partial| -12 (-4 *2 (-1121)) (-5 *1 (-1215 *3 *2)) (-4 *3 (-1121))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-1199 (-419 (-576)))) + (-5 *1 (-192))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-568)) (-4 *2 (-1070)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-568)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *3 (-1086 *4 *5 *6)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *1)))) + (-4 *1 (-1092 *4 *5 *6 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-1273 *3 *4 *5)) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) - (-14 *4 (-1197)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1121)) (-5 *1 (-725 *3 *2 *4)) (-4 *3 (-861)) - (-14 *4 - (-1 (-112) (-2 (|:| -3224 *3) (|:| -3422 *2)) - (-2 (|:| -3224 *3) (|:| -3422 *2))))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-764))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1293)) (-5 *1 (-216 *4)) - (-4 *4 - (-13 (-861) - (-10 -8 (-15 -2797 ((-1179) $ (-1197))) (-15 -1977 (*2 $)) - (-15 -3420 (*2 $))))))) + (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) + (-4 *1 (-1086 *3 *4 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-1293)) (-5 *1 (-216 *3)) - (-4 *3 - (-13 (-861) - (-10 -8 (-15 -2797 ((-1179) $ (-1197))) (-15 -1977 (*2 $)) - (-15 -3420 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-514))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1231 *4 *5 *3 *6)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *3 (-861)) (-4 *6 (-1086 *4 *5 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *4 (-656 (-1197))) - (-5 *2 (-701 (-326 (-227)))) (-5 *1 (-207)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1121)) (-4 *6 (-917 *5)) (-5 *2 (-701 *6)) - (-5 *1 (-704 *5 *6 *3 *4)) (-4 *3 (-384 *6)) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4465))))))) + (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) + (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1070)) + (-4 *2 (-1248 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-419 (-576))))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-270))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-4 *6 (-1264 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-665 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) - (-5 *5 (-1 (-430 *7) *7)) - (-4 *6 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-4 *7 (-1264 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) + (-12 (-4 *5 (-1121)) (-4 *6 (-901 *5)) (-5 *2 (-900 *5 *6 (-656 *6))) + (-5 *1 (-902 *5 *6 *4)) (-5 *3 (-656 *6)) (-4 *4 (-626 (-907 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-4 *6 (-1264 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-666 *7 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) - (-5 *5 (-1 (-430 *7) *7)) - (-4 *6 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-4 *7 (-1264 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-419 *5))) (-4 *5 (-1264 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) + (-12 (-4 *5 (-1121)) (-5 *2 (-656 (-304 *3))) (-5 *1 (-902 *5 *3 *4)) + (-4 *3 (-1059 (-1197))) (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) - (-4 *6 (-1264 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-666 *5 (-419 *5))) (-4 *5 (-1264 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) + (-12 (-4 *5 (-1121)) (-5 *2 (-656 (-304 (-971 *3)))) + (-5 *1 (-902 *5 *3 *4)) (-4 *3 (-1070)) + (-2663 (-4 *3 (-1059 (-1197)))) (-4 *3 (-901 *5)) + (-4 *4 (-626 (-907 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) - (-4 *6 (-1264 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) - (-5 *4 (-1 (-227) (-227) (-227) (-227))) - (-5 *2 (-1 (-962 (-227)) (-227) (-227))) (-5 *1 (-709))))) -(((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-834))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-887 *4 *3))) (-4 *3 (-1121)) (-4 *4 (-861)) - (-5 *1 (-524 *3 *4))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2131 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2131 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *1 (-270)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-576)) (-5 *4 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) - ((*1 *2 *1 *3) + (-12 (-4 *5 (-1121)) (-5 *2 (-904 *5 *3)) (-5 *1 (-902 *5 *3 *4)) + (-2663 (-4 *3 (-1059 (-1197)))) (-2663 (-4 *3 (-1070))) + (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-850))) (-5 *1 (-141))))) +(((*1 *2 *3 *4 *2 *5 *6) (-12 - (-5 *3 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2131 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *2 (-1293)) (-5 *1 (-1290)))) - ((*1 *2 *1) + (-5 *5 + (-2 (|:| |done| (-656 *11)) + (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -3987 *11)))))) + (-5 *6 (-783)) + (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -3987 *11)))) + (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1086 *7 *8 *9)) + (-4 *11 (-1092 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) + (-4 *9 (-861)) (-5 *1 (-1090 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) (-12 - (-5 *2 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2131 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *1 (-1290)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) + (-5 *5 + (-2 (|:| |done| (-656 *11)) + (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -3987 *11)))))) + (-5 *6 (-783)) + (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -3987 *11)))) + (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1086 *7 *8 *9)) + (-4 *11 (-1130 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) + (-4 *9 (-861)) (-5 *1 (-1166 *7 *8 *9 *10 *11))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) (-4 *5 (-1264 *4)) + (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-112)))) + (-5 *1 (-1036 *4 *5)) (-5 *3 (-419 *5))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) + (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-656 (-419 (-971 (-576))))) (-5 *4 (-656 (-1197))) + (-5 *2 (-656 (-656 *5))) (-5 *1 (-391 *5)) + (-4 *5 (-13 (-860) (-374))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-971 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-391 *4)) + (-4 *4 (-13 (-860) (-374)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-130)))))) (((*1 *2 *3) - (-12 (-4 *4 (-464)) - (-5 *2 - (-656 - (-2 (|:| |eigval| (-3 (-419 (-971 *4)) (-1186 (-1197) (-971 *4)))) - (|:| |geneigvec| (-656 (-701 (-419 (-971 *4)))))))) - (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-971 *4))))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1070)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1070))))) -(((*1 *2 *1) (-12 (-5 *2 (-703 (-1156))) (-5 *1 (-1172))))) + (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-193)) (-5 *3 (-576)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576))))) +(((*1 *1) (-5 *1 (-590)))) (((*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 @@ -6225,278 +6529,310 @@ (|:| |f3| (-656 (-656 *4))) (|:| |f4| (-656 (-656 (-656 *4)))))) (-5 *1 (-1208 *4)) (-5 *3 (-656 (-656 (-656 *4))))))) (((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-771))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1056)) (-5 *1 (-764))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *1 (-700 *4 *5 *6 *2)) - (-4 *2 (-699 *4 *5 *6))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) + ((*1 *1) (-5 *1 (-130))) + ((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) + (-4 *4 (-174)))) + ((*1 *1) (-5 *1 (-558))) ((*1 *1) (-5 *1 (-559))) + ((*1 *1) (-5 *1 (-560))) ((*1 *1) (-5 *1 (-561))) + ((*1 *1) (-4 *1 (-738))) ((*1 *1) (-5 *1 (-1197))) + ((*1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-940)))) + ((*1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-940)))) + ((*1 *1) (-5 *1 (-1243))) ((*1 *1) (-5 *1 (-1244))) + ((*1 *1) (-5 *1 (-1245))) ((*1 *1) (-5 *1 (-1246)))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) + (-15 -1581 ((-1146 *3 (-624 $)) $)) + (-15 -3569 ($ (-1146 *3 (-624 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) + (-15 -1581 ((-1146 *3 (-624 $)) $)) + (-15 -3569 ($ (-1146 *3 (-624 $))))))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-656 *2)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1570 ((-1146 *4 (-624 $)) $)) + (-15 -1581 ((-1146 *4 (-624 $)) $)) + (-15 -3569 ($ (-1146 *4 (-624 $))))))) + (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-656 (-624 *2))) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1570 ((-1146 *4 (-624 $)) $)) + (-15 -1581 ((-1146 *4 (-624 $)) $)) + (-15 -3569 ($ (-1146 *4 (-624 $))))))) + (-4 *4 (-568)) (-5 *1 (-41 *4 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-933 *3)) (-4 *3 (-317))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-1264 (-171 *3)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) + (-4 *3 (-1121))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197))))) (((*1 *2 *3 *3) - (-12 (-4 *2 (-568)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) - (-5 *1 (-767))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1154 (-227))) (-5 *3 (-656 (-270))) (-5 *1 (-1290)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1154 (-227))) (-5 *3 (-1179)) (-5 *1 (-1290)))) - ((*1 *1 *1) (-5 *1 (-1290)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-656 (-2 (|:| |func| *2) (|:| |pole| (-112))))) - (-4 *2 (-13 (-442 *4) (-1023))) (-4 *4 (-568)) - (-5 *1 (-285 *4 *2))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1197)) (-5 *5 (-1115 (-227))) (-5 *2 (-946)) - (-5 *1 (-944 *3)) (-4 *3 (-626 (-548))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) (-5 *2 (-946)) (-5 *1 (-944 *3)) - (-4 *3 (-626 (-548))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-946)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) - (-5 *1 (-946))))) -(((*1 *2 *3) - (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) - (-4 *4 (-13 (-374) (-860))) (-4 *3 (-1264 *2))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *1 *1) + (-12 (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-656 (-1261 *5 *4))) + (-5 *1 (-1135 *4 *5)) (-5 *3 (-1261 *5 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-374) (-860))) - (-5 *2 (-656 (-2 (|:| -2761 (-656 *3)) (|:| -3314 *5)))) - (-5 *1 (-183 *5 *3)) (-4 *3 (-1264 (-171 *5))))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-374) (-860))) - (-5 *2 (-656 (-2 (|:| -2761 (-656 *3)) (|:| -3314 *4)))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1238)) (-4 *2 (-861)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1238)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) - (-14 *3 (-940)) (-4 *4 (-1070)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1197))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1231 *5 *6 *7 *8)) (-4 *5 (-568)) - (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-971 (-419 (-576)))) (-5 *4 (-1197)) - (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310))))) -(((*1 *2 *3) - (-12 (-14 *4 (-656 (-1197))) (-4 *5 (-464)) - (-5 *2 - (-2 (|:| |glbase| (-656 (-253 *4 *5))) (|:| |glval| (-656 (-576))))) - (-5 *1 (-643 *4 *5)) (-5 *3 (-656 (-253 *4 *5)))))) -(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-284))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-924 *3))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) + (-4 *3 (-1086 *6 *7 *8)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) + (-5 *1 (-1093 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3987 *9)))) + (-5 *5 (-112)) (-4 *8 (-1086 *6 *7 *4)) (-4 *9 (-1092 *6 *7 *4 *8)) + (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-861)) + (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -3987 *9)))) + (-5 *1 (-1093 *6 *7 *4 *8 *9))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-576) "failed") *5)) (-4 *5 (-1070)) + (-5 *2 (-576)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1264 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1070)) + (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1264 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1070)) + (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) + (-5 *1 (-342)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1197)) (-5 *4 (-1113 (-971 (-576)))) (-5 *2 (-340)) + (-5 *1 (-342)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1070)) + (-4 *3 (-1121))))) +(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-360))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-928))))) +(((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-340))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *2 (-1056)) (-5 *1 (-763))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-656 (-971 *3))) (-4 *3 (-464)) + (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1197))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-656 (-792 *3 (-878 *4)))) (-4 *3 (-464)) + (-14 *4 (-656 (-1197))) (-5 *1 (-640 *3 *4))))) +(((*1 *2) + (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) + (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-783))))) (((*1 *2 *3) - (-12 (-5 *3 (-1288 (-1288 *4))) (-4 *4 (-1070)) (-5 *2 (-701 *4)) - (-5 *1 (-1050 *4))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *2 (-1056)) (-5 *1 (-766))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) - ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) - ((*1 *2 *3) - (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) + (-12 (-4 *4 (-13 (-374) (-1059 (-419 *2)))) (-5 *2 (-576)) + (-5 *1 (-116 *4 *3)) (-4 *3 (-1264 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-1070)) (-4 *2 (-1264 *5)) - (-5 *1 (-1282 *5 *2 *6 *3)) (-4 *6 (-668 *2)) (-4 *3 (-1279 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-317)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-459 *4 *5 *6 *2))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1084)) (-5 *3 (-1179))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-940)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-805)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) - (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3)) (-4 *3 (-861))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) - (-5 *1 (-935 *3 *4 *5 *2)) (-4 *2 (-968 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1193 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-935 *3 *4 *5 *6)))) + (-12 (-4 *2 (-1264 *4)) (-5 *1 (-819 *4 *2 *3 *5)) + (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) + (-4 *5 (-668 (-419 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1264 *4)) (-5 *1 (-819 *4 *2 *5 *3)) + (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-668 *2)) + (-4 *3 (-668 (-419 *2)))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) +(((*1 *2 *1) + (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *6 *4 *5)) - (-5 *1 (-935 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-317))))) + (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-112)) + (-5 *1 (-368 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-112)) + (-5 *1 (-540 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-576)) (|has| *1 (-6 -4456)) (-4 *1 (-416)) - (-5 *2 (-940))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *2)) (-5 *1 (-181 *2)) (-4 *2 (-317)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-656 (-656 *4))) (-5 *2 (-656 *4)) (-4 *4 (-317)) - (-5 *1 (-181 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 *8)) - (-5 *4 - (-656 - (-2 (|:| -1593 (-701 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-701 *7))))) - (-5 *5 (-783)) (-4 *8 (-1264 *7)) (-4 *7 (-1264 *6)) (-4 *6 (-360)) - (-5 *2 - (-2 (|:| -1593 (-701 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-701 *7)))) - (-5 *1 (-510 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2) (-12 (-5 *2 (-1168 (-1179))) (-5 *1 (-403))))) + (-12 (-5 *3 (-1123 *4)) (-4 *4 (-1121)) (-5 *2 (-1 *4)) + (-5 *1 (-1038 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1061)) (-5 *3 (-390)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1115 (-576))) (-5 *2 (-1 (-576))) (-5 *1 (-1068))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2) (-12 (-5 *1 (-980 *2)) (-4 *2 (-557))))) +(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1298))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1059 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924 *3)) (-4 *3 (-1121))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) + (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) + (-4 *7 (-1013 *4)) (-4 *2 (-699 *7 *8 *9)) + (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) + (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) + (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-374)) (-4 *3 (-174)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) + (-4 *2 (-699 *3 *4 *5)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-701 *2)) (-4 *2 (-374)) (-4 *2 (-1070)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1144 *2 *3 *4 *5)) (-4 *3 (-1070)) + (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-374)))) + ((*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-1208 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1197)) + (-4 *4 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4)))))) +(((*1 *1) (-4 *1 (-360)))) +(((*1 *1) (-5 *1 (-131)))) (((*1 *2 *3 *2) (-12 (-5 *3 (-940)) (-5 *1 (-1051 *2)) - (-4 *2 (-13 (-1121) (-10 -8 (-15 -3030 ($ $ $)))))))) -(((*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1009 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1128 *5 *6 *7 *8 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-701 *2)) (-4 *4 (-1264 *2)) - (-4 *2 (-13 (-317) (-10 -8 (-15 -3921 ((-430 $) $))))) - (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-421 *2 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2)) (-4 *2 (-1070))))) + (-4 *2 (-13 (-1121) (-10 -8 (-15 -3029 ($ $ $)))))))) (((*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) (-5 *2 (-656 (-1097 *3 *4 *5))) (-5 *1 (-1098 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-901 *3) (-626 (-907 *3))))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-103 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6))))) +(((*1 *1) (-5 *1 (-571)))) (((*1 *2 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) - (|:| -1593 (-656 (-1288 (-419 (-971 *4))))))) - (-5 *3 (-656 *7)) (-4 *4 (-13 (-317) (-148))) - (-4 *7 (-968 *4 *6 *5)) (-4 *5 (-13 (-861) (-626 (-1197)))) - (-4 *6 (-805)) (-5 *1 (-943 *4 *5 *6 *7))))) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1264 *5)) + (-4 *5 (-13 (-27) (-442 *4))) (-4 *4 (-13 (-568) (-1059 (-576)))) + (-4 *7 (-1264 (-419 *6))) (-5 *1 (-564 *4 *5 *6 *7 *2)) + (-4 *2 (-353 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-1070)) (-5 *2 (-977 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) - (-4 *4 (-1264 *3))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1121))))) + (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *2 *3) + (-12 (-4 *1 (-939)) (-5 *2 (-2 (|:| -1715 (-656 *1)) (|:| -4128 *1))) + (-5 *3 (-656 *1))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1179)) (-5 *2 (-656 (-703 (-290)))) (-5 *1 (-169))))) (((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1056)) (-5 *1 (-764))))) -(((*1 *1 *1) (-5 *1 (-1084)))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1070)) - (-5 *2 (-2 (|:| -2715 *1) (|:| -3624 *1))) (-4 *1 (-866 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1070)) - (-5 *2 (-2 (|:| -2715 *3) (|:| -3624 *3))) (-5 *1 (-867 *5 *3)) - (-4 *3 (-866 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-548))))) (((*1 *2) - (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) - ((*1 *2 *2) - (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-568)) - (-4 *7 (-968 *3 *5 *6)) - (-5 *2 (-2 (|:| -3422 (-783)) (|:| -1714 *8) (|:| |radicand| *8))) - (-5 *1 (-972 *5 *6 *3 *7 *8)) (-5 *4 (-783)) - (-4 *8 - (-13 (-374) - (-10 -8 (-15 -3570 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $)))))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) - (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) - (-5 *2 (-1056)) (-5 *1 (-765))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-145))))) + (-12 (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) + (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -3760 ((-430 $) $))))) + (-4 *4 (-1264 *3)) + (-5 *2 + (-2 (|:| -2675 (-701 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-701 *3)))) + (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1264 (-576))) + (-5 *2 + (-2 (|:| -2675 (-701 (-576))) (|:| |basisDen| (-576)) + (|:| |basisInv| (-701 (-576))))) + (-5 *1 (-780 *3 *4)) (-4 *4 (-421 (-576) *3)))) + ((*1 *2) + (-12 (-4 *3 (-360)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 *4)) + (-5 *2 + (-2 (|:| -2675 (-701 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-701 *4)))) + (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-736 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-360)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 *4)) + (-5 *2 + (-2 (|:| -2675 (-701 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-701 *4)))) + (-5 *1 (-1297 *3 *4 *5 *6)) (-4 *6 (-421 *4 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-4 *6 (-1264 *9)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-317)) + (-4 *10 (-968 *9 *7 *8)) + (-5 *2 + (-2 (|:| |deter| (-656 (-1193 *10))) + (|:| |dterm| + (-656 (-656 (-2 (|:| -4080 (-783)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-656 *6)) (|:| |nlead| (-656 *10)))) + (-5 *1 (-790 *6 *7 *8 *9 *10)) (-5 *3 (-1193 *10)) (-5 *4 (-656 *6)) + (-5 *5 (-656 *10))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-419 (-1193 (-326 *3)))) (-4 *3 (-568)) + (-5 *1 (-1151 *3))))) +(((*1 *1 *1) (-5 *1 (-1084)))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1070)) (-4 *3 (-1121)) - (-5 *2 (-2 (|:| |val| *1) (|:| -3422 (-576)))) (-4 *1 (-442 *3)))) + (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-1123 *3)))) ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-907 *3)) (|:| -3422 (-907 *3)))) - (-5 *1 (-907 *3)) (-4 *3 (-1121)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) - (-4 *7 (-968 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -3422 (-576)))) - (-5 *1 (-969 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -3570 ($ *7)) (-15 -1570 (*7 $)) - (-15 -1581 (*7 $)))))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *3) - (-12 (-5 *3 (-419 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-568)) - (-4 *4 (-1070)) (-4 *2 (-1279 *4)) (-5 *1 (-1282 *4 *5 *6 *2)) - (-4 *6 (-668 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1193 *1)) (-5 *3 (-1197)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-971 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-576)) (-5 *5 (-1179)) (-5 *6 (-701 (-227))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761))))) -(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223)))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) - ((*1 *1 *1) (-4 *1 (-1165)))) + (-12 (-5 *2 (-1123 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1121)) (-4 *6 (-1121)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *5 (-1121))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) + (|:| |lb| (-656 (-855 (-227)))) + (|:| |cf| (-656 (-326 (-227)))) + (|:| |ub| (-656 (-855 (-227)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-656 (-326 (-227)))) + (|:| -3539 (-656 (-227))))))) + (-5 *2 (-656 (-1179))) (-5 *1 (-276))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) + (-5 *2 (-855 *4)) (-5 *1 (-323 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1223) (-442 *3))) (-14 *5 (-1197)) + (-14 *6 *4))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) + (-5 *2 (-855 *4)) (-5 *1 (-1274 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1223) (-442 *3))) (-14 *5 (-1197)) + (-14 *6 *4)))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1179)) (-5 *1 (-798))))) +(((*1 *2 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) + (-4 *4 (-360))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-783)) (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-756 *3)) (-4 *3 (-174))))) +(((*1 *2 *3) + (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) + (-5 *2 + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1145 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-703 (-985 *3))) (-5 *1 (-985 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3) + (-12 (-4 *4 (-928)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-430 (-1193 *7))) + (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-928)) (-4 *5 (-1264 *4)) (-5 *2 (-430 (-1193 *5))) + (-5 *1 (-926 *4 *5)) (-5 *3 (-1193 *5))))) (((*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-1197)) (-5 *1 (-548)))) ((*1 *2 *3 *2) @@ -6508,69 +6844,24 @@ ((*1 *2 *3 *2 *4) (-12 (-5 *4 (-656 (-1197))) (-5 *2 (-1197)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548)))))) -(((*1 *2 *2) (-12 (-5 *2 (-940)) (|has| *1 (-6 -4456)) (-4 *1 (-416)))) +(((*1 *2 *2) + (-12 (-4 *3 (-1070)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1264 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-940)) (|has| *1 (-6 -4455)) (-4 *1 (-416)))) ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940)))) ((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-711)))) ((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-711))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-855 *3))) (-4 *3 (-13 (-27) (-1223) (-442 *5))) - (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *2 - (-3 (-855 *3) - (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) - (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) - "failed")) - (-5 *1 (-648 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-304 *3)) (-5 *5 (-1179)) - (-4 *3 (-13 (-27) (-1223) (-442 *6))) - (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *2 (-855 *3)) (-5 *1 (-648 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-855 (-971 *5)))) (-4 *5 (-464)) - (-5 *2 - (-3 (-855 (-419 (-971 *5))) - (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-855 (-419 (-971 *5))) "failed"))) - "failed")) - (-5 *1 (-649 *5)) (-5 *3 (-419 (-971 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-419 (-971 *5)))) (-5 *3 (-419 (-971 *5))) - (-4 *5 (-464)) - (-5 *2 - (-3 (-855 *3) - (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) - (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) - "failed")) - (-5 *1 (-649 *5)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-304 (-419 (-971 *6)))) (-5 *5 (-1179)) - (-5 *3 (-419 (-971 *6))) (-4 *6 (-464)) (-5 *2 (-855 *3)) - (-5 *1 (-649 *6))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-1115 (-855 (-227)))) (-5 *1 (-315))))) +(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-656 (-1097 *4 *5 *2))) (-4 *4 (-1121)) - (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) - (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))) - (-5 *1 (-54 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-656 (-1097 *5 *6 *2))) (-5 *4 (-940)) (-4 *5 (-1121)) - (-4 *6 (-13 (-1070) (-901 *5) (-626 (-907 *5)))) - (-4 *2 (-13 (-442 *6) (-901 *5) (-626 (-907 *5)))) - (-5 *1 (-54 *5 *6 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1223) (-1023))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1264 (-419 *2))) - (-4 *2 (-1264 *4)) (-5 *1 (-352 *3 *4 *2 *5)) - (-4 *3 (-353 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1242)) - (-4 *4 (-1264 (-419 *2))) (-4 *2 (-1264 *3))))) + (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) + ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) + ((*1 *1 *1) (|partial| -4 *1 (-734)))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-878 *4)) + (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-853)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-852)))) ((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1056)) (-5 *1 (-852)))) @@ -6587,68 +6878,150 @@ ((*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) (-5 *2 (-1056)) (-5 *1 (-852))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-4 *5 (-360)) (-5 *2 (-430 (-1193 (-1193 *5)))) - (-5 *1 (-1236 *5)) (-5 *3 (-1193 (-1193 *5)))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1238))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-861) (-626 (-1197)))) - (-4 *5 (-805)) (-5 *1 (-943 *3 *4 *5 *2)) (-4 *2 (-968 *3 *5 *4))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-656 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576)))))) - (-5 *2 (-656 (-419 (-576)))) (-5 *1 (-1041 *4)) - (-4 *4 (-1264 (-576)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-289))) (-5 *1 (-289)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-1202))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1121)) (-4 *4 (-1121)) - (-4 *6 (-1121)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *5 *4 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1179)) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-227)) (-5 *1 (-315))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-964 *4 *3)) + (-4 *3 (-1264 *4))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-317)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070))))) +(((*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121)) (-4 *2 (-1070)))) + ((*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-464)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1193 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *5 (-928)) (-5 *1 (-469 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-928))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-904 *5 *3)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) + (-4 *3 (-167 *6)) (-4 (-971 *6) (-901 *5)) + (-4 *6 (-13 (-901 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-904 *4 *1)) (-5 *3 (-907 *4)) (-4 *1 (-901 *4)) + (-4 *4 (-1121)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-904 *5 *6)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) + (-4 *6 (-13 (-1121) (-1059 *3))) (-4 *3 (-901 *5)) + (-5 *1 (-950 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-904 *5 *3)) (-4 *5 (-1121)) + (-4 *3 (-13 (-442 *6) (-626 *4) (-901 *5) (-1059 (-624 $)))) + (-5 *4 (-907 *5)) (-4 *6 (-13 (-568) (-901 *5))) + (-5 *1 (-951 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-904 (-576) *3)) (-5 *4 (-907 (-576))) (-4 *3 (-557)) + (-5 *1 (-952 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-904 *5 *6)) (-5 *3 (-624 *6)) (-4 *5 (-1121)) + (-4 *6 (-13 (-1121) (-1059 (-624 $)) (-626 *4) (-901 *5))) + (-5 *4 (-907 *5)) (-5 *1 (-953 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-900 *5 *6 *3)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) + (-4 *6 (-901 *5)) (-4 *3 (-678 *6)) (-5 *1 (-954 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-904 *6 *3) *8 (-907 *6) (-904 *6 *3))) + (-4 *8 (-861)) (-5 *2 (-904 *6 *3)) (-5 *4 (-907 *6)) + (-4 *6 (-1121)) (-4 *3 (-13 (-968 *9 *7 *8) (-626 *4))) + (-4 *7 (-805)) (-4 *9 (-13 (-1070) (-901 *6))) + (-5 *1 (-955 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-904 *5 *3)) (-4 *5 (-1121)) + (-4 *3 (-13 (-968 *8 *6 *7) (-626 *4))) (-5 *4 (-907 *5)) + (-4 *7 (-901 *5)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *8 (-13 (-1070) (-901 *5))) (-5 *1 (-955 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-904 *5 *3)) (-4 *5 (-1121)) (-4 *3 (-1013 *6)) + (-4 *6 (-13 (-568) (-901 *5) (-626 *4))) (-5 *4 (-907 *5)) + (-5 *1 (-958 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-904 *5 (-1197))) (-5 *3 (-1197)) (-5 *4 (-907 *5)) + (-4 *5 (-1121)) (-5 *1 (-959 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-656 (-907 *7))) (-5 *5 (-1 *9 (-656 *9))) + (-5 *6 (-1 (-904 *7 *9) *9 (-907 *7) (-904 *7 *9))) (-4 *7 (-1121)) + (-4 *9 (-13 (-1070) (-626 (-907 *7)) (-1059 *8))) + (-5 *2 (-904 *7 *9)) (-5 *3 (-656 *9)) (-4 *8 (-1070)) + (-5 *1 (-960 *7 *8 *9))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) + (-12 (-5 *3 (-701 *8)) (-4 *8 (-968 *5 *7 *6)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) + (-4 *7 (-805)) (-5 *2 - (-2 (|:| A (-701 *5)) - (|:| |eqs| - (-656 - (-2 (|:| C (-701 *5)) (|:| |g| (-1288 *5)) (|:| -4027 *6) - (|:| |rh| *5)))))) - (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *5)) (-5 *4 (-1288 *5)) - (-4 *6 (-668 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-668 *5)) - (-5 *2 (-2 (|:| -2590 (-701 *6)) (|:| |vec| (-1288 *5)))) - (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *6)) (-5 *4 (-1288 *5))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4465)) (-4 *1 (-501 *4)) - (-4 *4 (-1238)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-1224 *3))) (-5 *1 (-1224 *3)) (-4 *3 (-1121))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) - (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) - (-5 *2 - (-2 (|:| -4027 (-656 *9)) (|:| -3988 *4) (|:| |ineq| (-656 *9)))) - (-5 *1 (-1009 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) - (-4 *4 (-1092 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) - (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) + (-656 + (-2 (|:| -3733 (-783)) + (|:| |eqns| + (-656 + (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) + (|:| |cols| (-656 (-576)))))) + (|:| |fgb| (-656 *8))))) + (-5 *1 (-943 *5 *6 *7 *8)) (-5 *4 (-783))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1264 *4)) (-5 *1 (-821 *4 *2 *3 *5)) + (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) + (-4 *5 (-668 (-419 *2)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) + (-14 *5 (-1197)) (-5 *2 (-576)) (-5 *1 (-1135 *4 *5))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2675 (-656 *1)))) + (-4 *1 (-378 *3)))) + ((*1 *2) + (|partial| -12 (-5 *2 - (-2 (|:| -4027 (-656 *9)) (|:| -3988 *4) (|:| |ineq| (-656 *9)))) - (-5 *1 (-1128 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) - (-4 *4 (-1092 *6 *7 *8 *9))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861)) (-4 *5 (-1086 *3 *4 *2))))) -(((*1 *1 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) + (-2 (|:| |particular| (-465 *3 *4 *5 *6)) + (|:| -2675 (-656 (-465 *3 *4 *5 *6))))) + (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1223) (-442 (-171 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)))) + (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1197)) + (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-1227 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) + (-5 *1 (-1009 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) + (-5 *1 (-1128 *3 *4 *5 *6 *7))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-794 *3)) (-4 *3 (-1070)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-982 *3 *2)) (-4 *2 (-132)) (-4 *3 (-568)) + (-4 *3 (-1070)) (-4 *2 (-804)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-1193 *3)) (-4 *3 (-1070)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-992)) (-4 *2 (-132)) (-5 *1 (-1199 *3)) (-4 *3 (-568)) + (-4 *3 (-1070)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-1261 *4 *3)) (-14 *4 (-1197)) + (-4 *3 (-1070))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-656 (-624 *5))) (-5 *3 (-1197)) (-4 *5 (-442 *4)) + (-4 *4 (-1121)) (-5 *1 (-585 *4 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-322)) (-5 *1 (-306)))) ((*1 *2 *3) (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-322)) (-5 *1 (-306)))) @@ -6656,193 +7029,102 @@ ((*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1179))) (-5 *3 (-1179)) (-5 *2 (-322)) (-5 *1 (-306))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 (-493 *3 *4))) (-14 *3 (-656 (-1197))) - (-4 *4 (-464)) (-5 *1 (-643 *3 *4))))) (((*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-547 *2)) (-4 *2 (-1238)))) ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-548))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) - (-4 *4 (-132)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-372 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3)) (-4 *3 (-1121)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-661 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-419 (-971 *5)) (-1186 (-1197) (-971 *5)))) - (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-971 *5))))) - (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-971 *5))))))) -(((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) - (-4 *3 (-1264 *4)) (-5 *2 (-576)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-568) (-1059 *2) (-651 *2) (-464))) - (-5 *2 (-576)) (-5 *1 (-1137 *4 *3)) - (-4 *3 (-13 (-27) (-1223) (-442 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-855 *3)) - (-4 *3 (-13 (-27) (-1223) (-442 *6))) - (-4 *6 (-13 (-568) (-1059 *2) (-651 *2) (-464))) (-5 *2 (-576)) - (-5 *1 (-1137 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-1179)) - (-4 *6 (-13 (-568) (-1059 *2) (-651 *2) (-464))) (-5 *2 (-576)) - (-5 *1 (-1137 *6 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-464)) (-5 *2 (-576)) - (-5 *1 (-1138 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-855 (-419 (-971 *6)))) - (-5 *3 (-419 (-971 *6))) (-4 *6 (-464)) (-5 *2 (-576)) - (-5 *1 (-1138 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-419 (-971 *6))) (-5 *4 (-1197)) - (-5 *5 (-1179)) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1138 *6)))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1220 *3)) (-4 *3 (-1070))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-1193 *4)) - (-5 *1 (-540 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-805)) - (-4 *3 (-13 (-861) (-10 -8 (-15 -4172 ((-1197) $))))) (-4 *5 (-568)) - (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-968 (-419 (-971 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1070)) (-4 *5 (-805)) - (-4 *3 - (-13 (-861) - (-10 -8 (-15 -4172 ((-1197) $)) - (-15 -3055 ((-3 $ "failed") (-1197)))))) - (-5 *1 (-1005 *4 *5 *3 *2)) (-4 *2 (-968 (-971 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *6)) - (-4 *6 - (-13 (-861) - (-10 -8 (-15 -4172 ((-1197) $)) - (-15 -3055 ((-3 $ "failed") (-1197)))))) - (-4 *4 (-1070)) (-4 *5 (-805)) (-5 *1 (-1005 *4 *5 *6 *2)) - (-4 *2 (-968 (-971 *4) *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) - (-14 *4 *2)))) +(((*1 *2 *1) + (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-5 *2 (-1179))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) - (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) - ((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) - (-14 *4 (-656 (-1197))) (-4 *5 (-399))))) + (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1264 (-171 *2)))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223)))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2269 *4))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *1) (-5 *1 (-1200)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) + (-14 *5 (-1197)) (-5 *2 (-576)) (-5 *1 (-1135 *4 *5))))) (((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) - (-5 *2 (-1056)) (-5 *1 (-766))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) - (-4 *1 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) - ((*1 *2 *3 *1) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) +(((*1 *2 *3) + (-12 (-4 *1 (-851)) + (-5 *3 + (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) + (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) + (|:| |ub| (-656 (-855 (-227)))))) + (-5 *2 (-1056)))) + ((*1 *2 *3) + (-12 (-4 *1 (-851)) + (-5 *3 + (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) + (-5 *2 (-1056))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-1193 *3)) (-5 *1 (-41 *4 *3)) + (-4 *3 + (-13 (-374) (-312) + (-10 -8 (-15 -1570 ((-1146 *4 (-624 $)) $)) + (-15 -1581 ((-1146 *4 (-624 $)) $)) + (-15 -3569 ($ (-1146 *4 (-624 $)))))))))) +(((*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) + (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-3 *3 (-656 *1))) (-4 *1 (-1092 *4 *5 *6 *3))))) (((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-879)))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) - (-4 *3 (-13 (-1121) (-34)))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) - (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1115 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1154 (-227))) - (-5 *1 (-709))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-834))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) + ((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) + ((*1 *2 *2) (-12 (-5 *2 (-940)) (|has| *1 (-6 -4455)) (-4 *1 (-416)))) + ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940)))) + ((*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-1178 (-576)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-386 *4 *2)) + (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4465))))))) (((*1 *2 *3) - (-12 (-5 *3 (-940)) - (-5 *2 - (-3 (-1193 *4) - (-1288 (-656 (-2 (|:| -3106 *4) (|:| -3224 (-1141))))))) - (-5 *1 (-357 *4)) (-4 *4 (-360))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3988 *8))) - (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1009 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3988 *8))) - (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1128 *4 *5 *6 *7 *8))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) - ((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1197)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-656 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -1698 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1223) (-27) (-442 *8))) - (-4 *8 (-13 (-464) (-148) (-1059 *3) (-651 *3))) (-5 *3 (-576)) - (-5 *2 (-656 *4)) (-5 *1 (-1035 *8 *4))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1223))) - (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1121))))) + (-12 (-4 *3 (-1264 *2)) (-4 *2 (-1264 *4)) + (-5 *1 (-1006 *4 *2 *3 *5)) (-4 *4 (-360)) (-4 *5 (-736 *2 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1193 *7)) (-5 *3 (-576)) (-4 *7 (-968 *6 *4 *5)) + (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) + (-5 *1 (-331 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-656 (-971 *6))) (-5 *4 (-656 (-1197))) (-4 *6 (-464)) + (-5 *2 (-656 (-656 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-374)) + (-4 *5 (-13 (-374) (-860)))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-798))))) + (-12 (-4 *4 (-360)) + (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -3425 *3)))) + (-5 *1 (-218 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-1238)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-516 *3 *4 *5 *6))) (-4 *3 (-374)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) - (-4 *1 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) - (-4 *1 (-1092 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1070)) (-5 *1 (-1049 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1179)) (-5 *1 (-194)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876))))) +(((*1 *1 *1) (-4 *1 (-1165)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1288 *4)) (-4 *4 (-1070)) (-4 *2 (-1264 *4)) + (-5 *1 (-456 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-419 (-1193 (-326 *5)))) (-5 *3 (-1288 (-326 *5))) + (-5 *4 (-576)) (-4 *5 (-568)) (-5 *1 (-1151 *5))))) (((*1 *2 *2 *3 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1264 *3)))) @@ -6941,142 +7223,112 @@ ((*1 *2 *1 *3) (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1178 *3))))) -(((*1 *2) - (-12 (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) - (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) - ((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) - (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-624 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1197))) (-5 *5 (-1193 *2)) - (-4 *2 (-13 (-442 *6) (-27) (-1223))) - (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1121)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-624 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1197))) - (-5 *5 (-419 (-1193 *2))) (-4 *2 (-13 (-442 *6) (-27) (-1223))) - (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1121))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-656 (-1197))) (-4 *2 (-174)) - (-4 *4 (-243 (-3503 *5) (-783))) - (-14 *6 - (-1 (-112) (-2 (|:| -3224 *3) (|:| -3422 *4)) - (-2 (|:| -3224 *3) (|:| -3422 *4)))) - (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-861)) - (-4 *7 (-968 *2 *4 (-878 *5)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1121)) + (-4 *2 (-861))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-940)) (-5 *2 (-1193 *3)) (-5 *1 (-1212 *3)) - (-4 *3 (-374))))) -(((*1 *2 *3) - (-12 (-4 *1 (-912)) - (-5 *3 - (-2 (|:| |pde| (-656 (-326 (-227)))) - (|:| |constraints| - (-656 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-783)) (|:| |boundaryType| (-576)) - (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) - (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) - (|:| |tol| (-227)))) - (-5 *2 (-1056))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1279 *4)) - (-4 *4 (-38 (-419 (-576)))) - (-5 *2 (-1 (-1178 *4) (-1178 *4) (-1178 *4))) (-5 *1 (-1281 *4 *5))))) -(((*1 *2 *3 *1) - (-12 - (-5 *2 - (-2 (|:| |cycle?| (-112)) (|:| -4005 (-783)) (|:| |period| (-783)))) - (-5 *1 (-1178 *4)) (-4 *4 (-1238)) (-5 *3 (-783))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2715 *1) (|:| -3624 *1))) (-4 *1 (-317)))) - ((*1 *2 *1 *1) - (|partial| -12 (-4 *3 (-1121)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1070)) (-4 *7 (-1070)) + (-4 *6 (-1264 *5)) (-5 *2 (-1193 (-1193 *7))) + (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1264 *6))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) + (-5 *1 (-935 *3 *4 *5 *2)) (-4 *2 (-968 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1193 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-935 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *6 *4 *5)) + (-5 *1 (-935 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-861)) + (-4 *6 (-317))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-317)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2715 (-783)) (|:| -3624 (-783)))) - (-5 *1 (-783)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -2715 *3) (|:| -3624 *3))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *2 (-1288 (-326 (-390)))) - (-5 *1 (-315))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1121))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070))))) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4128 *1))) + (-4 *1 (-317))))) +(((*1 *1) (-5 *1 (-301)))) (((*1 *2 *3 *4) + (-12 (-5 *3 (-1197)) (-4 *5 (-374)) (-5 *2 (-1178 (-1178 (-971 *5)))) + (-5 *1 (-1296 *5)) (-5 *4 (-1178 (-971 *5)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) + (-4 *2 (-1264 *4))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1179)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) + (-4 *4 (-1086 *6 *7 *8)) (-5 *2 (-1293)) + (-5 *1 (-788 *6 *7 *8 *4 *5)) (-4 *5 (-1092 *6 *7 *8 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-559)))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1070))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-568) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1197)) + (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) + ((*1 *1 *1) (-5 *1 (-390))) + ((*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3988 *4)))) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-1199 (-419 (-576)))) - (-5 *1 (-192))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-656 *11)) - (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -3988 *11)))))) - (-5 *6 (-783)) - (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -3988 *11)))) - (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1086 *7 *8 *9)) - (-4 *11 (-1092 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) - (-4 *9 (-861)) (-5 *1 (-1090 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) + (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) + (-5 *2 (-1056)) (-5 *1 (-764))))) +(((*1 *2 *3) + (-12 (-5 *3 (-576)) (|has| *1 (-6 -4455)) (-4 *1 (-416)) + (-5 *2 (-940))))) +(((*1 *1 *2) (-12 - (-5 *5 - (-2 (|:| |done| (-656 *11)) - (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -3988 *11)))))) - (-5 *6 (-783)) - (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -3988 *11)))) - (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1086 *7 *8 *9)) - (-4 *11 (-1130 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) - (-4 *9 (-861)) (-5 *1 (-1166 *7 *8 *9 *10 *11))))) + (-5 *2 + (-2 (|:| |mval| (-701 *3)) (|:| |invmval| (-701 *3)) + (|:| |genIdeal| (-516 *3 *4 *5 *6)))) + (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) + ((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *2 (-1056)) (-5 *1 (-763))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) (((*1 *2 *3) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-246)) (-5 *3 (-1179)))) ((*1 *2 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-246)))) ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-1264 (-171 *3)))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *3 (-1086 *6 *7 *8)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3988 *4)))) - (-5 *1 (-1093 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-2 (|:| |k| (-684 *3)) (|:| |c| *4)))) + (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) + (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *2)) (-5 *1 (-181 *2)) (-4 *2 (-317)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-656 (-656 *4))) (-5 *2 (-656 *4)) (-4 *4 (-317)) + (-5 *1 (-181 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3988 *9)))) - (-5 *5 (-112)) (-4 *8 (-1086 *6 *7 *4)) (-4 *9 (-1092 *6 *7 *4 *8)) - (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-861)) - (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -3988 *9)))) - (-5 *1 (-1093 *6 *7 *4 *8 *9))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1197)) - (-4 *4 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) + (-12 (-5 *3 (-656 *8)) + (-5 *4 + (-656 + (-2 (|:| -2675 (-701 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-701 *7))))) + (-5 *5 (-783)) (-4 *8 (-1264 *7)) (-4 *7 (-1264 *6)) (-4 *6 (-360)) + (-5 *2 + (-2 (|:| -2675 (-701 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-701 *7)))) + (-5 *1 (-510 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-855 *4)) (-5 *3 (-624 *4)) (-5 *5 (-112)) + (-4 *4 (-13 (-1223) (-29 *6))) + (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-226 *6 *4))))) (((*1 *1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *1 (-375 *2 *4)) (-4 *2 (-1121)) (-4 *4 (-1121)))) @@ -7090,173 +7342,147 @@ (((*1 *2 *3) (-12 (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) - (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-656 (-326 (-227)))) - (|:| -3540 (-656 (-227))))))) - (-5 *2 (-656 (-1179))) (-5 *1 (-276))))) -(((*1 *2 *3) - (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1145 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6))))) + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-194))))) (((*1 *1 *2 *3) (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1238)) (-4 *3 (-1238))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4464)) (-4 *1 (-501 *4)) + (-4 *4 (-1238)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) + (-4 *6 (-805)) (-5 *2 (-656 *3)) (-5 *1 (-943 *4 *5 *6 *3)) + (-4 *3 (-968 *4 *6 *5))))) +(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-876)))) +(((*1 *1) (-5 *1 (-449)))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1193 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) + (-5 *1 (-32 *4 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2) (-12 (-5 *2 (-1168 (-1179))) (-5 *1 (-403))))) +(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-253 *3 *4)) + (-14 *3 (-656 (-1197))) (-4 *4 (-1070)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) + (-12 (-5 *2 (-656 (-576))) (-14 *3 (-656 (-1197))) + (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1070)) + (-4 *5 (-243 (-3502 *3) (-783))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -1593 (-656 *1)))) - (-4 *1 (-378 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-465 *3 *4 *5 *6)) - (|:| -1593 (-656 (-465 *3 *4 *5 *6))))) - (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374))))) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-493 *3 *4)) + (-14 *3 (-656 (-1197))) (-4 *4 (-1070))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1197)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-656 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -2451 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1223) (-27) (-442 *8))) + (-4 *8 (-13 (-464) (-148) (-1059 *3) (-651 *3))) (-5 *3 (-576)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -4249 *4) (|:| |sol?| (-112)))) + (-5 *1 (-1034 *8 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1092 *6 *7 *8 *9)) + (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) + (-4 *9 (-1086 *6 *7 *8)) + (-5 *2 + (-656 + (-2 (|:| -4026 (-656 *9)) (|:| -3987 *10) (|:| |ineq| (-656 *9))))) + (-5 *1 (-1009 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1092 *6 *7 *8 *9)) + (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) + (-4 *9 (-1086 *6 *7 *8)) + (-5 *2 + (-656 + (-2 (|:| -4026 (-656 *9)) (|:| -3987 *10) (|:| |ineq| (-656 *9))))) + (-5 *1 (-1128 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-783)) (-5 *1 (-573))))) +(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-771))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1121))))) +(((*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3497 (-794 *3)) (|:| |coef2| (-794 *3)))) + (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *2 (-2 (|:| -3497 *1) (|:| |coef2| *1))) + (-4 *1 (-1086 *3 *4 *5))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5))))) (((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) + (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3))))) (((*1 *2) - (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) - (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-783))))) -(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-771))))) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-227))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) + (-5 *1 (-315))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -2451 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-374)) (-4 *7 (-1264 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) + (-2 (|:| -2451 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) + (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-656 - (-2 (|:| -3734 (-783)) - (|:| |eqns| - (-656 - (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) - (|:| |cols| (-656 (-576)))))) - (|:| |fgb| (-656 *7))))) - (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-783)) - (-5 *1 (-943 *4 *5 *6 *7))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-783)) (-4 *5 (-174)))) - ((*1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) - (-4 *4 (-174)))) - ((*1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1070)) (-4 *1 (-699 *3 *2 *4)) (-4 *2 (-384 *3)) - (-4 *4 (-384 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-783)) (-4 *3 (-1070))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1179)) (-5 *4 (-1141)) (-5 *2 (-112)) (-5 *1 (-833))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1121) (-34))) - (-4 *3 (-13 (-1121) (-34)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3498 *3))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1242)) (-5 *1 (-149 *2 *4 *3)) - (-4 *3 (-1264 (-419 *4)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3230 *4))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1179)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) - (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-764))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-876) (-876) (-876))) (-5 *4 (-576)) (-5 *2 (-876)) - (-5 *1 (-661 *5 *6 *7)) (-4 *5 (-1121)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-876)) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-1070)) - (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-876)))) - ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876)))) - ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-876)))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-876)) (-5 *1 (-1193 *3)) (-4 *3 (-1070))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *4)) (-5 *3 (-940)) (|has| *4 (-6 (-4467 "*"))) - (-4 *4 (-1070)) (-5 *1 (-1049 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-940)) - (|has| *4 (-6 (-4467 "*"))) (-4 *4 (-1070)) (-5 *1 (-1049 *4))))) + (-12 (-5 *3 (-701 (-419 (-971 *4)))) (-4 *4 (-464)) + (-5 *2 (-656 (-3 (-419 (-971 *4)) (-1186 (-1197) (-971 *4))))) + (-5 *1 (-302 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) + (-12 (-4 *5 (-1121)) (-4 *2 (-917 *5)) (-5 *1 (-704 *5 *2 *3 *4)) + (-4 *3 (-384 *2)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464))))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3988 *4)))) - (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3230 *3) (|:| |coef2| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861)) (-4 *3 (-174)))) + (-12 (-5 *4 (-656 *3)) (-4 *3 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1009 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *3) - (-12 (-4 *2 (-568)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-174))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1121)) - (-5 *2 (-2 (|:| -1714 (-576)) (|:| |var| (-624 *1)))) - (-4 *1 (-442 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1193 (-1193 *4)))) - (-5 *1 (-1236 *4)) (-5 *3 (-1193 (-1193 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) - (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) - (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) - (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) - (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1166 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-4 *2 (-442 *3)) (-5 *1 (-32 *3 *2)) - (-4 *3 (-1059 *4)) (-4 *3 (-568))))) + (-12 (-5 *4 (-656 *3)) (-4 *3 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1128 *5 *6 *7 *8 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *6)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) + (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) + (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) (((*1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-379)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1288 *4)) (-5 *1 (-540 *4)) @@ -7264,98 +7490,148 @@ ((*1 *2 *1) (-12 (-4 *2 (-861)) (-5 *1 (-725 *2 *3 *4)) (-4 *3 (-1121)) (-14 *4 - (-1 (-112) (-2 (|:| -3224 *2) (|:| -3422 *3)) - (-2 (|:| -3224 *2) (|:| -3422 *3))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1179)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) - (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) - ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1200))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576)))) - ((*1 *2 *2) - (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-1145 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) - (-4 *2 (-1279 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1264 *3)) - (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1279 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) - (-4 *2 (-1279 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-13 (-568) (-148))) - (-5 *1 (-1174 *3))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1056)) - (-5 *1 (-768))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) + (-1 (-112) (-2 (|:| -3223 *2) (|:| -2508 *3)) + (-2 (|:| -3223 *2) (|:| -2508 *3))))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1070)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) -(((*1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1070)) - (-4 *3 (-1121))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-446)) - (-5 *2 - (-656 - (-3 (|:| -2629 (-1197)) - (|:| -3059 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576))))))))) - (-5 *1 (-1201))))) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861))))) (((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-1288 (-701 *4))))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1288 (-701 *4))) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) - (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1288 (-701 *3))))) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) + ((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-656 (-1193 *5))) (-5 *3 (-1193 *5)) + (-4 *5 (-167 *4)) (-4 *4 (-557)) (-5 *1 (-150 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-656 *3)) (-4 *3 (-1264 *5)) + (-4 *5 (-1264 *4)) (-4 *4 (-360)) (-5 *1 (-369 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-656 (-1193 (-576)))) (-5 *3 (-1193 (-576))) + (-5 *1 (-584)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-656 (-1193 *1))) (-5 *3 (-1193 *1)) + (-4 *1 (-928))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1106))) (-5 *1 (-301))))) +(((*1 *2 *1) + (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-971 (-576))) (-5 *3 (-1197)) + (-5 *4 (-1115 (-419 (-576)))) (-5 *1 (-30))))) +(((*1 *2 *3) + (-12 (-5 *3 (-701 *2)) (-4 *4 (-1264 *2)) + (-4 *2 (-13 (-317) (-10 -8 (-15 -3760 ((-430 $) $))))) + (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-421 *2 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2)) (-4 *2 (-1070))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-304 (-845 *3))) + (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *2 (-845 *3)) (-5 *1 (-648 *5 *3)) + (-4 *3 (-13 (-27) (-1223) (-442 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-1197))) (-4 *5 (-374)) - (-5 *2 (-1288 (-701 (-419 (-971 *5))))) (-5 *1 (-1107 *5)) - (-5 *4 (-701 (-419 (-971 *5)))))) + (-12 (-5 *4 (-304 (-845 (-971 *5)))) (-4 *5 (-464)) + (-5 *2 (-845 (-419 (-971 *5)))) (-5 *1 (-649 *5)) + (-5 *3 (-419 (-971 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-1197))) (-4 *5 (-374)) - (-5 *2 (-1288 (-701 (-971 *5)))) (-5 *1 (-1107 *5)) - (-5 *4 (-701 (-971 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) - (-5 *2 (-1288 (-701 *4))) (-5 *1 (-1107 *4))))) + (-12 (-5 *4 (-304 (-419 (-971 *5)))) (-5 *3 (-419 (-971 *5))) + (-4 *5 (-464)) (-5 *2 (-845 *3)) (-5 *1 (-649 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-701 *8)) (-5 *4 (-783)) (-4 *8 (-968 *5 *7 *6)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) + (-4 *7 (-805)) + (-5 *2 + (-656 + (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) + (|:| |cols| (-656 (-576)))))) + (-5 *1 (-943 *5 *6 *7 *8))))) +(((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| -1757 (-115)) (|:| |arg| (-656 (-907 *3))))) + (-5 *1 (-907 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-907 *4))) + (-5 *1 (-907 *4)) (-4 *4 (-1121))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1288 (-1288 (-576)))) (-5 *3 (-940)) (-5 *1 (-478))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) -(((*1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1291))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) + (-12 (-5 *2 (-656 (-971 *4))) (-5 *3 (-656 (-1197))) (-4 *4 (-464)) + (-5 *1 (-937 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1193 *3)) (-5 *1 (-933 *3)) (-4 *3 (-317))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-656 + (-2 + (|:| -4300 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -4439 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1178 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3417 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-571)))) + ((*1 *2 *1) + (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) + (-5 *2 (-656 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-103 *3)) (-4 *3 (-1121))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1070)) (-5 *1 (-1260 *3 *2)) (-4 *2 (-1264 *3))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-656 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-805)) (-4 *3 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) + (-5 *1 (-461 *4 *5 *6 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-576)) (|has| *1 (-6 -4465)) (-4 *1 (-1276 *3)) + (-4 *3 (-1238))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1070)) + (-5 *2 (-2 (|:| -1855 *1) (|:| -3891 *1))) (-4 *1 (-866 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1070)) + (-5 *2 (-2 (|:| -1855 *3) (|:| -3891 *3))) (-5 *1 (-867 *5 *3)) + (-4 *3 (-866 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1293)) (-5 *1 (-834))))) (((*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-571)))) ((*1 *2 *1) @@ -7370,393 +7646,425 @@ (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-815))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-783)) + (-4 *3 (-13 (-317) (-10 -8 (-15 -3760 ((-430 $) $))))) + (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-227))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061)))) + ((*1 *1 *1 *1) (-4 *1 (-1160)))) (((*1 *2 *1) - (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) - (-5 *2 (-656 (-656 (-656 (-783)))))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-985 *2)) (-4 *2 (-1121))))) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) + (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-997 *4 *5 *6 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) + (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-568)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) +(((*1 *2 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) + (|:| -2675 (-656 (-1288 (-419 (-971 *4))))))) + (-5 *3 (-656 *7)) (-4 *4 (-13 (-317) (-148))) + (-4 *7 (-968 *4 *6 *5)) (-4 *5 (-13 (-861) (-626 (-1197)))) + (-4 *6 (-805)) (-5 *1 (-943 *4 *5 *6 *7))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-464))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) - (-5 *1 (-760))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-764))))) + (-12 (-5 *3 (-1178 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1178 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-310)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1178 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-315))))) +(((*1 *1 *1) (-5 *1 (-1084)))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) + (-5 *2 (-1056)) (-5 *1 (-761))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-656 (-1237))) (-5 *3 (-1237)) (-5 *1 (-693))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-783)) (-5 *4 (-576)) (-5 *1 (-457 *2)) (-4 *2 (-1070))))) +(((*1 *1 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) + ((*1 *1 *1) + (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-861)) + (-4 *3 (-13 (-174) (-729 (-419 (-576))))) (-14 *4 (-940)))) + ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) + ((*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) + (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-5 *2 (-656 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) + (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-5 *2 (-656 (-1167 *5 *6 *7 *8))) (-5 *1 (-1167 *5 *6 *7 *8))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1122 *3 *4)) (-14 *3 (-940)) + (-14 *4 (-940))))) +(((*1 *2) + (-12 (-4 *3 (-1070)) (-5 *2 (-977 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) + (-4 *4 (-1264 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1179)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-270))))) -(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97))))) -(((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-701 (-971 *4))) (-5 *1 (-1049 *4)) - (-4 *4 (-1070))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-771))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-876))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1 *4 (-576))) (-4 *4 (-1070)) + (-5 *1 (-1181 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *4)) (-4 *4 (-353 *5 *6 *7)) - (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1593 (-656 *4)))) - (-5 *1 (-818 *5 *6 *7 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-861)) - (-4 *8 (-317)) (-4 *6 (-805)) (-4 *9 (-968 *8 *6 *7)) - (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-656 (-2 (|:| -1828 (-1193 *9)) (|:| -3422 (-576))))))) - (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1193 *9))))) -(((*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-171 *5)) (-5 *1 (-612 *4 *5 *3)) - (-4 *5 (-13 (-442 *4) (-1023) (-1223))) - (-4 *3 (-13 (-442 (-171 *4)) (-1023) (-1223)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1193 *1)) (-4 *1 (-1033))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-3 (-112) (-656 *1))) - (-4 *1 (-1092 *4 *5 *6 *3))))) + (-12 (-4 *5 (-568)) + (-5 *2 (-2 (|:| -3232 (-701 *5)) (|:| |vec| (-1288 (-656 (-940)))))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-940)) (-4 *3 (-668 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1179)) (-5 *1 (-194)))) + ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1179)) (-5 *1 (-310)))) + ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1179)) (-5 *1 (-315))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-1070)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1197))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 (-940))) (-4 *2 (-374)) (-5 *1 (-153 *4 *2 *5)) - (-14 *4 (-940)) (-14 *5 (-1014 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) - (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-132)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1121)) (-4 *2 (-1070)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) - (-4 *4 (-1264 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1070)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1070)) (-5 *1 (-747 *2 *3)) (-4 *3 (-738)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) - (-4 *4 (-1070)) (-4 *5 (-861)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1070)) - (-4 *2 (-861)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-866 *2)) (-4 *2 (-1070)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-968 *4 *5 *6)) - (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-968 *4 *5 *2)) (-4 *4 (-1070)) - (-4 *5 (-805)) (-4 *2 (-861)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *2 (-968 *4 (-543 *5) *5)) - (-5 *1 (-1147 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-861)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-971 *4)) (-5 *1 (-1232 *4)) - (-4 *4 (-1070))))) + (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) + (-4 *3 (-13 (-374) (-148) (-1059 (-576)))) (-5 *1 (-580 *3 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3498 *3))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-1197))) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) - (-5 *2 (-656 (-419 (-971 *4)))) (-5 *1 (-943 *4 *5 *6 *7)) - (-4 *7 (-968 *4 *6 *5))))) + (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-1111))))) +(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1121))))) +(((*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-861))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) + (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196))))) -(((*1 *2 *1) (-12 (-5 *2 (-977 (-783))) (-5 *1 (-343))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-766))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218))))) (((*1 *2 *3) - (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *5)) (-4 *5 (-1264 *3)) (-4 *3 (-317)) - (-5 *2 (-112)) (-5 *1 (-467 *3 *5))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945))))) -(((*1 *2 *1) - (-12 (-5 *2 (-876)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) - (-14 *4 (-783)) (-4 *5 (-174))))) -(((*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1238)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-1123 (-783))) (-5 *6 (-783)) - (-5 *2 - (-2 (|:| |contp| (-576)) - (|:| -2761 (-656 (-2 (|:| |irr| *3) (|:| -2567 (-576))))))) - (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) + (-12 (-5 *3 (-1178 (-1178 *4))) (-5 *2 (-1178 *4)) (-5 *1 (-1181 *4)) + (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1070))))) (((*1 *2 *1) - (-12 (-4 *2 (-1121)) (-5 *1 (-983 *3 *2)) (-4 *3 (-1121))))) -(((*1 *2 *3) - (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) - (-5 *2 (-253 *4 *5)) (-5 *1 (-963 *4 *5))))) + (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4103 *4)))) + (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-940)) (-5 *4 (-227)) (-5 *5 (-576)) (-5 *6 (-888)) + (-5 *2 (-1293)) (-5 *1 (-1289))))) +(((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-668 *3)) (-4 *3 (-1070)) (-4 *3 (-374)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-783)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) + (-5 *1 (-671 *5 *2)) (-4 *2 (-668 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-783)) (-4 *4 (-1070)) (-5 *1 (-1260 *4 *2)) + (-4 *2 (-1264 *4))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) + (-5 *2 (-1056)) (-5 *1 (-764))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) + (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1239 *2)) - (-4 *2 (-1121)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-861)) - (-5 *1 (-1239 *2))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-322)) (-5 *1 (-841))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-112)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-112)) - (-5 *1 (-1227 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4)))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) - (-5 *7 (-701 (-576))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) - (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-765))))) (((*1 *2 *3) - (-12 (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *2 (-1193 *4)) - (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-374)) (-4 *6 (-13 (-374) (-860)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1261 *5 *4)) (-5 *1 (-1195 *4 *5 *6)) - (-4 *4 (-1070)) (-14 *5 (-1197)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1261 *5 *4)) (-5 *1 (-1280 *4 *5 *6)) - (-4 *4 (-1070)) (-14 *5 (-1197)) (-14 *6 *4)))) + (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-840) (-1070))) (-5 *2 (-1179)) + (-5 *1 (-838 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-326 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-840) (-1070))) + (-5 *2 (-1179)) (-5 *1 (-838 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-834)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-840) (-1070))) + (-5 *2 (-1293)) (-5 *1 (-838 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-834)) (-5 *4 (-326 *6)) (-5 *5 (-112)) + (-4 *6 (-13 (-840) (-1070))) (-5 *2 (-1293)) (-5 *1 (-838 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-840)) (-5 *2 (-1179)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-112)) (-5 *2 (-1179)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *2 (-1293)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *4 (-112)) (-5 *2 (-1293))))) +(((*1 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) + (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) + (-5 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) + (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) + (-5 *1 (-1129 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-557)) (-5 *1 (-160 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1288 (-656 (-2 (|:| -3106 *4) (|:| -3224 (-1141)))))) - (-4 *4 (-360)) (-5 *2 (-701 *4)) (-5 *1 (-357 *4))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-715 *3)) - (-4 *3 (-626 (-548))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1197)) (-5 *2 (-1 (-227) (-227) (-227))) - (-5 *1 (-715 *3)) (-4 *3 (-626 (-548)))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1279 *4)) + (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1178 *4) (-1178 *4))) + (-5 *1 (-1281 *4 *5))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-166 *3 *4)) + (-4 *3 (-167 *4)))) + ((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1238)) (-5 *2 (-783)) + (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-1121)) (-5 *2 (-783)) (-5 *1 (-441 *3 *4)) + (-4 *3 (-442 *4)))) + ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-556 *3)) (-4 *3 (-557)))) + ((*1 *2) (-12 (-4 *1 (-775)) (-5 *2 (-783)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-808 *3 *4)) + (-4 *3 (-809 *4)))) + ((*1 *2) + (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-1012 *3 *4)) + (-4 *3 (-1013 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-1017 *3 *4)) + (-4 *3 (-1018 *4)))) + ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1032 *3)) (-4 *3 (-1033)))) + ((*1 *2) (-12 (-4 *1 (-1070)) (-5 *2 (-783)))) + ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1080 *3)) (-4 *3 (-1081))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-783)))) + ((*1 *1 *1) (-4 *1 (-414)))) +(((*1 *1 *1) (-5 *1 (-1084)))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) + (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1209 (-656 *4))) (-4 *4 (-861)) - (-5 *2 (-656 (-656 *4))) (-5 *1 (-1208 *4))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-518)) (-5 *3 (-656 (-984))) (-5 *1 (-301))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1179)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-1121))))) (((*1 *2 *3 *4) - (-12 (-4 *7 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-568)) - (-4 *8 (-968 *7 *5 *6)) - (-5 *2 (-2 (|:| -3422 (-783)) (|:| -1714 *3) (|:| |radicand| *3))) - (-5 *1 (-972 *5 *6 *7 *8 *3)) (-5 *4 (-783)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -3570 ($ *8)) (-15 -1570 (*8 $)) (-15 -1581 (*8 $)))))))) -(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-589)))) - ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-589))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1193 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1197)) - (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-194)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1197)) - (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310))))) -(((*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) + (-12 (-5 *3 (-656 (-971 *6))) (-5 *4 (-656 (-1197))) + (-4 *6 (-13 (-568) (-1059 *5))) (-4 *5 (-568)) + (-5 *2 (-656 (-656 (-304 (-419 (-971 *6)))))) (-5 *1 (-1060 *5 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *3 (-656 (-576))) + (-5 *1 (-898))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) + (-4 *4 (-1070))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-328)) (-5 *3 (-227))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-4 *1 (-922 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1141)) (-5 *2 (-112)) (-5 *1 (-833))))) + (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-317)) + (-5 *2 (-419 (-430 (-971 *4)))) (-5 *1 (-1063 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-576)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-374)) (-4 *3 (-1070)) + (-5 *2 (-2 (|:| -1855 *1) (|:| -3891 *1))) (-4 *1 (-866 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1070)) + (-5 *2 (-2 (|:| -1855 *3) (|:| -3891 *3))) (-5 *1 (-867 *5 *3)) + (-4 *3 (-866 *5))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1070)) + (-5 *2 (-2 (|:| -1855 *1) (|:| -3891 *1))) (-4 *1 (-866 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1070)) + (-5 *2 (-2 (|:| -1855 *3) (|:| -3891 *3))) (-5 *1 (-867 *5 *3)) + (-4 *3 (-866 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-442 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1197)))) + ((*1 *1 *1) (-4 *1 (-161)))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) + (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-337 *3)) (-4 *3 (-1238)))) +(((*1 *2 *1) + (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) + (-4 *3 (-1264 *4)) (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1070))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) - (-14 *4 (-576))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1106))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121))))) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) + (-4 *3 (-1264 *4)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) + (-4 *3 (-1121))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) + (-4 *6 (-805)) (-5 *2 (-656 (-656 (-576)))) + (-5 *1 (-943 *4 *5 *6 *7)) (-5 *3 (-576)) (-4 *7 (-968 *4 *6 *5))))) (((*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1059 *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *2 *5 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-333 *4 *2)) (-4 *4 (-1121)) + (-4 *2 (-132))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-518)) (-5 *3 (-656 (-984))) (-5 *1 (-109))))) (((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) - (-5 *2 (-656 (-783))) (-5 *1 (-790 *3 *4 *5 *6 *7)) - (-4 *3 (-1264 *6)) (-4 *7 (-968 *6 *4 *5))))) -(((*1 *1) - (-12 (-4 *1 (-416)) (-2663 (|has| *1 (-6 -4456))) - (-2663 (|has| *1 (-6 -4448))))) - ((*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1121)) (-4 *2 (-861)))) - ((*1 *1) (-4 *1 (-856))) ((*1 *1 *1 *1) (-4 *1 (-864))) - ((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-576))) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-568)) (-4 *8 (-968 *7 *5 *6)) - (-5 *2 (-2 (|:| -3422 (-783)) (|:| -1714 *9) (|:| |radicand| *9))) - (-5 *1 (-972 *5 *6 *7 *8 *9)) (-5 *4 (-783)) - (-4 *9 - (-13 (-374) - (-10 -8 (-15 -3570 ($ *8)) (-15 -1570 (*8 $)) (-15 -1581 (*8 $)))))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-609))) (-5 *1 (-609))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2))))) -(((*1 *2) (-12 (-5 *2 (-1168 (-1179))) (-5 *1 (-403))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) - (-5 *1 (-760))))) -(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) - ((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) - ((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1) (-4 *1 (-883 *2))) - ((*1 *1 *1) - (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-804)) - (-4 *4 (-861))))) + (-12 (-5 *3 (-656 *4)) (-4 *4 (-1070)) (-5 *2 (-1288 *4)) + (-5 *1 (-1198 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-940)) (-5 *2 (-1288 *3)) (-5 *1 (-1198 *3)) + (-4 *3 (-1070))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-1238))))) +(((*1 *2) + (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) + ((*1 *2 *2) + (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-1288 (-701 *4))) (-5 *1 (-90 *4 *5)) + (-5 *3 (-701 *4)) (-4 *5 (-668 *4))))) +(((*1 *2 *1) + (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-299 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1264 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-723 *3 *2 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) + (-12 (-4 *2 (-1264 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1070)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-727 *3 *2 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576))))) (((*1 *1) - (-12 (-4 *1 (-416)) (-2663 (|has| *1 (-6 -4456))) - (-2663 (|has| *1 (-6 -4448))))) + (-12 (-4 *1 (-416)) (-2663 (|has| *1 (-6 -4455))) + (-2663 (|has| *1 (-6 -4447))))) ((*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1121)) (-4 *2 (-861)))) ((*1 *2 *1) (-12 (-4 *1 (-842 *2)) (-4 *2 (-861)))) ((*1 *1) (-4 *1 (-856))) ((*1 *1 *1 *1) (-4 *1 (-864)))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |polnum| (-794 *3)) (|:| |polden| *3) (|:| -2066 (-783)))) - (-5 *1 (-794 *3)) (-4 *3 (-1070)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2066 (-783)))) - (-4 *1 (-1086 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) + (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-924 *3)) (-4 *3 (-1121))))) (((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-182)))) ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-321)))) ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-991)))) ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1015)))) ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1057)))) ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1094))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-962 (-227)) (-962 (-227)))) (-5 *3 (-656 (-270))) - (-5 *1 (-268)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-962 (-227)) (-962 (-227)))) (-5 *1 (-270)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) - (-14 *5 (-656 (-1197))) (-4 *6 (-464)) (-5 *2 (-1288 *6)) - (-5 *1 (-643 *5 *6))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -3106 *4) (|:| -3314 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1238)) + (-4 *5 (-1238)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-783)) + (-4 *7 (-1238)) (-4 *5 (-1238)) (-5 *2 (-245 *6 *5)) + (-5 *1 (-244 *6 *7 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1238)) (-4 *5 (-1238)) + (-4 *2 (-384 *5)) (-5 *1 (-382 *6 *4 *5 *2)) (-4 *4 (-384 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1121)) (-4 *5 (-1121)) + (-4 *2 (-437 *5)) (-5 *1 (-435 *6 *4 *5 *2)) (-4 *4 (-437 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-656 *6)) (-4 *6 (-1238)) + (-4 *5 (-1238)) (-5 *2 (-656 *5)) (-5 *1 (-654 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-977 *6)) (-4 *6 (-1238)) + (-4 *5 (-1238)) (-5 *2 (-977 *5)) (-5 *1 (-976 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1178 *6)) (-4 *6 (-1238)) + (-4 *3 (-1238)) (-5 *2 (-1178 *3)) (-5 *1 (-1176 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1288 *6)) (-4 *6 (-1238)) + (-4 *5 (-1238)) (-5 *2 (-1288 *5)) (-5 *1 (-1287 *6 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-971 (-171 (-576))))) (-5 *2 (-656 (-171 *4))) - (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) + (-12 (-5 *3 (-1193 *1)) (-5 *4 (-1197)) (-4 *1 (-27)) + (-5 *2 (-656 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1193 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-971 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *2 (-656 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-419 (-971 (-171 (-576)))))) - (-5 *4 (-656 (-1197))) (-5 *2 (-656 (-656 (-171 *5)))) - (-5 *1 (-389 *5)) (-4 *5 (-13 (-374) (-860)))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861)) (-4 *5 (-1086 *3 *4 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-694 *2)) (-4 *2 (-1121)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-656 *5) (-656 *5))) (-5 *4 (-576)) - (-5 *2 (-656 *5)) (-5 *1 (-694 *5)) (-4 *5 (-1121))))) -(((*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) + (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1197))) + (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-310))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) +(((*1 *1 *1) + (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) + (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) - (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) - (-4 *3 (-13 (-1223) (-29 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-568) (-1059 (-576)) (-148))) - (-5 *2 (-598 (-419 (-971 *5)))) (-5 *1 (-582 *5)) - (-5 *3 (-419 (-971 *5)))))) + (-12 (-4 *5 (-374)) (-4 *5 (-568)) + (-5 *2 + (-2 (|:| |minor| (-656 (-940))) (|:| -4026 *3) + (|:| |minors| (-656 (-656 (-940)))) (|:| |ops| (-656 *3)))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-940)) (-4 *3 (-668 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) + (-4 *1 (-1086 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) (((*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1045 *3)) - (-4 *3 (-13 (-860) (-374) (-1043))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) - (-4 *3 (-1264 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1089 *2 *3)) (-4 *2 (-13 (-860) (-374))) - (-4 *3 (-1264 *2))))) +(((*1 *1) (-5 *1 (-835)))) +(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) + ((*1 *2 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317)))) + ((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) + ((*1 *2 *1) (-12 (-4 *1 (-1081)) (-5 *2 (-576))))) (((*1 *2 *1) (-12 (-4 *1 (-1124 *3 *2 *4 *5 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1193 (-971 *6))) (-4 *6 (-568)) - (-4 *2 (-968 (-419 (-971 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) - (-4 *5 (-805)) - (-4 *4 (-13 (-861) (-10 -8 (-15 -4172 ((-1197) $)))))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2304 (-576)) (|:| -2761 (-656 *3)))) - (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1121))))) +(((*1 *2 *2) + (-12 (-4 *3 (-360)) (-4 *4 (-339 *3)) (-4 *5 (-1264 *4)) + (-5 *1 (-789 *3 *4 *5 *2 *6)) (-4 *2 (-1264 *5)) (-14 *6 (-940)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) + ((*1 *1 *1) (-12 (-4 *1 (-1307 *2)) (-4 *2 (-374)) (-4 *2 (-379))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-977 *3)) (-5 *1 (-1184 *4 *3)) + (-4 *3 (-1264 *4))))) (((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-872)))) ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-984)))) ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1010)))) @@ -7764,117 +8072,103 @@ ((*1 *2 *1) (-12 (-4 *2 (-13 (-1121) (-34))) (-5 *1 (-1161 *2 *3)) (-4 *3 (-13 (-1121) (-34)))))) -(((*1 *2 *2) (-12 (-5 *1 (-980 *2)) (-4 *2 (-557))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) - (-4 *3 (-568)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) - (-4 *3 (-1121)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) - (-4 *3 (-1121)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1018 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-1029 *3)) - (-4 *3 (-1059 *2))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) - (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-764))))) -(((*1 *1 *1) (-5 *1 (-1084)))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-464)) (-5 *2 (-112)) - (-5 *1 (-371 *4 *5)) (-14 *5 (-656 (-1197))))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-792 *4 (-878 *5)))) (-4 *4 (-464)) - (-14 *5 (-656 (-1197))) (-5 *2 (-112)) (-5 *1 (-640 *4 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1163 *3 *4)) (-14 *3 (-940)) (-4 *4 (-374)) - (-5 *1 (-1014 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-568)) + (-4 *7 (-968 *3 *5 *6)) + (-5 *2 (-2 (|:| -2508 (-783)) (|:| -1715 *8) (|:| |radicand| *8))) + (-5 *1 (-972 *5 *6 *3 *7 *8)) (-5 *4 (-783)) + (-4 *8 + (-13 (-374) + (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $)))))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-576)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1121))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-240 *3)))) + ((*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1121))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1238)) + (-4 *3 (-384 *4)) (-4 *5 (-384 *4))))) (((*1 *2 *2) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1121))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1193 *9)) (-5 *4 (-656 *7)) (-4 *7 (-861)) - (-4 *9 (-968 *8 *6 *7)) (-4 *6 (-805)) (-4 *8 (-317)) - (-5 *2 (-656 (-783))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *5 (-783))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-878 *5)) - (-14 *5 (-656 (-1197))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) - (-4 *6 (-464)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-878 *5)) - (-14 *5 (-656 (-1197))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) - (-4 *6 (-464))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-326 *5))) - (-5 *1 (-1150 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-326 *5)))) - (-5 *1 (-1150 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) - (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-968 *4 *3 *5))))) + (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-626 (-907 (-576)))) + (-4 *5 (-901 (-576))) + (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) + (-4 *3 (-13 (-27) (-1223) (-442 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1197)) (-5 *4 (-855 *2)) (-4 *2 (-1160)) + (-4 *2 (-13 (-27) (-1223) (-442 *5))) + (-4 *5 (-626 (-907 (-576)))) (-4 *5 (-901 (-576))) + (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) + (-5 *1 (-579 *5 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-1264 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-932 *4 *3)) - (-4 *3 (-1264 (-419 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1178 *3)) (-4 *3 (-1121)) - (-4 *3 (-1238))))) -(((*1 *2 *1) - (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-118 *3)) (-14 *3 (-576)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1178 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-317)) (-5 *1 (-176 *3)))) - ((*1 *2 *3) - (-12 (-5 *2 (-176 (-576))) (-5 *1 (-777 *3)) (-4 *3 (-416)))) - ((*1 *2 *1) - (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-885 *3)) (-14 *3 (-576)))) - ((*1 *2 *1) - (-12 (-14 *3 (-576)) (-5 *2 (-176 (-419 (-576)))) - (-5 *1 (-886 *3 *4)) (-4 *4 (-883 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390)))) - ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-390))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1264 (-419 (-576)))) (-5 *1 (-932 *3 *2)) - (-4 *2 (-1264 (-419 *3)))))) -(((*1 *2 *2) - (-12 (-4 *2 (-174)) (-4 *2 (-1070)) (-5 *1 (-726 *2 *3)) - (-4 *3 (-660 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1070))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *2 (-1293)) - (-5 *1 (-445 *3 *4)) (-4 *4 (-442 *3))))) + (-12 (-4 *4 (-861)) (-5 *2 (-656 (-656 (-656 *4)))) + (-5 *1 (-1208 *4)) (-5 *3 (-656 (-656 *4)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) + (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) + ((*1 *1 *1) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-384 *2)) (-4 *2 (-1238)))) + ((*1 *1 *1) + (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-783)) (-4 *6 (-374)) (-5 *4 (-1232 *6)) + (-5 *2 (-1 (-1178 *4) (-1178 *4))) (-5 *1 (-1296 *6)) + (-5 *5 (-1178 *4))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) + (-5 *2 (-112))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-701 (-419 (-971 (-576))))) - (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1052))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-656 (-878 *4))) - (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) - (-4 *6 (-464))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-464) (-148))) (-5 *2 (-430 *3)) - (-5 *1 (-100 *4 *3)) (-4 *3 (-1264 *4)))) + (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) +(((*1 *2 *3) + (-12 (-4 *4 (-861)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1208 *4)) + (-5 *3 (-656 *4))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1264 *5)) + (-5 *1 (-819 *5 *2 *3 *6)) + (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) + (-4 *3 (-668 *2)) (-4 *6 (-668 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-13 (-464) (-148))) - (-5 *2 (-430 *3)) (-5 *1 (-100 *5 *3))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-767))))) + (-12 (-5 *4 (-656 (-419 *2))) (-4 *2 (-1264 *5)) + (-5 *1 (-819 *5 *2 *3 *6)) + (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) + (-4 *6 (-668 (-419 *2)))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-568))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-568)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-568))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-940)) (-5 *1 (-711)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-701 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-374)) (-5 *1 (-999 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1193 *2)) (-4 *2 (-968 (-419 (-971 *6)) *5 *4)) + (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) + (-4 *4 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $))))) + (-4 *6 (-568))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *2 (-783))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) + (-5 *2 (-1056)) (-5 *1 (-765))))) (((*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) @@ -7943,101 +8237,92 @@ ((*1 *1 *2) (-12 (-5 *2 (-1178 (-2 (|:| |k| (-783)) (|:| |c| *3)))) (-4 *3 (-1070)) (-4 *1 (-1279 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1052))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-576)) - (-5 *6 - (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4296 (-390)))) - (-5 *7 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) - (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) - (-5 *1 (-800)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-576)) - (-5 *6 - (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4296 (-390)))) - (-5 *7 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) - (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) - (-5 *1 (-800))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-990 *4 *2)) + (-4 *2 (-1264 *4))))) (((*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-861)) (-5 *3 (-656 *6)) (-5 *5 (-656 *3)) - (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-656 *5)) (|:| |f3| *5) - (|:| |f4| (-656 *5)))) - (-5 *1 (-1208 *6)) (-5 *4 (-656 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) - (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -4027 *3)))) - (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) - (-4 *7 (-668 (-419 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-4 *6 (-1264 *5)) - (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -4027 (-666 *6 (-419 *6)))))) - (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6)))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) -(((*1 *2 *1) - (-12 (-5 *2 (-1178 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) + (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) + (-4 *5 (-568)) (-5 *2 (-656 (-656 (-971 *5)))) (-5 *1 (-1206 *5))))) +(((*1 *2) + (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) + (-5 *2 (-656 (-656 *4))) (-5 *1 (-352 *3 *4 *5 *6)) + (-4 *3 (-353 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-4 *3 (-379)) (-5 *2 (-656 (-656 *3)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-112)) (-5 *1 (-841))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-5 *2 + (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-801)) (-5 *5 (-576))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-701 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-783)) (-4 *5 (-568)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-701 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) +(((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-155)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-1087))))) +(((*1 *1 *1) (-4 *1 (-1081)))) (((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) - (-5 *2 (-656 (-2 (|:| |k| *4) (|:| |c| *3)))))) + (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-132)) + (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4103 *4)))))) ((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |k| (-908 *3)) (|:| |c| *4)))) - (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) + (-12 (-4 *1 (-521 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-861)) + (-5 *2 (-656 (-887 *4 *3))))) ((*1 *2 *1) - (-12 (-5 *2 (-656 (-684 *3))) (-5 *1 (-908 *3)) (-4 *3 (-861))))) + (-12 (-5 *2 (-656 (-2 (|:| -1715 *3) (|:| -3684 *4)))) + (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-738)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) + (-5 *2 (-1178 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-861)) (-4 *5 (-928)) (-4 *6 (-805)) + (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-430 (-1193 *8))) + (-5 *1 (-925 *5 *6 *7 *8)) (-5 *4 (-1193 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-928)) (-4 *5 (-1264 *4)) (-5 *2 (-430 (-1193 *5))) + (-5 *1 (-926 *4 *5)) (-5 *3 (-1193 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1193 (-1193 *4)))) + (-5 *1 (-1236 *4)) (-5 *3 (-1193 (-1193 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-112)))))) (((*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-458)) (-5 *3 (-576))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-1087))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1092 *6 *7 *8 *9)) - (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *9 (-1086 *6 *7 *8)) - (-5 *2 - (-656 - (-2 (|:| -4027 (-656 *9)) (|:| -3988 *10) (|:| |ineq| (-656 *9))))) - (-5 *1 (-1009 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1092 *6 *7 *8 *9)) - (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *9 (-1086 *6 *7 *8)) - (-5 *2 - (-656 - (-2 (|:| -4027 (-656 *9)) (|:| -3988 *10) (|:| |ineq| (-656 *9))))) - (-5 *1 (-1128 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -1698 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-374)) (-4 *7 (-1264 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) - (-2 (|:| -1698 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1106))) (-5 *1 (-301))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1237))) (-5 *3 (-1237)) (-5 *1 (-693))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-1111))))) -(((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1238)) (-5 *2 (-656 *1)) (-4 *1 (-1031 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) + (-14 *3 (-940)) (-4 *4 (-1070))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) + ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) + ((*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174))))) (((*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)) (-4 *2 (-374)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-227)))) ((*1 *1 *1 *1) - (-2760 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1238))) + (-2759 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1238))) (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1238))))) ((*1 *1 *1 *1) (-4 *1 (-374))) ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) @@ -8085,10 +8370,9 @@ ((*1 *1 *1 *2) (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-374)) (-4 *2 (-1070)) (-4 *3 (-858))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1279 *4)) - (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1178 *4) (-1178 *4))) - (-5 *1 (-1281 *4 *5))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-940)) (-4 *5 (-568)) (-5 *2 (-701 *5)) + (-5 *1 (-975 *5 *3)) (-4 *3 (-668 *5))))) (((*1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-861)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1197)) (-5 *1 (-878 *3)) (-14 *3 (-656 *2)))) @@ -8101,50 +8385,27 @@ (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-5 *2 (-1197)))) ((*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1284 *3)) (-14 *3 *2)))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *3 (-1070)) - (-5 *2 (-2 (|:| -2715 *1) (|:| -3624 *1))) (-4 *1 (-866 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1070)) - (-5 *2 (-2 (|:| -2715 *3) (|:| -3624 *3))) (-5 *1 (-867 *5 *3)) - (-4 *3 (-866 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-333 *4 *2)) (-4 *4 (-1121)) - (-4 *2 (-132))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1193 *1)) (-5 *4 (-1197)) (-4 *1 (-27)) - (-5 *2 (-656 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1193 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-971 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *2 (-656 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1197))) - (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-310))))) -(((*1 *2 *2) - (-12 (-4 *3 (-360)) (-4 *4 (-339 *3)) (-4 *5 (-1264 *4)) - (-5 *1 (-789 *3 *4 *5 *2 *6)) (-4 *2 (-1264 *5)) (-14 *6 (-940)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) - ((*1 *1 *1) (-12 (-4 *1 (-1307 *2)) (-4 *2 (-374)) (-4 *2 (-379))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-568))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1193 (-1193 *4)))) - (-5 *1 (-1236 *4)) (-5 *3 (-1193 (-1193 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1056)) (-5 *1 (-760))))) +(((*1 *2 *1) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) + (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 *4))))) (((*1 *2 *1) (-12 (-5 *2 (-430 *3)) (-5 *1 (-933 *3)) (-4 *3 (-317))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-103 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1121))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-1238))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-145))))) (((*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-940)) (-4 *1 (-416)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-416)))) ((*1 *2 *1) @@ -8156,8 +8417,8 @@ (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-861) - (-10 -8 (-15 -2797 ((-1179) $ (-1197))) (-15 -1977 ((-1293) $)) - (-15 -3420 ((-1293) $))))))) + (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1977 ((-1293) $)) + (-15 -2486 ((-1293) $))))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) ((*1 *1 *1 *1) @@ -8194,55 +8455,62 @@ (-12 (-5 *2 (-962 *3)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) ((*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)) (-5 *3 (-227))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-127 *3))))) -(((*1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-841))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-419 (-576))) - (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-985 *2)) (-4 *2 (-1121))))) (((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *1 *1) (-5 *1 (-1084)))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340))))) + (-12 (-5 *3 (-326 (-227))) (-5 *2 (-419 (-576))) (-5 *1 (-315))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-384 *2)) (-4 *2 (-1238)) + (-4 *2 (-861)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4465)) + (-4 *1 (-384 *3)) (-4 *3 (-1238))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-783)) (-5 *1 (-228)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-171 (-227))) (-5 *3 (-783)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1160)))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-576)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-940)) (-5 *1 (-798))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-127 *3))))) (((*1 *2 *1) (-12 (-5 *2 (-1202)) (-5 *1 (-289))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) - (-4 *6 (-805)) (-5 *2 (-419 (-971 *4))) (-5 *1 (-943 *4 *5 *6 *3)) - (-4 *3 (-968 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 *7)) (-4 *7 (-968 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) - (-4 *6 (-805)) (-5 *2 (-701 (-419 (-971 *4)))) - (-5 *1 (-943 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) - (-4 *6 (-805)) (-5 *2 (-656 (-419 (-971 *4)))) - (-5 *1 (-943 *4 *5 *6 *7))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -1698 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-374)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1264 *4))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-374)) (-5 *1 (-913 *2 *3)) + (-4 *2 (-1264 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1) (-5 *1 (-644)))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1070)) (-5 *1 (-909 *2 *3)) (-4 *2 (-1264 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-876)) (-5 *1 (-1178 *3)) (-4 *3 (-1121)) - (-4 *3 (-1238))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7))))) + (|partial| -12 (-4 *3 (-1070)) (-4 *3 (-1121)) + (-5 *2 (-2 (|:| |val| *1) (|:| -2508 (-576)))) (-4 *1 (-442 *3)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |val| (-907 *3)) (|:| -2508 (-907 *3)))) + (-5 *1 (-907 *3)) (-4 *3 (-1121)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) + (-4 *7 (-968 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -2508 (-576)))) + (-5 *1 (-969 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-374) + (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) + (-15 -1581 (*7 $)))))))) (((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-158))) ((*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-861) - (-10 -8 (-15 -2797 ((-1179) $ (-1197))) (-15 -1977 ((-1293) $)) - (-15 -3420 ((-1293) $))))))) + (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1977 ((-1293) $)) + (-15 -2486 ((-1293) $))))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1238)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1238)))) ((*1 *1 *2 *1) @@ -8265,368 +8533,342 @@ (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-25))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-112)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-940)) (|has| *1 (-6 -4456)) (-4 *1 (-416)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1121)) (-4 *3 (-917 *5)) (-5 *2 (-701 *3)) - (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4465))))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-576)) (|has| *1 (-6 -4466)) (-4 *1 (-384 *3)) - (-4 *3 (-1238))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-888)) - (-5 *5 (-940)) (-5 *6 (-656 (-270))) (-5 *2 (-1289)) - (-5 *1 (-1292)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-656 (-270))) - (-5 *2 (-1289)) (-5 *1 (-1292))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-1021 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1288 *5)) (-4 *5 (-804)) (-5 *2 (-112)) - (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) + (-12 (-5 *3 (-656 (-855 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 *4)) + (-5 *1 (-276))))) (((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1219)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1219))))) -(((*1 *1) (-5 *1 (-1289)))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-701 (-576))) (-5 *5 (-112)) (-5 *7 (-701 (-227))) - (-5 *3 (-576)) (-5 *6 (-227)) (-5 *2 (-1056)) (-5 *1 (-766))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1061)) (-5 *3 (-390))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1161 *4 *5)) (-4 *4 (-13 (-1121) (-34))) - (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-112)) (-5 *1 (-1162 *4 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-112)) (-5 *1 (-310))))) (((*1 *2 *1) - (-12 (-4 *4 (-1121)) (-5 *2 (-904 *3 *4)) (-5 *1 (-900 *3 *4 *5)) - (-4 *3 (-1121)) (-4 *5 (-678 *4)))) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) + (-5 *2 (-419 (-576))))) + ((*1 *2 *1) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) + (-4 *3 (-568)))) + ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) + ((*1 *2 *1) + (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) + (-5 *2 (-419 (-576))))) + ((*1 *2 *1) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) + (-4 *3 (-1121)))) + ((*1 *2 *1) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) + (-4 *3 (-1121)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1018 *3)) (-4 *3 (-174)) (-4 *3 (-557)) + (-5 *2 (-419 (-576))))) ((*1 *2 *3) - (-12 (-5 *3 (-985 *4)) (-4 *4 (-1121)) (-5 *2 (-1123 *4)) - (-5 *1 (-986 *4))))) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1029 *3)) (-4 *3 (-1059 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |cd| (-1179)) (|:| -2628 (-1179)))) + (-5 *1 (-834))))) (((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1264 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) + (-4 *4 (-174)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-442 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1113 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) + (-5 *1 (-159 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-161)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1197)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1293)) - (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-875)))) - ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-875))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-656 - (-2 - (|:| -4301 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -4440 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1178 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2951 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-571))))) + (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-174))))) +(((*1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-841))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) + (-4 *3 (-1121))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-1228 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) + (-12 (-5 *3 (-1197)) (-4 *4 (-464)) (-4 *4 (-1121)) + (-5 *1 (-585 *4 *2)) (-4 *2 (-294)) (-4 *2 (-442 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1248 *3))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1070)))) + ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1070))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1061)) (-5 *3 (-390))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |pde| (-656 (-326 (-227)))) - (|:| |constraints| - (-656 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-783)) (|:| |boundaryType| (-576)) - (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) - (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) - (|:| |tol| (-227)))) - (-5 *2 (-112)) (-5 *1 (-212))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946))))) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) + (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) +(((*1 *2) + (-12 (-4 *3 (-1070)) (-5 *2 (-977 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) + (-4 *4 (-1264 *3))))) +(((*1 *2) + (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) + ((*1 *2 *2) + (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-419 (-576))) + (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1070)) + (-4 *2 (-1279 *3))))) +(((*1 *2) + (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-1121))))) +(((*1 *2 *3) + (-12 (-5 *3 (-419 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-568)) + (-4 *4 (-1070)) (-4 *2 (-1279 *4)) (-5 *1 (-1282 *4 *5 *6 *2)) + (-4 *6 (-668 *5))))) +(((*1 *2 *3) + (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) + (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) (((*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *2)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1303 (-1197) *3)) (-4 *3 (-1070)) (-5 *1 (-1310 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1303 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) + (-5 *1 (-1312 *3 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1052))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-924 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-985 *2)) (-4 *2 (-1121))))) +(((*1 *2 *1) + (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) + (-5 *2 (-1193 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1264 *5)) - (-4 *7 (-1264 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) - (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-112)) - (-5 *1 (-930 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) - (-4 *4 (-1264 (-419 (-576)))) (-4 *5 (-1264 (-419 *4))) - (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-112)) - (-5 *1 (-931 *4 *5 *6))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-768))))) -(((*1 *1 *1 *1) (-4 *1 (-988)))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *3 (-129)) (-5 *2 (-783))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) - (-4 *4 (-804))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-1197)) - (-4 *2 (-13 (-27) (-1223) (-442 *5))) - (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-286 *5 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-224 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-4 *1 (-261 *3)))) - ((*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) -(((*1 *1) (-5 *1 (-1103)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-1216))))) + (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-429 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264))))) +(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-591))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1193 *1)) (-5 *3 (-1197)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-971 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-626 (-907 (-576)))) - (-4 *5 (-901 (-576))) - (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) - (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) + (-12 (-5 *3 (-1 *2 (-656 *2))) (-5 *4 (-656 *5)) + (-4 *5 (-38 (-419 (-576)))) (-4 *2 (-1279 *5)) + (-5 *1 (-1281 *5 *2))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) ((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-594))))) -(((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-834))))) -(((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) -(((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-786)) (-5 *1 (-115)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-786)) (-5 *1 (-115))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-861))))) +(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-962 (-227)))) (-5 *1 (-1289))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1070))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1105 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-576) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1105 *2))))) (((*1 *2 *3) - (-12 (-4 *2 (-374)) (-4 *2 (-860)) (-5 *1 (-964 *2 *3)) - (-4 *3 (-1264 *2))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1197)) (-5 *1 (-687 *3)) (-4 *3 (-1121))))) + (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) (((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-182)))) ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-693)))) ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-991)))) ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1094)))) ((*1 *2 *1) (-12 (-5 *2 (-1202)) (-5 *1 (-1139))))) (((*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4352 *4))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *2))))) -(((*1 *1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) - ((*1 *1 *1 *1) (-5 *1 (-876))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1068)) - (-5 *3 (-576))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-576)) (-5 *5 (-1179)) (-5 *6 (-701 (-227))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) ((*1 *1 *1 *1) (-5 *1 (-876))) ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-449)) (-5 *1 (-1201))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3988 *4)))) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4466)) (-4 *1 (-249 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4466)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4466)) (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3 *1) - (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1200)) (-5 *3 (-1197))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-750))))) (((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) - (-5 *1 (-449))))) + (-12 (-4 *1 (-707 *3)) (-4 *3 (-1121)) + (-5 *2 (-656 (-2 (|:| -4439 *3) (|:| -1460 (-783)))))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-419 (-576)))) + (-5 *2 (-2 (|:| -4005 (-1178 *4)) (|:| -4013 (-1178 *4)))) + (-5 *1 (-1183 *4)) (-5 *3 (-1178 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-923 *4)) + (-4 *4 (-1121)))) + ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) +(((*1 *1 *1) (-5 *1 (-1084)))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-767))))) (((*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) ((*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1121))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1115 (-855 (-390)))) (-5 *2 (-1115 (-855 (-227)))) - (-5 *1 (-315))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-998 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1086 *4 *5 *6)) - (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *1 (-998 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-549 *4 *2)) - (-4 *2 (-1279 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) - (-4 *5 (-1264 *4)) (-4 *6 (-736 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) - (-4 *2 (-1279 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) - (-5 *1 (-554 *4 *2)) (-4 *2 (-1279 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) - (-5 *1 (-1174 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-940)) (-5 *1 (-798))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-750))))) +(((*1 *1 *1) (-4 *1 (-641))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023) (-1223)))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-576))) (-5 *5 (-1 (-1178 *4))) (-4 *4 (-374)) + (-4 *4 (-1070)) (-5 *2 (-1178 *4)) (-5 *1 (-1181 *4))))) +(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223)))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) ((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) - (-5 *2 (-1056)) (-5 *1 (-768))))) (((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-145)))) ((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-145))))) -(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1201))))) -(((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) +(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *2 (-1178 (-576))) (-5 *1 (-1181 *4)) (-4 *4 (-1070)) - (-5 *3 (-576))))) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576)))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) + (-5 *1 (-760))))) (((*1 *2 *3) - (-12 (-5 *3 (-1197)) - (-5 *2 - (-2 (|:| |zeros| (-1178 (-227))) (|:| |ones| (-1178 (-227))) - (|:| |singularities| (-1178 (-227))))) - (-5 *1 (-105))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3988 *4)))) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) - (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) - (-4 *2 (-699 *3 *5 *6))))) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340))))) (((*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) ((*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1121))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-995))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-805)) + (-4 *3 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $))))) (-4 *5 (-568)) + (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-968 (-419 (-971 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1070)) (-4 *5 (-805)) + (-4 *3 + (-13 (-861) + (-10 -8 (-15 -4171 ((-1197) $)) + (-15 -3054 ((-3 $ "failed") (-1197)))))) + (-5 *1 (-1005 *4 *5 *3 *2)) (-4 *2 (-968 (-971 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-656 *6)) + (-4 *6 + (-13 (-861) + (-10 -8 (-15 -4171 ((-1197) $)) + (-15 -3054 ((-3 $ "failed") (-1197)))))) + (-4 *4 (-1070)) (-4 *5 (-805)) (-5 *1 (-1005 *4 *5 *6 *2)) + (-4 *2 (-968 (-971 *4) *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-207)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-656 (-390))) (-5 *2 (-390)) (-5 *1 (-207))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) + ((*1 *1 *1) (-4 *1 (-1165)))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-419 (-576))))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-270))))) + (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-968 *3 *4 *5))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) ((*1 *1 *1 *1) (-5 *1 (-876))) ((*1 *2 *1 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-112)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) -(((*1 *1) (-5 *1 (-590)))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-656 (-971 *3))) (-4 *3 (-464)) - (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1197))))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-656 (-792 *3 (-878 *4)))) (-4 *3 (-464)) - (-14 *4 (-656 (-1197))) (-5 *1 (-640 *3 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-711)) (-5 *1 (-315))))) (((*1 *2 *1) - (-12 (-4 *1 (-1059 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924 *3)) (-4 *3 (-1121))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-27) (-442 *4))) (-4 *4 (-13 (-568) (-1059 (-576)))) - (-4 *7 (-1264 (-419 *6))) (-5 *1 (-564 *4 *5 *6 *7 *2)) - (-4 *2 (-353 *5 *6 *7))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-419 (-1193 (-326 *3)))) (-4 *3 (-568)) - (-5 *1 (-1151 *3))))) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1121) (-34))) + (-4 *3 (-13 (-1121) (-34)))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218))))) (((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) + (-4 *6 (-805)) (-5 *2 (-419 (-971 *4))) (-5 *1 (-943 *4 *5 *6 *3)) + (-4 *3 (-968 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-701 *7)) (-4 *7 (-968 *4 *6 *5)) + (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) + (-4 *6 (-805)) (-5 *2 (-701 (-419 (-971 *4)))) + (-5 *1 (-943 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *6 *5)) + (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) + (-4 *6 (-805)) (-5 *2 (-656 (-419 (-971 *4)))) + (-5 *1 (-943 *4 *5 *6 *7))))) (((*1 *1 *1 *2) (-12 (-5 *2 - (-2 (|:| -2229 (-656 (-876))) (|:| -2324 (-656 (-876))) - (|:| |presup| (-656 (-876))) (|:| -3509 (-656 (-876))) + (-2 (|:| -2624 (-656 (-876))) (|:| -2386 (-656 (-876))) + (|:| |presup| (-656 (-876))) (|:| -4040 (-656 (-876))) (|:| |args| (-656 (-876))))) (-5 *1 (-1197)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 (-876)))) (-5 *1 (-1197))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) - ((*1 *1 *1) (|partial| -4 *1 (-734)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-4 *8 (-968 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) - (-4 *7 (-805)) - (-5 *2 - (-656 - (-2 (|:| -3734 (-783)) - (|:| |eqns| - (-656 - (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) - (|:| |cols| (-656 (-576)))))) - (|:| |fgb| (-656 *8))))) - (-5 *1 (-943 *5 *6 *7 *8)) (-5 *4 (-783))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1193 *7)) (-5 *3 (-576)) (-4 *7 (-968 *6 *4 *5)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) - (-5 *1 (-331 *4 *5 *6 *7))))) -(((*1 *1 *1) (-4 *1 (-1165)))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1179)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *4 (-1086 *6 *7 *8)) (-5 *2 (-1293)) - (-5 *1 (-788 *6 *7 *8 *4 *5)) (-4 *5 (-1092 *6 *7 *8 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *2 (-112)) + (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) + (-4 *4 (-13 (-1121) (-34)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-783)) (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-964 *4 *3)) - (-4 *3 (-1264 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) + (-5 *2 (-656 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) + (-5 *2 (-656 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1178 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 *3)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) + (-4 *4 (-738)))) + ((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-656 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1279 *3)) (-4 *3 (-1070)) (-5 *2 (-1178 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1288 (-701 *4))) (-4 *4 (-174)) + (-5 *2 (-1288 (-701 (-971 *4)))) (-5 *1 (-191 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-568)) + (-4 *3 (-968 *7 *5 *6)) + (-5 *2 + (-2 (|:| -2508 (-783)) (|:| -1715 *3) (|:| |radicand| (-656 *3)))) + (-5 *1 (-972 *5 *6 *7 *3 *8)) (-5 *4 (-783)) + (-4 *8 + (-13 (-374) + (-10 -8 (-15 -3569 ($ *3)) (-15 -1570 (*3 $)) (-15 -1581 (*3 $)))))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-464))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -2451 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-374)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1264 *4))))) (((*1 *2 *2 *3) (-12 (-5 *2 (-907 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1121)) (-4 *5 (-1238)) (-5 *1 (-905 *4 *5)))) @@ -8654,169 +8896,221 @@ (-4 *6 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))) (-4 *4 (-1121)) (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) (-5 *1 (-1097 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1264 (-171 *2)))))) -(((*1 *2 *3) - (-12 (-4 *1 (-851)) - (-5 *3 - (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) - (-5 *2 (-1056)))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) ((*1 *2 *3) - (-12 (-4 *1 (-851)) - (-5 *3 - (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) - (-5 *2 (-1056))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-656 (-971 *6))) (-5 *4 (-656 (-1197))) (-4 *6 (-464)) - (-5 *2 (-656 (-656 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-374)) - (-4 *5 (-13 (-374) (-860)))))) + (-12 (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-961)) (-5 *3 (-576))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1193 *7)) (-4 *5 (-1070)) + (-4 *7 (-1070)) (-4 *2 (-1264 *5)) (-5 *1 (-513 *5 *2 *6 *7)) + (-4 *6 (-1264 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1070)) (-4 *7 (-1070)) + (-4 *4 (-1264 *5)) (-5 *2 (-1193 *7)) (-5 *1 (-513 *5 *4 *6 *7)) + (-4 *6 (-1264 *4))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-118 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-576)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-885 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-14 *2 (-576)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-576)) (-14 *3 *2) (-5 *1 (-886 *3 *4)) + (-4 *4 (-883 *3)))) + ((*1 *1 *1) + (-12 (-14 *2 (-576)) (-5 *1 (-886 *2 *3)) (-4 *3 (-883 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-576)) (-4 *1 (-1250 *3 *4)) (-4 *3 (-1070)) + (-4 *4 (-1279 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1250 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-1279 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-304 (-855 *3))) (-4 *3 (-13 (-27) (-1223) (-442 *5))) + (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *2 + (-3 (-855 *3) + (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) + (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) + "failed")) + (-5 *1 (-648 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-304 *3)) (-5 *5 (-1179)) + (-4 *3 (-13 (-27) (-1223) (-442 *6))) + (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *2 (-855 *3)) (-5 *1 (-648 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-304 (-855 (-971 *5)))) (-4 *5 (-464)) + (-5 *2 + (-3 (-855 (-419 (-971 *5))) + (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-855 (-419 (-971 *5))) "failed"))) + "failed")) + (-5 *1 (-649 *5)) (-5 *3 (-419 (-971 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-304 (-419 (-971 *5)))) (-5 *3 (-419 (-971 *5))) + (-4 *5 (-464)) + (-5 *2 + (-3 (-855 *3) + (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) + (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) + "failed")) + (-5 *1 (-649 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-304 (-419 (-971 *6)))) (-5 *5 (-1179)) + (-5 *3 (-419 (-971 *6))) (-4 *6 (-464)) (-5 *2 (-855 *3)) + (-5 *1 (-649 *6))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) ((*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) ((*1 *1 *1 *1) (-5 *1 (-876))) ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1047 *3)) (-4 *3 (-1238))))) -(((*1 *2 *1) - (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1121)) - (-4 *2 (-861))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1197)) + (-4 *5 (-13 (-568) (-1059 (-576)) (-148))) + (-5 *2 + (-2 (|:| -2451 (-419 (-971 *5))) (|:| |coeff| (-419 (-971 *5))))) + (-5 *1 (-582 *5)) (-5 *3 (-419 (-971 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-683)))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1122 *3 *4)) (-14 *3 (-940)) + (-14 *4 (-940))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -4213 (-656 (-2 (|:| |irr| *10) (|:| -3012 (-576))))))) + (-5 *6 (-656 *3)) (-5 *7 (-656 *8)) (-4 *8 (-861)) (-4 *3 (-317)) + (-4 *10 (-968 *3 *9 *8)) (-4 *9 (-805)) + (-5 *2 + (-2 (|:| |polfac| (-656 *10)) (|:| |correct| *3) + (|:| |corrfact| (-656 (-1193 *3))))) + (-5 *1 (-637 *8 *9 *3 *10)) (-5 *4 (-656 (-1193 *3)))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-656 (-112))) (-5 *5 (-701 (-227))) + (-5 *6 (-701 (-576))) (-5 *7 (-227)) (-5 *3 (-576)) (-5 *2 (-1056)) + (-5 *1 (-766))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) + (-5 *2 + (-2 (|:| |mval| (-701 *4)) (|:| |invmval| (-701 *4)) + (|:| |genIdeal| (-516 *4 *5 *6 *7)))) + (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) - (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) - ((*1 *1 *1) (-5 *1 (-390))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3988 *4)))) - (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |k| (-684 *3)) (|:| |c| *4)))) - (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1121))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-971 (-576))) (-5 *3 (-1197)) - (-5 *4 (-1115 (-419 (-576)))) (-5 *1 (-30))))) + (-12 (-5 *2 (-876)) (-5 *1 (-1178 *3)) (-4 *3 (-1121)) + (-4 *3 (-1238))))) (((*1 *1) (-5 *1 (-1293)))) (((*1 *2 *1) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-693)))) ((*1 *2 *1) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-1139))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-971 *4))) (-5 *3 (-656 (-1197))) (-4 *4 (-464)) - (-5 *1 (-937 *4))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-656 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-656 (-1167 *5 *6 *7 *8))) (-5 *1 (-1167 *5 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-668 *3)) (-4 *3 (-1070)) (-4 *3 (-374)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) - (-5 *1 (-671 *5 *2)) (-4 *2 (-668 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-783)))) - ((*1 *1 *1) (-4 *1 (-414)))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) + (-4 *2 (-13 (-861) (-21)))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-1070)) (-5 *2 (-1288 *4)) - (-5 *1 (-1198 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-940)) (-5 *2 (-1288 *3)) (-5 *1 (-1198 *3)) - (-4 *3 (-1070))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *5 (-568)) - (-5 *2 - (-2 (|:| |minor| (-656 (-940))) (|:| -4027 *3) - (|:| |minors| (-656 (-656 (-940)))) (|:| |ops| (-656 *3)))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-940)) (-4 *3 (-668 *5))))) + (-12 (-5 *3 (-624 *5)) (-4 *5 (-442 *4)) (-4 *4 (-1059 (-576))) + (-4 *4 (-568)) (-5 *2 (-1193 *5)) (-5 *1 (-32 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-624 *1)) (-4 *1 (-1070)) (-4 *1 (-312)) + (-5 *2 (-1193 *1))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1084))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) + (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-998 *5 *6 *7 *8))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-591))))) +(((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-977 *3)) (-5 *1 (-1184 *4 *3)) - (-4 *3 (-1264 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3988 *4)))) - (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-940)) (-5 *1 (-711)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-701 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-374)) (-5 *1 (-999 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1238)) (-5 *2 (-656 *1)) (-4 *1 (-1031 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) - (-14 *3 (-940)) (-4 *4 (-1070))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-1238))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-374)) (-5 *1 (-913 *2 *3)) - (-4 *2 (-1264 *3))))) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 *5))) + (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-1288 *5)) + (-5 *1 (-650 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 *5))) + (-2663 (-4 *5 (-374))) (-4 *5 (-568)) (-5 *2 (-1288 (-419 *5))) + (-5 *1 (-650 *5 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-656 *4)) (-4 *4 (-861)) + (-5 *1 (-1208 *4))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *2 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317))))) +(((*1 *2 *2) (-12 (-5 *2 (-1115 (-855 (-227)))) (-5 *1 (-315))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) - (-4 *3 (-1121))))) + (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) + (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-317)) (-4 *6 (-384 *5)) (-4 *4 (-384 *5)) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2675 (-656 *4)))) + (-5 *1 (-1145 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-783))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1070)) - (-4 *2 (-1279 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *1 *1) (-4 *1 (-641))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023) (-1223)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-207)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-390))) (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1288 (-701 *4))) (-4 *4 (-174)) - (-5 *2 (-1288 (-701 (-971 *4)))) (-5 *1 (-191 *4))))) + (-12 (-5 *2 (-1047 (-855 (-576)))) (-5 *1 (-607 *3)) (-4 *3 (-1070))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1070))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-374)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-586 *5 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-112)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-940)) (|has| *1 (-6 -4455)) (-4 *1 (-416)))) + ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940))))) +(((*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-343))))) (((*1 *1 *2) (-12 (-5 *2 (-656 (-1097 *3 *4 *5))) (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) (-4 *5 (-13 (-442 *4) (-901 *3) (-626 (-907 *3)))) (-5 *1 (-1098 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-961)) (-5 *3 (-576))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) - (-4 *2 (-13 (-861) (-21)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-656 *4)) (-4 *4 (-861)) - (-5 *1 (-1208 *4))))) (((*1 *2 *3) (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-360)) (-5 *2 (-1288 *1)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-146)) (-4 *1 (-928)) (-5 *2 (-1288 *1))))) -(((*1 *2 *3 *3 *1) - (-12 (-5 *3 (-518)) (-5 *2 (-703 (-1125))) (-5 *1 (-301))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *2 + (-3 (|:| |%expansion| (-323 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) + (-5 *1 (-432 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) + (-14 *6 (-1197)) (-14 *7 *3)))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-656 (-1097 *4 *5 *2))) (-4 *4 (-1121)) + (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) + (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))) + (-5 *1 (-54 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-656 (-1097 *5 *6 *2))) (-5 *4 (-940)) (-4 *5 (-1121)) + (-4 *6 (-13 (-1070) (-901 *5) (-626 (-907 *5)))) + (-4 *2 (-13 (-442 *6) (-901 *5) (-626 (-907 *5)))) + (-5 *1 (-54 *5 *6 *2))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4464)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) + (-4 *3 (-1121)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-924 *4)) (-4 *4 (-1121)) (-5 *2 (-112)) + (-5 *1 (-923 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-940)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) (((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-783)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-940)))) ((*1 *1 *1 *1) @@ -8843,10 +9137,10 @@ ((*1 *1 *2 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) ((*1 *1 *2 *1) (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) - (-4 *6 (-243 (-3503 *3) (-783))) + (-4 *6 (-243 (-3502 *3) (-783))) (-14 *7 - (-1 (-112) (-2 (|:| -3224 *5) (|:| -3422 *6)) - (-2 (|:| -3224 *5) (|:| -3422 *6)))) + (-1 (-112) (-2 (|:| -3223 *5) (|:| -2508 *6)) + (-2 (|:| -3223 *5) (|:| -2508 *6)))) (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-861)) (-4 *2 (-968 *4 *6 (-878 *3))))) ((*1 *1 *1 *2) @@ -8920,98 +9214,90 @@ (-12 (-4 *1 (-1305 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1070)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-858))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-390)) (-5 *1 (-1061))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1239 *3)) (-4 *3 (-1121)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1121)) (-5 *2 (-112)) + (-5 *1 (-1239 *3))))) (((*1 *2 *1) (-12 (-4 *2 (-1238)) (-5 *1 (-887 *3 *2)) (-4 *3 (-1238)))) ((*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-656 *3)) (-5 *1 (-980 *3)) (-4 *3 (-557))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1179)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) + (-5 *2 (-1056)) (-5 *1 (-770))))) (((*1 *2 *1) - (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) - (-5 *2 (-2 (|:| |k| (-831 *3)) (|:| |c| *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1179)) (-5 *1 (-798))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-480)) (-5 *3 (-656 (-270))) (-5 *1 (-1289)))) - ((*1 *1 *1) (-5 *1 (-1289)))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) - (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) - (-5 *5 (-1115 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1154 (-227))) - (-5 *1 (-709))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-998 *3 *4 *5 *6))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(((*1 *1 *2 *3) - (-12 - (-5 *3 - (-656 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-576))))) - (-4 *2 (-568)) (-5 *1 (-430 *2)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |contp| (-576)) - (|:| -2761 (-656 (-2 (|:| |irr| *4) (|:| -2567 (-576))))))) - (-4 *4 (-1264 (-576))) (-5 *2 (-430 *4)) (-5 *1 (-454 *4))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-656 (-576))) (-5 *3 (-656 (-940))) (-5 *4 (-112)) - (-5 *1 (-1131))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) - (-5 *2 (-1056)) (-5 *1 (-766))))) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-767))))) (((*1 *1 *1) - (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *2 (-1121)) (-4 *3 (-1121)) - (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-1070)) (-4 *4 (-174)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)) + (-4 *3 (-174))))) +(((*1 *2 *3 *3 *1) + (-12 (-5 *3 (-518)) (-5 *2 (-703 (-1125))) (-5 *1 (-301))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1056))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557))))) +(((*1 *1) (-5 *1 (-1084)))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) + (-4 *5 (-13 (-374) (-148) (-1059 (-576)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) + (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -2739 *6))) + (-5 *1 (-1037 *5 *6)) (-5 *3 (-419 *6))))) +(((*1 *2) + (-12 (-4 *1 (-360)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) (((*1 *2 *3) - (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) + (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-194)))) ((*1 *2 *3) - (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) + (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-310)))) ((*1 *2 *3) - (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-656 *6) "failed") (-576) *6 *6)) (-4 *6 (-374)) - (-4 *7 (-1264 *6)) - (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(((*1 *1) (-5 *1 (-55)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| -1714 *4) (|:| -2715 *3) (|:| -3624 *3))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-2 (|:| -2715 *1) (|:| -3624 *1))) (-4 *1 (-1086 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1070)) - (-5 *2 (-2 (|:| -1714 *3) (|:| -2715 *1) (|:| -3624 *1))) - (-4 *1 (-1264 *3))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-624 *4)) (-4 *4 (-1121)) (-4 *2 (-1121)) - (-5 *1 (-623 *2 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) - (-4 *6 (-805)) (-4 *7 (-968 *4 *6 *5)) + (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-315))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1119 *3)) (-4 *3 (-1121)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1121)) (-4 *3 (-917 *5)) (-5 *2 (-701 *3)) + (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) + (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464))))))) +(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-390)) (-5 *1 (-1061))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 - (-2 (|:| |sysok| (-112)) (|:| |z0| (-656 *7)) (|:| |n0| (-656 *7)))) - (-5 *1 (-943 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) + (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-801)) (-5 *5 (-576))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-1248 *4)) (-4 *4 (-1070)) (-4 *4 (-568)) + (-5 *2 (-419 (-971 *4))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-1248 *4)) (-4 *4 (-1070)) (-4 *4 (-568)) + (-5 *2 (-419 (-971 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1145 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6))))) + (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1223) (-1023))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1264 (-419 *2))) + (-4 *2 (-1264 *4)) (-5 *1 (-352 *3 *4 *2 *5)) + (-4 *3 (-353 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1242)) + (-4 *4 (-1264 (-419 *2))) (-4 *2 (-1264 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1242)) + (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) + (-5 *2 (-2 (|:| |num| (-701 *5)) (|:| |den| *5)))))) (((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1238)))) ((*1 *1 *2) (-12 (-5 *2 (-971 (-390))) (-5 *1 (-350 *3 *4 *5)) @@ -9067,11 +9353,11 @@ (-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) - (|:| -2951 (-656 (-1115 (-855 (-227))))) + (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-781)))) ((*1 *2 *1) @@ -9087,13 +9373,13 @@ (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) + (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) - (|:| -3540 (-656 (-227))))))) + (|:| -3539 (-656 (-227))))))) (-5 *1 (-853)))) ((*1 *2 *1) (-12 @@ -9112,7 +9398,7 @@ (-4 *4 (-805)) (-4 *5 (-861)) (-4 *1 (-997 *3 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1238)))) ((*1 *1 *2) - (-2760 + (-2759 (-12 (-5 *2 (-971 *3)) (-12 (-2663 (-4 *3 (-38 (-419 (-576))))) (-2663 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1197)))) @@ -9129,7 +9415,7 @@ (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))))) ((*1 *1 *2) - (-2760 + (-2759 (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-2663 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1197)))) @@ -9141,38 +9427,55 @@ (-12 (-5 *2 (-971 (-419 (-576)))) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| -3014 (-430 *3)) (|:| |special| (-430 *3)))) - (-5 *1 (-739 *5 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-971 (-171 (-576)))))) - (-5 *2 (-656 (-656 (-304 (-971 (-171 *4)))))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-374) (-860))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-1008 (-419 (-576)) (-878 *3) (-245 *4 (-783)) + (-253 *3 (-419 (-576))))) + (-14 *3 (-656 (-1197))) (-14 *4 (-783)) (-5 *1 (-1007 *3 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-701 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))) + ((*1 *2 *3) + (-12 (-4 *4 (-174)) (-4 *2 (-1264 *4)) (-5 *1 (-179 *4 *2 *3)) + (-4 *3 (-736 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-304 (-419 (-971 (-171 (-576))))))) - (-5 *2 (-656 (-656 (-304 (-971 (-171 *4)))))) (-5 *1 (-389 *4)) + (-12 (-5 *3 (-701 (-419 (-971 *5)))) (-5 *4 (-1197)) + (-5 *2 (-971 *5)) (-5 *1 (-302 *5)) (-4 *5 (-464)))) + ((*1 *2 *3) + (-12 (-5 *3 (-701 (-419 (-971 *4)))) (-5 *2 (-971 *4)) + (-5 *1 (-302 *4)) (-4 *4 (-464)))) + ((*1 *2 *1) + (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1264 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-701 (-171 (-419 (-576))))) + (-5 *2 (-971 (-171 (-419 (-576))))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-971 (-171 (-576))))) - (-5 *2 (-656 (-304 (-971 (-171 *4))))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-374) (-860))))) + (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *4 (-1197)) + (-5 *2 (-971 (-171 (-419 (-576))))) (-5 *1 (-776 *5)) + (-4 *5 (-13 (-374) (-860))))) + ((*1 *2 *3) + (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-971 (-419 (-576)))) + (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-304 (-419 (-971 (-171 (-576)))))) - (-5 *2 (-656 (-304 (-971 (-171 *4))))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-374) (-860)))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-876))))) + (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *4 (-1197)) + (-5 *2 (-971 (-419 (-576)))) (-5 *1 (-791 *5)) + (-4 *5 (-13 (-374) (-860)))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) + ((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-541))))) (((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340))))) -(((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1193 *4)) (-5 *1 (-540 *4)) - (-4 *4 (-360))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1264 *4)) (-4 *4 (-1242)) - (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1264 (-419 *3)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) (((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-656 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1121)))) @@ -9184,213 +9487,132 @@ (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121))))) -(((*1 *2 *2) - (-12 (-4 *3 (-626 (-907 *3))) (-4 *3 (-901 *3)) (-4 *3 (-464)) - (-5 *1 (-1229 *3 *2)) (-4 *2 (-626 (-907 *3))) (-4 *2 (-901 *3)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) - (-4 *2 (-1279 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1264 *3)) - (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1279 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) - (-4 *2 (-1279 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-13 (-568) (-148))) - (-5 *1 (-1174 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1178 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) - (-5 *1 (-1150 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-13 (-317) (-148))) - (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-304 (-419 (-971 *5)))) (-5 *4 (-1197)) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) - (-5 *1 (-1150 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-304 (-419 (-971 *4)))) (-4 *4 (-13 (-317) (-148))) - (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) - (-5 *1 (-1150 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-419 (-971 *4)))) (-4 *4 (-13 (-317) (-148))) - (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1150 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-304 (-419 (-971 *5))))) (-5 *4 (-656 (-1197))) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) - (-5 *1 (-1150 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-304 (-419 (-971 *4))))) - (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) - (-5 *1 (-1150 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-962 (-227)) (-227) (-227))) + (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262))))) +(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061))))) +(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) (((*1 *2 *1) - (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1023)) - (-4 *2 (-1070))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-940))) (-5 *2 (-1199 (-419 (-576)))) - (-5 *1 (-192))))) -(((*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) + (-12 (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-656 *1)) + (-4 *1 (-393 *3 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 (-747 *3 *4))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) + (-4 *4 (-738)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) + (-4 *1 (-968 *3 *4 *5))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) + (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-998 *3 *4 *5 *6))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3498 *3))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-940)) (-5 *4 (-430 *6)) (-4 *6 (-1264 *5)) - (-4 *5 (-1070)) (-5 *2 (-656 *6)) (-5 *1 (-456 *5 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-861)) (-5 *4 (-656 *6)) + (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-656 *4)))) + (-5 *1 (-1208 *6)) (-5 *5 (-656 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1179)) (-5 *1 (-315))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-759))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-576)) (|has| *1 (-6 -4465)) (-4 *1 (-384 *3)) + (-4 *3 (-1238))))) (((*1 *1 *2 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1238)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-1178 *2)) (-4 *2 (-1238))))) (((*1 *2 *2) (-12 (-4 *3 (-1121)) (-5 *1 (-948 *3 *2)) (-4 *2 (-442 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-326 (-576))) (-5 *1 (-949))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) - (-5 *1 (-760))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-968 *4 *6 *5)) (-4 *4 (-464)) - (-4 *5 (-861)) (-4 *6 (-805)) (-5 *1 (-1008 *4 *5 *6 *3))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-904 *4 *3)) - (-4 *3 (-1121))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) + ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-656 (-701 *6))) (-5 *4 (-112)) (-5 *5 (-576)) + (-5 *2 (-701 *6)) (-5 *1 (-1050 *6)) (-4 *6 (-374)) (-4 *6 (-1070)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-112) *7 (-656 *7))) (-4 *1 (-1231 *4 *5 *6 *7)) - (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3) + (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-5 *1 (-1050 *4)) + (-4 *4 (-374)) (-4 *4 (-1070)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-5 *2 (-701 *5)) + (-5 *1 (-1050 *5)) (-4 *5 (-374)) (-4 *5 (-1070))))) +(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529))))) +(((*1 *2 *3 *4) (-12 (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-1121)) (-5 *2 (-1293)) - (-5 *1 (-1239 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-1121)) (-5 *2 (-1293)) - (-5 *1 (-1239 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) - (-14 *4 (-1197)) (-14 *5 *3)))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) - (-14 *4 (-783)) (-4 *5 (-174))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) - (-4 *4 (-13 (-1121) (-34)))))) -(((*1 *2) - (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) - (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1197)) (-5 *5 (-1115 (-227))) (-5 *2 (-946)) - (-5 *1 (-944 *3)) (-4 *3 (-626 (-548))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1197)) (-5 *5 (-1115 (-227))) (-5 *2 (-946)) - (-5 *1 (-944 *3)) (-4 *3 (-626 (-548))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) - (-5 *1 (-945)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) - (-5 *1 (-945)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) - (-5 *1 (-946)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) - (-5 *1 (-946)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1115 (-227))) - (-5 *1 (-946)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1115 (-227))) - (-5 *1 (-946)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) - (-5 *1 (-946)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) - (-5 *1 (-946))))) + (-656 + (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) + (|:| |wcond| (-656 (-971 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) + (|:| -2675 (-656 (-1288 (-419 (-971 *5)))))))))) + (-5 *4 (-1179)) (-4 *5 (-13 (-317) (-148))) (-4 *8 (-968 *5 *7 *6)) + (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-576)) + (-5 *1 (-943 *5 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-360)) - (-5 *2 - (-2 (|:| |cont| *5) - (|:| -2761 (-656 (-2 (|:| |irr| *3) (|:| -2567 (-576))))))) - (-5 *1 (-218 *5 *3)) (-4 *3 (-1264 *5))))) + (-12 (-5 *3 (-656 *5)) (-5 *4 (-940)) (-4 *5 (-861)) + (-5 *2 (-59 (-656 (-684 *5)))) (-5 *1 (-684 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-888)) + (-5 *5 (-940)) (-5 *6 (-656 (-270))) (-5 *2 (-1289)) + (-5 *1 (-1292)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-656 (-270))) + (-5 *2 (-1289)) (-5 *1 (-1292))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1070)))) - ((*1 *2 *1) - (-12 (-4 *3 (-568)) (-5 *2 (-112)) (-5 *1 (-635 *3 *4)) - (-4 *4 (-1264 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) - (-4 *4 (-738)))) - ((*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) - (-5 *2 (-112))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1273 *4 *5 *6)) - (|:| |%expon| (-329 *4 *5 *6)) - (|:| |%expTerms| - (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))))) - (|:| |%type| (-1179)))) - (-5 *1 (-1274 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-442 *3))) - (-14 *5 (-1197)) (-14 *6 *4)))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-276))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-998 *3 *4 *5 *6))))) + (-5 *2 (-2 (|:| |k| (-831 *3)) (|:| |c| *4)))))) +(((*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-174)) (-4 *2 (-1070)) (-5 *1 (-726 *2 *3)) + (-4 *3 (-660 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-174)) (-4 *2 (-1070)) (-5 *1 (-726 *2 *3)) + (-4 *3 (-660 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1070)))) + ((*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1070))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-576)) (-4 *5 (-360)) (-5 *2 (-430 (-1193 (-1193 *5)))) + (-5 *1 (-1236 *5)) (-5 *3 (-1193 (-1193 *5)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1197)) (-4 *5 (-374)) (-5 *2 (-656 (-1232 *5))) + (-5 *1 (-1296 *5)) (-5 *4 (-1232 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-1070)) (-4 *3 (-1264 *4)) (-4 *2 (-1279 *4)) - (-5 *1 (-1282 *4 *3 *5 *2)) (-4 *5 (-668 *3))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *6)))) - (-5 *4 (-1047 (-855 (-576)))) (-5 *5 (-1197)) (-5 *7 (-419 (-576))) - (-4 *6 (-1070)) (-5 *2 (-876)) (-5 *1 (-607 *6))))) + (-12 (-5 *3 (-1179)) (-5 *2 (-576)) (-5 *1 (-1220 *4)) + (-4 *4 (-1070))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-1161 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) + (-4 *4 (-13 (-1121) (-34))) (-4 *5 (-13 (-1121) (-34))) + (-5 *1 (-1162 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-656 (-1161 *3 *4))) (-4 *3 (-13 (-1121) (-34))) + (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4))))) +(((*1 *1) (-5 *1 (-480)))) +(((*1 *2 *1) (-12 (-5 *1 (-1233 *2)) (-4 *2 (-995))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) (((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-321)))) ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) @@ -9411,80 +9633,49 @@ ((*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-876))) ((*1 *1 *1 *1) (-5 *1 (-876))) - ((*1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-850))) (-5 *1 (-141))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) - (-15 -1581 ((-1146 *3 (-624 $)) $)) - (-15 -3570 ($ (-1146 *3 (-624 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) - (-15 -1581 ((-1146 *3 (-624 $)) $)) - (-15 -3570 ($ (-1146 *3 (-624 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -1570 ((-1146 *4 (-624 $)) $)) - (-15 -1581 ((-1146 *4 (-624 $)) $)) - (-15 -3570 ($ (-1146 *4 (-624 $))))))) - (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-624 *2))) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -1570 ((-1146 *4 (-624 $)) $)) - (-15 -1581 ((-1146 *4 (-624 $)) $)) - (-15 -3570 ($ (-1146 *4 (-624 $))))))) - (-4 *4 (-568)) (-5 *1 (-41 *4 *2))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-924 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-1059 (-419 *2)))) (-5 *2 (-576)) - (-5 *1 (-116 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) +(((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1179)) (-5 *1 (-798))))) +(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-135))))) +(((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-4 *7 (-1013 *4)) (-4 *2 (-699 *7 *8 *9)) - (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) - (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) - (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) - ((*1 *2 *2) - (|partial| -12 (-4 *3 (-374)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) - (-4 *2 (-699 *3 *4 *5)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-701 *2)) (-4 *2 (-374)) (-4 *2 (-1070)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1144 *2 *3 *4 *5)) (-4 *3 (-1070)) - (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-374)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-1208 *3))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1059 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) - (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1121)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1121))))) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1238))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) + (-4 *2 (-668 *4))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1197)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1197)) (-5 *2 (-112)) (-5 *1 (-624 *4)) + (-4 *4 (-1121)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1121)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1121)) (-5 *2 (-112)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1121)) (-5 *2 (-112)) (-5 *1 (-902 *5 *3 *4)) + (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *6)) (-4 *6 (-901 *5)) (-4 *5 (-1121)) + (-5 *2 (-112)) (-5 *1 (-902 *5 *6 *4)) (-4 *4 (-626 (-907 *5)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-333 *2 *4)) (-4 *4 (-132)) + (-4 *2 (-1121)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1121)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *2)) (-4 *2 (-1121)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *2 (-1121)) (-5 *1 (-661 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1141)) (-5 *2 (-1293)) (-5 *1 (-843))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) + (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD)))) + (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) + (-5 *2 (-1056)) (-5 *1 (-768))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-1021 *3))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-557))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) @@ -9501,22 +9692,26 @@ ((*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) - (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1223) (-978)))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) - (-5 *3 (-656 (-576))))) - ((*1 *2 *3) - (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) - (-5 *3 (-656 (-576)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1121)) (-4 *5 (-1121)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-861) (-626 (-1197)))) + (-4 *5 (-805)) (-5 *1 (-943 *3 *4 *5 *2)) (-4 *2 (-968 *3 *5 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -4346 *1) (|:| -4451 *1) (|:| |associate| *1))) + (-4 *1 (-568))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-701 *3)) + (-4 *3 (-13 (-317) (-10 -8 (-15 -3760 ((-430 $) $))))) + (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-701 *3)) + (-4 *3 (-13 (-317) (-10 -8 (-15 -3760 ((-430 $) $))))) + (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) (((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1238)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) @@ -9545,14 +9740,14 @@ (-12 (-5 *3 (-1197)) (-5 *2 (-250 (-1179))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-861) - (-10 -8 (-15 -2797 ((-1179) $ *3)) (-15 -1977 ((-1293) $)) - (-15 -3420 ((-1293) $))))))) + (-10 -8 (-15 -2796 ((-1179) $ *3)) (-15 -1977 ((-1293) $)) + (-15 -2486 ((-1293) $))))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1010)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-861) - (-10 -8 (-15 -2797 ((-1179) $ (-1197))) (-15 -1977 ((-1293) $)) - (-15 -3420 ((-1293) $))))))) + (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1977 ((-1293) $)) + (-15 -2486 ((-1293) $))))))) ((*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-783)) (-5 *1 (-250 *4)) (-4 *4 (-861)))) ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-250 *3)) (-4 *3 (-861)))) @@ -9616,25 +9811,28 @@ (-12 (-5 *2 "rest") (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-576)))) - (-4 *4 (-13 (-1264 *3) (-568) (-10 -8 (-15 -3498 ($ $ $))))) - (-4 *3 (-568)) (-5 *1 (-1267 *3 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1197))) (-4 *6 (-374)) + (-5 *2 (-656 (-304 (-971 *6)))) (-5 *1 (-550 *5 *6 *7)) + (-4 *5 (-464)) (-4 *7 (-13 (-374) (-860)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *3 (-656 (-888))) + (-5 *1 (-480))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7))))) -(((*1 *1) (-5 *1 (-815)))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) + (-12 (-5 *3 (-1288 *5)) (-4 *5 (-804)) (-5 *2 (-112)) + (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) + (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) + ((*1 *2 *1) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) + (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-861)) (-5 *2 (-783))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) @@ -9654,59 +9852,84 @@ (((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-446)) (-4 *5 (-1121)) (-5 *1 (-1127 *5 *4)) (-4 *4 (-442 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-576))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-656 (-112))) (-5 *7 (-701 (-227))) + (-5 *8 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *5 (-112)) + (-5 *2 (-1056)) (-5 *1 (-766))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)) - (-5 *1 (-826 *4 *5)) (-4 *5 (-668 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-374)) - (-5 *2 (-701 *5)) (-5 *1 (-826 *5 *6)) (-4 *6 (-668 *5))))) -(((*1 *1 *1) (-5 *1 (-1084)))) -(((*1 *2 *1) (-12 - (-5 *2 - (-656 - (-656 - (-3 (|:| -2629 (-1197)) - (|:| -3059 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576)))))))))) - (-5 *1 (-1201))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *1)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1070)) (-5 *1 (-701 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *4)) (-4 *4 (-1070)) (-4 *1 (-1144 *3 *4 *5 *6)) - (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-701 *5))) (-4 *5 (-317)) (-4 *5 (-1070)) - (-5 *2 (-1288 (-1288 *5))) (-5 *1 (-1050 *5)) (-5 *4 (-1288 *5))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1056)) (-5 *1 (-762))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1238))))) -(((*1 *2 *3) + (-5 *3 + (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) + (-5 *2 (-656 (-419 (-576)))) (-5 *1 (-1041 *4)) + (-4 *4 (-1264 (-576)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-990 *4 *3)) + (-4 *3 (-1264 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) + (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) + (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) + (-4 *2 (-699 *3 *5 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-656 (-1197))) + (-5 *2 (-656 (-656 (-390)))) (-5 *1 (-1044)) (-5 *5 (-390)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) + (-14 *5 (-656 (-1197))) (-5 *2 (-656 (-656 (-1045 (-419 *4))))) + (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) + (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) + (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) + (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-971 *4))) + (-4 *4 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 (-656 (-656 (-1045 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) + (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197)))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-480)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023)))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) - (-5 *2 (-1056)) (-5 *1 (-757))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-270)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) - (-5 *2 (-1056)) (-5 *1 (-759))))) -(((*1 *1 *1 *1) (-5 *1 (-163))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-163))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-480)) (-5 *3 (-656 (-270))) (-5 *1 (-1289)))) + ((*1 *1 *1) (-5 *1 (-1289)))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) + (-5 *2 (-1056)) (-5 *1 (-761))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-289))) (-5 *1 (-289)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-1202))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-52)) (-5 *1 (-907 *4)) + (-4 *4 (-1121))))) (((*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1238)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783)))) ((*1 *1 *1 *2 *3) @@ -9734,303 +9957,100 @@ (-12 (-5 *2 (-656 *3)) (-4 *1 (-919 *3)) (-4 *3 (-1121)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1264 *3)) (-4 *3 (-1070))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-576)) (-5 *5 (-1179)) (-5 *6 (-701 (-227))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1070))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) + (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196))))) -(((*1 *2 *3) - (-12 (-4 *4 (-374)) (-4 *4 (-568)) (-4 *5 (-1264 *4)) - (-5 *2 (-2 (|:| -3708 (-635 *4 *5)) (|:| -4020 (-419 *5)))) - (-5 *1 (-635 *4 *5)) (-5 *3 (-419 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) - (-14 *3 (-940)) (-4 *4 (-1070)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-464)) (-4 *3 (-1070)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1264 *3))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1288 (-576))) (-5 *3 (-576)) (-5 *1 (-1131)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1288 (-576))) (-5 *3 (-656 (-576))) (-5 *4 (-576)) + (-5 *1 (-1131))))) (((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1172))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1197)) - (-4 *4 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-634 *4 *2)) (-4 *2 (-13 (-1223) (-978) (-29 *4)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-1219))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-971 (-576))))) - (-5 *2 (-656 (-656 (-304 (-971 *4))))) (-5 *1 (-391 *4)) - (-4 *4 (-13 (-860) (-374))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-304 (-419 (-971 (-576)))))) - (-5 *2 (-656 (-656 (-304 (-971 *4))))) (-5 *1 (-391 *4)) - (-4 *4 (-13 (-860) (-374))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-971 (-576)))) (-5 *2 (-656 (-304 (-971 *4)))) - (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-304 (-419 (-971 (-576))))) - (-5 *2 (-656 (-304 (-971 *4)))) (-5 *1 (-391 *4)) - (-4 *4 (-13 (-860) (-374))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1197)) - (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-4 *4 (-13 (-29 *6) (-1223) (-978))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -1593 (-656 *4)))) - (-5 *1 (-664 *6 *4 *3)) (-4 *3 (-668 *4)))) - ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-656 *2)) - (-4 *2 (-13 (-29 *6) (-1223) (-978))) - (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *1 (-664 *6 *2 *3)) (-4 *3 (-668 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1288 *5) "failed")) - (|:| -1593 (-656 (-1288 *5))))) - (-5 *1 (-679 *5)) (-5 *4 (-1288 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1288 *5) "failed")) - (|:| -1593 (-656 (-1288 *5))))) - (-5 *1 (-679 *5)) (-5 *4 (-1288 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) - (-5 *2 - (-656 - (-2 (|:| |particular| (-3 (-1288 *5) "failed")) - (|:| -1593 (-656 (-1288 *5)))))) - (-5 *1 (-679 *5)) (-5 *4 (-656 (-1288 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) - (-5 *2 - (-656 - (-2 (|:| |particular| (-3 (-1288 *5) "failed")) - (|:| -1593 (-656 (-1288 *5)))))) - (-5 *1 (-679 *5)) (-5 *4 (-656 (-1288 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4466)))) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4466)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1593 (-656 *4)))) - (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4466)))) - (-4 *7 (-13 (-384 *5) (-10 -7 (-6 -4466)))) - (-5 *2 - (-656 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1593 (-656 *7))))) - (-5 *1 (-680 *5 *6 *7 *3)) (-5 *4 (-656 *7)) - (-4 *3 (-699 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-656 (-1197))) (-4 *5 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-782 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-782 *4)))) - ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1197)) - (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *1 (-784 *5 *2)) (-4 *2 (-13 (-29 *5) (-1223) (-978))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-701 *7)) (-5 *5 (-1197)) - (-4 *7 (-13 (-29 *6) (-1223) (-978))) - (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1288 *7)) (|:| -1593 (-656 (-1288 *7))))) - (-5 *1 (-814 *6 *7)) (-5 *4 (-1288 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-701 *6)) (-5 *4 (-1197)) - (-4 *6 (-13 (-29 *5) (-1223) (-978))) - (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-1288 *6))) (-5 *1 (-814 *5 *6)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) - (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) - (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1288 *7)) (|:| -1593 (-656 (-1288 *7))))) - (-5 *1 (-814 *6 *7)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) - (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) - (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1288 *7)) (|:| -1593 (-656 (-1288 *7))))) - (-5 *1 (-814 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-1197)) - (-4 *7 (-13 (-29 *6) (-1223) (-978))) - (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -1593 (-656 *7))) *7 "failed")) - (-5 *1 (-814 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-115)) (-5 *5 (-1197)) - (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -1593 (-656 *3))) *3 "failed")) - (-5 *1 (-814 *6 *3)) (-4 *3 (-13 (-29 *6) (-1223) (-978))))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-304 *2)) (-5 *4 (-115)) (-5 *5 (-656 *2)) - (-4 *2 (-13 (-29 *6) (-1223) (-978))) (-5 *1 (-814 *6 *2)) - (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))))) - ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-304 *2)) (-5 *5 (-656 *2)) - (-4 *2 (-13 (-29 *6) (-1223) (-978))) - (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *1 (-814 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1056)) (-5 *1 (-817)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-820)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1288 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) - (-5 *2 (-1056)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1288 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) - (-5 *2 (-1056)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-656 (-390))) - (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1056)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1288 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) - (-5 *2 (-1056)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-656 (-390))) - (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1056)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-656 (-390))) - (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1056)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 - (-5 *5 - (-1 - (-3 (-2 (|:| |particular| *6) (|:| -1593 (-656 *6))) "failed") - *7 *6)) - (-4 *6 (-374)) (-4 *7 (-668 *6)) - (-5 *2 (-2 (|:| |particular| (-1288 *6)) (|:| -1593 (-701 *6)))) - (-5 *1 (-825 *6 *7)) (-5 *3 (-701 *6)) (-5 *4 (-1288 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1056)) (-5 *1 (-914)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-915)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-914)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1179)) - (-5 *8 (-227)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) - (-5 *2 (-1056)) (-5 *1 (-914)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1179)) - (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1056)) - (-5 *1 (-914)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-971 (-419 (-576)))) (-5 *2 (-656 (-390))) - (-5 *1 (-1044)) (-5 *4 (-390)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-971 (-576))) (-5 *2 (-656 (-390))) (-5 *1 (-1044)) - (-5 *4 (-390)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1152 *4)) - (-5 *3 (-326 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1152 *4)) - (-5 *3 (-304 (-326 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) - (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1152 *5)) - (-5 *3 (-304 (-326 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) - (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1152 *5)) - (-5 *3 (-326 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-1197))) - (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1152 *5)) - (-5 *3 (-656 (-304 (-326 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) - (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) - (-5 *1 (-1206 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-1197))) (-4 *5 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-1206 *5)) - (-5 *3 (-656 (-304 (-419 (-971 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-419 (-971 *4)))) (-4 *4 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-1206 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) - (-5 *1 (-1206 *4)) (-5 *3 (-656 (-304 (-419 (-971 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) (-4 *5 (-568)) - (-5 *2 (-656 (-304 (-419 (-971 *5))))) (-5 *1 (-1206 *5)) - (-5 *3 (-419 (-971 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) (-4 *5 (-568)) - (-5 *2 (-656 (-304 (-419 (-971 *5))))) (-5 *1 (-1206 *5)) - (-5 *3 (-304 (-419 (-971 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-971 *4))))) - (-5 *1 (-1206 *4)) (-5 *3 (-419 (-971 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-971 *4))))) - (-5 *1 (-1206 *4)) (-5 *3 (-304 (-419 (-971 *4))))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-1070)) - (-5 *1 (-1181 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-576)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) - (-14 *4 (-1197)) (-14 *5 *3)))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1131)) (-5 *3 (-576))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-419 (-576))) (-5 *1 (-315))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-1288 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4104 (-576))))) - (-5 *1 (-372 *3)) (-4 *3 (-1121)))) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-397 *3)) (-4 *3 (-1121)) - (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4104 (-783))))))) + (-12 (-5 *2 (-112)) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) + ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| -1828 *3) (|:| -3422 (-576))))) - (-5 *1 (-430 *3)) (-4 *3 (-568))))) + (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1018 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1029 *3)) (-4 *3 (-1059 (-419 (-576))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1059 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924 *3)) (-4 *3 (-1121))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1160)))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) + (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) + (-5 *5 (-1115 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1154 (-227))) + (-5 *1 (-709))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1121)) (-4 *4 (-1121)) + (-4 *6 (-1121)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *5 *4 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-1288 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-977 (-1141))) + (-5 *1 (-357 *4))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) + (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196))))) (((*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-805)) (-4 *2 (-275 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-5 *2 (-1288 *3)) (-5 *1 (-724 *3 *4)) - (-4 *4 (-1264 *3))))) -(((*1 *1 *1) (-4 *1 (-568)))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) -(((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-158))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-145))) (-5 *1 (-142)))) - ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-142))))) -(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-541)))) - ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-541))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) + ((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-767))))) +(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1219)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1219))))) +(((*1 *2) + (-12 (-5 *2 (-701 (-929 *3))) (-5 *1 (-362 *3 *4)) (-14 *3 (-940)) + (-14 *4 (-940)))) + ((*1 *2) + (-12 (-5 *2 (-701 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) + (-14 *4 + (-3 (-1193 *3) + (-1288 (-656 (-2 (|:| -3104 *3) (|:| -3223 (-1141))))))))) + ((*1 *2) + (-12 (-5 *2 (-701 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) + (-14 *4 (-940))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-656 *3)) (-4 *3 (-968 *5 *6 *7)) (-4 *5 (-464)) + (-4 *6 (-805)) (-4 *7 (-861)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-461 *5 *6 *7 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) + (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-998 *3 *4 *5 *6))))) (((*1 *1) (-5 *1 (-590))) ((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-877)))) ((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-877)))) @@ -10039,160 +10059,174 @@ ((*1 *2 *3 *1) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1178 *4)) (-4 *4 (-1121)) (-4 *4 (-1238))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-656 (-419 *6))) (-5 *3 (-419 *6)) - (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-580 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1288 (-326 (-227)))) - (-5 *2 - (-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) - (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576)))) - (-5 *1 (-315))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-783)) (-5 *5 (-656 *3)) (-4 *3 (-317)) (-4 *6 (-861)) + (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-637 *6 *7 *3 *8)) + (-4 *8 (-968 *3 *7 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) +(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1179)) (-5 *1 (-315))))) (((*1 *1 *1) (-5 *1 (-1196))) ((*1 *1 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) + (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1121) (-34))) (-4 *6 (-13 (-1121) (-34))) + (-5 *2 (-112)) (-5 *1 (-1161 *5 *6))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) ((*1 *1 *1 *1) (-4 *1 (-557))) ((*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) ((*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-783))))) -(((*1 *2 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070)))) - ((*1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-940)) (-5 *1 (-1053 *2)) - (-4 *2 (-13 (-1121) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1197)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *4 *5 *6)) - (-4 *4 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061))))) -(((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-4 *5 (-1264 *4)) (-5 *2 (-656 (-665 (-419 *5)))) - (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -4250 *6) (|:| |sol?| (-112))) (-576) - *6)) - (-4 *6 (-374)) (-4 *7 (-1264 *6)) - (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1288 *4)) (-5 *3 (-783)) (-4 *4 (-360)) - (-5 *1 (-540 *4))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1200)))) + (-12 (-5 *3 (-1288 *6)) (-5 *4 (-1288 (-576))) (-5 *5 (-576)) + (-4 *6 (-1121)) (-5 *2 (-1 *6)) (-5 *1 (-1038 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(((*1 *1) (-5 *1 (-1289)))) +(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-624 (-48))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1193 (-48))) (-5 *3 (-656 (-624 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1193 (-48))) (-5 *3 (-624 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1264 (-171 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-940)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) + ((*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) + ((*1 *2 *1) + (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) + (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1013 *3)) (-5 *1 (-425 *3 *2 *4 *5)) + (-4 *3 (-317)) (-4 *5 (-13 (-421 *2 *4) (-1059 *2))))) + ((*1 *2 *1) + (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1013 *3)) + (-5 *1 (-426 *3 *2 *4 *5 *6)) (-4 *3 (-317)) (-4 *5 (-421 *2 *4)) + (-14 *6 (-1288 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1293)) - (-5 *1 (-1200)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1293)) - (-5 *1 (-1200))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-833))))) -(((*1 *2 *2) - (-12 + (-12 (-5 *4 (-940)) (-4 *5 (-1070)) + (-4 *2 (-13 (-416) (-1059 *5) (-374) (-1223) (-294))) + (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1264 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-507)))) (-5 *1 (-507)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-624 (-507))) (-5 *1 (-507)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1193 (-507))) (-5 *3 (-656 (-624 (-507)))) + (-5 *1 (-507)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1193 (-507))) (-5 *3 (-624 (-507))) (-5 *1 (-507)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1288 *4)) (-5 *3 (-940)) (-4 *4 (-360)) + (-5 *1 (-540 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-736 *4 *2)) (-4 *2 (-1264 *4)) + (-5 *1 (-787 *4 *2 *5 *3)) (-4 *3 (-1264 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) + ((*1 *1 *1) (-4 *1 (-1081)))) +(((*1 *2 *1) + (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-4 *5 (-1264 *4)) (-5 *2 (-1293)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1264 (-419 *5))) (-14 *7 *6)))) +(((*1 *1 *1) (|partial| -4 *1 (-1173)))) +(((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-227)) (-5 *1 (-315))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1197)) (-5 *6 (-112)) + (-4 *7 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) + (-4 *3 (-13 (-1223) (-978) (-29 *7))) (-5 *2 - (-656 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-805)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-861)) - (-5 *1 (-461 *3 *4 *5 *6))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-656 *1)) (-4 *1 (-1086 *3 *4 *5))))) + (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-221 *7 *3)) (-5 *5 (-855 *3))))) (((*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1) (-5 *1 (-548))) ((*1 *1) (-4 *1 (-734))) ((*1 *1) (-4 *1 (-738))) ((*1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) ((*1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-861))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-940)) (-4 *4 (-379)) (-4 *4 (-374)) (-5 *2 (-1193 *1)) - (-4 *1 (-339 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1193 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *3 (-374)) - (-4 *2 (-1264 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-1193 *4)) - (-5 *1 (-540 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) - (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1288 *5)) (-4 *5 (-804)) (-5 *2 (-112)) - (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) (((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-317)) - (-5 *2 (-783)) (-5 *1 (-467 *5 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) + (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-656 (-173))))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1264 (-576))) (-5 *1 (-498 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-855 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-701 (-576))) (-5 *5 (-112)) (-5 *7 (-701 (-227))) + (-5 *3 (-576)) (-5 *6 (-227)) (-5 *2 (-1056)) (-5 *1 (-766))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *1 *2 *3) + (-12 + (-5 *3 + (-656 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-576))))) + (-4 *2 (-568)) (-5 *1 (-430 *2)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |contp| (-576)) + (|:| -4213 (-656 (-2 (|:| |irr| *4) (|:| -3012 (-576))))))) + (-4 *4 (-1264 (-576))) (-5 *2 (-430 *4)) (-5 *1 (-454 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) - (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) - (-5 *2 (-2 (|:| -1411 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) - (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) + (-12 (-4 *5 (-374)) + (-5 *2 + (-2 (|:| A (-701 *5)) + (|:| |eqs| + (-656 + (-2 (|:| C (-701 *5)) (|:| |g| (-1288 *5)) (|:| -4026 *6) + (|:| |rh| *5)))))) + (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *5)) (-5 *4 (-1288 *5)) + (-4 *6 (-668 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) (-4 *6 (-668 *5)) + (-5 *2 (-2 (|:| -3232 (-701 *6)) (|:| |vec| (-1288 *5)))) + (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *6)) (-5 *4 (-1288 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1293)) - (-5 *1 (-461 *4 *5 *6 *7))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-939))))) + (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) + (-4 *4 (-360))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238))))) (((*1 *1) (-4 *1 (-23))) ((*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1) (-5 *1 (-548))) ((*1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) + (-14 *6 (-656 (-1197))) + (-5 *2 + (-656 (-1167 *5 (-543 (-878 *6)) (-878 *6) (-792 *5 (-878 *6))))) + (-5 *1 (-640 *5 *6))))) (((*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 *2))) (-5 *2 (-907 *3)) (-5 *1 (-1097 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-901 *3) (-626 *2)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-1153 *4 *2)) - (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4465) (-6 -4466)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-861)) (-4 *3 (-1238)) (-5 *1 (-1153 *3 *2)) - (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4465) (-6 -4466))))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) + (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) + (-4 *7 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *5 *6 *7 *8))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) + (-4 *4 (-804)) (-4 *3 (-174))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197))))) (((*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-973))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1179)) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) - (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-769))))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-968 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) - (-4 *4 (-861)) (-5 *1 (-1208 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-837))))) +(((*1 *2 *3) + (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-656 (-576))) (-5 *3 (-656 (-940))) (-5 *4 (-112)) + (-5 *1 (-1131))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1121)) (-5 *1 (-983 *2 *3)) (-4 *3 (-1121))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-518)) (-4 *4 (-1121)) (-5 *1 (-948 *4 *2)) @@ -10200,25 +10234,32 @@ ((*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-518)) (-5 *2 (-326 (-576))) (-5 *1 (-949))))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) + (-5 *1 (-945)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) + (-5 *1 (-945)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) + (-5 *1 (-946)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) + (-5 *1 (-946))))) (((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) - (-5 *1 (-1258 *4 *2)) (-4 *2 (-1264 *4))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -3230 *3) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070))))) + (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) + (-4 *1 (-1086 *3 *4 *5))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4464)) (-4 *1 (-501 *4)) + (-4 *4 (-1238)) (-5 *2 (-112))))) (((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2142)) (-5 *2 (-112)) (-5 *1 (-629)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3863)) (-5 *2 (-112)) (-5 *1 (-629)))) + (-12 (-5 *3 (|[\|\|]| -3861)) (-5 *2 (-112)) (-5 *1 (-629)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3513)) (-5 *2 (-112)) (-5 *1 (-629)))) + (-12 (-5 *3 (|[\|\|]| -3511)) (-5 *2 (-112)) (-5 *1 (-629)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -1404)) (-5 *2 (-112)) (-5 *1 (-703 *4)) + (-12 (-5 *3 (|[\|\|]| -1402)) (-5 *2 (-112)) (-5 *1 (-703 *4)) (-4 *4 (-625 (-876))))) ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-625 (-876))) (-5 *2 (-112)) @@ -10301,9 +10342,9 @@ (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1202)))) ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)) (-5 *1 (-1202))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-132)) - (-4 *3 (-804))))) +(((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) + (-4 *4 (-174))))) (((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888))))) (((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-220)))) ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-451)))) @@ -10311,224 +10352,357 @@ ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1136)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1202))) (-5 *3 (-1202)) (-5 *1 (-1139))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-1193 *3)) - (-4 *3 (-13 (-442 *6) (-27) (-1223))) - (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-2 (|:| -1698 *3) (|:| |coeff| *3))) - (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1193 *3))) - (-4 *3 (-13 (-442 *6) (-27) (-1223))) - (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-2 (|:| -1698 *3) (|:| |coeff| *3))) - (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121))))) -(((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-876))) (-5 *2 (-1293)) (-5 *1 (-1159))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-767))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-158)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *3 (-576)) + (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-764))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1161 *4 *5)) (-4 *4 (-13 (-1121) (-34))) + (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-112)) (-5 *1 (-1162 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) - (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-943 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-112)) - (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-940)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-270))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1115 (-227))) - (-5 *5 (-112)) (-5 *2 (-1290)) (-5 *1 (-264))))) + (-12 (-5 *3 (-855 (-390))) (-5 *2 (-855 (-227))) (-5 *1 (-315))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-905 *4 *3)) + (-4 *3 (-1238)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) + (-5 *2 (-1056)) (-5 *1 (-766))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-1224 *3))) (-5 *1 (-1224 *3)) (-4 *3 (-1121))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876))))) (((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))) ((*1 *1 *1 *1) (-5 *1 (-1141)))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390)))) - ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-390))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-4 *3 (-13 (-27) (-1223) (-442 *6) (-10 -8 (-15 -3570 ($ *7))))) - (-4 *7 (-860)) - (-4 *8 - (-13 (-1266 *3 *7) (-374) (-1223) - (-10 -8 (-15 -2775 ($ $)) (-15 -1491 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) - (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1179)) (-4 *9 (-1004 *8)) - (-14 *10 (-1197))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-568) (-148))) - (-5 *2 (-2 (|:| -4240 *3) (|:| -4250 *3))) (-5 *1 (-1258 *4 *3)) - (-4 *3 (-1264 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-961)) (-5 *3 (-576))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -1419 (-656 *7)))) - (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) + (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 (-576)))) + (-5 *2 (-1288 (-576))) (-5 *1 (-1316 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-1238)) (-5 *2 (-783))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-194))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1121)) (-5 *2 (-904 *3 *4)) (-5 *1 (-900 *3 *4 *5)) + (-4 *3 (-1121)) (-4 *5 (-678 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-985 *4)) (-4 *4 (-1121)) (-5 *2 (-1123 *4)) + (-5 *1 (-986 *4))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-835)) (-5 *1 (-834))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) + ((*1 *1 *1) (-4 *1 (-312))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) + ((*1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *2) + (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) + (-5 *1 (-1145 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) (((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) - (-5 *2 (-1056)) (-5 *1 (-757))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-783)) (-5 *3 (-962 *4)) (-4 *1 (-1155 *4)) - (-4 *4 (-1070)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-962 (-227))) (-5 *2 (-1293)) - (-5 *1 (-1290))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-1 (-112) *5 *5)) - (-5 *4 (-656 *5)) (-4 *5 (-861)) (-5 *1 (-1208 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1121)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1121))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) - (-5 *1 (-1093 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) - (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-656 (-52))) (-5 *2 (-1293)) (-5 *1 (-877))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861)))) +(((*1 *2 *3) + (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-442 *4) (-1023) (-1223))) + (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1023) (-1223))) + (-5 *1 (-612 *4 *5 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) + ((*1 *2 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) + (-14 *4 (-656 (-1197))))) + ((*1 *2 *1) + (-12 (-5 *2 (-576)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) + (-14 *4 (-656 (-1197))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) + (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-284)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1193 *8)) (-5 *4 (-656 *6)) (-4 *6 (-861)) + (-4 *8 (-968 *7 *5 *6)) (-4 *5 (-805)) (-4 *7 (-1070)) + (-5 *2 (-656 (-783))) (-5 *1 (-331 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-940)))) + ((*1 *2 *1) + (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) + (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) + (-4 *4 (-1264 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-783))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) + (-4 *3 (-861)) (-5 *2 (-783)))) + ((*1 *2 *1) + (-12 (-4 *1 (-994 *3 *2 *4)) (-4 *3 (-1070)) (-4 *4 (-861)) + (-4 *2 (-804)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-783)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1250 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1279 *3)) + (-5 *2 (-576)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1248 *3)) + (-5 *2 (-419 (-576))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-940))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) + (-5 *2 (-783))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4334 *4))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1281 *3 *2)) + (-4 *2 (-1279 *3))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1264 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861))))) -(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-112))))) + (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-656 (-52))) (-5 *2 (-1293)) (-5 *1 (-877))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) + (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) + (-5 *2 + (-2 (|:| -4026 (-656 *9)) (|:| -3987 *4) (|:| |ineq| (-656 *9)))) + (-5 *1 (-1009 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) + (-4 *4 (-1092 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) + (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) + (-5 *2 + (-2 (|:| -4026 (-656 *9)) (|:| -3987 *4) (|:| |ineq| (-656 *9)))) + (-5 *1 (-1128 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) + (-4 *4 (-1092 *6 *7 *8 *9))))) (((*1 *2 *3) - (-12 (-5 *3 (-1288 *5)) (-4 *5 (-13 (-1070) (-651 *4))) - (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-650 *4 *5))))) -(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-876)))) + (-12 (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *3)) + (-4 *3 (-13 (-442 *4) (-1023)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1121)) (-5 *2 (-112)) (-5 *1 (-900 *3 *4 *5)) - (-4 *3 (-1121)) (-4 *5 (-678 *4)))) + (-12 (-5 *2 (-1288 *4)) (-4 *4 (-429 *3)) (-4 *3 (-317)) + (-4 *3 (-568)) (-5 *1 (-43 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-940)) (-4 *4 (-374)) (-5 *2 (-1288 *1)) + (-4 *1 (-339 *4)))) + ((*1 *2) (-12 (-4 *3 (-374)) (-5 *2 (-1288 *1)) (-4 *1 (-339 *3)))) + ((*1 *2) + (-12 (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-1288 *1)) + (-4 *1 (-421 *3 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-904 *3 *4)) (-4 *3 (-1121)) - (-4 *4 (-1121))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -2590 (-701 (-419 (-971 *4)))) - (|:| |vec| (-656 (-419 (-971 *4)))) (|:| -3734 (-783)) - (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) - (-4 *6 (-805)) + (-12 (-4 *3 (-317)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) + (-5 *2 (-1288 *6)) (-5 *1 (-425 *3 *4 *5 *6)) + (-4 *6 (-13 (-421 *4 *5) (-1059 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-317)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) + (-5 *2 (-1288 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)) + (-4 *6 (-421 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1288 *1)) (-4 *1 (-429 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1288 (-1288 *4))) (-5 *1 (-540 *4)) + (-4 *4 (-360))))) +(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *1) (-12 (-5 *2 (-343)) (-5 *1 (-255))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1264 *6)) + (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)))) + (-4 *8 (-1264 (-419 *7))) (-5 *2 (-598 *3)) + (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-624 *4)) (-5 *6 (-1193 *4)) + (-4 *4 (-13 (-442 *7) (-27) (-1223))) + (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 - (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) - (|:| -1593 (-656 (-1288 (-419 (-971 *4))))))) - (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2675 (-656 *4)))) + (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1121)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-624 *4)) (-5 *6 (-419 (-1193 *4))) + (-4 *4 (-13 (-442 *7) (-27) (-1223))) + (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2675 (-656 *4)))) + (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1121))))) (((*1 *2 *3) - (-12 (-5 *3 (-831 *4)) (-4 *4 (-861)) (-5 *2 (-112)) - (-5 *1 (-684 *4))))) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1293)) + (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1114 *3)) (-4 *3 (-1238))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) - (-4 *4 (-1264 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-932 *4 *5)) - (-4 *5 (-1264 (-419 *4)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-924 *4)) (-4 *4 (-1121)) (-5 *2 (-656 (-783))) - (-5 *1 (-923 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276))))) (((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) - ((*1 *2) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-783))))) + (-12 (-4 *2 (-13 (-442 *3) (-1023))) (-5 *1 (-285 *3 *2)) + (-4 *3 (-568))))) +(((*1 *2 *1) + (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *5))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861)) (-4 *5 (-1086 *3 *4 *2))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) + (-5 *1 (-207))))) (((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) - (-4 *3 (-13 (-317) (-10 -8 (-15 -3921 ((-430 $) $))))) - (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) -(((*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1200))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1264 (-576))) (-5 *1 (-498 *3))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-767))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1288 *5)) (-4 *5 (-804)) (-5 *2 (-112)) + (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) +(((*1 *1) (-5 *1 (-835)))) +(((*1 *2 *3) + (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -3760 ((-430 $) $))))) + (-4 *4 (-1264 *3)) + (-5 *2 + (-2 (|:| -2675 (-701 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-701 *3)))) + (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-1264 *3)) + (-5 *2 + (-2 (|:| -2675 (-701 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-701 *3)))) + (-5 *1 (-780 *4 *5)) (-4 *5 (-421 *3 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-360)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 *3)) + (-5 *2 + (-2 (|:| -2675 (-701 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-701 *3)))) + (-5 *1 (-1006 *4 *3 *5 *6)) (-4 *6 (-736 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-360)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 *3)) + (-5 *2 + (-2 (|:| -2675 (-701 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-701 *3)))) + (-5 *1 (-1297 *4 *3 *5 *6)) (-4 *6 (-421 *3 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-875)))) + ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-875))))) (((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-1168 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761))))) -(((*1 *2) - (-12 - (-5 *2 - (-1288 (-656 (-2 (|:| -3106 (-929 *3)) (|:| -3224 (-1141)))))) - (-5 *1 (-362 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940)))) - ((*1 *2) - (-12 (-5 *2 (-1288 (-656 (-2 (|:| -3106 *3) (|:| -3224 (-1141)))))) - (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1193 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1288 (-656 (-2 (|:| -3106 *3) (|:| -3224 (-1141)))))) - (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-940))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1193 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *3) + (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-964 *4 *3)) + (-4 *3 (-1264 *4))))) +(((*1 *1 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-38 (-419 (-576)))) + (-4 *2 (-174))))) +(((*1 *2 *3) + (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) + (-4 *3 (-1264 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1264 (-576))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1264 (-576))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) + (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1264 (-576))))) + ((*1 *2 *3) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-1028 *3)) + (-4 *3 (-1264 (-419 (-576)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-1253 *3)) (-4 *3 (-1264 (-576)))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-656 *3)) (-4 *3 (-1238))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-878 *5))) (-14 *5 (-656 (-1197))) (-4 *6 (-464)) +(((*1 *2 *1) + (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-656 (-656 *3))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-656 (-656 *5))))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 (-656 *3))) (-5 *1 (-1209 *3)) (-4 *3 (-1121))))) +(((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| |dpolys| (-656 (-253 *5 *6))) - (|:| |coords| (-656 (-576))))) - (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464))))) -(((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1056)) (-5 *1 (-852)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) - (-5 *2 (-1056)) (-5 *1 (-852))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-171 *4))) - (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) - (-14 *4 *2)))) + (-656 + (-2 + (|:| -4300 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -4439 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1178 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3417 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-571))))) (((*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-142)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-145))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4466)) (-4 *1 (-1031 *2)) (-4 *2 (-1238))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-656 (-1193 *7))) (-5 *3 (-1193 *7)) - (-4 *7 (-968 *5 *6 *4)) (-4 *5 (-928)) (-4 *6 (-805)) - (-4 *4 (-861)) (-5 *1 (-925 *5 *6 *4 *7))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1131)) (-5 *3 (-576))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-97))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-132))))) +(((*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) (((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *1 *1) (-4 *1 (-641))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023) (-1223)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) - (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1067 *5 *6))) - (-5 *1 (-640 *5 *6))))) + (-12 (-4 *2 (-968 *3 *5 *4)) (-5 *1 (-1008 *3 *4 *5 *2)) + (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805))))) (((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-31)))) ((*1 *2 *1) (-12 (-5 *2 (-1202)) (-5 *1 (-49)))) ((*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-134)))) @@ -10541,57 +10715,44 @@ ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1087)))) ((*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-1117))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1220 *3)) (-4 *3 (-1070))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) + (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1288 (-3 (-480) "undefined"))) (-5 *1 (-1289))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) + (-5 *1 (-1228 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1215 *4 *5)) + (-4 *4 (-1121)) (-4 *5 (-1121))))) (((*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-142)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-145))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861)) (-4 *5 (-1086 *3 *4 *2))))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-701 (-1193 *8))) (-4 *5 (-1070)) (-4 *8 (-1070)) - (-4 *6 (-1264 *5)) (-5 *2 (-701 *6)) (-5 *1 (-513 *5 *6 *7 *8)) - (-4 *7 (-1264 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-656 (-1197))) (|:| |pred| (-52)))) - (-5 *1 (-907 *3)) (-4 *3 (-1121))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1288 (-1197))) (-5 *3 (-1288 (-465 *4 *5 *6 *7))) - (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-940)) - (-14 *6 (-656 (-1197))) (-14 *7 (-1288 (-701 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-465 *4 *5 *6 *7))) - (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-940)) - (-14 *6 (-656 *2)) (-14 *7 (-1288 (-701 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) - (-14 *6 (-1288 (-701 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-1197))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) - (-14 *6 (-1288 (-701 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1197)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-940)) (-14 *5 (-656 *2)) (-14 *6 (-1288 (-701 *3))))) - ((*1 *1) - (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-940)) - (-14 *4 (-656 (-1197))) (-14 *5 (-1288 (-701 *2)))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) - (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) - (-5 *1 (-800)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) - (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) - (-5 *1 (-800))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-598 *3)) (-4 *3 (-374))))) + (-12 (-5 *2 (-656 (-962 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) + (-4 *4 (-1070))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-576)) + (|:| -4213 (-656 (-2 (|:| |irr| *3) (|:| -3012 (-576))))))) + (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-576)) + (|:| -4213 (-656 (-2 (|:| |irr| *3) (|:| -3012 (-576))))))) + (-5 *1 (-1253 *3)) (-4 *3 (-1264 (-576)))))) +(((*1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576))))) + ((*1 *2 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-701 (-419 (-971 (-576))))) + (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1052))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-924 *4)) (-4 *4 (-1121)) (-5 *2 (-656 (-783))) + (-5 *1 (-923 *4))))) (((*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141))))) (((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-96)))) ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) @@ -10606,18 +10767,41 @@ ((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1096 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1136)))) ((*1 *1 *1) (-5 *1 (-1197)))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1070)) (-5 *1 (-1260 *3 *2)) (-4 *2 (-1264 *3))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-751 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1144 *3 *4 *2 *5)) (-4 *4 (-1070)) (-4 *5 (-243 *3 *4)) - (-4 *2 (-243 *3 *4))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) + (-5 *2 (-1056)) (-5 *1 (-767))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |pde| (-656 (-326 (-227)))) + (|:| |constraints| + (-656 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-783)) (|:| |boundaryType| (-576)) + (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) + (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) + (|:| |tol| (-227)))) + (-5 *2 (-112)) (-5 *1 (-212))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-112)) (-5 *5 (-576)) (-4 *6 (-374)) (-4 *6 (-379)) + (-4 *6 (-1070)) (-5 *2 (-656 (-656 (-701 *6)))) (-5 *1 (-1050 *6)) + (-5 *3 (-656 (-701 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-374)) (-4 *4 (-379)) (-4 *4 (-1070)) + (-5 *2 (-656 (-656 (-701 *4)))) (-5 *1 (-1050 *4)) + (-5 *3 (-656 (-701 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1070)) + (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) + (-5 *3 (-656 (-701 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-940)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1070)) + (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) + (-5 *3 (-656 (-701 *5)))))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) (((*1 *2 *2) - (-12 (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) - (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4)))))) + (-12 (-5 *2 (-656 (-493 *3 *4))) (-14 *3 (-656 (-1197))) + (-4 *4 (-464)) (-5 *1 (-643 *3 *4))))) (((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-62 *3)) (-14 *3 (-1197)))) ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-69 *3)) (-14 *3 (-1197)))) ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-72 *3)) (-14 *3 (-1197)))) @@ -10628,81 +10812,67 @@ ((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159)))) ((*1 *2 *3) (-12 (-5 *3 (-656 (-876))) (-5 *2 (-1293)) (-5 *1 (-1159))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-656 (-624 *6))) (-5 *4 (-1197)) (-5 *2 (-624 *6)) - (-4 *6 (-442 *5)) (-4 *5 (-1121)) (-5 *1 (-585 *5 *6))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) - (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-1086 *3 *4 *2)) (-4 *2 (-861)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1197))) - (-4 *5 (-464)) - (-5 *2 - (-2 (|:| |gblist| (-656 (-253 *4 *5))) - (|:| |gvlist| (-656 (-576))))) - (-5 *1 (-643 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-659 *3)) (-4 *3 (-1121))))) -(((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-576)) - (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-624 *3)) (-5 *5 (-1 (-1193 *3) (-1193 *3))) - (-4 *3 (-13 (-27) (-442 *6))) (-4 *6 (-568)) (-5 *2 (-598 *3)) - (-5 *1 (-563 *6 *3))))) -(((*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1200))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) + (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-171 (-227)))) + (-5 *2 (-1056)) (-5 *1 (-767))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)) + (-4 *6 (-1121)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-783)) (-4 *6 (-1121)) (-4 *3 (-917 *6)) + (-5 *2 (-701 *3)) (-5 *1 (-704 *6 *3 *7 *4)) (-4 *7 (-384 *3)) + (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4464))))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) + (-4 *4 (-805)) (-4 *5 (-861)) (-4 *3 (-568))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-904 *4 *5)) (-5 *3 (-904 *4 *6)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-678 *5)) (-5 *1 (-900 *4 *5 *6))))) (((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-403))))) -(((*1 *2 *2) (-12 (-5 *2 (-985 *3)) (-4 *3 (-1121)) (-5 *1 (-986 *3))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1264 (-419 (-576)))) - (-5 *2 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))) - (-5 *1 (-932 *3 *4)) (-4 *4 (-1264 (-419 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1264 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-932 *4 *3)) - (-4 *3 (-1264 (-419 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1) (-4 *1 (-1160)))) +(((*1 *2) + (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-783))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-759))))) (((*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-717 *3 *4)) (-4 *3 (-1238)) (-4 *4 (-1238))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-783)) (-5 *2 (-1293))))) (((*1 *2 *3) - (-12 (-4 *4 (-928)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-430 (-1193 *7))) - (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) + (-12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1264 *5)) + (-4 *7 (-1264 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) + (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-112)) + (-5 *1 (-930 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-928)) (-4 *5 (-1264 *4)) (-5 *2 (-430 (-1193 *5))) - (-5 *1 (-926 *4 *5)) (-5 *3 (-1193 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-624 *1)) (-4 *1 (-312))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1193 *1)) (-5 *3 (-1197)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-971 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1193 *2)) (-5 *4 (-1197)) (-4 *2 (-442 *5)) - (-5 *1 (-32 *5 *2)) (-4 *5 (-568)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1193 *1)) (-5 *3 (-940)) (-4 *1 (-1033)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1193 *1)) (-5 *3 (-940)) (-5 *4 (-876)) - (-4 *1 (-1033)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-940)) (-4 *4 (-13 (-860) (-374))) - (-4 *1 (-1089 *4 *2)) (-4 *2 (-1264 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-568)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-112))))) + (-12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) + (-4 *4 (-1264 (-419 (-576)))) (-4 *5 (-1264 (-419 *4))) + (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-112)) + (-5 *1 (-931 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-304 (-971 (-576)))) + (-5 *2 + (-2 (|:| |varOrder| (-656 (-1197))) + (|:| |inhom| (-3 (-656 (-1288 (-783))) "failed")) + (|:| |hom| (-656 (-1288 (-783)))))) + (-5 *1 (-241))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-834))))) (((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 @@ -10720,7 +10890,7 @@ (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -2951 + (|:| -3417 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") @@ -10728,94 +10898,132 @@ "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-571))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1197)) - (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-4 *4 (-13 (-29 *6) (-1223) (-978))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -1593 (-656 *4)))) - (-5 *1 (-813 *6 *4 *3)) (-4 *3 (-668 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-337 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-528 *3 *4)) + (-14 *4 (-576))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289))))) +(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-503))))) (((*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1293)) (-5 *1 (-403)))) ((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-403))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1115 (-227))) - (-5 *2 (-1290)) (-5 *1 (-264))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-794 *3)) (-4 *3 (-1070)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-982 *3 *2)) (-4 *2 (-132)) (-4 *3 (-568)) - (-4 *3 (-1070)) (-4 *2 (-804)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1193 *3)) (-4 *3 (-1070)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-992)) (-4 *2 (-132)) (-5 *1 (-1199 *3)) (-4 *3 (-568)) - (-4 *3 (-1070)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1261 *4 *3)) (-14 *4 (-1197)) - (-4 *3 (-1070))))) -(((*1 *1) (-5 *1 (-1200)))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-386 *4 *2)) - (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4466))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1179)) (-5 *1 (-194)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) - (-4 *2 (-1264 *4))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1056)) (-5 *1 (-763))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-945))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-701 *3)) + (-4 *3 (-13 (-317) (-10 -8 (-15 -3760 ((-430 $) $))))) + (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-1242)) + (-4 *6 (-1264 (-419 *5))) + (-5 *2 + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-353 *4 *5 *6))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-861)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-292 *2)) (-4 *2 (-1238)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 + (|:| -4300 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -4439 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1178 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3417 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))))) + (-5 *1 (-571)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-4 *1 (-707 *2)) (-4 *2 (-1121)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 + (|:| -4300 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (|:| -4439 + (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) + (|:| |expense| (-390)) (|:| |accuracy| (-390)) + (|:| |intermediateResults| (-390)))))) + (-5 *1 (-815)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-1121))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-768))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) +(((*1 *1) (-5 *1 (-835)))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) + (-14 *3 (-576)) (-14 *4 (-783))))) +(((*1 *2 *1) (-12 (-5 *2 (-301)) (-5 *1 (-290))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) - (-4 *6 (-805)) (-5 *2 (-656 *3)) (-5 *1 (-943 *4 *5 *6 *3)) - (-4 *3 (-968 *4 *6 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) + (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1197))) + (-4 *5 (-464)) (-5 *2 (-656 (-253 *4 *5))) (-5 *1 (-643 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1219))))) +(((*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) +(((*1 *1 *1 *1) (-4 *1 (-988)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) +(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-227))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) - (-5 *1 (-315))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1070)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861))))) -(((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -1757 (-115)) (|:| |arg| (-656 (-907 *3))))) - (-5 *1 (-907 *3)) (-4 *3 (-1121)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-907 *4))) - (-5 *1 (-907 *4)) (-4 *4 (-1121))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (|has| *1 (-6 -4466)) (-4 *1 (-1276 *3)) - (-4 *3 (-1238))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) - (-5 *2 (-1056)) (-5 *1 (-761))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) - (-4 *3 (-13 (-374) (-148) (-1059 (-576)))) (-5 *1 (-580 *3 *4))))) + (-12 (-5 *3 (-656 (-940))) (-5 *4 (-656 (-576))) + (-5 *2 (-701 (-576))) (-5 *1 (-1131))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-768))))) (((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-254))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1231 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *5 (-1086 *2 *3 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-656 (-2 (|:| -4301 (-1197)) (|:| -4440 (-449))))) + (-12 (-5 *2 (-656 (-2 (|:| -4300 (-1197)) (|:| -4439 (-449))))) (-5 *1 (-1201))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4104 *4)))) - (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-557)) (-5 *1 (-160 *2))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) - (-4 *4 (-1070))))) -(((*1 *2 *1) - (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) - (-4 *3 (-1121))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-576)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-805)) (-4 *4 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-861)) + (-5 *1 (-461 *5 *6 *7 *4))))) +(((*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1200))))) +(((*1 *2 *1) (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) + ((*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-783))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) + (-4 *3 (-861)) (-5 *2 (-783))))) (((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1197)) (-5 *1 (-269 *2)) (-4 *2 (-1238)))) @@ -10823,99 +11031,85 @@ (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1197)) (-5 *2 (-52)) (-5 *1 (-270))))) (((*1 *2 *1) (-12 (-5 *2 (-656 (-109))) (-5 *1 (-177))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) - ((*1 *2 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317)))) - ((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) - ((*1 *2 *1) (-12 (-4 *1 (-1081)) (-5 *2 (-576))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1061))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-874)) (-5 *2 (-703 (-1246))) (-5 *3 (-1246))))) +(((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) - (-4 *5 (-568)) (-5 *2 (-656 (-656 (-971 *5)))) (-5 *1 (-1206 *5))))) + (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-177))) (-5 *1 (-1106))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1264 (-576))) (-5 *1 (-498 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-861)) (-4 *5 (-928)) (-4 *6 (-805)) - (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-430 (-1193 *8))) - (-5 *1 (-925 *5 *6 *7 *8)) (-5 *4 (-1193 *8)))) + (-12 (-5 *3 (-833)) (-5 *4 (-52)) (-5 *2 (-1293)) (-5 *1 (-843))))) +(((*1 *2) (-12 (-5 *2 (-1168 (-1179))) (-5 *1 (-403))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) ((*1 *2 *3) - (-12 (-4 *4 (-928)) (-4 *5 (-1264 *4)) (-5 *2 (-430 (-1193 *5))) - (-5 *1 (-926 *4 *5)) (-5 *3 (-1193 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) - (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-576)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) -(((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) - ((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) - (-4 *3 (-568)))) - ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) - ((*1 *2 *1) - (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) - ((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) - (-4 *3 (-1121)))) - ((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) - (-4 *3 (-1121)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1018 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) + (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) ((*1 *2 *3) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1029 *3)) (-4 *3 (-1059 *2))))) -(((*1 *2) - (-12 (-4 *3 (-1070)) (-5 *2 (-977 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) - (-4 *4 (-1264 *3))))) + (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315))))) (((*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) ((*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) ((*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1070))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) + (-4 *4 (-1070))))) (((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1121) (-34))) - (-4 *3 (-13 (-1121) (-34)))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-656 (-112))) (-5 *5 (-701 (-227))) - (-5 *6 (-701 (-576))) (-5 *7 (-227)) (-5 *3 (-576)) (-5 *2 (-1056)) - (-5 *1 (-766))))) -(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-591))))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) (((*1 *2 *2) (-12 (-5 *2 (-516 (-419 (-576)) (-245 *4 (-783)) (-878 *3) (-253 *3 (-419 (-576))))) (-14 *3 (-656 (-1197))) (-14 *4 (-783)) (-5 *1 (-517 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-783))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1179)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) - (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2) - (-12 (-4 *1 (-360)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) - ((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) -(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1179)) (-5 *1 (-315))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) + (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1115 (-227))) (-5 *6 (-576)) (-5 *2 (-1233 (-945))) + (-5 *1 (-328)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1115 (-227))) (-5 *6 (-576)) (-5 *7 (-1179)) + (-5 *2 (-1233 (-945))) (-5 *1 (-328)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1115 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) + (-5 *2 (-1233 (-945))) (-5 *1 (-328)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1115 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *8 (-1179)) + (-5 *2 (-1233 (-945))) (-5 *1 (-328))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-430 *4)) (-4 *4 (-568))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1178 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1070)) + (-5 *3 (-419 (-576))) (-5 *1 (-1181 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-1264 (-171 *3)))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-904 *4 *3)) + (-4 *3 (-1121))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-568))))) +(((*1 *2 *3) + (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) + (-5 *2 (-971 *5)) (-5 *1 (-963 *4 *5))))) (((*1 *2 *3) (-12 (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-5 *2 (-390)) (-5 *1 (-797 *3)) @@ -10938,369 +11132,322 @@ ((*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1161 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) - (-4 *4 (-13 (-1121) (-34))) (-4 *5 (-13 (-1121) (-34))) - (-5 *1 (-1162 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-656 (-1161 *3 *4))) (-4 *3 (-13 (-1121) (-34))) - (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) - (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD)))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) - (-5 *2 (-1056)) (-5 *1 (-768))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1197))) (-4 *6 (-374)) - (-5 *2 (-656 (-304 (-971 *6)))) (-5 *1 (-550 *5 *6 *7)) - (-4 *5 (-464)) (-4 *7 (-13 (-374) (-860)))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-480)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289))))) -(((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) - ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1018 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1029 *3)) (-4 *3 (-1059 (-419 (-576))))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-767))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1288 *6)) (-5 *4 (-1288 (-576))) (-5 *5 (-576)) - (-4 *6 (-1121)) (-5 *2 (-1 *6)) (-5 *1 (-1038 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1264 (-576))) (-5 *1 (-498 *3))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) - (-4 *4 (-804)) (-4 *3 (-174))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *3 (-576)) - (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-764))))) + (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) + (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) + (-4 *7 (-1013 *4)) (-4 *2 (-699 *7 *8 *9)) + (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) + (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) + ((*1 *1 *1) + (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2)) (-4 *2 (-317)))) + ((*1 *2 *2) + (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) + (-4 *2 (-699 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1074 *2 *3 *4 *5 *6)) (-4 *4 (-1070)) + (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *2 *4)) (-4 *4 (-317))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) + (-5 *1 (-760))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) + (-4 *3 (-13 (-1121) (-34)))))) (((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-390)) (-5 *1 (-194))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-568))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-576)) (-5 *1 (-390))))) +(((*1 *2) + (-12 (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-194))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3230 *4))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1288 *5)) (-4 *5 (-804)) (-5 *2 (-112)) - (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-798))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) - (-5 *2 (-656 (-2 (|:| -1480 *5) (|:| -4027 *3)))) - (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) - (-4 *7 (-668 (-419 *6)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-656 *2)) (-5 *1 (-114 *2)) - (-4 *2 (-1121)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-656 *4))) (-4 *4 (-1121)) - (-5 *1 (-114 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1121)) - (-5 *1 (-114 *4)))) + (-1288 (-656 (-2 (|:| -3104 (-929 *3)) (|:| -3223 (-1141)))))) + (-5 *1 (-362 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940)))) + ((*1 *2) + (-12 (-5 *2 (-1288 (-656 (-2 (|:| -3104 *3) (|:| -3223 (-1141)))))) + (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1193 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1288 (-656 (-2 (|:| -3104 *3) (|:| -3223 (-1141)))))) + (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-940))))) +(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-656 *4))) - (-5 *1 (-114 *4)) (-4 *4 (-1121)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1070)) - (-5 *1 (-726 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-848 *3))))) -(((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374))))) + (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) + ((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238)))) + ((*1 *1 *1) (-4 *1 (-883 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-804)) + (-4 *4 (-861))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-904 *4 *3)) + (-4 *3 (-1121))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-115)) (-4 *4 (-1070)) (-5 *1 (-726 *4 *2)) + (-4 *2 (-660 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-848 *2)) (-4 *2 (-1070))))) +(((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) +(((*1 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-23))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1179)) (-5 *2 (-216 (-514))) (-5 *1 (-849))))) +(((*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1193 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3988 *4)))) + (-12 (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) (-5 *1 (-1162 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1131))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| -1828 (-1193 *6)) (|:| -3422 (-576))))) - (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-576)) - (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1070) (-861))) - (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1197)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-763))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-860) (-374))) (-5 *2 (-112)) (-5 *1 (-1082 *4 *3)) - (-4 *3 (-1264 *4))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |polnum| (-794 *3)) (|:| |polden| *3) (|:| -1679 (-783)))) + (-5 *1 (-794 *3)) (-4 *3 (-1070)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1679 (-783)))) + (-4 *1 (-1086 *3 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-390)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-464))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) + (-5 *1 (-768))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-227)) + (-5 *2 + (-2 (|:| |brans| (-656 (-656 (-962 *4)))) + (|:| |xValues| (-1115 *4)) (|:| |yValues| (-1115 *4)))) + (-5 *1 (-154)) (-5 *3 (-656 (-656 (-962 *4))))))) (((*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1197)) (-5 *1 (-624 *3)) (-4 *3 (-1121))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-940))) (-5 *4 (-924 (-576))) - (-5 *2 (-701 (-576))) (-5 *1 (-602)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-940))) (-5 *2 (-656 (-701 (-576)))) - (-5 *1 (-602)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-940))) (-5 *4 (-656 (-924 (-576)))) - (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602))))) -(((*1 *1 *1) - (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1070) (-861))) - (-14 *3 (-656 (-1197)))))) -(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1200)))) - ((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-624 *5))) (-4 *4 (-1121)) (-5 *2 (-624 *5)) - (-5 *1 (-585 *4 *5)) (-4 *5 (-442 *4))))) + (-12 (-5 *4 (-656 (-878 *5))) (-14 *5 (-656 (-1197))) (-4 *6 (-464)) + (-5 *2 + (-2 (|:| |dpolys| (-656 (-253 *5 *6))) + (|:| |coords| (-656 (-576))))) + (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) + (-5 *2 (-1056)) (-5 *1 (-759))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-940)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-270))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-1264 *4)) (-4 *4 (-1070)) - (-5 *2 (-1288 *4))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) - (-5 *2 (-1193 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) - (-5 *2 (-1193 *3))))) + (-12 (-5 *2 (-1 (-962 (-227)) (-962 (-227)))) (-5 *3 (-656 (-270))) + (-5 *1 (-268)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1 (-962 (-227)) (-962 (-227)))) (-5 *1 (-270)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) + (-14 *5 (-656 (-1197))) (-4 *6 (-464)) (-5 *2 (-1288 *6)) + (-5 *1 (-643 *5 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-304 *3))) (-5 *1 (-304 *3)) (-4 *3 (-568)) + (-4 *3 (-1238))))) +(((*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1070))))) +(((*1 *1 *1) (-4 *1 (-175))) + ((*1 *1 *1) + (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-656 *6)) (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) + (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) + (-4 *3 (-568))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1193 *5)) (-4 *5 (-374)) (-5 *2 (-656 *6)) - (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-568)) + (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) + (-5 *1 (-1208 *4)) (-4 *4 (-861))))) +(((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1056)) (-5 *1 (-852)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) + (-5 *2 (-1056)) (-5 *1 (-852))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-876)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) - (-14 *4 (-783)) (-4 *5 (-174))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)) - (-4 *3 (-568)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-568))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-576)) (-5 *1 (-246)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-576)) (-5 *1 (-246))))) + (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-801)) (-5 *5 (-576))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-971 *6)) (-5 *4 (-1197)) + (-5 *5 (-855 *7)) + (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-4 *7 (-13 (-1223) (-29 *6))) (-5 *1 (-226 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1193 *6)) (-5 *4 (-855 *6)) + (-4 *6 (-13 (-1223) (-29 *5))) + (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-226 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-656 *3)) - (-5 *1 (-1258 *4 *3)) (-4 *3 (-1264 *4))))) + (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) (-5 *3 (-576))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1273 *3 *4 *5)) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) + (-14 *4 (-1197)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1121)) (-5 *1 (-725 *3 *2 *4)) (-4 *3 (-861)) + (-14 *4 + (-1 (-112) (-2 (|:| -3223 *3) (|:| -2508 *2)) + (-2 (|:| -3223 *3) (|:| -2508 *2))))))) +(((*1 *2 *3 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-805)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) + (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1288 *4)) (-5 *3 (-576)) (-4 *4 (-360)) + (-5 *1 (-540 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4334 *4))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-922 *3))))) (((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-888)))) - ((*1 *2 *3) - (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *3 *4) - (-12 (-4 *6 (-568)) (-4 *2 (-968 *3 *5 *4)) - (-5 *1 (-744 *5 *4 *6 *2)) (-5 *3 (-419 (-971 *6))) (-4 *5 (-805)) - (-4 *4 (-13 (-861) (-10 -8 (-15 -4172 ((-1197) $)))))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-940)) (-5 *2 (-480)) (-5 *1 (-1289))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1264 *5)) - (-5 *1 (-739 *5 *2)) (-4 *5 (-374))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-171 *4))) + (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860)))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *2 (-1086 *4 *5 *6)) (-5 *1 (-788 *4 *5 *6 *2 *3)) + (-4 *3 (-1092 *4 *5 *6 *2))))) +(((*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-995))))) +(((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))) + (-5 *2 (-419 (-576))) (-5 *1 (-1041 *4)) (-4 *4 (-1264 (-576)))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-764))))) +(((*1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)) (-4 *2 (-1121)))) + ((*1 *1 *1) (-12 (-4 *1 (-707 *2)) (-4 *2 (-1121))))) (((*1 *2 *3) (-12 (-5 *3 (-1 (-1178 *4) (-1178 *4))) (-5 *2 (-1178 *4)) (-5 *1 (-1314 *4)) (-4 *4 (-1238)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-656 (-1178 *5)) (-656 (-1178 *5)))) (-5 *4 (-576)) (-5 *2 (-656 (-1178 *5))) (-5 *1 (-1314 *5)) (-4 *5 (-1238))))) -(((*1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-1264 (-419 *3))) (-5 *2 (-940)) - (-5 *1 (-932 *4 *5)) (-4 *5 (-1264 (-419 *4)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1185 3 *3)) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) - ((*1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) - (-5 *1 (-122 *3)) (-4 *3 (-861)))) - ((*1 *2 *2) - (-12 (-5 *2 (-598 *4)) (-4 *4 (-13 (-29 *3) (-1223))) - (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-595 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-598 (-419 (-971 *3)))) - (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-601 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| -3014 *3) (|:| |special| *3))) (-5 *1 (-739 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1288 *5)) (-4 *5 (-374)) (-4 *5 (-1070)) - (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) - (-5 *3 (-656 (-701 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1288 (-1288 *5))) (-4 *5 (-374)) (-4 *5 (-1070)) - (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) - (-5 *3 (-656 (-701 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-656 *1)) (-4 *1 (-1165)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-656 *1)) (-4 *1 (-1165))))) -(((*1 *1 *1) - (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-464)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3988 *1)))) - (-4 *1 (-1092 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1242))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-1267 *3 *2)) - (-4 *2 (-13 (-1264 *3) (-568) (-10 -8 (-15 -3498 ($ $ $)))))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1223) (-1023)))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-656 (-1261 *5 *4))) - (-5 *1 (-1135 *4 *5)) (-5 *3 (-1261 *5 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-340))))) -(((*1 *2 *2) (-12 (-5 *1 (-980 *2)) (-4 *2 (-557))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1264 *9)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-317)) - (-4 *10 (-968 *9 *7 *8)) - (-5 *2 - (-2 (|:| |deter| (-656 (-1193 *10))) - (|:| |dterm| - (-656 (-656 (-2 (|:| -2743 (-783)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-656 *6)) (|:| |nlead| (-656 *10)))) - (-5 *1 (-790 *6 *7 *8 *9 *10)) (-5 *3 (-1193 *10)) (-5 *4 (-656 *6)) - (-5 *5 (-656 *10))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) - (-5 *2 (-855 *4)) (-5 *1 (-323 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1223) (-442 *3))) (-14 *5 (-1197)) - (-14 *6 *4))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) - (-5 *2 (-855 *4)) (-5 *1 (-1274 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1223) (-442 *3))) (-14 *5 (-1197)) - (-14 *6 *4)))) -(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876))))) -(((*1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *2 (-783)) (-5 *1 (-602))))) +(((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) + ((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1223) (-442 (-171 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)))) - (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) - (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-1227 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4)))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-701 *11)) (-5 *4 (-656 (-419 (-971 *8)))) - (-5 *5 (-783)) (-5 *6 (-1179)) (-4 *8 (-13 (-317) (-148))) - (-4 *11 (-968 *8 *10 *9)) (-4 *9 (-13 (-861) (-626 (-1197)))) - (-4 *10 (-805)) - (-5 *2 - (-2 - (|:| |rgl| - (-656 - (-2 (|:| |eqzro| (-656 *11)) (|:| |neqzro| (-656 *11)) - (|:| |wcond| (-656 (-971 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-971 *8)))) - (|:| -1593 (-656 (-1288 (-419 (-971 *8)))))))))) - (|:| |rgsz| (-576)))) - (-5 *1 (-943 *8 *9 *10 *11)) (-5 *7 (-576))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-759))))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-518)) (-5 *3 (-1125)) (-5 *1 (-301))))) -(((*1 *2 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) - (|has| *2 (-6 (-4467 "*"))) (-4 *2 (-1070)))) - ((*1 *2 *3) - (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) - (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) + (-14 *4 *2)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-971 (-171 (-576))))) (-5 *2 (-656 (-171 *4))) + (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-656 (-419 (-971 (-171 (-576)))))) + (-5 *4 (-656 (-1197))) (-5 *2 (-656 (-656 (-171 *5)))) + (-5 *1 (-389 *5)) (-4 *5 (-13 (-374) (-860)))))) +(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-315))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-656 (-1197))) (-4 *4 (-1121)) + (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) + (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4))))))) +(((*1 *1 *1 *1) (-4 *1 (-773)))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1293)) (-5 *1 (-216 *4)) + (-4 *4 + (-13 (-861) + (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1977 (*2 $)) + (-15 -2486 (*2 $))))))) ((*1 *2 *1) - (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4467 "*"))) (-4 *2 (-1070))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-565))))) -(((*1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1291))))) + (-12 (-5 *2 (-1293)) (-5 *1 (-216 *3)) + (-4 *3 + (-13 (-861) + (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1977 (*2 $)) + (-15 -2486 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-514))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-507))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1031 *2)) (-4 *2 (-1238))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-112)) (-5 *1 (-907 *4)) + (-4 *4 (-1121))))) +(((*1 *2 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) + (-4 *4 (-1070))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861)) (-4 *5 (-1086 *3 *4 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) - (-4 *5 (-442 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) - (-5 *1 (-159 *4 *5)) (-4 *5 (-442 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) - (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-442 *4) (-1023))))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-311 *4)) (-4 *4 (-312)))) - ((*1 *2 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *5 (-1121)) (-5 *2 (-112)) - (-5 *1 (-441 *4 *5)) (-4 *4 (-442 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) - (-5 *1 (-443 *4 *5)) (-4 *5 (-442 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) - (-5 *1 (-642 *4 *5)) (-4 *5 (-13 (-442 *4) (-1023) (-1223)))))) + (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) + (-5 *2 (-1288 (-656 (-2 (|:| -3104 *4) (|:| -3223 (-1141)))))) + (-5 *1 (-357 *4))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1141)) (-4 *4 (-360)) + (-5 *1 (-540 *4))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1231 *4 *5 *3 *6)) (-4 *4 (-568)) (-4 *5 (-805)) + (-4 *3 (-861)) (-4 *6 (-1086 *4 *5 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) + (-4 *6 (-805)) (-4 *7 (-861)) + (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) + (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))) + (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-656 (-656 (-962 (-227))))))) + ((*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-656 (-656 (-962 (-227)))))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-656 (-1193 *7))) (-5 *3 (-1193 *7)) + (-4 *7 (-968 *5 *6 *4)) (-4 *5 (-928)) (-4 *6 (-805)) + (-4 *4 (-861)) (-5 *1 (-925 *5 *6 *4 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-694 *2)) (-4 *2 (-1121)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-656 *5) (-656 *5))) (-5 *4 (-576)) + (-5 *2 (-656 *5)) (-5 *1 (-694 *5)) (-4 *5 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-548))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-1070)) + (-5 *1 (-1181 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-576)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) + (-14 *4 (-1197)) (-14 *5 *3)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-492))))) (((*1 *1 *2 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-1 *4 (-576) (-576))) (-4 *4 (-1070)) (-4 *1 (-699 *4 *5 *6)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)))) @@ -11315,130 +11462,149 @@ (-12 (-5 *2 (-656 (-656 *5))) (-4 *5 (-1070)) (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1056)) + (-5 *1 (-758))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1273 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1197)) + (-14 *5 *3) (-5 *1 (-329 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1061)) (-5 *3 (-390))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1086 *5 *6 *7)) - (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) - (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) + (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *4 (-656 (-1197))) + (-5 *2 (-701 (-326 (-227)))) (-5 *1 (-207)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1121)) (-4 *6 (-917 *5)) (-5 *2 (-701 *6)) + (-5 *1 (-704 *5 *6 *3 *4)) (-4 *3 (-384 *6)) + (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464))))))) +(((*1 *2 *2) + (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) + (-5 *1 (-178 *3))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-656 *5)) (-5 *4 (-576)) (-4 *5 (-860)) (-4 *5 (-374)) + (-5 *2 (-783)) (-5 *1 (-964 *5 *6)) (-4 *6 (-1264 *5))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1131)) (-5 *3 (-576))))) (((*1 *2 *3) - (-12 (-5 *3 (-1197)) (-5 *2 (-1 (-1193 (-971 *4)) (-971 *4))) - (-5 *1 (-1296 *4)) (-4 *4 (-374))))) -(((*1 *1 *1 *1) (-5 *1 (-876)))) + (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) + (-5 *2 (-430 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5))))) +(((*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) + ((*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291))))) +(((*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-374))))) +(((*1 *2) + (-12 (-5 *2 (-2 (|:| -4316 (-656 *3)) (|:| -2326 (-656 *3)))) + (-5 *1 (-1239 *3)) (-4 *3 (-1121))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1070) (-729 (-419 (-576))))) + (-4 *5 (-861)) (-5 *1 (-1304 *4 *5 *2)) (-4 *2 (-1309 *5 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-171 (-419 (-576))))) - (-5 *2 - (-656 - (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-576)) - (|:| |outvect| (-656 (-701 (-171 *4))))))) - (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860)))))) -(((*1 *1 *1) (-4 *1 (-883 *2)))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-1123 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1121)) (-5 *2 (-1123 (-656 *4))) (-5 *1 (-923 *4)) - (-5 *3 (-656 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1121)) (-5 *2 (-1123 (-1123 *4))) (-5 *1 (-923 *4)) - (-5 *3 (-1123 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-1123 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-887 (-1202) (-783)))) (-5 *1 (-343))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1056)) (-5 *3 (-1197)) (-5 *1 (-194))))) -(((*1 *2 *1) - (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)) - (-4 *2 (-464)))) + (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) + (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-4 *6 (-1264 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-665 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) + (-5 *5 (-1 (-430 *7) *7)) + (-4 *6 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-4 *7 (-1264 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) + (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-4 *6 (-1264 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-666 *7 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) + (-5 *5 (-1 (-430 *7) *7)) + (-4 *6 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-4 *7 (-1264 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-1264 (-576))) (-5 *2 (-656 (-576))) - (-5 *1 (-498 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-464)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861)) (-4 *3 (-464))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1264 *6)) - (-4 *6 (-13 (-374) (-148) (-1059 *4))) (-5 *4 (-576)) - (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) - (|:| -4027 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-1036 *6 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1201))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) - ((*1 *1 *1) (|partial| -4 *1 (-734)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)) (-4 *2 (-861)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1193 (-576))) (-5 *2 (-576)) (-5 *1 (-961))))) -(((*1 *2) - (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1264 (-419 *2))) - (-4 *2 (-1264 *4)) (-5 *1 (-352 *3 *4 *2 *5)) - (-4 *3 (-353 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1242)) - (-4 *4 (-1264 (-419 *2))) (-4 *2 (-1264 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-834))))) + (-12 (-5 *3 (-665 (-419 *5))) (-4 *5 (-1264 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) + (-4 *6 (-1264 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 *5 (-419 *5))) (-4 *5 (-1264 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) + (-4 *6 (-1264 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-783)) (-4 *5 (-568)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5))))) +(((*1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) - (-14 *4 (-656 (-1197))))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) - (-14 *4 (-656 (-1197)))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *3) - (-12 (-4 *1 (-812)) - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-1056))))) + (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) + (-14 *6 + (-1 (-112) (-2 (|:| -3223 *5) (|:| -2508 *2)) + (-2 (|:| -3223 *5) (|:| -2508 *2)))) + (-4 *2 (-243 (-3502 *3) (-783))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-861)) (-4 *7 (-968 *4 *2 (-878 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *1) + (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| -2229 (-656 (-876))) (|:| -2324 (-656 (-876))) - (|:| |presup| (-656 (-876))) (|:| -3509 (-656 (-876))) + (-2 (|:| -2624 (-656 (-876))) (|:| -2386 (-656 (-876))) + (|:| |presup| (-656 (-876))) (|:| -4040 (-656 (-876))) (|:| |args| (-656 (-876))))) (-5 *1 (-1197))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-1179)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1056)) - (-5 *1 (-762))))) -(((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) - ((*1 *1 *1) (-4 *1 (-1081)))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-624 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1197))) - (-4 *2 (-13 (-442 *5) (-27) (-1223))) - (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1121))))) -(((*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| |deg| (-783)) (|:| -2812 *5)))) - (-4 *5 (-1264 *4)) (-4 *4 (-360)) (-5 *2 (-656 *5)) - (-5 *1 (-218 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-2 (|:| -1828 *5) (|:| -3634 (-576))))) - (-5 *4 (-576)) (-4 *5 (-1264 *4)) (-5 *2 (-656 *5)) - (-5 *1 (-708 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *7)) (-4 *7 (-861)) - (-4 *8 (-968 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1288 (-419 *8)) "failed")) - (|:| -1593 (-656 (-1288 (-419 *8)))))) - (-5 *1 (-681 *5 *6 *7 *8))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1121))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 (-971 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) + (-14 *4 (-656 (-1197))))) + ((*1 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-462 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) + (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-5 *1 (-462 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) + (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-5 *1 (-462 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) + (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-656 (-792 *3 (-878 *4)))) (-4 *3 (-464)) + (-14 *4 (-656 (-1197))) (-5 *1 (-640 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-4 *4 (-1070)) + (-5 *1 (-1050 *4))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) + (-5 *4 (-1 (-227) (-227) (-227) (-227))) + (-5 *2 (-1 (-962 (-227)) (-227) (-227))) (-5 *1 (-709))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-749 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1121)))) + ((*1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1121))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-831 *3)) (-4 *3 (-861)) (-5 *1 (-684 *3))))) +(((*1 *1 *1) (-4 *1 (-641))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023) (-1223)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-4 *4 (-1070)) + (-5 *2 (-2 (|:| -1855 *1) (|:| -3891 *1))) (-4 *1 (-1264 *4))))) (((*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) @@ -11453,85 +11619,59 @@ ((*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1023)) (-4 *2 (-1070))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-598 *3) *3 (-1197))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1197))) - (-4 *3 (-294)) (-4 *3 (-641)) (-4 *3 (-1059 *4)) (-4 *3 (-442 *7)) - (-5 *4 (-1197)) (-4 *7 (-626 (-907 (-576)))) (-4 *7 (-464)) - (-4 *7 (-901 (-576))) (-4 *7 (-1121)) (-5 *2 (-598 *3)) - (-5 *1 (-585 *7 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) - (-4 *3 (-384 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-384 *4)) (-4 *3 (-384 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 *5)) (-4 *5 (-1013 *4)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |num| (-701 *4)) (|:| |den| *4))) - (-5 *1 (-705 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) - (-4 *6 (-1264 *5)) - (-5 *2 (-2 (|:| -4027 *7) (|:| |rh| (-656 (-419 *6))))) - (-5 *1 (-819 *5 *6 *7 *3)) (-5 *4 (-656 (-419 *6))) - (-4 *7 (-668 *6)) (-4 *3 (-668 (-419 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1257 *4 *5 *3)) - (-4 *3 (-1264 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-97))))) +(((*1 *1) (-5 *1 (-1290)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1288 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) - (-4 *1 (-736 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1264 *5)) - (-5 *2 (-701 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-374)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *1 (-462 *4 *5 *6 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-374)) - (-5 *2 - (-2 (|:| R (-701 *6)) (|:| A (-701 *6)) (|:| |Ainv| (-701 *6)))) - (-5 *1 (-999 *6)) (-5 *3 (-701 *6))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1056)) (-5 *1 (-764))))) -(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) -(((*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1197)) (-5 *1 (-340))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-390)) (-5 *1 (-1084))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-763))))) -(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) + (-12 (-5 *4 (-1197)) + (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) + (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) + (-4 *3 (-13 (-1223) (-29 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-568) (-1059 (-576)) (-148))) + (-5 *2 (-598 (-419 (-971 *5)))) (-5 *1 (-582 *5)) + (-5 *3 (-419 (-971 *5)))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1056)) + (-5 *1 (-766))))) +(((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-834))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1313))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) + (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-763))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-132)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1086 *5 *6 *7)) - (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) - (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) - (-4 *4 (-1121))))) + (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) + (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1067 *5 *6))) + (-5 *1 (-640 *5 *6))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1197)) (-5 *1 (-340))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -4464)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) + (-5 *2 (-656 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-749 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-451))) (-5 *1 (-879))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) +(((*1 *2 *1) + (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) + (-4 *3 (-1121))))) +(((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) + (-4 *4 (-174))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1288 (-711))) (-5 *1 (-315))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) + (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) + (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) + (-5 *1 (-800))))) (((*1 *2 *3) (-12 (-5 *3 (-656 (-548))) (-5 *2 (-1197)) (-5 *1 (-548))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *3 (-656 (-270))) - (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-270)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-480))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1220 *3)) (-4 *3 (-1070))))) (((*1 *1 *2 *2 *3) (-12 (-5 *3 (-656 (-1197))) (-4 *4 (-1121)) (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) @@ -11541,95 +11681,175 @@ (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) (-5 *1 (-1097 *3 *4 *2)) (-4 *2 (-13 (-442 *4) (-901 *3) (-626 (-907 *3))))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-464))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-372 *3)) (-4 *3 (-1121)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-397 *4)) (-4 *4 (-1121)) (-5 *2 (-783)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-23)) (-5 *1 (-661 *4 *2 *5)) - (-4 *4 (-1121)) (-14 *5 *2)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) + (-5 *2 (-656 (-656 (-962 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-656 (-656 (-962 *4)))) (-5 *3 (-112)) (-4 *4 (-1070)) + (-4 *1 (-1155 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 (-656 (-962 *3)))) (-4 *3 (-1070)) + (-4 *1 (-1155 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-112)) + (-4 *1 (-1155 *4)) (-4 *4 (-1070)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-656 (-656 (-962 *4)))) (-5 *3 (-112)) + (-4 *1 (-1155 *4)) (-4 *4 (-1070)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-656 (-173))) + (-5 *4 (-173)) (-4 *1 (-1155 *5)) (-4 *5 (-1070)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-656 (-656 (-962 *5)))) (-5 *3 (-656 (-173))) + (-5 *4 (-173)) (-4 *1 (-1155 *5)) (-4 *5 (-1070))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-656 (-304 *4))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -4250 *6) (|:| |sol?| (-112))) (-576) - *6)) - (-4 *6 (-374)) (-4 *7 (-1264 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) - (-2 (|:| -1698 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-122 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-767))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-177)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-1106))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-860)) (-4 *4 (-374)) (-5 *2 (-783)) - (-5 *1 (-964 *4 *5)) (-4 *5 (-1264 *4))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-115)) (-5 *4 (-783)) - (-4 *5 (-13 (-464) (-1059 (-576)))) (-4 *5 (-568)) - (-5 *1 (-41 *5 *2)) (-4 *2 (-442 *5)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -1570 ((-1146 *5 (-624 $)) $)) - (-15 -1581 ((-1146 *5 (-624 $)) $)) - (-15 -3570 ($ (-1146 *5 (-624 $)))))))))) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1045 *3)) + (-4 *3 (-13 (-860) (-374) (-1043))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) + (-4 *3 (-1264 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1089 *2 *3)) (-4 *2 (-13 (-860) (-374))) + (-4 *3 (-1264 *2))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1179)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) + (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-764))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *6))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) + ((*1 *1 *1) (-4 *1 (-1165)))) +(((*1 *1 *1) (-4 *1 (-1081))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804))))) (((*1 *2) - (-12 (-4 *1 (-360)) - (-5 *2 (-656 (-2 (|:| -1828 (-576)) (|:| -3422 (-576)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-763))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3988 *4)))) - (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) - (-4 *4 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-438 *4 *2)) (-4 *2 (-13 (-1223) (-29 *4))))) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-1185 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-1290)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-1290))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) +(((*1 *2 *3) + (-12 (-5 *3 (-781)) + (-5 *2 + (-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) + (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) + (-5 *1 (-577)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-148)) - (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-326 *5)) - (-5 *1 (-601 *5))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1043))) - (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-1315 *5 *6 *7)) - (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) + (-12 (-5 *3 (-781)) (-5 *4 (-1084)) + (-5 *2 + (-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) + (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) + (-5 *1 (-577)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1043))) - (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-1315 *5 *6 *7)) - (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) + (-12 (-4 *1 (-799)) (-5 *3 (-1084)) + (-5 *4 + (-2 (|:| |fn| (-326 (-227))) + (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) + (|:| |extra| (-1056)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-799)) (-5 *3 (-1084)) + (-5 *4 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)) + (|:| |extra| (-1056)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-812)) (-5 *3 (-1084)) + (-5 *4 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)))))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-971 *4))) - (-4 *4 (-13 (-860) (-317) (-148) (-1043))) - (-5 *2 (-656 (-1067 *4 *5))) (-5 *1 (-1315 *4 *5 *6)) - (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197)))))) -(((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) - ((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-1121)) (-4 *7 (-917 *6)) - (-5 *2 (-701 *7)) (-5 *1 (-704 *6 *7 *3 *4)) (-4 *3 (-384 *7)) - (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4465))))))) -(((*1 *1 *2) - (-12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-13 (-374) (-148))) - (-5 *1 (-411 *3 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-5 *1 (-913 *2 *4)) - (-4 *2 (-1264 *4))))) + (-12 (-5 *3 (-820)) + (-5 *2 + (-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) + (|:| |explanations| (-656 (-1179))))) + (-5 *1 (-817)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-820)) (-5 *4 (-1084)) + (-5 *2 + (-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) + (|:| |explanations| (-656 (-1179))))) + (-5 *1 (-817)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-851)) (-5 *3 (-1084)) + (-5 *4 + (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) + (-5 *2 (-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-851)) (-5 *3 (-1084)) + (-5 *4 + (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) + (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) + (|:| |ub| (-656 (-855 (-227)))))) + (-5 *2 (-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-853)) + (-5 *2 + (-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) + (|:| |explanations| (-656 (-1179))))) + (-5 *1 (-852)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-853)) (-5 *4 (-1084)) + (-5 *2 + (-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) + (|:| |explanations| (-656 (-1179))))) + (-5 *1 (-852)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-912)) (-5 *3 (-1084)) + (-5 *4 + (-2 (|:| |pde| (-656 (-326 (-227)))) + (|:| |constraints| + (-656 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-783)) (|:| |boundaryType| (-576)) + (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) + (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) + (|:| |tol| (-227)))) + (-5 *2 (-2 (|:| -2402 (-390)) (|:| |explanations| (-1179)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-915)) + (-5 *2 + (-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) + (|:| |explanations| (-656 (-1179))))) + (-5 *1 (-914)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-915)) (-5 *4 (-1084)) + (-5 *2 + (-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) + (|:| |explanations| (-656 (-1179))))) + (-5 *1 (-914))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1193 (-971 *6))) (-4 *6 (-568)) + (-4 *2 (-968 (-419 (-971 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) + (-4 *5 (-805)) + (-4 *4 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $)))))))) +(((*1 *2 *1) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) + (-4 *4 (-1070))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1197)) + (-5 *2 (-656 *4)) (-5 *1 (-1135 *4 *5))))) (((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-576)) (-5 *1 (-246)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-656 (-1179))) (-5 *3 (-576)) (-5 *4 (-1179)) @@ -11638,83 +11858,88 @@ ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) ((*1 *2 *1) (-12 (-4 *1 (-1266 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070))))) -(((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-576)) (-5 *1 (-1178 *3)) (-4 *3 (-1238)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861)) (-4 *5 (-1086 *3 *4 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1178 *7))) (-4 *6 (-861)) - (-4 *7 (-968 *5 (-543 *6) *6)) (-4 *5 (-1070)) - (-5 *2 (-1 (-1178 *7) *7)) (-5 *1 (-1147 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219)))) - ((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499)))) - ((*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) - ((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) - ((*1 *1 *1) (-4 *1 (-1081)))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-5 *3 (-656 (-270))) (-5 *4 (-1197)) (-5 *2 (-112)) + (-5 *1 (-270))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) + (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-767))))) (((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-971 (-576))))) (-5 *2 (-656 (-326 (-576)))) - (-5 *1 (-1052))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) + (-12 (-5 *2 (-2 (|:| -2173 (-576)) (|:| -4213 (-656 *3)))) + (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) + (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-783)))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1264 (-419 *5)))))) (((*1 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-340)))) ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-340))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1238)) (-5 *2 (-656 *1)) (-4 *1 (-1031 *3))))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-304 *6)) (-5 *4 (-115)) (-4 *6 (-442 *5)) - (-4 *5 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-656 *7)) - (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) - (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-656 (-304 *8))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *8)) - (-5 *6 (-656 *8)) (-4 *8 (-442 *7)) - (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) - (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-115))) (-5 *6 (-656 (-304 *8))) - (-4 *8 (-442 *7)) (-5 *5 (-304 *8)) - (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-304 *5)) (-5 *4 (-115)) (-4 *5 (-442 *6)) - (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) - (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) - (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-5 *6 (-656 *3)) - (-4 *3 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *7 *3))))) -(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1288 *1)) (-4 *1 (-378 *3))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1147 *4 *3 *5))) (-4 *4 (-38 (-419 (-576)))) - (-4 *4 (-1070)) (-4 *3 (-861)) (-5 *1 (-1147 *4 *3 *5)) - (-4 *5 (-968 *4 (-543 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1232 *4))) (-5 *3 (-1197)) (-5 *1 (-1232 *4)) - (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1070))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) + (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) + (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1059 (-576)))) + (-5 *2 (-2 (|:| -3726 (-783)) (|:| -3339 *8))) + (-5 *1 (-930 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) + (-4 *4 (-1264 (-419 (-576)))) (-4 *5 (-1264 (-419 *4))) + (-4 *6 (-353 (-419 (-576)) *4 *5)) + (-5 *2 (-2 (|:| -3726 (-783)) (|:| -3339 *6))) + (-5 *1 (-931 *4 *5 *6))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4222 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4222 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *1 (-270)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-576)) (-5 *4 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) + ((*1 *2 *1 *3) + (-12 + (-5 *3 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4222 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *2 (-1293)) (-5 *1 (-1290)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4222 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *1 (-1290)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) + ((*1 *1 *1 *1) (-4 *1 (-805)))) +(((*1 *2 *2) + (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) + (-5 *1 (-178 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1086 *4 *5 *6)) + (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) + (-5 *1 (-998 *4 *5 *6 *7))))) (((*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-861)) (-5 *2 (-971 *4)))) @@ -11727,184 +11952,266 @@ ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1279 *4)) (-4 *4 (-1070)) (-5 *2 (-971 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -2006 *4))) (-5 *1 (-990 *4 *3)) - (-4 *3 (-1264 *4))))) +(((*1 *1) (-5 *1 (-835)))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-5 *2 (-656 (-1048 *5 *6 *7 *3))) (-5 *1 (-1048 *5 *6 *7 *3)) + (-4 *3 (-1086 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-656 *6)) (-4 *1 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1092 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-5 *2 (-656 (-1167 *5 *6 *7 *3))) (-5 *1 (-1167 *5 *6 *7 *3)) + (-4 *3 (-1086 *5 *6 *7))))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) + (-14 *4 *3)))) (((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) - (-14 *4 *2)))) -(((*1 *2 *1) - (-12 (-5 *2 (-1288 (-783))) (-5 *1 (-687 *3)) (-4 *3 (-1121))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-656 *9)) (-5 *3 (-1 (-112) *9)) - (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) - (-4 *8 (-861)) (-5 *1 (-998 *6 *7 *8 *9))))) -(((*1 *2) - (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-940)) (-5 *1 (-1122 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1121))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-2 (|:| -2675 (-701 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-701 *3)))) + (-4 *3 (-13 (-317) (-10 -8 (-15 -3760 ((-430 $) $))))) + (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) (((*1 *2 *2 *3) (-12 (-5 *2 (-1156)) (-5 *3 (-301)) (-5 *1 (-169))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3988 *4)))) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-390)) (-5 *1 (-1084))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-503)) (-5 *4 (-973)) (-5 *2 (-703 (-545))) - (-5 *1 (-545)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-973)) (-4 *3 (-1121)) (-5 *2 (-703 *1)) - (-4 *1 (-779 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-1288 *4)) - (-5 *1 (-826 *4 *3)) (-4 *3 (-668 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-551 *4 *2 *5 *6)) - (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783)))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *3 (-656 (-888))) - (-5 *4 (-656 (-940))) (-5 *5 (-656 (-270))) (-5 *1 (-480)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *3 (-656 (-888))) - (-5 *4 (-656 (-940))) (-5 *1 (-480)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-480)))) - ((*1 *1 *1) (-5 *1 (-480)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3988 *4)))) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) + ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) + (-12 (-4 *4 (-464)) (-5 *2 - (-3 (|:| |overq| (-1193 (-419 (-576)))) - (|:| |overan| (-1193 (-48))) (|:| -4197 (-112)))) - (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5))))) + (-656 + (-2 (|:| |eigval| (-3 (-419 (-971 *4)) (-1186 (-1197) (-971 *4)))) + (|:| |geneigvec| (-656 (-701 (-419 (-971 *4)))))))) + (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-971 *4))))))) +(((*1 *2) + (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-1121))))) (((*1 *2 *3) - (-12 (-5 *3 (-701 (-326 (-227)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) - (-5 *1 (-207))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)) + (-4 *6 (-1121)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-696 *4 *5 *6))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-701 (-1193 *8))) (-4 *5 (-1070)) (-4 *8 (-1070)) + (-4 *6 (-1264 *5)) (-5 *2 (-701 *6)) (-5 *1 (-513 *5 *6 *7 *8)) + (-4 *7 (-1264 *6))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340))))) +(((*1 *2 *2) (-12 (-5 *1 (-980 *2)) (-4 *2 (-557))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557))))) +(((*1 *2 *1) + (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) + (-4 *3 (-1264 *2))))) (((*1 *2 *3) - (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1244)))))) + (-12 + (-5 *3 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1178 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3417 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *2 (-1056)) (-5 *1 (-315))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1070)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1070))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1121)) (-5 *2 (-656 *1)) + (-4 *1 (-442 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) + (-4 *3 (-1121)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *2 (-656 *1)) (-4 *1 (-968 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) + (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-656 *3)) + (-5 *1 (-969 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-374) + (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) + (-15 -1581 (*7 $)))))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) (((*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) ((*1 *2 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) - (-5 *2 (-1056)) (-5 *1 (-767)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-400)) - (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-767))))) +(((*1 *1) (-5 *1 (-1084)))) (((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) - (-4 *4 (-1070))))) -(((*1 *1 *1) (-5 *1 (-1084)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1593 (-656 *4)))) - (-5 *1 (-822 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-419 *6))) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-5 *2 (-2 (|:| -1593 (-656 (-419 *6))) (|:| -2590 (-701 *5)))) - (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1593 (-656 *4)))) - (-5 *1 (-822 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-666 *6 (-419 *6))) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-5 *2 (-2 (|:| -1593 (-656 (-419 *6))) (|:| -2590 (-701 *5)))) - (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6)))))) + (-12 (-5 *2 (-2 (|:| |var| (-656 (-1197))) (|:| |pred| (-52)))) + (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) + (-5 *2 (-419 (-576))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) + (-4 *3 (-568)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) + (-5 *2 (-419 (-576))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) + (-4 *3 (-1121)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) + (-4 *3 (-1121)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1018 *3)) (-4 *3 (-174)) (-4 *3 (-557)) + (-5 *2 (-419 (-576))))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-1029 *3)) + (-4 *3 (-1059 *2))))) (((*1 *1 *1 *1) (-5 *1 (-130))) ((*1 *1 *1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-940)))) ((*1 *1 *1 *1) (-5 *1 (-1243))) ((*1 *1 *1 *1) (-5 *1 (-1244))) ((*1 *1 *1 *1) (-5 *1 (-1245))) ((*1 *1 *1 *1) (-5 *1 (-1246)))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-568)) (-4 *2 (-464)) (-5 *1 (-990 *2 *3)) + (-4 *3 (-1264 *2))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-1238)) (-4 *3 (-1070)) (-5 *2 (-701 *3))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1056)) (-5 *1 (-765))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-624 *4)) (-5 *6 (-1197)) + (-4 *4 (-13 (-442 *7) (-27) (-1223))) + (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2675 (-656 *4)))) + (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1121))))) (((*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-656 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *1) (-12 (-5 *2 (-703 (-1156))) (-5 *1 (-1172))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576))))) +(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) + ((*1 *2 *3) + (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) - (-14 *3 (-576)) (-14 *4 (-783))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-940))) (-5 *4 (-656 (-576))) - (-5 *2 (-701 (-576))) (-5 *1 (-1131))))) -(((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1178 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1070)) - (-5 *3 (-419 (-576))) (-5 *1 (-1181 *4))))) + (-12 (-4 *2 (-317)) (-4 *3 (-1013 *2)) (-4 *4 (-1264 *3)) + (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1059 *3)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1288 (-1197))) (-5 *3 (-1288 (-465 *4 *5 *6 *7))) + (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-940)) + (-14 *6 (-656 (-1197))) (-14 *7 (-1288 (-701 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-465 *4 *5 *6 *7))) + (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-940)) + (-14 *6 (-656 *2)) (-14 *7 (-1288 (-701 *4))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1288 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) + (-14 *6 (-1288 (-701 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1288 (-1197))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) + (-14 *6 (-1288 (-701 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1197)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-940)) (-14 *5 (-656 *2)) (-14 *6 (-1288 (-701 *3))))) + ((*1 *1) + (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-940)) + (-14 *4 (-656 (-1197))) (-14 *5 (-1288 (-701 *2)))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-194))))) + (-12 (-5 *3 (-576)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-5 *2 (-1293)) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6))))) +(((*1 *1) (-4 *1 (-360))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-13 (-568) (-148))) + (-5 *2 + (-2 (|:| |primelt| *5) (|:| |poly| (-656 (-1193 *5))) + (|:| |prim| (-1193 *5)))) + (-5 *1 (-444 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-568) (-148))) + (-5 *2 + (-2 (|:| |primelt| *3) (|:| |pol1| (-1193 *3)) + (|:| |pol2| (-1193 *3)) (|:| |prim| (-1193 *3)))) + (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-442 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-971 *5)) (-5 *4 (-1197)) (-4 *5 (-13 (-374) (-148))) + (-5 *2 + (-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) + (|:| |prim| (-1193 *5)))) + (-5 *1 (-979 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-656 (-1197))) + (-4 *5 (-13 (-374) (-148))) + (-5 *2 + (-2 (|:| -1715 (-656 (-576))) (|:| |poly| (-656 (-1193 *5))) + (|:| |prim| (-1193 *5)))) + (-5 *1 (-979 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-656 (-971 *6))) (-5 *4 (-656 (-1197))) (-5 *5 (-1197)) + (-4 *6 (-13 (-374) (-148))) + (-5 *2 + (-2 (|:| -1715 (-656 (-576))) (|:| |poly| (-656 (-1193 *6))) + (|:| |prim| (-1193 *6)))) + (-5 *1 (-979 *6))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) + (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-764))))) (((*1 *1 *1 *1) (-5 *1 (-130))) ((*1 *1 *1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-940)))) ((*1 *1 *1 *1) (-5 *1 (-1243))) ((*1 *1 *1 *1) (-5 *1 (-1244))) ((*1 *1 *1 *1) (-5 *1 (-1245))) ((*1 *1 *1 *1) (-5 *1 (-1246)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) - (-5 *1 (-768))))) -(((*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1070))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -2451 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1264 *7)) + (-5 *3 (-419 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-586 *7 *8))))) (((*1 *2 *3 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-805)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) - (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -4240 (-419 (-576))) (|:| -4250 (-419 (-576))))) - (-5 *2 (-419 (-576))) (-5 *1 (-1041 *4)) (-4 *4 (-1264 (-576)))))) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *3)) + (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) + (-5 *2 (-1056)) (-5 *1 (-765))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *2 (-1056)) (-5 *1 (-764))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1070)) (-5 *2 (-656 *1)) (-4 *1 (-1155 *3))))) (((*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1179)) (-5 *1 (-1010)))) ((*1 *1 *2 *3) @@ -11913,32 +12220,39 @@ ((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1115 *4)) (-4 *4 (-1238)) (-5 *1 (-1113 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) - (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) - (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1056)) - (-5 *1 (-758))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1070) (-729 (-419 (-576))))) - (-4 *5 (-861)) (-5 *1 (-1304 *4 *5 *2)) (-4 *2 (-1309 *5 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-4 *4 (-1070)) - (-5 *1 (-1050 *4))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) + (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) + (-5 *1 (-800)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) + (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) + (-5 *1 (-800))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) + (-12 (-5 *3 (-656 *5)) (-5 *4 (-940)) (-4 *5 (-861)) + (-5 *2 (-656 (-684 *5))) (-5 *1 (-684 *5))))) +(((*1 *1 *1) (-5 *1 (-1084)))) +(((*1 *2 *1) + (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-962 *5)) (-4 *5 (-1070)) (-5 *2 (-783)) + (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1185 *4 *5)) + (-14 *4 (-940)) (-4 *5 (-1070)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-783))) (-5 *3 (-962 *5)) (-4 *5 (-1070)) + (-5 *1 (-1185 *4 *5)) (-14 *4 (-940))))) (((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) ((*1 *1 *1) (-5 *1 (-390))) ((*1 *1) (-5 *1 (-390)))) (((*1 *2 *2) - (-12 (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) - (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4)))))) + (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) (((*1 *2 *3 *2) (-12 (-5 *2 (-656 (-390))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) @@ -11956,31 +12270,63 @@ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876))))) -(((*1 *1 *1) (-4 *1 (-1081))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804))))) +(((*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1963)))) + (-5 *2 (-1056)) (-5 *1 (-760))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-174)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4)) (-5 *1 (-700 *4 *5 *6 *2)) + (-4 *2 (-699 *4 *5 *6))))) +(((*1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-379)) (-4 *2 (-1121))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-701 (-419 (-971 (-576))))) + (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1052)) + (-5 *3 (-326 (-576)))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) - (-4 *4 (-1070))))) -(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) - ((*1 *1 *1 *1) (-4 *1 (-805)))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) + (-12 (-5 *2 (-656 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-598 *3)) (-4 *3 (-374))))) +(((*1 *2) + (-12 (-14 *4 (-783)) (-4 *5 (-1238)) (-5 *2 (-135)) + (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-374)) (-5 *2 (-135)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-174)))) + ((*1 *2 *1) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-576)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) + (-5 *2 (-576)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1070)) (-5 *2 (-940)))) + ((*1 *2) (-12 (-4 *1 (-1295 *3)) (-4 *3 (-374)) (-5 *2 (-135))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-464)) (-5 *2 (-112)) + (-5 *1 (-371 *4 *5)) (-14 *5 (-656 (-1197))))) ((*1 *2 *3) - (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) - (-5 *2 (-1056)) (-5 *1 (-765))))) -(((*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238))))) + (-12 (-5 *3 (-656 (-792 *4 (-878 *5)))) (-4 *4 (-464)) + (-14 *5 (-656 (-1197))) (-5 *2 (-112)) (-5 *1 (-640 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) + (-5 *2 (-656 (-656 (-656 (-962 *3)))))))) +(((*1 *2 *3 *2) + (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1264 (-171 *2))))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1264 (-171 *2)))))) +(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-568)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -4250 *7) (|:| |sol?| (-112))) + (-1 (-2 (|:| |ans| *7) (|:| -4249 *7) (|:| |sol?| (-112))) (-576) *7)) (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1264 *7)) (-5 *3 (-419 *8)) @@ -11992,415 +12338,438 @@ (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 (-656 *5))) (-4 *5 (-1279 *4)) + (-4 *4 (-38 (-419 (-576)))) + (-5 *2 (-1 (-1178 *4) (-656 (-1178 *4)))) (-5 *1 (-1281 *4 *5))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-568)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-568))))) +(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1179))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1070)) (-5 *1 (-1260 *3 *2)) (-4 *2 (-1264 *3))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-924 *4)) (-4 *4 (-1121)) (-5 *2 (-656 (-783))) + (-5 *1 (-923 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1163 *3 *4)) (-14 *3 (-940)) (-4 *4 (-374)) + (-5 *1 (-1014 *3 *4))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-656 (-419 (-971 *6)))) + (-5 *3 (-419 (-971 *6))) + (-4 *6 (-13 (-568) (-1059 (-576)) (-148))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-582 *6))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1238)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1121)) + (-4 *2 (-1238))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) + (-5 *1 (-767))))) (((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223)))))) +(((*1 *1) (-5 *1 (-301)))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-751 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) + ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1193 *9)) (-5 *4 (-656 *7)) (-4 *7 (-861)) + (-4 *9 (-968 *8 *6 *7)) (-4 *6 (-805)) (-4 *8 (-317)) + (-5 *2 (-656 (-783))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *5 (-783))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1121)) (-5 *2 (-55))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1154 (-227))) (-5 *3 (-656 (-270))) (-5 *1 (-1290)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1154 (-227))) (-5 *3 (-1179)) (-5 *1 (-1290)))) + ((*1 *1 *1) (-5 *1 (-1290)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-430 *3)) (-4 *3 (-568)) (-5 *1 (-431 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070))))) +(((*1 *2 *3) + (-12 (-5 *3 (-576)) (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-1234))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-805)) (-4 *5 (-1070)) (-4 *6 (-968 *5 *4 *2)) + (-4 *2 (-861)) (-5 *1 (-969 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-374) + (-10 -8 (-15 -3569 ($ *6)) (-15 -1570 (*6 $)) + (-15 -1581 (*6 $))))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) + (-5 *2 (-1197)) (-5 *1 (-1064 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-878 *5)) + (-14 *5 (-656 (-1197))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) + (-4 *6 (-464)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-878 *5)) + (-14 *5 (-656 (-1197))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) + (-4 *6 (-464))))) +(((*1 *2 *3) + (-12 (-5 *2 (-624 *4)) (-5 *1 (-623 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-1121))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *2))))) (((*1 *2 *1 *1 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) - (-5 *2 (-2 (|:| -1714 *1) (|:| |gap| (-783)) (|:| -3624 *1))) + (-5 *2 (-2 (|:| -1715 *1) (|:| |gap| (-783)) (|:| -3891 *1))) (-4 *1 (-1086 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-2 (|:| -1714 *1) (|:| |gap| (-783)) (|:| -3624 *1))) + (-5 *2 (-2 (|:| -1715 *1) (|:| |gap| (-783)) (|:| -3891 *1))) (-4 *1 (-1086 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *2 (-1121)) (-4 *3 (-1121)) + (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1144 *3 *4 *2 *5)) (-4 *4 (-1070)) (-4 *5 (-243 *3 *4)) + (-4 *2 (-243 *3 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-326 *5))) + (-5 *1 (-1150 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-326 *5)))) + (-5 *1 (-1150 *5))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-315)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |num| (-907 *3)) (|:| |den| (-907 *3)))) + (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-374)) (-4 *6 (-1264 (-419 *2))) + (-4 *2 (-1264 *5)) (-5 *1 (-217 *5 *2 *6 *3)) + (-4 *3 (-353 *5 *2 *6))))) (((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) ((*1 *1 *1 *1) (-4 *1 (-485))) ((*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) ((*1 *2 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-898)))) ((*1 *1 *1) (-5 *1 (-992))) ((*1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) -(((*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-656 *6)) (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) - (-4 *3 (-568))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1179))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) - (-5 *2 (-1056)) (-5 *1 (-759))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1197)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *3 *5 *6 *7)) - (-4 *3 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238)) - (-4 *7 (-1238)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *3 *5 *6)) - (-4 *3 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1161 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1121) (-34))) (-4 *6 (-13 (-1121) (-34))) - (-5 *2 (-112)) (-5 *1 (-1162 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) - (-5 *2 (-2 (|:| |num| (-1288 *4)) (|:| |den| *4)))))) +(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 (-656 (-2 (|:| |func| *2) (|:| |pole| (-112))))) + (-4 *2 (-13 (-442 *4) (-1023))) (-4 *4 (-568)) + (-5 *1 (-285 *4 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-878 *5))) (-14 *5 (-656 (-1197))) (-4 *6 (-464)) - (-5 *2 (-656 (-656 (-253 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) - (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-876)))) - ((*1 *1 *1) (-5 *1 (-876)))) -(((*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291))))) -(((*1 *2 *3) - (-12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-5 *2 (-656 *5)) - (-5 *1 (-905 *4 *5)) (-4 *5 (-1238))))) -(((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-940)) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) + (-12 (-4 *4 (-374)) (-5 *2 (-656 (-1178 *4))) (-5 *1 (-295 *4 *5)) + (-5 *3 (-1178 *4)) (-4 *5 (-1279 *4))))) +(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *2 *4)) (-4 *4 (-1264 *2)) + (-4 *2 (-174)))) ((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-845 (-940))) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) - ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-940)))) + (-12 (-4 *4 (-1264 *2)) (-4 *2 (-174)) (-5 *1 (-420 *3 *2 *4)) + (-4 *3 (-421 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-421 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-174)))) ((*1 *2) - (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-940)))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4465)) (-4 *1 (-240 *3)) - (-4 *3 (-1121)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1238))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4466)) (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-940))) (-5 *2 (-656 (-701 (-576)))) - (-5 *1 (-1131))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-576) (-227) (-518) (-1179) (-1202))) - (-5 *1 (-1202))))) + (-12 (-4 *3 (-1264 *2)) (-5 *2 (-576)) (-5 *1 (-780 *3 *4)) + (-4 *4 (-421 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861)) (-4 *3 (-174)))) + ((*1 *2 *3) + (-12 (-4 *2 (-568)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-174))))) (((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1193 *7))) (-5 *3 (-1193 *7)) - (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-928)) (-4 *5 (-805)) - (-4 *6 (-861)) (-5 *1 (-925 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1193 *5))) (-5 *3 (-1193 *5)) - (-4 *5 (-1264 *4)) (-4 *4 (-928)) (-5 *1 (-926 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-317)))) + (-12 (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) + (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4)))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-576)) (-5 *1 (-246))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) + (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-968 *4 *3 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) + (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-968 *4 *3 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4129 *1))) - (-4 *1 (-317))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1056)) (-5 *1 (-764))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-855 *4)) (-5 *3 (-624 *4)) (-5 *5 (-112)) - (-4 *4 (-13 (-1223) (-29 *6))) - (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-226 *6 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3498 (-794 *3)) (|:| |coef2| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) + (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-2 (|:| -3498 *1) (|:| |coef2| *1))) - (-4 *1 (-1086 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-304 (-845 *3))) - (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *2 (-845 *3)) (-5 *1 (-648 *5 *3)) - (-4 *3 (-13 (-27) (-1223) (-442 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-845 (-971 *5)))) (-4 *5 (-464)) - (-5 *2 (-845 (-419 (-971 *5)))) (-5 *1 (-649 *5)) - (-5 *3 (-419 (-971 *5))))) + (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1197)) (-5 *5 (-1115 (-227))) (-5 *2 (-946)) + (-5 *1 (-944 *3)) (-4 *3 (-626 (-548))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-419 (-971 *5)))) (-5 *3 (-419 (-971 *5))) - (-4 *5 (-464)) (-5 *2 (-845 *3)) (-5 *1 (-649 *5))))) -(((*1 *2 *1) + (-12 (-5 *4 (-1197)) (-5 *2 (-946)) (-5 *1 (-944 *3)) + (-4 *3 (-626 (-548))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-946)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) + (-5 *1 (-946))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) +(((*1 *2 *3) (-12 - (-5 *2 - (-656 - (-2 - (|:| -4301 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -4440 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1178 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2951 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-571)))) - ((*1 *2 *1) - (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) - (-5 *2 (-656 *4))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-997 *4 *5 *6 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1122 *3 *4)) (-14 *3 (-940)) - (-14 *4 (-940))))) -(((*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-861))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-1070)) (-5 *1 (-1260 *4 *2)) - (-4 *2 (-1264 *4))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-442 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1197)))) - ((*1 *1 *1) (-4 *1 (-161)))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-315)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |num| (-907 *3)) (|:| |den| (-907 *3)))) - (-5 *1 (-907 *3)) (-4 *3 (-1121))))) + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-390)) (-5 *1 (-207))))) +(((*1 *1 *1) + (-12 (-4 *2 (-360)) (-4 *2 (-1070)) (-5 *1 (-724 *2 *3)) + (-4 *3 (-1264 *2))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-656 (-624 *6))) (-5 *4 (-1197)) (-5 *2 (-624 *6)) + (-4 *6 (-442 *5)) (-4 *5 (-1121)) (-5 *1 (-585 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-1288 (-701 *4))) (-5 *1 (-90 *4 *5)) - (-5 *3 (-701 *4)) (-4 *5 (-668 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) - (-4 *1 (-1086 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-240 *3)))) - ((*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1121))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-783)) (-4 *6 (-374)) (-5 *4 (-1232 *6)) - (-5 *2 (-1 (-1178 *4) (-1178 *4))) (-5 *1 (-1296 *6)) - (-5 *5 (-1178 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-783))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-568)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) - ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) - ((*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174))))) + (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-429 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1070)) (-5 *1 (-909 *2 *3)) (-4 *2 (-1264 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1248 *3))))) + (-12 (-5 *2 (-783)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-174)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1309 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-1070))))) (((*1 *2 *3) - (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) - (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-591))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-576))) (-5 *5 (-1 (-1178 *4))) (-4 *4 (-374)) - (-4 *4 (-1070)) (-5 *2 (-1178 *4)) (-5 *1 (-1181 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-968 *3 *4 *5))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-118 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-576)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-885 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-14 *2 (-576)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-576)) (-14 *3 *2) (-5 *1 (-886 *3 *4)) - (-4 *4 (-883 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-576)) (-5 *1 (-886 *2 *3)) (-4 *3 (-883 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-576)) (-4 *1 (-1250 *3 *4)) (-4 *3 (-1070)) - (-4 *4 (-1279 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1250 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-1279 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1084))))) -(((*1 *2 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2))))) + (-12 (-4 *4 (-1264 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-932 *4 *3)) + (-4 *3 (-1264 (-419 *4)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-656 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) + (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5))))) (((*1 *1 *1) (-5 *1 (-548)))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1056))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276))))) +(((*1 *2 *3) + (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) + (-4 *4 (-13 (-374) (-860))) (-4 *3 (-1264 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1264 (-576)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) + (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1264 *6)) + (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)))) + (-4 *8 (-1264 (-419 *7))) (-5 *2 (-598 *3)) + (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) +(((*1 *1 *1) (-4 *1 (-557)))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1246)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-171 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) + (-5 *1 (-770))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1248 *4)) (-4 *4 (-1070)) (-4 *4 (-568)) - (-5 *2 (-419 (-971 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1248 *4)) (-4 *4 (-1070)) (-4 *4 (-568)) - (-5 *2 (-419 (-971 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-656 (-701 *6))) (-5 *4 (-112)) (-5 *5 (-576)) - (-5 *2 (-701 *6)) (-5 *1 (-1050 *6)) (-4 *6 (-374)) (-4 *6 (-1070)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-5 *1 (-1050 *4)) - (-4 *4 (-374)) (-4 *4 (-1070)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-5 *2 (-701 *5)) - (-5 *1 (-1050 *5)) (-4 *5 (-374)) (-4 *5 (-1070))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97))))) + (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-1289)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-656 *6)) (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) + (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) + (-4 *3 (-568))))) (((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) ((*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1193 *6)) (-5 *3 (-576)) (-4 *6 (-317)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-1255 (-576)))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -2778 *1) (|:| -4452 *1) (|:| |associate| *1))) - (-4 *1 (-568))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-990 *4 *3)) - (-4 *3 (-1264 *4))))) + (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-1086 *3 *4 *2)) (-4 *2 (-861)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1178 *3)) (-4 *3 (-1121)) + (-4 *3 (-1238))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-52)) (-5 *1 (-907 *4)) - (-4 *4 (-1121))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) -(((*1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-783)) (-5 *5 (-656 *3)) (-4 *3 (-317)) (-4 *6 (-861)) - (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-637 *6 *7 *3 *8)) - (-4 *8 (-968 *3 *7 *6))))) -(((*1 *1 *1) (|partial| -4 *1 (-1173)))) -(((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) - (-5 *1 (-945)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) - (-5 *1 (-945)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) - (-5 *1 (-946)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) - (-5 *1 (-946))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) - ((*1 *1 *1) (-4 *1 (-312))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) - ((*1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *3)) - (-4 *3 (-13 (-442 *4) (-1023)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-964 *4 *3)) - (-4 *3 (-1264 *4))))) + (-12 (-5 *2 (-1197)) (-5 *3 (-390)) (-5 *1 (-1084))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) - (-4 *4 (-132))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-962 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) - (-4 *4 (-1070))))) -(((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1056)) (-5 *1 (-768))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1962)))) - (-5 *2 (-1056)) (-5 *1 (-760))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-386 *4 *2)) + (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4465))))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1121) (-34))) + (-5 *2 (-112)) (-5 *1 (-1161 *4 *5)) (-4 *4 (-13 (-1121) (-34)))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) + (-5 *2 (-1056)) (-5 *1 (-759))))) +(((*1 *1 *1) + (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-656 (-1197))) (-4 *5 (-568)) + (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-782 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-568)) + (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-782 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-701 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2675 (-656 *6))) + *7 *6)) + (-4 *6 (-374)) (-4 *7 (-668 *6)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1288 *6) "failed")) + (|:| -2675 (-656 (-1288 *6))))) + (-5 *1 (-825 *6 *7)) (-5 *4 (-1288 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -3988 *7)))) - (-4 *6 (-1086 *3 *4 *5)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1009 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -3988 *7)))) - (-4 *6 (-1086 *3 *4 *5)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1128 *3 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1160)))) + (-12 (-4 *3 (-13 (-464) (-1059 (-576)))) (-4 *3 (-568)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) + (-15 -1581 ((-1146 *3 (-624 $)) $)) + (-15 -3569 ($ (-1146 *3 (-624 $)))))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1179)) (-5 *2 (-656 (-1202))) (-5 *1 (-895))))) -(((*1 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1179)) (-5 *1 (-97)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1179)) (-5 *1 (-97))))) + (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1197))) + (-4 *5 (-464)) + (-5 *2 + (-2 (|:| |gblist| (-656 (-253 *4 *5))) + (|:| |gvlist| (-656 (-576))))) + (-5 *1 (-643 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-419 (-576))) + (-5 *1 (-445 *4 *3)) (-4 *3 (-442 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-624 *3)) (-4 *3 (-442 *5)) + (-4 *5 (-13 (-568) (-1059 (-576)))) (-5 *2 (-1193 (-419 (-576)))) + (-5 *1 (-445 *5 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) - (-5 *2 (-783)))) + (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-118 *3)) (-14 *3 (-576)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1178 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-317)) (-5 *1 (-176 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-176 (-576))) (-5 *1 (-777 *3)) (-4 *3 (-416)))) ((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) - (-5 *2 (-783)))) + (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-885 *3)) (-14 *3 (-576)))) ((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) - (-4 *4 (-738))))) -(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1197))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-1086 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *2))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-4 *2 (-1121)) - (-5 *1 (-904 *4 *2))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) + (-12 (-14 *3 (-576)) (-5 *2 (-176 (-419 (-576)))) + (-5 *1 (-886 *3 *4)) (-4 *4 (-883 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) + (-15 -1581 ((-1146 *3 (-624 $)) $)) + (-15 -3569 ($ (-1146 *3 (-624 $)))))))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-861)) (-5 *1 (-1208 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-946)) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-656 (-971 *4))))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-656 (-971 *4))) (-5 *1 (-428 *3 *4)) + (-4 *3 (-429 *4)))) + ((*1 *2) + (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-656 (-971 *3))))) + ((*1 *2) + (-12 (-5 *2 (-656 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1288 (-465 *4 *5 *6 *7))) (-5 *2 (-656 (-971 *4))) + (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *4 (-174)) + (-14 *5 (-940)) (-14 *6 (-656 (-1197))) (-14 *7 (-1288 (-701 *4)))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1197)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *3 *5 *6 *7)) + (-4 *3 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238)) + (-4 *7 (-1238)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1197)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *3 *5 *6)) + (-4 *3 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238))))) +(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) (-12 (-5 *2 (-992)) (-5 *1 (-1313))))) +(((*1 *2 *3) + (-12 (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) - (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) - (-5 *1 (-154)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-946)) (-5 *4 (-419 (-576))) + (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) + (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))))) + ((*1 *2 *3 *4) + (-12 (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) - (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) - (-5 *1 (-154))))) + (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) + (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))) + (-5 *4 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) + (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))) (-5 *4 (-419 (-576))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-419 (-576))) + (-5 *2 (-656 (-2 (|:| -4239 *5) (|:| -4249 *5)))) (-5 *1 (-1041 *3)) + (-4 *3 (-1264 (-576))) (-5 *4 (-2 (|:| -4239 *5) (|:| -4249 *5))))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) + (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-419 (-576)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) + (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-419 (-576)))) + (-5 *4 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-419 (-576))) + (-5 *2 (-656 (-2 (|:| -4239 *4) (|:| -4249 *4)))) (-5 *1 (-1042 *3)) + (-4 *3 (-1264 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-419 (-576))) + (-5 *2 (-656 (-2 (|:| -4239 *5) (|:| -4249 *5)))) (-5 *1 (-1042 *3)) + (-4 *3 (-1264 *5)) (-5 *4 (-2 (|:| -4239 *5) (|:| -4249 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 (-1 *6 (-656 *6)))) + (-4 *5 (-38 (-419 (-576)))) (-4 *6 (-1279 *5)) (-5 *2 (-656 *6)) + (-5 *1 (-1281 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-659 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390)))) + ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-390))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-173)))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) ((*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) @@ -12412,351 +12781,344 @@ ((*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1070))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1279 *4)) (-5 *1 (-1281 *4 *2)) - (-4 *4 (-38 (-419 (-576))))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1068))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1125)) (-5 *1 (-289))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1161 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1121) (-34))) (-4 *6 (-13 (-1121) (-34))) + (-5 *2 (-112)) (-5 *1 (-1162 *5 *6))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-374) (-860))) + (-5 *2 (-656 (-2 (|:| -4213 (-656 *3)) (|:| -3313 *5)))) + (-5 *1 (-183 *5 *3)) (-4 *3 (-1264 (-171 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-374) (-860))) + (-5 *2 (-656 (-2 (|:| -4213 (-656 *3)) (|:| -3313 *4)))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-4 *4 (-1013 *3)) (-5 *1 (-143 *3 *4 *2)) - (-4 *2 (-384 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) (-4 *2 (-384 *4)) - (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-384 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 *5)) (-4 *5 (-1013 *4)) (-4 *4 (-568)) - (-5 *2 (-701 *4)) (-5 *1 (-705 *4 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-4 *4 (-1013 *3)) (-5 *1 (-1257 *3 *4 *2)) - (-4 *2 (-1264 *4))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) (((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1121))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *1)) (-5 *4 (-1288 *1)) (-4 *1 (-651 *5)) - (-4 *5 (-1070)) - (-5 *2 (-2 (|:| -2590 (-701 *5)) (|:| |vec| (-1288 *5)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1070)) - (-5 *2 (-701 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-1121)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) - (-4 *1 (-397 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) - (-5 *2 (-656 (-1197))) (-5 *1 (-1097 *3 *4 *5)) - (-4 *5 (-13 (-442 *4) (-901 *3) (-626 (-907 *3))))))) + (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) + (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-576)) + (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1264 (-419 (-576)))) (-5 *1 (-932 *3 *2)) + (-4 *2 (-1264 (-419 *3)))))) (((*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-1233 *3)) - (-4 *3 (-995))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1056)) - (-5 *1 (-758))))) +(((*1 *1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) (((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) -(((*1 *2 *3) - (-12 (|has| *6 (-6 -4466)) (-4 *4 (-374)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-533 *4 *5 *6 *3)) - (-4 *3 (-699 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4466)) (-4 *4 (-568)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-4 *7 (-1013 *4)) (-4 *8 (-384 *7)) - (-4 *9 (-384 *7)) (-5 *2 (-656 *6)) - (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-699 *4 *5 *6)) - (-4 *10 (-699 *7 *8 *9)))) - ((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-656 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-700 *4 *5 *6 *3)) - (-4 *3 (-699 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) - (-5 *2 (-656 *7))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1178 (-1178 *4))) (-5 *2 (-1178 *4)) (-5 *1 (-1181 *4)) - (-4 *4 (-1070))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) - (-4 *2 - (-13 (-414) - (-10 -7 (-15 -3570 (*2 *4)) (-15 -4401 ((-940) *2)) - (-15 -1593 ((-1288 *2) (-940))) (-15 -3051 (*2 *2))))) - (-5 *1 (-367 *2 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-145))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) (((*1 *2 *1) - (-12 (-5 *2 (-1178 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| -2715 *3) (|:| -3624 *3))) (-5 *1 (-1259 *4 *3)) - (-4 *3 (-1264 *4))))) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) + (-5 *2 (-2 (|:| |num| (-1288 *4)) (|:| |den| *4)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-933 *3)) (-4 *3 (-317))))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-940)) (-5 *1 (-1122 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-1178 *3))) (-5 *1 (-1178 *3)) (-4 *3 (-1238))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-624 *3)) (-5 *5 (-1 (-1193 *3) (-1193 *3))) + (-4 *3 (-13 (-27) (-442 *6))) (-4 *6 (-568)) (-5 *2 (-598 *3)) + (-5 *1 (-563 *6 *3))))) +(((*1 *2 *2) + (-12 (-4 *2 (-174)) (-4 *2 (-1070)) (-5 *1 (-726 *2 *3)) + (-4 *3 (-660 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1070))))) +(((*1 *2 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-340))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-4 *5 (-374)) + (-4 *5 (-1070)) (-5 *2 (-112)) (-5 *1 (-1050 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-4 *4 (-1070)) + (-5 *2 (-112)) (-5 *1 (-1050 *4))))) (((*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1193 *4))) (-5 *3 (-1193 *4)) - (-4 *4 (-928)) (-5 *1 (-675 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) - ((*1 *2 *1) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946))))) +(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1070))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1238)) (-4 *2 (-861)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1238)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) + (-14 *3 (-940)) (-4 *4 (-1070)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-227)) (-5 *5 (-576)) (-5 *2 (-1233 *3)) - (-5 *1 (-802 *3)) (-4 *3 (-995)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-112)) - (-5 *1 (-1233 *2)) (-4 *2 (-995))))) + (-12 (-5 *4 (-656 (-878 *5))) (-14 *5 (-656 (-1197))) (-4 *6 (-464)) + (-5 *2 (-656 (-656 (-253 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) + (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464))))) (((*1 *2 *3) - (|partial| -12 (-4 *2 (-1121)) (-5 *1 (-1215 *3 *2)) (-4 *3 (-1121))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) (-4 *5 (-1264 *4)) - (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-112)))) - (-5 *1 (-1036 *4 *5)) (-5 *3 (-419 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-933 *3)) (-4 *3 (-317))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-576) "failed") *5)) (-4 *5 (-1070)) - (-5 *2 (-576)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1264 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1070)) - (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1264 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1070)) - (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1264 *4)) (-5 *1 (-819 *4 *2 *3 *5)) - (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) - (-4 *5 (-668 (-419 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1264 *4)) (-5 *1 (-819 *4 *2 *5 *3)) - (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-668 *2)) - (-4 *3 (-668 (-419 *2)))))) + (-12 (|has| *2 (-6 (-4466 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) + (-4 *2 (-1070)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1264 *2)) + (-4 *4 (-699 *2 *5 *6))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-767))))) +(((*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1200))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-227))) + (-5 *2 (-1056)) (-5 *1 (-767))))) +(((*1 *2) + (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *2 (-1293)) + (-5 *1 (-445 *3 *4)) (-4 *4 (-442 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-419 (-576))) (-5 *2 (-227)) (-5 *1 (-315))))) +(((*1 *2 *1) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1081)) (-4 *3 (-1223)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) (((*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-663 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) -(((*1 *2 *3) - (-12 (-4 *1 (-939)) (-5 *2 (-2 (|:| -1714 (-656 *1)) (|:| -4129 *1))) - (-5 *3 (-656 *1))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1121)) (-4 *6 (-1121)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *5 (-1121))))) -(((*1 *2 *1) - (-12 (-5 *2 (-703 (-985 *3))) (-5 *1 (-985 *3)) (-4 *3 (-1121))))) -(((*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121)) (-4 *2 (-1070)))) - ((*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1197))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-876)))) + ((*1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4464)) (-4 *1 (-240 *3)) + (-4 *3 (-1121)))) + ((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4464)) (-4 *1 (-240 *2)) (-4 *2 (-1121)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)) (-4 *2 (-1121)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1121)) + (-5 *1 (-749 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1121)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) + (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 (-656 *6))) (-4 *6 (-968 *3 *5 *4)) + (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-861) (-626 (-1197)))) + (-4 *5 (-805)) (-5 *1 (-943 *3 *4 *5 *6))))) (((*1 *1) (-5 *1 (-188)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) - (-14 *5 (-1197)) (-5 *2 (-576)) (-5 *1 (-1135 *4 *5))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223)))))) +(((*1 *2 *2) (-12 (-5 *2 (-985 *3)) (-4 *3 (-1121)) (-5 *1 (-986 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-1238)))) + ((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) + (-14 *4 (-576))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-3 *3 (-656 *1))) - (-4 *1 (-1092 *4 *5 *6 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) - ((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-768))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-799)) (-5 *2 (-1056)) - (-5 *3 - (-2 (|:| |fn| (-326 (-227))) - (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-799)) (-5 *2 (-1056)) - (-5 *3 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227))))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1255 (-576))) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1238))))) -(((*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-52)) (-5 *1 (-843))))) + (|partial| -12 (-5 *3 (-701 (-419 (-971 (-576))))) + (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1052))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) + (-14 *4 *2)))) +(((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) + (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) + (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) + (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) + (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1166 *5 *6 *7 *8 *9))))) +(((*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) + ((*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-701 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) + (-4 *3 (-429 *4)))) + ((*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) (((*1 *2 *2) (-12 (-4 *3 (-1121)) (-5 *1 (-948 *3 *2)) (-4 *2 (-442 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-326 (-576))) (-5 *1 (-949))))) -(((*1 *2 *2) (-12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |k| (-1197)) (|:| |c| (-1310 *3))))) - (-5 *1 (-1310 *3)) (-4 *3 (-1070)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |k| *3) (|:| |c| (-1312 *3 *4))))) - (-5 *1 (-1312 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -3106 *4) (|:| -3314 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *8 (-1086 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-656 *8)) - (|:| |towers| (-656 (-1048 *5 *6 *7 *8))))) - (-5 *1 (-1048 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *8 (-1086 *5 *6 *7)) + (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1264 (-419 (-576)))) + (-5 *2 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))) + (-5 *1 (-932 *3 *4)) (-4 *4 (-1264 (-419 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1264 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-932 *4 *3)) + (-4 *3 (-1264 (-419 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-656 *3)) (-5 *5 (-940)) (-4 *3 (-1264 *4)) + (-4 *4 (-317)) (-5 *1 (-472 *4 *3))))) +(((*1 *1) (-5 *1 (-188)))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-983 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) +(((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| |val| (-656 *8)) - (|:| |towers| (-656 (-1167 *5 *6 *7 *8))))) - (-5 *1 (-1167 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) + (-656 + (-2 + (|:| -4300 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1288 (-326 (-227)))) + (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) + (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -4439 + (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) + (|:| |expense| (-390)) (|:| |accuracy| (-390)) + (|:| |intermediateResults| (-390))))))) + (-5 *1 (-815))))) (((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-188)))) + (-12 (-4 *3 (-238)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) + (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) + (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-275 *2)) (-4 *2 (-861))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1231 *5 *6 *7 *8)) (-4 *5 (-568)) + (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *2 (-1178 (-576))) (-5 *1 (-1181 *4)) (-4 *4 (-1070)) - (-5 *3 (-576))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-759))))) -(((*1 *2) - (-12 (-5 *2 (-1288 (-1122 *3 *4))) (-5 *1 (-1122 *3 *4)) - (-14 *3 (-940)) (-14 *4 (-940))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-91 *3))))) -(((*1 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238))))) -(((*1 *1) (-5 *1 (-188)))) + (-12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-5 *2 (-656 *5)) + (-5 *1 (-905 *4 *5)) (-4 *5 (-1238))))) (((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1178 (-971 *4)) (-1178 (-971 *4)))) - (-5 *1 (-1296 *4)) (-4 *4 (-374))))) -(((*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121)) (-4 *2 (-568)))) - ((*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568))))) -(((*1 *1) (-4 *1 (-988)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-112))))) + (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1121) (-1059 *5))) + (-4 *5 (-901 *4)) (-4 *4 (-1121)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-950 *4 *5 *6))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1082 (-1045 *3) (-1193 (-1045 *3)))) - (-5 *1 (-1045 *3)) (-4 *3 (-13 (-860) (-374) (-1043)))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1161 *3 *2)) (-4 *3 (-13 (-1121) (-34))) - (-4 *2 (-13 (-1121) (-34)))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -3106 *4) (|:| -3314 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) + (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-188)))) (((*1 *2 *1) - (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1121)) - (-4 *2 (-861))))) -(((*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-860)) (-5 *1 (-313 *3))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861))))) + (-12 (-4 *2 (-1264 *3)) (-5 *1 (-411 *3 *2)) + (-4 *3 (-13 (-374) (-148)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-783)) (-5 *2 (-1293))))) +(((*1 *1) (-4 *1 (-988)))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *2 (-656 (-227))) - (-5 *1 (-480))))) -(((*1 *1 *2) - (-12 (-5 *2 (-701 *4)) (-4 *4 (-1070)) (-5 *1 (-1163 *3 *4)) - (-14 *3 (-783))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-940)) (-5 *4 (-390)) (-5 *2 (-1293)) (-5 *1 (-1289))))) -(((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1238)) - (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *6 *7 *2)) (-4 *6 (-1070)) - (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6))))) + (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-171 (-326 *4))) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *2 (-171 *3)) (-5 *1 (-1227 *4 *3)) + (-4 *3 (-13 (-27) (-1223) (-442 *4)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1121)) (-4 *5 (-1121)) + (-5 *2 (-1 *5)) (-5 *1 (-695 *4 *5))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-656 (-878 *4))) + (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) + (-4 *6 (-464))))) +(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207))))) (((*1 *2 *1) - (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1264 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390)))) - ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-390))))) + (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) + (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-374)) (-5 *2 (-940)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) + (-12 (-4 *4 (-374)) (-5 *2 (-845 (-940))) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-940)))) + ((*1 *2) + (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-940)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-971 (-419 (-576)))) (-5 *4 (-1197)) + (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-703 (-591))) (-5 *1 (-591))))) + (-12 (-5 *3 (-924 (-576))) (-5 *4 (-576)) (-5 *2 (-701 *4)) + (-5 *1 (-1049 *5)) (-4 *5 (-1070)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1049 *4)) + (-4 *4 (-1070)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-924 (-576)))) (-5 *4 (-576)) + (-5 *2 (-656 (-701 *4))) (-5 *1 (-1049 *5)) (-4 *5 (-1070)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-656 (-576)))) (-5 *2 (-656 (-701 (-576)))) + (-5 *1 (-1049 *4)) (-4 *4 (-1070))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1279 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-783)) - (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6))))) + (-12 (-4 *4 (-928)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-430 (-1193 *7))) + (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-928)) (-4 *5 (-1264 *4)) (-5 *2 (-430 (-1193 *5))) + (-5 *1 (-926 *4 *5)) (-5 *3 (-1193 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-464) (-148))) (-5 *2 (-430 *3)) + (-5 *1 (-100 *4 *3)) (-4 *3 (-1264 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-656 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-13 (-464) (-148))) + (-5 *2 (-430 *3)) (-5 *1 (-100 *5 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1179))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) +(((*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-703 (-591))) (-5 *1 (-591))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) - (-5 *2 (-430 (-1193 (-419 (-576))))) (-5 *1 (-447 *4 *5 *3)) - (-4 *3 (-1264 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1081)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) - (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-1081)))) - ((*1 *1 *1) (-4 *1 (-860))) - ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)) (-4 *2 (-1081)))) - ((*1 *1 *1) (-4 *1 (-1081))) ((*1 *1 *1) (-4 *1 (-1160)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-430 *5)) (-4 *5 (-568)) + (-12 (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *2 - (-2 (|:| -3422 (-783)) (|:| -1714 *5) (|:| |radicand| (-656 *5)))) - (-5 *1 (-330 *5)) (-5 *4 (-783)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-576))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) + (-2 (|:| |glbase| (-656 (-253 *4 *5))) (|:| |glval| (-656 (-576))))) + (-5 *1 (-643 *4 *5)) (-5 *3 (-656 (-253 *4 *5)))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4464)) (-4 *1 (-240 *3)) + (-4 *3 (-1121)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1238))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) - (|:| |expense| (-390)) (|:| |accuracy| (-390)) - (|:| |intermediateResults| (-390)))) - (-5 *2 (-1056)) (-5 *1 (-315))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1238)) (-4 *2 (-1070)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-876)))) - ((*1 *1 *1) (-5 *1 (-876))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-962 (-227))) (-5 *2 (-227)) (-5 *1 (-1234)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1070))))) + (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-624 *1)) (-4 *1 (-312))))) (((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1165)) (-5 *3 (-576)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) - (-5 *2 (-1056)) (-5 *1 (-759))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-656 (-1193 *11))) (-5 *3 (-1193 *11)) - (-5 *4 (-656 *10)) (-5 *5 (-656 *8)) (-5 *6 (-656 (-783))) - (-5 *7 (-1288 (-656 (-1193 *8)))) (-4 *10 (-861)) - (-4 *8 (-317)) (-4 *11 (-968 *8 *9 *10)) (-4 *9 (-805)) - (-5 *1 (-719 *9 *10 *8 *11))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-656 (-783)))) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) + ((*1 *2 *1) + (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-804)) + (-4 *5 (-861)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-767))))) (((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)))) ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1070)) (-14 *3 (-656 (-1197))))) @@ -12767,10 +13129,10 @@ (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-1121)))) ((*1 *1 *1) (-12 (-14 *2 (-656 (-1197))) (-4 *3 (-174)) - (-4 *5 (-243 (-3503 *2) (-783))) + (-4 *5 (-243 (-3502 *2) (-783))) (-14 *6 - (-1 (-112) (-2 (|:| -3224 *4) (|:| -3422 *5)) - (-2 (|:| -3224 *4) (|:| -3422 *5)))) + (-1 (-112) (-2 (|:| -3223 *4) (|:| -2508 *5)) + (-2 (|:| -3223 *4) (|:| -2508 *5)))) (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-861)) (-4 *7 (-968 *3 *5 (-878 *2))))) ((*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-861)))) @@ -12788,68 +13150,60 @@ (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-858))))) (((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-876)))) ((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-981))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-1153 *4 *2)) - (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4465) (-6 -4466)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-861)) (-4 *3 (-1238)) (-5 *1 (-1153 *3 *2)) - (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4465) (-6 -4466))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-971 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) - ((*1 *2 *3) - (-12 (-5 *3 (-971 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) - ((*1 *2 *3) (-12 (-5 *3 (-971 *1)) (-4 *1 (-1033)) (-5 *2 (-656 *1)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1193 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1193 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1193 *1)) (-4 *1 (-1033)) (-5 *2 (-656 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1264 *4)) (-5 *2 (-656 *1)) - (-4 *1 (-1089 *4 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *2 (-656 *3)) (-5 *1 (-998 *4 *5 *6 *3)) - (-4 *3 (-1086 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-656 *3)) - (-4 *3 (-13 (-27) (-1223) (-442 *6))) - (-4 *6 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-569 *6 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-372 (-115))) (-4 *2 (-1070)) (-5 *1 (-726 *2 *4)) - (-4 *4 (-660 *2)))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1121)) (-4 *2 (-379))))) +(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-284))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1193 *1)) (-5 *3 (-1197)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-971 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1193 *2)) (-5 *4 (-1197)) (-4 *2 (-442 *5)) + (-5 *1 (-32 *5 *2)) (-4 *5 (-568)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-372 (-115))) (-5 *1 (-848 *2)) (-4 *2 (-1070))))) -(((*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-997 *4 *5 *3 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) - (-4 *3 (-861)) (-4 *6 (-1086 *4 *5 *3)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-875))))) -(((*1 *1 *1) - (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1070)) (-4 *3 (-861)) - (-4 *4 (-275 *3)) (-4 *5 (-805))))) + (|partial| -12 (-5 *2 (-1193 *1)) (-5 *3 (-940)) (-4 *1 (-1033)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1193 *1)) (-5 *3 (-940)) (-5 *4 (-876)) + (-4 *1 (-1033)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-940)) (-4 *4 (-13 (-860) (-374))) + (-4 *1 (-1089 *4 *2)) (-4 *2 (-1264 *4))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) + (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-4 *3 (-13 (-27) (-1223) (-442 *6) (-10 -8 (-15 -3569 ($ *7))))) + (-4 *7 (-860)) + (-4 *8 + (-13 (-1266 *3 *7) (-374) (-1223) + (-10 -8 (-15 -2774 ($ $)) (-15 -4160 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) + (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1179)) (-4 *9 (-1004 *8)) + (-14 *10 (-1197))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-429 *4))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) + (-4 *3 (-1121))))) (((*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-968 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-1288 *5)) (-4 *5 (-317)) - (-4 *5 (-1070)) (-5 *2 (-701 *5)) (-5 *1 (-1050 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-656 (-962 (-227))))) - (-5 *2 (-656 (-1115 (-227)))) (-5 *1 (-947))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-783)) - (-4 *3 (-13 (-738) (-379) (-10 -7 (-15 ** (*3 *3 (-576)))))) - (-5 *1 (-251 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *1) + (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) + (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-841))))) (((*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1238)) (-5 *2 (-783)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) @@ -12875,29 +13229,19 @@ ((*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1) (-4 *1 (-1160)))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4104 *4)))) - (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-701 *2)) (-5 *4 (-576)) - (-4 *2 (-13 (-317) (-10 -8 (-15 -3921 ((-430 $) $))))) - (-4 *5 (-1264 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5))))) -(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-448))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -3498 (-794 *3)) (|:| |coef1| (-794 *3)) - (|:| |coef2| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-2 (|:| -3498 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1086 *3 *4 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-783)) (-4 *5 (-568)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1052))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1121)) (-4 *3 (-917 *5)) (-5 *2 (-1288 *3)) + (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) + (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1248 *3)) + (-5 *2 (-419 (-576)))))) (((*1 *2 *1) (-12 (-5 *2 (-656 (-518))) (-5 *1 (-49)))) ((*1 *2 *1) (-12 (-5 *2 (-656 (-890))) (-5 *1 (-495))))) (((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)))) @@ -12909,10 +13253,10 @@ ((*1 *2 *1) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1121)) (-4 *2 (-1070)))) ((*1 *2 *1) - (-12 (-14 *3 (-656 (-1197))) (-4 *5 (-243 (-3503 *3) (-783))) + (-12 (-14 *3 (-656 (-1197))) (-4 *5 (-243 (-3502 *3) (-783))) (-14 *6 - (-1 (-112) (-2 (|:| -3224 *4) (|:| -3422 *5)) - (-2 (|:| -3224 *4) (|:| -3422 *5)))) + (-1 (-112) (-2 (|:| -3223 *4) (|:| -2508 *5)) + (-2 (|:| -3223 *4) (|:| -2508 *5)))) (-4 *2 (-174)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-861)) (-4 *7 (-968 *2 *5 (-878 *3))))) ((*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-861)) (-4 *2 (-1121)))) @@ -12929,54 +13273,41 @@ ((*1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1179)) (-5 *3 (-576)) (-5 *1 (-1084))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1160)))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-29 *4) (-1223))) - (-5 *1 (-595 *4 *2)) - (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-419 (-971 *4)))) - (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-326 *4)) - (-5 *1 (-601 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) - (-4 *3 (-1264 *4)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-924 *3))))) + (-12 (-4 *3 (-13 (-374) (-148))) + (-5 *2 (-656 (-2 (|:| -2508 (-783)) (|:| -2396 *4) (|:| |num| *4)))) + (-5 *1 (-411 *3 *4)) (-4 *4 (-1264 *3))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) + (-12 (-5 *3 (-1288 (-1288 *4))) (-4 *4 (-1070)) (-5 *2 (-701 *4)) + (-5 *1 (-1050 *4))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1131)) (-5 *3 (-576))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-374)) (-4 *3 (-1070)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4128 *1))) + (-4 *1 (-866 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) + (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1059 (-576))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) (((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)))) ((*1 *2 *1) (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1121)))) ((*1 *2 *1) (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) - (-4 *6 (-243 (-3503 *3) (-783))) + (-4 *6 (-243 (-3502 *3) (-783))) (-14 *7 - (-1 (-112) (-2 (|:| -3224 *5) (|:| -3422 *6)) - (-2 (|:| -3224 *5) (|:| -3422 *6)))) + (-1 (-112) (-2 (|:| -3223 *5) (|:| -2508 *6)) + (-2 (|:| -3223 *5) (|:| -2508 *6)))) (-5 *2 (-725 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) (-4 *5 (-861)) (-4 *8 (-968 *4 *6 (-878 *3))))) ((*1 *2 *1) @@ -12985,134 +13316,136 @@ ((*1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-804)) (-4 *4 (-861))))) -(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219))))) -(((*1 *2 *3 *2) +(((*1 *2) (-12 - (-5 *2 - (-656 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-783)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-805)) (-4 *6 (-968 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-861)) - (-5 *1 (-461 *4 *3 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) - (-5 *2 (-2 (|:| |num| (-1288 *4)) (|:| |den| *4)))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *1 *1 *1) (-4 *1 (-485))) ((*1 *1 *1 *1) (-4 *1 (-773)))) + (-5 *2 (-2 (|:| -2326 (-656 (-1197))) (|:| -4316 (-656 (-1197))))) + (-5 *1 (-1240))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) + (-5 *2 (-1056)) (-5 *1 (-766))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1197)) + (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-4 *4 (-13 (-29 *6) (-1223) (-978))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2675 (-656 *4)))) + (-5 *1 (-813 *6 *4 *3)) (-4 *3 (-668 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-103 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-207))))) + (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2) + (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-928)) + (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-968 *2 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-928)) + (-5 *1 (-925 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-928)) (-5 *1 (-926 *2 *3)) (-4 *3 (-1264 *2))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-576)) + (-5 *6 + (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4295 (-390)))) + (-5 *7 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) + (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) + (-5 *1 (-800)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-576)) + (-5 *6 + (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4295 (-390)))) + (-5 *7 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) + (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) + (-5 *1 (-800))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) + (-5 *2 (-701 *3))))) (((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-1119 *3)))) ((*1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) (((*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)))) ((*1 *2 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-1301 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) - (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1301 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1288 (-656 *3))) (-4 *4 (-317)) - (-5 *2 (-656 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *2 *1) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-374)) (-4 *3 (-1070)) - (-5 *1 (-1181 *3))))) (((*1 *2 *3) - (-12 (-14 *4 (-656 (-1197))) (-14 *5 (-783)) - (-5 *2 - (-656 - (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) - (-253 *4 (-419 (-576)))))) - (-5 *1 (-517 *4 *5)) + (-12 (-5 *3 (-656 (-940))) (-5 *2 (-656 (-701 (-576)))) + (-5 *1 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) + ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) + ((*1 *2 *3) + (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-656 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-568)) + (-4 *3 (-1070))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-656 *3)) (-4 *3 (-1130 *5 *6 *7 *8)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-603 *5 *6 *7 *8 *3))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1193 (-971 *4))) (-5 *1 (-428 *3 *4)) + (-4 *3 (-429 *4)))) + ((*1 *2) + (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) + (-5 *2 (-1193 (-971 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) +(((*1 *1) (-5 *1 (-227))) ((*1 *1) (-5 *1 (-390)))) +(((*1 *2 *3) + (-12 (-5 *3 - (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) - (-253 *4 (-419 (-576)))))))) -(((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200))))) -(((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-837))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-971 (-576)))) (-5 *1 (-449)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1197)) (-5 *4 (-701 (-227))) (-5 *2 (-1125)) - (-5 *1 (-771)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1197)) (-5 *4 (-701 (-576))) (-5 *2 (-1125)) - (-5 *1 (-771))))) + (-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) + (|:| |explanations| (-656 (-1179))))) + (-5 *2 (-1056)) (-5 *1 (-315)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -2402 (-390)) (|:| -2628 (-1179)) + (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) + (-5 *2 (-1056)) (-5 *1 (-315))))) (((*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-5 *2 (-112)))) ((*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1121)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121)) - (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-783)) (-4 *5 (-1070)) (-4 *2 (-1264 *5)) + (-5 *1 (-1282 *5 *2 *6 *3)) (-4 *6 (-668 *2)) (-4 *3 (-1279 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-576) (-227) (-518) (-1179) (-1202))) + (-5 *1 (-1202))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) + (-5 *1 (-342))))) (((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-2 (|:| -2715 *3) (|:| -3624 *3))) - (-5 *1 (-700 *3 *4 *5 *6)) (-4 *6 (-699 *3 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -2715 *3) (|:| -3624 *3))) (-5 *1 (-712 *3)) - (-4 *3 (-317))))) -(((*1 *2 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-409))))) + (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1197)) + (-5 *2 (-576)) (-5 *1 (-1135 *4 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-861)) (-5 *3 (-656 *6)) (-5 *5 (-656 *3)) + (-5 *2 + (-2 (|:| |f1| *3) (|:| |f2| (-656 *5)) (|:| |f3| *5) + (|:| |f4| (-656 *5)))) + (-5 *1 (-1208 *6)) (-5 *4 (-656 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) + (-5 *2 (-831 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-858)) (-5 *1 (-1311 *3 *2)) (-4 *3 (-1070))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-2 (|:| -1757 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1312 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-174)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-831 *3)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-1070)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-576) (-576))) (-5 *1 (-372 *3)) (-4 *3 (-1121)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-783) (-783))) (-4 *1 (-397 *3)) (-4 *3 (-1121)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121))))) -(((*1 *1 *2) - (-12 (-5 *2 (-940)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1070)) - (-4 *4 (-1238)))) - ((*1 *1 *2) - (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) - (-4 *5 (-243 (-3503 *3) (-783))) - (-14 *6 - (-1 (-112) (-2 (|:| -3224 *2) (|:| -3422 *5)) - (-2 (|:| -3224 *2) (|:| -3422 *5)))) - (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-861)) - (-4 *7 (-968 *4 *5 (-878 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) + (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1240)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1240))))) (((*1 *1 *1) (-4 *1 (-248))) ((*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) @@ -13120,7 +13453,7 @@ (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) - (-2760 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1238))) + (-2759 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1238))) (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1238))))) ((*1 *1 *1) (-4 *1 (-485))) ((*1 *2 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) @@ -13129,95 +13462,70 @@ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) -(((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4466)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) - (-4 *4 (-1238)) (-5 *2 (-1293))))) -(((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) - ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1201))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-763))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1197)) - (-5 *2 (-576)) (-5 *1 (-1135 *4 *5))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-374)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) - (-4 *1 (-346 *4 *3 *5 *2)) (-4 *2 (-353 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-374)) (-4 *4 (-1264 *2)) - (-4 *5 (-1264 (-419 *4))) (-4 *1 (-346 *2 *4 *5 *6)) - (-4 *6 (-353 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-374)) (-4 *3 (-1264 *2)) (-4 *4 (-1264 (-419 *3))) - (-4 *1 (-346 *2 *3 *4 *5)) (-4 *5 (-353 *2 *3 *4)))) +(((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-317)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-459 *4 *5 *6 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1121)) (-5 *2 (-1179))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1115 (-227))) + (-5 *2 (-1290)) (-5 *1 (-264))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-656 *5) *6)) + (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) + (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -4026 *3)))) + (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) + (-4 *7 (-668 (-419 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-656 *5) *6)) + (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-4 *6 (-1264 *5)) + (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -4026 (-666 *6 (-419 *6)))))) + (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6)))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) + (-5 *2 (-1056)) (-5 *1 (-768))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-1238))))) +(((*1 *2 *1) + (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) + (-5 *2 (-425 *4 (-419 *4) *5 *6)))) ((*1 *1 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) - (-4 *1 (-346 *3 *4 *5 *2)) (-4 *2 (-353 *3 *4 *5)))) + (-12 (-5 *2 (-1288 *6)) (-4 *6 (-13 (-421 *4 *5) (-1059 *4))) + (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-4 *3 (-317)) + (-5 *1 (-425 *3 *4 *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-4 *3 (-374)) - (-4 *1 (-346 *3 *4 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-1221))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-1202)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-518)) (-5 *3 (-656 (-1202))) (-5 *1 (-1202))))) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-374)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1197)) (-4 *4 (-1070)) (-4 *4 (-1121)) - (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -3422 (-576)))) - (-4 *1 (-442 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1070)) (-4 *4 (-1121)) - (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -3422 (-576)))) - (-4 *1 (-442 *4)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1133)) (-4 *3 (-1121)) - (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -3422 (-576)))) - (-4 *1 (-442 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-907 *3)) (|:| -3422 (-783)))) - (-5 *1 (-907 *3)) (-4 *3 (-1121)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-2 (|:| |var| *5) (|:| -3422 (-783)))))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) - (-4 *7 (-968 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -3422 (-576)))) - (-5 *1 (-969 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -3570 ($ *7)) (-15 -1570 (*7 $)) - (-15 -1581 (*7 $)))))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) - (-5 *1 (-276))))) + (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1084)) (-5 *3 (-1179))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-419 (-971 *4))) (-5 *3 (-1197)) - (-4 *4 (-13 (-568) (-1059 (-576)) (-148))) (-5 *1 (-582 *4))))) + (|partial| -12 (-5 *2 (-656 (-1193 *7))) (-5 *3 (-1193 *7)) + (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-928)) (-4 *5 (-805)) + (-4 *6 (-861)) (-5 *1 (-925 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-656 (-1193 *5))) (-5 *3 (-1193 *5)) + (-4 *5 (-1264 *4)) (-4 *4 (-928)) (-5 *1 (-926 *4 *5))))) +(((*1 *1) (-5 *1 (-449)))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -1962 (-326 (-390))) + (-3 (|:| I (-326 (-576))) (|:| -1963 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-448))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-833)) (-5 *4 (-52)) (-5 *2 (-1293)) (-5 *1 (-843))))) -(((*1 *2 *3) - (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) + (-12 (-5 *3 (-656 *6)) (-5 *4 (-1197)) (-4 *6 (-442 *5)) + (-4 *5 (-1121)) (-5 *2 (-656 (-624 *6))) (-5 *1 (-585 *5 *6))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) (-4 *2 (-1238)) + (-4 *2 (-1121))))) (((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-644))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-457 *3)) (-4 *3 (-1070))))) (((*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) @@ -13252,56 +13560,31 @@ ((*1 *1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-4 *4 (-1070)) (-4 *1 (-1271 *4 *3)) (-4 *3 (-1248 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-4 *7 (-1013 *4)) (-4 *2 (-699 *7 *8 *9)) - (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) - (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)) (-4 *2 (-317)))) - ((*1 *2 *2) - (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) - (-4 *2 (-699 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1074 *2 *3 *4 *5 *6)) (-4 *4 (-1070)) - (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *2 *4)) (-4 *4 (-317))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-904 *4 *3)) - (-4 *3 (-1121))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-390)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) - (-5 *2 (-1056)) (-5 *1 (-759))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-971 *6)) (-5 *4 (-1197)) - (-5 *5 (-855 *7)) - (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-4 *7 (-13 (-1223) (-29 *6))) (-5 *1 (-226 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1193 *6)) (-5 *4 (-855 *6)) - (-4 *6 (-13 (-1223) (-29 *5))) - (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-226 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-315))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-940)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *4 (-783)) + (-5 *2 (-701 (-227))) (-5 *1 (-276))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1201))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1200)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1293)) + (-5 *1 (-1200)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1293)) + (-5 *1 (-1200))))) (((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) - (-4 *4 (-1070))))) + (-12 (-5 *2 (-1178 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) (((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) ((*1 *1) (-5 *1 (-590)))) +(((*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-189))) (-5 *1 (-189))))) (((*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) @@ -13353,141 +13636,42 @@ (-12 (-5 *3 (-783)) (-4 *1 (-919 *2)) (-4 *2 (-1121)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-919 *3)) (-4 *3 (-1121))))) -(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-548))))) -(((*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-805)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) + (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7))))) +(((*1 *1) (-5 *1 (-449)))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-1070)) + (-5 *1 (-1181 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-576)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) + (-14 *4 (-1197)) (-14 *5 *3)))) (((*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1279 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-1070)) - (-5 *2 (-2 (|:| -2715 *1) (|:| -3624 *1))) (-4 *1 (-1264 *4))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -4465)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) - (-5 *2 (-656 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-749 *3)) (-4 *3 (-1121)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-451))) (-5 *1 (-879))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-833))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) + (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) + (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-112)) + (-5 *1 (-943 *5 *6 *7 *8))))) (((*1 *2 *1) - (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) - (-5 *2 (-656 (-656 (-962 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-656 (-656 (-962 *4)))) (-5 *3 (-112)) (-4 *4 (-1070)) - (-4 *1 (-1155 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 (-962 *3)))) (-4 *3 (-1070)) - (-4 *1 (-1155 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-112)) - (-4 *1 (-1155 *4)) (-4 *4 (-1070)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-656 (-656 (-962 *4)))) (-5 *3 (-112)) - (-4 *1 (-1155 *4)) (-4 *4 (-1070)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-656 (-173))) - (-5 *4 (-173)) (-4 *1 (-1155 *5)) (-4 *5 (-1070)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-656 (-656 (-962 *5)))) (-5 *3 (-656 (-173))) - (-5 *4 (-173)) (-4 *1 (-1155 *5)) (-4 *5 (-1070))))) -(((*1 *2 *3) - (-12 (-5 *3 (-781)) - (-5 *2 - (-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) - (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) - (-5 *1 (-577)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-781)) (-5 *4 (-1084)) - (-5 *2 - (-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) - (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) - (-5 *1 (-577)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-799)) (-5 *3 (-1084)) - (-5 *4 - (-2 (|:| |fn| (-326 (-227))) - (|:| -2951 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) - (|:| |extra| (-1056)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-799)) (-5 *3 (-1084)) - (-5 *4 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)) - (|:| |extra| (-1056)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-812)) (-5 *3 (-1084)) - (-5 *4 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-820)) - (-5 *2 - (-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) - (|:| |explanations| (-656 (-1179))))) - (-5 *1 (-817)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-820)) (-5 *4 (-1084)) - (-5 *2 - (-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) - (|:| |explanations| (-656 (-1179))))) - (-5 *1 (-817)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-851)) (-5 *3 (-1084)) - (-5 *4 - (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) - (-5 *2 (-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-851)) (-5 *3 (-1084)) - (-5 *4 - (-2 (|:| |fn| (-326 (-227))) (|:| -3540 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) - (-5 *2 (-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-853)) - (-5 *2 - (-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) - (|:| |explanations| (-656 (-1179))))) - (-5 *1 (-852)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-853)) (-5 *4 (-1084)) - (-5 *2 - (-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) - (|:| |explanations| (-656 (-1179))))) - (-5 *1 (-852)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-912)) (-5 *3 (-1084)) - (-5 *4 - (-2 (|:| |pde| (-656 (-326 (-227)))) - (|:| |constraints| - (-656 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-783)) (|:| |boundaryType| (-576)) - (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) - (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) - (|:| |tol| (-227)))) - (-5 *2 (-2 (|:| -2012 (-390)) (|:| |explanations| (-1179)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-915)) - (-5 *2 - (-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) - (|:| |explanations| (-656 (-1179))))) - (-5 *1 (-914)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-915)) (-5 *4 (-1084)) - (-5 *2 - (-2 (|:| -2012 (-390)) (|:| -2629 (-1179)) - (|:| |explanations| (-656 (-1179))))) - (-5 *1 (-914))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) - (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-767))))) + (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) + (-5 *2 (-656 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 (-2 (|:| |k| (-908 *3)) (|:| |c| *4)))) + (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) + (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 (-684 *3))) (-5 *1 (-908 *3)) (-4 *3 (-861))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) (-4 *7 (-1264 *5)) (-4 *4 (-736 *5 *7)) + (-5 *2 (-2 (|:| -3232 (-701 *6)) (|:| |vec| (-1288 *5)))) + (-5 *1 (-823 *5 *6 *7 *4 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 *4))))) (((*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) @@ -13531,170 +13715,134 @@ ((*1 *2 *1) (-12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1279 *3))))) (((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-656 (-1048 *5 *6 *7 *3))) (-5 *1 (-1048 *5 *6 *7 *3)) - (-4 *3 (-1086 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-656 *6)) (-4 *1 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1092 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-656 (-1167 *5 *6 *7 *3))) (-5 *1 (-1167 *5 *6 *7 *3)) - (-4 *3 (-1086 *5 *6 *7))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-568)) (-4 *2 (-464)) (-5 *1 (-990 *2 *3)) - (-4 *3 (-1264 *2))))) -(((*1 *1) (-4 *1 (-360))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-13 (-568) (-148))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-656 (-1193 *5))) - (|:| |prim| (-1193 *5)))) - (-5 *1 (-444 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-568) (-148))) - (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1193 *3)) - (|:| |pol2| (-1193 *3)) (|:| |prim| (-1193 *3)))) - (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-442 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-971 *5)) (-5 *4 (-1197)) (-4 *5 (-13 (-374) (-148))) - (-5 *2 - (-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) - (|:| |prim| (-1193 *5)))) - (-5 *1 (-979 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-656 (-1197))) - (-4 *5 (-13 (-374) (-148))) - (-5 *2 - (-2 (|:| -1714 (-656 (-576))) (|:| |poly| (-656 (-1193 *5))) - (|:| |prim| (-1193 *5)))) - (-5 *1 (-979 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-971 *6))) (-5 *4 (-656 (-1197))) (-5 *5 (-1197)) - (-4 *6 (-13 (-374) (-148))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3)) (-4 *3 (-861))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-995))))) +(((*1 *2 *2) + (-12 (-5 *2 - (-2 (|:| -1714 (-656 (-576))) (|:| |poly| (-656 (-1193 *6))) - (|:| |prim| (-1193 *6)))) - (-5 *1 (-979 *6))))) + (-656 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-805)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-861)) + (-5 *1 (-461 *3 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) + ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) + ((*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *2) - (-12 (-14 *4 (-783)) (-4 *5 (-1238)) (-5 *2 (-135)) - (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-135)) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) - ((*1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-174)))) - ((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-576)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) - (-5 *2 (-576)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1070)) (-5 *2 (-940)))) - ((*1 *2) (-12 (-4 *1 (-1295 *3)) (-4 *3 (-374)) (-5 *2 (-135))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) + (-5 *1 (-178 *3))))) (((*1 *2 *3) (-12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-905 *4 *5)) (-4 *5 (-1238)))) ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1187))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) - (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-968 *4 *3 *5))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3497 (-794 *3)) (|:| |coef1| (-794 *3)))) + (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *2 (-2 (|:| -3497 *1) (|:| |coef1| *1))) + (-4 *1 (-1086 *3 *4 *5))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-174)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1309 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-1070))))) + (-12 (-5 *2 (-1193 *3)) (-4 *3 (-379)) (-4 *1 (-339 *3)) + (-4 *3 (-374))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *2 (-656 *1)) (-4 *1 (-1086 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1264 *6)) - (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)))) - (-4 *8 (-1264 (-419 *7))) (-5 *2 (-598 *3)) - (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-390)) (-5 *1 (-1084))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) - (-15 -1581 ((-1146 *3 (-624 $)) $)) - (-15 -3570 ($ (-1146 *3 (-624 $)))))))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-340))))) -(((*1 *2 *3) (-12 (-5 *3 (-419 (-576))) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-656 *3)) (-5 *5 (-940)) (-4 *3 (-1264 *4)) - (-4 *4 (-317)) (-5 *1 (-472 *4 *3))))) + (-12 (-5 *3 (-419 *6)) (-4 *5 (-1242)) (-4 *6 (-1264 *5)) + (-5 *2 (-2 (|:| -2508 (-783)) (|:| -1715 *3) (|:| |radicand| *6))) + (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-783)) (-4 *7 (-1264 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-171 (-326 *4))) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) + ((*1 *2 *3) (-12 (-5 *3 (-992)) (-5 *2 (-923 (-576))) (-5 *1 (-936))))) +(((*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-458)) (-5 *3 (-576))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-597)) (-5 *3 (-609)) (-5 *4 (-301)) (-5 *1 (-290))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-372 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-397 *4)) (-4 *4 (-1121)) (-5 *2 (-783)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *2 (-23)) (-5 *1 (-661 *4 *2 *5)) + (-4 *4 (-1121)) (-14 *5 *2)))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1197))))) + (-5 *6 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1125)) + (-5 *1 (-409)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1197))))) + (-5 *6 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1125)) + (-5 *1 (-409)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-656 (-1197))) (-5 *5 (-1200)) (-5 *3 (-1197)) + (-5 *2 (-1125)) (-5 *1 (-409))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-419 *6)) + (-5 *1 (-881 *5 *4 *6)) (-4 *4 (-1279 *5)) (-4 *6 (-1264 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1280 *5 *6 *7)) (-4 *5 (-374)) + (-14 *6 (-1197)) (-14 *7 *5) (-5 *2 (-419 (-1261 *6 *5))) + (-5 *1 (-882 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1280 *5 *6 *7)) (-4 *5 (-374)) + (-14 *6 (-1197)) (-14 *7 *5) (-5 *2 (-419 (-1261 *6 *5))) + (-5 *1 (-882 *5 *6 *7))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) + (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-940)) (-4 *4 (-379)) (-4 *4 (-374)) (-5 *2 (-1193 *1)) + (-4 *1 (-339 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1193 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *3 (-374)) + (-4 *2 (-1264 *3)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *2 (-171 *3)) (-5 *1 (-1227 *4 *3)) - (-4 *3 (-13 (-27) (-1223) (-442 *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-656 (-783)))) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-4 *3 (-13 (-27) (-1223) (-442 *6) (-10 -8 (-15 -3570 ($ *7))))) - (-4 *7 (-860)) - (-4 *8 - (-13 (-1266 *3 *7) (-374) (-1223) - (-10 -8 (-15 -2775 ($ $)) (-15 -1491 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) - (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1179)) (-4 *9 (-1004 *8)) - (-14 *10 (-1197))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1121)) (-4 *3 (-917 *5)) (-5 *2 (-1288 *3)) - (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4465))))))) + (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-1193 *4)) + (-5 *1 (-540 *4))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-576)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-430 *2)) (-4 *2 (-568))))) +(((*1 *1) (-5 *1 (-145))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-270))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-656 (-304 *4))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) + (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940))))) +(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-246))))) +(((*1 *2 *3) + (-12 (-4 *4 (-360)) (-5 *2 (-977 (-1193 *4))) (-5 *1 (-368 *4)) + (-5 *3 (-1193 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-220)))) + ((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) + ((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-688)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2) - (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-928)) - (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-968 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-928)) - (-5 *1 (-925 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-928)) (-5 *1 (-926 *2 *3)) (-4 *3 (-1264 *2))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1193 (-971 *4))) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) - (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) - (-5 *2 (-1193 (-971 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112))))) + (-12 (-4 *3 (-13 (-568) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1197)) + (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4)))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-783))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1070)) + (-5 *1 (-726 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-848 *3))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-876) (-876))) (-5 *1 (-115)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-876) (-656 (-876)))) (-5 *1 (-115)))) ((*1 *2 *1) @@ -13703,23 +13851,28 @@ (-12 (-5 *2 (-1293)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-861) - (-10 -8 (-15 -2797 ((-1179) $ (-1197))) (-15 -1977 (*2 $)) - (-15 -3420 (*2 $))))))) + (-10 -8 (-15 -2796 ((-1179) $ (-1197))) (-15 -1977 (*2 $)) + (-15 -2486 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-406)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-406)))) ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-514)))) ((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-722)))) ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1218)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1218))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) - (-5 *2 (-1056)) (-5 *1 (-768))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-1197)) (-4 *6 (-442 *5)) - (-4 *5 (-1121)) (-5 *2 (-656 (-624 *6))) (-5 *1 (-585 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1070)) (-5 *2 (-656 *1)) (-4 *1 (-1155 *3))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -4249 *6) (|:| |sol?| (-112))) (-576) + *6)) + (-4 *6 (-374)) (-4 *7 (-1264 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) + (-2 (|:| -2451 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) + (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4465)) (-4 *1 (-152 *3)) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *3)) (-4 *3 (-1238)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) @@ -13730,24 +13883,19 @@ (-4 *5 (-805)) (-4 *3 (-861)) (-4 *2 (-1086 *4 *5 *3)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-1235 *2)) (-4 *2 (-1238))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) - (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) - (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-112)) - (-5 *1 (-943 *5 *6 *7 *8))))) -(((*1 *2 *2) - (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) - (-5 *1 (-178 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) - ((*1 *2 *3) (-12 (-5 *3 (-992)) (-5 *2 (-923 (-576))) (-5 *1 (-936))))) + (-12 (-5 *3 (-326 (-390))) (-5 *2 (-326 (-227))) (-5 *1 (-315))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1288 *5)) (-4 *5 (-804)) (-5 *2 (-112)) + (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-340))))) +(((*1 *2 *1) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) + (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-112))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3540 (-656 (-227))))) + (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3539 (-656 (-227))))) (-5 *2 (-656 (-1197))) (-5 *1 (-276)))) ((*1 *2 *3) (-12 (-5 *3 (-1193 *7)) (-4 *7 (-968 *6 *4 *5)) (-4 *4 (-805)) @@ -13769,7 +13917,7 @@ (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) - (-10 -8 (-15 -3570 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))))) + (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))))) ((*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-656 *5)))) @@ -13779,47 +13927,32 @@ ((*1 *2 *3) (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-1197))) (-5 *1 (-1064 *4))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-576)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-783))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-122 *3))))) (((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-783)) (-5 *1 (-573))))) -(((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-971 *4)))) (-4 *4 (-464)) - (-5 *2 (-656 (-3 (-419 (-971 *4)) (-1186 (-1197) (-971 *4))))) - (-5 *1 (-302 *4))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1193 *5))) (-5 *3 (-1193 *5)) - (-4 *5 (-167 *4)) (-4 *4 (-557)) (-5 *1 (-150 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 *3)) (-4 *3 (-1264 *5)) - (-4 *5 (-1264 *4)) (-4 *4 (-360)) (-5 *1 (-369 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1193 (-576)))) (-5 *3 (-1193 (-576))) - (-5 *1 (-584)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1193 *1))) (-5 *3 (-1193 *1)) - (-4 *1 (-928))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) + (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770))))) (((*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) (((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-783)) - (-4 *3 (-13 (-317) (-10 -8 (-15 -3921 ((-430 $) $))))) - (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-576)) (-5 *1 (-457 *2)) (-4 *2 (-1070))))) +(((*1 *1) (-5 *1 (-609)))) (((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1289)))) ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-940)) (-5 *4 (-227)) (-5 *5 (-576)) (-5 *6 (-888)) - (-5 *2 (-1293)) (-5 *1 (-1289))))) +(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-537))))) (((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1193 (-419 (-1193 *2)))) (-5 *4 (-624 *2)) (-4 *2 (-13 (-442 *5) (-27) (-1223))) @@ -13836,53 +13969,51 @@ (-4 *6 (-1070)) (-4 *2 (-13 (-374) - (-10 -8 (-15 -3570 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))) + (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))) (-5 *1 (-969 *5 *4 *6 *7 *2)) (-4 *7 (-968 *6 *5 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1193 (-419 (-971 *5))))) (-5 *4 (-1197)) (-5 *2 (-419 (-971 *5))) (-5 *1 (-1064 *5)) (-4 *5 (-568))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-767))))) +(((*1 *1 *1 *1) (-4 *1 (-312))) ((*1 *1 *1) (-4 *1 (-312)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) + (-5 *2 (-831 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-858)) (-5 *1 (-1311 *3 *2)) (-4 *3 (-1070))))) (((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) + (-5 *2 (-1056)) (-5 *1 (-765))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-576)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-518)) (-5 *3 (-656 (-984))) (-5 *1 (-109))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1238)) - (-4 *5 (-1238)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-783)) - (-4 *7 (-1238)) (-4 *5 (-1238)) (-5 *2 (-245 *6 *5)) - (-5 *1 (-244 *6 *7 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1238)) (-4 *5 (-1238)) - (-4 *2 (-384 *5)) (-5 *1 (-382 *6 *4 *5 *2)) (-4 *4 (-384 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1121)) (-4 *5 (-1121)) - (-4 *2 (-437 *5)) (-5 *1 (-435 *6 *4 *5 *2)) (-4 *4 (-437 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-656 *6)) (-4 *6 (-1238)) - (-4 *5 (-1238)) (-5 *2 (-656 *5)) (-5 *1 (-654 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-977 *6)) (-4 *6 (-1238)) - (-4 *5 (-1238)) (-5 *2 (-977 *5)) (-5 *1 (-976 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1178 *6)) (-4 *6 (-1238)) - (-4 *3 (-1238)) (-5 *2 (-1178 *3)) (-5 *1 (-1176 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1288 *6)) (-4 *6 (-1238)) - (-4 *5 (-1238)) (-5 *2 (-1288 *5)) (-5 *1 (-1287 *6 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-112)) (-5 *1 (-841))))) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-860))) + (-5 *2 (-2 (|:| |start| *3) (|:| -4213 (-430 *3)))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1) (-4 *1 (-1160)))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-568))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1179)) + (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-112)) + (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1223) (-29 *4)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-177)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-1106))))) (((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)))) ((*1 *1 *2 *3) @@ -13890,10 +14021,10 @@ (-4 *2 (-374)) (-14 *5 (-1014 *4 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-725 *5 *6 *7)) (-4 *5 (-861)) - (-4 *6 (-243 (-3503 *4) (-783))) + (-4 *6 (-243 (-3502 *4) (-783))) (-14 *7 - (-1 (-112) (-2 (|:| -3224 *5) (|:| -3422 *6)) - (-2 (|:| -3224 *5) (|:| -3422 *6)))) + (-1 (-112) (-2 (|:| -3223 *5) (|:| -2508 *6)) + (-2 (|:| -3223 *5) (|:| -2508 *6)))) (-14 *4 (-656 (-1197))) (-4 *2 (-174)) (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) (-4 *8 (-968 *2 *6 (-878 *4))))) ((*1 *1 *2 *3) @@ -13923,11 +14054,9 @@ ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-994 *4 *3 *2)) (-4 *4 (-1070)) (-4 *3 (-804)) (-4 *2 (-861))))) -(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-112)))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-103 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1121))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) + (-5 *2 (-1056)) (-5 *1 (-768))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-4 *6 (-568)) (-5 *2 (-656 (-326 *6))) (-5 *1 (-223 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1070)))) @@ -13953,72 +14082,64 @@ ((*1 *2 *1) (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-940)) (-5 *1 (-798))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) - (-4 *4 (-174)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-442 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1113 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) - (-5 *1 (-159 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-161)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1197)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-174))))) -(((*1 *2) - (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) - ((*1 *2 *2) - (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) - (-5 *2 (-1193 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1105 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-576) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1105 *2))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-767))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-464))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) + (-12 (-5 *4 (-1197)) + (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) + (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) + (-4 *3 (-13 (-1223) (-29 *5)))))) +(((*1 *1 *1) (-5 *1 (-1084)))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1239 *3)) (-4 *3 (-1121))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 *5))) - (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-1288 *5)) - (-5 *1 (-650 *5 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 *5))) - (-2663 (-4 *5 (-374))) (-4 *5 (-568)) (-5 *2 (-1288 (-419 *5))) - (-5 *1 (-650 *5 *4))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1070))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1119 *3)) (-4 *3 (-1121)) (-5 *2 (-112))))) + (-12 (-5 *4 (-656 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-317)) + (-5 *2 (-783)) (-5 *1 (-467 *5 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-876))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -4103 *4)))) + (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1288 (-1288 (-576)))) (-5 *1 (-478))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-990 *4 *2)) + (-4 *2 (-1264 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *4)) (-4 *4 (-860)) (-4 *4 (-374)) (-5 *2 (-783)) + (-5 *1 (-964 *4 *5)) (-4 *5 (-1264 *4))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1312 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-174)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-831 *3)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-1070)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) (((*1 *2 *1) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-541))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-759))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270))))) -(((*1 *2 *1) (-12 (-5 *1 (-1233 *2)) (-4 *2 (-995))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-701 *2)) (-5 *4 (-576)) + (-4 *2 (-13 (-317) (-10 -8 (-15 -3760 ((-430 $) $))))) + (-4 *5 (-1264 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1223) (-1023)))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-1212 *2)) (-4 *2 (-374))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-115)) (-5 *4 (-783)) + (-4 *5 (-13 (-464) (-1059 (-576)))) (-4 *5 (-568)) + (-5 *1 (-41 *5 *2)) (-4 *2 (-442 *5)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1570 ((-1146 *5 (-624 $)) $)) + (-15 -1581 ((-1146 *5 (-624 $)) $)) + (-15 -3569 ($ (-1146 *5 (-624 $)))))))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) (((*1 *2 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-876))))) ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-890)))) ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-890)))) @@ -14059,286 +14180,239 @@ ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1202)))) ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1202)))) ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1202))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-557))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) - (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) + (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-656 (-1197))) + (-4 *2 (-13 (-442 (-171 *5)) (-1023) (-1223))) (-4 *5 (-568)) + (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-442 *5) (-1023) (-1223)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1197)) + (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) + (-5 *2 (-2 (|:| -3672 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) + (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) - (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-861)) (-5 *2 (-783))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1223) (-1023)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1160)))) -(((*1 *2) - (-12 (-5 *2 (-701 (-929 *3))) (-5 *1 (-362 *3 *4)) (-14 *3 (-940)) - (-14 *4 (-940)))) - ((*1 *2) - (-12 (-5 *2 (-701 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) - (-14 *4 - (-3 (-1193 *3) - (-1288 (-656 (-2 (|:| -3106 *3) (|:| -3224 (-1141))))))))) - ((*1 *2) - (-12 (-5 *2 (-701 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) - (-14 *4 (-940))))) + (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) + (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-448))))) (((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1165)) (-5 *3 (-145)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-855 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) + (-5 *2 (-2 (|:| -1855 *1) (|:| -3891 *1))) (-4 *1 (-968 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1070)) (-5 *2 (-2 (|:| -1855 *1) (|:| -3891 *1))) + (-4 *1 (-1264 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-835)) (-5 *1 (-834))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1281 *3 *2)) - (-4 *2 (-1279 *3))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-624 *4)) (-5 *6 (-1193 *4)) - (-4 *4 (-13 (-442 *7) (-27) (-1223))) - (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-12 (-4 *4 (-1070)) + (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4))))) +(((*1 *2) + (-12 (-4 *1 (-360)) + (-5 *2 (-656 (-2 (|:| -1828 (-576)) (|:| -2508 (-576)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-340))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) + (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-968 *4 *5 *6)))) + ((*1 *1 *1 *2) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-968 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1293)) + (-5 *1 (-461 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-971 (-227))) (-5 *2 (-227)) (-5 *1 (-315))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1593 (-656 *4)))) - (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1121)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-624 *4)) (-5 *6 (-419 (-1193 *4))) - (-4 *4 (-13 (-442 *7) (-27) (-1223))) - (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-2 (|:| -3497 (-794 *3)) (|:| |coef1| (-794 *3)) + (|:| |coef2| (-794 *3)))) + (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *2 (-2 (|:| -3497 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1086 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-665 *4)) (-4 *4 (-353 *5 *6 *7)) + (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1593 (-656 *4)))) - (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1121))))) -(((*1 *2 *3) - (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -3921 ((-430 $) $))))) - (-4 *4 (-1264 *3)) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2675 (-656 *4)))) + (-5 *1 (-818 *5 *6 *7 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| -1593 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-1264 *3)) + (-1288 + (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -4147 (-576)) + (|:| -1620 (-576)) (|:| |spline| (-576)) (|:| -3447 (-576)) + (|:| |axesColor| (-888)) (|:| -2328 (-576)) + (|:| |unitsColor| (-888)) (|:| |showing| (-576))))) + (-5 *1 (-1289))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 - (-2 (|:| -1593 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-5 *1 (-780 *4 *5)) (-4 *5 (-421 *3 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-360)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 *3)) + (-2 (|:| -1715 *3) (|:| |gap| (-783)) (|:| -1855 (-794 *3)) + (|:| -3891 (-794 *3)))) + (-5 *1 (-794 *3)) (-4 *3 (-1070)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 - (-2 (|:| -1593 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-5 *1 (-1006 *4 *3 *5 *6)) (-4 *6 (-736 *3 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-360)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 *3)) + (-2 (|:| -1715 *1) (|:| |gap| (-783)) (|:| -1855 *1) + (|:| -3891 *1))) + (-4 *1 (-1086 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 - (-2 (|:| -1593 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-5 *1 (-1297 *4 *3 *5 *6)) (-4 *6 (-421 *3 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-656 (-656 *3))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-656 (-656 *5))))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-656 *3))) (-5 *1 (-1209 *3)) (-4 *3 (-1121))))) -(((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1288 (-3 (-480) "undefined"))) (-5 *1 (-1289))))) + (-2 (|:| -1715 *1) (|:| |gap| (-783)) (|:| -1855 *1) + (|:| -3891 *1))) + (-4 *1 (-1086 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| -4301 (-1197)) (|:| -4440 *4)))) + (-12 (-5 *2 (-656 (-2 (|:| -4300 (-1197)) (|:| -4439 *4)))) (-5 *1 (-904 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) ((*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-656 *1)) (-4 *1 (-1124 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1056)) (-5 *1 (-767))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-1121)) (-4 *3 (-917 *6)) - (-5 *2 (-701 *3)) (-5 *1 (-704 *6 *3 *7 *4)) (-4 *7 (-384 *3)) - (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4465))))))) (((*1 *2 *3) - (-12 (-5 *3 (-304 (-971 (-576)))) - (-5 *2 - (-2 (|:| |varOrder| (-656 (-1197))) - (|:| |inhom| (-3 (-656 (-1288 (-783))) "failed")) - (|:| |hom| (-656 (-1288 (-783)))))) - (-5 *1 (-241))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-861)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-292 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -4301 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -4440 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1178 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2951 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-571)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-707 *2)) (-4 *2 (-1121)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -4301 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (|:| -4440 - (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) - (|:| |expense| (-390)) (|:| |accuracy| (-390)) - (|:| |intermediateResults| (-390)))))) - (-5 *1 (-815)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) - (-4 *4 (-1121))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1197)) (-5 *6 (-656 (-624 *3))) - (-5 *5 (-624 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *7))) - (-4 *7 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *2 (-2 (|:| -1698 *3) (|:| |coeff| *3))) - (-5 *1 (-569 *7 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070))))) + (-12 (-5 *3 (-665 (-419 *2))) (-4 *2 (-1264 *4)) (-5 *1 (-822 *4 *2)) + (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 *2 (-419 *2))) (-4 *2 (-1264 *4)) + (-5 *1 (-822 *4 *2)) + (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576)))))))) (((*1 *2 *3) - (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-887 (-940) (-940)))) (-5 *1 (-992))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 *1)) (|has| *1 (-6 -4466)) (-4 *1 (-1031 *3)) - (-4 *3 (-1238))))) + (-12 (-5 *3 (-1197)) (-5 *2 (-548)) (-5 *1 (-547 *4)) + (-4 *4 (-1238))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-939))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1179)) (-5 *3 (-576)) (-5 *1 (-1084))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-861)) + (-4 *8 (-317)) (-4 *6 (-805)) (-4 *9 (-968 *8 *6 *7)) + (-5 *2 + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-656 (-2 (|:| -1828 (-1193 *9)) (|:| -2508 (-576))))))) + (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1193 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876))))) (((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) ((*1 *1 *1) (-5 *1 (-876))) ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-1119 *3)))) ((*1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) -(((*1 *1) (-5 *1 (-518)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *3) - (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) - (-4 *7 (-1264 (-419 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -4242 *3))) - (-5 *1 (-574 *5 *6 *7 *3)) (-4 *3 (-353 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) - (-5 *2 - (-2 (|:| |answer| (-419 *6)) (|:| -4242 (-419 *6)) - (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) - (-5 *1 (-575 *5 *6)) (-5 *3 (-419 *6))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-763))))) +(((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-317)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1264 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-317)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1264 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-317)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-783))) + (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1264 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1238)) + (-4 *5 (-384 *4)) (-4 *3 (-384 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1083)))) + ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1083))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1160)))) (((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) ((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1238)) (-5 *2 (-783))))) +(((*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3987 *4)))) + (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-171 (-227))) (-5 *6 (-1179)) + (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-770))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-998 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-759))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) -(((*1 *2 *1) - (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317))))) -(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499))))) + (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-1288 *2)) (-4 *5 (-317)) - (-4 *6 (-1013 *5)) (-4 *2 (-13 (-421 *6 *7) (-1059 *6))) - (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1264 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-1291)))) - ((*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1291))))) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4334 *4))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-656 (-962 *4))) (-4 *1 (-1155 *4)) (-4 *4 (-1070)) + (-5 *2 (-783))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-1153 *4 *2)) + (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4464) (-6 -4465)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-861)) (-4 *3 (-1238)) (-5 *1 (-1153 *3 *2)) + (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4464) (-6 -4465))))))) (((*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223))))) ((*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-940)) (-5 *4 (-390)) (-5 *2 (-1293)) (-5 *1 (-1289)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-1121)) (-4 *4 (-1238)) (-5 *2 (-112)) - (-5 *1 (-1178 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1163 *4 *2)) (-14 *4 (-940)) - (-4 *2 (-13 (-1070) (-10 -7 (-6 (-4467 "*"))))) - (-5 *1 (-921 *4 *2))))) + (-12 (-4 *4 (-568)) (-5 *2 (-171 *5)) (-5 *1 (-612 *4 *5 *3)) + (-4 *5 (-13 (-442 *4) (-1023) (-1223))) + (-4 *3 (-13 (-442 (-171 *4)) (-1023) (-1223)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-29 *4) (-1223))) + (-5 *1 (-595 *4 *2)) + (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-598 (-419 (-971 *4)))) + (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-326 *4)) + (-5 *1 (-601 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-971 *4)) (-4 *4 (-13 (-317) (-148))) + (-4 *2 (-968 *4 *6 *5)) (-5 *1 (-943 *4 *5 *6 *2)) + (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) - (-4 *3 (-1264 *4)) (-5 *1 (-821 *4 *3 *2 *5)) (-4 *2 (-668 *3)) - (-4 *5 (-668 (-419 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-419 *5)) - (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) - (-5 *1 (-821 *4 *5 *2 *6)) (-4 *2 (-668 *5)) (-4 *6 (-668 *3))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-701 *2)) (-5 *4 (-783)) - (-4 *2 (-13 (-317) (-10 -8 (-15 -3921 ((-430 $) $))))) - (-4 *5 (-1264 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5))))) + (-12 (-5 *3 (-1197)) + (-4 *4 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-438 *4 *2)) (-4 *2 (-13 (-1223) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-148)) + (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-326 *5)) + (-5 *1 (-601 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-656 (-2 (|:| |totdeg| (-783)) (|:| -3896 *3)))) + (-5 *4 (-783)) (-4 *3 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) + (-4 *7 (-861)) (-5 *1 (-461 *5 *6 *7 *3))))) (((*1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-4 *4 (-1238)) (-4 *1 (-243 *3 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-576)))) (-4 *3 (-568)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -1570 ((-1146 *3 (-624 $)) $)) - (-15 -1581 ((-1146 *3 (-624 $)) $)) - (-15 -3570 ($ (-1146 *3 (-624 $)))))))))) (((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-115))) ((*1 *1 *1) (-5 *1 (-173))) ((*1 *1 *1) (-4 *1 (-557))) ((*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) @@ -14346,25 +14420,45 @@ ((*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34)))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1178 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2))))) -(((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291))))) -(((*1 *2 *1) - (-12 (-5 *2 (-962 *4)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) - (-4 *4 (-1070))))) +(((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1070)) (-14 *3 (-656 (-1197))))) + ((*1 *1 *1) + (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1070) (-861))) + (-14 *3 (-656 (-1197)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) + (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-791 *4)) + (-4 *4 (-13 (-374) (-860)))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1179)) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) + (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-769))))) +(((*1 *2 *1) + (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) + (-4 *3 (-1264 *4)) (-5 *2 (-112))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1193 *1)) (-4 *1 (-1033))))) (((*1 *2 *1) (-12 (-5 *2 (-656 (-984))) (-5 *1 (-109)))) ((*1 *2 *1) (-12 (-5 *2 (-45 (-1179) (-786))) (-5 *1 (-115))))) (((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1020 *3)) (-4 *3 (-174)) (-5 *1 (-811 *3))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-1315 *5 *6 *7)) + (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-1315 *5 *6 *7)) + (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-971 *4))) + (-4 *4 (-13 (-860) (-317) (-148) (-1043))) + (-5 *2 (-656 (-1067 *4 *5))) (-5 *1 (-1315 *4 *5 *6)) + (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197)))))) (((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-326 *4)) @@ -14372,47 +14466,52 @@ ((*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4466)) (-4 *1 (-249 *2)) (-4 *2 (-1238))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1056)) (-5 *1 (-764))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-518)) (-5 *2 (-656 (-984))) (-5 *1 (-301))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1) (-4 *1 (-1160)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-4 *4 (-1121)) - (-5 *1 (-585 *4 *2)) (-4 *2 (-442 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) (-4 *4 (-626 *2)) - (-5 *2 (-390)) (-5 *1 (-797 *4)))) + (-12 (-4 *3 (-374)) (-5 *1 (-1046 *3 *2)) (-4 *2 (-668 *3)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) - (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) - (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) + (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| -4026 *3) (|:| -1757 (-656 *5)))) + (-5 *1 (-1046 *5 *3)) (-5 *4 (-656 *5)) (-4 *3 (-668 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) + (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) + ((*1 *2 *1) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) + (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 (-783)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) + (-4 *5 (-1264 *4)) (-5 *2 (-656 (-2 (|:| -2396 *5) (|:| -2337 *5)))) + (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-668 *5)) + (-4 *6 (-668 (-419 *5))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) - (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) + (-12 (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) + (-4 *4 (-1264 *5)) (-5 *2 (-656 (-2 (|:| -2396 *4) (|:| -2337 *4)))) + (-5 *1 (-819 *5 *4 *3 *6)) (-4 *3 (-668 *4)) + (-4 *6 (-668 (-419 *4))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) - (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) + (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) + (-4 *5 (-1264 *4)) (-5 *2 (-656 (-2 (|:| -2396 *5) (|:| -2337 *5)))) + (-5 *1 (-819 *4 *5 *6 *3)) (-4 *6 (-668 *5)) + (-4 *3 (-668 (-419 *5))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) - (-4 *5 (-861)) (-4 *5 (-626 *2)) (-5 *2 (-390)) - (-5 *1 (-797 *5))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1070)) - (-4 *2 (-1248 *3))))) + (-12 (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) + (-4 *4 (-1264 *5)) (-5 *2 (-656 (-2 (|:| -2396 *4) (|:| -2337 *4)))) + (-5 *1 (-819 *5 *4 *6 *3)) (-4 *6 (-668 *4)) + (-4 *3 (-668 (-419 *4)))))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-968 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) + (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-924 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-386 *4 *2)) + (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4465))))))) +(((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) + ((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291))))) (((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-326 *4)) @@ -14422,75 +14521,35 @@ ((*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-193)) (-5 *3 (-576)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1056)) (-5 *1 (-763))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) + (-5 *2 (-1056)) (-5 *1 (-766))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-253 *5 *6))) (-4 *6 (-464)) + (-5 *2 (-253 *5 *6)) (-14 *5 (-656 (-1197))) (-5 *1 (-643 *5 *6))))) (((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)) (-5 *1 (-692 *5 *6 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1298))))) -(((*1 *1) (-5 *1 (-571)))) -(((*1 *1 *1) (-5 *1 (-1084)))) -(((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1179)) (-5 *1 (-798))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-878 *4)) - (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-904 *5 *3)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) - (-4 *3 (-167 *6)) (-4 (-971 *6) (-901 *5)) - (-4 *6 (-13 (-901 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-904 *4 *1)) (-5 *3 (-907 *4)) (-4 *1 (-901 *4)) - (-4 *4 (-1121)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-904 *5 *6)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) - (-4 *6 (-13 (-1121) (-1059 *3))) (-4 *3 (-901 *5)) - (-5 *1 (-950 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-904 *5 *3)) (-4 *5 (-1121)) - (-4 *3 (-13 (-442 *6) (-626 *4) (-901 *5) (-1059 (-624 $)))) - (-5 *4 (-907 *5)) (-4 *6 (-13 (-568) (-901 *5))) - (-5 *1 (-951 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-904 (-576) *3)) (-5 *4 (-907 (-576))) (-4 *3 (-557)) - (-5 *1 (-952 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-904 *5 *6)) (-5 *3 (-624 *6)) (-4 *5 (-1121)) - (-4 *6 (-13 (-1121) (-1059 (-624 $)) (-626 *4) (-901 *5))) - (-5 *4 (-907 *5)) (-5 *1 (-953 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-900 *5 *6 *3)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) - (-4 *6 (-901 *5)) (-4 *3 (-678 *6)) (-5 *1 (-954 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-904 *6 *3) *8 (-907 *6) (-904 *6 *3))) - (-4 *8 (-861)) (-5 *2 (-904 *6 *3)) (-5 *4 (-907 *6)) - (-4 *6 (-1121)) (-4 *3 (-13 (-968 *9 *7 *8) (-626 *4))) - (-4 *7 (-805)) (-4 *9 (-13 (-1070) (-901 *6))) - (-5 *1 (-955 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-904 *5 *3)) (-4 *5 (-1121)) - (-4 *3 (-13 (-968 *8 *6 *7) (-626 *4))) (-5 *4 (-907 *5)) - (-4 *7 (-901 *5)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *8 (-13 (-1070) (-901 *5))) (-5 *1 (-955 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-904 *5 *3)) (-4 *5 (-1121)) (-4 *3 (-1013 *6)) - (-4 *6 (-13 (-568) (-901 *5) (-626 *4))) (-5 *4 (-907 *5)) - (-5 *1 (-958 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-904 *5 (-1197))) (-5 *3 (-1197)) (-5 *4 (-907 *5)) - (-4 *5 (-1121)) (-5 *1 (-959 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-656 (-907 *7))) (-5 *5 (-1 *9 (-656 *9))) - (-5 *6 (-1 (-904 *7 *9) *9 (-907 *7) (-904 *7 *9))) (-4 *7 (-1121)) - (-4 *9 (-13 (-1070) (-626 (-907 *7)) (-1059 *8))) - (-5 *2 (-904 *7 *9)) (-5 *3 (-656 *9)) (-4 *8 (-1070)) - (-5 *1 (-960 *7 *8 *9))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) + (-4 *4 (-861)) (-5 *1 (-1208 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-3 (-112) (-656 *1))) + (-4 *1 (-1092 *4 *5 *6 *3))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-390)) (-5 *1 (-207))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-120 *2)) (-4 *2 (-1238))))) (((*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) @@ -14500,10 +14559,16 @@ ((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1033)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-940)))) ((*1 *1 *1) (-4 *1 (-1033)))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-783)) (-4 *6 (-1121)) (-4 *7 (-917 *6)) + (-5 *2 (-701 *7)) (-5 *1 (-704 *6 *7 *3 *4)) (-4 *3 (-384 *7)) + (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4464))))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-836)) (-5 *3 (-656 (-1197))) (-5 *1 (-837))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) + (-5 *2 (-2 (|:| -2451 (-419 *6)) (|:| |coeff| (-419 *6)))) + (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6))))) (((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) @@ -14521,25 +14586,24 @@ (-12 (-5 *3 (-576)) (-5 *2 (-924 *4)) (-5 *1 (-923 *4)) (-4 *4 (-1121)))) ((*1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-557)) (-4 *2 (-568))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) + (-5 *1 (-1258 *4 *2)) (-4 *2 (-1264 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-837))))) (((*1 *2 *3) - (-12 (-4 *3 (-1264 *2)) (-4 *2 (-1264 *4)) - (-5 *1 (-1006 *4 *2 *3 *5)) (-4 *4 (-360)) (-4 *5 (-736 *2 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1288 *4)) (-4 *4 (-1070)) (-4 *2 (-1264 *4)) - (-5 *1 (-456 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-419 (-1193 (-326 *5)))) (-5 *3 (-1288 (-326 *5))) - (-5 *4 (-576)) (-4 *5 (-568)) (-5 *1 (-1151 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-559)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) + (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1223) (-1023)))))) +(((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) -(((*1 *1 *1) - (-12 (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-805)) - (-5 *1 (-1008 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3))))) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4334 *4))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48))))) @@ -14588,8 +14652,8 @@ (-12 (-4 *4 (-13 (-861) - (-10 -8 (-15 -4172 ((-1197) $)) - (-15 -3055 ((-3 $ "failed") (-1197)))))) + (-10 -8 (-15 -4171 ((-1197) $)) + (-15 -3054 ((-3 $ "failed") (-1197)))))) (-4 *5 (-805)) (-4 *7 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-568)) (-4 *3 (-968 *7 *5 *4)))) @@ -14638,13 +14702,13 @@ (-12 (-4 *4 (-805)) (-4 *5 (-13 (-861) - (-10 -8 (-15 -4172 ((-1197) $)) - (-15 -3055 ((-3 $ "failed") (-1197)))))) + (-10 -8 (-15 -4171 ((-1197) $)) + (-15 -3054 ((-3 $ "failed") (-1197)))))) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-968 (-971 *6) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-805)) - (-4 *5 (-13 (-861) (-10 -8 (-15 -4172 ((-1197) $))))) (-4 *6 (-568)) + (-4 *5 (-13 (-861) (-10 -8 (-15 -4171 ((-1197) $))))) (-4 *6 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-968 (-419 (-971 *6)) *4 *5)))) ((*1 *2 *3) @@ -14680,34 +14744,62 @@ ((*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1242)))) ((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1253 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1113 (-971 (-576)))) (-5 *3 (-971 (-576))) - (-5 *1 (-340)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1113 (-971 (-576)))) (-5 *1 (-340))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1121)))) - ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1121))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-1121)) (-4 *2 (-917 *4)) (-5 *1 (-704 *4 *2 *5 *3)) - (-4 *5 (-384 *2)) (-4 *3 (-13 (-384 *4) (-10 -7 (-6 -4465))))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-419 (-971 *6)) (-1186 (-1197) (-971 *6)))) - (-5 *5 (-783)) (-4 *6 (-464)) (-5 *2 (-656 (-701 (-419 (-971 *6))))) - (-5 *1 (-302 *6)) (-5 *4 (-701 (-419 (-971 *6)))))) - ((*1 *2 *3 *4) - (-12 - (-5 *3 - (-2 (|:| |eigval| (-3 (-419 (-971 *5)) (-1186 (-1197) (-971 *5)))) - (|:| |eigmult| (-783)) (|:| |eigvec| (-656 *4)))) - (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-971 *5))))) - (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-971 *5))))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1197)) - (-4 *5 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *2 (-2 (|:| -1698 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3)) - (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) -(((*1 *1) (-5 *1 (-131)))) +(((*1 *1 *2) + (-12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-13 (-374) (-148))) + (-5 *1 (-411 *3 *4))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-1209 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-112)) (-5 *1 (-841))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-1070)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1197))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-656 (-940))) (-4 *2 (-374)) (-5 *1 (-153 *4 *2 *5)) + (-14 *4 (-940)) (-14 *5 (-1014 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) + (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-132)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1121)) (-4 *2 (-1070)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) + (-4 *4 (-1264 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1070)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1070)) (-5 *1 (-747 *2 *3)) (-4 *3 (-738)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) + (-4 *4 (-1070)) (-4 *5 (-861)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1070)) + (-4 *2 (-861)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-866 *2)) (-4 *2 (-1070)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-968 *4 *5 *6)) + (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-783)) (-4 *1 (-968 *4 *5 *2)) (-4 *4 (-1070)) + (-4 *5 (-805)) (-4 *2 (-861)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-4 *2 (-968 *4 (-543 *5) *5)) + (-5 *1 (-1147 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-861)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-971 *4)) (-5 *1 (-1232 *4)) + (-4 *4 (-1070))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *2 *2) (-12 (-5 *2 (-656 (-624 *4))) (-4 *4 (-442 *3)) (-4 *3 (-1121)) (-5 *1 (-585 *3 *4)))) @@ -14716,84 +14808,97 @@ ((*1 *1 *2 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) +(((*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-374)) (-4 *1 (-339 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1264 *4)) (-4 *4 (-1242)) + (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1264 (-419 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1288 *1)) (-4 *4 (-174)) + (-4 *1 (-378 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1288 *1)) (-4 *4 (-174)) + (-4 *1 (-381 *4 *5)) (-4 *5 (-1264 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) + (-4 *4 (-1264 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-576))) (-5 *4 (-576)) (-5 *2 (-52)) - (-5 *1 (-1026))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) - (-12 - (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-656 (-576))) - (|:| |cols| (-656 (-576))))) - (-5 *4 (-701 *12)) (-5 *5 (-656 (-419 (-971 *9)))) - (-5 *6 (-656 (-656 *12))) (-5 *7 (-783)) (-5 *8 (-576)) - (-4 *9 (-13 (-317) (-148))) (-4 *12 (-968 *9 *11 *10)) - (-4 *10 (-13 (-861) (-626 (-1197)))) (-4 *11 (-805)) - (-5 *2 - (-2 (|:| |eqzro| (-656 *12)) (|:| |neqzro| (-656 *12)) - (|:| |wcond| (-656 (-971 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-971 *9)))) - (|:| -1593 (-656 (-1288 (-419 (-971 *9))))))))) - (-5 *1 (-943 *9 *10 *11 *12))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1121))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-656 (-1197))) (-4 *2 (-174)) - (-4 *3 (-243 (-3503 *4) (-783))) - (-14 *6 - (-1 (-112) (-2 (|:| -3224 *5) (|:| -3422 *3)) - (-2 (|:| -3224 *5) (|:| -3422 *3)))) - (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-861)) - (-4 *7 (-968 *2 *3 (-878 *4)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) - (-5 *1 (-178 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-858))))) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) + (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-5 *1 (-913 *2 *4)) + (-4 *2 (-1264 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-430 (-1193 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1193 *1)) - (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1121)))) - ((*1 *2 *3) - (-12 (-4 *1 (-928)) (-5 *2 (-430 (-1193 *1))) (-5 *3 (-1193 *1))))) -(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223)))))) -(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1207))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112))))) + (-12 (-5 *3 (-656 *4)) (-4 *4 (-861)) (-5 *2 (-656 (-676 *4 *5))) + (-5 *1 (-639 *4 *5 *6)) (-4 *5 (-13 (-174) (-729 (-419 (-576))))) + (-14 *6 (-940))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-624 *3)) (-5 *5 (-1193 *3)) + (-4 *3 (-13 (-442 *6) (-27) (-1223))) + (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1193 *3))) + (-4 *3 (-13 (-442 *6) (-27) (-1223))) + (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) + (-5 *1 (-1258 *4 *2)) (-4 *2 (-1264 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-783)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-783))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) + ((*1 *1 *1) (-4 *1 (-1081)))) +(((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557))))) +(((*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-276))))) (((*1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-568))))) -(((*1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) -(((*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-833))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1070)) (-5 *1 (-724 *3 *4)) - (-4 *4 (-1264 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) + (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) + (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) + (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) + (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) + (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) + (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -4334 *3) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) + (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3497 *3))) + (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-940)) (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) + (-4 *4 (-804)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1269 *3)) (-4 *3 (-1070))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) - (-4 *2 (-699 *3 *4 *5))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *3 (-1086 *6 *7 *8)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3988 *4)))) - (-5 *1 (-1129 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3988 *9)))) - (-5 *5 (-112)) (-4 *8 (-1086 *6 *7 *4)) (-4 *9 (-1092 *6 *7 *4 *8)) - (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-861)) - (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -3988 *9)))) - (-5 *1 (-1129 *6 *7 *4 *8 *9))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1178 *7))) (-4 *6 (-861)) + (-4 *7 (-968 *5 (-543 *6) *6)) (-4 *5 (-1070)) + (-5 *2 (-1 (-1178 *7) *7)) (-5 *1 (-1147 *5 *6 *7))))) (((*1 *2 *1 *3) (-12 (-5 *3 (-624 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1121)) (-4 *4 (-568)) (-5 *2 (-419 (-1193 *1))))) @@ -14817,28 +14922,21 @@ (-5 *1 (-969 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-374) - (-10 -8 (-15 -3570 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))))) + (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-1193 *3)) (-4 *3 (-13 (-374) - (-10 -8 (-15 -3570 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))) + (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) (-15 -1581 (*7 $))))) (-4 *7 (-968 *6 *5 *4)) (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-1070)) (-5 *1 (-969 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-568)) (-5 *2 (-419 (-1193 (-419 (-971 *5))))) (-5 *1 (-1064 *5)) (-5 *3 (-419 (-971 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1193 *1)) (-5 *4 (-1197)) (-4 *1 (-27)) - (-5 *2 (-656 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1193 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-971 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *2 (-656 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1223) (-1023)))))) (((*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1238)) (-4 *2 (-861)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1238)))) @@ -14847,75 +14945,189 @@ ((*1 *2 *1 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-4 *6 (-1086 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -2443 *1) (|:| |upper| *1))) + (-5 *2 (-2 (|:| |under| *1) (|:| -4236 *1) (|:| |upper| *1))) (-4 *1 (-997 *4 *5 *3 *6))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1070))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1258 *3 *2)) - (-4 *2 (-1264 *3))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-173)) (-5 *1 (-1185 *4 *5)) - (-14 *4 (-940)) (-4 *5 (-1070))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-701 (-227))) (-5 *6 (-112)) (-5 *7 (-701 (-576))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) - (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-765))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-568)) - (-5 *2 (-876)) (-5 *1 (-32 *4 *5))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1033)) (-5 *2 (-876))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-1193 *3)) + (-4 *3 (-13 (-442 *7) (-27) (-1223))) + (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1121)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) + (-5 *6 (-419 (-1193 *3))) (-4 *3 (-13 (-442 *7) (-27) (-1223))) + (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1121))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-132)) + (-4 *3 (-804))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) - (-5 *2 (-656 (-2 (|:| -1958 *1) (|:| -3257 (-656 *7))))) - (-5 *3 (-656 *7)) (-4 *1 (-1231 *4 *5 *6 *7))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-783)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2) - (-12 (-4 *2 (-1070)) (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1197)) - (-4 *4 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-587 *4 *2)) - (-4 *2 (-13 (-1223) (-978) (-1160) (-29 *4)))))) + (-12 (-5 *3 (-656 (-1197))) (-4 *4 (-13 (-317) (-148))) + (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) + (-5 *2 (-656 (-419 (-971 *4)))) (-5 *1 (-943 *4 *5 *6 *7)) + (-4 *7 (-968 *4 *6 *5))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-656 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-783)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-805)) (-4 *6 (-968 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-861)) + (-5 *1 (-461 *4 *3 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219)))) + ((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499)))) + ((*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) + ((*1 *2 *1) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) + ((*1 *1 *1) (-4 *1 (-1081)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1193 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 *8)) + (-4 *7 (-861)) (-4 *8 (-1070)) (-4 *9 (-968 *8 *6 *7)) + (-4 *6 (-805)) (-5 *2 (-1193 *8)) (-5 *1 (-331 *6 *7 *8 *9))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1264 *3))))) (((*1 *1 *1) (-5 *1 (-876))) ((*1 *1 *1 *1) (-5 *1 (-876))) ((*1 *1 *2 *2) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238)))) ((*1 *1 *2) (-12 (-5 *1 (-1255 *2)) (-4 *2 (-1238))))) -(((*1 *1 *2) - (-12 (-5 *2 (-419 (-576))) (-4 *1 (-566 *3)) - (-4 *3 (-13 (-416) (-1223))))) - ((*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223)))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-940)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *3) - (-12 - (-5 *3 +(((*1 *2 *3 *4) + (-12 (-5 *3 (-701 *8)) (-4 *8 (-968 *5 *7 *6)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) + (-4 *7 (-805)) + (-5 *2 (-656 - (-2 (|:| -3734 (-783)) - (|:| |eqns| - (-656 - (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) - (|:| |cols| (-656 (-576)))))) - (|:| |fgb| (-656 *7))))) - (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-783)) - (-5 *1 (-943 *4 *5 *6 *7))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-962 (-227))) (-5 *2 (-1293)) (-5 *1 (-480))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) + (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) + (|:| |wcond| (-656 (-971 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) + (|:| -2675 (-656 (-1288 (-419 (-971 *5)))))))))) + (-5 *1 (-943 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-701 *8)) (-5 *4 (-656 (-1197))) (-4 *8 (-968 *5 *7 *6)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) + (-4 *7 (-805)) + (-5 *2 + (-656 + (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) + (|:| |wcond| (-656 (-971 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) + (|:| -2675 (-656 (-1288 (-419 (-971 *5)))))))))) + (-5 *1 (-943 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-701 *7)) (-4 *7 (-968 *4 *6 *5)) + (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) + (-4 *6 (-805)) + (-5 *2 + (-656 + (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) + (|:| |wcond| (-656 (-971 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) + (|:| -2675 (-656 (-1288 (-419 (-971 *4)))))))))) + (-5 *1 (-943 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-701 *9)) (-5 *5 (-940)) (-4 *9 (-968 *6 *8 *7)) + (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1197)))) + (-4 *8 (-805)) + (-5 *2 + (-656 + (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) + (|:| |wcond| (-656 (-971 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1288 (-419 (-971 *6)))) + (|:| -2675 (-656 (-1288 (-419 (-971 *6)))))))))) + (-5 *1 (-943 *6 *7 *8 *9)) (-5 *4 (-656 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1197))) (-5 *5 (-940)) + (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) + (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) + (-5 *2 + (-656 + (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) + (|:| |wcond| (-656 (-971 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1288 (-419 (-971 *6)))) + (|:| -2675 (-656 (-1288 (-419 (-971 *6)))))))))) + (-5 *1 (-943 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-701 *8)) (-5 *4 (-940)) (-4 *8 (-968 *5 *7 *6)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) + (-4 *7 (-805)) + (-5 *2 + (-656 + (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) + (|:| |wcond| (-656 (-971 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) + (|:| -2675 (-656 (-1288 (-419 (-971 *5)))))))))) + (-5 *1 (-943 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 *9)) (-5 *5 (-1179)) + (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) + (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-576)) + (-5 *1 (-943 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1197))) (-5 *5 (-1179)) + (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) + (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-576)) + (-5 *1 (-943 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-701 *8)) (-5 *4 (-1179)) (-4 *8 (-968 *5 *7 *6)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) + (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 *10)) (-5 *5 (-940)) + (-5 *6 (-1179)) (-4 *10 (-968 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) + (-4 *8 (-13 (-861) (-626 (-1197)))) (-4 *9 (-805)) (-5 *2 (-576)) + (-5 *1 (-943 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 (-1197))) (-5 *5 (-940)) + (-5 *6 (-1179)) (-4 *10 (-968 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) + (-4 *8 (-13 (-861) (-626 (-1197)))) (-4 *9 (-805)) (-5 *2 (-576)) + (-5 *1 (-943 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-701 *9)) (-5 *4 (-940)) (-5 *5 (-1179)) + (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) + (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-576)) + (-5 *1 (-943 *6 *7 *8 *9))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-773)))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-1193 *3)) + (-4 *3 (-13 (-442 *6) (-27) (-1223))) + (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *2 (-2 (|:| -2451 *3) (|:| |coeff| *3))) + (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1193 *3))) + (-4 *3 (-13 (-442 *6) (-27) (-1223))) + (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *2 (-2 (|:| -2451 *3) (|:| |coeff| *3))) + (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121))))) +(((*1 *2 *1) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) + (-5 *2 (-2 (|:| |num| (-1288 *4)) (|:| |den| *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-977 (-783))) (-5 *1 (-343))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1193 *6)) (-4 *6 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *2 (-1193 *7)) (-5 *1 (-331 *4 *5 *6 *7)) + (-4 *7 (-968 *6 *4 *5))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-764))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) + (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-32 *3 *4)) (-4 *4 (-442 *3)))) @@ -14943,107 +15155,99 @@ (-4 *4 (-13 (-442 *3) (-1023) (-1223))))) ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1040)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1211 *2)) (-4 *2 (-1121))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711))))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-1059 (-48))) - (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) - (-5 *2 (-430 (-1193 (-48)))) (-5 *1 (-447 *4 *5 *3)) - (-4 *3 (-1264 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-59 *3)) (-4 *3 (-1238)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-59 *3))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-783)) (-4 *4 (-317)) (-4 *6 (-1264 *4)) - (-5 *2 (-1288 (-656 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-656 *6))))) +(((*1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-656 *7)) (-5 *3 (-576)) (-4 *7 (-968 *4 *5 *6)) + (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-5 *1 (-461 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-492))))) +(((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-876))) (-5 *2 (-1293)) (-5 *1 (-1159))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861))))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-340))))) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-766))))) +(((*1 *1) (-5 *1 (-449)))) (((*1 *2 *3) - (-12 (-5 *3 (-665 (-419 *2))) (-4 *2 (-1264 *4)) (-5 *1 (-822 *4 *2)) - (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))))) + (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) + (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) ((*1 *2 *3) - (-12 (-5 *3 (-666 *2 (-419 *2))) (-4 *2 (-1264 *4)) - (-5 *1 (-822 *4 *2)) - (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576)))))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-317)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1264 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-317)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1264 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-317)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-783))) - (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1264 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) + (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) + (-4 *3 (-699 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) + (-5 *2 (-783))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1056))))) +(((*1 *2 *3) + (-12 (-5 *3 (-701 (-419 (-971 (-576))))) (-5 *2 (-656 (-326 (-576)))) + (-5 *1 (-1052))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-337 *3)) (-4 *3 (-1238)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-576)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) (-14 *4 *2)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) (((*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-656 (-2 (|:| |totdeg| (-783)) (|:| -3307 *3)))) - (-5 *4 (-783)) (-4 *3 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) - (-4 *7 (-861)) (-5 *1 (-461 *5 *6 *7 *3))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-374)) (-5 *1 (-1046 *3 *2)) (-4 *2 (-668 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| -4027 *3) (|:| -1757 (-656 *5)))) - (-5 *1 (-1046 *5 *3)) (-5 *4 (-656 *5)) (-4 *3 (-668 *5))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-253 *5 *6))) (-4 *6 (-464)) - (-5 *2 (-253 *5 *6)) (-14 *5 (-656 (-1197))) (-5 *1 (-643 *5 *6))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-836)) (-5 *3 (-656 (-1197))) (-5 *1 (-837))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-767))))) +(((*1 *2 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) +(((*1 *1 *1 *1) (-4 *1 (-485))) ((*1 *1 *1 *1) (-4 *1 (-773)))) (((*1 *1 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-839 *2 *3)) (-4 *2 (-720 *3))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-656 (-656 (-227)))) (-5 *4 (-227)) + (-5 *2 (-656 (-962 *4))) (-5 *1 (-1234)) (-5 *3 (-962 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) + (-4 *2 (-174))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-861)) (-5 *2 (-656 (-676 *4 *5))) - (-5 *1 (-639 *4 *5 *6)) (-4 *5 (-13 (-174) (-729 (-419 (-576))))) - (-14 *6 (-940))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) - (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) - (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) - (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) - (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) + (-12 (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) + (-4 *3 (-1264 *4))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) + (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *3 (-1086 *4 *5 *6)) + (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3987 *1)))) + (-4 *1 (-1092 *4 *5 *6 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-656 *5)) (-4 *5 (-1264 *3)) (-4 *3 (-317)) + (-5 *2 (-112)) (-5 *1 (-467 *3 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-103 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) + ((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1193 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) + (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) - (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) - (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) + (-12 (-5 *3 (-971 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) + (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1223) (-1023)))))) + (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) + (-5 *2 (-971 *5)) (-5 *1 (-963 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1264 *3))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-576)) (-4 *7 (-968 *4 *5 *6)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *1 (-461 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) - (-4 *2 (-174))))) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-686 *3)) (-4 *3 (-1238)))) ((*1 *1 *1 *2) @@ -15072,6 +15276,30 @@ (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804))))) +(((*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1238)) (-5 *2 (-112))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-158)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-430 *2)) (-4 *2 (-317)) (-5 *1 (-933 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-934 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-430 (-971 *6))) (-5 *5 (-1197)) (-5 *3 (-971 *6)) + (-4 *6 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-934 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945))))) +(((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1238)) (-5 *2 (-656 *1)) (-4 *1 (-1031 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) + (-5 *2 (-1193 *3))))) (((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-309 *4 *5)) (-14 *4 *3) (-14 *5 *3))) @@ -15081,114 +15309,91 @@ ((*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) - ((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *6 *5)) + (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) + (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-943 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-13 (-317) (-148))) + (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-112)) + (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888))))) +(((*1 *2 *1) + (-12 (-5 *2 (-876)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) + (-14 *4 (-783)) (-4 *5 (-174))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-656 *3)) (|:| |image| (-656 *3)))) + (-5 *1 (-924 *3)) (-4 *3 (-1121))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-304 *6)) (-5 *4 (-115)) (-4 *6 (-442 *5)) + (-4 *5 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-656 *7)) + (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) + (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-656 (-304 *8))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *8)) + (-5 *6 (-656 *8)) (-4 *8 (-442 *7)) + (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) + (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-115))) (-5 *6 (-656 (-304 *8))) + (-4 *8 (-442 *7)) (-5 *5 (-304 *8)) + (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-304 *5)) (-5 *4 (-115)) (-4 *5 (-442 *6)) + (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) + (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) + (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-5 *6 (-656 *3)) + (-4 *3 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *7 *3))))) (((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1962)))) (-5 *3 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1963)))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-760))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) - (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) - (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-656 (-624 *3))) - (|:| |vals| (-656 *3)))) - (-5 *1 (-286 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-940)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-270))))) +(((*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1238)) (-5 *2 (-112))))) (((*1 *2 *3) (-12 (-5 *3 - (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) - (-253 *4 (-419 (-576))))) - (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-112)) - (-5 *1 (-517 *4 *5))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 (-576)))) - (-5 *2 (-1288 (-419 (-576)))) (-5 *1 (-1316 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-4 *2 (-1264 *4)) - (-5 *1 (-941 *4 *2))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1238)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1223)))) - ((*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1121))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-112)) (-5 *1 (-1185 *4 *5)) - (-14 *4 (-940)) (-4 *5 (-1070))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-5 *2 (-1193 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-656 (-1193 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) - (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-761))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-561)))))) -(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-343))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *2 (-568)) (-5 *1 (-990 *2 *4)) - (-4 *4 (-1264 *2))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1197)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) - (-5 *2 (-1056)) (-5 *1 (-765))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-783)) (-5 *3 (-962 *5)) (-4 *5 (-1070)) - (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1185 *4 *5)) - (-14 *4 (-940)) (-4 *5 (-1070)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-962 *5)) (-4 *5 (-1070)) - (-5 *1 (-1185 *4 *5)) (-14 *4 (-940))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-656 *7) *7 (-1193 *7))) (-5 *5 (-1 (-430 *7) *7)) - (-4 *7 (-1264 *6)) (-4 *6 (-13 (-374) (-148) (-1059 (-419 (-576))))) - (-5 *2 (-656 (-2 (|:| |frac| (-419 *7)) (|:| -4027 *3)))) - (-5 *1 (-821 *6 *7 *3 *8)) (-4 *3 (-668 *7)) - (-4 *8 (-668 (-419 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-5 *2 - (-656 (-2 (|:| |frac| (-419 *6)) (|:| -4027 (-666 *6 (-419 *6)))))) - (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) - (-5 *2 (-2 (|:| -1714 (-419 *5)) (|:| |poly| *3))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1264 (-419 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1215 *4 *5)) - (-4 *4 (-1121)) (-4 *5 (-1121))))) -(((*1 *2 *1) (-12 (-4 *1 (-437 *3)) (-4 *3 (-1121)) (-5 *2 (-783))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-1201)) (-5 *1 (-1200))))) -(((*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-1212 *2)) (-4 *2 (-374))))) + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-390)) (-5 *1 (-207))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) +(((*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238))))) +(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1288 *1)) (-4 *1 (-378 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174))))) (((*1 *2 *3 *1) (-12 (-5 *3 (-1312 *4 *2)) (-4 *1 (-385 *4 *2)) (-4 *4 (-861)) (-4 *2 (-174)))) @@ -15199,42 +15404,55 @@ (-4 *2 (-1070)))) ((*1 *2 *1 *3) (-12 (-4 *2 (-1070)) (-5 *1 (-1311 *2 *3)) (-4 *3 (-858))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) - (-5 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) - (-5 *1 (-1129 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) - (-5 *2 - (-2 (|:| |ir| (-598 (-419 *6))) (|:| |specpart| (-419 *6)) - (|:| |polypart| *6))) - (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-384 *3)) (-4 *3 (-1238)) (-4 *3 (-861)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-384 *4)) (-4 *4 (-1238)) - (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-1178 (-227))) (-5 *1 (-194)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1197))) + (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-310)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *4 (-656 (-1197))) + (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-310))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1115 (-227))) + (-5 *5 (-112)) (-5 *2 (-1290)) (-5 *1 (-264))))) (((*1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1288 *4)) (-5 *3 (-576)) (-4 *4 (-360)) - (-5 *1 (-540 *4))))) + (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) + (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-1301 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) + (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1301 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-112)) (-5 *5 (-1123 (-783))) (-5 *6 (-783)) + (-5 *2 + (-2 (|:| |contp| (-576)) + (|:| -4213 (-656 (-2 (|:| |irr| *3) (|:| -3012 (-576))))))) + (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) +(((*1 *1) (-5 *1 (-590)))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1147 *4 *3 *5))) (-4 *4 (-38 (-419 (-576)))) + (-4 *4 (-1070)) (-4 *3 (-861)) (-5 *1 (-1147 *4 *3 *5)) + (-4 *5 (-968 *4 (-543 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1232 *4))) (-5 *3 (-1197)) (-5 *1 (-1232 *4)) + (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1070))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1197)) + (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) + (-5 *2 + (-2 (|:| |func| *3) (|:| |kers| (-656 (-624 *3))) + (|:| |vals| (-656 *3)))) + (-5 *1 (-286 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-340))))) (((*1 *2 *3 *4 *5) (-12 (-5 *3 (-894 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) @@ -15288,59 +15506,122 @@ (-12 (-5 *3 (-897 *5)) (-5 *4 (-1113 (-390))) (-4 *5 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1154 (-227))) (-5 *1 (-266 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)) (-4 *2 (-1121)))) - ((*1 *1 *1) (-12 (-4 *1 (-707 *2)) (-4 *2 (-1121))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) + (-5 *4 (-326 (-171 (-390)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) + (-5 *4 (-326 (-390))) (-5 *1 (-340)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) + (-5 *4 (-326 (-576))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-171 (-390))))) + (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-390)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-576)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-171 (-390))))) + (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-390)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-576)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-171 (-390)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-390))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-576))) (-5 *1 (-340)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) + (-5 *4 (-326 (-706))) (-5 *1 (-340)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) + (-5 *4 (-326 (-711))) (-5 *1 (-340)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) + (-5 *4 (-326 (-713))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-706)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-711)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-713)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-706)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-711)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-713)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-706))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-711))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-713))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-706))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-711))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-713))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-706))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-711))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-713))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1179)) (-5 *1 (-340)))) + ((*1 *1 *1 *1) (-5 *1 (-876)))) (((*1 *2 *2) - (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) - (-5 *1 (-178 *3))))) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1121)) (-5 *1 (-983 *3 *2)) (-4 *3 (-1121))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1288 (-656 *3))) (-4 *4 (-317)) + (-5 *2 (-656 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1264 *4))))) (((*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-783)))) ((*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783))))) -(((*1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) - (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-763))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) - (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) - (-5 *1 (-800))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1290)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1197)) - (-5 *2 (-656 *4)) (-5 *1 (-1135 *4 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) - (-5 *1 (-178 *3))))) -(((*1 *2) - (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) - (-4 *4 (-1121))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1121)) (-5 *2 (-656 *1)) - (-4 *1 (-442 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) - (-4 *3 (-1121)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-656 *1)) (-4 *1 (-968 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) - (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-656 *3)) - (-5 *1 (-969 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -3570 ($ *7)) (-15 -1570 (*7 $)) - (-15 -1581 (*7 $)))))))) + (-12 (-4 *4 (-464)) (-4 *4 (-568)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -2356 *4))) (-5 *1 (-990 *4 *3)) + (-4 *3 (-1264 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-992)) (-5 *1 (-924 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) + (-253 *4 (-419 (-576))))) + (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-112)) + (-5 *1 (-517 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) + (-5 *2 (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1288 *5))))) + (-5 *1 (-999 *5)) (-5 *3 (-701 *5)) (-5 *4 (-1288 *5))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-624 *3)) + (-4 *3 (-13 (-442 *5) (-27) (-1223))) + (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) + (-5 *2 (-2 (|:| -2451 *3) (|:| |coeff| *3))) + (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1121))))) +(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390)))) + ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-390))))) +(((*1 *2 *1) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238))))) +(((*1 *2 *3) + (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) + (-5 *2 (-253 *4 *5)) (-5 *1 (-963 *4 *5))))) (((*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-783)))) @@ -15348,87 +15629,70 @@ (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783))))) (((*1 *1) (-5 *1 (-301)))) -(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) - ((*1 *2 *3) - (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-5 *2 (-656 *1)) (-4 *1 (-1155 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-656 *5))) (-4 *5 (-1279 *4)) - (-4 *4 (-38 (-419 (-576)))) - (-5 *2 (-1 (-1178 *4) (-656 (-1178 *4)))) (-5 *1 (-1281 *4 *5))))) -(((*1 *1) (-5 *1 (-301)))) +(((*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1027))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) + (-14 *4 *2)))) (((*1 *2 *3) - (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) + (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1223) (-1023)))))) (((*1 *2 *3 *4) - (-12 (-4 *4 (-374)) (-5 *2 (-656 (-1178 *4))) (-5 *1 (-295 *4 *5)) - (-5 *3 (-1178 *4)) (-4 *5 (-1279 *4))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1264 (-576)))))) -(((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936))))) + (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 (-576)))) + (-5 *2 (-1288 (-419 (-576)))) (-5 *1 (-1316 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-656 (-1197))) (-4 *5 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-782 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-782 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1593 (-656 *6))) - *7 *6)) - (-4 *6 (-374)) (-4 *7 (-668 *6)) + (-12 (-5 *4 (-783)) (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-4 *3 (-13 (-27) (-1223) (-442 *6) (-10 -8 (-15 -3569 ($ *7))))) + (-4 *7 (-860)) + (-4 *8 + (-13 (-1266 *3 *7) (-374) (-1223) + (-10 -8 (-15 -2774 ($ $)) (-15 -4160 ($ $))))) (-5 *2 - (-2 (|:| |particular| (-3 (-1288 *6) "failed")) - (|:| -1593 (-656 (-1288 *6))))) - (-5 *1 (-825 *6 *7)) (-5 *4 (-1288 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-992)) (-5 *1 (-1313))))) + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) + (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1179)) (-4 *9 (-1004 *8)) + (-14 *10 (-1197))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1239 *2)) + (-4 *2 (-1121)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-861)) + (-5 *1 (-1239 *2))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-374)) (-4 *3 (-1070)) + (-5 *1 (-1181 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-876))) (-5 *2 (-1293)) (-5 *1 (-1159))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) + (-4 *4 (-1070))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1288 (-783))) (-5 *1 (-687 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-933 *3)) (-4 *3 (-317))))) -(((*1 *2 *3) - (-12 (|has| *2 (-6 (-4467 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) - (-4 *2 (-1070)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1264 *2)) - (-4 *4 (-699 *2 *5 *6))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4465)) (-4 *1 (-240 *3)) - (-4 *3 (-1121)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4465)) (-4 *1 (-240 *2)) (-4 *2 (-1121)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)) (-4 *2 (-1121)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1121)) - (-5 *1 (-749 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1121)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) - (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4))))) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-998 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) + (-5 *1 (-760))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-322)) (-5 *1 (-841))))) (((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) + (-12 (-14 *4 (-656 (-1197))) (-14 *5 (-783)) + (-5 *2 + (-656 + (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) + (-253 *4 (-419 (-576)))))) + (-5 *1 (-517 *4 *5)) + (-5 *3 + (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) + (-253 *4 (-419 (-576)))))))) (((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-138)))) ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-157)))) ((*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) @@ -15442,28 +15706,24 @@ (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))))) ((*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-1121))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1121) (-1059 *5))) - (-4 *5 (-901 *4)) (-4 *4 (-1121)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-950 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-924 (-576))) (-5 *4 (-576)) (-5 *2 (-701 *4)) - (-5 *1 (-1049 *5)) (-4 *5 (-1070)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1049 *4)) - (-4 *4 (-1070)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-924 (-576)))) (-5 *4 (-576)) - (-5 *2 (-656 (-701 *4))) (-5 *1 (-1049 *5)) (-4 *5 (-1070)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-656 (-576)))) (-5 *2 (-656 (-701 (-576)))) - (-5 *1 (-1049 *4)) (-4 *4 (-1070))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6))))) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *2 (-656 *6)) + (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-656 *9)) (-5 *3 (-1 (-112) *9)) + (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) + (-4 *8 (-861)) (-5 *1 (-998 *6 *7 *8 *9))))) (((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1105 *3)) (-4 *3 (-133))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-841))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-4 *2 (-1264 *4)) + (-5 *1 (-941 *4 *2))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-940)) + (-5 *2 (-1288 (-656 (-2 (|:| -3104 *4) (|:| -3223 (-1141)))))) + (-5 *1 (-357 *4)) (-4 *4 (-360))))) (((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) @@ -15561,15 +15821,22 @@ ((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-267))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1131)) (-5 *3 (-576))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-656 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-568)) - (-4 *3 (-1070))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) - (-5 *1 (-342))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-568) (-148))) + (-5 *2 (-2 (|:| -4239 *3) (|:| -4249 *3))) (-5 *1 (-1258 *4 *3)) + (-4 *3 (-1264 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-2 (|:| -1828 *4) (|:| -2683 (-576))))) + (-4 *4 (-1264 (-576))) (-5 *2 (-783)) (-5 *1 (-454 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-112)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-112)) + (-5 *1 (-1227 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200))))) (((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-138)))) ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-157)))) ((*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) @@ -15583,164 +15850,184 @@ (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))))) ((*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-1186 *2 *3)) (-4 *3 (-1121))))) -(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *4 (-783)) - (-5 *2 (-701 (-227))) (-5 *1 (-276))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-1070)) - (-5 *1 (-1181 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-576)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) - (-14 *4 (-1197)) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-995))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)) + (-5 *1 (-420 *3 *4 *5)) (-4 *3 (-421 *4 *5)))) + ((*1 *2) + (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) + (-5 *2 (-701 *3))))) +(((*1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-876)))))) +(((*1 *2) + (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1238)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1238)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) (((*1 *1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-1121)))) ((*1 *1 *2) (-12 (-5 *1 (-920 *2)) (-4 *2 (-1121))))) +(((*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-961)) (-5 *3 (-576))))) (((*1 *1 *2) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1238)))) ((*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1197))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1193 *3)) (-4 *3 (-379)) (-4 *1 (-339 *3)) - (-4 *3 (-374))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-419 *6)) - (-5 *1 (-881 *5 *4 *6)) (-4 *4 (-1279 *5)) (-4 *6 (-1264 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1280 *5 *6 *7)) (-4 *5 (-374)) - (-14 *6 (-1197)) (-14 *7 *5) (-5 *2 (-419 (-1261 *6 *5))) - (-5 *1 (-882 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1280 *5 *6 *7)) (-4 *5 (-374)) - (-14 *6 (-1197)) (-14 *7 *5) (-5 *2 (-419 (-1261 *6 *5))) - (-5 *1 (-882 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-977 (-1193 *4))) (-5 *1 (-368 *4)) - (-5 *3 (-1193 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-326 (-390))) (-5 *2 (-326 (-227))) (-5 *1 (-315))))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) + (-5 *7 (-701 (-576))) + (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) + (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-765))))) +(((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) (((*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) - (-5 *2 (-831 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-858)) (-5 *1 (-1311 *3 *2)) (-4 *3 (-1070))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) - (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) - (-4 *3 (-13 (-1223) (-29 *5)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1070)) (-5 *1 (-1260 *3 *2)) (-4 *2 (-1264 *3))))) +(((*1 *2 *3) + (-12 (-4 *1 (-928)) (-5 *2 (-430 (-1193 *1))) (-5 *3 (-1193 *1))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-940)) (-5 *1 (-1122 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2) + (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) + (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) (((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-1121)) (-5 *1 (-624 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1 *4 (-576))) (-4 *4 (-1070)) - (-5 *1 (-1181 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) (((*1 *2 *3) - (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-840) (-1070))) (-5 *2 (-1179)) - (-5 *1 (-838 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-840) (-1070))) - (-5 *2 (-1179)) (-5 *1 (-838 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-834)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-840) (-1070))) - (-5 *2 (-1293)) (-5 *1 (-838 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-834)) (-5 *4 (-326 *6)) (-5 *5 (-112)) - (-4 *6 (-13 (-840) (-1070))) (-5 *2 (-1293)) (-5 *1 (-838 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-840)) (-5 *2 (-1179)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-112)) (-5 *2 (-1179)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *2 (-1293)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *4 (-112)) (-5 *2 (-1293))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1179)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1121)) - (-4 *4 (-1121))))) -(((*1 *2 *1) - (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) - (-4 *3 (-1264 *4)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-299 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1264 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-723 *3 *2 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) - (-12 (-4 *2 (-1264 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1070)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-727 *3 *2 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576))))) -(((*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1238)) - (-4 *3 (-384 *4)) (-4 *5 (-384 *4))))) + (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) + (-4 *4 (-360))))) +(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) + ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290))))) (((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-990 *4 *2)) - (-4 *2 (-1264 *4))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-940)) (-4 *5 (-568)) (-5 *2 (-701 *5)) - (-5 *1 (-975 *5 *3)) (-4 *3 (-668 *5))))) + (|partial| -12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -1419 (-656 *7)))) + (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-837))))) (((*1 *2 *3) - (-12 (-5 *3 (-326 (-227))) (-5 *2 (-419 (-576))) (-5 *1 (-315))))) + (-12 (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *2 (-1193 *4)) + (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-374)) (-4 *6 (-13 (-374) (-860)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-855 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 *4)) - (-5 *1 (-276))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-656 *2))) (-5 *4 (-656 *5)) - (-4 *5 (-38 (-419 (-576)))) (-4 *2 (-1279 *5)) - (-5 *1 (-1281 *5 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-707 *3)) (-4 *3 (-1121)) - (-5 *2 (-656 (-2 (|:| -4440 *3) (|:| -1460 (-783)))))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-711)) (-5 *1 (-315))))) -(((*1 *2 *1) - (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) - (-5 *2 (-656 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) - (-5 *2 (-656 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1178 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 *3)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) - (-4 *4 (-738)))) - ((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-656 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1279 *3)) (-4 *3 (-1070)) (-5 *2 (-1178 *3))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1197)) - (-4 *5 (-13 (-568) (-1059 (-576)) (-148))) - (-5 *2 - (-2 (|:| -1698 (-419 (-971 *5))) (|:| |coeff| (-419 (-971 *5))))) - (-5 *1 (-582 *5)) (-5 *3 (-419 (-971 *5)))))) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3987 *4)))) + (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) + (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-656 *3)) + (-5 *1 (-603 *5 *6 *7 *8 *3)) (-4 *3 (-1130 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) + (-5 *2 + (-656 (-2 (|:| -2490 (-1193 *5)) (|:| -4096 (-656 (-971 *5)))))) + (-5 *1 (-1099 *5 *6)) (-5 *3 (-656 (-971 *5))) + (-14 *6 (-656 (-1197))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-317) (-148))) + (-5 *2 + (-656 (-2 (|:| -2490 (-1193 *4)) (|:| -4096 (-656 (-971 *4)))))) + (-5 *1 (-1099 *4 *5)) (-5 *3 (-656 (-971 *4))) + (-14 *5 (-656 (-1197))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) + (-5 *2 + (-656 (-2 (|:| -2490 (-1193 *5)) (|:| -4096 (-656 (-971 *5)))))) + (-5 *1 (-1099 *5 *6)) (-5 *3 (-656 (-971 *5))) + (-14 *6 (-656 (-1197)))))) +(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1223)))) + ((*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1121))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-656 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-805)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-861)) + (-5 *1 (-461 *3 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1160)))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-429 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-971 (-576)))) (-5 *1 (-449)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1197)) (-5 *4 (-701 (-227))) (-5 *2 (-1125)) + (-5 *1 (-771)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1197)) (-5 *4 (-701 (-576))) (-5 *2 (-1125)) + (-5 *1 (-771))))) +(((*1 *2 *2) + (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) + (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-946)) + (-5 *2 + (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) + (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) + (-5 *1 (-154)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-946)) (-5 *4 (-419 (-576))) + (-5 *2 + (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) + (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) + (-5 *1 (-154)))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) + (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) + (-5 *1 (-154)) (-5 *3 (-656 (-962 (-227)))))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) + (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) + (-5 *1 (-154)) (-5 *3 (-656 (-656 (-962 (-227))))))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *1) (-5 *1 (-609)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-783))) (-5 *3 (-112)) (-5 *1 (-1185 *4 *5)) + (-14 *4 (-940)) (-4 *5 (-1070))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) + (-5 *2 (-1056)) (-5 *1 (-768))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289))))) +(((*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-1238)) (-5 *2 (-783))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1261 *5 *4)) (-5 *1 (-1195 *4 *5 *6)) + (-4 *4 (-1070)) (-14 *5 (-1197)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1261 *5 *4)) (-5 *1 (-1280 *4 *5 *6)) + (-4 *4 (-1070)) (-14 *5 (-1197)) (-14 *6 *4)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121)) + (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1172))))) (((*1 *2 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-315)))) ((*1 *2 *3) @@ -15755,77 +16042,51 @@ (-4 *4 (-1238)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) - (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-998 *5 *6 *7 *8))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1197)) (-5 *3 (-390)) (-5 *1 (-1084))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-2 (|:| -3104 *4) (|:| -2791 (-576))))) + (-4 *4 (-1121)) (-5 *2 (-1 *4)) (-5 *1 (-1038 *4))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4465)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) - (-4 *3 (-1121)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-924 *4)) (-4 *4 (-1121)) (-5 *2 (-112)) - (-5 *1 (-923 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-940)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557))))) + (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6))))) (((*1 *2) (-12 (-5 *2 (-845 (-576))) (-5 *1 (-546)))) ((*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1121))))) +(((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) + (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) + (-5 *2 (-1056)) (-5 *1 (-757))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1242)) - (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) - (-5 *2 (-2 (|:| |num| (-701 *5)) (|:| |den| *5)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-656 *1)) - (-4 *1 (-393 *3 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-747 *3 *4))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) - (-4 *4 (-738)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) - (-4 *1 (-968 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) + (-12 (-5 *3 (-1288 (-656 (-2 (|:| -3104 *4) (|:| -3223 (-1141)))))) + (-4 *4 (-360)) (-5 *2 (-701 *4)) (-5 *1 (-357 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) + (-253 *4 (-419 (-576))))) + (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-112)) + (-5 *1 (-517 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-503)) (-5 *4 (-973)) (-5 *2 (-703 (-545))) + (-5 *1 (-545)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-973)) (-4 *3 (-1121)) (-5 *2 (-703 *1)) + (-4 *1 (-779 *3))))) (((*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) (-4 *2 (-668 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) - (-4 *3 (-13 (-317) (-10 -8 (-15 -3921 ((-430 $) $))))) - (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-701 *3)) - (-4 *3 (-13 (-317) (-10 -8 (-15 -3921 ((-430 $) $))))) - (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1070))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-977 (-1141))) - (-5 *1 (-357 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) (((*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1023))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) @@ -15833,89 +16094,69 @@ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) ((*1 *1) (-5 *1 (-489))) ((*1 *1) (-4 *1 (-1223)))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1197)) (-5 *6 (-112)) - (-4 *7 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) - (-4 *3 (-13 (-1223) (-978) (-29 *7))) - (-5 *2 - (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *7 *3)) (-5 *5 (-855 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238))))) (((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) - (-4 *1 (-1086 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876))))) -(((*1 *2 *2) - (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-1145 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1288 *4)) (-4 *4 (-429 *3)) (-4 *3 (-317)) - (-4 *3 (-568)) (-5 *1 (-43 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-940)) (-4 *4 (-374)) (-5 *2 (-1288 *1)) - (-4 *1 (-339 *4)))) - ((*1 *2) (-12 (-4 *3 (-374)) (-5 *2 (-1288 *1)) (-4 *1 (-339 *3)))) - ((*1 *2) - (-12 (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-1288 *1)) - (-4 *1 (-421 *3 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-317)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) - (-5 *2 (-1288 *6)) (-5 *1 (-425 *3 *4 *5 *6)) - (-4 *6 (-13 (-421 *4 *5) (-1059 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-317)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) - (-5 *2 (-1288 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)) - (-4 *6 (-421 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1288 *1)) (-4 *1 (-429 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1288 (-1288 *4))) (-5 *1 (-540 *4)) - (-4 *4 (-360))))) + (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) + (-5 *2 (-2 (|:| -1958 (-656 *6)) (|:| -3256 (-656 *6))))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-783)) (-5 *3 (-962 *4)) (-4 *1 (-1155 *4)) + (-4 *4 (-1070)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-783)) (-5 *4 (-962 (-227))) (-5 *2 (-1293)) + (-5 *1 (-1290))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) - (-5 *1 (-207))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-38 (-419 (-576)))) - (-4 *2 (-174))))) -(((*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-576)) - (|:| -2761 (-656 (-2 (|:| |irr| *3) (|:| -2567 (-576))))))) - (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-576)) - (|:| -2761 (-656 (-2 (|:| |irr| *3) (|:| -2567 (-576))))))) - (-5 *1 (-1253 *3)) (-4 *3 (-1264 (-576)))))) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-998 *4 *5 *6 *7))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-2 (|:| -1855 *3) (|:| -3891 *3))) + (-5 *1 (-700 *3 *4 *5 *6)) (-4 *6 (-699 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -1855 *3) (|:| -3891 *3))) (-5 *1 (-712 *3)) + (-4 *3 (-317))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) + (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-765))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) + ((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-904 *4 *5)) (-5 *3 (-904 *4 *6)) (-4 *4 (-1121)) - (-4 *5 (-1121)) (-4 *6 (-678 *5)) (-5 *1 (-900 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-503))))) -(((*1 *2 *1) (-12 (-5 *2 (-301)) (-5 *1 (-290))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1231 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *5 (-1086 *2 *3 *4))))) + (-12 (-5 *4 (-1197)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-715 *3)) + (-4 *3 (-626 (-548))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1197)) (-5 *2 (-1 (-227) (-227) (-227))) + (-5 *1 (-715 *3)) (-4 *3 (-626 (-548)))))) +(((*1 *2 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-409))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) + (-5 *1 (-1009 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) + (-5 *1 (-1128 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-1288 *4)) + (-5 *1 (-826 *4 *3)) (-4 *3 (-668 *4))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1056)) + (-5 *1 (-761))))) (((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) - (-4 *4 (-1070))))) + (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-5 *2 (-1193 *3))))) (((*1 *2 *1) (-12 (-5 *2 (-1146 (-576) (-624 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) (-12 (-4 *3 (-1013 *2)) (-4 *4 (-1264 *3)) (-4 *2 (-317)) @@ -15931,51 +16172,34 @@ (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-904 *4 *3)) - (-4 *3 (-1121))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) - (-14 *4 (-656 (-1197))))) - ((*1 *2 *3) - (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1238)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) - (-14 *4 (-656 (-1197))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-861))))) +(((*1 *1) (-5 *1 (-609)))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-1 (-112) *5 *5)) + (-5 *4 (-656 *5)) (-4 *5 (-861)) (-5 *1 (-1208 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *6)) (-5 *5 (-1 (-430 (-1193 *6)) (-1193 *6))) - (-4 *6 (-374)) - (-5 *2 - (-656 - (-2 (|:| |outval| *7) (|:| |outmult| (-576)) - (|:| |outvect| (-656 (-701 *7)))))) - (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-374)) (-4 *4 (-13 (-374) (-860)))))) -(((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *5)) (-5 *4 (-1288 *5)) (-4 *5 (-374)) - (-5 *2 (-112)) (-5 *1 (-679 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4466)))) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4466)))) (-5 *2 (-112)) - (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1123 *3)) (-5 *1 (-924 *3)) (-4 *3 (-379)) - (-4 *3 (-1121))))) -(((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) + (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-636 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *2 (-1130 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1209 (-656 *4))) (-4 *4 (-861)) + (-5 *2 (-656 (-656 *4))) (-5 *1 (-1208 *4))))) +(((*1 *2 *3) (|partial| -12 - (-4 *4 (-13 (-148) (-27) (-1059 (-576)) (-1059 (-419 (-576))))) - (-4 *5 (-1264 *4)) (-5 *2 (-1193 (-419 *5))) (-5 *1 (-627 *4 *5)) - (-5 *3 (-419 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-148) (-27) (-1059 (-576)) (-1059 (-419 (-576))))) - (-5 *2 (-1193 (-419 *6))) (-5 *1 (-627 *5 *6)) (-5 *3 (-419 *6))))) + (-5 *3 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-2 (|:| -1757 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1238)) + (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *6 *2 *7)) (-4 *6 (-1070)) + (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-1178 (-656 (-940)))) (-5 *1 (-898))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-551 *4 *2 *5 *6)) + (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783)))))) (((*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1238)))) ((*1 *1 *2) @@ -16051,7 +16275,7 @@ (-4 *1 (-997 *3 *4 *5 *6)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-1059 *2)) (-4 *2 (-1238)))) ((*1 *1 *2) - (|partial| -2760 + (|partial| -2759 (-12 (-5 *2 (-971 *3)) (-12 (-2663 (-4 *3 (-38 (-419 (-576))))) (-2663 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1197)))) @@ -16068,7 +16292,7 @@ (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))))) ((*1 *1 *2) - (|partial| -2760 + (|partial| -2759 (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-2663 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1197)))) @@ -16080,9 +16304,8 @@ (|partial| -12 (-5 *2 (-971 (-419 (-576)))) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-656 (-1193 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) (((*1 *2 *1) (-12 (-5 *2 (-1146 (-576) (-624 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) @@ -16099,618 +16322,416 @@ (-12 (-4 *3 (-174)) (-4 *2 (-729 *3)) (-5 *1 (-674 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-738) *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) - (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) +(((*1 *2 *3) + (-12 (-4 *4 (-861)) (-5 *2 (-1209 (-656 *4))) (-5 *1 (-1208 *4)) + (-5 *3 (-656 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1121))))) +(((*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-340)))) + ((*1 *1) (-5 *1 (-340)))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1312 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-174)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-831 *3)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-1070)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-977 (-185 (-140)))) (-5 *1 (-343)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-618))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *3 (-656 (-888))) + (-5 *4 (-656 (-940))) (-5 *5 (-656 (-270))) (-5 *1 (-480)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *3 (-656 (-888))) + (-5 *4 (-656 (-940))) (-5 *1 (-480)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-480)))) + ((*1 *1 *1) (-5 *1 (-480)))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-656 (-171 *4))) (-5 *1 (-156 *3 *4)) + (-4 *3 (-1264 (-171 (-576)))) (-4 *4 (-13 (-374) (-860))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4)))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) + (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-761))))) +(((*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-940)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-940)) + (-5 *1 (-540 *4))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) + (-5 *1 (-1093 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) + (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) +(((*1 *1) (-5 *1 (-145)))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-576) (-576))) (-5 *1 (-372 *3)) (-4 *3 (-1121)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-783) (-783))) (-4 *1 (-397 *3)) (-4 *3 (-1121)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-518)) (-5 *3 (-656 (-984))) (-5 *1 (-301))))) +(((*1 *1) (-5 *1 (-131)))) +(((*1 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) + (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) + (-5 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) + (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) + (-5 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-561)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) + (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) + (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) + (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) +(((*1 *1 *1) + (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)) + (-4 *2 (-464)))) + ((*1 *1 *1) + (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1242)) (-4 *3 (-1264 *2)) + (-4 *4 (-1264 (-419 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-464)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861)) (-4 *3 (-464)))) + ((*1 *1 *1) + (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861)) (-4 *2 (-464)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-1184 *3 *2)) + (-4 *2 (-1264 *3))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *2 (-861)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) + (-4 *4 (-861))))) +(((*1 *1 *2) + (-12 (-5 *2 (-940)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1070)) + (-4 *4 (-1238)))) + ((*1 *1 *2) + (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) + (-4 *5 (-243 (-3502 *3) (-783))) + (-14 *6 + (-1 (-112) (-2 (|:| -3223 *2) (|:| -2508 *5)) + (-2 (|:| -3223 *2) (|:| -2508 *5)))) + (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-861)) + (-4 *7 (-968 *4 *5 (-878 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234))))) +(((*1 *2 *3 *4) + (-12 (-4 *7 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-568)) + (-4 *8 (-968 *7 *5 *6)) + (-5 *2 (-2 (|:| -2508 (-783)) (|:| -1715 *3) (|:| |radicand| *3))) + (-5 *1 (-972 *5 *6 *7 *8 *3)) (-5 *4 (-783)) + (-4 *3 + (-13 (-374) + (-10 -8 (-15 -3569 ($ *8)) (-15 -1570 (*8 $)) (-15 -1581 (*8 $)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-112)) + (-5 *1 (-368 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3987 *4)))) + (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-343))))) +(((*1 *2 *3) + (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) + (-5 *2 (-493 *4 *5)) (-5 *1 (-643 *4 *5))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) + (-4 *9 (-861)) (-4 *3 (-1086 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) + (-5 *1 (-1090 *7 *8 *9 *3 *4)) (-4 *4 (-1092 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))))) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3988 *4)))))) - (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *3 (-1070)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4129 *1))) - (-4 *1 (-866 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-834))))) -(((*1 *2 *1) (-12 (-5 *2 (-977 (-185 (-140)))) (-5 *1 (-343)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-618))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 (-576)))) - (-5 *2 (-112)) (-5 *1 (-1316 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-940)) (-4 *3 (-374)) - (-14 *4 (-1014 *2 *3)))) - ((*1 *1 *1) - (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1264 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *1 *1) (|partial| -4 *1 (-734))) - ((*1 *1 *1) (|partial| -4 *1 (-738))) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) + (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) + (-4 *9 (-861)) (-4 *3 (-1086 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) + (-5 *1 (-1166 *7 *8 *9 *3 *4)) (-4 *4 (-1130 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) + (-4 *3 (-1086 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) + (-5 *1 (-1166 *6 *7 *8 *3 *4)) (-4 *4 (-1130 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-13 (-860) (-374))) - (-4 *2 (-1264 *3)))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) - (-4 *2 (-13 (-861) (-21)))))) -(((*1 *1 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568))))) + (-4 *3 (-1086 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3987 *4)))))) + (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-589)))) + ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-589))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) +(((*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-212))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-892 *2)) (-4 *2 (-1238)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-894 *2)) (-4 *2 (-1238)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-897 *2)) (-4 *2 (-1238))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-971 (-171 *4))) (-4 *4 (-174)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-971 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-174)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-971 (-171 *4)))) (-4 *4 (-568)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-419 (-971 (-171 *5)))) (-5 *4 (-940)) - (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) - (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) - (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) - (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-861)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) + (-5 *2 + (-3 (|:| |overq| (-1193 (-419 (-576)))) + (|:| |overan| (-1193 (-48))) (|:| -4196 (-112)))) + (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-783)) (-4 *2 (-568)) (-5 *1 (-990 *2 *4)) + (-4 *4 (-1264 *2))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) + (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) + (-4 *8 (-861)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1419 (-656 *9)))) + (-5 *3 (-656 *9)) (-4 *1 (-1231 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-568)) - (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) - (-5 *1 (-797 *5))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-876))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-835)) (-5 *1 (-834))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) - ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3516 *3) (|:| -3422 (-783)))) (-5 *1 (-599 *3)) - (-4 *3 (-557))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-924 *3))) (-4 *3 (-1121)) (-5 *1 (-923 *3))))) + (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1086 *5 *6 *7)) + (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -1419 (-656 *8)))) + (-5 *3 (-656 *8)) (-4 *1 (-1231 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1288 *5)) (-4 *5 (-13 (-1070) (-651 *4))) + (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-650 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1193 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) + (-4 *4 (-360))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1193 *7)) - (-4 *5 (-1070)) (-4 *7 (-1070)) (-4 *2 (-1264 *5)) - (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1264 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-624 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))) - (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-286 *4 *2))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-374)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6))))) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) +(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-548))) (-5 *1 (-548))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 - (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) - (|:| |expense| (-390)) (|:| |accuracy| (-390)) - (|:| |intermediateResults| (-390)))) - (-5 *1 (-815))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1193 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) - (-4 *7 (-861)) (-4 *8 (-317)) (-4 *9 (-968 *8 *6 *7)) (-4 *6 (-805)) + (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 - (-2 (|:| |upol| (-1193 *8)) (|:| |Lval| (-656 *8)) - (|:| |Lfact| - (-656 (-2 (|:| -1828 (-1193 *8)) (|:| -3422 (-576))))) - (|:| |ctpol| *8))) - (-5 *1 (-754 *6 *7 *8 *9))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) - (-5 *2 (-112)) (-5 *1 (-1008 *3 *4 *5 *6)) - (-4 *6 (-968 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) - (-4 *4 (-13 (-1121) (-34)))))) + (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) + (-5 *1 (-207))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1197)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *2 (-1056)) (-5 *1 (-763))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-940)) (-5 *4 (-888)) (-5 *2 (-1293)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) - (-4 *2 (-1238))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-568)) (-4 *2 (-1070)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3988 *1)))) - (-4 *1 (-1092 *4 *5 *6 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1197)) + (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-194)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1197)) + (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1070)) + (-5 *1 (-331 *4 *5 *2 *6)) (-4 *6 (-968 *2 *4 *5))))) +(((*1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070))))) +(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1121)) (-5 *2 (-112)) (-5 *1 (-900 *3 *4 *5)) + (-4 *3 (-1121)) (-4 *5 (-678 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-904 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-1121))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 *4) (-1023) (-1223))) + (-5 *1 (-612 *4 *2 *3)) + (-4 *3 (-13 (-442 (-171 *4)) (-1023) (-1223)))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-1238)) (-5 *2 (-1293))))) +(((*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-888)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) (((*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3988 *4)))) - (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) - (-4 *3 (-1121))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) - (-5 *1 (-342)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1197)) (-5 *4 (-1113 (-971 (-576)))) (-5 *2 (-340)) - (-5 *1 (-342)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1070)) - (-4 *3 (-1121))))) -(((*1 *2 *1) - (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-112)) - (-5 *1 (-368 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-112)) - (-5 *1 (-540 *4))))) -(((*1 *1) (-4 *1 (-360)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1179)) (-5 *2 (-656 (-703 (-290)))) (-5 *1 (-169))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070))))) -(((*1 *2 *3) - (-12 (-4 *4 (-928)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-430 (-1193 *7))) - (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-928)) (-4 *5 (-1264 *4)) (-5 *2 (-430 (-1193 *5))) - (-5 *1 (-926 *4 *5)) (-5 *3 (-1193 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-464)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1193 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *5 (-928)) (-5 *1 (-469 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-928))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1223) (-442 (-171 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)))) - (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) - (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-1227 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4)))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) -(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-834))))) + (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3987 *4)))) + (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) + (-4 *4 (-1070))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1244)))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) + (-5 *2 (-1056)) (-5 *1 (-765))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-115))))) +(((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) + ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1201))))) (((*1 *2 *3) - (-12 (-4 *4 (-360)) - (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -2812 *3)))) - (-5 *1 (-218 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *1) (-5 *1 (-301)))) -(((*1 *1 *2) - (-12 + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-328)) (-5 *3 (-227))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) + (-5 *3 (-656 (-576)))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) + (-5 *2 (-1056)) (-5 *1 (-767)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-400)) + (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-767))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-783)) (-4 *5 (-360)) (-4 *6 (-1264 *5)) (-5 *2 - (-2 (|:| |mval| (-701 *3)) (|:| |invmval| (-701 *3)) - (|:| |genIdeal| (-516 *3 *4 *5 *6)))) - (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5))))) -(((*1 *2 *3) - (-12 + (-656 + (-2 (|:| -2675 (-701 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-701 *6))))) + (-5 *1 (-510 *5 *6 *7)) (-5 *3 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -2951 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-194))))) -(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-432 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1223) (-442 *3))) - (-14 *4 (-1197)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-4 *2 (-13 (-27) (-1223) (-442 *3) (-10 -8 (-15 -3570 ($ *4))))) - (-4 *4 (-860)) - (-4 *5 - (-13 (-1266 *2 *4) (-374) (-1223) - (-10 -8 (-15 -2775 ($ $)) (-15 -1491 ($ $))))) - (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1004 *5)) - (-14 *7 (-1197))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) - (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) - (-5 *5 (-1115 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1154 (-227))) - (-5 *1 (-709)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-227))) - (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-709)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1154 (-227))) (-5 *3 (-1 (-962 (-227)) (-227) (-227))) - (-5 *4 (-1115 (-227))) (-5 *5 (-656 (-270))) (-5 *1 (-709))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1298))))) -(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1061))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1279 *4)) (-5 *1 (-1281 *4 *2)) - (-4 *4 (-38 (-419 (-576))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1178 (-992))) (-5 *1 (-992))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1288 *5)) (-5 *3 (-783)) (-5 *4 (-1141)) (-4 *5 (-360)) - (-5 *1 (-540 *5))))) + (-2 (|:| -2675 (-701 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-701 *6)))) + (-4 *7 (-1264 *6))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-783)) (-5 *3 (-962 *5)) (-4 *5 (-1070)) + (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1185 *4 *5)) + (-14 *4 (-940)) (-4 *5 (-1070)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-783))) (-5 *3 (-962 *5)) (-4 *5 (-1070)) + (-5 *1 (-1185 *4 *5)) (-14 *4 (-940))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-805)) (-4 *2 (-968 *4 *5 *6)) (-5 *1 (-461 *4 *5 *6 *2)) - (-4 *4 (-464)) (-4 *6 (-861))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) + (-2 (|:| -3232 (-701 (-419 (-971 *4)))) + (|:| |vec| (-656 (-419 (-971 *4)))) (|:| -3733 (-783)) + (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) + (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) + (-4 *6 (-805)) (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) - (|:| |wcond| (-656 (-971 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) - (|:| -1593 (-656 (-1288 (-419 (-971 *4)))))))))) + (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) + (|:| -2675 (-656 (-1288 (-419 (-971 *4))))))) (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-971 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) -(((*1 *2 *1) - (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) - (-5 *2 - (-2 (|:| -3099 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) - (-5 *2 - (-2 (|:| |poly| *6) (|:| -3014 (-419 *6)) - (|:| |special| (-419 *6)))) - (-5 *1 (-739 *5 *6)) (-5 *3 (-419 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-913 *3 *4)) - (-4 *3 (-1264 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-783)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| -4240 *3) (|:| -4250 *3))) (-5 *1 (-913 *3 *5)) - (-4 *3 (-1264 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) - (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) - (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) - (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1166 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) - (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1166 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1962)))) - (-5 *2 (-1056)) (-5 *1 (-758))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-376 *2)) (-4 *2 (-1121)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-1219))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1197)) - (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2917 "void"))) (-5 *1 (-1200))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-1288 *5))) (-5 *4 (-576)) (-5 *2 (-1288 *5)) - (-5 *1 (-1050 *5)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1070))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1179) (-786))) (-5 *1 (-115))))) -(((*1 *2 *3 *3 *4 *3) + (|partial| -12 (-5 *3 (-1288 *5)) (-4 *5 (-13 (-1070) (-651 *4))) + (-4 *4 (-568)) (-5 *2 (-1288 *4)) (-5 *1 (-650 *4 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-4 *1 (-922 *3))))) +(((*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-759))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-304 (-419 (-971 *5)))) (-5 *4 (-1197)) - (-4 *5 (-13 (-317) (-148))) - (-5 *2 (-1186 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) - (-5 *1 (-1150 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) - (-4 *5 (-13 (-317) (-148))) - (-5 *2 (-1186 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) - (-5 *1 (-1150 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1070)) - (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-940)) (-4 *5 (-1070)) - (-4 *2 (-13 (-416) (-1059 *5) (-374) (-1223) (-294))) - (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1264 *5))))) -(((*1 *2 *3) - (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) - (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) - (-4 *3 (-1264 *4)) - (-4 *5 (-13 (-416) (-1059 *4) (-374) (-1223) (-294)))))) + (-5 *1 (-763))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-1121))))) (((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1113 (-855 *3))) (-4 *3 (-13 (-1223) (-978) (-29 *5))) - (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *2 - (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1113 (-855 *3))) (-5 *5 (-1179)) - (-4 *3 (-13 (-1223) (-978) (-29 *6))) - (-4 *6 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *2 - (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1113 (-855 (-326 *5)))) - (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *2 - (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-419 (-971 *6))) (-5 *4 (-1113 (-855 (-326 *6)))) - (-5 *5 (-1179)) - (-4 *6 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *2 - (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *6)))) +(((*1 *2 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) + (-4 *4 (-1070))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-656 (-227))) (-5 *1 (-206))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-831 *4)) (-4 *4 (-861)) (-5 *2 (-112)) + (-5 *1 (-684 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1197)) + (-5 *2 (-576)) (-5 *1 (-1135 *4 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1141)) (-5 *2 (-112)) (-5 *1 (-833))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-656 (-1288 *4))) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) + (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) + (-5 *2 (-656 (-1288 *3)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *2 (-112)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1231 *5 *6 *7 *3)) + (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-112))))) +(((*1 *1 *1) (-5 *1 (-1084)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-656 *7) *7 (-1193 *7))) (-5 *5 (-1 (-430 *7) *7)) + (-4 *7 (-1264 *6)) (-4 *6 (-13 (-374) (-148) (-1059 (-419 (-576))))) + (-5 *2 (-656 (-2 (|:| |frac| (-419 *7)) (|:| -4026 *3)))) + (-5 *1 (-821 *6 *7 *3 *8)) (-4 *3 (-668 *7)) + (-4 *8 (-668 (-419 *7))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1113 (-855 (-419 (-971 *5))))) (-5 *3 (-419 (-971 *5))) - (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *2 - (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1113 (-855 (-419 (-971 *6))))) (-5 *5 (-1179)) - (-5 *3 (-419 (-971 *6))) - (-4 *6 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) + (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) + (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 - (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) - (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *2 (-3 *3 (-656 *3))) (-5 *1 (-440 *5 *3)) - (-4 *3 (-13 (-1223) (-978) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-486 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) - (-5 *5 (-390)) (-5 *6 (-1084)) (-5 *2 (-1056)) (-5 *1 (-577)))) - ((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1056)) (-5 *1 (-577)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) - (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) - (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) - (-5 *2 (-1056)) (-5 *1 (-577)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) - (-5 *2 (-1056)) (-5 *1 (-577)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) - (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) - (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) - (-5 *5 (-390)) (-5 *6 (-1084)) (-5 *2 (-1056)) (-5 *1 (-577)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) - (-5 *5 (-1179)) (-5 *2 (-1056)) (-5 *1 (-577)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) - (-5 *5 (-1197)) (-5 *2 (-1056)) (-5 *1 (-577)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) (-4 *5 (-1264 *4)) - (-5 *2 (-598 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-148)) - (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *2 (-3 (-326 *5) (-656 (-326 *5)))) (-5 *1 (-601 *5)))) - ((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-752 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-861)) - (-4 *3 (-38 (-419 (-576)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1197)) (-5 *1 (-971 *3)) (-4 *3 (-38 (-419 (-576)))) - (-4 *3 (-1070)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-4 *2 (-861)) - (-5 *1 (-1147 *3 *2 *4)) (-4 *4 (-968 *3 (-543 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) - (-5 *1 (-1181 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1188 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1194 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1195 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *1 (-1232 *3)) (-4 *3 (-38 (-419 (-576)))) - (-4 *3 (-1070)))) - ((*1 *1 *1 *2) - (-2760 - (-12 (-5 *2 (-1197)) (-4 *1 (-1248 *3)) (-4 *3 (-1070)) - (-12 (-4 *3 (-29 (-576))) (-4 *3 (-978)) (-4 *3 (-1223)) - (-4 *3 (-38 (-419 (-576)))))) - (-12 (-5 *2 (-1197)) (-4 *1 (-1248 *3)) (-4 *3 (-1070)) - (-12 (|has| *3 (-15 -1969 ((-656 *2) *3))) - (|has| *3 (-15 -1491 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1252 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3))) - ((*1 *1 *1) - (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) - ((*1 *1 *1 *2) - (-2760 - (-12 (-5 *2 (-1197)) (-4 *1 (-1269 *3)) (-4 *3 (-1070)) - (-12 (-4 *3 (-29 (-576))) (-4 *3 (-978)) (-4 *3 (-1223)) - (-4 *3 (-38 (-419 (-576)))))) - (-12 (-5 *2 (-1197)) (-4 *1 (-1269 *3)) (-4 *3 (-1070)) - (-12 (|has| *3 (-15 -1969 ((-656 *2) *3))) - (|has| *3 (-15 -1491 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1273 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-2760 - (-12 (-5 *2 (-1197)) (-4 *1 (-1279 *3)) (-4 *3 (-1070)) - (-12 (-4 *3 (-29 (-576))) (-4 *3 (-978)) (-4 *3 (-1223)) - (-4 *3 (-38 (-419 (-576)))))) - (-12 (-5 *2 (-1197)) (-4 *1 (-1279 *3)) (-4 *3 (-1070)) - (-12 (|has| *3 (-15 -1969 ((-656 *2) *3))) - (|has| *3 (-15 -1491 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1280 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-876))))) -(((*1 *1) (-5 *1 (-158)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-841))))) -(((*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-771))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1288 *4)) (-5 *3 (-701 *4)) (-4 *4 (-374)) - (-5 *1 (-679 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-374)) - (-4 *5 (-13 (-384 *4) (-10 -7 (-6 -4466)))) - (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4466)))) - (-5 *1 (-680 *4 *5 *2 *3)) (-4 *3 (-699 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-656 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-374)) - (-5 *1 (-826 *2 *3)) (-4 *3 (-668 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-907 *6))) - (-5 *5 (-1 (-904 *6 *8) *8 (-907 *6) (-904 *6 *8))) (-4 *6 (-1121)) - (-4 *8 (-13 (-1070) (-626 (-907 *6)) (-1059 *7))) - (-5 *2 (-904 *6 *8)) (-4 *7 (-1070)) (-5 *1 (-960 *6 *7 *8))))) + (-656 (-2 (|:| |frac| (-419 *6)) (|:| -4026 (-666 *6 (-419 *6)))))) + (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6)))))) (((*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1121)) (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5)) (-4 *4 (-1121)))) @@ -16722,141 +16743,162 @@ (-12 (-4 *1 (-1305 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1070)))) ((*1 *2 *1) (-12 (-4 *2 (-1070)) (-5 *1 (-1311 *2 *3)) (-4 *3 (-858))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290))))) -(((*1 *2 *1) +(((*1 *2 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-880 *4 *5 *6 *7)) + (-4 *4 (-1070)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 *3)) + (-14 *7 *3))) + ((*1 *2 *3) + (-12 (-5 *3 (-783)) (-4 *4 (-1070)) (-4 *5 (-861)) (-4 *6 (-805)) + (-14 *8 (-656 *5)) (-5 *2 (-1293)) + (-5 *1 (-1300 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-968 *4 *6 *5)) + (-14 *9 (-656 *3)) (-14 *10 *3)))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) + (-4 *4 (-1264 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-932 *4 *5)) + (-4 *5 (-1264 (-419 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-337 *3)) (-4 *3 (-1238)))) + ((*1 *2 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) + (-14 *4 (-576))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-374)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) + (-4 *1 (-346 *4 *3 *5 *2)) (-4 *2 (-353 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-576)) (-4 *2 (-374)) (-4 *4 (-1264 *2)) + (-4 *5 (-1264 (-419 *4))) (-4 *1 (-346 *2 *4 *5 *6)) + (-4 *6 (-353 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-374)) (-4 *3 (-1264 *2)) (-4 *4 (-1264 (-419 *3))) + (-4 *1 (-346 *2 *3 *4 *5)) (-4 *5 (-353 *2 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) - (-5 *2 (-1288 *6)) (-5 *1 (-347 *3 *4 *5 *6)) - (-4 *6 (-353 *3 *4 *5))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) - (-5 *2 (-1056)) (-5 *1 (-761)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) - (-5 *8 (-400)) (-5 *2 (-1056)) (-5 *1 (-761))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) - (-4 *2 (-1264 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1068))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-374) (-148) (-1059 (-576)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) - (|:| -2741 *6))) - (-5 *1 (-1036 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-769))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) - (-4 *1 (-1092 *4 *5 *6 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1059 *4)) (-4 *3 (-317)) - (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-4 *6 (-421 *4 *5)) - (-14 *7 (-1288 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)))) + (-4 *1 (-346 *3 *4 *5 *2)) (-4 *2 (-353 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 *6)) (-4 *6 (-421 *4 *5)) (-4 *4 (-1013 *3)) - (-4 *5 (-1264 *4)) (-4 *3 (-317)) (-5 *1 (-426 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-600 *4)) - (-4 *4 (-360))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) + (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-4 *3 (-374)) + (-4 *1 (-346 *3 *4 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-105))))) +(((*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1216))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-5 *2 (-656 (-2 (|:| -1828 *3) (|:| -3634 *4)))) - (-5 *1 (-708 *3)) (-4 *3 (-1264 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) + (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1264 *5)) + (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2675 (-656 *4)))) + (-5 *1 (-822 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4)))))) -(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1061))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-656 (-419 *7))) - (-4 *7 (-1264 *6)) (-5 *3 (-419 *7)) (-4 *6 (-374)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-586 *6 *7))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-962 (-227))) (-5 *4 (-888)) (-5 *5 (-940)) - (-5 *2 (-1293)) (-5 *1 (-480)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-962 (-227))) (-5 *2 (-1293)) (-5 *1 (-480)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-656 (-962 (-227)))) (-5 *4 (-888)) (-5 *5 (-940)) - (-5 *2 (-1293)) (-5 *1 (-480))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *2 (-1086 *4 *5 *6)) (-5 *1 (-788 *4 *5 *6 *2 *3)) - (-4 *3 (-1092 *4 *5 *6 *2))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-1197))) (-4 *4 (-1121)) - (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) - (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4))))))) + (-12 (-5 *3 (-665 (-419 *6))) (-4 *6 (-1264 *5)) + (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-5 *2 (-2 (|:| -2675 (-656 (-419 *6))) (|:| -3232 (-701 *5)))) + (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1264 *5)) + (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2675 (-656 *4)))) + (-5 *1 (-822 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 *6 (-419 *6))) (-4 *6 (-1264 *5)) + (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-5 *2 (-2 (|:| -2675 (-656 (-419 *6))) (|:| -3232 (-701 *5)))) + (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-1221))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1106))))) +(((*1 *2 *2) (-12 (-5 *2 (-985 *3)) (-4 *3 (-1121)) (-5 *1 (-986 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-148)) (-4 *2 (-317)) (-4 *2 (-464)) (-4 *3 (-861)) + (-4 *4 (-805)) (-5 *1 (-1008 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-576))) (-5 *1 (-1140)))) + ((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) + (-5 *2 (-1056)) (-5 *1 (-765))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) + (-5 *2 (-2 (|:| -1715 (-419 *5)) (|:| |poly| *3))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1264 (-419 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) + (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-1301 *4 *5 *6 *7))) + (-5 *1 (-1301 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-656 *9)) (-5 *4 (-1 (-112) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-568)) + (-4 *7 (-805)) (-4 *8 (-861)) (-5 *2 (-656 (-1301 *6 *7 *8 *9))) + (-5 *1 (-1301 *6 *7 *8 *9))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) + (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1059 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-1202)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-518)) (-5 *3 (-656 (-1202))) (-5 *1 (-1202))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4465)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) + (-12 (|has| *1 (-6 -4464)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-783)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4465)) (-4 *1 (-501 *4)) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4464)) (-4 *1 (-501 *4)) (-4 *4 (-1238)) (-5 *2 (-783))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) - (-5 *2 (-1288 (-656 (-2 (|:| -3106 *4) (|:| -3224 (-1141)))))) - (-5 *1 (-357 *4))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-1070)) - (-5 *1 (-1181 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) - (-14 *4 (-1197)) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-374))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 (-971 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) - (-14 *4 (-656 (-1197))))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-462 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *1 (-462 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *1 (-462 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 (-792 *3 (-878 *4)))) (-4 *3 (-464)) - (-14 *4 (-656 (-1197))) (-5 *1 (-640 *3 *4))))) -(((*1 *1) (-5 *1 (-1290)))) -(((*1 *2 *1) - (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) - (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1243)))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) + (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5))))) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1023)))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) - (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-783)))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1264 (-419 *5)))))) + (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1215 *4 *5)) + (-4 *4 (-1121)) (-4 *5 (-1121))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) + (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1197)) (-4 *4 (-1070)) (-4 *4 (-1121)) + (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -2508 (-576)))) + (-4 *1 (-442 *4)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1070)) (-4 *4 (-1121)) + (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -2508 (-576)))) + (-4 *1 (-442 *4)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1133)) (-4 *3 (-1121)) + (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -2508 (-576)))) + (-4 *1 (-442 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-907 *3)) (|:| -2508 (-783)))) + (-5 *1 (-907 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) + (-4 *5 (-861)) (-5 *2 (-2 (|:| |var| *5) (|:| -2508 (-783)))))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) + (-4 *7 (-968 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -2508 (-576)))) + (-5 *1 (-969 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-374) + (-10 -8 (-15 -3569 ($ *7)) (-15 -1570 (*7 $)) + (-15 -1581 (*7 $)))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) + (-5 *2 (-656 (-783))) (-5 *1 (-790 *3 *4 *5 *6 *7)) + (-4 *3 (-1264 *6)) (-4 *7 (-968 *6 *4 *5))))) (((*1 *2 *1) (-12 (-4 *1 (-1121)) (-5 *2 (-1141))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1070)) (-4 *5 (-1264 *4)) (-5 *2 (-1 *6 (-656 *6))) + (-5 *1 (-1282 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-1279 *4))))) (((*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-1059 (-576))) (-4 *4 (-568)) (-5 *1 (-32 *4 *2)) (-4 *2 (-442 *4)))) @@ -16928,258 +16970,237 @@ (-5 *1 (-1183 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *1) - (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) - (-4 *3 (-1264 *2))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-624 *4)) (-5 *6 (-1197)) - (-4 *4 (-13 (-442 *7) (-27) (-1223))) - (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1593 (-656 *4)))) - (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1121))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -1698 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1264 *7)) - (-5 *3 (-419 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-586 *7 *8))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-962 *5)) (-4 *5 (-1070)) (-5 *2 (-783)) - (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1185 *4 *5)) - (-14 *4 (-940)) (-4 *5 (-1070)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-962 *5)) (-4 *5 (-1070)) - (-5 *1 (-1185 *4 *5)) (-14 *4 (-940))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) - (-5 *2 (-656 (-656 (-656 (-962 *3)))))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-656 (-419 (-971 *6)))) - (-5 *3 (-419 (-971 *6))) - (-4 *6 (-13 (-568) (-1059 (-576)) (-148))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-582 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) (((*1 *2 *3) - (-12 (-5 *2 (-624 *4)) (-5 *1 (-623 *3 *4)) (-4 *3 (-1121)) - (-4 *4 (-1121))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) - (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1246)))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-386 *4 *2)) - (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4466))))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-861)) (-5 *1 (-1208 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-173)))))) -(((*1 *1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) + (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) + (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-968 *6 *4 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *1) (-12 (-4 *1 (-437 *3)) (-4 *3 (-1121)) (-5 *2 (-783))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1121))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-4 *5 (-374)) - (-4 *5 (-1070)) (-5 *2 (-112)) (-5 *1 (-1050 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-4 *4 (-1070)) - (-5 *2 (-112)) (-5 *1 (-1050 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1081)) (-4 *3 (-1223)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-340))))) + (-12 (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) + (-5 *1 (-754 *5 *4 *6 *3)) (-4 *3 (-968 *6 *5 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-449))))) +(((*1 *1) + (-12 (-4 *1 (-416)) (-2663 (|has| *1 (-6 -4455))) + (-2663 (|has| *1 (-6 -4447))))) + ((*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1121)) (-4 *2 (-861)))) + ((*1 *1) (-4 *1 (-856))) ((*1 *1 *1 *1) (-4 *1 (-864))) + ((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |fn| (-326 (-227))) (|:| -3539 (-656 (-227))) + (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) + (|:| |ub| (-656 (-855 (-227)))))) + (-5 *1 (-276))))) (((*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) (-14 *4 *2)))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-983 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1121)) (-4 *5 (-1121)) - (-5 *2 (-1 *5)) (-5 *1 (-695 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1179))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) - ((*1 *2 *1) - (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-804)) - (-4 *5 (-861)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-1201)) (-5 *1 (-1200))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-374)) (-4 *3 (-1070)) + (-5 *1 (-1181 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) - (-4 *3 (-1121))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1248 *3)) - (-5 *2 (-419 (-576)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1059 (-576))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) - (-5 *2 (-701 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238))))) -(((*1 *1) (-5 *1 (-227))) ((*1 *1) (-5 *1 (-390)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) - (-5 *2 (-831 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-858)) (-5 *1 (-1311 *3 *2)) (-4 *3 (-1070))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-1238))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4465)) (-4 *1 (-152 *2)) (-4 *2 (-1238)) - (-4 *2 (-1121))))) -(((*1 *2 *1) - (-12 (-5 *2 (-173)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) - (-4 *4 (-1070))))) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-317)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-459 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) + (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-861)) + (-5 *1 (-459 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) + (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-861)) + (-5 *1 (-459 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-576))) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-568)) (-4 *8 (-968 *7 *5 *6)) + (-5 *2 (-2 (|:| -2508 (-783)) (|:| -1715 *9) (|:| |radicand| *9))) + (-5 *1 (-972 *5 *6 *7 *8 *9)) (-5 *4 (-783)) + (-4 *9 + (-13 (-374) + (-10 -8 (-15 -3569 ($ *8)) (-15 -1570 (*8 $)) (-15 -1581 (*8 $)))))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-419 (-971 *4))) (-5 *3 (-1197)) + (-4 *4 (-13 (-568) (-1059 (-576)) (-148))) (-5 *1 (-582 *4))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *2 (-783)) (-5 *1 (-602))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861))))) +(((*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-340))))) +(((*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-1212 *2)) (-4 *2 (-374))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) + (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) + (-5 *1 (-1301 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) + (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1301 *5 *6 *7 *8))))) (((*1 *2 *2) - (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) - (-5 *1 (-178 *3))))) -(((*1 *2) - (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) - (-4 *4 (-1121))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-695 *4 *3)) (-4 *4 (-1121)) - (-4 *3 (-1121))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289))))) + (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1223) (-442 (-171 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1197)) + (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1223) (-978)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-609))) (-5 *1 (-609))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-448))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-962 *5)) (-5 *3 (-783)) (-4 *5 (-1070)) + (-5 *1 (-1185 *4 *5)) (-14 *4 (-940))))) (((*1 *2 *2) - (-12 (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) - (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448))))) + (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1223) (-442 (-171 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)))) + (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1197)) + (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-5 *1 (-1227 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4)))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1223)))))) +(((*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-992))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-656 (-1261 *5 *4))) - (-5 *1 (-1135 *4 *5)) (-5 *3 (-1261 *5 *4))))) + (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) + (-5 *3 (-656 (-576))))) + ((*1 *2 *3) + (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) + (-5 *3 (-656 (-576)))))) +(((*1 *1) (-5 *1 (-449)))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027)))) + ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-701 *11)) (-5 *4 (-656 (-419 (-971 *8)))) + (-5 *5 (-783)) (-5 *6 (-1179)) (-4 *8 (-13 (-317) (-148))) + (-4 *11 (-968 *8 *10 *9)) (-4 *9 (-13 (-861) (-626 (-1197)))) + (-4 *10 (-805)) + (-5 *2 + (-2 + (|:| |rgl| + (-656 + (-2 (|:| |eqzro| (-656 *11)) (|:| |neqzro| (-656 *11)) + (|:| |wcond| (-656 (-971 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1288 (-419 (-971 *8)))) + (|:| -2675 (-656 (-1288 (-419 (-971 *8)))))))))) + (|:| |rgsz| (-576)))) + (-5 *1 (-943 *8 *9 *10 *11)) (-5 *7 (-576))))) +(((*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-340))))) +(((*1 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) + (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) + (-5 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) + (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) + (-5 *1 (-1129 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-536))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-656 (-1193 *13))) (-5 *3 (-1193 *13)) + (-5 *4 (-656 *12)) (-5 *5 (-656 *10)) (-5 *6 (-656 *13)) + (-5 *7 (-656 (-656 (-2 (|:| -4080 (-783)) (|:| |pcoef| *13))))) + (-5 *8 (-656 (-783))) (-5 *9 (-1288 (-656 (-1193 *10)))) + (-4 *12 (-861)) (-4 *10 (-317)) (-4 *13 (-968 *10 *11 *12)) + (-4 *11 (-805)) (-5 *1 (-719 *11 *12 *10 *13))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) + (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) + (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-759))))) (((*1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-876)))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-783) *2)) (-5 *4 (-783)) (-4 *2 (-1121)) - (-5 *1 (-690 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-783) *3)) (-4 *3 (-1121)) (-5 *1 (-694 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1070)))) - ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1070))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-924 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-317)) (-4 *6 (-384 *5)) (-4 *4 (-384 *5)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1593 (-656 *4)))) - (-5 *1 (-1145 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-767))))) -(((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-1121)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-760))))) + (-2 (|:| |ir| (-598 (-419 *6))) (|:| |specpart| (-419 *6)) + (|:| |polypart| *6))) + (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-962 *4)) (-4 *4 (-1070)) (-5 *1 (-1185 *3 *4)) + (-14 *3 (-940))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) + (-4 *2 (-1279 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1264 *3)) + (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1279 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) + (-4 *2 (-1279 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-13 (-568) (-148))) + (-5 *1 (-1174 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1193 *6)) (-4 *6 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-1193 *7)) (-5 *1 (-331 *4 *5 *6 *7)) - (-4 *7 (-968 *6 *4 *5))))) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) + ((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1121)) (-4 *5 (-1121)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5))))) (((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) - (-4 *3 (-699 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) - (-5 *2 (-783))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) + (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6))))) (((*1 *1) (-5 *1 (-340)))) -(((*1 *1) (-5 *1 (-131)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-888)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-518)) (-5 *3 (-1125)) (-5 *1 (-301))))) +(((*1 *2 *1) + (-12 (-4 *1 (-384 *3)) (-4 *3 (-1238)) (-4 *3 (-861)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-384 *4)) (-4 *4 (-1238)) + (-5 *2 (-112))))) (((*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-374)) (-14 *5 (-1014 *3 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) - (-5 *3 (-656 (-576)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-701 (-419 (-971 (-576))))) - (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1052)) - (-5 *3 (-326 (-576)))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1133)) (-4 *3 (-1121)) (-5 *2 (-656 *1)) - (-4 *1 (-442 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) - (-4 *3 (-1121)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-656 *1)) (-4 *1 (-968 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) - (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-656 *3)) - (-5 *1 (-969 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -3570 ($ *7)) (-15 -1570 (*7 $)) - (-15 -1581 (*7 $)))))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1238)) (-5 *1 (-184 *3 *2)) - (-4 *2 (-686 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-968 *5 *6 *7)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-461 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-317))))) +(((*1 *2) + (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) + (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-783))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-656 (-2 (|:| -4239 (-419 (-576))) (|:| -4249 (-419 (-576)))))) + (-5 *2 (-656 (-227))) (-5 *1 (-315))))) (((*1 *2 *1 *2 *3) (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1179)) (-5 *1 (-1289)))) ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1289)))) @@ -17188,103 +17209,48 @@ (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1179)) (-5 *1 (-1290)))) ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1290)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1290))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-624 (-48))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1193 (-48))) (-5 *3 (-656 (-624 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1193 (-48))) (-5 *3 (-624 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) +(((*1 *2 *1) + (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) + (|has| *2 (-6 (-4466 "*"))) (-4 *2 (-1070)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1264 (-171 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-940)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) - ((*1 *2 *1) - (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1013 *3)) (-5 *1 (-425 *3 *2 *4 *5)) - (-4 *3 (-317)) (-4 *5 (-13 (-421 *2 *4) (-1059 *2))))) + (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) + (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1013 *3)) - (-5 *1 (-426 *3 *2 *4 *5 *6)) (-4 *3 (-317)) (-4 *5 (-421 *2 *4)) - (-14 *6 (-1288 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-940)) (-4 *5 (-1070)) - (-4 *2 (-13 (-416) (-1059 *5) (-374) (-1223) (-294))) - (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1264 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-507)))) (-5 *1 (-507)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-624 (-507))) (-5 *1 (-507)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1193 (-507))) (-5 *3 (-656 (-624 (-507)))) - (-5 *1 (-507)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1193 (-507))) (-5 *3 (-624 (-507))) (-5 *1 (-507)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1288 *4)) (-5 *3 (-940)) (-4 *4 (-360)) - (-5 *1 (-540 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-736 *4 *2)) (-4 *2 (-1264 *4)) - (-5 *1 (-787 *4 *2 *5 *3)) (-4 *3 (-1264 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) - ((*1 *1 *1) (-4 *1 (-1081)))) -(((*1 *2 *3) - (-12 (-4 *4 (-1238)) (-5 *2 (-783)) (-5 *1 (-184 *4 *3)) - (-4 *3 (-686 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-576)) (-5 *4 (-430 *2)) (-4 *2 (-968 *7 *5 *6)) - (-5 *1 (-754 *5 *6 *7 *2)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-317))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-576))) (-4 *3 (-1070)) (-5 *1 (-607 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1248 *3)) (-4 *3 (-1070)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1279 *3)) (-4 *3 (-1070))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5))))) -(((*1 *1 *2) + (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4466 "*"))) (-4 *2 (-1070))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-518)) (-5 *2 (-703 (-786))) (-5 *1 (-115)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1179)) (-5 *2 (-786)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1125)) (-5 *1 (-984))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *2) (-12 (-5 *2 - (-656 - (-2 - (|:| -4301 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1288 (-326 (-227)))) - (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) - (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -4440 - (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) - (|:| |expense| (-390)) (|:| |accuracy| (-390)) - (|:| |intermediateResults| (-390))))))) - (-5 *1 (-815))))) -(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207))))) -(((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) - (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6))))) + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-576)))) + (-4 *4 (-13 (-1264 *3) (-568) (-10 -8 (-15 -3497 ($ $ $))))) + (-4 *3 (-568)) (-5 *1 (-1267 *3 *4))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-764))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-771))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) + (-5 *1 (-768))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) (((*1 *1 *1) (-4 *1 (-557)))) -(((*1 *1 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) - ((*1 *1 *1) - (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-861)) - (-4 *3 (-13 (-174) (-729 (-419 (-576))))) (-14 *4 (-940)))) - ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) - (-4 *5 (-1264 *4)) (-5 *2 (-656 (-419 *5))) (-5 *1 (-1037 *4 *5)) - (-5 *3 (-419 *5))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-656 *2) *2 *2 *2)) (-4 *2 (-1121)) + (-5 *1 (-103 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1121)) (-5 *1 (-103 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1197)) + (-4 *5 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) + (-5 *2 (-598 *3)) (-5 *1 (-569 *5 *3)) + (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-565))))) (((*1 *2 *3 *4 *5) (-12 (-5 *5 (-1115 *3)) (-4 *3 (-968 *7 *6 *4)) (-4 *6 (-805)) (-4 *4 (-861)) (-4 *7 (-568)) @@ -17319,35 +17285,64 @@ (-12 (-5 *4 (-1113 (-419 (-971 *5)))) (-5 *3 (-419 (-971 *5))) (-4 *5 (-13 (-568) (-1059 (-576)))) (-5 *2 (-3 *3 (-326 *5))) (-5 *1 (-1190 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1273 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1197)) - (-14 *5 *3) (-5 *1 (-329 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1061)) (-5 *3 (-390))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-568)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-449))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-374)) (-4 *3 (-1070)) - (-5 *1 (-1181 *3))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-1301 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) - (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1301 *5 *6 *7 *8))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1239 *3)) (-4 *3 (-861)) + (-4 *3 (-1121))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) + (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-656 + (-2 (|:| -3733 (-783)) + (|:| |eqns| + (-656 + (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) + (|:| |cols| (-656 (-576)))))) + (|:| |fgb| (-656 *7))))) + (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) + (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-783)) + (-5 *1 (-943 *4 *5 *6 *7))))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-799)) (-5 *2 (-1056)) + (-5 *3 + (-2 (|:| |fn| (-326 (-227))) + (|:| -3417 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-799)) (-5 *2 (-1056)) + (-5 *3 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) + (|:| -3417 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227))))))) +(((*1 *2 *1) + (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) + (-4 *5 (-243 (-3502 *3) (-783))) + (-14 *6 + (-1 (-112) (-2 (|:| -3223 *2) (|:| -2508 *5)) + (-2 (|:| -3223 *2) (|:| -2508 *5)))) + (-4 *2 (-861)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-968 *4 *5 (-878 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) + (-4 *5 (-1264 *4)) + (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -4026 *5)))) + (-5 *1 (-821 *4 *5 *3 *6)) (-4 *3 (-668 *5)) + (-4 *6 (-668 (-419 *5)))))) +(((*1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1291)))) + ((*1 *2 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1291))))) (((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1289)))) ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-992))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-536))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) (-4 *5 (-1121)) (-4 *6 (-1238)) (-5 *2 (-1 *6 *5)) (-5 *1 (-653 *5 *6)))) @@ -17372,115 +17367,130 @@ ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-270)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) - (-4 *2 (-1279 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1264 *3)) - (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1279 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) - (-4 *2 (-1279 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-13 (-568) (-148))) - (-5 *1 (-1174 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-764))))) -(((*1 *2 *1) - (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) - (-4 *5 (-243 (-3503 *3) (-783))) - (-14 *6 - (-1 (-112) (-2 (|:| -3224 *2) (|:| -3422 *5)) - (-2 (|:| -3224 *2) (|:| -3422 *5)))) - (-4 *2 (-861)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-968 *4 *5 (-878 *3)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-464)) (-4 *4 (-861)) + (-4 *5 (-805)) (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4))))) +(((*1 *1) (-5 *1 (-815)))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-783)) (-4 *5 (-174)))) + ((*1 *1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) + (-4 *4 (-174)))) + ((*1 *1 *1) + (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1070)) (-4 *1 (-699 *3 *2 *4)) (-4 *2 (-384 *3)) + (-4 *4 (-384 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-783)) (-4 *3 (-1070))))) (((*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1255 (-576))) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1238))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + ((*1 *2 *1) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-734)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-738)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-874)) (-5 *2 (-703 (-561))) (-5 *3 (-561))))) (((*1 *2 *3) - (-12 (-5 *3 (-576)) (|has| *1 (-6 -4456)) (-4 *1 (-416)) - (-5 *2 (-940))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4466)) (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1178 *3))) (-5 *2 (-1178 *3)) (-5 *1 (-1181 *3)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *5 *6)) (-4 *6 (-626 (-1197))) - (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *2 (-1186 (-656 (-971 *4)) (-656 (-304 (-971 *4))))) - (-5 *1 (-516 *4 *5 *6 *7))))) + (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) + (-4 *5 (-442 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) + (-5 *1 (-159 *4 *5)) (-4 *5 (-442 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) + (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-442 *4) (-1023))))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-311 *4)) (-4 *4 (-312)))) + ((*1 *2 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *5 (-1121)) (-5 *2 (-112)) + (-5 *1 (-441 *4 *5)) (-4 *4 (-442 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) + (-5 *1 (-443 *4 *5)) (-4 *5 (-442 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) + (-5 *1 (-642 *4 *5)) (-4 *5 (-13 (-442 *4) (-1023) (-1223)))))) +(((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) + (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) (((*1 *2 *1) (-12 (-5 *2 (-656 *4)) (-5 *1 (-1162 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) - (-4 *3 (-1121))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *3 (-656 (-576))) - (-5 *1 (-898))))) -(((*1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1070))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1059 (-576))) (-4 *3 (-568)) (-5 *1 (-32 *3 *2)) + (-4 *2 (-442 *3)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1193 *4)) (-5 *1 (-166 *3 *4)) + (-4 *3 (-167 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1070)) (-4 *1 (-312)))) + ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1193 *3)))) + ((*1 *2) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1264 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-13 (-860) (-374))) + (-4 *2 (-1264 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) +(((*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-52)) (-5 *1 (-843))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1179)) (-5 *4 (-1141)) (-5 *2 (-112)) (-5 *1 (-833))))) +(((*1 *2 *3) + (-12 (-5 *3 (-576)) (|has| *1 (-6 -4455)) (-4 *1 (-416)) + (-5 *2 (-940))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 + (-2 (|:| |solns| (-656 *5)) + (|:| |maps| (-656 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1149 *3 *5)) (-4 *3 (-1264 *5))))) (((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-246)))) ((*1 *2 *3) (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1293)) (-5 *1 (-246))))) -(((*1 *2 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1052))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070))))) -(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-568)) - (-4 *3 (-968 *7 *5 *6)) - (-5 *2 - (-2 (|:| -3422 (-783)) (|:| -1714 *3) (|:| |radicand| (-656 *3)))) - (-5 *1 (-972 *5 *6 *7 *3 *8)) (-5 *4 (-783)) - (-4 *8 - (-13 (-374) - (-10 -8 (-15 -3570 ($ *3)) (-15 -1570 (*3 $)) (-15 -1581 (*3 $)))))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -2761 (-656 (-2 (|:| |irr| *10) (|:| -2567 (-576))))))) - (-5 *6 (-656 *3)) (-5 *7 (-656 *8)) (-4 *8 (-861)) (-4 *3 (-317)) - (-4 *10 (-968 *3 *9 *8)) (-4 *9 (-805)) - (-5 *2 - (-2 (|:| |polfac| (-656 *10)) (|:| |correct| *3) - (|:| |corrfact| (-656 (-1193 *3))))) - (-5 *1 (-637 *8 *9 *3 *10)) (-5 *4 (-656 (-1193 *3)))))) + (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1086 *5 *6 *7)) + (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) + (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) + (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-576)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-805)) (-4 *4 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-861)) + (-5 *1 (-461 *5 *6 *7 *4))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-586 *5 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1239 *3)) (-4 *3 (-1121)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1121)) (-5 *2 (-112)) - (-5 *1 (-1239 *3))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-374) (-148) (-1059 (-576)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) - (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -2741 *6))) - (-5 *1 (-1037 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2 *2) - (-12 + (-12 (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-805)) + (-5 *1 (-1008 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-576))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1121) (-34))) + (-4 *3 (-13 (-1121) (-34)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-961)) (-5 *3 (-576))))) +(((*1 *2 *2) (-12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 - (-1008 (-419 (-576)) (-878 *3) (-245 *4 (-783)) - (-253 *3 (-419 (-576))))) - (-14 *3 (-656 (-1197))) (-14 *4 (-783)) (-5 *1 (-1007 *3 *4))))) + (-2 (|:| -3104 *4) (|:| -3313 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-801)) (-5 *5 (-576))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1197)) (-5 *2 (-1 (-1193 (-971 *4)) (-971 *4))) + (-5 *1 (-1296 *4)) (-4 *4 (-374))))) +(((*1 *1 *1) (-4 *1 (-1165)))) (((*1 *1 *1) (-5 *1 (-876))) ((*1 *2 *1) (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) @@ -17488,819 +17498,806 @@ ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1179)))) ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1179)))) ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1197))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1113 (-971 (-576)))) (-5 *3 (-971 (-576))) + (-5 *1 (-340)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1113 (-971 (-576)))) (-5 *1 (-340))))) (((*1 *2 *3 *2) (-12 (-5 *1 (-691 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-998 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 - (-5 *3 - (-656 - (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) - (|:| |wcond| (-656 (-971 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) - (|:| -1593 (-656 (-1288 (-419 (-971 *5)))))))))) - (-5 *4 (-1179)) (-4 *5 (-13 (-317) (-148))) (-4 *8 (-968 *5 *7 *6)) - (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-576)) - (-5 *1 (-943 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-1179)) (-5 *2 (-576)) (-5 *1 (-1220 *4)) - (-4 *4 (-1070))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1197)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1197)) (-5 *2 (-112)) (-5 *1 (-624 *4)) - (-4 *4 (-1121)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1121)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1121)) (-5 *2 (-112)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1121)) (-5 *2 (-112)) (-5 *1 (-902 *5 *3 *4)) - (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5))))) + (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)) + (-5 *1 (-826 *4 *5)) (-4 *5 (-668 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *6)) (-4 *6 (-901 *5)) (-4 *5 (-1121)) - (-5 *2 (-112)) (-5 *1 (-902 *5 *6 *4)) (-4 *4 (-626 (-907 *5)))))) -((-1322 . 731088) (-1323 . 730995) (-1324 . 730547) (-1325 . 730384) - (-1326 . 730304) (-1327 . 729983) (-1328 . 729801) (-1329 . 729488) - (-1330 . 729227) (-1331 . 729069) (-1332 . 728983) (-1333 . 728532) - (-1334 . 728205) (-1335 . 728052) (-1336 . 727980) (-1337 . 727902) - (-1338 . 727847) (-1339 . 727780) (-1340 . 727635) (-1341 . 727583) - (-1342 . 727530) (-1343 . 727477) (-1344 . 727420) (-1345 . 727323) - (-1346 . 727220) (-1347 . 727097) (-1348 . 726870) (-1349 . 726734) - (-1350 . 726650) (-1351 . 726556) (-1352 . 726429) (-1353 . 726142) - (-1354 . 726023) (-1355 . 725952) (-1356 . 725506) (-1357 . 725233) - (-1358 . 724360) (-1359 . 724300) (-1360 . 724248) (-1361 . 724142) - (-1362 . 723766) (-1363 . 723667) (-1364 . 723615) (-1365 . 723542) - (-1366 . 723362) (-1367 . 723202) (-1368 . 723011) (-1369 . 721583) - (-1370 . 721404) (-1371 . 721308) (-1372 . 720932) (-1373 . 720901) - (-1374 . 720606) (-1375 . 720555) (-1376 . 720009) (-1377 . 719881) - (-1378 . 719631) (-1379 . 719469) (-1380 . 719372) (-1381 . 717586) - (-1382 . 717192) (-1383 . 716997) (-1384 . 716902) (-1385 . 716292) - (-1386 . 716149) (-1387 . 715970) (-1388 . 715873) (-1389 . 715757) - (-1390 . 715678) (-1391 . 715650) (-1392 . 715622) (-1393 . 715555) - (-1394 . 714973) (-1395 . 714889) (-1396 . 714724) (-1397 . 714624) - (-1398 . 714553) (-1399 . 714437) (-1400 . 714226) (-1401 . 714152) - (-1402 . 714015) (-1403 . 713825) (-1404 . 713766) (-1405 . 713631) - (-1406 . 713548) (-1407 . 713453) (-1408 . 713348) (-1409 . 713217) - (-1410 . 713165) (-1411 . 713066) (-1412 . 712972) (-1413 . 712872) - (-1414 . 712776) (-1415 . 712677) (-1416 . 712600) (-1417 . 712427) - (-1418 . 712374) (-1419 . 712317) (-1420 . 712097) (-1421 . 711816) - (-1422 . 711710) (-1423 . 711611) (-1424 . 711430) (-1425 . 711377) - (-1426 . 711259) (-1427 . 711179) (-1428 . 711006) (-1429 . 710953) - (-1430 . 710820) (-1431 . 710570) (-1432 . 710401) (-1433 . 710320) - (-1434 . 710237) (-1435 . 710100) (-1436 . 710040) (-1437 . 709901) - (-1438 . 709258) (-1439 . 709055) (-1440 . 708957) (-1441 . 708890) - (-1442 . 708564) (-1443 . 708463) (-1444 . 708099) (-1445 . 707632) - (-1446 . 707322) (-1447 . 707226) (-1448 . 707131) (** . 704136) - (-1450 . 704082) (-1451 . 703892) (-1452 . 703754) (-1453 . 703613) - (-1454 . 703510) (-1455 . 703481) (-1456 . 702664) (-1457 . 702594) - (-1458 . 702376) (-1459 . 702231) (-1460 . 701992) (-1461 . 701794) - (-1462 . 701633) (-1463 . 701306) (-1464 . 701003) (-1465 . 700953) - (-1466 . 700691) (-1467 . 700559) (-1468 . 700478) (-1469 . 700384) - (-1470 . 700021) (-1471 . 699872) (-1472 . 699768) (-1473 . 699493) - (-1474 . 699431) (-1475 . 699379) (-1476 . 699276) (-1477 . 698733) - (-1478 . 698573) (-1479 . 698472) (-1480 . 698055) (-1481 . 697791) - (-1482 . 697718) (-1483 . 697135) (-1484 . 697082) (-1485 . 697015) - (-1486 . 696871) (-1487 . 696802) (-1488 . 696735) (-1489 . 696707) - (-1490 . 696638) (-1491 . 689695) (-1492 . 689593) (-1493 . 689435) - (-1494 . 689365) (-1495 . 689113) (-1496 . 688811) (-1497 . 688444) - (-1498 . 688340) (-1499 . 688271) (-1500 . 688218) (-1501 . 688065) - (-1502 . 687970) (-1503 . 687815) (-1504 . 687727) (-1505 . 687614) - (-1506 . 687486) (-1507 . 687326) (-1508 . 685749) (-1509 . 685666) - (-1510 . 685239) (-1511 . 685081) (-1512 . 684858) (-1513 . 684742) - (-1514 . 684665) (-1515 . 684547) (-1516 . 684497) (-1517 . 684443) - (-1518 . 683898) (-1519 . 683390) (-1520 . 683302) (-1521 . 683249) - (-1522 . 683022) (-1523 . 682967) (-1524 . 682476) (-1525 . 682240) - (-1526 . 682212) (-1527 . 682073) (-1528 . 682020) (-1529 . 681971) - (-1530 . 681404) (-1531 . 681145) (-1532 . 680849) (-1533 . 680772) - (-1534 . 680688) (-1535 . 680660) (-1536 . 680389) (-1537 . 680085) - (-1538 . 679982) (-1539 . 679767) (-1540 . 679314) (-1541 . 679214) - (-1542 . 678960) (-1543 . 678862) (-1544 . 678767) (-1545 . 678491) - (-1546 . 678125) (-1547 . 677646) (-1548 . 677505) (-1549 . 677345) - (-1550 . 677246) (-1551 . 677193) (-1552 . 676995) (-1553 . 676912) - (-1554 . 676722) (-1555 . 676651) (-1556 . 676565) (-1557 . 676468) - (-1558 . 674612) (-1559 . 674557) (-1560 . 674438) (-1561 . 673221) - (-1562 . 673133) (-1563 . 673017) (-1564 . 672893) (-1565 . 672841) - (-1566 . 672697) (-1567 . 672638) (-1568 . 672078) (-1569 . 671695) - (-1570 . 670991) (-1571 . 670896) (-1572 . 666353) (-1573 . 665920) - (-1574 . 665825) (-1575 . 665510) (-1576 . 665443) (-1577 . 665153) - (-1578 . 665058) (-1579 . 664554) (-1580 . 664450) (-1581 . 663769) - (-1582 . 663663) (-1583 . 663520) (-1584 . 663395) (-1585 . 663343) - (-1586 . 663290) (-1587 . 663144) (-1588 . 662964) (-1589 . 662585) - (-1590 . 662519) (-1591 . 662413) (-1592 . 662054) (-1593 . 661186) - (-1594 . 661056) (-1595 . 660997) (-1596 . 660881) (-1597 . 660825) - (-1598 . 660490) (-1599 . 660438) (-1600 . 660185) (-1601 . 660083) - (-1602 . 659980) (-1603 . 659453) (-1604 . 659112) (-1605 . 658934) - (-1606 . 658771) (-1607 . 658718) (-1608 . 658402) (-1609 . 658218) - (-1610 . 658111) (-1611 . 658038) (-1612 . 657722) (-1613 . 657441) - (-1614 . 657242) (-1615 . 656612) (-1616 . 656558) (-1617 . 656318) - (-1618 . 655807) (-1619 . 655740) (-1620 . 655659) (-1621 . 655544) - (-1622 . 655398) (-1623 . 655340) (-1624 . 655287) (-1625 . 655180) - (-1626 . 655097) (-1627 . 654967) (-1628 . 654843) (-1629 . 654740) - (-1630 . 654656) (-1631 . 654533) (-1632 . 654459) (-1633 . 653746) - (-1634 . 653498) (-1635 . 653399) (-1636 . 652623) (-1637 . 652570) - (-1638 . 652463) (-1639 . 652385) (-1640 . 652076) (-1641 . 651992) - (-1642 . 651813) (-1643 . 651640) (-1644 . 651510) (-1645 . 651450) - (-1646 . 651367) (-1647 . 651262) (-1648 . 650726) (-1649 . 650629) - (-1650 . 650514) (-1651 . 650401) (-1652 . 650280) (-1653 . 650062) - (-1654 . 649951) (-1655 . 649923) (-1656 . 649851) (-1657 . 649292) - (-1658 . 649194) (-1659 . 649090) (-1660 . 649038) (-1661 . 648955) - (-1662 . 644892) (-1663 . 644825) (-1664 . 644773) (-1665 . 644704) - (-1666 . 644562) (-1667 . 644088) (-1668 . 643921) (-1669 . 643362) - (-1670 . 643103) (-1671 . 642360) (-1672 . 642177) (-1673 . 642104) - (-1674 . 642008) (-1675 . 641955) (-1676 . 641351) (-1677 . 641196) - (-1678 . 641113) (-1679 . 640821) (-1680 . 640691) (-1681 . 640639) - (-1682 . 640551) (-1683 . 640523) (-1684 . 640356) (-1685 . 640304) - (-1686 . 640227) (-1687 . 640100) (-1688 . 640072) (-1689 . 639826) - (-1690 . 639218) (-1691 . 639124) (-1692 . 639024) (-1693 . 638900) - (-1694 . 638814) (-1695 . 638629) (-1696 . 638473) (-1697 . 638324) - (-1698 . 638269) (-1699 . 638023) (-1700 . 637923) (-1701 . 637886) - (-1702 . 637804) (-1703 . 637678) (-1704 . 635333) (-1705 . 635236) - (-1706 . 635078) (-1707 . 634920) (-1708 . 634839) (-1709 . 634766) - (-1710 . 634575) (-1711 . 634353) (-1712 . 634011) (-1713 . 633915) - (-1714 . 633557) (-1715 . 633483) (-1716 . 633410) (-1717 . 633339) - (-1718 . 633226) (-1719 . 633060) (-1720 . 633008) (-1721 . 632434) - (-1722 . 632356) (-1723 . 631989) (-1724 . 631812) (-1725 . 631740) - (-1726 . 631616) (-1727 . 631513) (-1728 . 631461) (-1729 . 631402) - (-1730 . 631108) (-1731 . 631024) (-1732 . 630946) (-1733 . 630879) - (-1734 . 630784) (-1735 . 630643) (-1736 . 630519) (-1737 . 630323) - (-1738 . 630268) (-1739 . 629815) (-1740 . 629712) (-1741 . 629655) - (-1742 . 629508) (-1743 . 629310) (-1744 . 629058) (-1745 . 628949) - (-1746 . 628755) (-1747 . 628653) (-1748 . 628309) (-1749 . 627110) - (-1750 . 627004) (-1751 . 626922) (-1752 . 626757) (-1753 . 626678) - (-1754 . 626563) (-1755 . 625799) (-1756 . 625626) (-1757 . 625547) - (-1758 . 625389) (-1759 . 625309) (-1760 . 625149) (-1761 . 624916) - (-1762 . 624712) (-1763 . 624650) (-1764 . 624497) (-1765 . 624207) - (-1766 . 623889) (-1767 . 623836) (-1768 . 623756) (-1769 . 623658) - (-1770 . 623565) (-1771 . 623271) (-1772 . 623175) (-1773 . 623015) - (-1774 . 622871) (-1775 . 622671) (-1776 . 622572) (-1777 . 621405) - (-1778 . 621326) (-1779 . 621144) (-1780 . 621064) (-1781 . 620671) - (-1782 . 620576) (-1783 . 620468) (-1784 . 620235) (-1785 . 620060) - (-1786 . 619862) (-1787 . 619630) (-1788 . 619424) (-1789 . 619311) - (-1790 . 619031) (-1791 . 618907) (-1792 . 618795) (-1793 . 618702) - (-1794 . 618643) (-1795 . 618212) (-1796 . 617810) (-1797 . 617751) - (-1798 . 616349) (-1799 . 615819) (-1800 . 615656) (-1801 . 615554) - (-1802 . 615501) (-1803 . 615341) (-1804 . 615264) (-1805 . 615212) - (-1806 . 615181) (-1807 . 615041) (-1808 . 614972) (-1809 . 614922) - (-1810 . 614853) (-1811 . 614635) (-1812 . 614483) (-1813 . 614383) - (-1814 . 614090) (-1815 . 614008) (-1816 . 613931) (-1817 . 613297) - (-1818 . 613219) (-1819 . 613122) (-1820 . 612760) (-1821 . 612732) - (-1822 . 612497) (-1823 . 612012) (-1824 . 611893) (-1825 . 611740) - (-1826 . 611624) (-1827 . 611456) (-1828 . 605942) (-1829 . 605818) - (-1830 . 605684) (-1831 . 605598) (-1832 . 605525) (-1833 . 605466) - (-1834 . 605225) (-1835 . 605096) (-1836 . 604473) (-1837 . 604395) - (-1838 . 604309) (-1839 . 603916) (-1840 . 601688) (-1841 . 601549) - (-1842 . 601481) (-1843 . 601449) (-1844 . 601421) (-1845 . 601367) - (-1846 . 601224) (-1847 . 601096) (-1848 . 601026) (-1849 . 600803) - (-1850 . 600361) (-1851 . 600264) (-1852 . 599424) (-1853 . 599308) - (-1854 . 599093) (-1855 . 599014) (-1856 . 598889) (-1857 . 598736) - (-1858 . 598653) (-1859 . 598600) (-1860 . 598265) (-1861 . 598110) - (-1862 . 598048) (-1863 . 598014) (-1864 . 597891) (-1865 . 597811) - (-1866 . 597723) (-1867 . 597624) (-1868 . 597523) (-1869 . 597444) - (-1870 . 597117) (-1871 . 596832) (-1872 . 596752) (-1873 . 596564) - (-1874 . 596211) (-1875 . 596074) (-1876 . 595960) (-1877 . 595715) - (-1878 . 595599) (-1879 . 595414) (-1880 . 595184) (-1881 . 594800) - (-1882 . 594741) (-1883 . 594686) (-1884 . 594528) (-1885 . 594479) - (-1886 . 594378) (-1887 . 594200) (-1888 . 594059) (-1889 . 593608) - (-1890 . 593531) (-1891 . 593479) (-1892 . 593451) (-1893 . 593236) - (-1894 . 593131) (-1895 . 592998) (-1896 . 592925) (-1897 . 592842) - (-1898 . 592782) (-1899 . 592495) (-1900 . 592443) (-1901 . 590028) - (-1902 . 589811) (-1903 . 589619) (-1904 . 589488) (-1905 . 589199) - (-1906 . 589037) (-1907 . 588688) (-1908 . 587808) (-1909 . 587168) - (-1910 . 587069) (-1911 . 586995) (-1912 . 586930) (-1913 . 586847) - (-1914 . 586775) (-1915 . 586596) (-1916 . 586522) (-1917 . 586163) - (-1918 . 585936) (-1919 . 585818) (-1920 . 585380) (-1921 . 585315) - (-1922 . 583254) (-1923 . 583198) (-1924 . 582987) (-1925 . 582880) - (-1926 . 582824) (-1927 . 582744) (-1928 . 582667) (-1929 . 582514) - (-1930 . 582425) (-1931 . 582072) (-1932 . 581976) (-1933 . 581863) - (-1934 . 581799) (-1935 . 581711) (-1936 . 581601) (-1937 . 581432) - (-1938 . 581338) (-1939 . 581183) (-1940 . 580599) (-1941 . 580531) - (-1942 . 579564) (-1943 . 579391) (-1944 . 579332) (-1945 . 577702) - (-1946 . 577634) (-1947 . 577582) (-1948 . 577529) (-1949 . 577458) - (-1950 . 576277) (-1951 . 576198) (-1952 . 575952) (-1953 . 575785) - (-1954 . 575726) (-1955 . 574867) (-1956 . 574709) (-1957 . 574641) - (-1958 . 574482) (-1959 . 574391) (-1960 . 574224) (-1961 . 574157) - (-1962 . 574079) (-1963 . 573591) (-1964 . 573433) (-1965 . 573363) - (-1966 . 573196) (-1967 . 573144) (-1968 . 573021) (-1969 . 571725) - (-1970 . 571570) (-1971 . 571470) (-1972 . 571246) (-1973 . 571151) - (-1974 . 570664) (-1975 . 570520) (-1976 . 570317) (-1977 . 569563) - (-1978 . 569491) (-1979 . 569109) (-1980 . 568799) (-1981 . 568704) - (-1982 . 568529) (-1983 . 568046) (-1984 . 567959) (-1985 . 567850) - (-1986 . 567540) (-1987 . 567416) (-1988 . 567360) (-1989 . 567286) - (-1990 . 567233) (-1991 . 567147) (-1992 . 567069) (-1993 . 566841) - (-1994 . 566764) (-1995 . 566526) (-1996 . 566334) (-1997 . 566187) - (-1998 . 566107) (-1999 . 566042) (-2000 . 565941) (-2001 . 565768) - (-2002 . 565610) (-2003 . 564874) (-2004 . 564788) (-2005 . 563640) - (-2006 . 563540) (-2007 . 563475) (-2008 . 562815) (-2009 . 562763) - (-2010 . 560997) (-2011 . 560848) (-2012 . 557549) (-2013 . 556742) - (-2014 . 556512) (-2015 . 556389) (-2016 . 556307) (-2017 . 556235) - (-2018 . 556176) (-2019 . 556123) (-2020 . 555449) (-2021 . 553994) - (-2022 . 553813) (-2023 . 553717) (-2024 . 553650) (-2025 . 553554) - (-2026 . 553108) (-2027 . 552982) (-2028 . 552853) (-2029 . 552749) - (-2030 . 551930) (-2031 . 550440) (-2032 . 550388) (-2033 . 550311) - (-2034 . 550224) (-2035 . 550066) (-2036 . 549997) (-2037 . 549825) - (-2038 . 549680) (-2039 . 549461) (-2040 . 548383) (-2041 . 548240) - (-2042 . 548182) (-2043 . 547424) (-2044 . 547303) (-2045 . 547196) - (-2046 . 547074) (-2047 . 546950) (-2048 . 546922) (-2049 . 546828) - (-2050 . 546092) (-2051 . 546040) (-2052 . 545602) (-2053 . 545315) - (-2054 . 544824) (-2055 . 544555) (-2056 . 544495) (-2057 . 544198) - (-2058 . 544114) (-2059 . 544003) (-2060 . 543840) (-2061 . 543580) - (-2062 . 543520) (-2063 . 543486) (-2064 . 543416) (-2065 . 543131) - (-2066 . 543032) (-2067 . 542975) (-2068 . 542830) (-2069 . 542454) - (-2070 . 542326) (-2071 . 542197) (-2072 . 541905) (-2073 . 541853) - (-2074 . 541556) (-2075 . 541477) (-2076 . 541412) (-2077 . 541384) - (-2078 . 541218) (-2079 . 540979) (-2080 . 540920) (-2081 . 540276) - (-2082 . 540223) (-2083 . 540065) (-2084 . 539910) (-2085 . 539618) - (-2086 . 539535) (-2087 . 539287) (-2088 . 538991) (-2089 . 538764) - (-2090 . 538677) (-2091 . 537505) (-2092 . 537390) (-2093 . 537037) - (-2094 . 536987) (-2095 . 536796) (-2096 . 536653) (-2097 . 536438) - (-2098 . 535502) (-2099 . 535435) (-2100 . 535289) (-2101 . 535181) - (-2102 . 535039) (-2103 . 534924) (-2104 . 534806) (-2105 . 534654) - (-2106 . 534511) (-2107 . 534437) (-2108 . 534249) (-2109 . 533907) - (-2110 . 533747) (-2111 . 533158) (-2112 . 532862) (-2113 . 532743) - (-2114 . 531606) (-2115 . 531261) (-2116 . 531129) (-2117 . 531055) - (-2118 . 530739) (-2119 . 530519) (-2120 . 530420) (-2121 . 530189) - (-2122 . 529703) (-2123 . 529523) (-2124 . 529385) (-2125 . 529311) - (-2126 . 529223) (-2127 . 529107) (-2128 . 529028) (-2129 . 528776) - (-2130 . 528706) (-2131 . 528427) (-2132 . 528329) (-2133 . 528230) - (-2134 . 528130) (-2135 . 527927) (-2136 . 527854) (-2137 . 527759) - (-2138 . 527537) (-2139 . 527429) (-2140 . 527288) (-2141 . 527232) - (-2142 . 527204) (-2143 . 527079) (-2144 . 526954) (-9 . 526926) - (-2146 . 526869) (-2147 . 526796) (-2148 . 526744) (-2149 . 526636) - (-2150 . 526532) (-2151 . 526432) (-8 . 526404) (-2153 . 526251) - (-2154 . 526117) (-2155 . 525607) (-2156 . 525388) (-2157 . 525132) - (-2158 . 525058) (-2159 . 524904) (-2160 . 524838) (-2161 . 524682) - (-2162 . 524275) (-2163 . 524168) (-2164 . 524095) (-2165 . 523958) - (-2166 . 523798) (-2167 . 523742) (-2168 . 523670) (-2169 . 523537) - (-7 . 523509) (-2171 . 523383) (-2172 . 523300) (-2173 . 523160) - (-2174 . 523050) (-2175 . 522979) (-2176 . 522823) (-2177 . 522481) - (-2178 . 522020) (-2179 . 521950) (-2180 . 521759) (-2181 . 521671) - (-2182 . 521440) (-2183 . 521363) (-2184 . 521275) (-2185 . 521157) - (-2186 . 521036) (-2187 . 520943) (-2188 . 520795) (-2189 . 520712) - (-2190 . 520486) (-2191 . 520227) (-2192 . 520119) (-2193 . 520091) - (-2194 . 520024) (-2195 . 519866) (-2196 . 518978) (-2197 . 518888) - (-2198 . 518708) (-2199 . 518611) (-2200 . 518525) (-2201 . 518331) - (-2202 . 518209) (-2203 . 518130) (-2204 . 517873) (-2205 . 517811) - (-2206 . 517367) (-2207 . 517282) (-2208 . 517158) (-2209 . 517084) - (-2210 . 516658) (-2211 . 516260) (-2212 . 516126) (-2213 . 516063) - (-2214 . 515949) (-2215 . 515804) (-2216 . 515753) (-2217 . 515474) - (-2218 . 515333) (-2219 . 515281) (-2220 . 515203) (-2221 . 514976) - (-2222 . 514924) (-2223 . 514835) (-2224 . 514689) (-2225 . 514259) - (-2226 . 514164) (-2227 . 513998) (-2228 . 513867) (-2229 . 513833) - (-2230 . 513727) (-2231 . 513626) (-2232 . 513574) (-2233 . 513474) - (-2234 . 513331) (-2235 . 513221) (-2236 . 513051) (-2237 . 512955) - (-2238 . 512538) (-2239 . 512444) (-2240 . 512402) (-2241 . 512222) - (-2242 . 512191) (-2243 . 512136) (-2244 . 512032) (-2245 . 511929) - (-2246 . 511823) (-2247 . 511668) (-2248 . 511533) (-2249 . 511114) - (-2250 . 511041) (-2251 . 510800) (-2252 . 510747) (-2253 . 510716) - (-2254 . 510586) (-2255 . 510531) (-2256 . 510474) (-2257 . 509878) - (-2258 . 509805) (-2259 . 509682) (-2260 . 509533) (-2261 . 509454) - (-2262 . 509393) (-2263 . 509141) (-2264 . 509060) (-2265 . 508898) - (-2266 . 508821) (-2267 . 508626) (-2268 . 508445) (-2269 . 508332) - (-2270 . 508174) (-2271 . 508049) (-2272 . 507933) (-2273 . 507809) - (-2274 . 507605) (-2275 . 507346) (-2276 . 507251) (-2277 . 507143) - (-2278 . 507069) (-2279 . 506966) (-2280 . 506777) (-2281 . 505235) - (-2282 . 504739) (-2283 . 504492) (-2284 . 504192) (-2285 . 504104) - (-2286 . 503887) (-2287 . 503756) (-2288 . 503543) (-2289 . 503490) - (-2290 . 503462) (-2291 . 503410) (-2292 . 503079) (-2293 . 503001) - (-2294 . 502848) (-2295 . 502754) (-2296 . 502601) (-2297 . 502517) - (-2298 . 502451) (-2299 . 502355) (-2300 . 502164) (-2301 . 501833) - (-2302 . 501717) (-2303 . 501616) (-2304 . 501532) (-2305 . 501333) - (-2306 . 501167) (-2307 . 500990) (-2308 . 500678) (-2309 . 500552) - (-2310 . 500499) (-2311 . 500335) (-2312 . 500269) (-2313 . 500213) - (-2314 . 499933) (-2315 . 499600) (-2316 . 499522) (-2317 . 499453) - (-2318 . 498967) (-2319 . 498910) (-2320 . 498758) (-2321 . 498610) - (-2322 . 498554) (-2323 . 498408) (-2324 . 498307) (-2325 . 498211) - (-2326 . 498020) (-2327 . 497592) (-2328 . 497208) (-2329 . 497077) - (-2330 . 496880) (-2331 . 496792) (-2332 . 496684) (-2333 . 496531) - (-2334 . 496348) (-2335 . 496108) (-2336 . 496049) (-2337 . 495720) - (-2338 . 495564) (-2339 . 495323) (-2340 . 495267) (-2341 . 495157) - (-2342 . 495105) (-2343 . 494883) (-2344 . 494673) (-2345 . 494550) - (-2346 . 494455) (-2347 . 494387) (-2348 . 494275) (-2349 . 494159) - (-2350 . 494097) (-2351 . 494011) (-2352 . 493916) (-2353 . 493839) - (-2354 . 493708) (-2355 . 493609) (-2356 . 493387) (-2357 . 492359) - (-2358 . 492327) (-2359 . 492231) (-2360 . 491693) (-2361 . 491402) - (-2362 . 491342) (-2363 . 491254) (-2364 . 491101) (-2365 . 490868) - (-2366 . 490474) (-2367 . 490400) (-2368 . 490015) (-2369 . 489870) - (-2370 . 489733) (-2371 . 489652) (-2372 . 489460) (-2373 . 489383) - (-2374 . 489295) (-2375 . 489076) (-2376 . 489005) (-2377 . 488901) - (-2378 . 488725) (-2379 . 488497) (-2380 . 488416) (-2381 . 488243) - (-2382 . 488095) (-2383 . 487669) (-2384 . 487354) (-2385 . 487283) - (-2386 . 485502) (-2387 . 485425) (-2388 . 485347) (-2389 . 485236) - (-2390 . 485141) (-2391 . 485033) (-2392 . 484890) (-2393 . 484539) - (-2394 . 484348) (-2395 . 484275) (-2396 . 483944) (-2397 . 483844) - (-2398 . 483731) (-2399 . 483536) (-2400 . 483435) (-2401 . 482791) - (-2402 . 482460) (-2403 . 482242) (-2404 . 482138) (-2405 . 482067) - (-2406 . 481970) (-2407 . 481646) (-2408 . 481516) (-2409 . 481359) - (-2410 . 481249) (-2411 . 481176) (-2412 . 480826) (-2413 . 480674) - (-2414 . 480402) (-2415 . 480289) (-2416 . 479914) (-2417 . 479619) - (-2418 . 479542) (-2419 . 479449) (-2420 . 479202) (-2421 . 479142) - (-2422 . 479054) (-2423 . 479002) (-2424 . 478951) (-2425 . 478841) - (-2426 . 478769) (-2427 . 478688) (-2428 . 478633) (-2429 . 478581) - (-2430 . 478459) (-2431 . 478374) (-2432 . 478015) (-2433 . 477856) - (-2434 . 477805) (-2435 . 476931) (-2436 . 476553) (-2437 . 475877) - (-2438 . 475599) (-2439 . 475287) (-2440 . 475217) (-2441 . 475146) - (-2442 . 474876) (-2443 . 474775) (-2444 . 474529) (-2445 . 474262) - (-2446 . 473969) (-2447 . 473902) (-2448 . 473773) (-2449 . 473557) - (-2450 . 473486) (-2451 . 473211) (-2452 . 473134) (-2453 . 472916) - (-2454 . 472795) (-2455 . 472734) (-2456 . 472390) (-2457 . 472008) - (-2458 . 471931) (-2459 . 471876) (-2460 . 471802) (-2461 . 471430) - (-2462 . 471396) (-2463 . 471158) (-2464 . 471124) (-2465 . 471006) - (-2466 . 470759) (-2467 . 470173) (-2468 . 469331) (-2469 . 469214) - (-2470 . 469144) (-2471 . 468747) (-2472 . 468668) (-2473 . 468567) - (-2474 . 467947) (-2475 . 467380) (-2476 . 467306) (-2477 . 467254) - (-2478 . 466827) (-2479 . 466418) (-2480 . 466323) (-2481 . 466268) - (-2482 . 466215) (-2483 . 466080) (-2484 . 466025) (-2485 . 465930) - (-2486 . 465815) (-2487 . 465368) (-2488 . 464276) (-2489 . 464180) - (-2490 . 464081) (-2491 . 463995) (-2492 . 463943) (-2493 . 463811) - (-2494 . 463681) (-2495 . 463412) (-2496 . 463355) (-2497 . 463260) - (-2498 . 463138) (-2499 . 463067) (-2500 . 462874) (-2501 . 462807) - (-2502 . 462754) (-2503 . 462627) (-2504 . 462593) (-2505 . 462479) - (-2506 . 462336) (-2507 . 462065) (-2508 . 461952) (-2509 . 461771) - (-2510 . 461622) (-2511 . 461523) (-2512 . 461321) (-2513 . 461222) - (-2514 . 461170) (-2515 . 461043) (-2516 . 460944) (-2517 . 460815) - (-2518 . 460690) (-2519 . 460500) (-2520 . 460399) (-2521 . 460074) - (-2522 . 459916) (-2523 . 459802) (-2524 . 459692) (-2525 . 459640) - (-2526 . 459588) (-2527 . 459521) (-2528 . 459402) (-2529 . 459199) - (-2530 . 459143) (-2531 . 458985) (-2532 . 458918) (-2533 . 458316) - (-2534 . 458062) (-2535 . 457994) (-2536 . 457878) (-2537 . 457818) - (-2538 . 457688) (-2539 . 457115) (-2540 . 456938) (-2541 . 456823) - (-2542 . 456740) (-2543 . 456599) (-2544 . 456489) (-2545 . 455838) - (-2546 . 455746) (-2547 . 455558) (-2548 . 455285) (-2549 . 454975) - (-2550 . 454054) (-2551 . 454002) (-2552 . 453934) (-2553 . 453797) - (-2554 . 453706) (-2555 . 453586) (-2556 . 453515) (-2557 . 453335) - (-2558 . 453282) (-2559 . 453095) (-2560 . 452892) (-2561 . 452774) - (-2562 . 452694) (-2563 . 452627) (-2564 . 452568) (-2565 . 452496) - (-2566 . 452341) (-2567 . 452233) (-2568 . 451519) (-2569 . 451273) - (-2570 . 451137) (-2571 . 450820) (-2572 . 450669) (-2573 . 450570) - (-2574 . 450484) (-2575 . 450256) (-2576 . 450200) (-2577 . 450141) - (-2578 . 449918) (-2579 . 449815) (-2580 . 449716) (-2581 . 449638) - (-2582 . 449495) (-2583 . 449393) (-2584 . 449340) (-2585 . 449199) - (-2586 . 448954) (-2587 . 448852) (-2588 . 448596) (-2589 . 448438) - (-2590 . 448334) (-2591 . 448261) (-2592 . 448083) (-2593 . 447949) - (-2594 . 447846) (-2595 . 447711) (-2596 . 447574) (-2597 . 447545) - (-2598 . 447048) (-2599 . 446920) (-2600 . 446741) (-2601 . 446655) - (-2602 . 446520) (-2603 . 446268) (-2604 . 444972) (-2605 . 444901) - (-2606 . 444741) (-2607 . 444004) (-2608 . 443939) (-2609 . 443643) - (-2610 . 443572) (-2611 . 443442) (-2612 . 443168) (-2613 . 443094) - (-2614 . 443044) (-2615 . 442993) (-2616 . 442817) (-2617 . 442679) - (-2618 . 442608) (-2619 . 442401) (-2620 . 442180) (-2621 . 442084) - (-2622 . 441937) (-2623 . 441386) (-2624 . 441255) (-2625 . 441142) - (-2626 . 441054) (-2627 . 440976) (-2628 . 440892) (-2629 . 440246) - (-2630 . 440180) (-2631 . 440061) (-2632 . 439699) (-2633 . 438703) - (-2634 . 438583) (-2635 . 438354) (-2636 . 438258) (-2637 . 438130) - (-2638 . 438020) (-2639 . 437947) (-2640 . 437863) (-2641 . 437271) - (-2642 . 437099) (-2643 . 436967) (-2644 . 436848) (-2645 . 436765) - (-2646 . 436572) (-2647 . 436488) (-2648 . 436378) (-2649 . 436205) - (-2650 . 436068) (-2651 . 435890) (-2652 . 435640) (-2653 . 435569) - (-2654 . 435495) (-2655 . 435055) (-2656 . 434805) (-2657 . 434771) - (-2658 . 434694) (-2659 . 434611) (-2660 . 434560) (-2661 . 434501) - (-2662 . 434331) (-2663 . 434272) (-2664 . 434113) (-2665 . 434039) - (-2666 . 433935) (-2667 . 433863) (-2668 . 433684) (-2669 . 433607) - (-2670 . 433514) (-2671 . 433066) (-2672 . 433011) (-2673 . 432802) - (-2674 . 432707) (-2675 . 432642) (-2676 . 432513) (-2677 . 432442) - (-2678 . 432239) (-2679 . 432165) (-2680 . 431773) (-2681 . 431583) - (-2682 . 431440) (-2683 . 431358) (-2684 . 431157) (-2685 . 431038) - (-2686 . 430973) (-2687 . 430901) (-2688 . 430806) (-2689 . 430573) - (-2690 . 430417) (-2691 . 430259) (-2692 . 430231) (-2693 . 429748) - (-2694 . 429632) (-2695 . 429534) (-2696 . 429439) (-2697 . 429293) - (-2698 . 429164) (-2699 . 428773) (-2700 . 428696) (-2701 . 428641) - (-2702 . 428528) (-2703 . 428383) (-2704 . 427795) (-2705 . 427508) - (-2706 . 427456) (-2707 . 427359) (-2708 . 423696) (-2709 . 423534) - (-2710 . 423404) (-2711 . 423251) (-2712 . 423002) (-2713 . 422950) - (-2714 . 422829) (-2715 . 422579) (-2716 . 422425) (-2717 . 422372) - (-2718 . 422076) (-2719 . 421980) (-2720 . 421805) (-2721 . 421634) - (-2722 . 421566) (-2723 . 421406) (-2724 . 421199) (-2725 . 421146) - (-2726 . 421028) (-2727 . 420875) (-2728 . 420784) (-2729 . 420668) - (-2730 . 420376) (-2731 . 420001) (-2732 . 419754) (-2733 . 419620) - (-2734 . 419384) (-2735 . 419331) (-2736 . 419051) (-2737 . 418923) - (-2738 . 418826) (-2739 . 418546) (-2740 . 418337) (-2741 . 418264) - (-2742 . 418124) (-2743 . 418013) (-2744 . 417842) (-2745 . 417593) - (-2746 . 417394) (-2747 . 417342) (-2748 . 417254) (-2749 . 417041) - (-2750 . 416732) (-2751 . 416374) (-2752 . 416295) (-2753 . 416192) - (-2754 . 416082) (-2755 . 416033) (-2756 . 415978) (-2757 . 415947) - (-2758 . 415845) (-2759 . 415727) (-2760 . 415555) (-2761 . 415215) - (-2762 . 415138) (-2763 . 415064) (-2764 . 415009) (-2765 . 414926) - (-2766 . 414708) (-2767 . 405258) (-2768 . 405194) (-2769 . 405026) - (-2770 . 404972) (-2771 . 404919) (-2772 . 404496) (-12 . 404324) - (-2774 . 404002) (-2775 . 402940) (-2776 . 402856) (-2777 . 402727) - (-2778 . 402538) (-2779 . 402419) (-2780 . 402304) (-2781 . 402221) - (-2782 . 402084) (-2783 . 401933) (-2784 . 401489) (-2785 . 401410) - (-2786 . 401233) (-2787 . 401201) (-2788 . 400951) (-2789 . 400874) - (-2790 . 400754) (-2791 . 400191) (-2792 . 400118) (-2793 . 400090) - (-2794 . 399738) (-2795 . 399503) (-2796 . 399394) (-2797 . 395394) - (-2798 . 395273) (-2799 . 395187) (-2800 . 394998) (-2801 . 394833) - (-2802 . 394781) (-2803 . 394218) (-2804 . 394078) (-2805 . 393864) - (-2806 . 393778) (-2807 . 392811) (-2808 . 392690) (-2809 . 392607) - (-2810 . 391643) (-2811 . 391584) (-2812 . 391487) (-2813 . 391326) - (-2814 . 391245) (-2815 . 390682) (-2816 . 390536) (-2817 . 390326) - (-2818 . 390199) (-2819 . 390036) (-2820 . 389814) (-2821 . 389745) - (-2822 . 389282) (-2823 . 388747) (-2824 . 388548) (-2825 . 387368) - (-2826 . 387095) (-2827 . 386972) (-2828 . 386849) (-2829 . 386772) - (-2830 . 386655) (-2831 . 386462) (-2832 . 386170) (-2833 . 385991) - (-2834 . 385603) (-2835 . 385496) (-2836 . 385351) (-2837 . 385183) - (-2838 . 385116) (-2839 . 384962) (-2840 . 384845) (-2841 . 384708) - (-2842 . 384578) (-2843 . 384490) (-2844 . 384419) (-2845 . 384325) - (-2846 . 384231) (-2847 . 383008) (-2848 . 382925) (-2849 . 382772) - (-2850 . 382326) (-2851 . 382141) (-2852 . 381725) (-2853 . 381596) - (-2854 . 381462) (-2855 . 381368) (-2856 . 381255) (-2857 . 381199) - (-2858 . 380547) (-2859 . 380379) (-2860 . 375040) (-2861 . 374858) - (-2862 . 374594) (-2863 . 374475) (-2864 . 374364) (-2865 . 373937) - (-2866 . 373910) (-2867 . 373667) (-2868 . 373419) (-2869 . 373281) - (-2870 . 373142) (-2871 . 373034) (-2872 . 372663) (-2873 . 372539) - (-2874 . 372376) (-2875 . 372156) (-2876 . 372046) (-2877 . 371997) - (-2878 . 371838) (-2879 . 371770) (-2880 . 371644) (-2881 . 371558) - (-2882 . 371505) (-2883 . 371373) (-2884 . 371305) (* . 367192) - (-2886 . 367109) (-2887 . 366918) (-2888 . 366804) (-2889 . 366685) - (-2890 . 366551) (-2891 . 366345) (-2892 . 366226) (-2893 . 366094) - (-2894 . 365962) (-2895 . 365909) (-2896 . 365784) (-2897 . 365687) - (-2898 . 365630) (-2899 . 365531) (-2900 . 365433) (-2901 . 365356) - (-2902 . 365171) (-2903 . 365000) (-2904 . 364806) (-2905 . 364588) - (-2906 . 364484) (-2907 . 364245) (-2908 . 364049) (-2909 . 363733) - (-2910 . 363649) (-2911 . 363439) (-2912 . 363386) (-2913 . 362978) - (-2914 . 362905) (-2915 . 362794) (-2916 . 362675) (-2917 . 362646) - (-2918 . 362525) (-2919 . 362473) (-2920 . 362390) (-2921 . 362362) - (-2922 . 362182) (-2923 . 361649) (-2924 . 361554) (-2925 . 361282) - (-2926 . 361088) (-2927 . 360718) (-2928 . 360616) (-2929 . 360563) - (-2930 . 359411) (-2931 . 359308) (-2932 . 359221) (-2933 . 359133) - (-2934 . 359076) (-2935 . 358877) (-2936 . 358845) (-2937 . 358681) - (-2938 . 358628) (-2939 . 358487) (-2940 . 358073) (-2941 . 357952) - (-2942 . 357674) (-2943 . 357580) (-2944 . 357480) (-2945 . 357241) - (-2946 . 357045) (-2947 . 356787) (-2948 . 356681) (-2949 . 356653) - (-2950 . 356422) (-2951 . 356283) (-2952 . 356231) (-2953 . 356151) - (-2954 . 356080) (-2955 . 355973) (-2956 . 355817) (-2957 . 355599) - (-2958 . 355422) (-2959 . 355322) (-2960 . 355238) (-2961 . 355184) - (-2962 . 355081) (-2963 . 354943) (-2964 . 354856) (-2965 . 354788) - (-2966 . 354263) (-2967 . 354175) (-2968 . 353839) (-2969 . 353737) - (-2970 . 353630) (-2971 . 353537) (-2972 . 353468) (-2973 . 353386) - (-2974 . 353025) (-2975 . 352806) (-2976 . 352734) (-2977 . 352706) - (-2978 . 352547) (-2979 . 352242) (-2980 . 352098) (-2981 . 352031) - (-2982 . 351904) (-2983 . 351843) (-2984 . 351584) (-2985 . 351504) - (-2986 . 351407) (-2987 . 351262) (-2988 . 351228) (-2989 . 351134) - (-2990 . 351081) (-2991 . 351012) (-2992 . 350925) (-2993 . 350614) - (-2994 . 350546) (-2995 . 350364) (-2996 . 350335) (-2997 . 350138) - (-2998 . 349930) (-2999 . 349829) (-3000 . 349759) (-3001 . 349725) - (-3002 . 349615) (-3003 . 349188) (-3004 . 349050) (-3005 . 349001) - (-3006 . 348573) (-3007 . 348440) (-3008 . 346994) (-3009 . 346891) - (-3010 . 346752) (-3011 . 346092) (-3012 . 345874) (-3013 . 345729) - (-3014 . 345651) (-3015 . 345588) (-3016 . 345405) (-3017 . 345376) - (-3018 . 345267) (-3019 . 345214) (-3020 . 345118) (-3021 . 345002) - (-3022 . 344925) (-3023 . 344830) (-3024 . 344550) (-3025 . 344446) - (-3026 . 344304) (-3027 . 344130) (-3028 . 344077) (-3029 . 343888) - (-3030 . 342702) (-3031 . 342350) (-3032 . 342257) (-3033 . 342076) - (-3034 . 341469) (-3035 . 341416) (-3036 . 341360) (-3037 . 341328) - (-3038 . 341244) (-3039 . 341185) (-3040 . 341021) (-3041 . 340964) - (-3042 . 340891) (-3043 . 340250) (-3044 . 339068) (-3045 . 338806) - (-3046 . 338733) (-3047 . 338611) (-3048 . 338495) (-3049 . 338224) - (-3050 . 338109) (-3051 . 337807) (-3052 . 337261) (-3053 . 337164) - (-3054 . 336878) (-3055 . 336359) (-3056 . 336206) (-3057 . 333998) - (-3058 . 333928) (-3059 . 333867) (-3060 . 333786) (-3061 . 333715) - (-3062 . 333620) (-3063 . 333560) (-3064 . 333230) (-3065 . 332596) - (-3066 . 332508) (-3067 . 332389) (-3068 . 332340) (-3069 . 332266) - (-3070 . 332170) (-3071 . 331786) (-3072 . 331704) (-3073 . 331639) - (-3074 . 331120) (-3075 . 330895) (-3076 . 330821) (-3077 . 330278) - (-3078 . 330226) (-3079 . 330152) (-3080 . 327311) (-3081 . 327213) - (-3082 . 327109) (-3083 . 326861) (-3084 . 326681) (-3085 . 326629) - (-3086 . 326508) (-3087 . 326393) (-3088 . 326227) (-3089 . 326123) - (-3090 . 326007) (-3091 . 325498) (-3092 . 325408) (-3093 . 325356) - (-3094 . 325241) (-3095 . 325100) (-3096 . 324789) (-3097 . 324468) - (-3098 . 324262) (-3099 . 324206) (-3100 . 324104) (-3101 . 323842) - (-3102 . 323810) (-3103 . 323636) (-3104 . 322818) (-3105 . 322763) - (-3106 . 322450) (-3107 . 322379) (-3108 . 322257) (-3109 . 322046) - (-3110 . 321908) (-3111 . 321601) (-3112 . 321527) (-3113 . 321470) - (-3114 . 321126) (-3115 . 321074) (-3116 . 320973) (-3117 . 320768) - (-3118 . 320640) (-3119 . 320325) (-3120 . 320251) (-3121 . 320032) - (-3122 . 319687) (-3123 . 319376) (-3124 . 319060) (-3125 . 318782) - (-3126 . 318464) (-3127 . 318293) (-3128 . 318205) (-3129 . 318147) - (-3130 . 318008) (-3131 . 317946) (-3132 . 317608) (-3133 . 317330) - (-3134 . 317160) (-3135 . 316950) (-3136 . 316891) (-3137 . 316835) - (-3138 . 316671) (-3139 . 316499) (-3140 . 316428) (-3141 . 316345) - (-3142 . 316264) (-3143 . 316190) (-3144 . 315916) (-3145 . 315842) - (-3146 . 315739) (-3147 . 315408) (-3148 . 315326) (-3149 . 315245) - (-3150 . 315133) (-3151 . 314961) (-3152 . 314727) (-3153 . 314575) - (-3154 . 314434) (-3155 . 314162) (-3156 . 314033) (-3157 . 313887) - (-3158 . 313483) (-3159 . 313139) (-3160 . 313068) (-3161 . 312866) - (-3162 . 312694) (-3163 . 312564) (-3164 . 312487) (-3165 . 312253) - (-3166 . 312181) (-3167 . 312068) (-3168 . 312019) (-3169 . 311901) - (-3170 . 311824) (-3171 . 311717) (-3172 . 311658) (-3173 . 311486) - (-3174 . 311268) (-3175 . 311138) (-3176 . 311042) (-3177 . 309453) - (-3178 . 309358) (-3179 . 309197) (-3180 . 309130) (-3181 . 309063) - (-3182 . 308889) (-3183 . 308818) (-3184 . 308500) (-3185 . 308207) - (-3186 . 307680) (-3187 . 307621) (-3188 . 307565) (-3189 . 307443) - (-3190 . 307347) (-3191 . 307297) (-3192 . 307244) (-3193 . 307142) - (-3194 . 307007) (-3195 . 306955) (-3196 . 306824) (-3197 . 306711) - (-3198 . 306546) (-3199 . 306433) (-3200 . 306338) (-3201 . 306279) - (-3202 . 306181) (-3203 . 305586) (-3204 . 305468) (-3205 . 305410) - (-3206 . 305350) (-3207 . 305262) (-3208 . 305120) (-3209 . 305025) - (-3210 . 304324) (-3211 . 304143) (-3212 . 303949) (-3213 . 303894) - (-3214 . 303802) (-3215 . 303627) (-3216 . 303504) (-3217 . 303058) - (-3218 . 302853) (-3219 . 302757) (-3220 . 302618) (-3221 . 302499) - (-3222 . 302379) (-3223 . 302302) (-3224 . 301975) (-3225 . 301753) - (-3226 . 301636) (-3227 . 301212) (-3228 . 301090) (-3229 . 300942) - (-3230 . 300555) (-3231 . 300424) (-3232 . 300030) (-3233 . 299773) - (-3234 . 299209) (-3235 . 299010) (-3236 . 298860) (-3237 . 298745) - (-3238 . 298692) (-3239 . 298542) (-3240 . 298295) (-3241 . 298228) - (-3242 . 298123) (-3243 . 298031) (-3244 . 297542) (-3245 . 297149) - (-3246 . 297099) (-3247 . 296756) (-3248 . 296679) (-3249 . 296584) - (-3250 . 296520) (-3251 . 296112) (-3252 . 295776) (-3253 . 295696) - (-3254 . 295486) (-3255 . 295087) (-3256 . 294869) (-3257 . 294695) - (-3258 . 294621) (-3259 . 294440) (-3260 . 294361) (-3261 . 293831) - (-3262 . 293729) (-3263 . 293543) (-3264 . 292741) (-3265 . 292644) - (-3266 . 292566) (-3267 . 292351) (-3268 . 292015) (-3269 . 291927) - (-3270 . 291826) (-3271 . 291789) (-3272 . 291717) (-3273 . 291615) - (-3274 . 291194) (-3275 . 291031) (-3276 . 290864) (-3277 . 290435) - (-3278 . 290337) (-3279 . 290044) (-3280 . 289452) (-3281 . 289314) - (-3282 . 289177) (-3283 . 289049) (-3284 . 285099) (-3285 . 284139) - (-3286 . 284057) (-3287 . 283977) (-3288 . 283770) (-3289 . 283255) - (-3290 . 283164) (-3291 . 282706) (-3292 . 282540) (-3293 . 282473) - (-3294 . 282296) (-3295 . 282200) (-3296 . 282092) (-3297 . 282033) - (-3298 . 281410) (-3299 . 281281) (-3300 . 281228) (-3301 . 280975) - (-3302 . 280802) (-3303 . 280707) (-3304 . 280654) (-3305 . 279995) - (-3306 . 279770) (-3307 . 279672) (-3308 . 278329) (-3309 . 278136) - (-3310 . 277766) (-3311 . 277646) (-3312 . 277531) (-3313 . 277454) - (-3314 . 277145) (-3315 . 277093) (-3316 . 277038) (-3317 . 276910) - (-3318 . 276270) (-3319 . 276210) (-3320 . 276125) (-3321 . 276001) - (-3322 . 275529) (-3323 . 275455) (-3324 . 275387) (-3325 . 275244) - (-3326 . 275116) (-3327 . 274936) (-3328 . 274779) (-3329 . 274696) - (-3330 . 274556) (-3331 . 274501) (-3332 . 274446) (-3333 . 273767) - (-3334 . 273379) (-3335 . 273326) (-3336 . 272896) (-3337 . 272829) - (-3338 . 272743) (-3339 . 271445) (-3340 . 271227) (-3341 . 270781) - (-3342 . 270693) (-3343 . 270607) (-3344 . 270538) (-3345 . 270150) - (-3346 . 269848) (-3347 . 269685) (-3348 . 269591) (-3349 . 269005) - (-3350 . 268895) (-3351 . 268809) (-3352 . 268638) (-3353 . 268467) - (-3354 . 268369) (-3355 . 268053) (-3356 . 267958) (-3357 . 267803) - (-3358 . 267517) (-3359 . 267485) (-3360 . 267357) (-3361 . 267191) - (-3362 . 267129) (-3363 . 267021) (-3364 . 266727) (-3365 . 266653) - (-3366 . 266450) (-3367 . 266172) (-3368 . 265434) (-3369 . 265377) - (-3370 . 265262) (-3371 . 265204) (-3372 . 264618) (-3373 . 264524) - (-3374 . 264113) (-3375 . 264043) (-3376 . 263805) (-3377 . 263697) - (-3378 . 263615) (-3379 . 263471) (-3380 . 263326) (-3381 . 263149) - (-3382 . 263008) (-3383 . 262901) (-3384 . 262760) (-3385 . 262708) - (-3386 . 262510) (-3387 . 262365) (-3388 . 262162) (-3389 . 262068) - (-3390 . 262015) (-3391 . 261477) (-3392 . 261391) (-3393 . 261045) - (-3394 . 260990) (-3395 . 260887) (-3396 . 260735) (-3397 . 260622) - (-3398 . 260241) (-3399 . 260062) (-3400 . 259974) (-3401 . 259776) - (-3402 . 259669) (-3403 . 259587) (-3404 . 259434) (-3405 . 259315) - (-3406 . 259266) (-3407 . 259029) (-3408 . 258968) (-3409 . 258771) - (-3410 . 258529) (-3411 . 257189) (-3412 . 257082) (-3413 . 256958) - (-3414 . 256906) (-3415 . 256853) (-3416 . 256683) (-3417 . 254905) - (-3418 . 254606) (-3419 . 254394) (-3420 . 253972) (-3421 . 253844) - (-3422 . 253376) (-3423 . 253270) (-3424 . 253052) (-3425 . 252984) - (-3426 . 252885) (-3427 . 252783) (-3428 . 252504) (-3429 . 252407) - (-3430 . 252301) (-3431 . 252220) (-3432 . 252113) (-3433 . 252085) - (-3434 . 251915) (-3435 . 251774) (-3436 . 251636) (-3437 . 251540) - (-3438 . 251486) (-3439 . 251065) (-3440 . 250823) (-3441 . 250726) - (-3442 . 250397) (-3443 . 250231) (-3444 . 250146) (-3445 . 250027) - (-3446 . 249541) (-3447 . 248725) (-3448 . 248507) (-3449 . 248451) - (-3450 . 248355) (-3451 . 247968) (-3452 . 247901) (-3453 . 247700) - (-3454 . 247475) (-3455 . 247297) (-3456 . 247165) (-3457 . 247137) - (-3458 . 247050) (-3459 . 246186) (-3460 . 246010) (-3461 . 245948) - (-3462 . 245806) (-3463 . 245710) (-3464 . 245595) (-3465 . 245432) - (-3466 . 245276) (-3467 . 245205) (-3468 . 245150) (-3469 . 245093) - (-3470 . 245015) (-3471 . 244921) (-3472 . 244794) (-3473 . 244652) - (-3474 . 244489) (-3475 . 244455) (-3476 . 243594) (-3477 . 243387) - (-3478 . 243291) (-3479 . 243232) (-3480 . 243052) (-3481 . 242902) - (-3482 . 242832) (-3483 . 242629) (-3484 . 242497) (-3485 . 242438) - (-3486 . 242382) (-3487 . 242203) (-3488 . 242062) (-3489 . 241975) - (-3490 . 241907) (-3491 . 241361) (-3492 . 241218) (-3493 . 241144) - (-3494 . 241041) (-3495 . 240885) (-3496 . 240823) (-3497 . 240735) - (-3498 . 239633) (-3499 . 239556) (-3500 . 239506) (-3501 . 238903) - (-3502 . 238728) (-3503 . 238311) (-3504 . 238232) (-3505 . 238077) - (-3506 . 237859) (-3507 . 237763) (-3508 . 237650) (-3509 . 237616) - (-3510 . 237516) (-3511 . 237369) (-3512 . 237119) (-3513 . 237091) - (-3514 . 236979) (-3515 . 236096) (-3516 . 235850) (-3517 . 235819) - (-3518 . 235633) (-3519 . 235266) (-3520 . 235079) (-3521 . 234994) - (-3522 . 234921) (-3523 . 234838) (-3524 . 234743) (-3525 . 234578) - (-3526 . 234246) (-3527 . 234161) (-3528 . 234045) (-3529 . 233866) - (-3530 . 233815) (-3531 . 233722) (-3532 . 232604) (-3533 . 232575) - (-3534 . 232305) (-3535 . 231998) (-3536 . 231901) (-3537 . 231850) - (-3538 . 231768) (-3539 . 231652) (-3540 . 231527) (-3541 . 231444) - (-3542 . 231392) (-3543 . 231149) (-3544 . 231064) (-3545 . 231005) - (-3546 . 230604) (-3547 . 230506) (-3548 . 230124) (-3549 . 230051) - (-3550 . 229955) (-3551 . 229810) (-3552 . 229776) (-3553 . 229530) - (-3554 . 229474) (-3555 . 229309) (-3556 . 229275) (-3557 . 229243) - (-3558 . 228990) (-3559 . 228911) (-3560 . 228840) (-3561 . 228654) - (-3562 . 228425) (-3563 . 228391) (-3564 . 228249) (-3565 . 228069) - (-3566 . 228016) (-3567 . 227894) (-3568 . 227836) (-3569 . 227445) - (-3570 . 208870) (-3571 . 208644) (-3572 . 208548) (-3573 . 207549) - (-3574 . 207410) (-3575 . 207343) (-3576 . 207209) (-3577 . 207146) - (-3578 . 207087) (-3579 . 206560) (-3580 . 206482) (-3581 . 205869) - (-3582 . 202945) (-3583 . 202557) (-3584 . 202505) (-3585 . 202449) - (-3586 . 202394) (-3587 . 202264) (-3588 . 202132) (-3589 . 202001) - (-3590 . 201593) (-3591 . 201515) (-3592 . 201306) (-3593 . 200879) - (-3594 . 200806) (-3595 . 200664) (-3596 . 200465) (-3597 . 200153) - (-3598 . 200057) (-3599 . 199998) (-3600 . 199663) (-3601 . 199445) - (-3602 . 199411) (-3603 . 197443) (-3604 . 197175) (-3605 . 197083) - (-3606 . 196970) (-3607 . 196869) (-3608 . 196756) (-3609 . 196595) - (-3610 . 196496) (-3611 . 196367) (-3612 . 196075) (-3613 . 195723) - (-3614 . 195614) (-3615 . 195459) (-3616 . 195174) (-3617 . 195032) - (-3618 . 194959) (-3619 . 194847) (-3620 . 194773) (-3621 . 194607) - (-3622 . 194535) (-3623 . 194428) (-3624 . 194220) (-3625 . 193865) - (-3626 . 193764) (-3627 . 193714) (-3628 . 193492) (-3629 . 193327) - (-3630 . 193212) (-3631 . 193143) (-3632 . 193115) (-3633 . 192877) - (-3634 . 190763) (-3635 . 190626) (-3636 . 190499) (-3637 . 190416) - (-3638 . 190228) (-3639 . 190140) (-3640 . 190069) (-3641 . 189932) - (-3642 . 189876) (-3643 . 189767) (-3644 . 189571) (-3645 . 188309) - (-3646 . 188206) (-3647 . 188134) (-3648 . 188106) (-3649 . 188054) - (-3650 . 188020) (-3651 . 187822) (-3652 . 187480) (-3653 . 187232) - (-3654 . 187154) (-3655 . 187102) (-3656 . 187032) (-3657 . 186778) - (-3658 . 186711) (-3659 . 186651) (-3660 . 186130) (-3661 . 185965) - (-3662 . 185797) (-3663 . 185730) (-3664 . 185632) (-3665 . 185418) - (-3666 . 185324) (-3667 . 185065) (-3668 . 184870) (-3669 . 184384) - (-3670 . 184073) (-3671 . 184000) (-3672 . 183158) (-3673 . 182755) - (-3674 . 182637) (-3675 . 182551) (-3676 . 182480) (-3677 . 182273) - (-3678 . 182155) (-3679 . 182053) (-3680 . 181917) (-3681 . 181805) - (-3682 . 181719) (-3683 . 181687) (-3684 . 181401) (-3685 . 181125) - (-3686 . 177516) (-3687 . 177430) (-3688 . 177293) (-3689 . 177135) - (-3690 . 176624) (-3691 . 176568) (-3692 . 176511) (-3693 . 176416) - (-3694 . 176094) (-3695 . 175946) (-3696 . 175810) (-3697 . 175684) - (-3698 . 175614) (-3699 . 175560) (-3700 . 175442) (-3701 . 175232) - (-3702 . 175136) (-3703 . 174992) (-3704 . 174925) (-3705 . 174787) - (-3706 . 174487) (-3707 . 174406) (-3708 . 174311) (-3709 . 174259) - (-3710 . 174095) (-3711 . 173952) (-3712 . 173869) (-3713 . 173711) - (-3714 . 173540) (-3715 . 173262) (-3716 . 173195) (-3717 . 173146) - (-3718 . 173051) (-3719 . 172980) (-3720 . 172946) (-3721 . 172468) - (-3722 . 172395) (-3723 . 172291) (-3724 . 172086) (-3725 . 171965) - (-3726 . 171811) (-3727 . 171782) (-3728 . 171719) (-3729 . 171663) - (-3730 . 171635) (-3731 . 171537) (-3732 . 171265) (-3733 . 171081) - (-3734 . 169831) (-3735 . 169736) (-3736 . 169651) (-3737 . 169598) - (-3738 . 169456) (-3739 . 169312) (-3740 . 169211) (-3741 . 169110) - (-3742 . 169036) (-3743 . 168918) (-3744 . 168834) (-3745 . 167607) - (-3746 . 167530) (-3747 . 167475) (-3748 . 167348) (-3749 . 166594) - (-3750 . 166534) (-3751 . 166071) (-3752 . 166018) (-3753 . 165792) - (-3754 . 165688) (-3755 . 165545) (-3756 . 164241) (-3757 . 164126) - (-3758 . 164002) (-3759 . 163622) (-3760 . 163542) (-3761 . 163396) - (-3762 . 163287) (-3763 . 163131) (-3764 . 162997) (-3765 . 162479) - (-3766 . 160749) (-3767 . 160154) (-3768 . 160126) (-3769 . 159749) - (-3770 . 159560) (-3771 . 159423) (-3772 . 159263) (-3773 . 159120) - (-3774 . 159027) (-3775 . 158800) (-3776 . 158699) (-3777 . 158629) - (-3778 . 158424) (-3779 . 158320) (-3780 . 158267) (-3781 . 158002) - (-3782 . 155221) (-3783 . 154707) (-3784 . 154613) (-3785 . 154585) - (-3786 . 154228) (-3787 . 153899) (-3788 . 153847) (-3789 . 153752) - (-3790 . 153715) (-3791 . 152925) (-3792 . 152844) (-3793 . 152729) - (-3794 . 152658) (-3795 . 152543) (-3796 . 152441) (-3797 . 151553) - (-3798 . 151430) (-3799 . 151325) (-3800 . 151220) (-3801 . 150832) - (-3802 . 150758) (-3803 . 150548) (-3804 . 150482) (-3805 . 150413) - (-3806 . 150256) (-3807 . 150228) (-3808 . 150169) (-3809 . 150117) - (-3810 . 149995) (-3811 . 149743) (-3812 . 149582) (-3813 . 149371) - (-3814 . 149176) (-3815 . 149123) (-3816 . 149062) (-3817 . 148985) - (-3818 . 148827) (-3819 . 148700) (-3820 . 148512) (-3821 . 148364) - (-3822 . 148263) (-3823 . 147193) (-3824 . 146969) (-3825 . 146216) - (-3826 . 146041) (-3827 . 145909) (-3828 . 145857) (-3829 . 145639) - (-3830 . 145392) (-3831 . 145320) (-3832 . 145113) (-3833 . 144823) - (-3834 . 144433) (-3835 . 144359) (-3836 . 144134) (-3837 . 143924) - (-3838 . 143709) (-3839 . 143607) (-3840 . 143517) (-3841 . 143252) - (-3842 . 143156) (-3843 . 143073) (-3844 . 143017) (-3845 . 142881) - (-3846 . 142829) (-3847 . 142596) (-3848 . 142539) (-3849 . 142208) - (-3850 . 142024) (-3851 . 141892) (-3852 . 141811) (-3853 . 141652) - (-3854 . 141354) (-3855 . 141268) (-3856 . 141191) (-3857 . 141099) - (-3858 . 141011) (-3859 . 140645) (-3860 . 140539) (-3861 . 140436) - (-3862 . 140176) (-3863 . 140148) (-3864 . 140016) (-3865 . 139912) - (-3866 . 139775) (-3867 . 139291) (-3868 . 139135) (-3869 . 139043) - (-3870 . 138881) (-3871 . 138823) (-3872 . 138755) (-3873 . 138653) - (-3874 . 138575) (-3875 . 138547) (-3876 . 138283) (-3877 . 137553) - (-3878 . 137087) (-3879 . 136943) (-3880 . 136870) (-3881 . 136453) - (-3882 . 136367) (-3883 . 136310) (-3884 . 136037) (-3885 . 135988) - (-3886 . 135454) (-3887 . 134744) (-3888 . 134654) (-3889 . 133924) - (-3890 . 133845) (-3891 . 133687) (-3892 . 133617) (-3893 . 133583) - (-3894 . 133482) (-3895 . 133405) (-3896 . 133069) (-3897 . 132911) - (-3898 . 132860) (-3899 . 132765) (-3900 . 132519) (-3901 . 131842) - (-3902 . 131625) (-3903 . 131411) (-3904 . 131359) (-3905 . 131211) - (-3906 . 131137) (-3907 . 130994) (-3908 . 130812) (-3909 . 130585) - (-3910 . 130020) (-3911 . 129936) (-3912 . 129778) (-3913 . 129541) - (-3914 . 129388) (-3915 . 129316) (-3916 . 129142) (-3917 . 126886) - (-3918 . 126827) (-3919 . 126744) (-3920 . 126179) (-3921 . 124905) - (-3922 . 124817) (-3923 . 124699) (-3924 . 124668) (-3925 . 124189) - (-3926 . 124106) (-3927 . 124010) (-3928 . 123824) (-3929 . 123661) - (-3930 . 123096) (-3931 . 123046) (-3932 . 122917) (-3933 . 122699) - (-3934 . 122614) (-3935 . 122542) (-3936 . 122465) (-3937 . 122246) - (-3938 . 121571) (-3939 . 121357) (-3940 . 121326) (-3941 . 121292) - (-3942 . 121191) (-3943 . 121117) (-3944 . 121038) (-3945 . 120710) - (-3946 . 120111) (-3947 . 119596) (-3948 . 119088) (-3949 . 118916) - (-3950 . 118839) (-3951 . 118164) (-3952 . 118078) (-3953 . 117922) - (-3954 . 117836) (-3955 . 117750) (-3956 . 117486) (-3957 . 117281) - (-3958 . 117200) (-3959 . 117148) (-3960 . 116564) (-3961 . 115826) - (-3962 . 115680) (-3963 . 115553) (-3964 . 115471) (-3965 . 115252) - (-3966 . 114976) (-3967 . 114767) (-3968 . 114448) (-3969 . 114074) - (-3970 . 113979) (-3971 . 113746) (-3972 . 113412) (-3973 . 113106) - (-3974 . 112543) (-3975 . 111884) (-3976 . 111814) (-3977 . 111676) - (-3978 . 111590) (-3979 . 111538) (-3980 . 111444) (-3981 . 111313) - (-3982 . 111228) (-3983 . 110665) (-3984 . 110568) (-3985 . 110472) - (-3986 . 110250) (-3987 . 110042) (-3988 . 109980) (-3989 . 109776) - (-3990 . 109551) (-3991 . 109460) (-3992 . 109337) (-3993 . 109260) - (-3994 . 109132) (-3995 . 108569) (-3996 . 107703) (-3997 . 107608) - (-3998 . 107450) (-3999 . 107280) (-4000 . 106945) (-4001 . 106866) - (-4002 . 106619) (-4003 . 106466) (-4004 . 106416) (-4005 . 106354) - (-4006 . 105678) (-4007 . 105576) (-4008 . 105478) (-4009 . 105419) - (-4010 . 105243) (-4011 . 105184) (-4012 . 104937) (-4013 . 104841) - (-4014 . 104165) (-4015 . 103996) (-4016 . 103941) (-4017 . 103868) - (-4018 . 103716) (-4019 . 103606) (-4020 . 103439) (-4021 . 103349) - (-4022 . 103278) (-4023 . 103226) (-4024 . 103175) (-4025 . 102499) - (-4026 . 102341) (-4027 . 102131) (-4028 . 101765) (-4029 . 101341) - (-4030 . 101268) (-4031 . 101200) (-4032 . 101148) (-4033 . 101085) - (-4034 . 100417) (-4035 . 100265) (-4036 . 100194) (-4037 . 99630) - (-4038 . 99529) (-4039 . 99431) (-4040 . 99377) (-4041 . 99325) - (-4042 . 99162) (-4043 . 97030) (-4044 . 96886) (-4045 . 96816) - (-4046 . 96608) (-4047 . 96537) (-4048 . 96371) (-4049 . 96226) - (-4050 . 95662) (-4051 . 95609) (-4052 . 94544) (-4053 . 94298) - (-4054 . 93757) (-4055 . 93702) (-4056 . 93616) (-4057 . 93532) - (-4058 . 93418) (-4059 . 93322) (-4060 . 93206) (-4061 . 92642) - (-4062 . 92587) (-4063 . 92486) (-4064 . 92452) (-4065 . 92378) - (-4066 . 92294) (-4067 . 92193) (-4068 . 92080) (-4069 . 91908) - (-4070 . 91803) (-4071 . 91240) (-4072 . 91120) (-4073 . 90872) - (-4074 . 90822) (-4075 . 90769) (-4076 . 90717) (-4077 . 90645) - (-4078 . 90511) (-4079 . 89834) (-4080 . 89718) (-4081 . 89669) - (-4082 . 89583) (-4083 . 89020) (-4084 . 88928) (-4085 . 88842) - (-4086 . 88624) (-4087 . 88485) (-4088 . 88397) (-4089 . 88338) - (-4090 . 88194) (-4091 . 87852) (-4092 . 87781) (-4093 . 87529) - (-4094 . 87177) (-4095 . 87125) (-4096 . 86927) (-4097 . 86825) - (-4098 . 85909) (-4099 . 85821) (-4100 . 85737) (-4101 . 85404) - (-4102 . 85326) (-4103 . 85181) (-4104 . 83980) (-4105 . 83911) - (-4106 . 83759) (-4107 . 83731) (-4108 . 83679) (-4109 . 83554) - (-4110 . 83498) (-4111 . 83203) (-4112 . 83079) (-4113 . 83026) - (-4114 . 82913) (-4115 . 82841) (-4116 . 82586) (-4117 . 68353) - (-4118 . 68252) (-4119 . 67655) (-4120 . 67603) (-4121 . 67520) - (-4122 . 67383) (-4123 . 67247) (-4124 . 67069) (-4125 . 66970) - (-4126 . 66918) (-4127 . 66558) (-4128 . 66356) (-4129 . 65745) - (-4130 . 65493) (-4131 . 65378) (-4132 . 65293) (-4133 . 65130) - (-4134 . 65077) (-4135 . 65024) (-4136 . 64891) (-4137 . 64709) - (-4138 . 64541) (-4139 . 64451) (-4140 . 64151) (-4141 . 63381) - (-4142 . 63169) (-4143 . 63095) (-4144 . 63026) (-4145 . 62547) - (-4146 . 62388) (-4147 . 62052) (-4148 . 61909) (-4149 . 61829) - (-4150 . 61776) (-4151 . 61678) (-4152 . 60486) (-4153 . 60285) - (-4154 . 60195) (-4155 . 60055) (-4156 . 59978) (-4157 . 59603) - (-4158 . 59517) (-4159 . 59402) (-4160 . 59244) (-4161 . 59119) - (-4162 . 58912) (-4163 . 58775) (-4164 . 58681) (-4165 . 58580) - (-4166 . 57904) (-4167 . 57812) (-4168 . 57784) (-4169 . 57571) - (-4170 . 57490) (-4171 . 57405) (-4172 . 53738) (-4173 . 53312) - (-4174 . 53006) (-4175 . 52927) (-4176 . 52825) (-4177 . 52738) - (-4178 . 52680) (-4179 . 52597) (-4180 . 52312) (-4181 . 52051) - (-4182 . 51958) (-4183 . 51874) (-4184 . 51821) (-4185 . 51448) - (-4186 . 51314) (-4187 . 50922) (-4188 . 50762) (-4189 . 50523) - (-4190 . 50466) (-4191 . 50247) (-4192 . 49991) (-4193 . 49704) - (-4194 . 49475) (-4195 . 49292) (-4196 . 49149) (-4197 . 48981) - (-4198 . 48953) (-4199 . 48532) (-4200 . 48431) (-4201 . 48308) - (-4202 . 48226) (-4203 . 48053) (-4204 . 47900) (-4205 . 47840) - (-4206 . 47448) (-4207 . 47391) (-4208 . 47191) (-4209 . 47098) - (-4210 . 46811) (-4211 . 46695) (-4212 . 46643) (-4213 . 46537) - (-4214 . 46463) (-4215 . 46377) (-4216 . 46304) (-4217 . 45553) - (-4218 . 45407) (-4219 . 44105) (-4220 . 44033) (-4221 . 43900) - (-4222 . 43681) (-4223 . 43157) (-4224 . 43107) (-4225 . 42730) - (-4226 . 42290) (-4227 . 42238) (-4228 . 42171) (-4229 . 42071) - (-4230 . 42014) (-4231 . 41962) (-4232 . 41730) (-4233 . 41606) - (-4234 . 41508) (-4235 . 41371) (-4236 . 41343) (-4237 . 41259) - (-4238 . 41193) (-4239 . 41034) (-4240 . 40696) (-4241 . 40583) - (-4242 . 40405) (-4243 . 40338) (-4244 . 40173) (-4245 . 40119) - (-4246 . 39851) (-4247 . 39740) (-4248 . 39663) (-4249 . 39274) - (-4250 . 38936) (-4251 . 38830) (-4252 . 38746) (-4253 . 38672) - (-4254 . 38565) (-4255 . 38173) (-4256 . 38053) (-4257 . 37967) - (-4258 . 37556) (-4259 . 37467) (-4260 . 37324) (-4261 . 37254) - (-4262 . 37225) (-4263 . 37066) (-4264 . 36965) (-4265 . 36838) - (-4266 . 36646) (-4267 . 36400) (-4268 . 36328) (-4269 . 36170) - (-4270 . 35986) (-4271 . 35916) (-4272 . 35725) (-4273 . 35569) - (-4274 . 35137) (-4275 . 34994) (-4276 . 34573) (-4277 . 34448) - (-4278 . 34321) (-4279 . 34220) (-4280 . 34132) (-4281 . 33047) - (-4282 . 33018) (-4283 . 32932) (-4284 . 32844) (-4285 . 32792) - (-4286 . 32674) (-4287 . 32513) (-4288 . 32417) (-4289 . 32350) - (-4290 . 32270) (-4291 . 32115) (-4292 . 31900) (-4293 . 31714) - (-4294 . 31632) (-4295 . 31514) (-4296 . 31458) (-4297 . 31248) - (-4298 . 31040) (-4299 . 30988) (-4300 . 30956) (-4301 . 30802) - (-4302 . 30728) (-4303 . 30624) (-4304 . 30038) (-4305 . 30010) - (-4306 . 29758) (-4307 . 29640) (-4308 . 29292) (-4309 . 29096) - (-4310 . 28754) (-4311 . 28629) (-4312 . 28429) (-4313 . 28178) - (-4314 . 27939) (-4315 . 27633) (-4316 . 27573) (-4317 . 27477) - (-4318 . 27375) (-4319 . 27001) (-4320 . 26877) (-4321 . 26786) - (-4322 . 26727) (-4323 . 26500) (-4324 . 26360) (-4325 . 26305) - (-4326 . 25990) (-4327 . 25843) (-4328 . 25491) (-4329 . 25424) - (-4330 . 25344) (-4331 . 25277) (-4332 . 25224) (-4333 . 25196) - (-4334 . 24942) (-4335 . 24710) (-4336 . 24581) (-4337 . 24394) - (-4338 . 24042) (-4339 . 23929) (-4340 . 23776) (-4341 . 23591) - (-4342 . 23481) (-4343 . 23402) (-4344 . 23295) (-4345 . 23243) - (-4346 . 21811) (-4347 . 21526) (-4348 . 21366) (-4349 . 20185) - (-4350 . 20114) (-4351 . 20016) (-4352 . 19313) (-4353 . 19175) - (-4354 . 18860) (-4355 . 18776) (-4356 . 18714) (-4357 . 18484) - (-4358 . 18416) (-4359 . 18366) (-4360 . 18221) (-4361 . 18126) - (-4362 . 17983) (-4363 . 17674) (-4364 . 17512) (-4365 . 17426) - (-4366 . 17363) (-4367 . 17319) (-4368 . 17140) (-4369 . 16856) - (-4370 . 16705) (-4371 . 16480) (-4372 . 16425) (-4373 . 16337) - (-4374 . 16242) (-4375 . 16112) (-4376 . 15948) (-4377 . 15895) - (-4378 . 15843) (-4379 . 15806) (-4380 . 15707) (-4381 . 15640) - (-4382 . 15563) (-4383 . 15307) (-4384 . 15164) (-4385 . 15098) - (-4386 . 14883) (-4387 . 14733) (-4388 . 14170) (-4389 . 14015) - (-4390 . 13917) (-4391 . 13119) (-4392 . 13015) (-4393 . 12963) - (-4394 . 12789) (-4395 . 12631) (-4396 . 12127) (-4397 . 12032) - (-4398 . 11809) (-4399 . 11680) (-4400 . 11300) (-4401 . 11156) - (-4402 . 11051) (-4403 . 11023) (-4404 . 10971) (-4405 . 10786) - (-4406 . 10716) (-4407 . 10569) (-4408 . 10330) (-4409 . 10236) - (-4410 . 10169) (-4411 . 10012) (-4412 . 9837) (-4413 . 9747) - (-4414 . 9585) (-4415 . 9532) (-4416 . 9444) (-4417 . 9407) - (-4418 . 9337) (-4419 . 9265) (-4420 . 9025) (-4421 . 8928) - (-4422 . 8876) (-4423 . 8798) (-4424 . 4638) (-4425 . 4575) - (-4426 . 4368) (-4427 . 4301) (-4428 . 4249) (-4429 . 3771) - (-4430 . 3687) (-4431 . 3560) (-4432 . 3505) (-4433 . 3224) - (-4434 . 3041) (-4435 . 2911) (-4436 . 2788) (-4437 . 2696) - (-4438 . 2616) (-4439 . 2345) (-4440 . 1143) (-4441 . 862) - (-4442 . 371) (-4443 . 339) (-4444 . 168) (-4445 . 30))
\ No newline at end of file + (-12 (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-374)) + (-5 *2 (-701 *5)) (-5 *1 (-826 *5 *6)) (-4 *6 (-668 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-1178 *3))) (-5 *2 (-1178 *3)) (-5 *1 (-1181 *3)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-2 (|:| |k| (-1197)) (|:| |c| (-1310 *3))))) + (-5 *1 (-1310 *3)) (-4 *3 (-1070)))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 (-2 (|:| |k| *3) (|:| |c| (-1312 *3 *4))))) + (-5 *1 (-1312 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) +((-1322 . 731577) (-1323 . 731321) (-1324 . 731185) (-1325 . 730935) + (-1326 . 730855) (-1327 . 730687) (-1328 . 730366) (-1329 . 730334) + (-1330 . 730216) (-1331 . 729997) (-1332 . 729923) (-1333 . 729786) + (-1334 . 729681) (-1335 . 729604) (-1336 . 729520) (-1337 . 729396) + (-1338 . 729143) (-1339 . 728896) (-1340 . 728751) (-1341 . 728495) + (-1342 . 728401) (-1343 . 728309) (-1344 . 728243) (-1345 . 728170) + (-1346 . 727686) (-1347 . 727563) (-1348 . 727429) (-1349 . 726587) + (-1350 . 726508) (-1351 . 726221) (-1352 . 726065) (-1353 . 725938) + (-1354 . 725449) (-1355 . 725421) (-1356 . 725265) (-1357 . 724992) + (-1358 . 724119) (-1359 . 724033) (-1360 . 723962) (-1361 . 723856) + (-1362 . 723739) (-1363 . 723510) (-1364 . 723223) (-1365 . 722816) + (-1366 . 722423) (-1367 . 722071) (-1368 . 721909) (-1369 . 720481) + (-1370 . 720411) (-1371 . 720225) (-1372 . 720042) (-1373 . 720011) + (-1374 . 719953) (-1375 . 719846) (-1376 . 719796) (-1377 . 719677) + (-1378 . 719442) (-1379 . 719369) (-1380 . 719140) (-1381 . 718743) + (-1382 . 718349) (-1383 . 718206) (-1384 . 718097) (-1385 . 718024) + (-1386 . 717681) (-1387 . 717613) (-1388 . 717542) (-1389 . 717426) + (-1390 . 717235) (-1391 . 717156) (-1392 . 717128) (-1393 . 716986) + (-1394 . 716958) (-1395 . 716874) (-1396 . 716753) (-1397 . 716616) + (-1398 . 716539) (-1399 . 716093) (-1400 . 715991) (-1401 . 715769) + (-1402 . 715710) (-1403 . 715609) (-1404 . 715429) (-1405 . 715008) + (-1406 . 714948) (-1407 . 714862) (-1408 . 714784) (-1409 . 714442) + (-1410 . 714389) (-1411 . 713769) (-1412 . 713668) (-1413 . 713510) + (-1414 . 713371) (-1415 . 713343) (-1416 . 713154) (-1417 . 713102) + (-1418 . 713006) (-1419 . 712949) (-1420 . 712827) (-1421 . 712260) + (-1422 . 712137) (-1423 . 712068) (-1424 . 712006) (-1425 . 711841) + (-1426 . 711577) (-1427 . 711201) (-1428 . 711127) (-1429 . 711074) + (-1430 . 711016) (-1431 . 710942) (-1432 . 710860) (-1433 . 710715) + (-1434 . 710377) (-1435 . 709911) (-1436 . 709859) (-1437 . 709760) + (-1438 . 709687) (-1439 . 709514) (-1440 . 709295) (-1441 . 709017) + (-1442 . 708965) (-1443 . 708821) (-1444 . 708681) (-1445 . 708610) + (-1446 . 708524) (-1447 . 708383) (** . 705388) (-1449 . 705235) + (-1450 . 705181) (-1451 . 705011) (-1452 . 703933) (-1453 . 703860) + (-1454 . 703646) (-1455 . 703573) (-1456 . 703460) (-1457 . 703365) + (-1458 . 703227) (-1459 . 703167) (-1460 . 702928) (-1461 . 702869) + (-1462 . 702726) (-1463 . 702640) (-1464 . 702460) (-1465 . 702043) + (-1466 . 701877) (-1467 . 701746) (-1468 . 701650) (-1469 . 701258) + (-1470 . 701202) (-1471 . 701144) (-1472 . 701092) (-1473 . 700064) + (-1474 . 700010) (-1475 . 699953) (-1476 . 699195) (-1477 . 699031) + (-1478 . 698852) (-1479 . 698472) (-1480 . 698055) (-1481 . 697481) + (-1482 . 697449) (-1483 . 697028) (-1484 . 696828) (-1485 . 696757) + (-1486 . 696636) (-1487 . 696556) (-1488 . 696463) (-1489 . 696385) + (-1490 . 696143) (-1491 . 696047) (-1492 . 695945) (-1493 . 695852) + (-1494 . 695745) (-1495 . 695662) (-1496 . 695516) (-1497 . 695068) + (-1498 . 694701) (-1499 . 694372) (-1500 . 693834) (-1501 . 693737) + (-1502 . 693656) (-1503 . 693534) (-1504 . 693425) (-1505 . 693370) + (-1506 . 693193) (-1507 . 693133) (-1508 . 692967) (-1509 . 692749) + (-1510 . 692670) (-1511 . 692596) (-1512 . 692472) (-1513 . 692316) + (-1514 . 692107) (-1515 . 692035) (-1516 . 691947) (-1517 . 691862) + (-1518 . 691723) (-1519 . 691695) (-1520 . 691421) (-1521 . 691326) + (-1522 . 691192) (-1523 . 691068) (-1524 . 690915) (-1525 . 690796) + (-1526 . 690708) (-1527 . 690614) (-1528 . 690540) (-1529 . 690411) + (-1530 . 689893) (-1531 . 689790) (-1532 . 689557) (-1533 . 689339) + (-1534 . 689280) (-1535 . 689228) (-1536 . 689125) (-1537 . 689054) + (-1538 . 687324) (-1539 . 687195) (-1540 . 687143) (-1541 . 687087) + (-1542 . 686693) (-1543 . 686549) (-1544 . 686218) (-1545 . 685780) + (-1546 . 685577) (-1547 . 684982) (-1548 . 684602) (-1549 . 684543) + (-1550 . 684469) (-1551 . 684373) (-1552 . 684031) (-1553 . 684003) + (-1554 . 683921) (-1555 . 683634) (-1556 . 683606) (-1557 . 683214) + (-1558 . 683070) (-1559 . 682776) (-1560 . 682389) (-1561 . 682004) + (-1562 . 681933) (-1563 . 681866) (-1564 . 681742) (-1565 . 681661) + (-1566 . 681170) (-1567 . 680793) (-1568 . 680603) (-1569 . 680498) + (-1570 . 679794) (-1571 . 679710) (-1572 . 675167) (-1573 . 675022) + (-1574 . 674955) (-1575 . 674703) (-1576 . 674434) (-1577 . 674322) + (-1578 . 674133) (-1579 . 673990) (-1580 . 673962) (-1581 . 673281) + (-1582 . 673203) (-1583 . 673002) (-1584 . 672865) (-1585 . 672513) + (-1586 . 672453) (-1587 . 672219) (-1588 . 672137) (-1589 . 672000) + (-1590 . 671948) (-1591 . 671881) (-1592 . 671656) (-1593 . 671575) + (-1594 . 671523) (-1595 . 671226) (-1596 . 671074) (-1597 . 670914) + (-1598 . 670713) (-1599 . 670528) (-1600 . 670275) (-1601 . 670180) + (-1602 . 670002) (-1603 . 669810) (-1604 . 669612) (-1605 . 669528) + (-1606 . 669387) (-1607 . 669268) (-1608 . 669125) (-1609 . 669055) + (-1610 . 668948) (-1611 . 668807) (-1612 . 668675) (-1613 . 668598) + (-1614 . 668496) (-1615 . 667866) (-1616 . 667812) (-1617 . 667701) + (-1618 . 667429) (-1619 . 667357) (-1620 . 667264) (-1621 . 667117) + (-1622 . 666993) (-1623 . 666965) (-1624 . 666877) (-1625 . 665961) + (-1626 . 665832) (-1627 . 665572) (-1628 . 665477) (-1629 . 665250) + (-1630 . 665011) (-1631 . 664815) (-1632 . 663951) (-1633 . 663732) + (-1634 . 663644) (-1635 . 663498) (-1636 . 663438) (-1637 . 663205) + (-1638 . 663104) (-1639 . 663010) (-1640 . 662701) (-1641 . 662646) + (-1642 . 662470) (-1643 . 662366) (-1644 . 662282) (-1645 . 662222) + (-1646 . 662152) (-1647 . 661748) (-1648 . 661714) (-1649 . 661599) + (-1650 . 661443) (-1651 . 661330) (-1652 . 661263) (-1653 . 660810) + (-1654 . 660634) (-1655 . 660572) (-1656 . 660239) (-1657 . 659680) + (-1658 . 659610) (-1659 . 659266) (-1660 . 659061) (-1661 . 658903) + (-1662 . 654840) (-1663 . 654683) (-1664 . 654580) (-1665 . 654511) + (-1666 . 654283) (-1667 . 654141) (-1668 . 654063) (-1669 . 653504) + (-1670 . 653219) (-1671 . 653148) (-1672 . 653120) (-1673 . 653016) + (-1674 . 652841) (-1675 . 652784) (-1676 . 652703) (-1677 . 652607) + (-1678 . 652462) (-1679 . 652363) (-1680 . 652161) (-1681 . 651678) + (-1682 . 651625) (-1683 . 651535) (-1684 . 651388) (-1685 . 651273) + (-1686 . 651100) (-1687 . 651031) (-1688 . 651003) (-1689 . 650757) + (-1690 . 650627) (-1691 . 650570) (-1692 . 650454) (-1693 . 650189) + (-1694 . 650027) (-1695 . 649829) (-1696 . 649758) (-1697 . 649610) + (-1698 . 649458) (-1699 . 649212) (-1700 . 649067) (-1701 . 648990) + (-1702 . 648895) (-1703 . 646114) (-1704 . 643769) (-1705 . 643716) + (-1706 . 643464) (-1707 . 643409) (-1708 . 643094) (-1709 . 643066) + (-1710 . 642832) (-1711 . 642456) (-1712 . 642310) (-1713 . 641796) + (-1714 . 641708) (-1715 . 641350) (-1716 . 641241) (-1717 . 641170) + (-1718 . 641113) (-1719 . 641061) (-1720 . 640769) (-1721 . 640697) + (-1722 . 640568) (-1723 . 640474) (-1724 . 640437) (-1725 . 640243) + (-1726 . 638462) (-1727 . 638384) (-1728 . 638259) (-1729 . 638146) + (-1730 . 638094) (-1731 . 638066) (-1732 . 637675) (-1733 . 637605) + (-1734 . 637261) (-1735 . 637167) (-1736 . 637090) (-1737 . 637034) + (-1738 . 636985) (-1739 . 636688) (-1740 . 636331) (-1741 . 636254) + (-1742 . 636182) (-1743 . 634983) (-1744 . 634905) (-1745 . 634778) + (-1746 . 634483) (-1747 . 634381) (-1748 . 634302) (-1749 . 634184) + (-1750 . 634129) (-1751 . 633800) (-1752 . 633703) (-1753 . 633597) + (-1754 . 633502) (-1755 . 633360) (-1756 . 633236) (-1757 . 633157) + (-1758 . 633092) (-1759 . 633015) (-1760 . 632963) (-1761 . 632850) + (-1762 . 632798) (-1763 . 632736) (-1764 . 632654) (-1765 . 632491) + (-1766 . 632383) (-1767 . 632330) (-1768 . 631748) (-1769 . 631720) + (-1770 . 631613) (-1771 . 631518) (-1772 . 631373) (-1773 . 631295) + (-1774 . 631130) (-1775 . 631096) (-1776 . 629929) (-1777 . 629786) + (-1778 . 629673) (-1779 . 629508) (-1780 . 629449) (-1781 . 629283) + (-1782 . 628695) (-1783 . 628658) (-1784 . 624498) (-1785 . 624323) + (-1786 . 624244) (-1787 . 624037) (-1788 . 623686) (-1789 . 623614) + (-1790 . 623375) (-1791 . 623157) (-1792 . 623060) (-1793 . 622270) + (-1794 . 622207) (-1795 . 621776) (-1796 . 621661) (-1797 . 620259) + (-1798 . 620068) (-1799 . 619972) (-1800 . 619717) (-1801 . 619658) + (-1802 . 619528) (-1803 . 619366) (-1804 . 619285) (-1805 . 619218) + (-1806 . 618454) (-1807 . 618423) (-1808 . 618364) (-1809 . 618291) + (-1810 . 618190) (-1811 . 618137) (-1812 . 618041) (-1813 . 617926) + (-1814 . 617796) (-1815 . 617318) (-1816 . 617145) (-1817 . 617045) + (-1818 . 616865) (-1819 . 616268) (-1820 . 615906) (-1821 . 615748) + (-1822 . 614159) (-1823 . 614088) (-1824 . 613935) (-1825 . 613851) + (-1826 . 613693) (-1827 . 613580) (-1828 . 608066) (-1829 . 607916) + (-1830 . 607864) (-1831 . 607769) (-1832 . 607614) (-1833 . 607499) + (-1834 . 607447) (-1835 . 607320) (-1836 . 606697) (-1837 . 606494) + (-1838 . 606414) (-1839 . 606219) (-1840 . 605826) (-1841 . 605743) + (-1842 . 605451) (-1843 . 605290) (-1844 . 605188) (-1845 . 605067) + (-1846 . 605012) (-1847 . 604869) (-1848 . 604709) (-1849 . 604577) + (-1850 . 604135) (-1851 . 604034) (-1852 . 603897) (-1853 . 603814) + (-1854 . 603747) (-1855 . 603497) (-1856 . 602609) (-1857 . 602328) + (-1858 . 602272) (-1859 . 602039) (-1860 . 601704) (-1861 . 601060) + (-1862 . 600924) (-1863 . 600890) (-1864 . 600767) (-1865 . 600700) + (-1866 . 600452) (-1867 . 600298) (-1868 . 600175) (-1869 . 599992) + (-1870 . 599665) (-1871 . 599585) (-1872 . 599381) (-1873 . 599202) + (-1874 . 598871) (-1875 . 598693) (-1876 . 598397) (-1877 . 598223) + (-1878 . 597978) (-1879 . 597682) (-1880 . 597577) (-1881 . 597447) + (-1882 . 597294) (-1883 . 597153) (-1884 . 596935) (-1885 . 596836) + (-1886 . 596765) (-1887 . 596624) (-1888 . 596397) (-1889 . 596292) + (-1890 . 596196) (-1891 . 596073) (-1892 . 595783) (-1893 . 595715) + (-1894 . 595611) (-1895 . 595396) (-1896 . 595344) (-1897 . 595026) + (-1898 . 594939) (-1899 . 594871) (-1900 . 594483) (-1901 . 594391) + (-1902 . 594073) (-1903 . 593784) (-1904 . 593713) (-1905 . 593167) + (-1906 . 592807) (-1907 . 592514) (-1908 . 592161) (-1909 . 592087) + (-1910 . 591927) (-1911 . 591656) (-1912 . 591603) (-1913 . 591506) + (-1914 . 591363) (-1915 . 591111) (-1916 . 591037) (-1917 . 590987) + (-1918 . 590460) (-1919 . 590253) (-1920 . 590043) (-1921 . 589762) + (-1922 . 587701) (-1923 . 587621) (-1924 . 587297) (-1925 . 587223) + (-1926 . 587108) (-1927 . 587042) (-1928 . 586851) (-1929 . 586792) + (-1930 . 586712) (-1931 . 586659) (-1932 . 586168) (-1933 . 586038) + (-1934 . 585935) (-1935 . 585850) (-1936 . 585707) (-1937 . 585651) + (-1938 . 585533) (-1939 . 585464) (-1940 . 585432) (-1941 . 585253) + (-1942 . 584286) (-1943 . 584130) (-1944 . 582500) (-1945 . 582343) + (-1946 . 582180) (-1947 . 582058) (-1948 . 581843) (-1949 . 581686) + (-1950 . 581533) (-1951 . 581362) (-1952 . 581195) (-1953 . 581022) + (-1954 . 580960) (-1955 . 580850) (-1956 . 579991) (-1957 . 579938) + (-1958 . 579779) (-1959 . 579751) (-1960 . 579684) (-1961 . 579588) + (-1962 . 579497) (-1963 . 579419) (-1964 . 579281) (-1965 . 579151) + (-1966 . 578984) (-1967 . 578911) (-1968 . 578823) (-1969 . 577527) + (-1970 . 577394) (-1971 . 577335) (-1972 . 577219) (-1973 . 577136) + (-1974 . 576649) (-1975 . 576299) (-1976 . 576222) (-1977 . 575468) + (-1978 . 575286) (-1979 . 575234) (-1980 . 575146) (-1981 . 574854) + (-1982 . 574602) (-1983 . 574497) (-1984 . 574447) (-1985 . 574295) + (-1986 . 574127) (-1987 . 574004) (-1988 . 573955) (-1989 . 573580) + (-1990 . 573419) (-1991 . 572883) (-1992 . 572280) (-1993 . 572008) + (-1994 . 571918) (-1995 . 571844) (-1996 . 571689) (-1997 . 571478) + (-1998 . 571344) (-1999 . 571247) (-2000 . 570947) (-2001 . 570774) + (-2002 . 570674) (-2003 . 570578) (-2004 . 570383) (-2005 . 570147) + (-2006 . 570026) (-2007 . 569956) (-2008 . 569903) (-2009 . 569851) + (-2010 . 568085) (-2011 . 567873) (-2012 . 567489) (-2013 . 567265) + (-2014 . 567212) (-2015 . 567159) (-2016 . 567077) (-2017 . 566859) + (-2018 . 566831) (-2019 . 566593) (-2020 . 565919) (-2021 . 564464) + (-2022 . 564390) (-2023 . 564209) (-2024 . 564114) (-2025 . 564032) + (-2026 . 563752) (-2027 . 563691) (-2028 . 563580) (-2029 . 563472) + (-2030 . 563420) (-2031 . 561930) (-2032 . 561861) (-2033 . 561809) + (-2034 . 561710) (-2035 . 561645) (-2036 . 561501) (-2037 . 561329) + (-2038 . 561301) (-2039 . 560970) (-2040 . 560888) (-2041 . 560409) + (-2042 . 560332) (-2043 . 560129) (-2044 . 559610) (-2045 . 559482) + (-2046 . 559428) (-2047 . 559356) (-2048 . 559212) (-2049 . 559134) + (-2050 . 558398) (-2051 . 558239) (-2052 . 558066) (-2053 . 557994) + (-2054 . 557769) (-2055 . 557590) (-2056 . 557472) (-2057 . 557374) + (-2058 . 557221) (-2059 . 557076) (-2060 . 556913) (-2061 . 556577) + (-2062 . 556524) (-2063 . 556450) (-2064 . 556068) (-2065 . 555982) + (-2066 . 555772) (-2067 . 555668) (-2068 . 555491) (-2069 . 555397) + (-2070 . 555269) (-2071 . 555140) (-2072 . 554920) (-2073 . 554377) + (-2074 . 554067) (-2075 . 553971) (-2076 . 553719) (-2077 . 553667) + (-2078 . 553526) (-2079 . 553373) (-2080 . 553263) (-2081 . 552619) + (-2082 . 552338) (-2083 . 552243) (-2084 . 552191) (-2085 . 552120) + (-2086 . 551976) (-2087 . 551893) (-2088 . 551786) (-2089 . 551702) + (-2090 . 551535) (-2091 . 550363) (-2092 . 550248) (-2093 . 550142) + (-2094 . 549967) (-2095 . 549893) (-2096 . 549733) (-2097 . 549666) + (-2098 . 548730) (-2099 . 548663) (-2100 . 548597) (-2101 . 548456) + (-2102 . 548366) (-2103 . 548251) (-2104 . 548152) (-2105 . 548054) + (-2106 . 547571) (-2107 . 547433) (-2108 . 546696) (-2109 . 546644) + (-2110 . 546592) (-2111 . 546521) (-2112 . 546425) (-2113 . 546306) + (-2114 . 545169) (-2115 . 545065) (-2116 . 544884) (-2117 . 544797) + (-2118 . 544723) (-2119 . 544658) (-2120 . 544358) (-2121 . 544171) + (-2122 . 544029) (-2123 . 543838) (-2124 . 543640) (-2125 . 543566) + (-2126 . 543514) (-2127 . 543461) (-2128 . 543213) (-2129 . 543104) + (-2130 . 542808) (-2131 . 542727) (-2132 . 542375) (-2133 . 541901) + (-2134 . 541756) (-2135 . 541425) (-2136 . 541267) (-2137 . 541216) + (-2138 . 541036) (-2139 . 540918) (-2140 . 540862) (-2141 . 540552) + (-2142 . 540524) (-2143 . 540453) (-2144 . 540358) (-9 . 540330) + (-2146 . 540217) (-2147 . 540050) (-2148 . 539934) (-2149 . 539731) + (-2150 . 539365) (-2151 . 538819) (-2152 . 538767) (-2153 . 538687) + (-8 . 538659) (-2155 . 538535) (-2156 . 538483) (-2157 . 538209) + (-2158 . 538056) (-2159 . 537902) (-2160 . 537643) (-2161 . 537549) + (-2162 . 537448) (-2163 . 537024) (-2164 . 536968) (-2165 . 536795) + (-2166 . 536674) (-2167 . 536618) (-2168 . 536454) (-2169 . 536380) + (-7 . 536352) (-2171 . 536167) (-2172 . 535424) (-2173 . 535340) + (-2174 . 535287) (-2175 . 535214) (-2176 . 535058) (-2177 . 534925) + (-2178 . 534851) (-2179 . 534736) (-2180 . 534593) (-2181 . 534542) + (-2182 . 534432) (-2183 . 534249) (-2184 . 534050) (-2185 . 533512) + (-2186 . 533444) (-2187 . 533351) (-2188 . 533101) (-2189 . 533048) + (-2190 . 532882) (-2191 . 532706) (-2192 . 532623) (-2193 . 532516) + (-2194 . 532443) (-2195 . 532277) (-2196 . 532191) (-2197 . 532139) + (-2198 . 532049) (-2199 . 531880) (-2200 . 531794) (-2201 . 531690) + (-2202 . 531552) (-2203 . 531394) (-2204 . 531342) (-2205 . 531280) + (-2206 . 531184) (-2207 . 530838) (-2208 . 530661) (-2209 . 530598) + (-2210 . 530172) (-2211 . 530091) (-2212 . 530013) (-2213 . 529897) + (-2214 . 529826) (-2215 . 529655) (-2216 . 528223) (-2217 . 528170) + (-2218 . 528115) (-2219 . 527803) (-2220 . 527135) (-2221 . 527052) + (-2222 . 526824) (-2223 . 526315) (-2224 . 526037) (-2225 . 525830) + (-2226 . 525545) (-2227 . 524941) (-2228 . 524838) (-2229 . 524712) + (-2230 . 524560) (-2231 . 524423) (-2232 . 524371) (-2233 . 524294) + (-2234 . 524204) (-2235 . 523983) (-2236 . 523916) (-2237 . 523756) + (-2238 . 523601) (-2239 . 523437) (-2240 . 523285) (-2241 . 523187) + (-2242 . 523127) (-2243 . 523096) (-2244 . 522858) (-2245 . 522806) + (-2246 . 522757) (-2247 . 522661) (-2248 . 522590) (-2249 . 522507) + (-2250 . 522394) (-2251 . 522328) (-2252 . 522274) (-2253 . 522243) + (-2254 . 522104) (-2255 . 521989) (-2256 . 521797) (-2257 . 521702) + (-2258 . 521555) (-2259 . 521457) (-2260 . 521165) (-2261 . 521109) + (-2262 . 520728) (-2263 . 520676) (-2264 . 520033) (-2265 . 519892) + (-2266 . 519745) (-2267 . 519674) (-2268 . 519543) (-2269 . 518840) + (-2270 . 518710) (-2271 . 518531) (-2272 . 518251) (-2273 . 518088) + (-2274 . 517884) (-2275 . 517681) (-2276 . 517370) (-2277 . 517290) + (-2278 . 517256) (-2279 . 517143) (-2280 . 517005) (-2281 . 516953) + (-2282 . 516865) (-2283 . 516532) (-2284 . 516388) (-2285 . 516290) + (-2286 . 515969) (-2287 . 515904) (-2288 . 515816) (-2289 . 515338) + (-2290 . 515254) (-2291 . 515166) (-2292 . 515088) (-2293 . 514890) + (-2294 . 514820) (-2295 . 514753) (-2296 . 514547) (-2297 . 514446) + (-2298 . 514368) (-2299 . 514295) (-2300 . 514233) (-2301 . 514205) + (-2302 . 514136) (-2303 . 514029) (-2304 . 513821) (-2305 . 513495) + (-2306 . 513337) (-2307 . 513235) (-2308 . 513131) (-2309 . 513047) + (-2310 . 512994) (-2311 . 512764) (-2312 . 512597) (-2313 . 512111) + (-2314 . 512029) (-2315 . 511958) (-2316 . 511753) (-2317 . 511652) + (-2318 . 511390) (-2319 . 510654) (-2320 . 510535) (-2321 . 510392) + (-2322 . 510324) (-2323 . 510171) (-2324 . 510119) (-2325 . 509953) + (-2326 . 509896) (-2327 . 509468) (-2328 . 509084) (-2329 . 508998) + (-2330 . 508801) (-2331 . 508437) (-2332 . 508258) (-2333 . 508226) + (-2334 . 508105) (-2335 . 507743) (-2336 . 507693) (-2337 . 507364) + (-2338 . 507287) (-2339 . 507168) (-2340 . 507016) (-2341 . 506871) + (-2342 . 506404) (-2343 . 506182) (-2344 . 506008) (-2345 . 504860) + (-2346 . 504706) (-2347 . 503710) (-2348 . 503565) (-2349 . 503438) + (-2350 . 503290) (-2351 . 503229) (-2352 . 503176) (-2353 . 503099) + (-2354 . 502789) (-2355 . 502690) (-2356 . 502590) (-2357 . 502368) + (-2358 . 501550) (-2359 . 501430) (-2360 . 501401) (-2361 . 501110) + (-2362 . 501015) (-2363 . 500407) (-2364 . 500351) (-2365 . 500154) + (-2366 . 499089) (-2367 . 498993) (-2368 . 498928) (-2369 . 498873) + (-2370 . 498817) (-2371 . 498588) (-2372 . 498445) (-2373 . 498351) + (-2374 . 498109) (-2375 . 497963) (-2376 . 497892) (-2377 . 497646) + (-2378 . 497575) (-2379 . 497480) (-2380 . 497384) (-2381 . 496724) + (-2382 . 496696) (-2383 . 496270) (-2384 . 495961) (-2385 . 495861) + (-2386 . 495760) (-2387 . 494420) (-2388 . 493879) (-2389 . 493768) + (-2390 . 493578) (-2391 . 493456) (-2392 . 493307) (-2393 . 493209) + (-2394 . 493081) (-2395 . 492919) (-2396 . 492588) (-2397 . 492464) + (-2398 . 492368) (-2399 . 492313) (-2400 . 492175) (-2401 . 491964) + (-2402 . 488665) (-2403 . 488592) (-2404 . 488320) (-2405 . 488234) + (-2406 . 488148) (-2407 . 488024) (-2408 . 487833) (-2409 . 487747) + (-2410 . 487606) (-2411 . 487422) (-2412 . 487115) (-2413 . 486308) + (-2414 . 485933) (-2415 . 485849) (-2416 . 485786) (-2417 . 485709) + (-2418 . 485524) (-2419 . 485472) (-2420 . 485341) (-2421 . 485257) + (-2422 . 485162) (-2423 . 485059) (-2424 . 484985) (-2425 . 484755) + (-2426 . 484674) (-2427 . 484502) (-2428 . 484458) (-2429 . 484302) + (-2430 . 484214) (-2431 . 484161) (-2432 . 484047) (-2433 . 483703) + (-2434 . 483674) (-2435 . 482998) (-2436 . 482875) (-2437 . 482743) + (-2438 . 482658) (-2439 . 482479) (-2440 . 482330) (-2441 . 482160) + (-2442 . 482052) (-2443 . 481956) (-2444 . 481904) (-2445 . 481087) + (-2446 . 481015) (-2447 . 480748) (-2448 . 480629) (-2449 . 480576) + (-2450 . 480292) (-2451 . 480237) (-2452 . 480077) (-2453 . 478299) + (-2454 . 478146) (-2455 . 478030) (-2456 . 477960) (-2457 . 477901) + (-2458 . 477800) (-2459 . 477658) (-2460 . 477575) (-2461 . 477424) + (-2462 . 477324) (-2463 . 477025) (-2464 . 476834) (-2465 . 476651) + (-2466 . 476065) (-2467 . 476010) (-2468 . 475792) (-2469 . 475739) + (-2470 . 475534) (-2471 . 475341) (-2472 . 475197) (-2473 . 474972) + (-2474 . 474935) (-2475 . 474695) (-2476 . 474483) (-2477 . 474382) + (-2478 . 474237) (-2479 . 474109) (-2480 . 474013) (-2481 . 473912) + (-2482 . 473828) (-2483 . 473773) (-2484 . 473691) (-2485 . 473632) + (-2486 . 473210) (-2487 . 473176) (-2488 . 472978) (-2489 . 472911) + (-2490 . 472596) (-2491 . 472423) (-2492 . 472322) (-2493 . 472227) + (-2494 . 471958) (-2495 . 471832) (-2496 . 471704) (-2497 . 471548) + (-2498 . 471474) (-2499 . 471400) (-2500 . 471239) (-2501 . 471102) + (-2502 . 471006) (-2503 . 470972) (-2504 . 470898) (-2505 . 470768) + (-2506 . 470671) (-2507 . 470430) (-2508 . 469962) (-2509 . 469878) + (-2510 . 469432) (-2511 . 469213) (-2512 . 469035) (-2513 . 468917) + (-2514 . 468753) (-2515 . 468595) (-2516 . 468489) (-2517 . 468433) + (-2518 . 468332) (-2519 . 467987) (-2520 . 467861) (-2521 . 467611) + (-2522 . 467527) (-2523 . 467474) (-2524 . 467316) (-2525 . 467098) + (-2526 . 466988) (-2527 . 466875) (-2528 . 466746) (-2529 . 466430) + (-2530 . 466272) (-2531 . 466198) (-2532 . 466121) (-2533 . 466069) + (-2534 . 465988) (-2535 . 465936) (-2536 . 465868) (-2537 . 465696) + (-2538 . 465592) (-2539 . 465274) (-2540 . 464834) (-2541 . 464779) + (-2542 . 464742) (-2543 . 464643) (-2544 . 464433) (-2545 . 464328) + (-2546 . 464157) (-2547 . 463907) (-2548 . 463088) (-2549 . 462167) + (-2550 . 462040) (-2551 . 461941) (-2552 . 461837) (-2553 . 461735) + (-2554 . 461612) (-2555 . 461492) (-2556 . 460738) (-2557 . 460650) + (-2558 . 460573) (-2559 . 460393) (-2560 . 460359) (-2561 . 460292) + (-2562 . 460186) (-2563 . 460091) (-2564 . 459985) (-2565 . 459830) + (-2566 . 459582) (-2567 . 459524) (-2568 . 459437) (-2569 . 459354) + (-2570 . 459294) (-2571 . 459217) (-2572 . 459074) (-2573 . 459006) + (-2574 . 458925) (-2575 . 458875) (-2576 . 458816) (-2577 . 458593) + (-2578 . 458130) (-2579 . 458079) (-2580 . 457823) (-2581 . 457721) + (-2582 . 457596) (-2583 . 457543) (-2584 . 457436) (-2585 . 457324) + (-2586 . 457271) (-2587 . 457219) (-2588 . 457185) (-2589 . 457126) + (-2590 . 457073) (-2591 . 456930) (-2592 . 456878) (-2593 . 456762) + (-2594 . 456734) (-2595 . 456682) (-2596 . 456572) (-2597 . 454157) + (-2598 . 453931) (-2599 . 453761) (-2600 . 453695) (-2601 . 453560) + (-2602 . 453507) (-2603 . 453445) (-2604 . 453275) (-2605 . 451979) + (-2606 . 451907) (-2607 . 451690) (-2608 . 451263) (-2609 . 451133) + (-2610 . 451029) (-2611 . 450870) (-2612 . 450655) (-2613 . 450605) + (-2614 . 450459) (-2615 . 450325) (-2616 . 450133) (-2617 . 450084) + (-2618 . 450010) (-2619 . 449867) (-2620 . 449717) (-2621 . 449537) + (-2622 . 448986) (-2623 . 448871) (-2624 . 448837) (-2625 . 448160) + (-2626 . 447732) (-2627 . 447601) (-2628 . 446955) (-2629 . 446889) + (-2630 . 446785) (-2631 . 446670) (-2632 . 446515) (-2633 . 446136) + (-2634 . 446059) (-2635 . 445953) (-2636 . 445843) (-2637 . 445727) + (-2638 . 445594) (-2639 . 445432) (-2640 . 444840) (-2641 . 444716) + (-2642 . 444644) (-2643 . 444546) (-2644 . 444480) (-2645 . 444379) + (-2646 . 444327) (-2647 . 444278) (-2648 . 444168) (-2649 . 442722) + (-2650 . 442373) (-2651 . 442302) (-2652 . 441504) (-2653 . 441398) + (-2654 . 441343) (-2655 . 441243) (-2656 . 441157) (-2657 . 441080) + (-2658 . 440977) (-2659 . 440097) (-2660 . 440069) (-2661 . 439953) + (-2662 . 439849) (-2663 . 439790) (-2664 . 439431) (-2665 . 439303) + (-2666 . 439160) (-2667 . 439068) (-2668 . 438991) (-2669 . 438852) + (-2670 . 438212) (-2671 . 437974) (-2672 . 437914) (-2673 . 437862) + (-2674 . 437797) (-2675 . 436929) (-2676 . 436819) (-2677 . 436179) + (-2678 . 436093) (-2679 . 436019) (-2680 . 435359) (-2681 . 435260) + (-2682 . 435130) (-2683 . 433016) (-2684 . 432842) (-2685 . 432777) + (-2686 . 432647) (-2687 . 432477) (-2688 . 432417) (-2689 . 432343) + (-2690 . 432125) (-2691 . 431552) (-2692 . 431415) (-2693 . 431257) + (-2694 . 431159) (-2695 . 431100) (-2696 . 431015) (-2697 . 430919) + (-2698 . 430780) (-2699 . 430608) (-2700 . 430543) (-2701 . 430460) + (-2702 . 430315) (-2703 . 430138) (-2704 . 429851) (-2705 . 429799) + (-2706 . 429704) (-2707 . 426041) (-2708 . 425917) (-2709 . 425801) + (-2710 . 425384) (-2711 . 425135) (-2712 . 425058) (-2713 . 424950) + (-2714 . 424867) (-2715 . 424814) (-2716 . 424751) (-2717 . 424636) + (-2718 . 424448) (-2719 . 424273) (-2720 . 424050) (-2721 . 423879) + (-2722 . 423823) (-2723 . 423729) (-2724 . 423257) (-2725 . 422886) + (-2726 . 422800) (-2727 . 422617) (-2728 . 422545) (-2729 . 422462) + (-2730 . 422374) (-2731 . 422127) (-2732 . 421792) (-2733 . 421718) + (-2734 . 421676) (-2735 . 421520) (-2736 . 421396) (-2737 . 421217) + (-2738 . 419431) (-2739 . 419358) (-2740 . 419329) (-2741 . 419258) + (-2742 . 419117) (-2743 . 418868) (-2744 . 418684) (-2745 . 418485) + (-2746 . 418417) (-2747 . 418365) (-2748 . 418279) (-2749 . 418099) + (-2750 . 417741) (-2751 . 417578) (-2752 . 417383) (-2753 . 417024) + (-2754 . 416915) (-2755 . 416805) (-2756 . 416668) (-2757 . 416598) + (-2758 . 416480) (-2759 . 416308) (-2760 . 416206) (-2761 . 416129) + (-2762 . 415986) (-2763 . 415931) (-2764 . 415845) (-2765 . 415625) + (-2766 . 415572) (-2767 . 415345) (-2768 . 415149) (-2769 . 414498) + (-2770 . 414445) (-2771 . 414254) (-12 . 414082) (-2773 . 413979) + (-2774 . 412917) (-2775 . 412813) (-2776 . 412685) (-2777 . 412421) + (-2778 . 412311) (-2779 . 412193) (-2780 . 412097) (-2781 . 412005) + (-2782 . 410743) (-2783 . 410587) (-2784 . 410538) (-2785 . 410011) + (-2786 . 409908) (-2787 . 409728) (-2788 . 409523) (-2789 . 409403) + (-2790 . 408840) (-2791 . 408402) (-2792 . 408286) (-2793 . 408183) + (-2794 . 407995) (-2795 . 407852) (-2796 . 403852) (-2797 . 403511) + (-2798 . 403405) (-2799 . 403248) (-2800 . 403089) (-2801 . 403008) + (-2802 . 402445) (-2803 . 402380) (-2804 . 402303) (-2805 . 402030) + (-2806 . 401958) (-2807 . 401537) (-2808 . 400874) (-2809 . 400696) + (-2810 . 400613) (-2811 . 400458) (-2812 . 400406) (-2813 . 400338) + (-2814 . 399775) (-2815 . 399629) (-2816 . 399534) (-2817 . 399478) + (-2818 . 399450) (-2819 . 399140) (-2820 . 399047) (-2821 . 398922) + (-2822 . 398759) (-2823 . 398624) (-2824 . 398484) (-2825 . 397900) + (-2826 . 397774) (-2827 . 397563) (-2828 . 397283) (-2829 . 397249) + (-2830 . 397197) (-2831 . 397070) (-2832 . 396622) (-2833 . 396569) + (-2834 . 396514) (-2835 . 396095) (-2836 . 396009) (-2837 . 395863) + (-2838 . 395709) (-2839 . 395592) (-2840 . 395488) (-2841 . 395381) + (-2842 . 395313) (-2843 . 395115) (-2844 . 395027) (-2845 . 394864) + (-2846 . 394548) (-2847 . 394493) (-2848 . 394420) (-2849 . 394293) + (-2850 . 394240) (-2851 . 393824) (-2852 . 393711) (-2853 . 393655) + (-2854 . 393513) (-2855 . 393376) (-2856 . 393034) (-2857 . 391949) + (-2858 . 391767) (-2859 . 386428) (-2860 . 386244) (-2861 . 385856) + (-2862 . 385615) (-2863 . 385396) (-2864 . 385328) (-2865 . 385154) + (-2866 . 385077) (-2867 . 384829) (-2868 . 384738) (-2869 . 384425) + (-2870 . 384396) (-2871 . 384323) (-2872 . 384270) (-2873 . 384217) + (-2874 . 384134) (-2875 . 383925) (-2876 . 383839) (-2877 . 383723) + (-2878 . 383670) (-2879 . 383517) (-2880 . 383397) (-2881 . 383319) + (-2882 . 383187) (-2883 . 382926) (* . 378813) (-2885 . 378497) + (-2886 . 378067) (-2887 . 377937) (-2888 . 377618) (-2889 . 377427) + (-2890 . 377221) (-2891 . 377169) (-2892 . 376980) (-2893 . 376822) + (-2894 . 376733) (-2895 . 376645) (-2896 . 376574) (-2897 . 376363) + (-2898 . 376306) (-2899 . 376025) (-2900 . 375958) (-2901 . 375903) + (-2902 . 375808) (-2903 . 375694) (-2904 . 375341) (-2905 . 374989) + (-2906 . 374919) (-2907 . 374866) (-2908 . 374814) (-2909 . 374728) + (-2910 . 374529) (-2911 . 374443) (-2912 . 374386) (-2913 . 374153) + (-2914 . 374034) (-2915 . 373915) (-2916 . 373886) (-2917 . 373793) + (-2918 . 373697) (-2919 . 373443) (-2920 . 373256) (-2921 . 372805) + (-2922 . 372644) (-2923 . 372404) (-2924 . 372132) (-2925 . 370834) + (-2926 . 370238) (-2927 . 369904) (-2928 . 369770) (-2929 . 368618) + (-2930 . 368437) (-2931 . 368324) (-2932 . 368257) (-2933 . 368054) + (-2934 . 367727) (-2935 . 367631) (-2936 . 367512) (-2937 . 367001) + (-2938 . 366913) (-2939 . 366840) (-2940 . 366534) (-2941 . 366256) + (-2942 . 365649) (-2943 . 365585) (-2944 . 365525) (-2945 . 365407) + (-2946 . 365340) (-2947 . 365187) (-2948 . 365120) (-2949 . 364889) + (-2950 . 364766) (-2951 . 364680) (-2952 . 364548) (-2953 . 363889) + (-2954 . 363782) (-2955 . 363726) (-2956 . 363638) (-2957 . 363558) + (-2958 . 363393) (-2959 . 363313) (-2960 . 363241) (-2961 . 363138) + (-2962 . 363051) (-2963 . 362970) (-2964 . 362901) (-2965 . 362752) + (-2966 . 362682) (-2967 . 362550) (-2968 . 362481) (-2969 . 362374) + (-2970 . 362264) (-2971 . 362232) (-2972 . 362064) (-2973 . 361997) + (-2974 . 361842) (-2975 . 361764) (-2976 . 361685) (-2977 . 361570) + (-2978 . 361411) (-2979 . 361325) (-2980 . 360937) (-2981 . 360884) + (-2982 . 360823) (-2983 . 360564) (-2984 . 360480) (-2985 . 360311) + (-2986 . 360252) (-2987 . 360185) (-2988 . 360130) (-2989 . 359915) + (-2990 . 359828) (-2991 . 359682) (-2992 . 359380) (-2993 . 359319) + (-2994 . 359267) (-2995 . 359142) (-2996 . 359044) (-2997 . 358950) + (-2998 . 358891) (-2999 . 358819) (-3000 . 358745) (-3001 . 358678) + (-3002 . 358492) (-3003 . 358354) (-3004 . 358296) (-3005 . 358044) + (-3006 . 357881) (-3007 . 357787) (-3008 . 357690) (-3009 . 357638) + (-3010 . 357474) (-3011 . 357319) (-3012 . 357211) (-3013 . 356997) + (-3014 . 356919) (-3015 . 356782) (-3016 . 356700) (-3017 . 356647) + (-3018 . 356553) (-3019 . 356472) (-3020 . 356341) (-3021 . 356242) + (-3022 . 356185) (-3023 . 355601) (-3024 . 355507) (-3025 . 354793) + (-3026 . 354583) (-3027 . 354530) (-3028 . 354423) (-3029 . 353237) + (-3030 . 352651) (-3031 . 352489) (-3032 . 352404) (-3033 . 352306) + (-3034 . 352253) (-3035 . 352180) (-3036 . 352112) (-3037 . 351866) + (-3038 . 351607) (-3039 . 351399) (-3040 . 351346) (-3041 . 351263) + (-3042 . 350622) (-3043 . 349440) (-3044 . 349178) (-3045 . 349068) + (-3046 . 348991) (-3047 . 348914) (-3048 . 348817) (-3049 . 348644) + (-3050 . 348571) (-3051 . 348435) (-3052 . 348240) (-3053 . 348188) + (-3054 . 347669) (-3055 . 347539) (-3056 . 345331) (-3057 . 345136) + (-3058 . 345050) (-3059 . 344865) (-3060 . 344769) (-3061 . 344710) + (-3062 . 344588) (-3063 . 344271) (-3064 . 343785) (-3065 . 343753) + (-3066 . 343634) (-3067 . 343510) (-3068 . 343339) (-3069 . 343158) + (-3070 . 342987) (-3071 . 342765) (-3072 . 342713) (-3073 . 342645) + (-3074 . 342529) (-3075 . 342218) (-3076 . 342067) (-3077 . 341993) + (-3078 . 341890) (-3079 . 339049) (-3080 . 338878) (-3081 . 338765) + (-3082 . 338561) (-3083 . 338367) (-3084 . 338315) (-3085 . 338044) + (-3086 . 337945) (-3087 . 337542) (-3088 . 337438) (-3089 . 337354) + (-3090 . 337256) (-3091 . 337098) (-3092 . 336873) (-3093 . 336655) + (-3094 . 336540) (-3095 . 336487) (-3096 . 336401) (-3097 . 336283) + (-3098 . 335697) (-3099 . 335641) (-3100 . 335518) (-3101 . 335393) + (-3102 . 335302) (-3103 . 334986) (-3104 . 334673) (-3105 . 334569) + (-3106 . 334483) (-3107 . 334412) (-3108 . 334110) (-3109 . 333972) + (-3110 . 333744) (-3111 . 333716) (-3112 . 333659) (-3113 . 333585) + (-3114 . 333490) (-3115 . 333374) (-3116 . 333135) (-3117 . 333012) + (-3118 . 332956) (-3119 . 332410) (-3120 . 331229) (-3121 . 330918) + (-3122 . 330847) (-3123 . 330595) (-3124 . 330317) (-3125 . 329604) + (-3126 . 329480) (-3127 . 329325) (-3128 . 329248) (-3129 . 329052) + (-3130 . 328973) (-3131 . 328876) (-3132 . 328666) (-3133 . 328459) + (-3134 . 328356) (-3135 . 328008) (-3136 . 327951) (-3137 . 327703) + (-3138 . 327531) (-3139 . 327272) (-3140 . 326986) (-3141 . 326670) + (-3142 . 326542) (-3143 . 326256) (-3144 . 326010) (-3145 . 325892) + (-3146 . 325793) (-3147 . 325696) (-3148 . 325500) (-3149 . 325401) + (-3150 . 325229) (-3151 . 325134) (-3152 . 325102) (-3153 . 325018) + (-3154 . 324152) (-3155 . 324093) (-3156 . 323940) (-3157 . 323862) + (-3158 . 323760) (-3159 . 323418) (-3160 . 322642) (-3161 . 322470) + (-3162 . 322342) (-3163 . 322234) (-3164 . 322139) (-3165 . 321929) + (-3166 . 321859) (-3167 . 321701) (-3168 . 321558) (-3169 . 321422) + (-3170 . 321297) (-3171 . 321244) (-3172 . 321072) (-3173 . 320998) + (-3174 . 320936) (-3175 . 320778) (-3176 . 320725) (-3177 . 320657) + (-3178 . 320596) (-3179 . 320510) (-3180 . 320369) (-3181 . 320169) + (-3182 . 319999) (-3183 . 319892) (-3184 . 319784) (-3185 . 319681) + (-3186 . 319273) (-3187 . 318897) (-3188 . 318806) (-3189 . 318725) + (-3190 . 318480) (-3191 . 318448) (-3192 . 318197) (-3193 . 318119) + (-3194 . 318046) (-3195 . 317752) (-3196 . 317563) (-3197 . 317268) + (-3198 . 316933) (-3199 . 316766) (-3200 . 316171) (-3201 . 316100) + (-3202 . 315814) (-3203 . 315712) (-3204 . 315473) (-3205 . 315389) + (-3206 . 315315) (-3207 . 313773) (-3208 . 313694) (-3209 . 313583) + (-3210 . 313488) (-3211 . 313421) (-3212 . 313335) (-3213 . 313079) + (-3214 . 312773) (-3215 . 312277) (-3216 . 311999) (-3217 . 311878) + (-3218 . 311631) (-3219 . 311571) (-3220 . 311083) (-3221 . 310946) + (-3222 . 310788) (-3223 . 310461) (-3224 . 310365) (-3225 . 310312) + (-3226 . 310065) (-3227 . 309327) (-3228 . 309174) (-3229 . 309122) + (-3230 . 308964) (-3231 . 308634) (-3232 . 308530) (-3233 . 308372) + (-3234 . 308270) (-3235 . 308043) (-3236 . 307743) (-3237 . 307686) + (-3238 . 307603) (-3239 . 307553) (-3240 . 307483) (-3241 . 306849) + (-3242 . 306776) (-3243 . 306265) (-3244 . 305891) (-3245 . 305836) + (-3246 . 305778) (-3247 . 305690) (-3248 . 305588) (-3249 . 305560) + (-3250 . 305504) (-3251 . 305326) (-3252 . 305202) (-3253 . 305122) + (-3254 . 304631) (-3255 . 304413) (-3256 . 304239) (-3257 . 304022) + (-3258 . 303436) (-3259 . 303338) (-3260 . 303158) (-3261 . 302972) + (-3262 . 302915) (-3263 . 302842) (-3264 . 302708) (-3265 . 302651) + (-3266 . 302560) (-3267 . 302324) (-3268 . 302230) (-3269 . 302099) + (-3270 . 301566) (-3271 . 301507) (-3272 . 301448) (-3273 . 301249) + (-3274 . 301146) (-3275 . 301051) (-3276 . 300911) (-3277 . 300883) + (-3278 . 300670) (-3279 . 300259) (-3280 . 300083) (-3281 . 299988) + (-3282 . 296038) (-3283 . 295797) (-3284 . 295765) (-3285 . 295630) + (-3286 . 295308) (-3287 . 295253) (-3288 . 295114) (-3289 . 294920) + (-3290 . 294861) (-3291 . 294697) (-3292 . 294568) (-3293 . 294431) + (-3294 . 294283) (-3295 . 293968) (-3296 . 293873) (-3297 . 293820) + (-3298 . 293761) (-3299 . 293601) (-3300 . 293354) (-3301 . 292984) + (-3302 . 292906) (-3303 . 292853) (-3304 . 292717) (-3305 . 292688) + (-3306 . 292541) (-3307 . 292492) (-3308 . 292420) (-3309 . 292356) + (-3310 . 292254) (-3311 . 292158) (-3312 . 292038) (-3313 . 291729) + (-3314 . 291588) (-3315 . 291502) (-3316 . 291376) (-3317 . 290879) + (-3318 . 290527) (-3319 . 289960) (-3320 . 289552) (-3321 . 289419) + (-3322 . 289250) (-3323 . 289197) (-3324 . 288783) (-3325 . 286555) + (-3326 . 286488) (-3327 . 286229) (-3328 . 286103) (-3329 . 285767) + (-3330 . 285712) (-3331 . 285609) (-3332 . 284930) (-3333 . 284791) + (-3334 . 284670) (-3335 . 284444) (-3336 . 284392) (-3337 . 284174) + (-3338 . 284094) (-3339 . 283648) (-3340 . 283352) (-3341 . 283269) + (-3342 . 283059) (-3343 . 282986) (-3344 . 282899) (-3345 . 282805) + (-3346 . 282737) (-3347 . 282641) (-3348 . 282214) (-3349 . 282147) + (-3350 . 282070) (-3351 . 281671) (-3352 . 281531) (-3353 . 281443) + (-3354 . 281291) (-3355 . 281259) (-3356 . 281159) (-3357 . 280750) + (-3358 . 279751) (-3359 . 279698) (-3360 . 279532) (-3361 . 279448) + (-3362 . 279374) (-3363 . 279264) (-3364 . 279169) (-3365 . 278930) + (-3366 . 278902) (-3367 . 278763) (-3368 . 278560) (-3369 . 278445) + (-3370 . 278417) (-3371 . 278389) (-3372 . 278208) (-3373 . 278137) + (-3374 . 278080) (-3375 . 277113) (-3376 . 276917) (-3377 . 276863) + (-3378 . 276808) (-3379 . 276741) (-3380 . 276487) (-3381 . 276216) + (-3382 . 276137) (-3383 . 275795) (-3384 . 275674) (-3385 . 275401) + (-3386 . 275143) (-3387 . 275015) (-3388 . 274962) (-3389 . 274828) + (-3390 . 274699) (-3391 . 274395) (-3392 . 273934) (-3393 . 273404) + (-3394 . 273321) (-3395 . 273272) (-3396 . 273202) (-3397 . 273096) + (-3398 . 272961) (-3399 . 272898) (-3400 . 272795) (-3401 . 272693) + (-3402 . 272623) (-3403 . 271659) (-3404 . 271125) (-3405 . 271076) + (-3406 . 270839) (-3407 . 270811) (-3408 . 270588) (-3409 . 270529) + (-3410 . 270474) (-3411 . 270187) (-3412 . 269972) (-3413 . 269781) + (-3414 . 268979) (-3415 . 268920) (-3416 . 268210) (-3417 . 268071) + (-3418 . 267974) (-3419 . 267879) (-3420 . 267352) (-3421 . 267236) + (-3422 . 266783) (-3423 . 266686) (-3424 . 266598) (-3425 . 266501) + (-3426 . 266411) (-3427 . 266132) (-3428 . 266035) (-3429 . 265195) + (-3430 . 265143) (-3431 . 265028) (-3432 . 264950) (-3433 . 264898) + (-3434 . 264798) (-3435 . 264720) (-3436 . 264489) (-3437 . 264410) + (-3438 . 264249) (-3439 . 264169) (-3440 . 264072) (-3441 . 263956) + (-3442 . 263850) (-3443 . 263462) (-3444 . 263015) (-3445 . 262529) + (-3446 . 261713) (-3447 . 261459) (-3448 . 261382) (-3449 . 261167) + (-3450 . 261086) (-3451 . 260928) (-3452 . 260713) (-3453 . 260642) + (-3454 . 260590) (-3455 . 259498) (-3456 . 259424) (-3457 . 259337) + (-3458 . 259239) (-3459 . 259151) (-3460 . 258815) (-3461 . 258745) + (-3462 . 258535) (-3463 . 258456) (-3464 . 258293) (-3465 . 258137) + (-3466 . 257981) (-3467 . 257885) (-3468 . 257829) (-3469 . 257743) + (-3470 . 257648) (-3471 . 257560) (-3472 . 257442) (-3473 . 257408) + (-3474 . 257281) (-3475 . 256420) (-3476 . 256295) (-3477 . 256077) + (-3478 . 255978) (-3479 . 255923) (-3480 . 255850) (-3481 . 255780) + (-3482 . 255721) (-3483 . 255445) (-3484 . 255324) (-3485 . 255223) + (-3486 . 255060) (-3487 . 254959) (-3488 . 254872) (-3489 . 254695) + (-3490 . 254542) (-3491 . 254456) (-3492 . 254326) (-3493 . 253575) + (-3494 . 253480) (-3495 . 253443) (-3496 . 253077) (-3497 . 251975) + (-3498 . 251827) (-3499 . 251750) (-3500 . 251528) (-3501 . 251353) + (-3502 . 250936) (-3503 . 250853) (-3504 . 250753) (-3505 . 250621) + (-3506 . 250569) (-3507 . 250423) (-3508 . 250318) (-3509 . 250235) + (-3510 . 249756) (-3511 . 249728) (-3512 . 249656) (-3513 . 249587) + (-3514 . 249429) (-3515 . 249183) (-3516 . 249152) (-3517 . 249068) + (-3518 . 249015) (-3519 . 248884) (-3520 . 248752) (-3521 . 247450) + (-3522 . 247309) (-3523 . 247207) (-3524 . 246981) (-3525 . 246930) + (-3526 . 246467) (-3527 . 246351) (-3528 . 246196) (-3529 . 246142) + (-3530 . 245734) (-3531 . 245604) (-3532 . 245471) (-3533 . 245201) + (-3534 . 245041) (-3535 . 244782) (-3536 . 244361) (-3537 . 244266) + (-3538 . 243731) (-3539 . 243606) (-3540 . 243468) (-3541 . 243406) + (-3542 . 243349) (-3543 . 243271) (-3544 . 242870) (-3545 . 242651) + (-3546 . 242552) (-3547 . 242389) (-3548 . 242281) (-3549 . 242082) + (-3550 . 241836) (-3551 . 241802) (-3552 . 241722) (-3553 . 241654) + (-3554 . 241559) (-3555 . 241350) (-3556 . 240826) (-3557 . 240773) + (-3558 . 240745) (-3559 . 240578) (-3560 . 240361) (-3561 . 239181) + (-3562 . 239147) (-3563 . 239059) (-3564 . 238534) (-3565 . 238461) + (-3566 . 238339) (-3567 . 238289) (-3568 . 237898) (-3569 . 219323) + (-3570 . 219125) (-3571 . 218696) (-3572 . 218629) (-3573 . 218356) + (-3574 . 218142) (-3575 . 218054) (-3576 . 217955) (-3577 . 217813) + (-3578 . 217742) (-3579 . 217365) (-3580 . 216752) (-3581 . 213828) + (-3582 . 213745) (-3583 . 213587) (-3584 . 213489) (-3585 . 213437) + (-3586 . 213314) (-3587 . 212978) (-3588 . 212877) (-3589 . 212684) + (-3590 . 212485) (-3591 . 212045) (-3592 . 211618) (-3593 . 211428) + (-3594 . 211135) (-3595 . 210247) (-3596 . 210124) (-3597 . 209976) + (-3598 . 209664) (-3599 . 209585) (-3600 . 209483) (-3601 . 209215) + (-3602 . 209148) (-3603 . 209096) (-3604 . 209004) (-3605 . 208933) + (-3606 . 208341) (-3607 . 208161) (-3608 . 208087) (-3609 . 208010) + (-3610 . 207725) (-3611 . 207632) (-3612 . 207579) (-3613 . 207483) + (-3614 . 207416) (-3615 . 207330) (-3616 . 207192) (-3617 . 207095) + (-3618 . 206978) (-3619 . 206835) (-3620 . 206647) (-3621 . 206565) + (-3622 . 206506) (-3623 . 206379) (-3624 . 206279) (-3625 . 206182) + (-3626 . 206096) (-3627 . 205959) (-3628 . 205777) (-3629 . 205584) + (-3630 . 205231) (-3631 . 204870) (-3632 . 204535) (-3633 . 204421) + (-3634 . 204369) (-3635 . 204242) (-3636 . 202386) (-3637 . 202258) + (-3638 . 202064) (-3639 . 201772) (-3640 . 201545) (-3641 . 201489) + (-3642 . 201380) (-3643 . 201243) (-3644 . 201024) (-3645 . 200881) + (-3646 . 200663) (-3647 . 200431) (-3648 . 200379) (-3649 . 200324) + (-3650 . 200202) (-3651 . 199242) (-3652 . 199158) (-3653 . 198979) + (-3654 . 198865) (-3655 . 198793) (-3656 . 198759) (-3657 . 198488) + (-3658 . 198364) (-3659 . 197843) (-3660 . 197724) (-3661 . 197642) + (-3662 . 197563) (-3663 . 197405) (-3664 . 197017) (-3665 . 196989) + (-3666 . 196873) (-3667 . 196760) (-3668 . 194792) (-3669 . 194694) + (-3670 . 194621) (-3671 . 193779) (-3672 . 193680) (-3673 . 192463) + (-3674 . 192206) (-3675 . 192126) (-3676 . 191889) (-3677 . 191782) + (-3678 . 191597) (-3679 . 191292) (-3680 . 191180) (-3681 . 191067) + (-3682 . 190886) (-3683 . 190749) (-3684 . 190473) (-3685 . 186864) + (-3686 . 186776) (-3687 . 186682) (-3688 . 186475) (-3689 . 186031) + (-3690 . 185878) (-3691 . 185733) (-3692 . 185589) (-3693 . 185359) + (-3694 . 185210) (-3695 . 185109) (-3696 . 185081) (-3697 . 185011) + (-3698 . 184911) (-3699 . 184795) (-3700 . 184280) (-3701 . 184195) + (-3702 . 184123) (-3703 . 183955) (-3704 . 183855) (-3705 . 183788) + (-3706 . 183404) (-3707 . 183305) (-3708 . 183192) (-3709 . 183108) + (-3710 . 183056) (-3711 . 182960) (-3712 . 182869) (-3713 . 182745) + (-3714 . 182571) (-3715 . 182504) (-3716 . 182433) (-3717 . 182374) + (-3718 . 182247) (-3719 . 182086) (-3720 . 181884) (-3721 . 181818) + (-3722 . 181674) (-3723 . 181600) (-3724 . 181142) (-3725 . 181005) + (-3726 . 178749) (-3727 . 178686) (-3728 . 178606) (-3729 . 178551) + (-3730 . 178452) (-3731 . 178353) (-3732 . 178194) (-3733 . 176944) + (-3734 . 176885) (-3735 . 176487) (-3736 . 176321) (-3737 . 176262) + (-3738 . 176132) (-3739 . 176035) (-3740 . 175877) (-3741 . 175748) + (-3742 . 175696) (-3743 . 175583) (-3744 . 174356) (-3745 . 173796) + (-3746 . 173662) (-3747 . 173595) (-3748 . 173507) (-3749 . 173424) + (-3750 . 173279) (-3751 . 173230) (-3752 . 173103) (-3753 . 172811) + (-3754 . 172633) (-3755 . 171329) (-3756 . 170946) (-3757 . 170883) + (-3758 . 170706) (-3759 . 170635) (-3760 . 169361) (-3761 . 169260) + (-3762 . 169226) (-3763 . 168874) (-3764 . 168775) (-3765 . 168708) + (-3766 . 168612) (-3767 . 168517) (-3768 . 168421) (-3769 . 168307) + (-3770 . 168213) (-3771 . 168125) (-3772 . 168031) (-3773 . 167853) + (-3774 . 167724) (-3775 . 167615) (-3776 . 167450) (-3777 . 167017) + (-3778 . 166872) (-3779 . 166764) (-3780 . 166646) (-3781 . 166552) + (-3782 . 166101) (-3783 . 166048) (-3784 . 165923) (-3785 . 165768) + (-3786 . 165714) (-3787 . 165619) (-3788 . 164996) (-3789 . 164945) + (-3790 . 164914) (-3791 . 163691) (-3792 . 163622) (-3793 . 163545) + (-3794 . 163260) (-3795 . 163070) (-3796 . 162802) (-3797 . 162487) + (-3798 . 162359) (-3799 . 162080) (-3800 . 161951) (-3801 . 161868) + (-3802 . 161389) (-3803 . 161337) (-3804 . 161026) (-3805 . 160925) + (-3806 . 160783) (-3807 . 160672) (-3808 . 160620) (-3809 . 160498) + (-3810 . 160431) (-3811 . 160181) (-3812 . 160040) (-3813 . 159987) + (-3814 . 159834) (-3815 . 159751) (-3816 . 159723) (-3817 . 159655) + (-3818 . 159330) (-3819 . 159257) (-3820 . 159180) (-3821 . 158890) + (-3822 . 158637) (-3823 . 158585) (-3824 . 158139) (-3825 . 158043) + (-3826 . 157911) (-3827 . 157753) (-3828 . 157571) (-3829 . 157466) + (-3830 . 157354) (-3831 . 157147) (-3832 . 157052) (-3833 . 156663) + (-3834 . 156568) (-3835 . 156343) (-3836 . 156265) (-3837 . 156092) + (-3838 . 155906) (-3839 . 155721) (-3840 . 155692) (-3841 . 155559) + (-3842 . 155485) (-3843 . 155371) (-3844 . 155265) (-3845 . 154655) + (-3846 . 154560) (-3847 . 154056) (-3848 . 153927) (-3849 . 153700) + (-3850 . 153568) (-3851 . 153405) (-3852 . 153208) (-3853 . 153042) + (-3854 . 152969) (-3855 . 152859) (-3856 . 152767) (-3857 . 152683) + (-3858 . 152549) (-3859 . 152497) (-3860 . 152444) (-3861 . 152416) + (-3862 . 152366) (-3863 . 152234) (-3864 . 152151) (-3865 . 151943) + (-3866 . 151891) (-3867 . 151819) (-3868 . 151727) (-3869 . 151653) + (-3870 . 151326) (-3871 . 151147) (-3872 . 151058) (-3873 . 150399) + (-3874 . 150270) (-3875 . 150176) (-3876 . 149446) (-3877 . 149339) + (-3878 . 149238) (-3879 . 149178) (-3880 . 149126) (-3881 . 149040) + (-3882 . 148933) (-3883 . 148630) (-3884 . 148484) (-3885 . 148259) + (-3886 . 148041) (-3887 . 147985) (-3888 . 147255) (-3889 . 146968) + (-3890 . 146898) (-3891 . 146690) (-3892 . 146623) (-3893 . 146231) + (-3894 . 145895) (-3895 . 145845) (-3896 . 145747) (-3897 . 145317) + (-3898 . 144665) (-3899 . 144580) (-3900 . 143903) (-3901 . 143784) + (-3902 . 143429) (-3903 . 143309) (-3904 . 143047) (-3905 . 142952) + (-3906 . 141609) (-3907 . 141441) (-3908 . 141369) (-3909 . 140804) + (-3910 . 140706) (-3911 . 140503) (-3912 . 140402) (-3913 . 140316) + (-3914 . 140184) (-3915 . 139991) (-3916 . 139825) (-3917 . 139748) + (-3918 . 139566) (-3919 . 139001) (-3920 . 138908) (-3921 . 138858) + (-3922 . 138802) (-3923 . 138391) (-3924 . 138310) (-3925 . 137940) + (-3926 . 137809) (-3927 . 137590) (-3928 . 137326) (-3929 . 136761) + (-3930 . 136467) (-3931 . 136400) (-3932 . 136178) (-3933 . 136089) + (-3934 . 135995) (-3935 . 135781) (-3936 . 135662) (-3937 . 134987) + (-3938 . 134891) (-3939 . 134860) (-3940 . 134695) (-3941 . 134093) + (-3942 . 133947) (-3943 . 133804) (-3944 . 133441) (-3945 . 132842) + (-3946 . 132327) (-3947 . 132277) (-3948 . 132243) (-3949 . 132132) + (-3950 . 131457) (-3951 . 131297) (-3952 . 131043) (-3953 . 130928) + (-3954 . 130858) (-3955 . 130709) (-3956 . 130656) (-3957 . 130548) + (-3958 . 130121) (-3959 . 130020) (-3960 . 129282) (-3961 . 129138) + (-3962 . 129056) (-3963 . 128987) (-3964 . 128919) (-3965 . 128643) + (-3966 . 128614) (-3967 . 128510) (-3968 . 128136) (-3969 . 128034) + (-3970 . 127892) (-3971 . 127865) (-3972 . 127791) (-3973 . 127228) + (-3974 . 127028) (-3975 . 126869) (-3976 . 126731) (-3977 . 126456) + (-3978 . 126321) (-3979 . 126203) (-3980 . 126124) (-3981 . 125881) + (-3982 . 125318) (-3983 . 125239) (-3984 . 125140) (-3985 . 125027) + (-3986 . 124819) (-3987 . 124757) (-3988 . 124656) (-3989 . 124594) + (-3990 . 124542) (-3991 . 124390) (-3992 . 124062) (-3993 . 123814) + (-3994 . 123251) (-3995 . 123172) (-3996 . 122877) (-3997 . 122722) + (-3998 . 122595) (-3999 . 122543) (-4000 . 122412) (-4001 . 122269) + (-4002 . 122207) (-4003 . 121699) (-4004 . 121561) (-4005 . 120885) + (-4006 . 120703) (-4007 . 120485) (-4008 . 120392) (-4009 . 120200) + (-4010 . 120097) (-4011 . 120023) (-4012 . 119910) (-4013 . 119234) + (-4014 . 119154) (-4015 . 118907) (-4016 . 118811) (-4017 . 118565) + (-4018 . 118022) (-4019 . 117857) (-4020 . 117669) (-4021 . 117592) + (-4022 . 117464) (-4023 . 117413) (-4024 . 116737) (-4025 . 116344) + (-4026 . 116134) (-4027 . 116021) (-4028 . 115961) (-4029 . 115889) + (-4030 . 115729) (-4031 . 115387) (-4032 . 115274) (-4033 . 115116) + (-4034 . 115019) (-4035 . 114948) (-4036 . 114384) (-4037 . 114289) + (-4038 . 114188) (-4039 . 114100) (-4040 . 114066) (-4041 . 113908) + (-4042 . 111776) (-4043 . 111681) (-4044 . 111580) (-4045 . 111300) + (-4046 . 111140) (-4047 . 111013) (-4048 . 110910) (-4049 . 110346) + (-4050 . 110238) (-4051 . 110186) (-4052 . 110086) (-4053 . 109896) + (-4054 . 109669) (-4055 . 109405) (-4056 . 109346) (-4057 . 108757) + (-4058 . 108548) (-4059 . 108360) (-4060 . 107796) (-4061 . 107563) + (-4062 . 107416) (-4063 . 107365) (-4064 . 107222) (-4065 . 107149) + (-4066 . 106853) (-4067 . 106755) (-4068 . 106615) (-4069 . 106467) + (-4070 . 105904) (-4071 . 105706) (-4072 . 105456) (-4073 . 105346) + (-4074 . 105293) (-4075 . 105158) (-4076 . 105027) (-4077 . 104444) + (-4078 . 104099) (-4079 . 103981) (-4080 . 103870) (-4081 . 103769) + (-4082 . 103206) (-4083 . 102974) (-4084 . 102862) (-4085 . 102790) + (-4086 . 102707) (-4087 . 102609) (-4088 . 102556) (-4089 . 102424) + (-4090 . 102366) (-4091 . 102195) (-4092 . 101125) (-4093 . 100919) + (-4094 . 100864) (-4095 . 99981) (-4096 . 98789) (-4097 . 98722) + (-4098 . 98662) (-4099 . 98346) (-4100 . 98294) (-4101 . 98070) + (-4102 . 97957) (-4103 . 96756) (-4104 . 96704) (-4105 . 96518) + (-4106 . 96317) (-4107 . 96173) (-4108 . 95953) (-4109 . 95865) + (-4110 . 95777) (-4111 . 95024) (-4112 . 94744) (-4113 . 94622) + (-4114 . 94255) (-4115 . 94165) (-4116 . 79932) (-4117 . 79863) + (-4118 . 79764) (-4119 . 79622) (-4120 . 79409) (-4121 . 79234) + (-4122 . 79072) (-4123 . 78948) (-4124 . 78863) (-4125 . 78676) + (-4126 . 78536) (-4127 . 78334) (-4128 . 77723) (-4129 . 77656) + (-4130 . 77561) (-4131 . 77330) (-4132 . 77278) (-4133 . 76969) + (-4134 . 76916) (-4135 . 76819) (-4136 . 76707) (-4137 . 76348) + (-4138 . 76263) (-4139 . 76186) (-4140 . 75416) (-4141 . 75388) + (-4142 . 74687) (-4143 . 74201) (-4144 . 73983) (-4145 . 73904) + (-4146 . 73831) (-4147 . 73738) (-4148 . 73658) (-4149 . 73499) + (-4150 . 73124) (-4151 . 73055) (-4152 . 72875) (-4153 . 72694) + (-4154 . 72591) (-4155 . 72344) (-4156 . 72285) (-4157 . 72234) + (-4158 . 72151) (-4159 . 72065) (-4160 . 65122) (-4161 . 64984) + (-4162 . 64790) (-4163 . 64680) (-4164 . 64608) (-4165 . 63932) + (-4166 . 63530) (-4167 . 63435) (-4168 . 63407) (-4169 . 62533) + (-4170 . 62418) (-4171 . 58751) (-4172 . 58593) (-4173 . 58538) + (-4174 . 58450) (-4175 . 58401) (-4176 . 58111) (-4177 . 58053) + (-4178 . 57994) (-4179 . 57616) (-4180 . 57451) (-4181 . 57293) + (-4182 . 57223) (-4183 . 57107) (-4184 . 57015) (-4185 . 56960) + (-4186 . 56570) (-4187 . 56040) (-4188 . 55708) (-4189 . 55430) + (-4190 . 55305) (-4191 . 55053) (-4192 . 54974) (-4193 . 54799) + (-4194 . 54725) (-4195 . 54694) (-4196 . 54526) (-4197 . 54363) + (-4198 . 54051) (-4199 . 53966) (-4200 . 53759) (-4201 . 53457) + (-4202 . 53334) (-4203 . 53082) (-4204 . 52872) (-4205 . 52770) + (-4206 . 52668) (-4207 . 52598) (-4208 . 52419) (-4209 . 52282) + (-4210 . 51915) (-4211 . 51845) (-4212 . 51399) (-4213 . 51059) + (-4214 . 50844) (-4215 . 50791) (-4216 . 50740) (-4217 . 50669) + (-4218 . 50575) (-4219 . 50503) (-4220 . 50399) (-4221 . 50194) + (-4222 . 49915) (-4223 . 49813) (-4224 . 49739) (-4225 . 49579) + (-4226 . 49486) (-4227 . 49216) (-4228 . 49115) (-4229 . 49058) + (-4230 . 48989) (-4231 . 48891) (-4232 . 48795) (-4233 . 48740) + (-4234 . 48650) (-4235 . 48573) (-4236 . 48472) (-4237 . 47354) + (-4238 . 47262) (-4239 . 46924) (-4240 . 46871) (-4241 . 46732) + (-4242 . 46633) (-4243 . 46368) (-4244 . 46285) (-4245 . 46233) + (-4246 . 45987) (-4247 . 45958) (-4248 . 45745) (-4249 . 45407) + (-4250 . 45254) (-4251 . 45154) (-4252 . 45035) (-4253 . 44939) + (-4254 . 44721) (-4255 . 44581) (-4256 . 44288) (-4257 . 43981) + (-4258 . 43900) (-4259 . 43805) (-4260 . 43685) (-4261 . 43482) + (-4262 . 43399) (-4263 . 33949) (-4264 . 33880) (-4265 . 33783) + (-4266 . 33716) (-4267 . 33631) (-4268 . 33575) (-4269 . 33420) + (-4270 . 33347) (-4271 . 33270) (-4272 . 32838) (-4273 . 32774) + (-4274 . 32724) (-4275 . 32595) (-4276 . 32544) (-4277 . 32118) + (-4278 . 32017) (-4279 . 31929) (-4280 . 31834) (-4281 . 31612) + (-4282 . 31476) (-4283 . 31308) (-4284 . 31092) (-4285 . 31023) + (-4286 . 30905) (-4287 . 30823) (-4288 . 30517) (-4289 . 30400) + (-4290 . 30287) (-4291 . 30065) (-4292 . 30013) (-4293 . 29895) + (-4294 . 29841) (-4295 . 29785) (-4296 . 29567) (-4297 . 29451) + (-4298 . 29380) (-4299 . 29301) (-4300 . 29147) (-4301 . 28914) + (-4302 . 28786) (-4303 . 28678) (-4304 . 28254) (-4305 . 28136) + (-4306 . 27713) (-4307 . 27561) (-4308 . 27286) (-4309 . 27203) + (-4310 . 27101) (-4311 . 26941) (-4312 . 26619) (-4313 . 26478) + (-4314 . 26356) (-4315 . 26296) (-4316 . 26239) (-4317 . 26139) + (-4318 . 26087) (-4319 . 26010) (-4320 . 25923) (-4321 . 25864) + (-4322 . 25780) (-4323 . 24203) (-4324 . 24055) (-4325 . 23930) + (-4326 . 23703) (-4327 . 23372) (-4328 . 23079) (-4329 . 22836) + (-4330 . 22618) (-4331 . 22535) (-4332 . 22303) (-4333 . 22220) + (-4334 . 21833) (-4335 . 21708) (-4336 . 21579) (-4337 . 21395) + (-4338 . 21313) (-4339 . 21192) (-4340 . 21107) (-4341 . 20822) + (-4342 . 20743) (-4343 . 20316) (-4344 . 20185) (-4345 . 20128) + (-4346 . 19939) (-4347 . 19858) (-4348 . 19799) (-4349 . 19722) + (-4350 . 18541) (-4351 . 18480) (-4352 . 18219) (-4353 . 17904) + (-4354 . 17746) (-4355 . 17673) (-4356 . 17279) (-4357 . 17120) + (-4358 . 17001) (-4359 . 16367) (-4360 . 16269) (-4361 . 15925) + (-4362 . 15832) (-4363 . 15609) (-4364 . 15557) (-4365 . 15300) + (-4366 . 15185) (-4367 . 14887) (-4368 . 14809) (-4369 . 14427) + (-4370 . 14045) (-4371 . 13961) (-4372 . 13873) (-4373 . 13757) + (-4374 . 13649) (-4375 . 13085) (-4376 . 13002) (-4377 . 12916) + (-4378 . 12819) (-4379 . 12742) (-4380 . 12669) (-4381 . 12616) + (-4382 . 12539) (-4383 . 12462) (-4384 . 12358) (-4385 . 12159) + (-4386 . 12022) (-4387 . 11459) (-4388 . 11431) (-4389 . 11335) + (-4390 . 11280) (-4391 . 10907) (-4392 . 10757) (-4393 . 10639) + (-4394 . 10135) (-4395 . 10035) (-4396 . 9947) (-4397 . 9796) + (-4398 . 9561) (-4399 . 9487) (-4400 . 9342) (-4401 . 9208) + (-4402 . 9158) (-4403 . 9043) (-4404 . 8890) (-4405 . 8524) + (-4406 . 8080) (-4407 . 7595) (-4408 . 7349) (-4409 . 6977) + (-4410 . 6585) (-4411 . 6531) (-4412 . 6397) (-4413 . 6344) + (-4414 . 6265) (-4415 . 6159) (-4416 . 6125) (-4417 . 6006) + (-4418 . 5950) (-4419 . 5710) (-4420 . 5550) (-4421 . 5005) + (-4422 . 4855) (-4423 . 4345) (-4424 . 4138) (-4425 . 4035) + (-4426 . 3858) (-4427 . 3806) (-4428 . 3653) (-4429 . 3415) + (-4430 . 3250) (-4431 . 3011) (-4432 . 2503) (-4433 . 2284) + (-4434 . 2037) (-4435 . 1777) (-4436 . 1745) (-4437 . 1665) + (-4438 . 1549) (-4439 . 347) (-4440 . 313) (-4441 . 279) (-4442 . 222) + (-4443 . 118) (-4444 . 30))
\ No newline at end of file |